Performance and Cost Analysis of Solar Systems Considering Different PV and Inverter Models

A thesis submitted to the Graduate School of Natural and Applied Sciences

by

Mohamed AL BATTAL

in partial fulfillment for the degree of Master of Science

in Industrial and Systems Engineering

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science in Industrial and Systems Engineering.

APPROVED BY:

Assoc. Prof. Bahadır Tunaboylu (Thesis Advisor)

Asst. Prof. Hatice Tekiner Moğulkoç

Assoc. Prof. Tansal Güçlüoğlu

Ablinabergh Malies Lintroph

This is to confirm that this thesis complies with all the standards set by the Graduate School of Natural and Applied Sciences of İstanbul Şehir University:

DATE OF APPROVAL:

SEAL/SIGNATURE:

: 22/ 10/2019 M Pelon

Declaration of Authorship

I, Mohamed AL BATTAL, declare that this thesis titled, 'Performance and Cost Analysis of Solar Systems Considering Different PV and Inverter Models' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Rtt (10 22/10/2019 Signed:

Date:

Performance and Cost Analysis of Solar Systems Considering Different PV and Inverter Models

Mohamed AL BATTAL

Abstract

As solar technology progresses, there are different options in terms of system designs, solar panel types, for PV (photovoltaic) systems for specific building or plant type applications. It is necessary to evaluate the differences between these types in addition to study the impact of using different PV and inverter models on different systems in order to obtain the most suitable and feasible design that can be used to achieve economic feasibility with the best technology type for an application. In this study, we will design different solar systems together with a cost analysis to get the most efficient design that generate most possible energy for the most suitable price to provide a 350kWp capacity on $7500m^2$ land. The designs are made to supply an integrated building that consume 20,000 kWh/month (240MWh/year) located in Istanbul - Turkey. This study provides comparisons of energy outputs and cost expenses between three different systems using two types of PV panels & three types of inverters for each system.

Keywords: Photovoltaic System, System Design, Comparison of Alternative PV Technologies, Financial Assessment.

Farklı PV Sistemlerinin Enerji Performansı ve Maliyet Değerlendirmesi

Mohamed AL BATTAL

Öz

Güneş teknolojisi ilerledikçe, sistem tasarımları, güneş paneli tipleri, PV (fotovoltaik) sistemleri için özel bina veya tesis tipi uygulamaları için farklı seçenekler vardır. Farklı PV ve invertör modellerinin farklı sistemler üzerinde kullanılmasının etkilerini incelemek için bu tipler arasındaki farklılıkları değerlendirmek gerekir, bir uygulama için en iyi teknoloji türüyle ekonomik fizibilite sağlamak için kullanılabilecek en uygun ve uygulanabilir tasarımın elde edilmesi için. Bu çalışmada, 7500m2 arsa üzerinde 350kWp kapasite sağlamak için en uygun fiyata en uygun enerjiyi üreten en verimli tasarımı elde etmek için maliyet analiziyle birlikte farklı güneş sistemleri tasarlayacağız. Tasarımlar, İstanbul - Türkiye'de bulunan 20.000 kWh/ay (240MWh/yıl) tüketen entegre bir bina tedarik etmek ičin yapılmıştır. Bu çalışma, her bir sistem için iki tür PV panel ve üç tür invertör kullanan üç farklı sistem arasındaki enerji çıktıları ve maliyet harcamalarının karşılaştırılmasını sağlar.

Anahtar Sözcükler: Fotovoltaik Sistem, Sistem Tasarımı, Alternatif PV Teknolojilerinin Karşılaştırılması, Finansal Değerlendirme.

Acknowledgments

I would like to express my sincere appreciation and gratitude to my advisor Prof. Bahadır Tunaboylu for his continuous support and guidance. I also would like to thank Assoc. Prof. Bora Akşar - Department of Civil Engineering, Bülent Keskin - Electrical Engineer and Campus Coordinator in Istanbul Sehir University, Dursun Aydoner -Technical Director in Inogen Energy Technologies and Investment co. and Yunus Emre Yenidogan - Electrical Engineer in Inogen Energy Technologies and Investment co. for their appreciated support and guidance.

Contents

Declaration of Authorship	ii
Abstract	iii
Öz	iv
Acknowledgments	v
List of Figures	viii
List of Tables	x
Abbreviations	xi
1 Solar Energy	1
1.1 Introduction \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	1
1.2 Types of Solar Energy Collectors	
1.2.1 Fixed Panel	
1.2.2 Single-Axis Panel	
1.2.3 Dual-Axis Panel	
1.3 Component of Solar Panel	
1.4 Electricity Generation	
1.5 Solar Tracking Systems	
1.6 Motivation \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	8
2 Design and Simulation Results	9
2.1 Design Overview	
2.1.1 Design Requirements	
2.2 Grid Location	
2.2.1 Drawings Preparation	
2.3 Solar Panel Design	
2.3.1 Fixed Panel Design	
2.3.1.1 Fixed Axis Simulation Report using Yingl	
2.3.1.2 Fixed Axis Energy Output Comparison .	
2.3.1.3 Fixed Axis Simulation Report using Panas	
2.3.1.4 Fixed Axis Energy Output Comparison .	
2.3.1.5 Fixed Axis Systems Comparison	
2.3.2 One Vertical Axis Panel Design	
2.3.2.1 One Axis Simulation Report using Yingli	PV 29

			2.3.2.2 One Axis Energy Output Comparison	32
			2.3.2.3 One Axis Simulation Report using Panasonic PV	34
			2.3.2.4 One Axis Energy Output Comparison	36
			2.3.2.5 One Axis Systems Comparison	37
		2.3.3	Two-Axis Panel Design	38
			2.3.3.1 Two Axis Simulation Report using Yingli PV	38
			2.3.3.2 Two Axis Energy Output Comparison	40
			2.3.3.3 Two Axis Simulation Report using Panasonic PV	41
			2.3.3.4 Two Axis Energy Output Comparison	43
			2.3.3.5 Two Axis Systems Comparison	44
		2.3.4	Design Comparison for All Systems	45
3	Cos	t Anal	ysis	47
	3.1	Assess	ing System Cost	47
		3.1.1	System Cost Calculation	48
	3.2	Grid I	nstallation	51
		3.2.1	Steel Structure Design	52
	3.3	Return	n of Investment	54
		3.3.1	First Scenario	54
		3.3.2	Second Scenario	56
			3.3.2.1 Investment Calculations Findings	57
		3.3.3	Third Scenario	58
		3.3.4	Fourth Scenario	59
4	Sur	v	d Discussion	61
	4.1	Findin	gs	61
	4.2	Recom	mendations	65
\mathbf{C}	onclu	ision		66
\mathbf{A}	\mathbf{Fix}	ed axis	Appendix	67
в	One	e axis A	Appendix	91
С	Two	o axis A	Appendix	115
Bi	blio	graphy		139

List of Figures

1.1	Solar Comparison	2
1.2	Fixed-axis panel [1]	3
1.3	Single-axis panel $[1]$	3
1.4	Dual-axis panel [1]	4
1.5	Solar Component	5
1.6	Electrical Process	6
1.7	Active power production [2]	7
1.8	Radiation intensity [2]	7
1.9	Fixed-axis energy production [3]	7
1.10	Dual-axis energy production [3]	7
1.11	Fixed - One-axis comparison [4]	8
2.4		10
2.1	Panel energy output [5]	10
2.2	Proposed grid location [6]	11
2.3	Engineering plan for grid location	12
2.4	Surroundings elevations [7]	13
2.5	Islands elevations $[8]$	13
2.6	Sketchup plan drawing	14
2.7	Central inverter $[9]$	15
2.8	Input parameters	16
2.9	Fixed-axis definition	17
2.10	Grid system definition	17
	Simulation	17
2.12	Fixed, Yingli - SMA simulation report 1	18
2.13	Fixed, Yingli - SMA simulation report 2	18
2.14	Spacing calculation [10]	19
2.15	Panel spacing	19
2.16	Fixed shading diagram	19
2.17	Fixed, Yingli - SMA simulation report 3	20
2.18	Fixed, Yingli - SMA simulation report 4	20
2.19	Fixed-axis monthly production	21
2.20	Fixed, Yingli PV Energy output [67]	22
	Fixed, Yingli Inverter Losses	23
2.22	Fixed, Panasonic - SMA simulation report 1	24
2.23	Fixed, Panasonic - SMA simulation report 2	24
2.24	Fixed, Panasonic - SMA simulation report 3	25
	Fixed, Panasonic - SMA simulation report 4	25
	Fixed Panasonic PV Energy output [87]	26

2.27	Fixed, Panasonic Inverter Losses	26
2.28	Fixed, Yingli - Panasonic systems comparison	27
2.29	Incidence Angle Modifier - IAM [11]	28
2.30	One-way, Yingli - SMA simulation report 1	29
2.31	One-way, Yingli - SMA simulation report 2	29
2.32	One-way shading diagram	30
2.33	One-way, Yingli - SMA simulation report 3	31
2.34	One-way, Yingli - SMA simulation report 4	31
2.35	One-way Yingli PV Energy output [91]	32
2.36	One-way, Yingli - Inverters losses	32
	Fixed - One-axis inverter operation loss	
2.38	One-way, Panasonic - SMA simulation 1	34
2.39	One-way, Panasonic - SMA simulation 2	34
2.40	One-way, Panasonic - SMA simulation 3	35
	One-way, Panasonic - SMA simulation 4	
2.42	One-way Panasonic PV Energy output [103]	36
	One-way, Panasonic - Inverters losses	
	One-axis, Yingli - Panasonic systems comparison	
	Two-way, Yingli - SMA simulation 1	
2.46	Two-way, Yingli - SMA simulation 2	38
	Two-way, Yingli - SMA simulation 3	
2.48	Two-way, Yingli - SMA simulation 4	39
	Two-way Yingli PV Energy output [115]	
	Two-way, Yingli - Inverters losses	
	Two-way, Panasonic - SMA simulation 1	
	Two-way, Panasonic - SMA simulation 2	41
	Two-way, Panasonic - SMA simulation 3	42
	Two-way, Panasonic - SMA simulation 4	
2.55	Two-way, Panasonic PV Energy output [127]	43
	Two-way, Panasonic - Inverters losses	
2.57	Two-axis, Yingli - Panasonic systems comparison	44
2.58	Design comparison for all systems	45
3.1	Prices	47
$3.1 \\ 3.2$	Cost to energy	47 50
3.2 3.3	Grid	$50 \\ 51$
3.4	Weight of system	52
3.5	Steel structure	52
3.6	Steel cross-section	52 53
3.0	Steel design 1	ээ 53
3.7 3.8	Steel design $1 \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	эз 53
3.0	Steel design 2	ээ 53
	0	
3.10	Fixed-axis, Yingli-SMA energy production/month	54

List of Tables

Fixed system cost calculation	48
One-axis system cost calculation	49
Two-axis system cost calculation	49
Fixed-axis, Yingli-SMA useful energy production/month	55
Fixed-axis, Yingli-SMA Savings and Disbursements	55
One-axis, Yingli-SMA useful energy production/month	56
First year, Fixed-axis, Yingli-SMA Savings and Disbursements	57
25-year grid electricity payment	58
Return of investment 1	60
Return of investment 2	60
Fixed, One-axis energy production	62
Florida case study, location status	63
Florida case study, results	63
Pakistan case study, results	64
	One-axis system cost calculationTwo-axis system cost calculationFixed-axis, Yingli-SMA useful energy production/monthFixed-axis, Yingli-SMA Savings and DisbursementsOne-axis, Yingli-SMA useful energy production/monthFirst year, Fixed-axis, Yingli-SMA Savings and Disbursements25-year grid electricity paymentReturn of investment 1Return of investment 2Fixed, One-axis energy productionFirst data case study, location statusFlorida case study, results

Abbreviations

\mathbf{PV}	\mathbf{P} hoto \mathbf{V} oltaic			
DC	\mathbf{D} irect \mathbf{C} urrent			
AC	Alternative Current			
Wp	\mathbf{W} att \mathbf{p} eak			
kWp	${f k}$ ilo ${f W}$ att ${f p}$ eak			
MWh	${f M}$ ega ${f W}$ att hour			
kWac	kilo Watt Alternative current			
PR	${f P}$ erformance ${f R}$ atio			
UNP	$\mathbf{U}\text{nit }\mathbf{N}\text{ominal }\mathbf{P}\text{ower}$			
IAM	Incidence Angle Modifier			

Chapter 1

Solar Energy

1.1 Introduction

The world's growing increases the demand on basic elements and industries which require continual use of fossil fuel-based energy sources. Unfortunately, this became a real issue, the dependence on these sources creates several challenges such as depletion of fossil fuel reserves, the continual fuel price fluctuations and environmental impacts. These issues create unsustainable situations that ultimately lead to an irreversible threat to human societies [12]. The electricity generation process from fossil fuel-based energy sources generates elements that adversely affect the climate due to the process of combustion that lead to the emission of greenhouse gasses such as carbon dioxide, which act as a partial blanket for the longwave radiation. This is known as the natural greenhouse effect. The emission and spread of the greenhouse gases affect negatively and do real impact on the atmosphere causing the global warming, water and soil pollution is also observed [13]. Nevertheless, renewable energy sources are the most suitable alternative and the only solution to the growing challenges [14]. Many studies have been made to create new way to generate electricity, a way that generate an infinite clean energy that covers the need without affecting the environment. Thus, in 1839 the French scientist Alexandre-Edmond Becquerel find out the photovoltaic effect that explains the process of electricity generation from sunlight [15]. At 1941 the American scientist Russell Ohl created the first solar cell. The basic principle of sunlight to electricity is called photoelectric effect [16], in this phenomenon the electricity conversion depends on the photons of the sunlight. Once solar system constructed an infinite electricity can be produced without any dependence on earth resources, generating electricity with no waste or pollution. Renewable energy sources reduce greenhouse gas emissions significantly if replaced by fossil fuels. As renewable sources of energy are naturally obtained from the continuous energy flows in our environment [17]. Producing a usable electricity from a solar system require a set of solar panels and inverters. Solar panels generate a direct current (DC) from sunlight conversion. Inverters are devices converts DC to alternative current (AC) for electricity usage. Solar systems face some shortcomings such as: interruption of power generation due to seasonal variation as most renewable energy sources rely on climate, which is why their exploitation requires complex ways of design, planning and control [18]. In addition to the variety of solar panel models, inverters and systems scientists and industries have discovered and manufactured so far makes us question, on what system type should we rely? How would different panel and inverter models affect the energy output? This study will present a case with different designs of different solar systems using different panel and inverter models together with a cost analysis to test the difference in energy output and to get the most efficient design that covers the need besides the economic feasibility. With regard to the types of solar systems, a brief explanation of the advantages and disadvantages of each type will be provided in Figure 1.1.

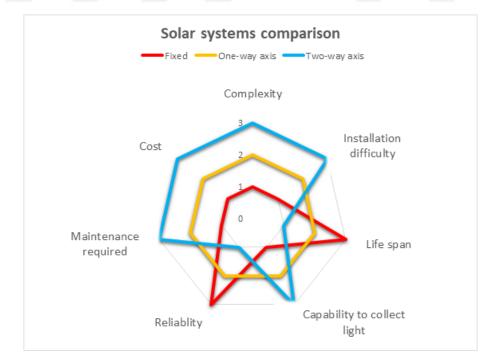


FIGURE 1.1: Solar system comparison [19]

1.2 Types of Solar Energy Collectors

Solar collectors are devices that capture the sunlight and convert it to electricity, these devices formed by connecting many solar cells forming a panel. Two types of solar panels are widely used based on geographical and environmental features, fixed solar panels and trackers panels.

1.2.1 Fixed Panel

Fixed panels are placed in a fixed angle that gives the maximum collection of sunlight, which is usually the optimum tilt as it is shown in Figure 1.2. Achieving maximum efficiency require setting the panels towards the sun to allow most of sun rays to be captured. Due to the lack of moving parts in the design, they are easy to design, easy to construct and maintain.

FIGURE 1.2: Fixed-axis panel [1]

1.2.2 Single-Axis Panel

Single-axis panel have one-way free movement either horizontal or vertical way which rotates around a tilted shaft according to sun position estimated by light intensity sensors as it is shown in Figure. 1.3.

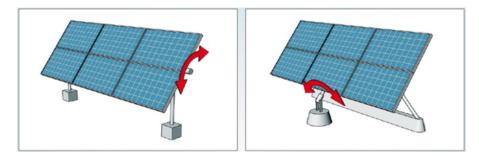
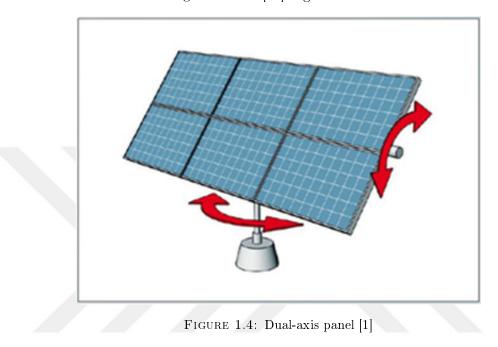



FIGURE 1.3: Single-axis panel [1]

1.2.3 Dual-Axis Panel

Dual-axis panels are the most light collectable systems due to having two degree of freedom, they can move in both directions horizontal and vertical, therefore these panels can angle themselves to direct the sun anywhere even if aim is off by 10° the output is still 98.5% of the full tracking maximum [20] Figure 1.4.

1.3 Component of Solar Panel

Solar panel is formed from connecting many solar cells together, to create an electrical flow [21], silicon material is used in the manufacturing of solar panel because it's a natural semiconductor, easy obtained and can be easily doped. Constructing the silicon material in a positive layer and negative layer will create an electrical field like batteries. Using crystallized silicon on its own will not conduct the electricity very well, in this regards some of impurities need to be added to create an electric current. Figure 1.5 shows that adding pentavalent impurities to the intrinsic semiconductor like phosphorus creates negative charge (n-type) while positive charge (p-type) layer is formed by adding trivalent impurities to the intrinsic semiconductor like boron.

When p-type and n-type semiconductors joined together, the surface between them called P-N junction, the movement of electrons at P-N junction creates an electrical field that makes electrons to flow only through one direction from p-type to n-type layer. When

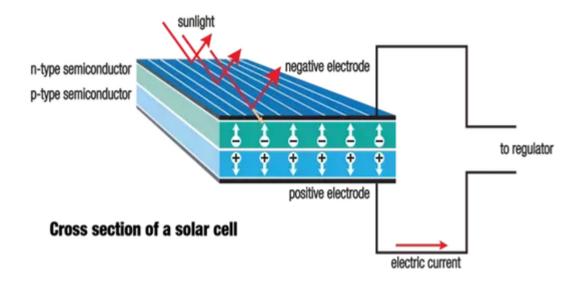
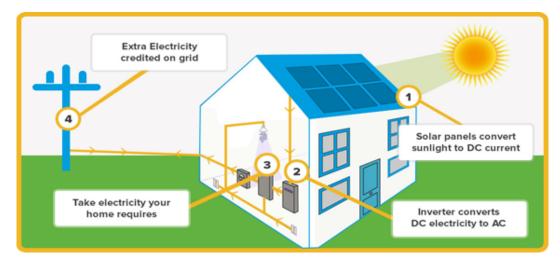
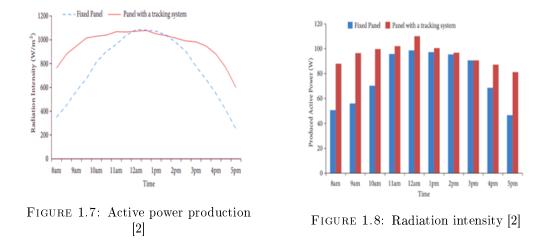


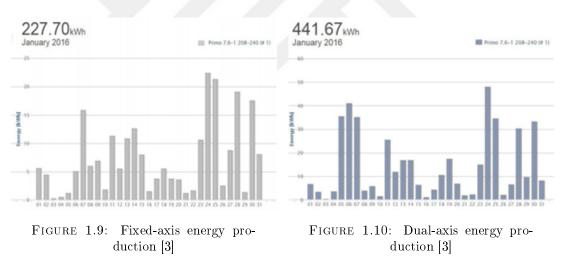
FIGURE 1.5: Solar panel component [22]

sunlight strikes the solar panel, the sunlight energy strikes electrons in p-type and n-type layers. Due to the different charges, the sunlight rays will flow from the top layer (ntype) to the bottom layer (p-type), but because of the electrical field formed in the P-N junction blocks the way and prevents this to happen. Therefore, an external circuit with thin wires need to be connected to the top layer of the panel (n-type layer) to provide a path for the electrons to flow from the n-type layer to p-type layer providing a supply of electricity.

1.4 Electricity Generation

Solar panels convert photons from the sun rays into direct current (DC) electricity flowing in one direction only from the negative to positive side around a circuit, hence the name direct current. For home usage the direct current (DC) converted to alternating current (AC) electricity because it can be easily transformed from one voltage to another with the capability to transform huge amounts of electricity because of its frequency with very low energy losses to almost any desired voltage. Figure 1.6 shows the electrical generation process through solar panel system, the excess energy (DC) coming from solar panels can be stored in separated batteries.


FIGURE 1.6: Electrical generation process [23]

1.5 Solar Tracking Systems

When Fixed Solar panels had been discovered it was used to supply small to big demand of energy. However, Fixed panels do not have the capability to supply the demanded energy due to the movement of the sun throughout the day or seasonal and weather conditions. In fact, weather condition plays an important role in the electricity production, cloudy days reduces the ability of collector to capture sunlight compared to sunny days. The energy supplying process depends fundamentally on the amount of sunlight collected by the collectors. In this regard, a lot of studies showed that the Fixed solar panels generate high rate of energy within a period of time in the day and not in the others. For this case many studies proposed optimizing the slope angle of solar panels in which the panels can collect sunlight at all possible geographic latitudes and periods. A study had been made to test the ability of tracking system in Düzce - Turkey, they found that tracking system achieved 35% power more than the Fixed system shown in Figure 1.7, 1.8 that presents the differences in radiation intensity and the active power generated between Fixed and tracking Dual-axis system throughout a day.

The superior energy production can be noticed in the Dual-axis tracking system while the Fixed system barely reaches the maximum power in the same situation. Figures 1.9, 1.10 displays another solar comparison between Fixed and the Dual-axis, the comparison were made in the same location at Chagrin falls, Ohio in January of 2016 [3].

It was reported that Dual-axis system performed nearly double value than that in Fixed state, 227kWh compared to 441kWh.

Furthermore, One-axis tracking systems showed remarkable advantages over Fixed ones in Bakersfield - California with 25% performance improvement, as it stated in Figure 1.11 [4].

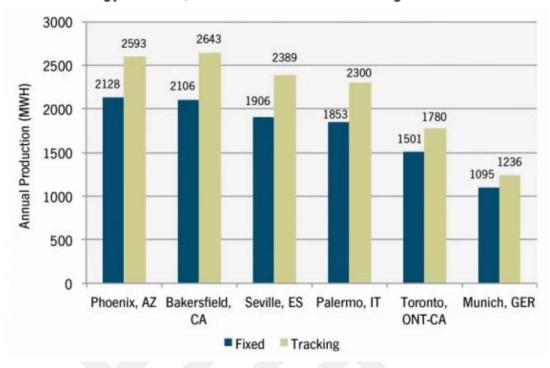


FIGURE: Energy Harvest, Fixed vs. One-Axis Tracking

FIGURE 1.11: Fixed - One-axis comparison [4]

1.6 Motivation

There are many tradeoffs in industrial scale use of PV systems. Solar cells are manufactured into modules and these modules are brought together in a system design to meet requirements for a selected location with certain radiation history. System will have panels with inverters to allow grid-operation once connected. Although constructing solar plants will allow us generate energy, there are many challenges to solve, such as variety of solar panel models, inverters and systems can be designed for a specific location and country. Therefore, the purpose of this study is to determine and evaluate the differences between performing different panel and inverter models in different solar systems to test how would this affect the output results along with performing cost assessment in parallel to find the optimum solution. In this study, we will design different solar systems that will provide a 350 kilowatt peak (kWp) capacity. The kWp is the peak power of a PV system or panel under a standardized test for panels across all manufacturers to ensure that the values listed are capable of comparison.

Chapter 2

Design and Simulation Results

2.1 Design Overview

Designing an appropriate solar panels affected by many factors, these factors need to be emphasized and identified before starting the design such as the amount of energy to be produced and the location of the panels, which have a real impact to the design regarding shadow effect. Shadowing effect occurs when solar panels does not receive the same amount of sunlight throughout the system due to the existence of obstacles. Figure 2.1 shows the difference in energy output just shortly when the sun rises and gets to the panels at 9:00 am. The panels on the right side have been subjected to the effect of the shadow resulting from the presence of an object that obscures the rays from the plates, resulting in a decrease of 75% compared to the panels in full sun. The figure shows how shadow on panels affect the energy output compared to the ones on full light. Hence all obstacles, objects and buildings surrounding the location of the solar system must be in the calculation to achieve an accurate result for the designs.

2.1.1 Design Requirements

In order to design a solar power plant, we need to ensure that several things are achieved. The first step in designing a solar PV system is to locate the solar grid that allows the sunlight to reach the PV modules as much as possible. The second step is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as in our study to be 20,000 kWh for an existing building. The third

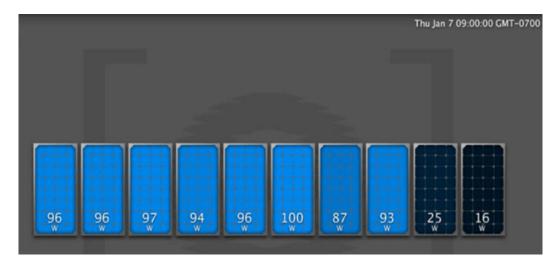


FIGURE 2.1: Panel energy output [5]

step is selecting the size of PV modules, knowing that different size of PV modules will produce different amount of power. The fourth step is selecting the size of inverters. The input rating of the inverter should be higher than the total watt of appliances, hence the inverters should be large enough to handle the total amount of watts you will be using at one time. After applying these steps, we can use a software to design the solar plant. In this study PVsyst software had been used because it's based on a quick and simple procedure by specifying the desired power or available area and choosing the PV and inverter modules from the internal database then PVsyst will propose an array/system configuration, that allows to conduct a preliminary simulation. In addition, the software embeds a color-coded warning/errors messaging system if there's a mismatch or issue.

2.2 Grid Location

Well-designed solar panel system has clear and unobstructed access to the sun for most of the day throughout the year. In fact, setting a PV system correctly is critical in order to achieve maximum power production and thus maximum energy offset and financial return. Therefore, the location that has been selected to be a place for the system is the marked area shown in Figure 2.2. The displayed area has remarkable features as it is 9m height to minimize the shadow effect as much as possible, and has an area around $7500m^2$ that can carry large numbers of PV panels. Furthermore, setting the solar grid on the columns can be exploited to give an aesthetic appearance to the area.

FIGURE 2.2: Proposed grid location [6]

2.2.1 Drawings Preparation

After selecting the solar plant location, the surroundings need to be drawn so PVsyst software can calculate the shadow effect on solar panels. Sketchup softwar had been used to draw the location of the solar grid and all of the surroundings since PVsyst accept Sketchup format. After drawing the location, the file can be exported to PVsyst software for analyzing. An engineering plan for the proposed location had been used. The engineering plan shows essential dimensions in order to understand the nature of the surroundings that may have a direct impact on solar plant performance such as buildings height and distances. Drawings must be drawn to scale, but not unnecessarily full scale. This engineering plan shown in Figure 2.3 has been used to draw the area that surrounds the PV solar plant in Sketchup software, including all buildings and plateaus if any surrounding, to get an accurate result regarding the calculation of shadow effect.

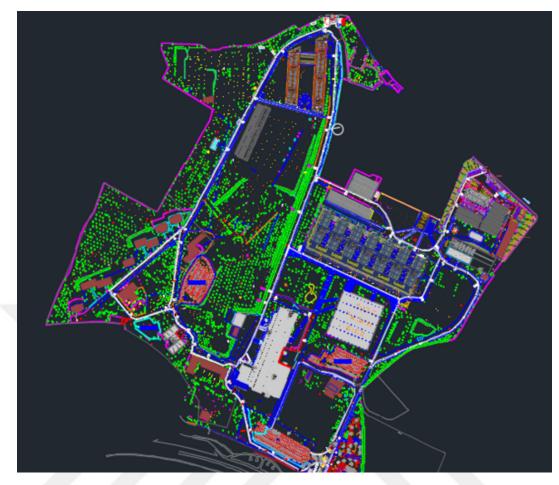


FIGURE 2.3: Engineering plan for grid location

Taking the work on a wider scale, a tool from google earth [24] was used to draw the plateaus and islands near the solar plant location if any exists to ensure covering all of the elevations that may affect the design calculation results. This tool helps determining the elevation of any selected points in the map. The spacing between points has been fixed which means that the distance between every two points is the same. Each point has a specific elevation shown in Figures 2.4, 2.5. One plateaus with 100m height and three islands with 190m height near solar plant location has been identified to be drawn for their potential impact on the design.

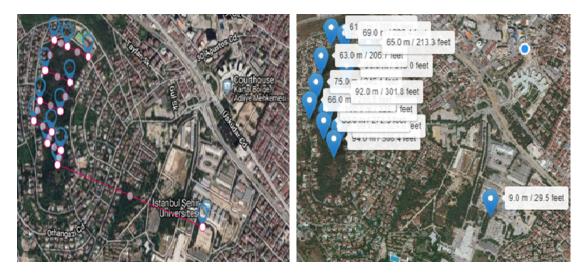


FIGURE 2.4: Surroundings elevations [7]

FIGURE 2.5: Islands elevations [8]

The dimensions and elevations data obtained from google earth tool and engineering plan are used in Sketchup software to have a copy of reality. The Sketchup software drawing results displayed in Figure 2.6 can be used in PVsyst software.

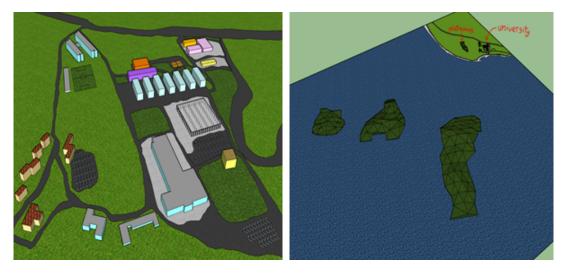


FIGURE 2.6: Sketchup plan drawing

2.3 Solar Panel Design

After drawing the location of the solar system, there are parameters need to be defined to start designing the solar system such as system type, solar panel / inverter models and capacity's, latitude / longitude of the solar grid location, altitude and azimuth angles. The defined coordinates allow PVsyst software to provide the solar radiation from the internal database. All solar panels receive a nameplate power rating indicating the amount of power they produce under industry-standard test conditions. Most solar panels on the market have power ratings in the range of 200 to 350 watts watts. These ratings represent the output power under ideal conditions. These ratings are useful as a way to make consistent comparisons between panels. A higher power rating means that the panels are more effective at producing power. For electricity usage the output direct current (DC) energy coming from the system need to be changed to alternative current (AC) using inverters. Solar systems are very much dependent on which inverter type are used. String type inverter will be used in the design therefore all the solar panels are connected in series and controlled as one long chain. Hence, the monitoring can't be done on panel-level, but instead per string as it is shown in Figure 2.7. Regarding trackers, the design will consist Fixed, One-axis and Two-axis trackers.

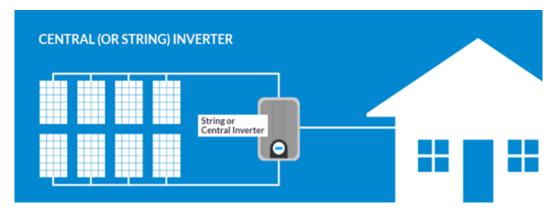


FIGURE 2.7: Central inverter [9]

Solar designs will be presented in a form of reports that displays all the parameters used in the design with showing the results obtained to achieve 350kWp capacity. All designs will face the same conditions, location, height, spacing, tilt angle, and no. of inverters to have fair comparison for all alternatives. After performing all design alternatives, we will subject all designs to comparison so that we can see the effectiveness of each design compared to others.

2.3.1 Fixed Panel Design

At this point after drawing the location of the solar system. We can start designing the solar systems. First, different factors for the solar system design need to be defined, starting by choosing the system type then setting the tilt and azimuth angles after that selecting the panel and inverter models. In this study two different panel models with different capacities have been used, Yingli PV 310Wp [25] and Panasonic PV 230Wp [26]. These panel models have different intrinsic structure as Yingli PV is polycrystalline panel which made of multifaceted silicon crystals while Panasonic PV is HIT panel which stands for Heterojunction with Intrinsic Thin layer which designed with thin amorphous silicon layers to reduce electron carrier loss to minimal levels. In this study, the performance of these two different intrinsic structures of panel models will be subjected into comparison when facing the same conditions. Three different inverters will be used in the designs, SMA 60.0 kWac [27], Hyundai 50.0 kWac [28], Solarmax 50.0 kWac [29]. The longitude and latitude for the proposed location were obtained from google maps. According to the location of the solar system PVsyst provide meteorological data as its stated in Figure 2.10. The result of performing these PV and inverter models will be subjected into comparison to see which alternative has the maximum power output.

2.3.1.1 Fixed Axis Simulation Report using Yingli PV

PVsyst software has a quick and simple procedure to perform a design simulation starting by specifying the system type whether its Fixed, One-axis or Two-axis system in the orientation part in PVsyst software as it shown in Figure 2.8. then defining the tilt and azimuth angles as it shown in Figure 2.9. Next step, is selecting the system part in PVsyst software as it shown in Figure 2.8 then defining the desired power or available area for the solar grid and choosing the PV and inverter models from the internal database as it shown in Figure 2.10. Then we can import the drawing we have drawn using sketchup software in the near shading part Figure 2.8 and set the panel's spacing. This allows to conduct a preliminary simulation. If there was any issue or mismatching when setting the parameters, the software will embed a color-coded warning/errors message. The Figures 2.12, 2.13, 2.17, 2.18 are simulation report from PVsyst after defining the parameters which contains four pages, each page shows the defined parameters and the results obtained from performing the design simulation. The report presents design simulation performed using 310Wp Yingli solar PV with 60.0 kWac SMA inverter.

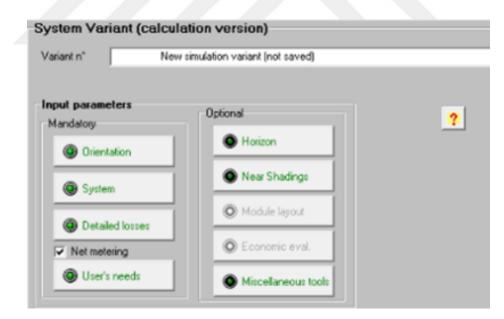


FIGURE 2.8: Input parameters

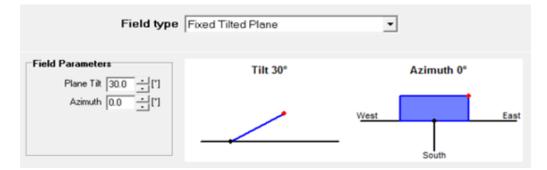


FIGURE 2.9: Fixed-axis definition

Global System configuration	Global system	SUBBARY.			
1	Nb. of modules	85	Nominal PV Por	and at a second s	16.1 k
Le T unique or rando or rob-analys	Module area	125 m ²	Maximum PV Pv		15.0 kh
? Simplified Scheme	Nb. of investors	3	Nominal AC Por		12.6 k
Anay Name					
Sub-array name and Orientation	Presizing Help				
Name Amay Name	C No sizing	Enter planner	dpower C 16.1	k/w/p	
	Ta 25" ? Resize	or available areatr	vodules) @ 125	-	
Select the PV module					
Available Now 💌		Max	imum nb. of modules	05	
Generic I 190 Wp 22V Si-polv	Poly 190 Wp 54 cells	Since 2015	Typical		B Ope
					14 00 mg
Available Now			61 044 D		1 60 Hz
Generic • 4.2 MW 125-500 V TL			Since 2012		19 60 Ha
	okage: 125-500 V	Global Inverter's po "String" inverter	wer 12.6 kW/ac		50 Hz 50 Hz 50 Hz 50 Hz
Generic Generic 42 NW 125-500 V TL Nb. of inverters 3	ohage: 125-500 ∨ um vohage: 700 ∨	Global Inverter's po "String" inverter	wer 12.6 kW/ac with 2 inputs		De CO Hu
Generation Genera	okage: 125-500 ∨ um vokage: 700 ∨ Operating conditions	Global Inverter's po "String" inverter	wer 12.6 kW/ac	•	De CO Hu
Generic Generic 42 NW 125-500 V TL Nb. of inverters 3	okage: 125-500 V xm voltage: 700 V Operating conditions Vmpp (60°C) 37	Global Inverter's po "String" inverter 4 V	wer 12.6 kW/ac with 2 inputs	•	De CO Hu
Generation Mb. of invertees Design the array Humber of modules and strings Mod. in series 17 \pm E between 6 and 18	ohage: 125 500 V um voltage: 700 V Operating conditions Vinep (60°C) 375 Vinep (20°C) 45	Global Inverter's po "String" inverter	wer 12.6 kW/ac with 2 inputs	•	De CO Hu
Generation Image: Constraint of the second	Object 125:500 V 700 V Operating conditions Vispo (60°C) 37: Vispo (20°C) 45: Vispo	Global Inventer's po "String" inventer 4 V 5 V 8 W/m*	wer 12.6 KWac with 2 inputs or array has 5 strings to provide	ter denter	ed onto 1
Generation Mb. of invertees Design the array Humber of modules and strings Mod. in series 17 \pm E between 6 and 18	Obsper 125:500 V 700 V use voltage: 700 V Operating conditions Vmpp (60°C) Vmpp (20°C) 42 Vmc (-10°C)	Global Inverter's po "String" inverter 4 V 5 V 5 V 8 W/m ² Max	wer 12.6 kW/ac with 2 inputs er amay has 5 strings to investe	be death al	ed onto
Generation • 4.2 kW 125-500 V TL Nb. of invertes 3 • Operating V Design the array Imput maxim Header of modeles and strings • • Mod. in series 17 • Externel 6 and 18 Nitre strings 5 • P between 4 and 5 Overload loss 0.2 % TL Stress string •	Obspect 125:500 V 700 V use voltage: 700 V Operating conditions Very 100°C Very 10°C 62 Voc (-10°C) 62 Plane insidence 1000 Impering STC 36:5 A	Gibbal Inverter's po "String" inverter 3 V 3 V 3 W/An ² Max	er ansy has 5 strings to method to an ansy has 5 strings to invester	the database al	eed onto

FIGURE 2.10: Grid system definition

System Variant (calculation Variant n° VC0				• H* × +- 0
Input parameters Mandatory	Optional	Simulation	Results overview System kind	Sheds on ground
Orientation System	Horizon Near Shadings	Simulation	System Production Specific production Performance Ratio	0.00 kWhyyr 0.00 kWhykWpyyr 0.00
Detailed losses	Module layout	Simulation	Normalized production Array losses	0.00 kWh/kWp/day 0.00 kWh/kWp/day
Self-consumption	C Economic eval.	Report	System losses	0.00 kWh/kWp/day
	Miscellaneous tools	Me Results		

FIGURE 2.11: Simulation

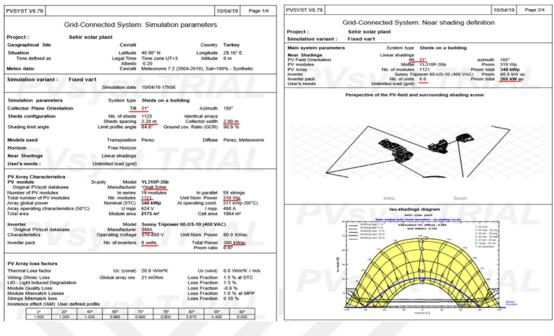


FIGURE 2.12: Fixed, Yingli - SMA simulation report 1

FIGURE 2.13: Fixed, Yingli - SMA simulation report 2

A study done by Suzi Dilara Mangan, Gül Koçlar Oral [30] shows that the optimum angle for Istanbul is 31°. The azimuth angle is 180° which is the compass direction from which the sunlight is coming according to location of panels [31]. When the drawing had been imported to PVsyst software the panels had been assigned to be 2.2m x 2m according to spacing calculation [32] as shown in Figures 2.14, 2.15. All solar panel alternative designs had the same defined parameters. Results shown in Figure 2.12 shows that to provide almost 350 kWp plant require 1121 PV modules with 6 SMA 60.0 kWac inverters that will convert DC to AC from 1121 panels. Note, that 60.0 kWac inverter has been used which provides 360 kWac power which is larger than the capacity of the plant (350 kWp), which can be considered as an oversized inverter. In this regards we will see how the slightly over sized inverter will perform against the two other inverters that had been used with 50 kWac Unit Nominal Power (UNP) in the comparison part.

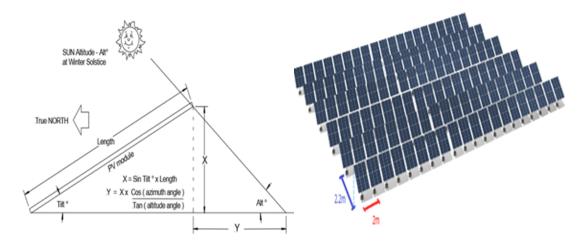


FIGURE 2.14: Spacing calculation [10]

Length of panel is 2m, tilt angle is 31° , then X = 1.03. Azimuth angle for when winter solstice (December 22) is 164.5° , Altitude angle in the same month is 24.12° [31], then Y = -2.21m

In the second page of the report Figure 2.13, simulation shows the shading diagram on the solar grid according to the defined location and the sun's movement [33] as it shown in Figure 2.16.

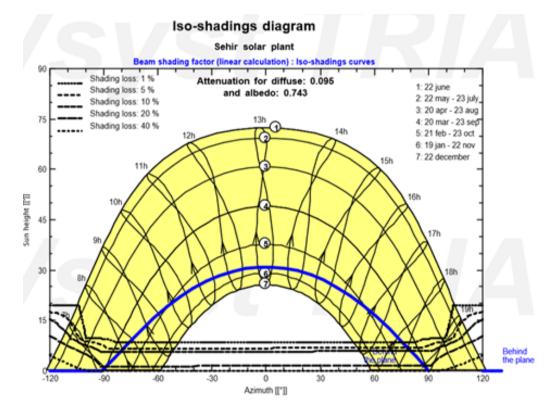


FIGURE 2.16: Fixed shading diagram

The chart shows the graphical expression of the shading factor. This graph gives an artificial assessment of the shading distribution according to the season and time of the day during the year. The black lines show the amount of shading loss for some given shading factors, superimposed on the sun paths. As long as the sun path do not cross the black lines then no loss caused by shading will appear. The blue line of beam shading factor indicate the tangential limits of the plane when the sun rays are parallel to the plane. Numbers from 1 to 7 refers to the path of the sun in a certain period; the worst case of sun path is during the winter season when the sun is at lowest point, Number 6 refers to 19 of January and 22 of November, if we are at 15 of January we will be somewhere between No. 6 and 7 which is below the blue line. The black lines obtained from the calculations are good that we almost have no shading loss caused by nearby obstacles between 9 am to 5 pm.

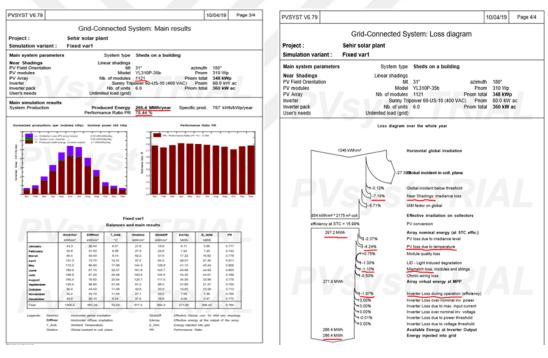


FIGURE 2.17: Fixed, Yingli - SMA simulation report 3

FIGURE 2.18: Fixed, Yingli - SMA simulation report 4

The simulation shows that performing Yingli solar PV 310Wp with SMA 60.0 kWac inverter generates 266.4 MWh/year coming out from 1121 panels with 78.44% performance ratio (PR). PR affected by losses such as shadings, ageing, module quality, mismatching and wiring [34]. Figure 2.17 also shows the electrical generation every month as it shown in Figure 2.19.

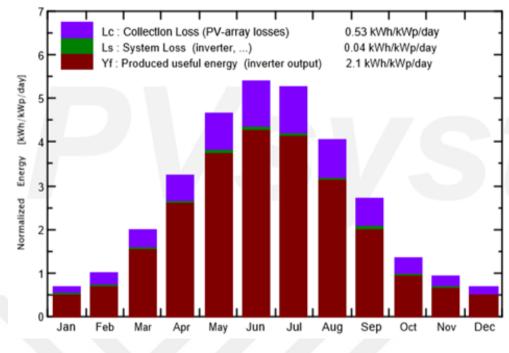
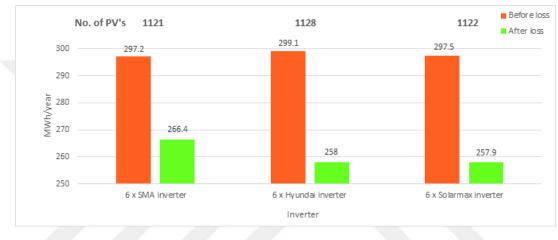



FIGURE 2.19: Fixed-axis monthly production

The results show that in the summer season, system generates more energy than in the winter season. Although the design system has the capability to generate 297.2 MWh/year as it is shown in Figure 2.18 it generates 266.4 MWh/year because of losses plant exposed to over the year. The graph shows 7.19% loss due to shading, this value shows the amount of energy production loss due to the shading on panels caused by the existence of obstacles preventing the sunlight from reaching the panels throughout the year. The Incidence Angle Modifier (IAM) had 5.71% loss which corresponds to the decrease of irradiance reaching PV cells caused by the reflection of sunlight on the glass layer of the PV panel. Irradiance level had 2.37% loss which shows the intrinsic behavior of the PV modules as Yingli PV is polycrystalline solar panel that are made from multifaceted silicon crystals. The plant had 4.24% loss due to temperature which shows the temperature behavior of the PV model. In fact, the electrical performances of a silicon solar cell shows that the cells are very sensitive to temperature [35]. A study had been made to show the effect of temperature on solar cells [36], the study tested the performance of polycrystalline silicon and showed that the performance of solar cells is dependent on environmental conditions and their output parameters such as output voltage, current, power, and efficiency vary by light intensity and temperature.

Real modules are never identical, with long term aging, modules do not degrade the same way especially when having big systems which have different string wire lengths. Temperature may also be different from part to another (colder at the edges), which all lead to have mismatch loss [37]. The plant had 1.97% inverter loss which refers to the inverter efficiency during operation. These factors led to this shortage of energy production to 266.4 MWh/year.

2.3.1.2 Fixed Axis Energy Output Comparison

FIGURE 2.20: Fixed, Yingli PV Energy output [67]

Performing Fixed-axis system again in PVsyst software using same PV model (Yingli) but with Hyundai and Solar max inverters have different energy output as it shown in Figure 2.20. The Figure shows that using Hyundai and Solarmax inverters with Yingli PV have the capability to generate almost the same energy with 1.6 MWh/year difference 299.1, 297.5 MWh/year respectively, but the Figure shows that the actual output energy for both systems is 258, 257.9 MWh/year with just 0.1 MWh/year difference due to the different percentage of losses in each system. Note that 7 more panels were used with system using Hyundai 50 kWac inverter. However, it generates 8.4 MWh/year less than when SMA inverter is used because it has less overall losses with different inverter capacity.

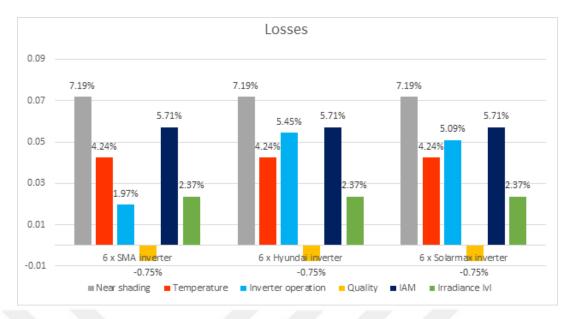
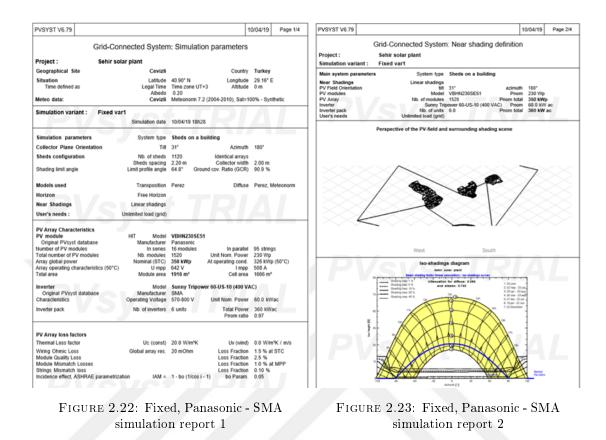



FIGURE 2.21: Fixed, Yingli Inverter Losses

Figure 2.21 shows that all alternatives have the same shading, temperature, quality, IAM factor and irradiance losses because of using same PV model with facing the same conditions (Fixed axis). The negative value of quality loss -0.75% is a gain, the quality factor refers to confidence value to the real model (models will never be better than announced). PVsyst usually consider a conservative value according to the PV module manufacturer tolerance specifications [38]. The differences were observed in inverter losses during operation. The least loss was recorded when SMA inverter is used with 3.48% less than when Hyundai inverter is used, which also increased the slight difference in energy output.

2.3.1.3 Fixed Axis Simulation Report using Panasonic PV

Panasonic 230 Wp UNP with six 60 kWac SMA inverters were used in this alternative, facing the same conditions. Figure 2.22 shows that to achieve 350 kWp capacity, 1520 PV modules will be required which about 400 more modules than when Yingli (310 Wp) is used. This will put us under question, is $7500m^2$ space sufficient for installing grid that uses Panasonic PV panels? A calculation will be performed for space requirement when all alternative designs are done.

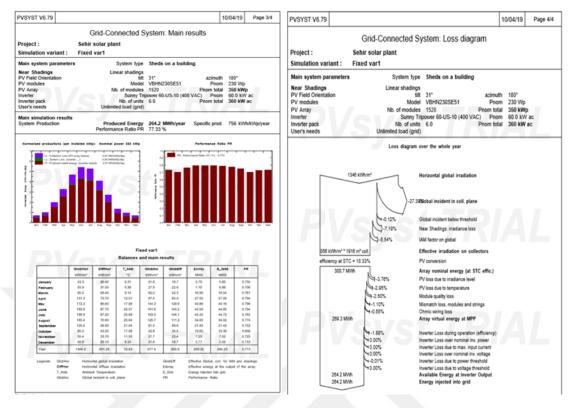
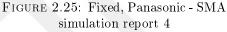
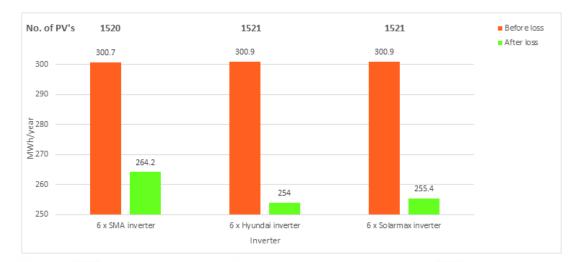




FIGURE 2.24: Fixed, Panasonic - SMA simulation report 3

It was established that using Panasonic solar PV with 230Wp capacity and SMA 60.0 kWac inverter generates 264.2.0 MWh/year with 77.33% PR. Note that these results are similar to the alternative design using Yingli with SMA. Regarding losses, we can see that Panasonic panels have less losses caused by temperature with 2.95% compared to 4.24% for Yingli PV. In other hand using Panasonic PV with SMA inverter has 2.5% model quality loss while it was +0.75% for Yingli.

2.3.1.4 Fixed Axis Energy Output Comparison

FIGURE 2.26: Fixed Panasonic PV Energy output [87]

Results displayed in Figure 2.26 shows that Fixed system with Panasonic PV model had the same energy output before loss elimination. This would give a better view into assessing the impact of each inverter to the design. As its reported that design with 60 kWac SMA inverter had higher energy output after eliminating losses. Using Hyundai and Solarmax inverters to Panasonic PV have the capability to generate the same energy with no difference 300.9, 300.9 MWh/year respectively, but the actual output energy for both systems is 254, 255.4 MWh/year with just 1.4 MWh/year difference due to the loss difference of inverter operation for each system shown in Figure 2.27.

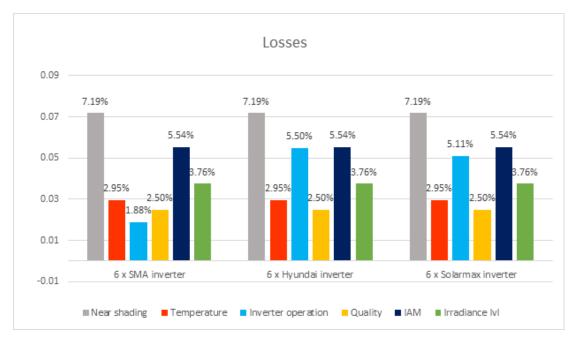
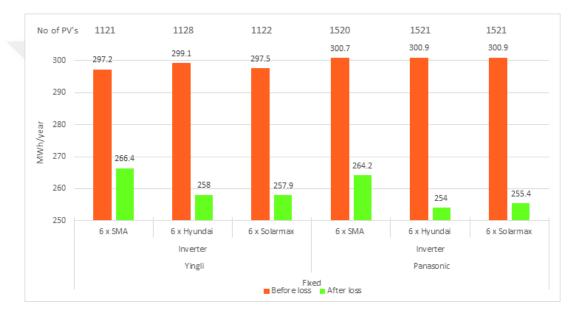



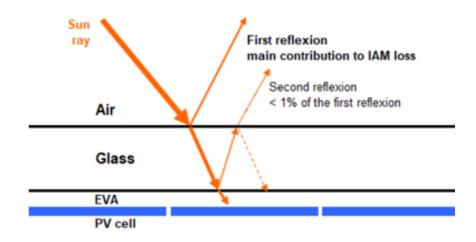
FIGURE 2.27: Fixed, Panasonic Inverter Losses

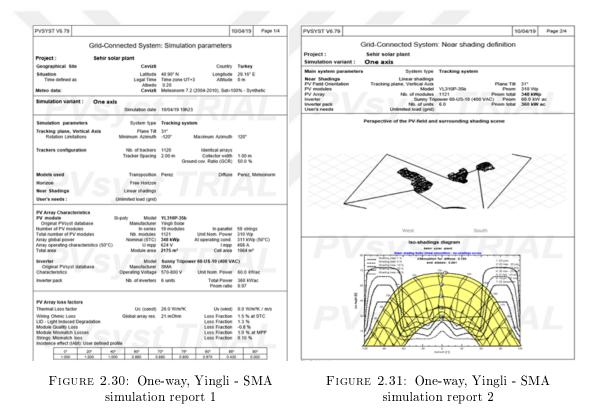
Using same panel model led to have same shading, temperature, quality, IAM factor and irradiance level losses. Anyhow, given the percentage of losses resulting from quality, this system had 2.5% negative value compared to 0.75% positive value for Yingli panels. Therefore, the results of these design alternative are logical compared with designs using Yingli panels. Figure 2.27 shows that differences were reported in inverters during operation. The least loss was recorded when SMA inverter is used with 1.88% compared to 5.5% and 5.11% for Hyundai and Solarmax.

2.3.1.5 Fixed Axis Systems Comparison

FIGURE 2.28: Fixed, Yingli - Panasonic systems comparison

As shown in Figure 2.28 there is difference in energy output before loss elimination between Yingli and Panasonic systems. Even though the global irradiation is the same for both systems Figures 2.18, 2.25 such as Yingli with SMA has the capability to generates 297.2 MWh/year while Panasonic with same inverter generates 300.7 MWh/year. In fact, that was because of IAM factor which affect the light absorption, that corresponds to irradiance reaching the PV cells surface. This decrease is mainly due to reflections on the glass cover, which increases with the incidence angle as it is shown in Figure 2.29 [39].




FIGURE 2.29: Incidence Angle Modifier - IAM [11]

Figures 2.18, 2.25 shows that Yingli panels had 5.71% loss due to IAM while Panasonic had 5.54%, which explains the slight difference between energy output. However, Panasonic models had more energy output because of less IAM factor. Results after entering loss calculation were in favor of designs with Yingli panels because the total proportion of losses is lower in Yingli design systems which made the difference. Figure 2.28 shows that systems with Yingli panel models has more promising results but still many factors will affect the final design decision such as checking the area required for both panel systems, system type (Fixed, One-axis, Two-axis) results, cost of systems. These factors play an important role in which choosing the best efficient design that covers the need besides achieving economic feasibility.

2.3.2 One Vertical Axis Panel Design

The grid's location along with the sun's movement shows that if the Vertical axis system is used would give better results because vertical system tracks the sun's azimuth which allow panels to be exposed more to the sun [40]. The capability to collect light is better in One-way axis trackers than Fixed-axis systems as it has been mentioned in Figure 1.1 due to the existence of moving parts that help the panel angle itself to direct the sun. In this part of the design we expect to have more energy produced because One-axis trackers are capable of generating more electricity in roughly the same amount of space needed for Fixed-tilt systems. The design will be performed using same panel models (Yingli 310Wp - Panasonic 230Wp) with same inverter models (SMA 60.0 kWac - Hyundai 50.0 kWac - Solarmax 50.0 kWac). Same parameters have been defined such as tilt angle and spacing to examine the obtained output with subjecting all designs into comparison to see which alternative would have better energy output. In addition, One-axis results will be compared to those of the Fixed system to inspect the amount of difference if any exist. Regarding maximum and minimum orientation for the One-axis system, it has been defined to be 120° degrees according to the sun's path for the defined location. The following report will present data and calculations for a design performed using 310Wp Yingli solar PV with 60.0 kWac SMA inverter. All calculations that will be presented are based on real data.

2.3.2.1 One Axis Simulation Report using Yingli PV

Results in Figure 2.30 shows that One-axis system require 1121 PV modules to achieve the desired energy output as it was in Fixed system. Hence, number of PV modules depends on the panel UNP which is 310 Wp. Note that the shading chart in Figure 2.31 had different output compared to Fixed system. The irregular look of the lines is due to the interpolations across discrete calculation points [33]. Note that the blue line of beam shading factor does not exist in One-axis track system.

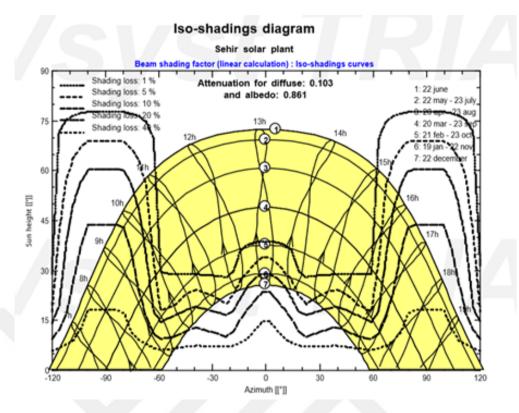


FIGURE 2.32: One-way shading diagram

Same parameters were defined in this alternative design but different shading diagram obtained. It was figured that the reason behind this is the movement of single-track system that caused the shades on nearby panels.

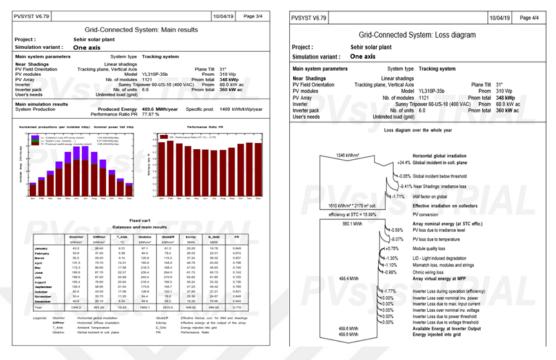
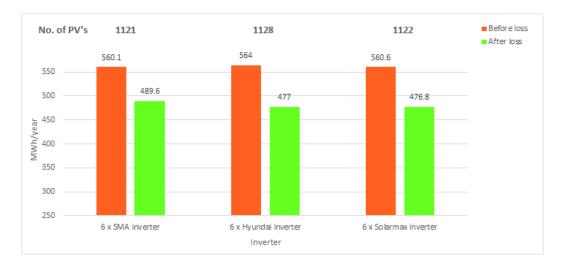



FIGURE 2.33: One-way, Yingli - SMA simulation report 3

FIGURE 2.34: One-way, Yingli - SMA simulation report 4

Performing Yingli solar PV 310Wp with SMA 60.0 kWac inverter in One-axis track system generates 489.6 MWh/year produced from 1121 panels with 77.87% PR. Figure 2.34 shows that the design system capable to generate 560.1 MWh/year but after eliminating losses the energy output decreased to 489.6 MWh/year. Note that loss due to shading is 9.41% while it was 7.19% in Fixed system due to panels movement. Targeting the sun reduced the IAM factor loss to 1.71% compared to 5.71% in the Fixed system, this better performance was obtained due to the movement of the panel system which allow no refraction as possible of the solar radiation when it reaches the panels. Following the sun's azimuth increased the radiation exposure time, causing temperature loss to increase to 8.07% compared to 4.24% in the Fixed system.

2.3.2.2 One Axis Energy Output Comparison

FIGURE 2.35: One-way Yingli PV Energy output [91]

The chart shows that results are close to each other regarding energy output before applying loss elimination calculations. System with SMA inverter had more energy output after consideration of loss calculations with more than 12.5 MWh/year difference compared to other alternatives due to different percentage of losses in each system shown in Figure 2.36. Note that although 7 more panels had been used with Hyundai 50 kWac inverter it generates 12.6 MWh/year less than when SMA inverter is used.



FIGURE 2.36: One-way, Yingli - Inverters losses

Note that all alternatives had the same, temperature, quality, IAM factor and irradiance level losses because of using same PV model. The differences were observed in inverter performance. The least loss was recorded when SMA inverter is used with 1.77% compared to 4.75% and 4.37% for Hyundai and Solarmax respectively which increased the difference in energy output. Note that Figure 2.37 shows that all losses due to inverter operation had lower value than in Fixed system.

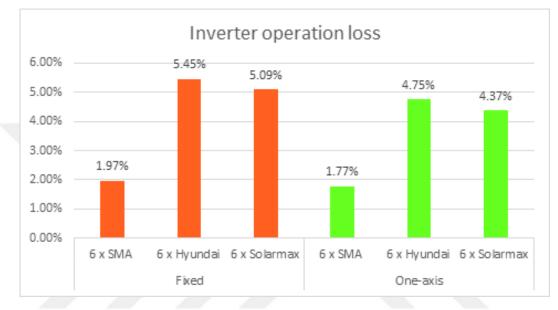
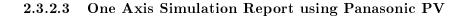



FIGURE 2.37: Fixed - One-axis inverter operation loss

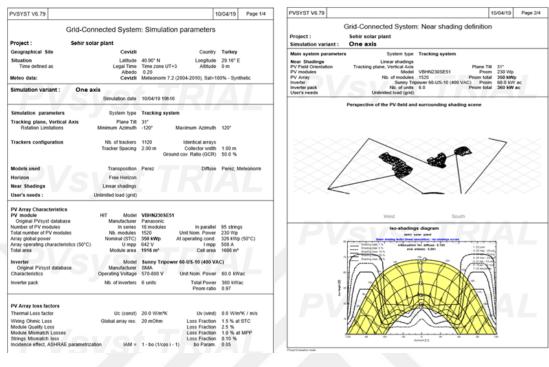


FIGURE 2.38: One-way, Panasonic -SMA simulation 1

FIGURE 2.39: One-way, Panasonic -SMA simulation 2

Facing the same conditions, 1520 Panasonic PV modules with 230 Wp UNP and six 60 kWac SMA inverters were used in this alternative. It was figured that the shading chart shown in Figure 2.43 is the same as when Yingli PV model was used. This shows that the UNP of the PV does not affect the movement of track system because the purpose of designing these different design systems is to obtain the maximum energy output for the same fixed factors.



FIGURE 2.40: One-way, Panasonic -SMA simulation 3

FIGURE 2.41: One-way, Panasonic -SMA simulation 4

This system is capable to generate 564 MWh/year compared to 560.1 MWh/ year for Yingli PV. After loss elimination this system generates 493.2 MWh/year compared to 489.6 MWh/year using Yingli PV. It was figured that in Figure 2.28 regarding energy output for the alternatives of Fixed system, that Panasonic PV model had more energy output than Yingli PV model before loss elimination but not after. However, in the current system, Panasonic had more energy output than when Yingli PV model was used even after loss elimination.

2.3.2.4 One Axis Energy Output Comparison

FIGURE 2.42: One-way Panasonic PV Energy output [103]

This chart shows that results were the same regarding energy output before applying loss elimination. This would give a better view into assessing the impact of each inverter to the design. According to Figure 2.42, system with SMA inverter had more energy output after consideration of loss calculations with more than 15.5, 13.4 MWh/year when Hyundai and Solarmax inverters is used. The results show increasing in the energy production gap between systems, as One-axis system that used Yingli PV with SMA inverter had 12.5 MWh/year difference with the other inverters that has been used.

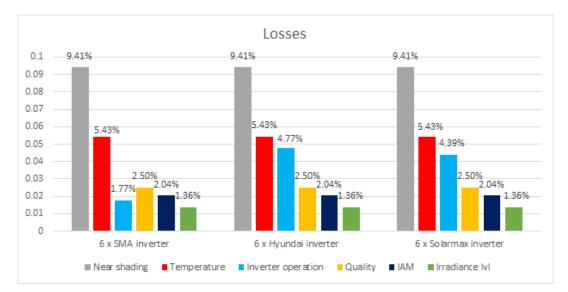
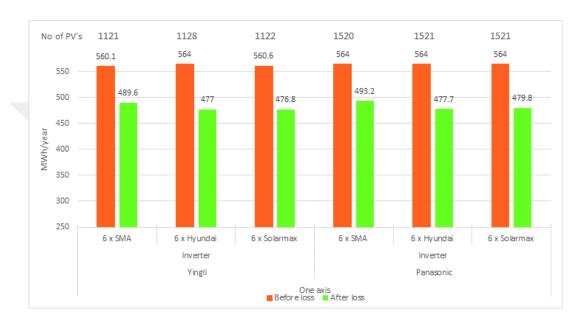



FIGURE 2.43: One-way, Panasonic - Inverters losses

The differences were observed in inverter performance. The least loss was recorded when SMA inverter is used with 1.77% compared to 4.77% and 4.39% for Hyundai and Solarmax respectively. It was figured that the reason behind having better energy output using Panasonic PV and SMA inverter than Yingli PV with SMA inverter after loss elimination is that the temperature loss difference between Panasonic and Yingli models in Fixed system was 1.29%, but in One-axis system the temperature difference increased to be 2.64%, which means that Panasonic PV's perform better when exposing to heat compared to Yingli models.

2.3.2.5 One Axis Systems Comparison

FIGURE 2.44: One-axis, Yingli - Panasonic systems comparison

As shown in Figure 2.44 there is difference in energy output before loss elimination between Yingli and Panasonic systems even though the global irradiation is the same for both systems Figures 2.34, 2.41. In fact, the reason behind that is the difference in irradiance reaching the PV cells surface (IAM). Note that Yingli PV with SMA had 70.5 MWh/year energy shortage after applying loss calculation, almost the same reduction happened when Panasonic was used with SMA inverter with 70.8 MWh/year. But in Fixed-axis, Figure 2.28 shows that Yingli and Panasonic with SMA inverter had different energy shortage because of different loss proportion systems were exposed to leading to have 5.7 MWh/year difference 30.8, 36.5 MWh/year for Yingli and Panasonic respectively.

2.3.3 Two-Axis Panel Design

This part of design, Two-axis panels will be used using same panel and inverter models. We expect more energy production because of the capability of light collection is the best in Two-axis track system due to existing of two moving parts that allow the panel angle itself to direct the sun anywhere which increase the capability of system to generate more electricity in roughly the same amount of space needed for any other system. The modules orientation had been assigned to be 120° with the capability to tilt them self within 0° to 80° degrees. A comparison will be held between all design systems (Fixed, One-axis, Two-axis) to inspect the amount of energy output differences. The next report will present data and calculations for a design performed using 310Wp Yingli solar PV with 60.0 kWac SMA inverter. All calculations that will be presented are based on real data.

2.3.3.1 Two Axis Simulation Report using Yingli PV

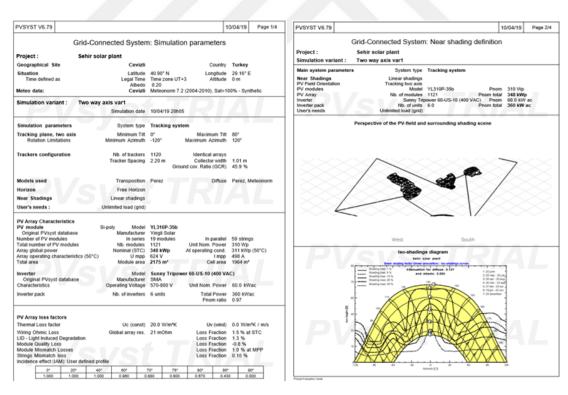


FIGURE 2.45: Two-way, Yingli - SMA simulation 1

FIGURE 2.46: Two-way, Yingli - SMA simulation 2

According to Figure 2.45 same defined factors with the same number of Yingli PV modules have used in the design. Note that the shading chart in Figure 2.46 has different distribution compared to One-axis system, this different output was because of increasing of the system's movement which enabled the panels to affect each other more often.

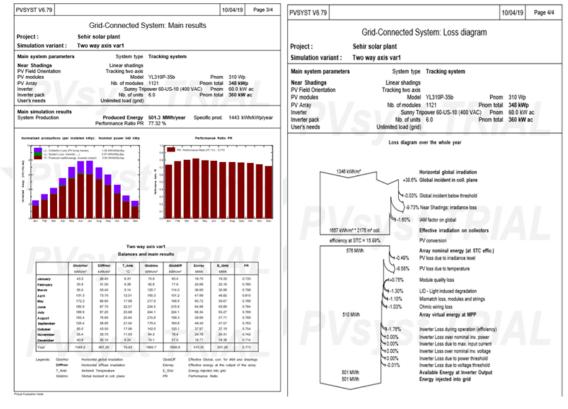
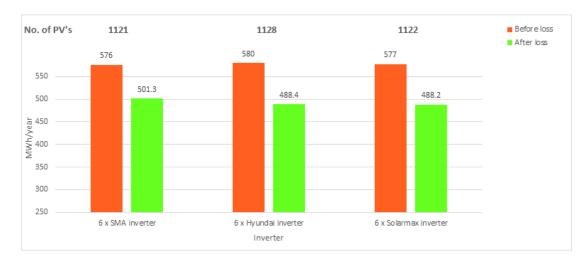



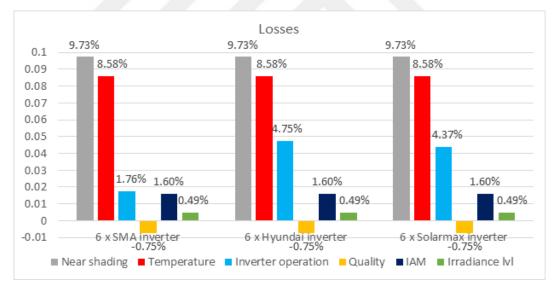
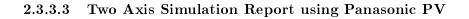
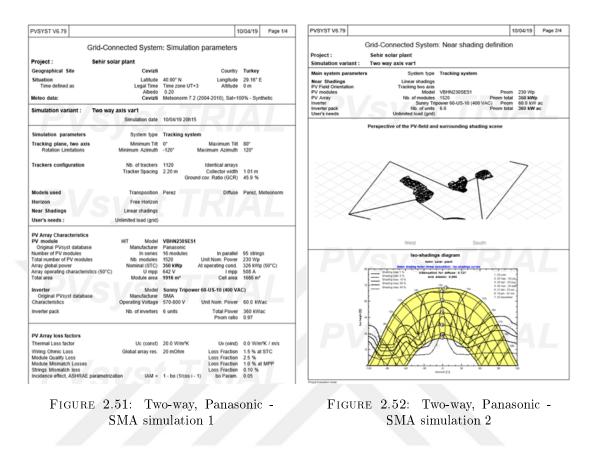
FIGURE 2.47: Two-way, Yingli - SMA simulation 3 FIGURE 2.48: Two-way, Yingli - SMA

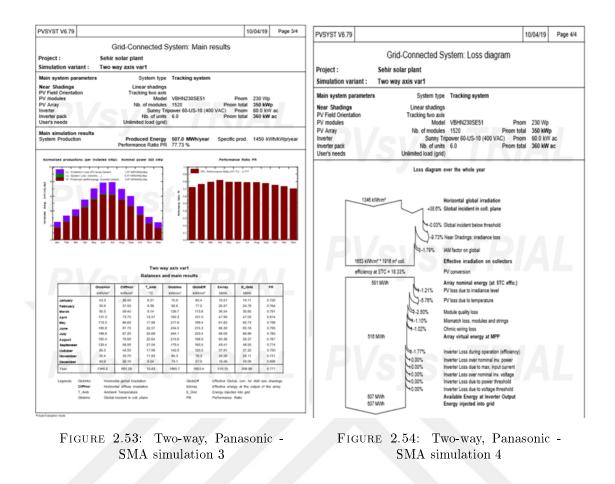
This design alternative generates 501.3 MWh/year produced from 1121 PV modules with 77.32% PR. Shading loss shown in Figure 2.48 increased to 9.73% compared to 9.41%, 7.19% in One-axis and Fixed systems. The IAM factor had slightly better value than it was in the One-axis system. Irradiance loss value shows also slight improvement. Tracking the sun in all possible directions increased the radiation exposure time, causing temperature loss to increase to 8.58% compared to 8.07%, 4.24% in One-axis and Fixed systems respectively. In addition, Figure 2.47 show same inverter performance.

2.3.3.2 Two Axis Energy Output Comparison

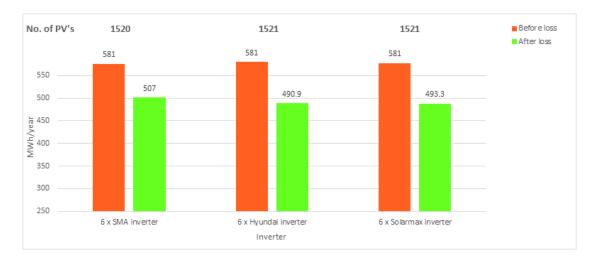
FIGURE 2.49: Two-way Yingli PV Energy output [115]

The chart shows system with SMA inverter had more energy output after consideration of loss calculations with more than 12.5 MWh/year difference compared to other alternatives even though it had less energy output before loss elimination.


FIGURE 2.50: Two-way, Yingli - Inverters losses

All alternatives had the same shading, temperature, quality, IAM factor and irradiance level losses because of using same PV model. The differences were observed in inverter during operation. The least loss was recorded when SMA inverter is used with 1.76% compared to 4.75% and 4.37% for Hyundai and Solarmax respectively.



Facing the same conditions, same number of modules require to achieve the 350kWp. Figure 2.52 shows the same shading chart as when Yingli PV model was used.

This system generates 507 MWh/year compared to 501.3 MWh/ year when Yingli PV was used. Figure 2.54 shows better IAM factor and irradiance level values compared with the same PV model in One-axis and Fixed systems but this system has higher shading and temperature loss values.

2.3.3.4 Two Axis Energy Output Comparison

FIGURE 2.55: Two-way, Panasonic PV Energy output [127]

This chart shows that the energy output results were the same before loss elimination, this will give better view on inverter performance in Two-axis system. The figure shows that system with SMA inverter had more energy output after consideration of loss calculations with more than 16.1, 13.7 MWh/year when Hyundai and Solarmax inverters is used. The results show increasing in the energy production gap between systems, as One-axis Yingli model with SMA inverter system had 15.5, 13.4 MWh/year difference with the other inverters that had been used.

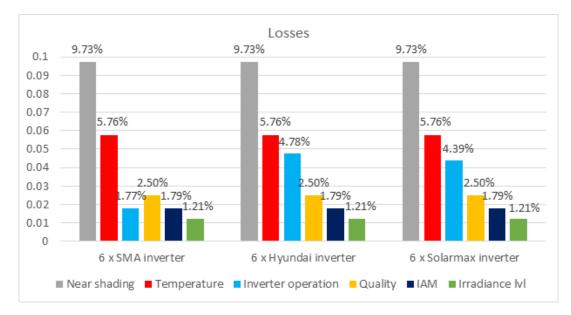
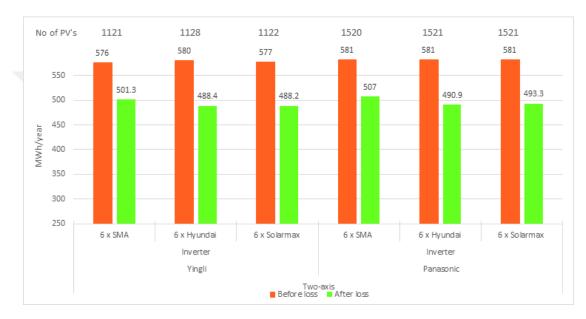
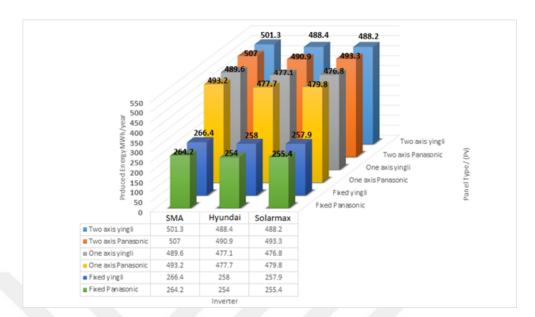



FIGURE 2.56: Two-way, Panasonic - Inverters losses


Note that all alternatives had the same shading, temperature, quality, IAM factor and irradiance level losses. The differences were observed in inverter performance. The least loss was recorded when SMA inverter is used with 1.77% compared to 4.78% and 4.39% for Hyundai and Solarmax respectively which increased the difference in energy output. Note that Panasonic PV models have more resistance to sun heat compared to systems with Yingli PV model leading to have 2.82% less temperature loss.

2.3.3.5 Two Axis Systems Comparison

FIGURE 2.57: Two-axis, Yingli - Panasonic systems comparison

The figure shows difference in energy output before loss elimination between Yingli and Panasonic systems, even though the global irradiation is the same for both systems Figures 2.48, 2.54. The reason behind that is the amount of radiation reaching the PV cells surface (IAM). Note that Yingli PV with SMA had 74.7 MWh/year energy shortage after applying loss calculation, almost the same reduction happened when Panasonic was used with SMA inverter with 74 MWh/year unlike the Fixed system which have 5.7 MWh/year difference between the output of using these different panel models.

2.3.4 Design Comparison for All Systems

FIGURE 2.58: Design comparison for all systems

Many design had been performed using different PV and inverter models each had different energy output according to PV, inverter and system type although having the same defined factors such as: location, height, spacing, tilt angle and number of inverters. The designs had been performed to test the differences in energy output between Fixed, One-axis and Two-axis systems using same PV and inverter models. In addition to examine and evaluate the effect of using different PV and inverter model for each system type. The results obtained were close to each other if we take each system separately. The factors that influenced the existence of these different results are the type of the panels and inverters that have been selected of each have different characteristics and capability to help achieving the desired energy. From the results obtained we can see that each PV model have different behavior than the other model. According to the results, Panasonic model have higher heat resistance than Yingli model when it used in any system. IAM factor also had been reported to be better in Panasonic model which refers to the specifications of the glass which in turn can affect the amount of sunlight that reaches the solar cells through the amount of solar refraction when the sunlight strikes the glass. In the other side Yingli models had better results in the quality and irradiance level parts which reflect the intrinsic behavior of the PV model. But when comparing temperature, IAM factor and irradiance level between systems we find that they have different values, in the sense that changing the type of system leads to change the results in these parameters either be larger or smaller values. When track system had been designed, we have noticed increasing in temperature loss because modules will expose more to the sun. In the other side the IAM factor had better results because the motion of the panels reduces the refraction of the solar radiation when it reach the glass plate.

The different UNP in inverters showed how much it can affect the energy output when comparing the results in each system separately. The results show that the slightly oversized inverter performed better than the other inverters that had lower UNP. Oversizing an inverter will drive it to its full capacity more often which allow the PV plant nominal power to be achieved faster in the morning, in addition the PV plant remains connected to the grid longer in the evening which maximizes the power output in low light conditions [41]. Figures 2.21, 2.36 and 2.50 show the inverters performance when connected with Yingli model, the difference is clear between the oversized inverter and the other inverters. However, the other two inverters with the same UNP have nearly the same result, the difference was because of the efficiency of each inverter. Also it had been observed that the inverter performed better when used in track systems.

Performing all of these different designs to achieve 350 kWp capacity showed that there is a clear difference in energy output between Fixed and Track systems, but not between One-axis and Two-axis according to Figure 2.58. According to the location of the grid, One vertical axis system can genarete energy as much as Two-axis system, which indicates that One-axis design system has the most promising results regarding energy output compared to the others. However, we still need to perform cost analysis to get the most suitable design that also achieve the economic feasibility.

Chapter 3

Cost Analysis

3.1 Assessing System Cost

Performing many alternatives gives many different energy outputs, each output refers to a system capability to generate power. If a certain system can generate certain amount of energy that achieve the desired output, then no need to invest in another system that would give the same amount but costs more.

Figure 2.58 shows that there is no much difference between One-axis and Two-axis systems giving a preliminary clarification on which systems could be more appropriate. In order to have full knowledge about the cost of each system, this part of the thesis will show the cost of each alternative based on price of each element in the design. Some of element prices varies from type to type, which can affect the decision, adding into account the expenses of operation. The price of each element in the design is based on power capacity and presented in Figure 3.1 [42].

PV		Cost/Wp	
Yingli Solar pv - YL310P-35b	0.34 USD/Wp		
Panasonic pv - VBHN230SE51	0.3	36 USD/Wp	
Inverter		Cost	
SMA - Sunny Tripower 60-US-10 (400 VAC)	53	USD/kWac	
Hyundai - HPC-050HT-E	59	USD/kWac	
Solarmax 50 TS	500	00 USD/Unit	
Trackers	c	iost/MWp	
Fixed	\$	80,000	
One-axis	\$	200,000	
Two-axis	\$	300,000	
Operation expenses	Cost/MWp		
Electrical installation	\$	25,000.00	
Mechanical installaion	\$	25,000.00	
Medium voltage components/MW	\$	50,000.00	
Transmission line	\$	25,000.00	
Cabling	\$	30,000.00	
SCADA/MW	\$	10,000.00	
Commissioning	\$	10,000.00	
Annual Operation & Maintenance	\$	20,000.00	
Delivery	0	Cost/load	
Transportation/truck	\$	1,000.00	

FIGURE 3.1: Prices

3.1.1 System Cost Calculation

System cost calculation displayed in a form of tables that shows all design components along with prices. Tabel 3.1 present the cost calculations of Fixed system.

	Fixed system						
Assumptions		Yingli PV		F	Panasonic PV		
Panel calculation							
Units	1121	1128	1122	1520	1521	5121	
Price	0	.34 USD/W	Vp	0	.36 USD/V	Vp	
Track system		28,000 USI)		28,000 USI)	
Total	$146,\!153$	$146,\!891$	$146,\!258$	$153,\!856$	153,938	$153,\!938$	
Inverter calculation	SMA	Hyundai	$\operatorname{Solarmax}$	SMA	Hyundai	$\operatorname{Solarmax}$	
Units	6	6	6	6	6	6	
Price	$19,\!080$	17,700	30,000	19,080	17,700	30,000	
Total model cost	$165,\!233$	$164,\!591$	$176,\!258$	$172,\!936$	$171,\!638$	$183,\!938$	
Operation expenses							
${ m Transportation/truck}$	4,000	4,000	4,000	4,000	4,000	4,000	
Electrical installation	8,750	8,750	8,750	8,750	8,750	8,750	
Mechanical installation	8,750	8,750	8,750	8,750	8,750	8,750	
Medium voltage components	17,500	17,500	17,500	17,500	$17,\!500$	17,500	
Transmission line	8,750	8,750	8,750	8,750	8,750	8,750	
Cabling	10,500	10,500	10,500	10,500	10,500	10,500	
SCADA	$3,\!500$	$3,\!500$	3,500	3,500	3,500	3,500	
Commissioning	3,500	3,500	3,500	3,500	3,500	3,500	
Annual operation & maintenance	7,000	7,000	7,000	7,000	7,000	7,000	
Total	$237,\!483$	$236,\!841$	$248,\!508$	$245,\!186$	$243,\!888$	$256,\!188$	

TABLE 3.1: Fixed system cost calculation

The table shows that 1121 Yingli PV modules with the track system cost \$ 146,153. The model costs \$ 165,233 after adding the price of 6 SMA inverters and so on for the rest of alternatives. Because the operating expenses are based on power capacity of the plant. All prices will be fixed since all alternatives are designed to achieve 350 kWp capacity, which means that panel, inverter and track system prices will play the critical role of achieving the least price. Having 400 more PV modules in systems using Panasonic PV model increased the total cost than systems using Yingli PV model.

	One-axis system					
Assumptions		Yingli PV		Panasonic PV		
Panel calculation		-				
Units	1121	1128	1122	1520	1521	5121
Price	0	.34 USD/W	Vp	0	.36 USD/V	Vp
Track system		70,000 USI)		70,000 USI)
Total	188, 153	$188,\!891$	188,258	195,856	195,938	$195,\!938$
Inverter calculation	\mathbf{SMA}	Hyundai	$\operatorname{Solarmax}$	SMA	Hyundai	$\operatorname{Solarmax}$
Units	6	6	6	6	6	6
Price	$19,\!080$	17,700	30,000	19,080	17,700	30,000
Total model cost	$207,\!233$	$206,\!591$	$218,\!258$	$214,\!936$	$213,\!638$	$225,\!938$
Operation expenses						
${ m Transportation/truck}$	4,000	4,000	4,000	4,000	4,000	4,000
Electrical installation	8,750	8,750	8,750	8,750	8,750	8,750
Mechanical installation	8,750	8,750	8,750	8,750	8,750	8,750
Medium voltage components	$17,\!500$	$17,\!500$	17,500	17,500	$17,\!500$	17,500
Transmission line	8,750	8,750	8,750	8,750	8,750	8,750
Cabling	10,500	$10,\!500$	10,500	10,500	10,500	10,500
SCADA	3,500	$3,\!500$	3,500	3,500	$3,\!500$	3,500
Commissioning	3,500	3,500	3,500	3,500	$3,\!500$	3,500
Annual operation & maintenance	7,000	7,000	7,000	7,000	7,000	7,000
Total	$279,\!483$	$278,\!841$	$290,\!508$	$287,\!186$	$285,\!888$	$298,\!188$

TABLE 3.2:	One-axis system	cost calculation
------------	-----------------	------------------

TABLE 3.3: Two-axis system cost calculation

		One-axis system				
$\operatorname{Assumptions}$		Yingli PV		I	Panasonic P	V
Panel calculation						
Units	1121	1128	1122	1520	1521	5121
Price	0	.34 USD/W	Vp	0	.36 USD/W	Vp
Track system		105,000 US	D		105,000 US	D
Total	$223,\!153$	$223,\!891$	223,258	230,856	230,938	$230,\!938$
Inverter calculation	SMA	Hyundai	$\operatorname{Solarmax}$	SMA	Hyundai	Solarmax
Units	6	6	6	6	6	6
Price	19,080	17,700	30,000	19,080	17,700	30,000
Total model cost	$242,\!233$	$241,\!591$	$253,\!258$	$249,\!936$	$248,\!638$	$260,\!938$
Operation expenses						
Transportation/truck	4,000	4,000	4,000	4,000	4,000	4,000
Electrical installation	8,750	8,750	8,750	8,750	8,750	8,750
Mechanical installation	8,750	8,750	8,750	8,750	8,750	8,750
Medium voltage components	17,500	17,500	17,500	17,500	17,500	17,500
Transmission line	8,750	8,750	8,750	8,750	8,750	8,750
Cabling	10,500	10,500	10,500	10,500	10,500	10,500
SCADĂ	$3,\!500$	$3,\!500$	3,500	3,500	3,500	3,500
Commissioning	3,500	3,500	3,500	3,500	3,500	3,500
Annual operation & maintenance	7,000	7,000	7,000	7,000	7,000	7,000
Total	$314,\!483$	$315,\!841$	$325,\!508$	$322,\!186$	$320,\!888$	$333,\!188$

According to the cost analysis tables, Two-axis system had the highest price with \$300,000/MWp for the track system ending up with \$314,483 for Yingli PV with SMA inverter compared to \$279,483 - \$237,483 for One-axis and Fixed systems. Figure 3.2 summarizes the cost of all systems along with their energy production.

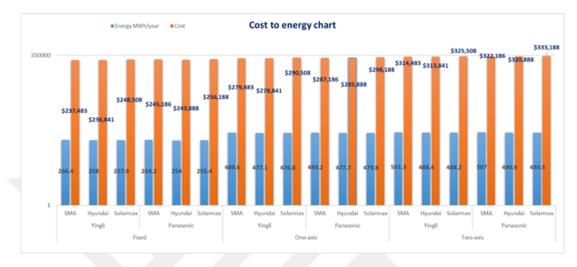


FIGURE 3.2: Cost to energy

It was established that the best alternative design system that have the best result (The most reasonable price for energy produced) for 350 kWp plant to be selected was One-axis Yingli PV with SMA inverter. This system generates 489.6MWh/year and cost \$279,483. Although, there are other alternatives that have more energy production but did not have reasonable price. Taking Yingli PV with SMA inverter in Two-axis system as an example, it produces 501.3 MWh/year and cost \$314.483. The reason behind not nominating systems with Panasonic PV models within qualified nominators is their need for more space for the defined spacing to achieve 350 kWp capacity as it is shown in Figure 3.3.

3.2 Grid Installation

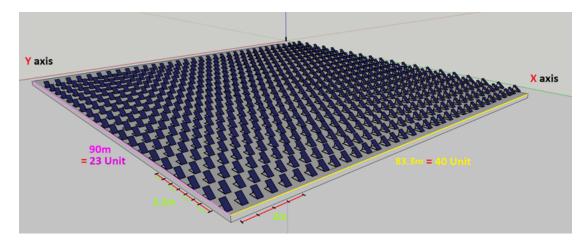


FIGURE 3.3: Grid

The area proposed in the design $(7500m^2)$ can handle with the defined spacing 920 modules to achieve 350 kWp capacity. Setting 1520 Panasonic PV modules for the defined spacing require $12700m^2 = 50$ units on X axis and 31 units on Y axis. Regarding the best alternative we got from performing all designs (One-axis Yingli PV with SMA inverter), it requires 1121 PV modules to achieve the desired capacity. The required area to set the panels is $9200m^2$, a steel structure design that will cover the area of the columns need to be designed as having 5m cantilever on the four sides. In this case the area will be $9333m^2$ which we can set the grid as having 47 units in X-axis and 24 units in Y-axis. For Panasonic model case, the area need to get expand even more, even if there is an available area to expand the steel structure, the design will not be feasible because Panasonic design models already have more cost than Yingli models, in addition to more cost will be considered regarding designing and installing larger steel structure which require constructing new steel columns to have non deflected steel roof.

3.2.1 Steel Structure Design

Designing the proposed suggestion to handle 1121 PV modules require to determine the weight of each element in the system as it is shown in Figure 3.4.

	Yingli YL310P-35b	One axis frame SM3SPMOG	SMA Sunny Tripower 60-US-10 (400 VAC)
Weight kg/unit	27	9	75
Units	1121	1121	6
	30267	10089	450
Total weight kg	40806		

FIGURE 3.4: Weight of system	FIGURE	3.4:	Weight	of	system
------------------------------	--------	------	--------	----	--------

The weight of the system elements is approximately 41 tons devided by the area $(9333m^2)$ equals to having 4.37 kg/m². Figure 3.5 shows the steel structure design [43].

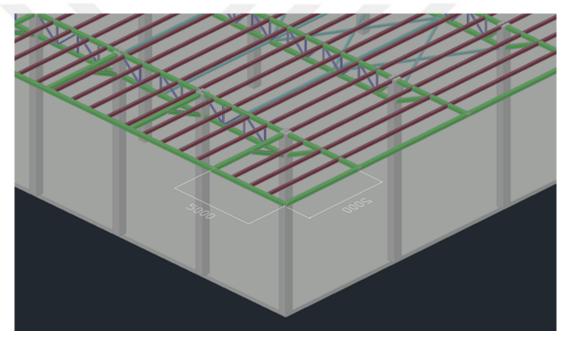


FIGURE 3.5: Steel structure

Figure 3.5 shows that the steel structure design contains rods, trusses and bracing system that would provide huge increases in bending resistance. The figure shows that different steel sizes (cross-sections) had been used, each color refers to specific cross section shown in Figure 3.6. Figures 3.7 - 3.9 displays the steel for each cross-section used.

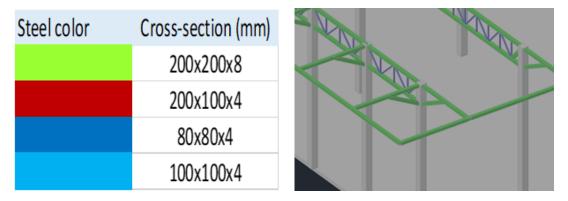


FIGURE 3.6: Steel cross-section

FIGURE 3.7: Steel design 1

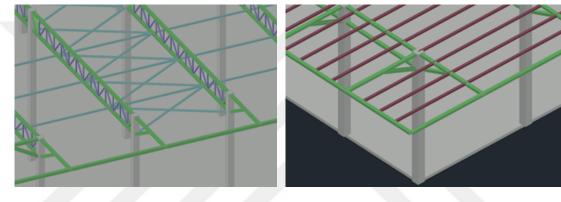
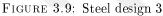



FIGURE 3.8: Steel design 2

Note that the price of steel structure will not affect the solar system design selection since the price of constructing a steel design covering $9333m^2$ will be the same. Based on steel structure design, the weight of the steel system according to the quantity of rods used to cover $9333m^2$ area equals to $42\text{kg}/m^2$. The price of constructing one kilogram of steel is \$1.58 [44] including sandblasting, shop primer, assembling, transportation, last painting and taxes. The weight of steel that had been used equal to $9333m^2 \ge 42$ kg/ $m^2 = 391,986$ kg, as a result the final cost of steel needed to implement the design is \$619,338 need to be added to the price of the best alternative we have obtained (Yingli PV with SMA inverter - \$279,483) which equals to \$898,821.

3.3 Return of Investment

The price of 1 kWh in Turkey in 2019 is 0.09 U.S. Dollars [45]. The integrated building consumes 20,000 kWh/month, which means that this building spends \$1,800 per month on electrical bills. Different scenarios will be applied to Fixed and One-axis systems to discuss their financial status.

3.3.1 First Scenario

The first scenario is Fixed-axis (Yingli PV with SMA inverter) that generates more than 20,000 kWh/month as an average value and costs \$856,821 including the steel structure price which is \$619,338. But taking into account the exact electrical generation of the best designed alternative in Fixed-axis per month is shown in Figure 3.10.

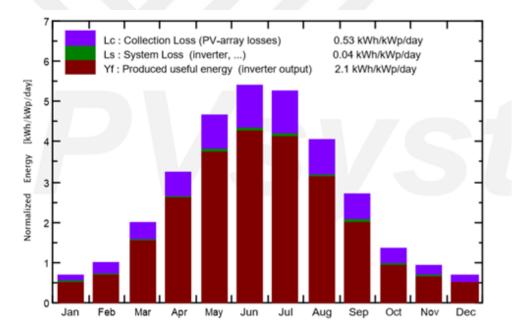


FIGURE 3.10: Fixed-axis, Yingli-SMA energy production/month

This figure presents a normalized energy production (per installed kWp) which means as it is stated in the figure, that the average useful energy produced is 2.1 kWh/kWp/day multiplied by 30 days to get the monthly value then multiplying the result with 350 kWp which is the desired capacity of the plant. Doing this simple calculation gives the exact energy production for a specific month. According to the monthly production we can see that the solar system generates more electricity in summer season compared to the other seasons, which means that this system can't fully supply the integrated building with the demanded energy throughout the year according to the following calculations shown in Table 3.4.

Month	${f Useful \ Energy}\ ({ m kWh/kWp/day})$	${f Useful Energy}\ {f (kWh/kWp/month)}$	Design Capacity	Solar Energy Production
January	0.5	15	350	5250
February	0.7	21	350	7350
March	1.6	48	350	16800
April	2.6	78	350	27300
May	3.8	114	350	39900
June	4.3	129	350	45150
July	4.2	126	350	44100
August	3.2	96	350	33600
September	2.1	63	350	22050
October	1	30	350	10500
November	0.7	21	350	7350
$\mathbf{December}$	0.5	15	350	5250
Average	2.1			

TABLE 3.4: Fixed-axis, Yingli-SMA useful energy production/month

According to the results, the first and the last three months of the year, the solar grid can't supply the integrated building with the demanded energy which means it needs to get the rest of energy from the utility grid. The saving and disbursement amounts are summarized in Table 3.5.

Month	Building electrical consumption (kWh)	Solar energy electrical generation (kWh)	Utility grid electricity price (\$)	Saving (\$)	Disbursement (\$)
January	$20,\!000$	5250	0.9	472.5	1327.5
February	$20,\!000$	7350	0.9	661.5	1138.5
March	$20,\!000$	16800	0.9	1512	288
April	$20,\!000$	27300	0.9	1800	0
May	$20,\!000$	39900	0.9	1800	0
June	$20,\!000$	45150	0.9	1800	0
July	$20,\!000$	44100	0.9	1800	0
August	$20,\!000$	33600	0.9	1800	0
September	$20,\!000$	22050	0.9	1800	0
October	$20,\!000$	10500	0.9	945	855
November	$20,\!000$	7350	0.9	661.5	1138.5
$\mathbf{D}\mathbf{e}\mathbf{c}\mathbf{e}\mathbf{m}\mathbf{b}\mathbf{e}\mathbf{r}$	$20,\!000$	5250	0.9	472.5	1327.5
			TOTAL	15,525	6075
			SAVING	10,010	

TABLE 3.5: Fixed-axis, Yingli-SMA Savings and Disbursements

Table 3.5 shows that implementing Fixed-axis solar system allows to save \$15,525 for the first year instead of paying \$21,600 for the electricity. With an installed solar system, only \$6,075 need to be paid to supply the building in the months that have shortage in production. The cost of 1 kWh for this system is $\frac{\text{Investment cost}}{\text{Total solar energy electrical generation}} = \frac{\$856,821}{264600} = \$3.238$

3.3.2 Second Scenario

The second scenario is for using the best alternative we have determined in the One-axis system which is Using Yingli PV and SMA inverter. The exact energy production for this system is shown in Table 3.6.

Month	Useful Energy	Useful Energy	$\mathbf{D}\mathbf{e}\mathbf{s}\mathbf{i}\mathbf{g}\mathbf{n}$	Solar Energy
MOIIII	$(\rm kWh/\rm kWp/\rm day)$	$({ m kWh}/{ m kWp}/{ m month})$	Capacity	Production
January	1.9	57	350	19950
February	2.7	81	350	28350
March	3.5	105	350	36750
April	4.4	132	350	46200
May	5.3	159	350	55650
June	5.9	177	350	61950
July	5.8	174	350	60900
August	5	150	350	$\boldsymbol{52500}$
September	4.3	129	350	45150
October	3.4	102	350	35700
November	2.4	72	350	25200
$\mathbf{December}$	1.8	54	350	18900
Average	3.86			

TABLE 3.6: One-axis, Yingli-SMA useful energy production/month

According to the exact energy production, One-axis system is capable to supply the integrated building almost throughout the year with slight shortage in winter season at January and December. The saving and disbursement amounts for the first year are summarized in Table 3.7.

Month	Building electrical consum- ption (kWh)	Solar energy electrical generation (kWh)	Utility grid electricity price (\$)	Amount of electricity shortage (kWh)	Saving (\$)	Disbur -sement (\$)
January	$20,\!000$	57	350	19950	1795.5	4.5
February	$20,\!000$	81	350	28350	1800	0
March	$20,\!000$	105	350	36750	1800	0
April	$20,\!000$	132	350	46200	1800	0
May	$20,\!000$	159	350	55650	1800	0
June	$20,\!000$	177	350	61950	1800	0
July	$20,\!000$	174	350	60900	1800	0
August	$20,\!000$	150	350	$\boldsymbol{52500}$	1800	0
September	$20,\!000$	129	350	45150	1800	0
October	$20,\!000$	102	350	35700	1800	0
November	$20,\!000$	72	350	25200	1800	0
$\mathbf{D}\mathbf{e}\mathbf{c}\mathbf{e}\mathbf{m}\mathbf{b}\mathbf{e}\mathbf{r}$	$20,\!000$	54	350	18900	1701	99
				TOTAL SAVING	$21,\!496.50$	103.5

TABLE 3.7: First year, Fixed-axis, Yingli-SMA Savings and Disbursements

Table 3.7 shows that implementing One-axis solar system allows to save \$21,496.5 for the first year instead of paying \$21,600 for the electricity. With an installed solar system, only \$103.5 need to be paid to supply the building with the demanded energy in the months that have shortage in production. The cost of 1 kWh for this system is $\frac{\text{Investment cost}}{\text{Total solar energy electrical generation}} = \frac{\$898,821}{487200} = \$1.84$

3.3.2.1 Investment Calculations Findings

The One-axis solar system costs \$279,483. Since the steel structure costs \$619,338, the total investment = \$898,821 So as to test the eligibility of the investment compared to the electricity from the utility grid, we need to calculate how much it would cost paying the utility grid for 25 years. In order to calculate that, we need to put the increasing of the electrical price in Turkey in the calculations. The increasing in electricity price assumed to be 3% for every year. The price of 1 kW in the starting year is \$0.09. The integrated building consumes 20,000 kWh/month, which means that it spends \$21,600 per year on electrical bills for the first year. The cost for the following 25 years is shown in Table 3.8.

		Starting Price in 2019 (USD/kWh)	\$0.09	Changin	age of Yearly g in Electricity Prices		3.00%
Period	Year	Integrated Building Consumption (kWh/Year)		1	ricity Price SD/kWh)	Grid	Electricty Price
0	2019	240,000		\$	0.0900	ŝ	21,600
1	202.0	240,000		\$	0.0927	\$	22,248
2	2021	240,000		\$	0.0955	\$	22,915
3	202.2	240,000		\$	0.0983	\$	23,603
4	202.3			\$	0.1013	\$	24,311
5	202.4			\$	0.1043	\$	25,040
6	2025	240,000		\$	0.1075	\$	25,792
7	202.6	240,000		\$	0.1107	\$	26,565
8	2027	240,000		\$	0.1140	\$	27,362
9	202.8	240,000		\$	0.1174	\$	28,183
10	2029	240,000	240,000		0.1210	\$	29,029
11	2030	240,000	240,000		0.1246	\$	29,899
12	2031	240,000		\$	0.1283	ŝ	30,796
13	303.2	240,000		\$	0.1322	\$	31,720
14	3033	240,000		\$	0.1361	s	32,672
15	3034	240,000		\$	0.1402	s	33,652
16	3035	240,000		\$	0.1444	\$	34,662
17	3036	240,000		\$	0.1488	ŝ	35,702
18	3037	240,000		\$	0.1532	\$	36,773
19	3038	240,000	-		0.1578	\$	37,876
20	3039	240,000			0.1626	\$	39,012
21	3040	240,000			0.1674	\$	40,182
22	3041	240,000		\$	0.1724	\$	41,388
23	3042	240,000		\$	0.1776	\$	42,629
24	3043	240,000		\$	0.1830	\$	43,908
				Total		\$	787,520

TABLE	3.8:	25-year	grid	electricity	payment
-------	------	---------	------	-------------	---------

The figure shows that if the system had not been installed, the total amount that the integrated building must pay after 25 years is equal to \$787,520 which is less than the total investment, hence its inefficient.

3.3.3 Third Scenario

This scenario will be applied neglecting the price of steel structure to see the results of implementing the solar system alone. The Fixed-axis system cost \$237,483 which mean that the cost of 1 kWh for this system is $\frac{\text{Solar system cost}}{\text{Total solar energy electrical generation}} = \frac{\$237,483}{264600} = \$0.89$

3.3.4 Fourth Scenario

Neglecting the price of the steel structure for the One-axis system makes the cost of 1 kWh for the system equals to $\frac{\text{Solar system cost}}{\text{Total solar energy electrical generation}} = \frac{\$279,483}{487200} = \$0.57$

It had been observed that the price of the steel structure is inefficient which cost 221% more than the price of the One-axis solar system.

Investing in One-axis system costs \$279,483 and can supply the integrated building throughout the year with the demanded energy when paying the total disbursement amounts for the winter season for January and December months which is \$103.5 per year according to the energy output for the One-axis system per month in Table 3.7.

The return of investment calculations will be held for 25 years since the average lifespan for a solar system is 25 years [46]. To have an accurate calculation we need to involve solar panels efficiency over time because solar panels loses its efficiency over time. According to Yingli manufacturer, for the first year, the company guarantees that you will receive 98% of the minimal rated power [47]. Over the course of the next ten years, we will receive 92% of the minimal rated power output with a loss rate of 0.6% each year. From the 11th year until the 25th year, the warranty will cover 82% of the minimal rated power output with a loss rate of 0.66% each year, which mean that the system loses 18% of the potential at the end of the investment duration. In addition, the electricity prices increase yearly in Turkey. It is assumed to be 3% for every year and the starting price will be \$0.09 as it's the price for every kW consumed in 2019 [45]. The increase in efficiency losses increase the disbursement amount that will cover the electricity demand of the integrated building. For the first year the electricity saving amount is \$21,496.50 as it has been calculated in Table 3.7. The return of investment, electricity saving and disbursement amounts for the coming years are shown in Table 3.9.

The amount of money that has been invested for this system is \$279,483. The table shows that after 12.78 years the invested money will be returned, according to following formula.

$$\frac{13 - 12}{283,547.33 - 264,196.19} = \frac{X - 12}{279,483 - 264,196.28}$$

The income, operation and investment costs are presented in Table 3.10. But first, the inflation rate need to be added to the calculation which is the continuous increase in

Investment Duration		25 years	Percentage of Yearly Changing in Electricity	3.00%		Starting Pric 2019 (USD/k		\$0.09	Income of Investment Table				
Period		Installed Capacity	Specific Production per kWp installed (kWh/kWp/Year)	Efficiency (%)	Production (kWh)	Integrated Building Consumption (kWh/Year)	Amount of Electricity Shortage (kWh/Year)	Electridity Price (USD/kWh)	Electricity Saving (\$)	Disbursement Amounts in Months Faced Shortage in Production	Income (USD/Year)		
0 2019		350	1,409	98	486,360	240,000	1,150.00	\$ 0.0900	21,496.50	103.5	21,496.5		
1	2020	350	1,409	97.4	483,382	240,000	1,157.08	\$ 0.0927	20,937.59	107.26	42,434.0		
2	2021	350	1,409	96.8	480,405	240,000	1,164.26	\$ 0.0955	20,808.61	111.16	63,242.7		
3	2022	350	1,409	96.2	477,427	240,000	1,171.52	\$ 0.0983	20,679.63	115.21	83,922.3		
4	2023	350	1,409	95.6	474,449	240,000	1,178.87	\$ 0.1013	20,550.65	119.41	104,472.9		
5	2024	350	1,409	95	471,471	240,000	1,186.32	\$ 0.1043	20,421.68	123.77	124,894.6		
6	2025	350	1,409	94.4	468,494	240,000	1,193.86	\$ 0.1075	20,292.70	128.30	145,187.3		
7	2026	350	1,409	93.8	465,516	240,000	1,201.49	\$ 0.1107	20,163.72	132.99	165,351.0		
8	2027	350	1,409	93.2	462,538	240,000	1,209.23	\$ 0.1140	20,034.74	137.86	185,385.8		
9	2028	350	1,409	92.6	459,561	240,000	1,217.06	\$ 0.1174	19,905.76	142.92	205,291.5		
10	2029	350	1,409	92	456,583	240,000	1,225.00	\$ 0.1210	19,776.78	148.17	225,068.3		
11	2030	350	1,409	91.34	453,307	240,000	1,233.85	\$ 0.1246	19,634.90	153.71	244,703.2		
12	2031	350	1,409	90.68	450,032	240,000	1,242.83	\$ 0.1283	19,493.03	159.48	264,196.2		
13	3032	350	1,409	90.02	446,756	240,000	1,251.94	\$ 0.1322	19,351.15	165.47	283,547.4		
14	3033	350	1,409	89.36	443,481	240,000	1,261.19	\$ 0.1361	19,209.27	171.69	302,756.7		
15	3034	350	1,409	88.7	440,205	240,000	1,270.57	\$ 0.1402	19,067.40	178.16	321,824.1		
16	3035	350	1,409	88.04	436,930	240,000	1,280.10	\$ 0.1444	18,925.52	184.88	340,749.6		
17	3036	350	1,409	87.38	433,654	240,000	1,289.77	\$ 0.1488	18,783.64	191.86	359,533.2		
18	3037	350	1,409	86.72	430,379	240,000	1,299.58	\$ 0.1532	18,641.76	199.12	378,175.0		
19	3038	350	1,409	86.06	427,103	240,000	1,309.55	\$ 0.1578	18,499.89	206.67	396,674.9		
20	3039	350	1,409	85.4	423,828	240,000	1,319.67	\$ 0.1626	18,358.01	214.51	415,032.9		
21	3040	350	1,409	84.74	420,553	240,000	1,329.95	\$ 0.1674	18,216.13	222.67	433,249.0		
22	3041	350	1,409	84.08	417,277	240,000	1,340.39	\$ 0.1724	18,074.26	231.15	451,323.		
23	3042	350	1,409	83.42	414,002	240,000	1,350.99	\$ 0.1776	17,932.38	239.97	469,255.1		
24	3043	350	1,409	82.76	410,726	240,000	1,361.77	\$ 0.1830	17,790.50	249.14	487,046.2		
T	otal				11,234,420	6,000,000	31,196.86						

TABLE 3.9 :	Return of	investment	1
---------------	-----------	------------	---

the overall level of prices of goods and services in a specific period. The inflation rate is so important as the central banks publish their forecasts of inflation rate for the next years and update their forecasting frequently according to situation. The history of most economies shows that there is always a period with a lower inflation rate after every period of the high inflation rate. The yearly inflation rate is in between 1% and 3% except for some extreme cases. The 25 years is long time to be forecasted, hence the best way for forecasting the inflation rate for the next 25 years is by taking the average of past years' inflation rates with ignoring the trend because if the trend of the past years is downward the forecast of the inflation rate will drop over the years. Since the price of the system is in the U.S dollars, the forecasting of the inflation rate will be calculated according to the history of the inflation rates of the united states. As a result, the next 25 years of US inflation rate forecasts are computed as yearly 2.41%. In addition, to fund the project, a loan from a bank will used with 8% of interest

TABLE 3.10: Return of investment 2

Invest	ment Duration	25 years	Yearly Changing in Electricity Prices	3.00%			Starting Prio 2019 (USD /k			\$ 0.09	System ca pa dity	350 kWp							
			income								Operation cost					investment ces	t		
Renfod	Year	Installed Capacity	Specific Production per kWp installed (kWh/kWp/Year)	Efficiency (%)	Production (kWh)	Integrated Building Consumption (kWh/Year)	Electridity Price (USD/kWh)	Amount of Electricity Shortage (kWh/Year)	NPV of Income	Inflation rate (%)	Maintenance & Operational costs	Loan principal Payment		VPV of Loan	Interest (%)	Interest (\$)	NPV of Interest	Total Payment	NPV of To Paymer
0	2019	350	1,409	96	486,360	240,000	\$ 0.0900	1,150.00	21,496.50	2.41%	\$ 7,000.00	\$ 23,290.00	\$	22,728.71	8%	\$ 1,863.20	\$ 1,818.30	\$ 25,153.20	\$ 24547
1	2020	350	1,409	97.4	483,382	240,000	\$ 0.0927	1,157.08	20,937.59	2.41%	\$ 7,168.700	\$ 23,290.00	\$	22,728.71	8%	\$ 1,863.20	\$ 1,818.30	\$ 25,153.20	\$ 24,547
2	2021	350	1,409	96.8	480,405	240,000	\$ 0.0955	1,164.26	20,808.61	2.41%	\$ 7,341.466	\$ 23,290.00	\$	22,728.71	8%	\$ 1,863.20	\$ 1,818.30	\$ 25,153.20	\$ 24,547
3	2022	350	1,409	96.2	477,A27	240,000	\$ 0.0983	1,171.52	20,679.63	2.41%	\$ 7,518.395	\$ 23,290.00	\$	22,728.71	8%	\$ 1,863.20	\$ 1,818.30	\$ 25,153.20	\$ 24547
4	2023	350	1,409	95.6	474,449	240,000	\$ 0.1013	1,178.87	20,550.65	2.41%	\$ 7,699.588	\$ 23,290.00	\$	22,728.71	8%	\$ 1,863.20	\$ 1,818.30	\$ 25,153.20	\$ 24,547
S	2024	350	1,409	95	471,471	240,000	\$ 0.1043	1,186.32	20,421.68	2.41%	\$ 7,885.148	\$ 23,290.00	\$	22,728.71	8%	\$ 1,863.20	\$ 1,818.30	\$ 25,153.20	\$ 24,547
6	2025	350	1,409	94.4	468,494	240,000	\$ 0.1075	1,193.86	20,292.70	2.41%	\$ 8,075.180	\$ 23,290.00	\$	22,728.71	8%	\$ 1,863.20	\$ 1,818.30	\$ 25,153.20	\$ 24547
7	2026	350	1,409	93.8	465,516	240,000	\$ 0.1107	1,201.49	20,163.72	2.41%	\$ 8,269.792	\$ 23,290.00	\$	22,728.71	8%	\$ 1,863.20	\$ 1,818.30	\$ 25,153.20	\$ 24,547
8	2027	350	1,409	93.2	462,538	240,000	\$ 0.1140	1,209.23	20,034.74	2.41%	\$ 8,469.094	\$ 23,290.00	\$.	22,728.71	8%	\$ 1,863.20	\$ 1,818.30	\$ 25,153.20	\$ 24,547
9	2028	350	1,409	92.6	459,561	240,000	\$ 0.1174	1,217.05	19,905.76	2.41%	\$ 8,673.199	\$ 23,290.00	\$	22,728.71	8%	\$ 1,863.20	\$ 1,818.30	\$ 25,153.20	\$ 24,547
10	2029	350	1,409	92	456,583	240,000	\$ 0.1210	1,225.00	19,776.78	2.41%	\$ 8,882.224	\$ 23,290.00	\$	22,728.71	8%	\$ 1,863.20	\$ 1,818.30	\$ 25,153.20	\$ 24547
11	2030	350	1,409	91.34	453,307	240,000	\$ 0.1246	1,233.85	19,634.90	2.41%	\$ 9,096.285	\$ 23,293.00	\$	22,731.64	8%	\$ 1,863.44	\$ 1,818.53	\$ 25,156.44	\$ 24,550
12	2031	350	1,409	90.68	450,032	240,000	\$ 0.1283	1,242.83	19,493.08	2.41%	\$ 9,315.506	\$ -	\$	-	8%	ş -	ş -	\$ -	\$
13	3032	350	1,409	90.02	446,756	240,000	\$ 0.1322	1,251.94	19,351.15	2.41%	\$ 9,540.009	s -	\$	-	8%	s -	s -	-	\$
34	3033	350	1,409	89.36	443,481	240,000	\$ 0.1361	1,261.19	19,209.27	2.41%	\$ 9,769.924	ş -	\$	-	8%	s -	\$ -	-	\$
15	3034	350	1,409	88.7	440,205	240,000	\$ 0.1402	1,270.57	19,067.40	2.41%	\$ 10,005.379	\$ -	\$	-	8%	ş -	ş -	-	\$
15	3035	350	1,409	88.04	436,930	240,000	\$ 0.1444	1,280.10	18,925.52	2.41%	\$ 10,246.508	ş -	\$	-	8%	ş -	ş -	-	\$
17	3036	350	1,409	87.38	433,654	240,000	\$ 0.1488	1,289.77	18,783.64	2.41%	\$ 10,493.449	s -	\$	-	8%	s -	s -	-	\$
18	3037	350	1,409	86.72	430,379	240,000	\$ 0.1532	1,299.58	18,641.76	2.41%	\$ 10,746.341	\$ -	\$	-	8%	ş -	\$ -	-	\$
19	3038	350	1,409	86.06	427,103	240,000	\$ 0.1578	1,309.55	18,499.89	2.41%	\$ 11,005.328	\$ -	\$	-	8%	ş -	\$ -	-	\$
20	3039	350	1,409	85.4	423,828	240,000	\$ 0.1626	1,319.67	18,358.01	2.41%	\$ 11,270.557	s -	\$	-	8%	\$ -	s -	-	\$
21	3040	350	1,409	84.74	420,553	240,000	\$ 0.1674	1,329.95	18,216.13	2.41%	\$ 11,542.177	s -	\$	-	8%	s -	s -	-	\$
22	3041	350	1,409	84.08	417,277	240,000	\$ 0.1724	1,340.39	18,074.25	2.41%	\$ 11,820.343	\$ -	\$	-	8%	ş -	\$ -	-	\$
23	3042	350	1,409	83.42	414,002	240,000	\$ 0.1776	1,350.99	17,932.38	2.41%	\$ 12,105.214	\$ -	\$	-	8%	ş -	\$ -	-	\$
24	3043	350	1,409	82.76	410,726	240,000	\$ 0.1830	1,361.77	17,790.50	2.41%	\$ 12,396.949	\$-	\$	-	8%	\$-	\$ -	-	\$
	Total				11 234 420	6.000.000		\$ 31 195.85	\$ 487 045 20		\$ 236 336 26	\$ 279,483.00	\$ 2	72.747.46		\$ 22 358 64	\$21,819,80	5 301 841 64	\$ 294563

Chapter 4

Survey and Discussion

4.1 Findings

The solar potential analysis of the proposed area reveals that the One-axis system with Panasonic PV model has 86.76% more energy production than in Fixed-axis. As for the One-axis system that use Yingli PV model have 83.78% more energy production that in Fixed-axis.

The analysis of the proposed area shows that PV and inverter models can affect the energy output, plus different behavior of the PV's had been observed when different models used in different solar systems as when Panasonic PV model used in Fixed-axis the temperature loss was equal to 2.95%, but when used in One-axis system the loss increased to 5.43%, which means exposing the panels to the sun for a longer period increased the loss by 2.48%. In the other side, when Yingli PV had been used in Fixed-axis system the temperature loss was equals to 4.24% while it was 8.07% in One-axis system, which means that we have 3.83% difference. The amount of increase in temperature losses in both systems is not the same, this shows that even if we have the same defined parameters facing the same conditions, different values may be obtained. Figures 2.21, 2.27, 2.36, 2.43 show that there is no shading loss difference between Fixed and One-axis systems either with using any model type but having differently than other PV's. The different values in temperature loss describe the unique structure of Panasonic HIT panel

which have an amorphous layer that allows to maintain high conversion efficiency and performance at hot temperatures, generating more energy throughout the day [48].

Another coefficient is in favor of Panasonic model, is the irradiance level that reflect the intrinsic behavior of the PV model as when Panasonic models used in Fixed-axis system the irradiance level loss was equal to 3.76% while it was 1.36% in One-axis system which means that there is an improvement of 2.4%. In the other side, when Yingli model is used in Fixed-axis system the irradiance level was equal to 2.37% while it was 0.58% in One-axis system, this indicates that Panasonic model has improved its performance by higher rate.

The best result we have obtained after performing all of the design alternatives is the One-axis system that use Yingli PV with SMA inverter because it has the best energy output for the most reasonable price in addition that this system fits the proposed area. This system can supply 489.6 MWh/year. But to supply a property with 240 MWh/year demand, Fixed system is enough. According to results, the following table show the average energy output and system price for each Fixed and One-axis systems in kWh/month and MWh/year.

No	PV Model	Inverter Model	kWh/month	MWh/year	Price \$
		SMA	$22,\!050$	266.4	$237,\!483$
	Yingli	Hyundai	21,210	258	$236,\!841$
Fixed		Solarmax	$21,\!315$	257.9	$248,\!508$
Fixed		SMA	21,735	264.2	$245,\!186$
	Panasonic	Hyundai	$20,\!895$	254	$243,\!888$
		$\operatorname{Solarmax}$	$21,\!000$	255.4	$256,\!188$
		SMA	$40,\!530$	489.6	$279,\!483$
	Yingli	Hyundai	$39,\!270$	477.1	$278,\!841$
One-axis		Solarmax	$39,\!480$	476.8	$290,\!508$
		SMA	$40,\!635$	493.2	$287,\!186$
	Panasonic	Hyundai	$39,\!270$	477.7	$285,\!888$
		$\operatorname{Solarmax}$	$39,\!480$	479.8	$298,\!188$

TABLE 4.1: Fixed, One-axis energy production

The table shows that Fixed-axis system can supply the property with the demanded energy and according to price list the best alternative to select is Yingli PV with SMA inverter that have the best energy output with the most reasonable price in addition that it fits the designed steel structure after consideration of number of modules. Although Fixed-axis system can provide the demanded energy, its price compared to the best alternative we got in One-axis system (Yingli PV with SMA inverter) is not great if we take into account the benefits and advantages that we can get from producing more energy knowing that the average lifespan of a solar system is 25 years [46].

The One-axis vertical system has a great output compared to Fixed-axis system with more than 80% difference in power generation for the proposed location. This high difference was because of the advantages we have obtained from using the vertical system that allows the solar panels to track the sun's azimuth, generating more energy. A study had been made in Florida-America [49], to test the difference between the Fixed and One-axis horizontal track system. The location of the study was in Boca Raton, Florida with following information's.

TABLE 4.2: Florida case study, location status

City	Boca Raton
State	FL
Latitude	26.21°N
Longitude	$80.04^{\circ}W$
Elevation	11m

The Fixed system was designed with 23° inclination angle. The assigned angle was set to achieve the best energy production throughout the year. As for One-axis panels, the board turn range from (0-90°) System used Trina PV with 305W capacity and Sunny boy 7000US-12 inverter. Based on the location and the selected components the daily results are shown in Table 4.3.

TABLE 4.3: Florida case study, results

	Tracker (kWh)	Fixed (kWh)	Tracker rate (%)
October 15, 2014	37.539	35.432	5.95
January 15, 2015	16.756	17.001	-1.44
April 15, 2015	51.395	42.292	21.52
July 14, 2015	32.097	24.943	28.68

Based on the study results the One-axis system generally performed better than the Fixed system but did not reach an increase of 30% in terms of energy production. Since the track system is horizontal, its production based on summer months when the sun is overhead at noon, that give an advantage for the Fixed system in winter months when the sun moves at lower altitudes, this explains why the January results were in favor of the Fixed system when they could receive more sun radiation at midday.

The energy output changes between systems according to the location of the grid. In the previous study, One-axis system had 28.68% more in terms of energy production but in other location One-axis system had just 7% more energy output as this study that been made in Khyber Pakhtunkhwa, Pakistan [50] with 2 kWp capacity grid. Hanwha Q cells PV model had been used using 8 PV modules with 250 W capacity and 2.0 kWac Sunny boy inverter from SMA. A 32° tilt angle had been assigned to the E-W Fixed-axis while the horizontal One-axis system had been installed in E-W orientation with 130°(- $65^{\circ}/65^{\circ}$) of free movement, and the tilt limits for the Dual-axis is $(10^{\circ}/90^{\circ})$. The site coordinates are $33^{\circ}51'1N$ 72°51'8E. Based on the study, the monthly measured results are shown in Table 4.4.

Month	Fixed-axis (kWh)	One-axis (kWh)	Two-axis (kWh)
January	228.6	251.96	308.0
February	259.36	269.87	288.9
March	276.68	289.69	321.2
April	253.32	266.40	339.1
May	255.95	287.25	350.8
June	248.93	279.24	340.2
July	225.53	253.89	288.9
August	247.99	259.20	315.9
September	256.87	269.95	347.2
October	241.96	256.92	315.4
November	217.47	232.40	310.4
December	204.08	220.30	306.0
Year	2917	3137	3832

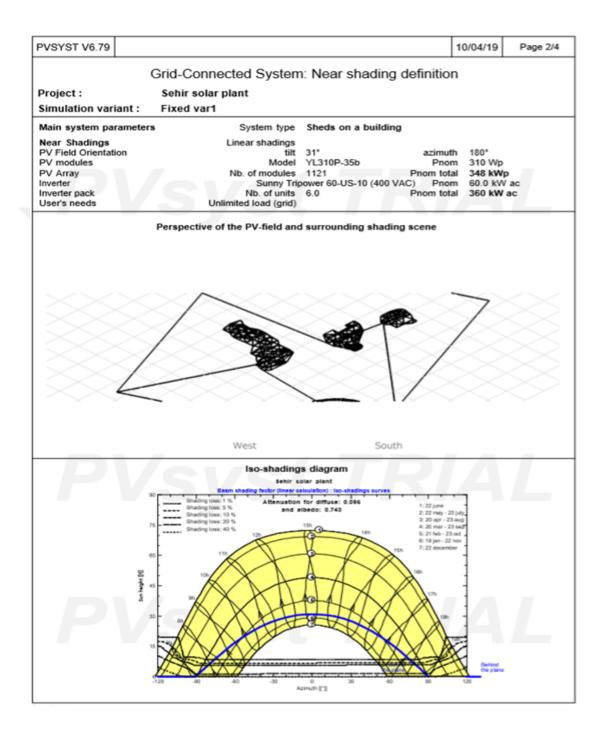
TABLE 4.4: Pakistan case study, results

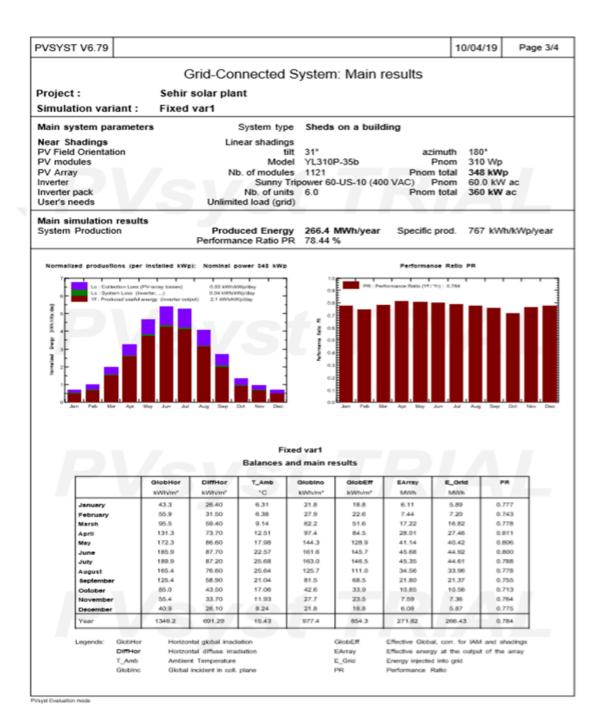
Based on the measured results, single horizontal axis system performed better than Fixed-axis system with just 7% more energy production, when Two-axis system produced 24% more energy.

The previous studies are presented to show how much location would affect the results obtained when comparing systems together. In our study, One-axis system results show how much sun radiation was lost by Fixed system that allowed the One-axis system to generate much more energy. In addition, there was no considerable difference between the two tracking systems that the One-axis vertical system had the capability to capture and to generate almost as the Two-axis system.

4.2 Recommendations

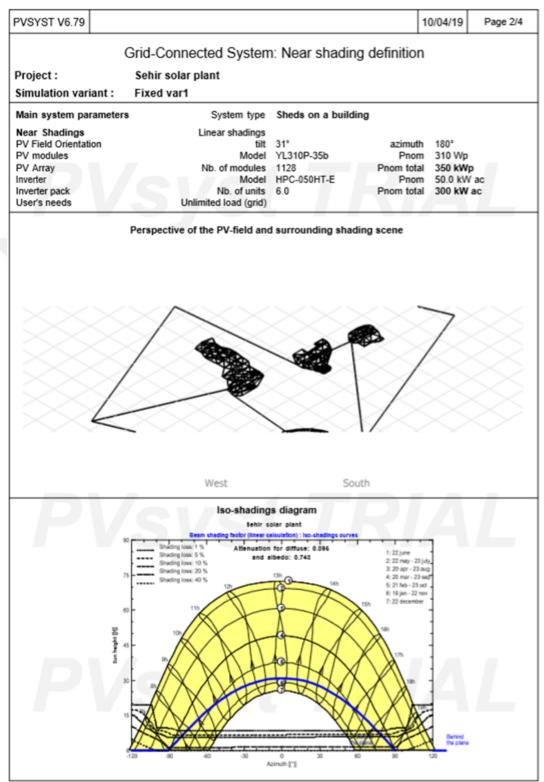
If we can achieve the desired energy, selecting PV's with higher resistance to heat is preferable, because temperature considered as a critical issue when forecasting energy production. Long term high temperature working conditions can cause irreversible degradation of its energy production [51]. PV panels can only convert to 20% of the sun's radiation that fall onto the PV panels [52], the remaining major part is converted to heat [51]. According to a study made by Sendhil kumar, Tapas Mallik, M Katz and S Weingaertner, 0.4 - 0.5% decrease in PV panel efficiency conversion can be reached for each degree rise in temperature [53]. Based on this study results, an oversized inverter has the capability to help the system to achieve more energy than other systems. In addition, not to always depend on the latest technology system (Two-axis) to supply your project, based on the results on this study One-axis system is the best choice to be selected. Selecting panels with higher capacity can save area for future expanding and investment.

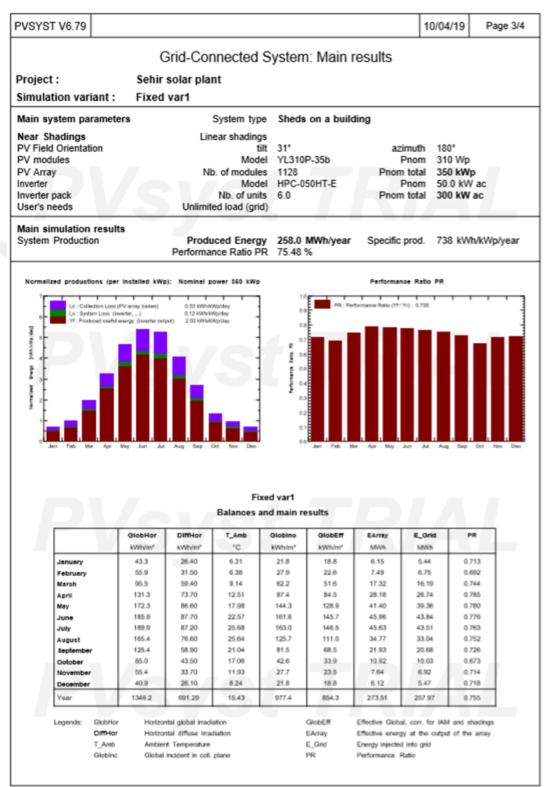

Conclusion

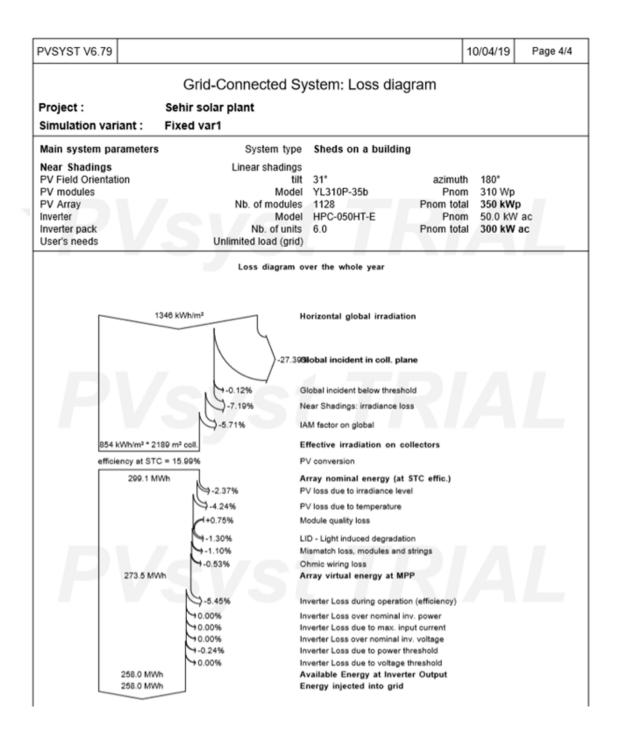

It has been observed that many types of solar panel plants can be designed to reach the desired energy, but the best design is a result of optimization of production of energy and cost feasibility for a given application and requirements. Panels with SMA inverter has more energy outcome resulting from inverter oversizing, which overcame the other inverters that have less unit nominal power; In addition, inverters performed better in track systems. It has been observed that the losses that had the greatest impact on energy production were shading, temperature, model quality, IAM factor and irradiance level. It has been noticed that the greatest impact on increasing the price difference between Fixed, One-axis and Two-axis systems because of an element that was capable to increase the price difference between Fixed-axis and the One-way axis by almost 18%, which was a result of the cost of the track system (panel's frame). The optimum design cannot be reached by reaching the desired energy only, but also by reaching the reasonable cost. It has been established that the most modern methodologies may not be always sufficient to achieve the desired goals.

Appendix A

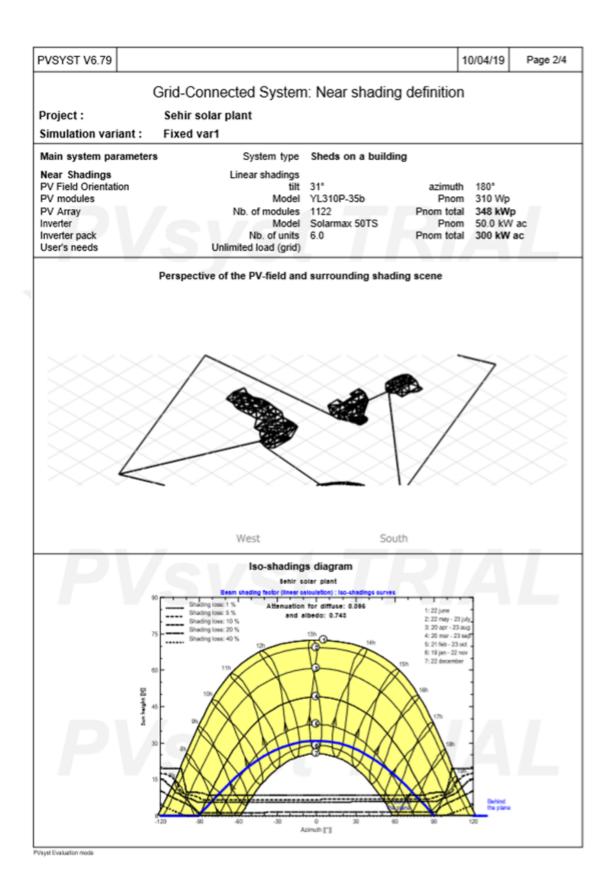
Fixed axis Appendix

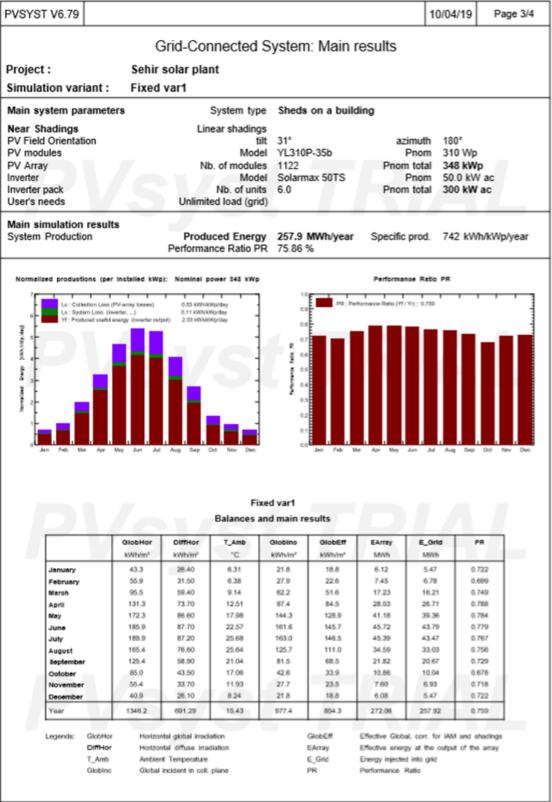

Grid-Connected System: Simulation parameters Project : Sehir solar plant Geographical Site Cevizii County Turkey Situation Legal Time County Turkey Situation Legal Time Altitude 0.0° N Longitude 29.16° E Time defined as Legal Time Altitude 0.20 Altitude 0.20 Meteo data: Cevizii Meteonom 7.2 (2004-2010), Sat=100% - Synthetic Simulation variant : Fixed vari Simulation data 10/04/19 17h56 Simulation parameters System type Sheds on a building Coliector width 2.00 m Sheds configuration Nb. of sheds 120 Identical arrays Sheds spacing 2.00 m Coliector width 2.00 m Shading limit angle Linear shadings Unlimited load (grid) 90.9 % VArray Characteristics Si-poly Model Natitude 100 mm 110 parallel Si a strings V Array Characteristics Si-poly Model In parallel S9 a strings 111 kWp (50°C) Varray Characteristics Manufacture Yingli Solar 110 parallel Si a strings 111 kWp (50°C) Nome of PV modules <td< th=""><th>roject : Sehir so reographical Site ituation Time defined as leteo data: imulation variant : Fixed va imulation parameters collector Plane Orientation heds configuration hading limit angle lodels used lorizon</th><th>olar plant Cevizli Latitude Legal Time Albedo Cevizli ar1 Simulation date System type Tilt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon</th><th>40.90° N Time zone UT 0.20 Meteonorm 7. 10/04/19 17h5 Sheds on a l 31° 1120 2.20 m 64.8° Gro</th><th>Country Longitude +3 Altitude 2 (2004-2010), Sat= 56 building Azimuth Identical array: Collector width und cov. Ratio (GCR</th><th>y Turkey e 29.16° E e 0 m 100% - Synti 100% - Synti 100% - Synti 100% - Synti 100% - Synti 100% - Synti</th><th></th></td<>	roject : Sehir so reographical Site ituation Time defined as leteo data: imulation variant : Fixed va imulation parameters collector Plane Orientation heds configuration hading limit angle lodels used lorizon	olar plant Cevizli Latitude Legal Time Albedo Cevizli ar1 Simulation date System type Tilt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	40.90° N Time zone UT 0.20 Meteonorm 7. 10/04/19 17h5 Sheds on a l 31° 1120 2.20 m 64.8° Gro	Country Longitude +3 Altitude 2 (2004-2010), Sat= 56 building Azimuth Identical array: Collector width und cov. Ratio (GCR	y Turkey e 29.16° E e 0 m 100% - Synti 100% - Synti 100% - Synti 100% - Synti 100% - Synti 100% - Synti	
Project: Sehir solar plant Geographical Site Cevizli Country Turkey Situation Latitude 40.90° N Longilude 29.16° E Time defined as Legal Time Time cone UT-3 Altitude 0 m Weteo data: Cevizil Meteonorm 7.2 (2004-2010), Sat=100% - Synthetic Simulation variant: Fixed var1 Simulation date 10/04/19 17h56 Simulation parameters System type Sheds on a building Collector Plane Orientation Titl 31° Azimuth 180° Sheds configuration Nb. of sheds Goldector width 2.00 m Collector width 2.00 m Sheds used Transposition Perez Diffuse Perez, Meteonorr Norizon Free Horizon Inter shadings In parallel 59 strings User's needs : Unlimited load (grid) YL310P-35b Yingil Solar In parallel 59 strings Varay Characteristics Nb. modules YL310P-35b Init Nom. Power 310 Wp Varay Characteristics Original PVsyst database Module area 121 Nonit Nom. Power 310 Wp	roject : Sehir so reographical Site ituation Time defined as leteo data: imulation variant : Fixed va imulation parameters collector Plane Orientation heds configuration hading limit angle lodels used lorizon	olar plant Cevizli Latitude Legal Time Albedo Cevizli ar1 Simulation date System type Tilt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	40.90° N Time zone UT 0.20 Meteonorm 7. 10/04/19 17h5 Sheds on a l 31° 1120 2.20 m 64.8° Gro	Country Longitude +3 Altitude 2 (2004-2010), Sat= 56 building Azimuth Identical array: Collector width und cov. Ratio (GCR	y Turkey e 29.16° E e 0 m 100% - Synti 100% - Synti 100% - Synti 100% - Synti 100% - Synti 100% - Synti	
Geographical Site Cevizli Country Turkey Situation Latitude 40.90° N Longitude 29.16° E Time defined as Alletdo 0.20 Acteo data: Cevizili Meteo out V+3 Allitude 0 m Simulation variant : Fixed var1 Simulation date 10/04/19 17h56 Simulation parameters System type Sheds on a building Collector Plane Orientation Titt 31° Azimuth 180° Sheds configuration Nb. of sheds 1120 Identical arrays Sheds spacing 2.20 m Collector Width 2.00 m Wodels used Transposition Perez Diffuse Original Pvsyst	eographical Site ituation Time defined as eteo data: imulation variant : Fixed va imulation parameters collector Plane Orientation heds configuration hading limit angle todels used lorizon	Cevizli Latitude Legal Time Albedo Cevizli ar1 Simulation date System type Titt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	Time zone UT 0.20 Meteonorm 7. 10/04/19 17h5 Sheds on a t 31* 1120 2.20 m 64.8* Gro	Longitud +3 Altitude 2 (2004-2010), Sat= 56 building Azimutt Identical array: Collector widtl und cov. Ratio (GCR	e 29.16° E e 0 m 100% - Synt 100% - Synt h 180° s h 2.00 m)) 90.9 %	
Situation Time defined as Latitude Legal Time Albedo 40.90° N Time zone UT+3 Altitude Longitude 29.16° E Mittude Weteo data: Cevizil Meteonorm 7.2 (2004-2010), Sat=100% - Synthetic Simulation variant : Fixed var1 Simulation parameters System type Collector Plane Orientation Titt Sheds configuration Nb. of sheds Sheds sconfiguration Nb. of sheds Sheds susd Transposition PV Array Characteristics Unlimited load (grid) PV Array Characteristics Si-poly Module area Nb. of sheds Narray operating characteristics (50°C) Ump pd 84 A Original PVsyst database Nominal (STC) Module area Si-poly Module area Original PVsyst database Nb. of inverters Module area Cell area 1964 m² Collectors Module area Sinoplus e Nb. of inverter Module area Sinoplus e Nb. of inverters Global array res Sinoplus e No. Sinoplus e Sinoplus e Sinoplus e Nb. of inverters 6 units <td>ituation Time defined as ateo data: imulation variant : Fixed variant imulation parameters collector Plane Orientation heds configuration hading limit angle todels used lorizon</td> <td>Latitude Legal Time Albedo Cevizii ar1 Simulation date System type Tilt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon</td> <td>Time zone UT 0.20 Meteonorm 7. 10/04/19 17h5 Sheds on a t 31* 1120 2.20 m 64.8* Gro</td> <td>Longitud +3 Altitude 2 (2004-2010), Sat= 56 building Azimutt Identical array: Collector widtl und cov. Ratio (GCR</td> <td>e 29.16° E e 0 m 100% - Synt 100% - Synt h 180° s h 2.00 m)) 90.9 %</td> <td></td>	ituation Time defined as ateo data: imulation variant : Fixed variant imulation parameters collector Plane Orientation heds configuration hading limit angle todels used lorizon	Latitude Legal Time Albedo Cevizii ar1 Simulation date System type Tilt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	Time zone UT 0.20 Meteonorm 7. 10/04/19 17h5 Sheds on a t 31* 1120 2.20 m 64.8* Gro	Longitud +3 Altitude 2 (2004-2010), Sat= 56 building Azimutt Identical array: Collector widtl und cov. Ratio (GCR	e 29.16° E e 0 m 100% - Synt 100% - Synt h 180° s h 2.00 m)) 90.9 %	
Time defined as Legal Time Time zone UT+3 Alitude 0 m Meteo data: Cevizii Meteonorm 7.2 (2004-2010), Sat=100% - Synthetic Simulation variant : Fixed var1 Simulation date 10/04/19 17h56 Simulation parameters System type Sheds on a building Collector Plane Orientation Titt 31* Azimuth 180* Sheds configuration Nb. of sheds 1120 Identical arrays 2.00 m Shading limit angle Limit profile angle 64.8* Ground cov. Ratio (GCR) 90.9 % Models used Transposition Perez Diffuse Perez, Meteonorr Near Shadings Linear shadings Unlimited load (grid) VL310P-35b Original PVsyst database Nominal PVsyst database Nb. ondules 19 modules In parallel 59 strings Original PVsyst database Nb. ondules 121 Unit Nom. Power 310 Wp Array operating characteristics (50°C) U mp p624 V I mp 498 A 247 F m² Cell area 1964 m² Inverter Model Suny Tripower 60-US-10 (400 VAC) S0.60 KWac 570-800 V Unit No	Time defined as Time defined as teteo data: imulation variant : Fixed variant imulation parameters collector Plane Orientation heds configuration hading limit angle todels used lorizon	Legal Time Albedo Cevizli ar1 Simulation date System type Tilt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	Time zone UT 0.20 Meteonorm 7. 10/04/19 17h5 Sheds on a t 31* 1120 2.20 m 64.8* Gro	+3 Altitude 2 (2004-2010), Sat= 56 building Azimutt Identical array: Collector widtl und cov. Ratio (GCR	e 0 m 100% - Synt h 180* s h 2.00 m c) 90.9 %	
Albedo 0.20 Weteo data: Cevizii Meteonom 7.2 (2004-2010), Sat=100% - Synthetic Simulation variant: Fixed var1 Simulation parameters System type Sheds on a building Collector Plane Orientation Titt 31* Azimuth 180* Sheds configuration Nb. of sheds 1120 Identical arrays 2.00 m Shading limit angle Limit profile angle 64.8* Ground cov. Ratio (CGR) 90.9 % Models used Transposition Perez Diffuse Perez, Meteonom Horizon Free Horizon In parallel 59 strings Original PVsyst database No. modules No. modules In parallel 59 strings Original PVsyst database Nominal (STC) 348 kWp At operating cond. 311 kWp (S0°C) Array operating characteristics (50°C) Manufacturer SMA Sumy Tripower 60-US-10 (400 VAC) Original PVsyst database Operating Voltage S7-030 V Unit Nom. Power 60.0 kWac Nb. of inverters Global array res. 21 mOhm Loss Fraction 1.5 % at STC Inverter Module	imulation variant : Fixed va imulation parameters collector Plane Orientation heds configuration hading limit angle fodels used corizon	Albedo Cevizli ar1 Simulation date System type Tilt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	0.20 Meteonorm 7. 10/04/19 17h5 Sheds on a b 31* 1120 2.20 m 64.8* Gro	2 (2004-2010), Sat= 56 building Azimutt Identical array: Collector widtt und cov. Ratio (GCR	100% - Synt h 180* s h 2.00 m) 90.9 %	hetic
Simulation variant: Fixed var1 Simulation parameters System type Sheds on a building Collector Plane Orientation Titl 31* Azimuth 180* Sheds configuration Nb. of sheds 1120 Identical arrays Sheds configuration Nb. of sheds 1120 Identical arrays Sheds used Transposition Perez Diffuse Perez, Meteonorr Models used Transposition Perez Diffuse Perez, Meteonorr Near Shadings Linear shadings Unlimited load (grid) Model YL310P-35b PV module Si-poly Model YL310P-35b In parallel 59 strings Number of PV modules Nb. modules 1121 Unit Nom. Power 310 Wp Array operating characteristics (50°C) W model SUP YIS10F-35b Simulation divertion Original PVsyst database Nb. of inverters Gold area 175 m² Cell area 1964 m² Inverter Model Sunny Tripower 60-US-10 (400 VAC) Sind area 1964 m² Sind area 1964 m² Inverter Model Sunny Tripower 60-US-10 (400 VAC	imulation variant : Fixed va imulation parameters collector Plane Orientation heds configuration hading limit angle todels used lorizon	Simulation date System type Tilt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	10/04/19 17h5 Sheds on a b 31* 1120 2.20 m 64.8* Gro	56 building Azimuti Identical array: Collector widti und cov. Ratio (GCR	h 180* s h 2.00 m c) 90.9 %	hetic
Simulation date 10/04/19 17h56 Simulation parameters System type Sheds on a building Collector Plane Orientation Tilt 31* Azimuth 180* Sheds configuration Nb. of sheds 1120 Identical arrays Collector width 2.00 m Shading limit angle Limit profile angle 64.8* Ground cov. Ratio (GCR) 90.9 % Models used Transposition Perez Diffuse Perez, Meteonorr Horizon Free Horizon Free Horizon No. of sheds 100* Near Shadings Linear shadings Linear shadings In series 19 modules In parallel 59 strings Original PVsyst database Si-poly Model YL310P-35b Manufacturer 310 Wp Number of PV modules In series 19 modules In parallel 59 strings Naminal (STC) Unit Nom. Power 310 Wp At operating cond. 311 kWp (50°C) Array global power Module area 2175 m² Cel area 1964 m² Noi of inverters Global	imulation parameters collector Plane Orientation heds configuration hading limit angle todels used lorizon	Simulation date System type Tilt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	Sheds on a b 31° 1120 2.20 m 64.8° Gro	Azimutt Identical arrays Collector widtl und cov. Ratio (GCR	s h 2.00 m i) 90.9 %	_
Simulation parameters System type Sheds on a building Collector Plane Orientation Titt 31* Azimuth 180* Sheds configuration Nb. of sheds 1120 Identical arrays Shading limit angle Limit profile angle 64.8* Ground cov. Ratio (GCR) 90.9 % Models used Transposition Perez Diffuse Perez, Meteonom Horizon Free Horizon Prez Diffuse Perez, Meteonom Number of PV modules Si-poly Model In parallel 59 strings Original PVsyst database Nb. modules In parallel S9 strings 310 Wp Array operating characteristics (50°C) U mpp Module area 2175 m² Cell area 1964 m² Inverter Model Sumy Tripower 60-US-10 (400 VAC) SMA SMA Pnorm ratio 0.97 PV Array loss factors Nb. of inverters 6 units Total Power 360 kWac Pnorm ratio 0.97 PV Array loss factors Global array res. 21 mOhm Loss Fraction 1.3 % 1.5 % at STC Inverter pack Nb. of inverters	ollector Plane Orientation heds configuration hading limit angle lodels used lorizon	System type Titt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	Sheds on a b 31° 1120 2.20 m 64.8° Gro	Azimutt Identical arrays Collector widtl und cov. Ratio (GCR	s h 2.00 m i) 90.9 %	
Collector Plane Orientation Titt 31* Azimuth 180* Sheds configuration Nb. of sheds 1120 Identical arrays Collector width 2.00 m Shading limit angle Limit profile angle 64.8* Ground cov. Ratio (GCR) 90.9 % Models used Transposition Perez Diffuse Perez, Meteonom Horizon Free Horizon Pree Horizon Pree Horizon Pree Horizon Number of PV module Si-poly Model YL310P-35b In parallel 59 strings Array global power Nominal (STC) J48 kWp At operating cond. 311 kWp (50*C) Array operating characteristics (50*C) U mpo 624 V I map 1864 m² Coriginal PVsyst database Manufacturer SMed Sunny Tripower 60-US-10 (400 VAC) Stit kWp (50*C) Array operating characteristics (50*C) U mpo 624 V I map 1864 m² Inverter Model Sunny Tripower 60-US-10 (400 VAC) Stit kWa (50*C) Stit kWa (50*C) Original PVsyst database Nb. of inverters Sunny Tripower 60-US-10 (400 VAC) Stit kWa (50*C) Stit kWa (50*C)	ollector Plane Orientation heds configuration hading limit angle lodels used lorizon	Tilt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	31* 1120 2.20 m 64.8* Gro	Azimutt Identical arrays Collector widtt und cov. Ratio (GCR	s h 2.00 m i) 90.9 %	
Collector Plane Orientation Tilt 31* Azimuth 180* Sheds configuration Nb. of sheds 1120 Identical arrays 2.00 m Shading limit angle Limit profile angle 64.8* Ground cov. Ratio (GCR) 90.9 % Models used Transposition Perez Diffuse Perez, Meteonom Horizon Free Horizon Free Horizon Perez Diffuse Perez, Meteonom VArray Characteristics Varray Characteristics Si-poly Model YL310P-35b In parallel 59 strings Varray global power Si-poly Modules In series 19 modules In parallel 59 strings Varray operating characteristics (50°C) U mpminal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array global power Manufacturer Sunny Tripower 60-US-10 (400 VAC) Strings Original PVsyst database Manufacturer Sunny Tripower 60-US-10 (400 VAC) Strings Original PVsyst database Manufacturer Sunny Tripower 60-US-10 (400 VAC) Strings Original PVsyst database Global array res. 21 mOhm Loss Fraction 1.5 % at ST	ollector Plane Orientation heds configuration hading limit angle lodels used lorizon	Tilt Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	31* 1120 2.20 m 64.8* Gro	Azimutt Identical arrays Collector widtt und cov. Ratio (GCR	s h 2.00 m i) 90.9 %	
Sheds configuration Nb. of sheds 1120 Identical arrays Collector width 2.00 m Shading limit angle Limit profile angle 64.8* Ground cov. Ratio (GCR) 90.9 % Models used Transposition Perez Diffuse Perez, Meteonom Horizon Free Horizon Free Horizon Diffuse Perez, Meteonom Near Shadings Linear shadings Unlimited load (grid) Diffuse Perez, Meteonom PV module Si-poly Model YL310P-35b In parallel 59 strings Original PVsyst database Manufacturer Yingli Solar In parallel 59 strings Nominal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array global power Module area 2175 m² Cell area 1964 m² Inverter Model Sumy Tripower 60-US-10 (400 VAC) SMA Original PVsyst database Nb. of inverters 6 units Total Power 360 kWac Inverter pack Nb. of inverters 6 units Total Power 360 kWac PV Array loss factors Global array res. 21 mOhm Loss Fraction	heds configuration hading limit angle lodels used lorizon	Nb. of sheds Sheds spacing Limit profile angle Transposition Free Horizon	1120 2.20 m 64.8* Gro	Identical array: Collector widtl und cov. Ratio (GCR	s h 2.00 m i) 90.9 %	
Sheds spacing 2.20 m Collector width 2.00 m Shading limit angle Limit profile angle 64.8* Ground cov. Ratio (GCR) 90.9 % Models used Transposition Perez Diffuse Perez, Meteonom Horizon Free Horizon Free Horizon Perez Diffuse Perez, Meteonom Near Shadings Linear shadings Linear shadings Proventing Proventing Proventing Verary Characteristics Unlimited load (grid) YL310P-35b Sipoly Model YL310P-35b Original PVsyst database In series 19 modules In parallel 59 strings Nominal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array global power Nominal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array global power Module area 2175 m² Cell area 1964 m² Inverter Model Sunny Tripower 60-US-10 (400 VAC) SMA Original PVsyst database Nb. of inverters 6 units Total Power 360 kWac Phomental Loss factors Nb. of inverters 6 units Total Power 360 kWac Prom ratio 0.97 20.0 W/m²K Uc (sorst) 20.0 W/m²K Uss Fraction <td< td=""><td>hading limit angle lodels used lorizon</td><td>Sheds spacing Limit profile angle Transposition Free Horizon</td><td>2.20 m 64.8* Gro</td><td>Collector width und cov. Ratio (GCR</td><td>h 2.00 m () 90.9 %</td><td></td></td<>	hading limit angle lodels used lorizon	Sheds spacing Limit profile angle Transposition Free Horizon	2.20 m 64.8* Gro	Collector width und cov. Ratio (GCR	h 2.00 m () 90.9 %	
Shading limit angle Limit profile angle 64.8* Ground cov. Ratio (GCR) 90.9 % Models used Transposition Perez Diffuse Perez, Meteonom Horizon Free Horizon Free Horizon Perez Diffuse Perez, Meteonom Near Shadings Linear shadings Linear shadings User's needs : Unlimited load (grid) PV Array Characteristics PV module Si-poly Model YL310P-35b Original PVsyst database Manufacturer Yingli Solar In parallel 59 strings Number of PV modules Nb. modules 1121 Unit Nom. Power 310 Wp Array operating characteristics (50°C) Nump pp 624 V Imp 496 A Total area Module area 2175 m² Cell area 1964 m² Inverter Model Sunny Tripower 60-US-10 (400 VAC) Manufacturer SMA Original PVsyst database Nb. of inverters SMA Operating Voltage 570-800 V Unit Nom. Power 60.0 kWac Inverter Model Sunny Tripower 60-US-10 (400 VAC) S60 kWac Pnom ratio 0.97 PV Array loss f	lodels used lorizon	Limit profile angle Transposition Free Horizon	64.8* Gro	und cov. Ratio (GCR) 90.9 %	
Horizon Free Horizon Near Shadings Linear shadings User's needs : Unlimited load (grid) PV Array Characteristics Si-poly Model YL310P-35b Original PVsyst database Manufacturer Yingli Solar Number of PV modules In series 19 modules In parallel 59 strings Total number of PV modules Nb. modules 1121 Unit Nom. Power 310 Wp Array global power Nominal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array operating characteristics (50°C) U mpp 624 V Impp 498 A Inverter Model Sumy Tripower 60-US-10 (400 VAC) Module area 2175 m² Cell area 196 m² Inverter pack Nb. of inverters SMA Operating Voltage 570-800 V Unit Nom. Power 60.0 kWac Pnom ratio 0.97 Stall Power 360 kWac Pnom ratio 0.97 PV Array loss factors Global array res. 21 mOhm Loss Fraction 1.5 % at STC LiD - Light Induced Degradation Global array res. 21 mOhm Loss Fraction 1.3 %<	orizon	Free Horizon	Perez	Diffuse		
Horizon Free Horizon Near Shadings Linear shadings User's needs : Unlimited load (grid) PV Array Characteristics Si-poly Model YL310P-35b Original PVsyst database Manufacturer Yingli Solar In parallel 59 strings Number of PV modules Nb. modules 1121 Unit Nom. Power 310 Wp Array global power Nb. modules 1121 Unit Nom. Power 311 kWp (50°C) Array operating characteristics (50°C) U mpp 624 V I mpp 498 A Inverter Model Sumy Tripower 60-US-10 (400 VAC) Strip (Cell area 196 H m² Inverter Model Sumy Tripower 60-US-10 (400 VAC) Strip (Const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Inverter pack Nb. of inverters 6 units Total Power 360 kWac Phorm ratio 0.97 Strong Loss Fraction 1.5 % at STC UD - Light Induced Degradation Global array res. 21 mOhm Loss Fraction 1.5 % at STC Dost Fraction 1.3 % Loss Fraction 1.3 % Loss Fraction 1.3 %	orizon	Free Horizon	Perez			
Near Shadings Linear shadings User's needs : Unlimited load (grid) PV Array Characteristics Si-poly Model YL310P-35b PV module Si-poly Model YL310P-35b Number of PV modules In series 19 modules In parallel 59 strings Total number of PV modules Nb. modules In series 19 modules In parallel 59 strings Array global power No. modules No. modules In parallel 59 strings Array operating characteristics (50°C) U mpp 624 V I mpp 498 A Inverter Model Sunny Tripower 60-US-10 (400 VAC) Maufacturer SMA Original PVsyst database Manufacturer SMA Operating Voltage 570-800 V Unit Nom. Power 60.0 kWac Inverter Model Sunny Tripower 60-US-10 (400 VAC) 0.97 PV Array loss factors Global array res. 21 mOhm Loss Fraction 1.5 % at STC UD - Light Induced Degradation Global array res. 21 mOhm Loss Fraction 1.5 % at STC Module Mismatch Losses Loss Fraction 1.0 % at MPP<				Cindo	e Perez, M	eteonorm
User's needs : Unlimited load (grid) PV Array Characteristics PV module Original PVsyst database Number of PV modules Array global power Array operating characteristics (50°C) Si-poly Model In series YL310P-35b Manufacturer In parallel S9 strings 59 strings Array global power Array operating characteristics (50°C) Nb. modules Module area In pp 2175 m² In parallel S9 strings 59 strings Inverter Characteristics Model Characteristics Sunny Tripower 60-US-10 (400 VAC) 311 kWp (50°C) Original PVsyst database Characteristics Model Coperating Voltage Sunny Tripower 60-US-10 (400 VAC) SMA Operating Voltage Characteristics Nb. of inverters SMA Operating Power 360 kWac Inverter pack Nb. of inverters 6 units Total Power 360 kWac Phorm ratio 0.97 PV Array loss factors Global array res. 21 mOhm Loss Fraction 1.5 % at STC Loss Fraction UID - Light Induced Degradation Module Mismatch Losses Global array res. 21 mOhm Loss Fraction 1.0 % at MPP Loss Fraction Incidence effect (IAW): User defined profile 0° 7° 7° 80° 85° 90°						
PV Array Characteristics Si-poly Model YL310P-35b Original PVsyst database Manufacturer Yingli Solar Number of PV modules In series 19 modules In parallel 59 strings Total number of PV modules Nb. modules 1121 Unit Nom. Power 310 Wp Array global power Nominal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array operating characteristics (50°C) U mpp 624 V I mpp 498 A Original PVsyst database Module area 2175 m² Cell area 1964 m² Inverter Manufacturer SMA Operating Voltage 570-800 V Unit Nom. Power 60.0 kWac Inverter pack Nb. of inverters 6 units Total Power 360 kWac Pnom ratio 0.97 PV Array loss factors Global array res. 21 mOhm Loss Fraction 1.5 % at STC LID - Light Induced Degradation Global array res. 21 mOhm Loss Fraction 1.0 % at MPP Strings Mismatch Loss Loss Fraction 1.0 % at MPP Loss Fraction 0.0 % Indulie Mismatch Loss <						
PV module Si-poly Model Y1.310P-35b Original PVsyst database Manufacturer Yingli Solar Number of PV modules In series 19 modules In parallel 59 strings Array global power Nominal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array global power Umpp 624 V Impp 498 A Total area Module area 2175 m² Cell area 1964 m² Inverter Module area 2175 m² Cell area 1964 m² Original PVsyst database Operating Voltage 570-300 V Unit Nom. Power 60.0 kWac Inverter pack Nb. of inverters 6 units Total Power 360 kWac Prom ratio 0.97 0.97 360 kWac Pnom ratio 0.97	sers needs :	Unlimited load (grid)		_	_	
Original PVsyst database Manufacturer Yingli Solar Number of PV modules In series 19 modules In parallel 59 strings Array global power Nb. modules 1121 Unit Nom. Power 310 Wp Array operating characteristics (50°C) U mpp 624 V Impp 498 A Original PVsyst database Umit Nom. Tripower 60-US-10 (400 VAC) Sunny Tripower 60-US-10 (400 VAC) Original PVsyst database Manufacturer SMA Characteristics Operating Voltage 570-800 V Unit Nom. Power 360 kWac Inverter pack Nb. of inverters 6 units Total Power 360 kWac Phorm ratio 0.97 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Viring Ohmic Loss Global array res. 21 mOhm Loss Fraction 1.5 % at STC LD - Light Induced Degradation Loss Loss Fraction 1.0 % at MPP Module Mismatch Losses Loss Fraction 1.0 % at MPP Strings Mismatch Loss Loss Fraction 1.0 % at MPP Incidence effect (IAM): User defined profile 70° 75° 80° 85° 90°						
Number of PV modules Total number of PV modules Array global power In series Nb. modules Nb. modules 19 modules 1121 In parallel Unit Nom. Power At operating cond. 59 strings 310 Wp Array global power Nominal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array operating characteristics (50°C) U mpp 624 V I mpp 498 A Inverter Module area 2175 m² Cell area 1964 m² Original PVsyst database Manufacturer SMA Souny Tripower 60-US-10 (400 VAC) Inverter pack Nb. of inverters 6 units Total Power 360 kWac Phorm ratio 0.97 0.97 1.5 % at STC 0.97 PV Array loss factors Global array res. 21 mOhm Loss Fraction 1.5 % at STC LiD - Light Induced Degradation Module Mismatch Losses Global array res. 21 mOhm Loss Fraction 1.3 % Module Mismatch Losses Loss Fraction 1.0 % at MPP Loss Fraction 1.0 % at MPP Strings Mismatch loss 0' 0'' 0'' 0'' 0''' 0''' 0''''						
Array global power Nominal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array operating characteristics (50°C) U mpp 624 V I mpp 498 A Total area Module area 2175 m² Cell area 1964 m² Inverter Model Sunny Tripower 60-US-10 (400 VAC) SMA Characteristics Operating Voltage 570-800 V Unit Nom. Power 60.0 kWac Inverter pack Nb. of inverters 6 units Total Power 360 kWac PV Array loss factors Global array res. 21 mOhm Loss Fraction 1.5 % at STC LD - Light Induced Degradation Module Mismatch Losses Loss Fraction 1.3 % Module Mismatch Losses Loss Fraction 1.0 % at MPP Strings Mismatch loss 0° 70° 75° 80° 85° 90°				In paralle	1 59 string	\$
Array operating characteristics (50°C) U mpp 624 V I mpp 498 A Total area Module area 2175 m² Cell area 1964 m² Inverter Model Sunny Tripower 60-US-10 (400 VAC) Original PVsyst database Manufacturer SMA SMA Characteristics Operating Voltage 570-800 V Unit Nom. Power Inverter pack Nb. of inverters 6 units Total Power PV Array loss factors Global array res. 21 mOhm Loss Fraction 1.5 % at STC LD - Light Induced Degradation Global array res. 21 mOhm Loss Fraction 1.3 % Module Mismatch Losses Strings Mismatch loss Loss Fraction 1.0 % at MPP Strings Mismatch loss 0° 70° 75° 80° 85° 90°						
Total area Module area 2175 m² Cell area 1964 m² Inverter Module area 2175 m² Cell area 1964 m² Original PVsyst database Manufacturer SMA SMA SMA Characteristics Operating Voltage 570-800 V Unit Nom. Power 60.0 kWac Inverter pack Nb. of inverters 6 units Total Power 360 kWac PV Array loss factors Total const 0.97 PV Array loss factor Thermal Loss factor Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Global array res. 21 mOhm Loss Fraction 1.5 % at STC LD - Light Induced Degradation Module Quality Loss Module Mismatch Losses Incidence effect (IAM): User defined profile Loss Fraction 1.0 % at MPP Loss Fraction 0.10 %						(50°C)
Original PVsyst database Manufacturer SMA Characteristics Operating Voltage 570-800 V Unit Nom. Power 60.0 kWac Inverter pack Nb. of inverters 6 units Total Power 360 kWac PV Array loss factors Thermal Loss factor Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s ID - Light Induced Degradation Global array res. 21 mOhm Loss Fraction 1.5 % at STC Nodule Quality Loss Loss Fraction -0.8 % Strings Mismatch Losses Loss Fraction 1.0 % at MPP Incidence effect (IAM): User defined profile 0' 20' 40' 60'' 70'' 75'' 80'' 85'' 90''						
Original PVsyst database Manufacturer SMA Characteristics Operating Voltage 570-800 V Unit Nom. Power 60.0 kWac Inverter pack Nb. of inverters 6 units Total Power 360 kWac PV Array loss factors Thermal Loss factor Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Wiring Ohmic Loss Global array res. 21 mOhm Loss Fraction 1.5 % at STC LID - Light Induced Degradation Module Quality Loss Loss Fraction -0.8 % Module Mismatch Losses Loss Fraction 1.0 % at MPP Strings Mismatch Ioss Incidence effect (IAM): User defined profile 0.0 %	verter	Model	Suppy Tripos	wer 60-115-10 (400 V		
Inverter pack Nb. of inverters 6 units Total Power 360 kWac PV Array loss factors Pnom ratio 0.97 PV Array loss factors Thermal Loss factor Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Loss Fraction ID - Light Induced Degradation Module Quality Loss Module Quality Loss Strings Mismatch Losses Incidence effect (IAM): User defined profile 0.0 %	Original PVsyst database	Manufacturer	SMA			
Pnom ratio 0.97 PV Array loss factors Thermal Loss factor Uc (const) 20.0 W/m ² K Uv (wind) 0.0 W/m ² K / m/s Wiring Ohmic Loss Global array res. 21 mOhm Loss Fraction 1.5 % at STC Loss Fraction LID - Light Induced Degradation Module Quality Loss Loss Fraction 1.3 % Module Quality Loss Loss Fraction 1.0 % at MPP Loss Fraction 1.0 % at MPP Loss Fraction Strings Mismatch Losse Loss Fraction 0.10 % Incidence effect (IAM): User defined profile 0° 70° 75° 80° 85° 90°						
Thermal Loss factor Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Wiring Ohmic Loss Global array res. 21 mOhm Loss Fraction 1.5 % at STC LD - Light Induced Degradation Loss Fraction 1.3 % Loss Fraction 1.3 % Module Quality Loss Loss Fraction 1.0 % at MPP Loss Fraction 0.10 % Strings Mismatch Ioss Incidence effect (IAM): User defined profile 0.10 % 0.10 %	werter pack	Nb. of inverters	6 units			c
Thermal Loss factor Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Wiring Ohmic Loss Global array res. 21 mOhm Loss Fraction 1.5 % at STC LD - Light Induced Degradation Loss Fraction 1.3 % Loss Fraction 1.3 % Module Quality Loss Loss Fraction 1.0 % at MPP Loss Fraction 0.10 % Strings Mismatch Ioss Incidence effect (IAM): User defined profile 0.10 % 0.10 %						
Wiring Ohmic Loss Global array res. 21 mOhm Loss Fraction 1.5 % at STC Loss Fraction LD - Light Induced Degradation Module Quality Loss Loss Fraction 1.3 % Module Quality Loss Loss Fraction 1.0 % at MPP Strings Mismatch loss Loss Fraction 0.10 % Incidence effect (IAM): User defined profile 0° 70° 75° 80° 85° 90°	V Array loss factors					
LID - Light Induced Degradation Loss Fraction 1.3 % Module Quality Loss Loss Fraction -0.8 % Module Mismatch Losses Loss Fraction 1.0 % at MPP Strings Mismatch loss Loss Fraction 0.10 % Incidence effect (IAM): User defined profile 0° 20° 40° 60° 70° 75° 80° 85° 90°	hermal Loss factor	Uc (const)	20.0 W/m ² K	Uv (wind) 0.0 W/m ²	K / m/s
Module Quality Loss Loss Fraction -0.8 % Module Mismatch Losses Loss Fraction 1.0 % at MPP Strings Mismatch loss Loss Fraction 0.10 % Incidence effect (IAM): User defined profile 0° 20° 40° 60° 70° 75° 80° 85° 90°		Global array res.	21 mOhm			STC
Module Mismatch Losses Loss Fraction 1.0 % at MPP Strings Mismatch Ioss Loss Fraction 0.10 % incidence effect (IAM): User defined profile 0° 20° 40° 60° 70° 75° 80° 85° 90°						
Loss Fraction 0.10 % Incidence effect (IAM): User defined profile 0* 20* 40* 60* 70* 75* 80* 85* 90*						MPP
0° 20° 40° 60° 70° 75° 80° 85° 90°	trings Mismatch loss			Loss Fraction	n 0.10 %	
						_

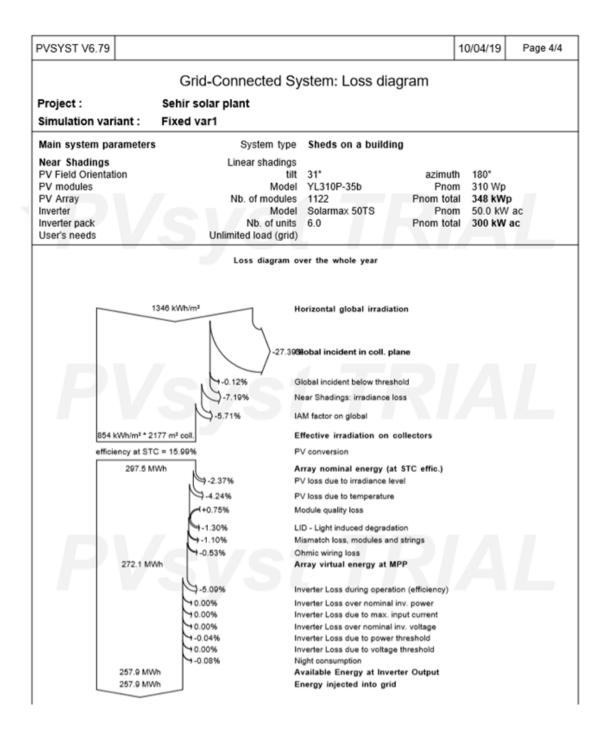


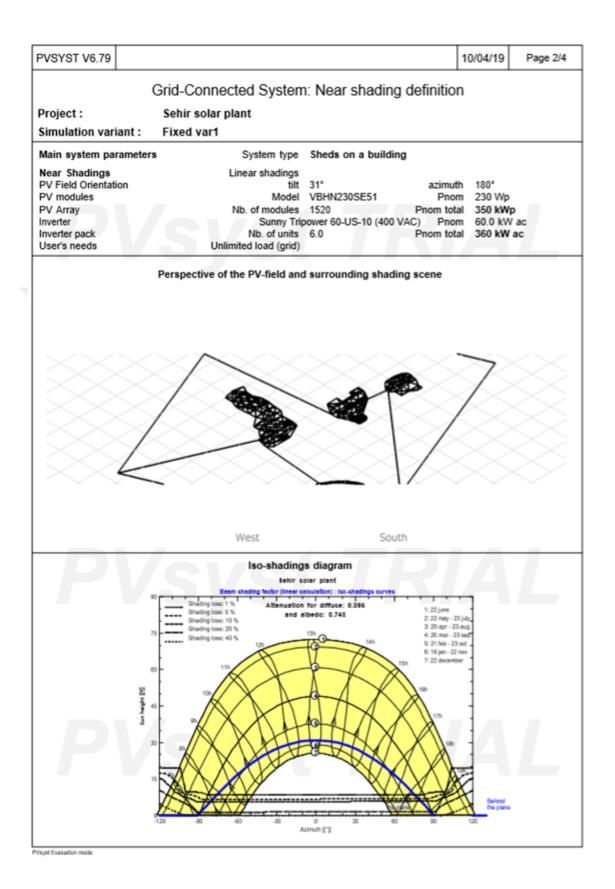


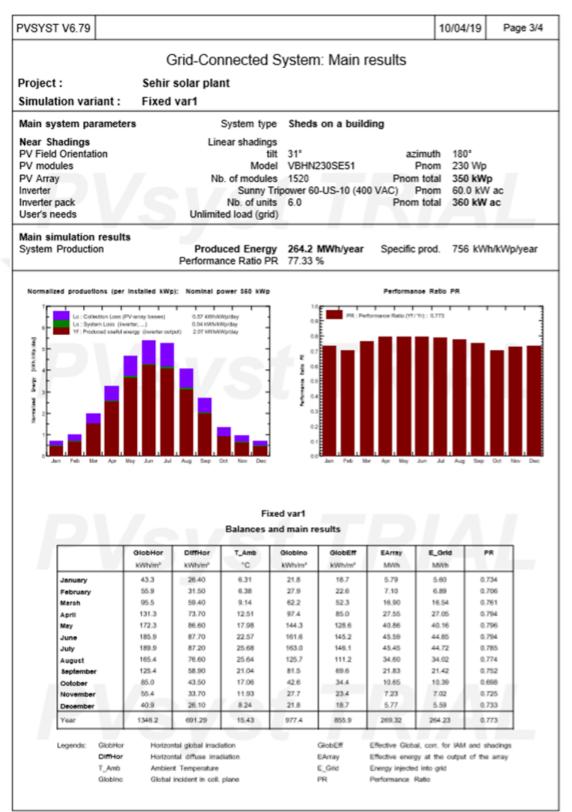
PVSYST V6.79			10/04/19	Page 4/4
Gri	id-Connected S	ystem: Loss diagram		
		,		
-	olar plant			
Simulation variant : Fixed v	/ar1			
Main system parameters	System type	Sheds on a building		
Near Shadings	Linear shadings	3		
PV Field Orientation			uth 180°	
PV modules PV Array	Mode Nb. of modules		om 310 Wp stal 348 kW	
Inverter			om 60.0 kW	
Inverter pack	Nb. of units		tal 360 kW	
User's needs	Unlimited load (grid)		
	Loss diagram	over the whole year		
1348 kWh/m		Horizontal global irradiation		
		nonzontal giobal inadiadon		
	-27.36	Slobal incident in coll. plane		
		Global incident below threshold		
	-7.19%	Near Shadings: irradiance loss		
	9-5.71%	IAM factor on global		
854 kWh/m ⁼ * 2175 m ⁼ coll.		Effective irradiation on collectors		
efficiency at STC = 15.99%		PV conversion		
297.2 MWh		Array nominal energy (at STC effic.)		
3, 1	-2.37%	PV loss due to irradiance level		
	7-4.24%	PV loss due to temperature		
	⊀ +0.75%	Module quality loss		
	+-1.30%	LID - Light induced degradation		
		Mismatch loss, modules and strings		
271.8 MWh		Ohmic wiring loss Array virtual energy at MPP		
271.0 MYM		Array virtual energy at MPP		
	-1.97%	Inverter Loss during operation (efficiency)		
	0.00%	Inverter Loss over nominal inv. power		
		Inverter Loss due to max. input current		
		Inverter Loss over nominal inv. voltage Inverter Loss due to power threshold		
		Inverter Loss due to power uneshold		
266.4 MWh		Available Energy at Inverter Output		
266.4 MWh		Energy injected into grid		

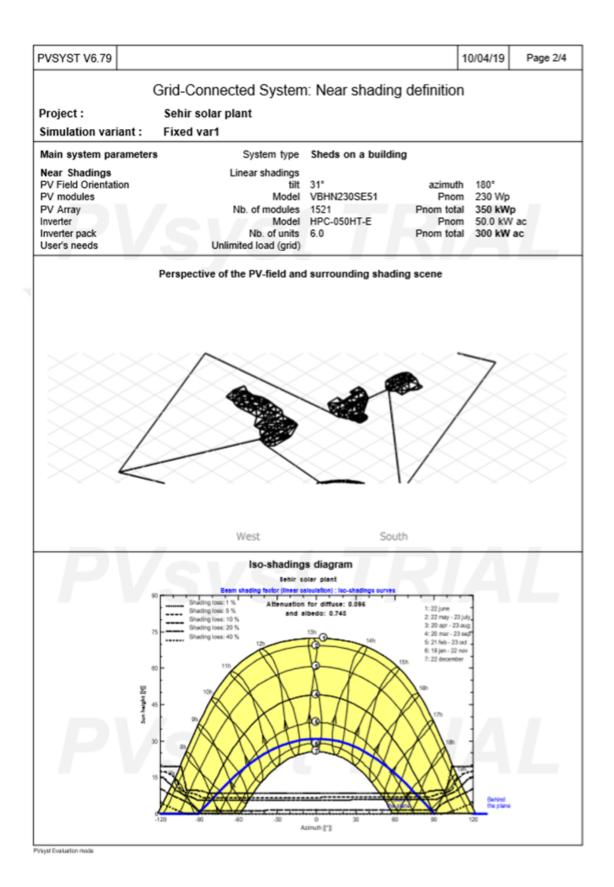

Grid-Con	nected Systen	n: Simulatio	n narameters	
	-		n parameters	
Project : Sehir sol				
Geographical Site	Cevizli			Turkey
Situation Time defined as		40.90° N Time zone UT+	-	29.16° E 0 m
Matan datas	Albedo	0.20		000 Cuelladia
Meteo data:	Cevizii	Meteonorm 7.2	(2004-2010), Sat=1	00% - Synthetic
Simulation variant : Fixed var	1			
	Simulation date	10/04/19 18h09		
Simulation parameters	System type	Sheds on a bu	ilding	
Collector Plane Orientation	Tilt	31°	Azimuth	180°
Sheds configuration	Nb. of sheds	1120	Identical arrays	
Chading limit angle	Sheds spacing		Collector width	
Shading limit angle	Limit profile angle	04.0" Grou	nd cov. Ratio (GCR)	30.9 %
Models used	Transposition	Perez	Diffuse	Perez, Meteonorm
Horizon	Free Horizon			
Near Shadings	Linear shadings			
User's needs :	Unlimited load (grid)			
PV module S Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area	Manufacturer	12 modules 1128 350 kWp 394 V	In parallel Unit Nom. Power At operating cond. I mpp Cell area	313 kWp (50°C) 794 A
Inverter		HPC-050HT-E		
Original PVsyst database Characteristics	Manufacturer Operating Voltage		Unit Nom, Power	50.0 kWac
Inverter pack	Nb. of inverters			300 kWac
			Pnom ratio	
PV Array loss factors				
Thermal Loss factor	Uc (const)	20.0 W/m²K	Uv (wind)	0.0 W/m²K / m/s
Wiring Ohmic Loss	Global array res.		Loss Fraction	
LID - Light Induced Degradation	-		Loss Fraction Loss Fraction	
Module Quality Loss Module Mismatch Losses			Loss Fraction Loss Fraction	
Strings Mismatch loss			Loss Fraction	
Incidence effect (IAM): User defined pro		700 700		
0* 20° 40* 1.000 1.000 1.00		70° 75° 880 0.800	80° 85 0.670 0.4	
1.000 1.000 1.00			0.070 0.4	0.000

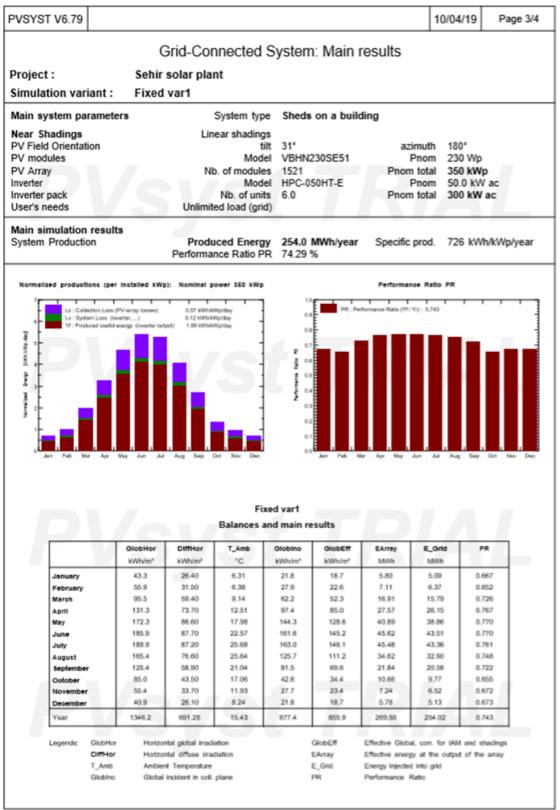




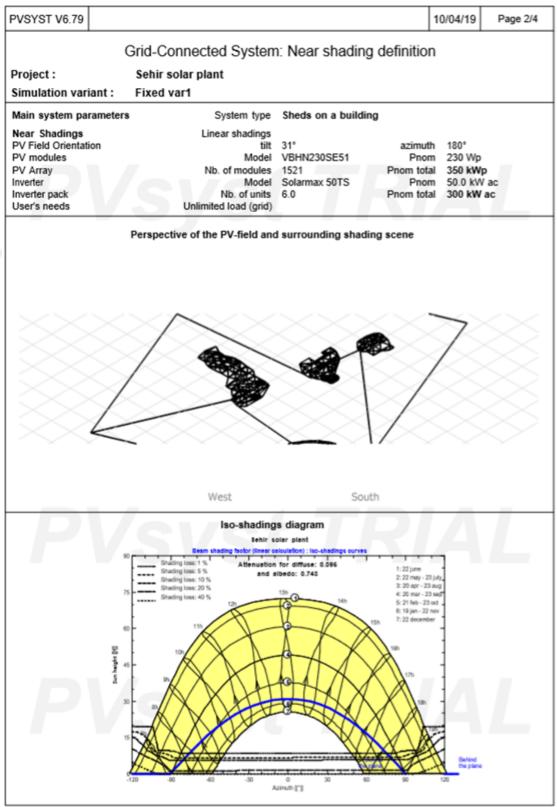

PVSYST V6.79	0			10/04/19 Page 1/
Grid-	Connected System	n: Simulati	on parameters	
Project : Sehi	r solar plant			
Geographical Site	Cevizli		Country	Turkey
Situation		40.90° N	Longitude	
Time defined as	Legal Time Albedo	Time zone UT 0.20	F+3 Altitude	0 m
Meteo data:			.2 (2004-2010), Sat=1	00% - Synthetic
Simulation variant : Fixe	d var1			
PVS	Simulation date	10/04/19 18h	20	
Simulation parameters	System type	Sheds on a	building	
Collector Plane Orientation	Tilt	31°	Azimuth	180°
Sheds configuration	Nb. of sheds	1120	Identical arrays	
Chading limit and	Sheds spacing		Collector width	
Shading limit angle	Limit profile angle	64.8" Gro	ound cov. Ratio (GCR)	90.9 %
Models used	Transposition	Perez	Diffuse	Perez, Meteonorm
Horizon	Free Horizon			
Near Shadings	Linear shadings			
User's needs :	Unlimited load (grid)			
PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50 Total area	Manufacturer In series Nb. modules Nominal (STC)	17 modules 1122 348 kWp 558 V	In parallel Unit Nom. Power At operating cond. I mpp Cell area	311 kWp (50°C) 557 A
Inverter		Solarmax 50	DTS	
Original PVsyst database Characteristics	Manufacturer Operating Voltage		Unit Nom, Power	50.0 kWac
Inverter pack	Nb. of inverters		Total Power Pnom ratio	300 kWac 1.16
PV Array loss factors				
Thermal Loss factor	Uc (const)	20.0 W/m²K	Uv (wind)	0.0 W/m ² K / m/s
Wiring Ohmic Loss	Global array res.	17 mOhm	Loss Fraction	
LID - Light Induced Degradation Module Quality Loss			Loss Fraction Loss Fraction	
Module Mismatch Losses			Loss Fraction	
Strings Mismatch loss			Loss Fraction	0.10 %
Incidence effect (IAM): User defin				
0° 20° 1.000 1.000		70° 75° 880 0.800	80° 85 0.670 0.4	

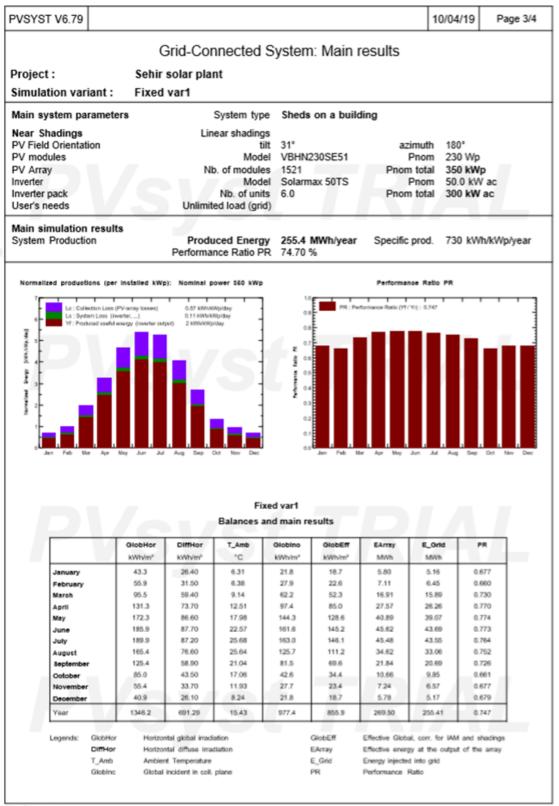


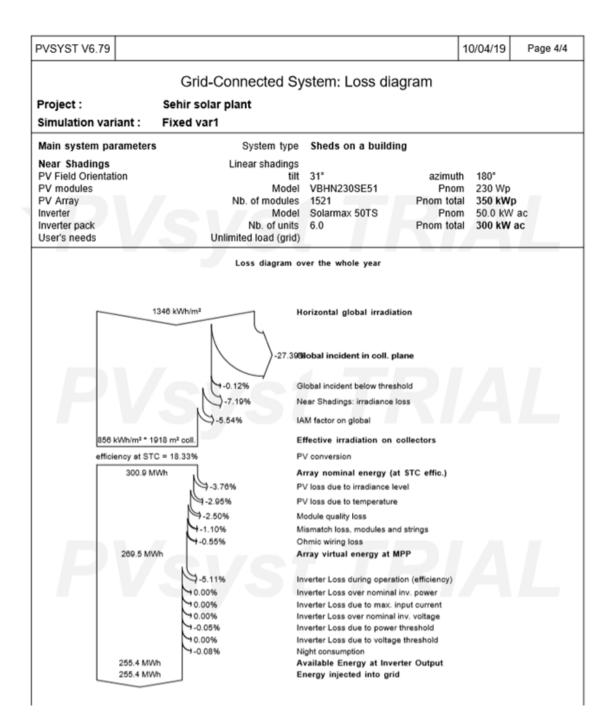

Grid-Con	nected Systen	n: Simulatio	on parameters	
Project : Sehir sol	2			
Geographical Site	Cevizli		Country	Turkey
Situation	Latitude	40.90° N	-	29.16° E
Time defined as		Time zone UT-		
Meteo data:	Albedo Cevizli		2 (2004-2010), Sat=	100% - Synthetic
Simulation variant : Fixed var	1			
PVS	Simulation date	10/04/19 18h2	8	
Simulation parameters	System type	Sheds on a b	uilding	
Collector Plane Orientation	Tilt	31°	Azimuth	180°
Sheds configuration	Nb. of sheds	1120	Identical arrays	
-	Sheds spacing	2.20 m	Collector width	2.00 m
Shading limit angle	Limit profile angle	64.8° Grou	ind cov. Ratio (GCR)	90.9 %
Models used	Transposition	Perez	Diffuse	Perez, Meteonorm
Horizon	Free Horizon			
Near Shadings	Linear shadings			
User's needs :	Unlimited load (grid)			
DV Arrow Characteristics				
PV Array Characteristics PV module	HIT Model	VBHN230SE5	1	
Original PVsyst database	Manufacturer			
Number of PV modules Total number of PV modules	In series Nb. modules	16 modules	In paralle Unit Nom, Power	95 strings
Array global power		350 kWp		
Array operating characteristics (50°C)	Umpp			508 A
Total area	Module area	1916 m²	Cell area	1666 m ²
Inverter			ver 60-US-10 (400 V	AC)
Original PVsyst database Characteristics	Manufacturer Operating Voltage		Unit Nom, Powe	60.0 kWac
Inverter pack	Nb. of inverters			360 kWac
Invener pack	ND. OF INVERIES	o units	Pnom ratio	
PV Array loss factors				
Thermal Loss factor	Uc (const)	20.0 W/m ² K	Uv (wind) 0.0 W/m²K / m/s
Wiring Ohmic Loss	Global array res.		Loss Fraction	
Module Quality Loss	-		Loss Fraction	
Module Mismatch Losses Strings Mismatch loss			Loss Fraction Loss Fraction	
Incidence effect, ASHRAE parametriza	tion IAM =	1 - bo (1/cos i		



PVSYST V6.79			10/04/19	Page 4/4
		System: Loss diagram		
Project :	Sehir solar plant			
Simulation variant :	Fixed var1			
Main system paramete	ers System ty	ype Sheds on a building		
Near Shadings PV Field Orientation PV modules PV Array Inverter Inverter pack	Nb. of modu Sunny Nb. of u	till 31° azimul odel VBHN230SE51 Pnoi ules 1520 Pnom tot y Tripower 60-US-10 (400 VAC) Pnom tot nits 6.0 Pnom tot	m 230 Wp al 350 kW m 60.0 kW	p /ac
User's needs	Unlimited load (g	jna)		-
	Loss diagra	m over the whole year		
	1348 kWh/m²	Horizontal global irradiation		
	-27	7.3999Jobal incident in coll. plane		
	-0.12%	Global incident below threshold		
	-7.19%	Near Shadings: irradiance loss		
	-5.54%	IAM factor on global		
856 kWh/m² '	1916 m² coll.	Effective irradiation on collectors		
efficiency at \$	STC = 18.33%	PV conversion		
300.7	MWb	Array nominal energy (at STC effic.)		
	-3.78%	PV loss due to irradiance level		
	-2.95%	PV loss due to temperature		
	-2.50%	Module quality loss		
	H -1.10%	Mismatch loss, modules and strings		
	+-0.55%	Ohmic wiring loss		
289.3	MWh	Array virtual energy at MPP		
	4-1.88%	Inverter Loss during operation (efficiency)		
	40.00%	Inverter Loss over nominal inv. power		
	+0.00%	Inverter Loss due to max. input current		
	> 0.00%	Inverter Loss over nominal inv. voltage		
	→-0.01%	Inverter Loss due to power threshold		
	₩0.00%	Inverter Loss due to voltage threshold		
264.2		Available Energy at Inverter Output		
204.2	NIVIA	Energy injected into grid		

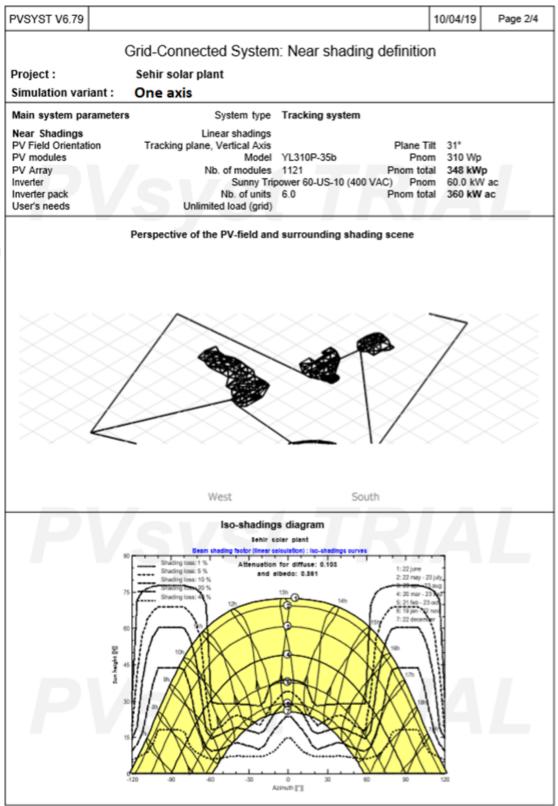

PVSYST V6.79	nantad Sustan	a: Cimulation		0/04/19 Page 1/
Grid-Con	nected Systen	n: Simulation	parameters	
Project : Sehir sola				
Geographical Site	Cevizli		Country	Turkey
Situation Time defined as		40.90° N Time zone UT+3	-	29.16° E
Time defined as	Albedo		Alutode	0 m
Meteo data:	Cevizli	Meteonorm 7.2 (2	2004-2010), Sat=1	00% - Synthetic
Simulation variant : Fixed var	1			
PVS	Simulation date	10/04/19 18h23		
Simulation parameters	System type	Sheds on a buil	Iding	
Collector Plane Orientation	Tilt	31°	Azimuth	180°
Sheds configuration	Nb. of sheds	1120	Identical arrays	
Chadica limit angle	Sheds spacing		Collector width	
Shading limit angle	Limit profile angle	64.8° Ground	l cov. Ratio (GCR)	90.9 %
Models used	Transposition	Perez	Diffuse	Perez, Meteonorm
Horizon	Free Horizon			
Near Shadings	Linear shadings			
User's needs :	Unlimited load (grid)			
Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area	Manufacturer In series Nb. modules Nominal (STC) U mpp Module area	9 modules 1521 350 kWp 361 V	Unit Nom. Power At operating cond. I mpp	326 kWp (50°C)
Inverter		HPC-050HT-E		
Original PVsyst database Characteristics	Manufacturer Operating Voltage		Unit Nom, Power	50.0 KWas
Inverter pack	Nb. of inverters			300 kWac
inventer pack	No. or inverters	0 Units	Pnom ratio	
PV Array loss factors				
Thermal Loss factor	Uc (const)	20.0 W/m ² K	Uv (wind)	0.0 W/m²K / m/s
Wiring Ohmic Loss	Global array res.	6.5 mOhm	Loss Fraction	1.5 % at STC
Module Quality Loss Module Mismatch Losses			Loss Fraction Loss Fraction	2.5 % 1.0 % at MPP
Strings Mismatch loss			Loss Fraction	0.10 %
Incidence effect, ASHRAE parametrizat	tion IAM =	1 - bo (1/cos i - 1) bo Param.	0.05

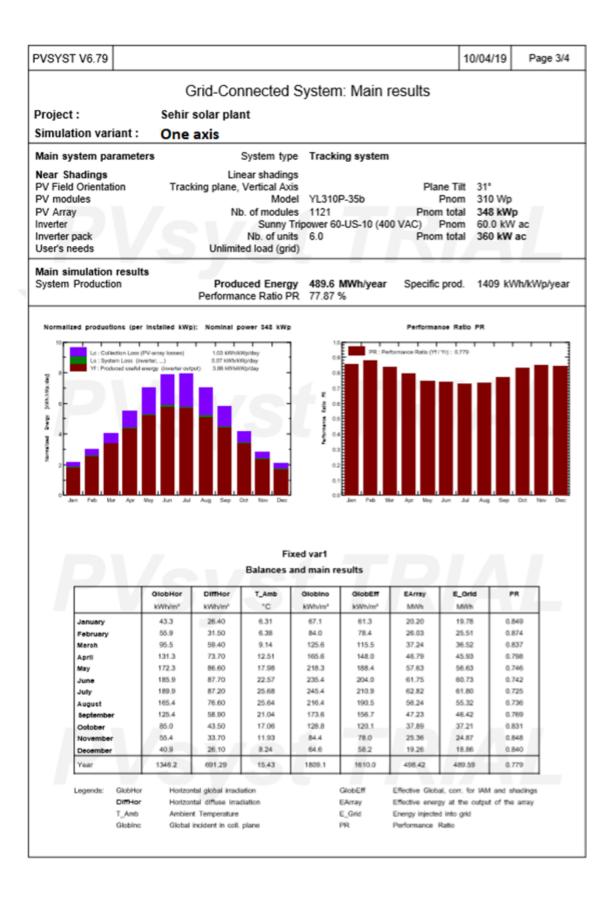


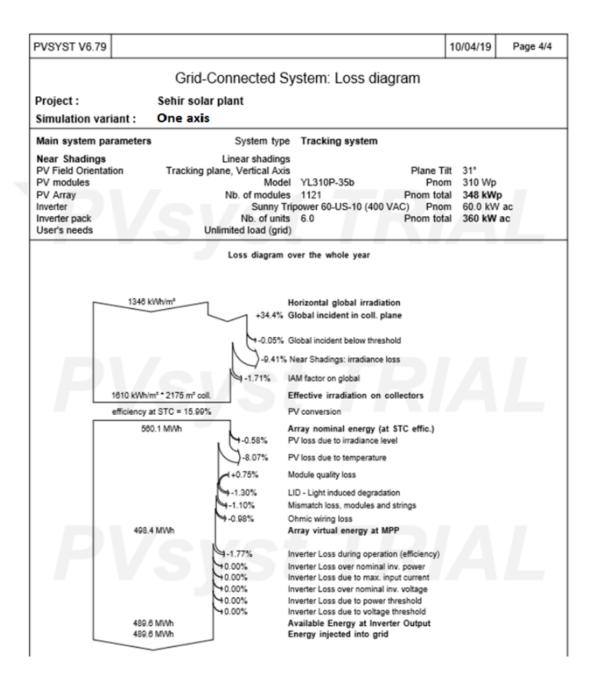


PVSYST V6.	79				10/04/19	Page 4/4
		Grid-Connected	d System: Loss dia	agram		
Project :		Sehir solar plant	-	_		
-		•				
Simulation	variant : F	Fixed var1				
Main system	parameters	System	type Sheds on a buildi	ing		
Near Shading	gs	Linear shad	lings			
PV Field Orier	ntation		tilt 31°	azimutł	n 180°	
PV modules			lodel VBHN230SE51	Pnon		
PV Array		Nb. of mod		Pnom tota		
Inverter			Iodel HPC-050HT-E	Pnon		
Inverter pack User's needs		Unlimited load (units 6.0	Pnom tota	300 kW	ac
User's needs		Unlimited load ((gna)			_
ſ	134	6 kWh/m²	Horizontal global irradia	ation		
			27.3939 lobal incident in coll. p	plane		
		4-0.12%	Global incident below three	shold		
		S-7.19%	Near Shadings: irradiance			
				1033		
		-5.54%	IAM factor on global			
2	856 kWh/m² * 1918	3 m² coll.	Effective irradiation on	collectors		
	856 kWh/m² * 1918 afficiency at STC =		-	collectors		
		18.33%	Effective irradiation on			
	efficiency at STC =	18.33%	Effective irradiation on PV conversion	at STC effic.)		
	efficiency at STC =	= 18.33%	Effective irradiation on PV conversion Array nominal energy (a	at STC effic.) evel		
	efficiency at STC =	= 18.33%	Effective irradiation on PV conversion Array nominal energy (4 PV loss due to irradiance le PV loss due to temperature	at STC effic.) evel		
	efficiency at STC =	* 18.33% h -3.78% 4-2.95%	Effective irradiation on PV conversion Array nominal energy (4 PV loss due to irradiance le PV loss due to temperature Module quality loss	at STC effic.) evel e		
	efficiency at STC =	* 18.33% h -3.78% 4-2.95% -2.50%	Effective irradiation on PV conversion Array nominal energy (4 PV loss due to irradiance le PV loss due to temperature	at STC effic.) evel e		
	efficiency at STC =	* 18.33% h -3.78% -2.95% -2.50% -1.10%	Effective irradiation on PV conversion Array nominal energy (4 PV loss due to irradiance le PV loss due to temperature Module quality loss Mismatch loss, modules ar	at STC effic.) evel e nd strings		
	efficiency at STC = 300.9 MWH	* 18.33% 	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance le PV loss due to temperature Module quality loss Mismatch loss, modules ar Ohmic wiring loss	at STC effic.) evel e nd strings		
	efficiency at STC = 300.9 MWH	* 18.33% -3.78% -2.95% -2.50% -1.10% -0.55%	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance la PV loss due to temperature Module quality loss Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at 1 Inverter Loss during opera	at STC effic.) evel e d strings MPP ation (efficiency)		
	efficiency at STC = 300.9 MWH	= 18.33% -3.78% -2.95% -2.50% -1.10% -0.55% 0.00%	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance le PV loss due to temperature Module quality loss Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at 1 Inverter Loss during opera Inverter Loss over nomina	at STC effic.) evel e nd strings MPP tion (efficiency) I inv. power		
	efficiency at STC = 300.9 MWH	= 18.33% -3.76% -2.95% -2.50% -1.10% -0.55% 0.00%	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance le PV loss due to temperature Module quality loss Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at 1 Inverter Loss during opera Inverter Loss over nomina Inverter Loss due to max.	at STC effic.) evel e nd strings MPP ation (efficiency) I inv. power input current		
	efficiency at STC = 300.9 MWH	= 18.33% -3.78% -2.95% -2.95% -2.50% -1.10% -0.55% 0.00% 0.00%	Effective irradiation on PV conversion Array nominal energy (4 PV loss due to irradiance le PV loss due to temperature Module quality loss Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at 1 Inverter Loss during opera Inverter Loss due to max. Inverter Loss due to max.	at STC effic.) evel e nd strings MPP stion (efficiency) I inv. power input current I inv. voltage		
	efficiency at STC = 300.9 MWH	* 18.33% -3.78% -2.95% -2.96% -2.96% -2.50% -0.55% 0.00% 0.00% 0.00% -0.28%	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance le PV loss due to temperature Module quality loss Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at I Inverter Loss during opera Inverter Loss due to max. Inverter Loss due to max.	at STC effic.) evel e ad strings MPP tion (efficiency) i inv. power input current i inv. voltage r threshold		
	tficiency at STC = 300.9 MWH 269.5 MWh	= 18.33% -3.78% -2.95% -2.95% -2.50% -1.10% -0.55% 0.00% 0.00%	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance le PV loss due to temperature Module quality loss Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at I Inverter Loss during opera Inverter Loss due to max. Inverter Loss due to max. Inverter Loss due to max.	at STC effic.) evel e ad strings MPP tion (efficiency) I inv. power input current I inv. voltage r threshold ge threshold		
	efficiency at STC = 300.9 MWH	* 18.33% -3.78% -2.95% -2.96% -2.96% -2.50% -0.55% 0.00% 0.00% 0.00% -0.28%	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance le PV loss due to temperature Module quality loss Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at I Inverter Loss during opera Inverter Loss due to max. Inverter Loss due to max.	at STC effic.) evel e ad strings MPP ation (efficiency) I inv. power input current I inv. voltage r threshold ethreshold erter Output		

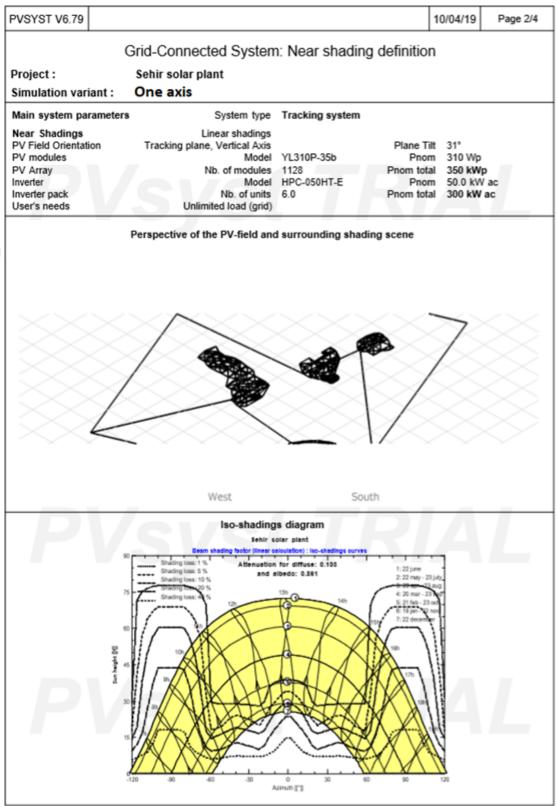
Grid-Cor	nnected Systen	n: Simulation p	arameters	
Project : Sehir so	lar plant			
Geographical Site	Cevizli		Country	Turkey
Situation	Latitude	40.90° N	Longitude	29.16° E
Time defined as	Legal Time Albedo	Time zone UT+3	Altitude	0 m
Meteo data:		Meteonorm 7.2 (20	00% - Synthetic	
Simulation variant : Fixed va	r1			
PVS	Simulation date	10/04/19 18h21		
Simulation parameters	System type	Sheds on a build	ing	
Collector Plane Orientation	Tilt	31°	Azimuth	180°
Sheds configuration	Nb. of sheds		Identical arrays	
Shading limit angle	Sheds spacing Limit profile angle		Collector width ov. Ratio (GCR)	
Chaoling and anglo	Linn promo angio	0.000		
Models used	Transposition	Perez	Diffuse	Perez, Meteonorm
Horizon	Free Horizon			
Near Shadings	Linear shadings			
User's needs :	Unlimited load (grid)			
PV Array Characteristics				
PV module		VBHN230SE51		
Original PVsyst database Number of PV modules	Manufacturer	Panasonic 13 modules	In parallel	117 strings
Total number of PV modules	Nb. modules		Init Nom. Power	
Array global power	Nominal (STC)	-	operating cond.	
Array operating characteristics (50°C) Total area	U mpp Module area		l mpp Cell area	
Inverter		Solarmax 50TS		
Original PVsyst database Characteristics	Manufacturer Operating Voltage		Jnit Nom. Power	50.0 kWac
Inverter pack	Nb. of inverters			300 kWac
			Pnom ratio	1.17
PV Array loss factors				
Thermal Loss factor	Uc (const)	20.0 W/m²K	Uv (wind)	0.0 W/m ² K / m/s
Wiring Ohmic Loss	Global array res.		Loss Fraction	1.5 % at STC
Module Quality Loss			Loss Fraction	
Module Mismatch Losses Strings Mismatch loss			Loss Fraction Loss Fraction	
Incidence effect, ASHRAE parametriza	ation IAM =	1 - bo (1/cos i - 1)	bo Param.	0.10 10

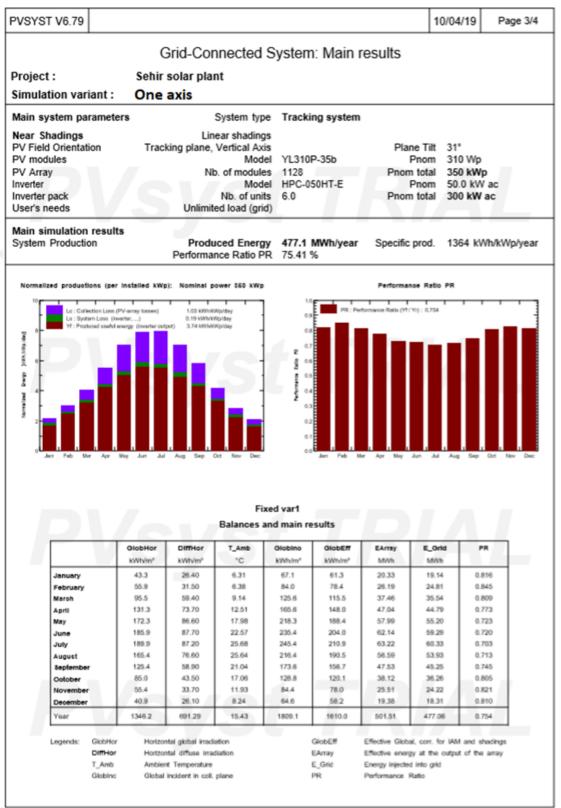


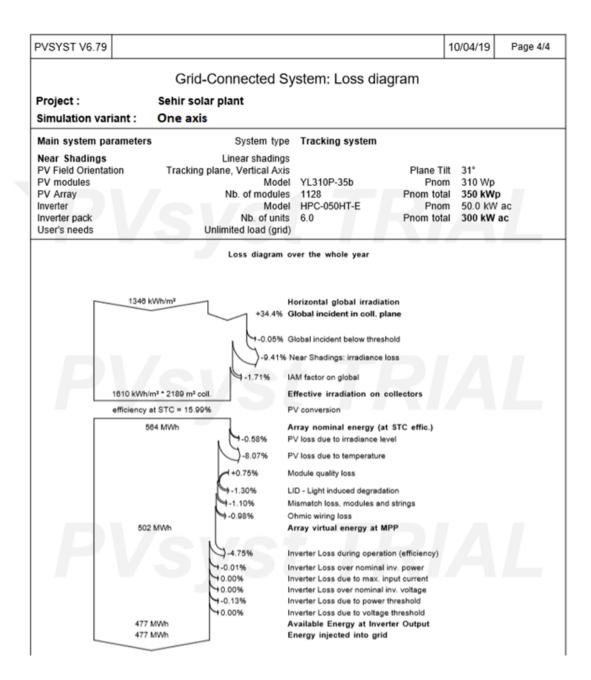


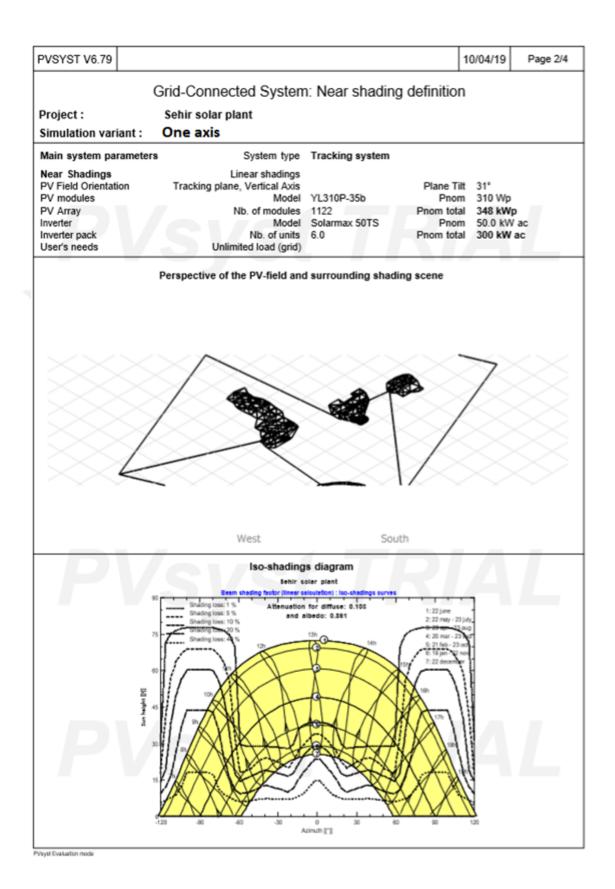

Appendix B

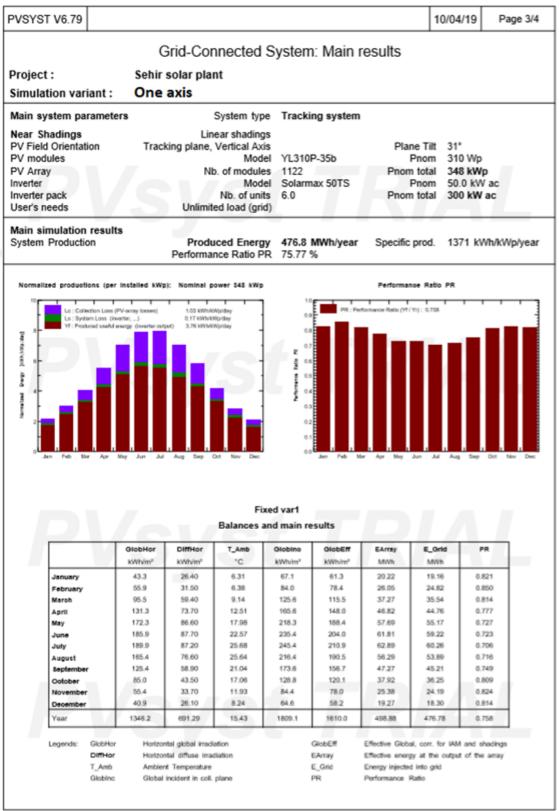
One axis Appendix

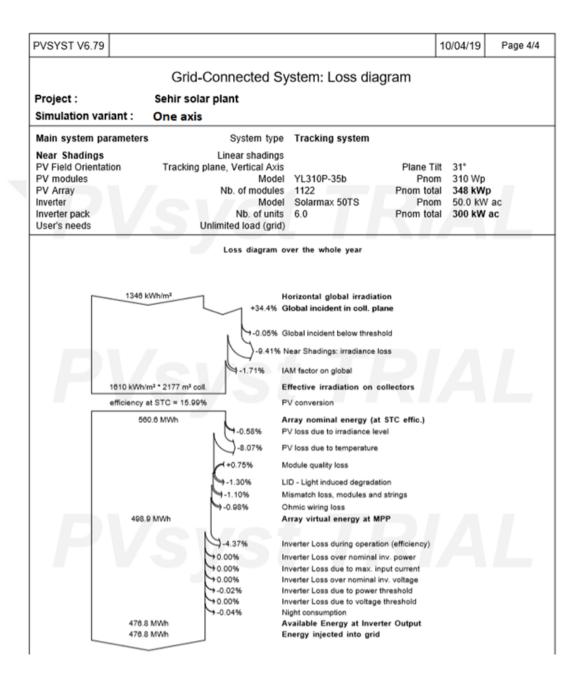

PVSYST V6.79				10/04/19	Page 1/
Grid-C	onnected System	n: Simulatio	n parameters		
	onnociou oyoton		puramotore	·	
	solar plant				
Geographical Site	Cevizli		Country		
Situation Time defined as	Latitude Legal Time	40.90° N Time zone UT-	-3 Altitud		
Meteo data:	Albedo Cevizli	0.20	2 (2004-2010), Sat=		thetic
Simulation variant : One	axis	6			
PVS	Simulation date	10/04/19 19h2	3		
Simulation parameters	System type	Tracking syst			
Tracking plane, Vertical Axis	Plane Tilt	31°			
Rotation Limitations	Minimum Azimuth	-120*	Maximum Azimut	h 120°	
Trackers configuration	Nb. of trackers	1120	Identical array	s	
	Tracker Spacing	2.00 m	Collector widt	h 1.00 m	
		Grou	ind cov. Ratio (GCR) 50.0 %	
Models used	Transposition	Perez	Diffus	e Perez, M	Aeteonorm
Horizon	Free Horizon				
Near Shadings	Linear shadings				
User's needs :	Unlimited load (grid)				
	Unlimited load (grid)			_	_
PV Array Characteristics		YL310P-35b		_	_
PV Array Characteristics PV module Original PVsyst database	Si-poly Model Manufacturer				
Original PVsyst database Number of PV modules	Si-poly Model Manufacturer In series	Yingli Solar 19 modules	In paralle		
PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power	Si-poly Model Manufacturer In series Nb. modules Nominal (STC)	Yingli Solar 19 modules 1121 348 kWp	Unit Nom. Powe At operating cond	r 310 Wp 311 kW	
PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°	Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp	Yingli Solar 19 modules 1121 348 kWp 624 V	Unit Nom. Powe At operating cond I mpp	r 310 Wp 311 kWp 498 A	o (50°C)
PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°	Si-poly Model Manufacturer In series No. modules Nominal (STC) C) U mpp Module area	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ²	Unit Nom. Powe At operating cond I mpp Cell area	r 310 Wp 311 kWp 498 A a 1964 m ²	o (50°C)
PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50° Total area Inverter	Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area Model	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ² Sunny Tripow	Unit Nom. Powe At operating cond I mpp	r 310 Wp 311 kWp 498 A a 1964 m ²	o (50°C)
PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50° Total area	Si-poly Model Manufacturer In series No. modules Nominal (STC) C) U mpp Module area	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ² Sunny Tripow	Unit Nom. Powe At operating cond I mpp Cell area	r 310 Wp 311 kWp 498 A a 1964 m ² /AC)	o (50°C)
PV Array Characteristics PV module Original PVsyst database Number of PV modules Array global power Array operating characteristics (50° Total area Inverter Original PVsyst database Characteristics	Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area Model Manufacturer	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ² Sunny Tripow SMA 570-800 V	Unit Nom. Powe At operating cond I mp Cell are ver 60-US-10 (400 V Unit Nom. Powe Total Powe	r 310 Wp 311 kWp 498 A a 1964 m ² /AC) r 60.0 kW r 360 kW	o (50°C) Vac
PV Array Characteristics PV module Original PVsyst database Number of PV modules Array global power Array operating characteristics (50° Total area Inverter Original PVsyst database Characteristics	Si-poly Model Manufacturer In series No. modules Nominal (STC) C) U mpp Module area Model Manufacturer Operating Voltage	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ² Sunny Tripow SMA 570-800 V	Unit Nom. Powe At operating cond I mp Cell are: er 60-US-10 (400 N Unit Nom. Powe	r 310 Wp 311 kWp 498 A a 1964 m ² /AC) r 60.0 kW r 360 kW	o (50°C) Vac
PV Array Characteristics PV module Original PVsyst database Number of PV modules Array global power Array operating characteristics (50° Total area Inverter Original PVsyst database Characteristics Inverter pack	Si-poly Model Manufacturer In series No. modules Nominal (STC) C) U mpp Module area Model Manufacturer Operating Voltage	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ² Sunny Tripow SMA 570-800 V	Unit Nom. Powe At operating cond I mp Cell are ver 60-US-10 (400 V Unit Nom. Powe Total Powe	r 310 Wp 311 kWp 498 A a 1964 m ² /AC) r 60.0 kW r 360 kW	o (50°C) Vac
PV Array Characteristics PV module Original PVsyst database Number of PV modules Array global power Array operating characteristics (50° Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors	Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area Module area Model Manufacturer Operating Voltage Nb. of inverters	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ³ Sunny Tripow SMA 570-800 V 6 units	Unit Nom. Powe At operating cond I mpp Cell are: er 60-US-10 (400 V Unit Nom. Powe Total Powe Pnom ratio	r 310 Wp 311 kWi 5 498 A a 1964 m ² (AC) r 60.0 kW r 360 kW 5 0.97	o (50°C) Vac
PV Array Characteristics PV module Original PVsyst database Number of PV modules Array global power Array operating characteristics (50° Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor	Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area Module area Model Manufacturer Operating Voltage Nb. of inverters	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ² Sunny Tripow SMA 570-800 V	Unit Nom. Powe At operating cond I mp Cell are ver 60-US-10 (400 V Unit Nom. Powe Total Powe	r 310 Wp 311 kWi 5 498 A a 1964 m ² (AC) r 60.0 kW r 360 kW 5 0.97	vac ac
PV Array Characteristics PV module Original PVsyst database Number of PV modules Array global power Array global power Array operating characteristics (50° Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradation	Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area Module area Model Manufacturer Operating Voltage Nb. of inverters Uc (const)	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ² Sunny Tripow SMA 570-800 V 6 units 20.0 W/m ² K	Unit Nom. Powe At operating cond I mpp Cell are: ver 60-US-10 (400 V Unit Nom. Powe Prom rational Uv (wind Loss Fraction Loss Fraction	r 310 Wp 311 kWp 498 A a 1964 m ² (AC) r 60.0 kW r 360 kW b 0.97	vac ac
PV Array Characteristics PV module Original PVsyst database Number of PV modules Array global power Array operating characteristics (50° Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradation Module Quality Loss	Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area Module area Model Manufacturer Operating Voltage Nb. of inverters Uc (const)	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ² Sunny Tripow SMA 570-800 V 6 units 20.0 W/m ² K	Unit Nom. Powe At operating cond Impp Cell are: er 60-US-10 (400 V Unit Nom. Powe Pnom ration Uv (wind Loss Fraction Loss Fraction Loss Fraction	r 310 Wp 311 kWp 498 A a 1964 m ² (AC) r 60.0 kW r 360 kW b 0.97 0.0 W/m n 1.5 % a n 1.3 %	o (50°C) √ac ac n³K / m/s t STC
PV Array Characteristics PV module Original PVsyst database Number of PV modules Array global power Array operating characteristics (50° Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradation Module Quality Loss Module Mismatch Losses Strings Mismatch Losses	Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area Module area Model Manufacturer Operating Voltage Nb. of inverters Uc (const) Global array res.	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ² Sunny Tripow SMA 570-800 V 6 units 20.0 W/m ² K	Unit Nom. Powe At operating cond I mpp Cell are: ver 60-US-10 (400 V Unit Nom. Powe Prom rational Uv (wind Loss Fraction Loss Fraction	r 310 Wp 311 kWp 498 A a 1964 m ² (AC) r 60.0 kW r 360 kW o 0.97 0 0.0 W/m n 1.5 % a n 1.3 % n -0.8 % 1.0 % a	o (50°C) √ac ac n³K / m/s t STC
PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50° Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradation Module Quality Loss Module Mismatch Losses	Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area Module area Model Manufacturer Operating Voltage Nb. of inverters Uc (const) Global array res.	Yingli Solar 19 modules 1121 348 kWp 624 V 2175 m ² Sunny Tripow SMA 570-800 V 6 units 20.0 W/m ² K	Unit Nom. Powe At operating cond Impp Cell are: ver 60-US-10 (400 V Unit Nom. Powe Pnom ration Uv (wind Loss Fraction Loss Fraction Loss Fraction Loss Fraction Loss Fraction	r 310 Wp 311 kWp 498 A a 1964 m ² (AC) r 60.0 kW r 360 kW o 0.97 0 0.0 W/m n 1.5 % a n 1.3 % n 0.8 % a 1.0 % a	o (50°C) √ac ac n³K / m/s t STC

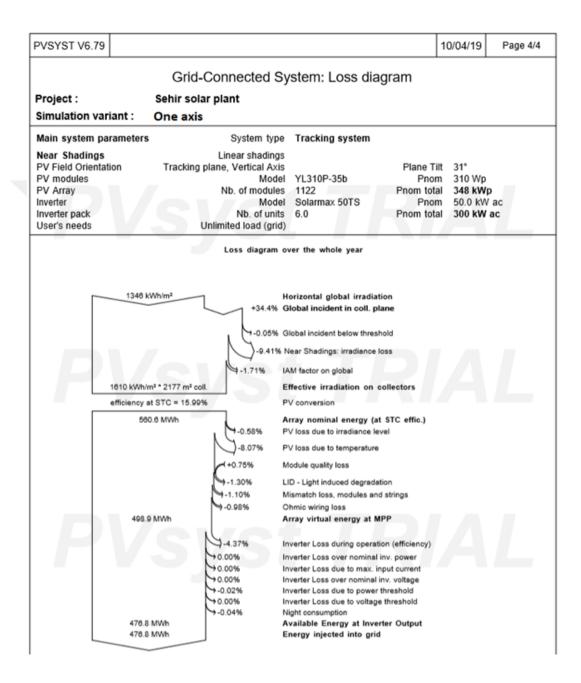


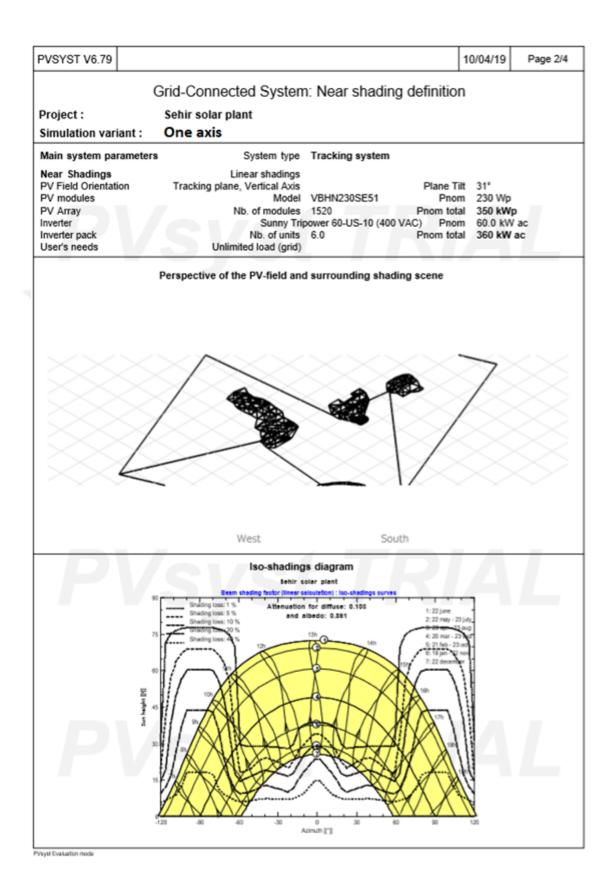


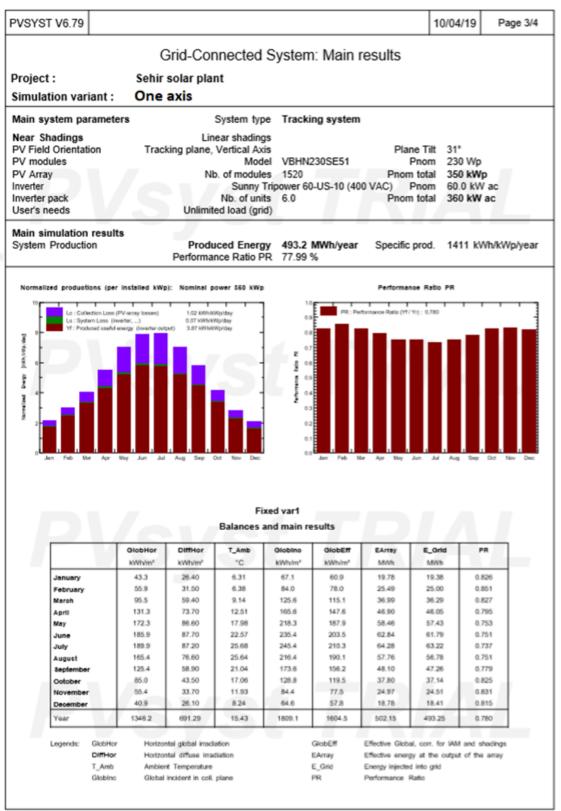

PVSYST V6.79				10/04/19	Page 1/4
Grid-Co	nnected System	n: Simulatio	on parameters	5	
Project : Sehir so	olar plant				
Geographical Site	Cevizli		Countr	y Turkey	
Situation		40.90° N	Longitud		=
Time defined as	Legal Time Albedo	Time zone UT+ 0.20	+3 Altitud	e 0 m	
Meteo data:			2 (2004-2010), Sat=	100% - Syn	thetic
Simulation variant : One a	axis				
PVS	Simulation date	10/04/19 19h2	2		
Simulation parameters	System type	Tracking syst	em		
Tracking plane, Vertical Axis	Plane Tilt				
Rotation Limitations	Minimum Azimuth	-120*	Maximum Azimut	h 120°	
Trackers configuration	Nb. of trackers	1120	Identical array	s	
	Tracker Spacing	2.00 m	Collector widt	h 1.00 m	
		Grou	ind cov. Ratio (GCR	50.0 %	
Models used	Transposition	Derez	Diffue	e Perez, M	Meteonorm
incutio accu		Perez	Dillus		
Horizon	Free Horizon	Perez	Dilus		
Horizon Near Shadings	_	Perez			
	Free Horizon	Perez		A	
Near Shadings User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C)	Free Horizon Linear shadings Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC)	YL310P-35b Yingli Solar 12 modules 1128 350 kWp 394 V	In paralle Unit Nom. Powe At operating cond I mp	l. 313 kW	p (50°C)
Near Shadings User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area Inverter Original PVsyst database	Free Horizon Linear shadings Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC) U mpp Module area Model Manufacturer	YL310P-35b Yingli Solar 12 modules 1128 350 kWp 394 V 2189 m ² HPC-050HT-E Hyundai	In paralle Unit Nom. Powe At operating cond I mp Cell are	er 310 Wp I. 313 kWy p 794 A a 1976 m ²	p (50°C)
Near Shadings User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area Inverter Original PVsyst database Characteristics	Free Horizon Linear shadings Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC) U mpp Module area Model Manufacturer Operating Voltage	YL310P-35b Yingli Solar 12 modules 1128 350 kWp 394 V 2189 m ² HPC-050HT-E Hyundai 300-600 V	In paralle Unit Nom. Powe At operating cond I mp Cell are Unit Nom. Powe	er 310 Wp J. 313 kWp p 794 A a 1976 m ² er 50.0 kW	p (50°C)
User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area Inverter	Free Horizon Linear shadings Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC) U mpp Module area Model Manufacturer	YL310P-35b Yingli Solar 12 modules 1128 350 kWp 394 V 2189 m ² HPC-050HT-E Hyundai 300-600 V	In paralle Unit Nom. Powe At operating cond I mp Cell are	er 310 Wp I. 313 kWp p 794 A a 1976 m ² er 50.0 kW er 300 kW	p (50°C)
Near Shadings User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradation Module Mismatch Losses Strings Mismatch Losse	Free Horizon Linear shadings Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC) U mpp Module area Model Manufacturer Operating Voltage Nb. of inverters Uc (const) Global array res.	YL310P-35b Yingli Solar 12 modules 1128 350 kWp 394 V 2189 m ² HPC-050HT-E Hyundai 300-600 V 6 units 20.0 W/m ² K	In paralle Unit Nom. Powe At operating cond I mp Cell are Unit Nom. Powe Total Powe	er 310 Wp 1. 313 kWp p 794 A a 1976 m ² er 50.0 kW er 300 kW o 1.17 1) 0.0 W/m n 1.5 % a n 1.3 % n -0.8 % n 1.0 % a	vac ac n ² K / m/s t STC
Near Shadings User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradation Module Quality Loss Module Mismatch Losses Strings Mismatch loss Incidence effect (IAM): User defined p	Free Horizon Linear shadings Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC) U mpp Module area Model Manufacturer Operating Voltage Nb. of inverters Uc (const) Global array res.	YL310P-35b Yingli Solar 12 modules 1128 350 kWp 394 V 2189 m ² HPC-050HT-E Hyundai 300-600 V 6 units 20.0 W/m ² K 8.3 mOhm	In paralle Unit Nom. Powe At operating cond I mpj Cell are: Unit Nom. Powe Pnom rati Unit Nom. Powe Pnom rati Uv (wind Loss Fractio Loss Fractio Loss Fractio Loss Fractio	er 310 Wp 1. 313 kWp p 794 A a 1976 m ² er 50.0 kW er 300 kW o 1.17 1) 0.0 W/m n 1.5 % a n 1.3 % n -0.8 % n 1.0 % a n 0.10 %	p (50°C) Vac lac n ² K / m/s t STC t MPP
Near Shadings User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradation Module Mismatch Losses Strings Mismatch Losses Strings Mismatch loss Incidence effect (IAM): User defined p	Free Horizon Linear shadings Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC) U mpp Module area Model Manufacturer Operating Voltage Nb. of inverters Uc (const) Global array res.	YL310P-35b Yingli Solar 12 modules 1128 350 kWp 394 V 2189 m ² HPC-050HT-E Hyundai 300-600 V 6 units 20.0 W/m ² K	In paralle Unit Nom. Powe At operating cond I mpj Cell are: Unit Nom. Powe Pnom rati Uv (wind Loss Fractio Loss Fractio Loss Fractio Loss Fractio Loss Fractio Loss Fractio	er 310 Wp 1. 313 kWy p 794 A a 1976 m ² er 50.0 kW er 300 kW o 1.17 1) 0.0 W/m n 1.5 % a n 1.3 % n -0.8 % n 0.10 % a	vac ac n ² K / m/s t STC

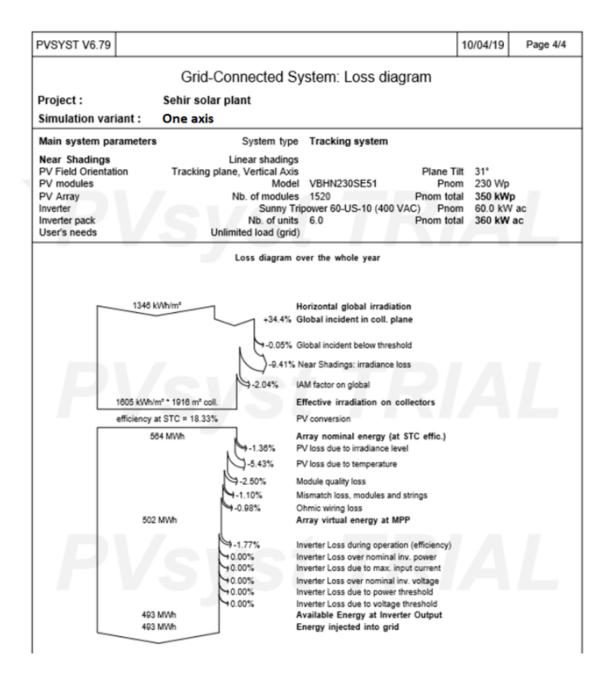


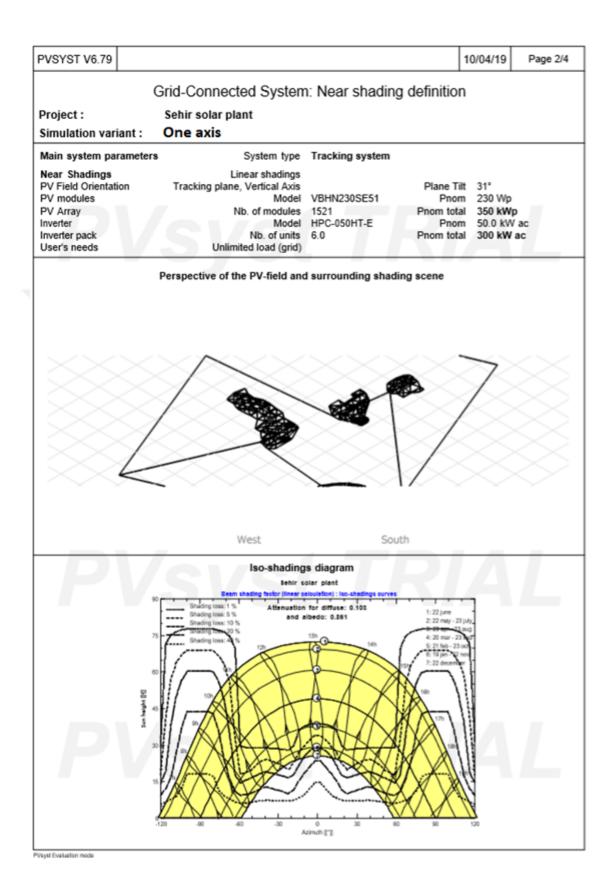


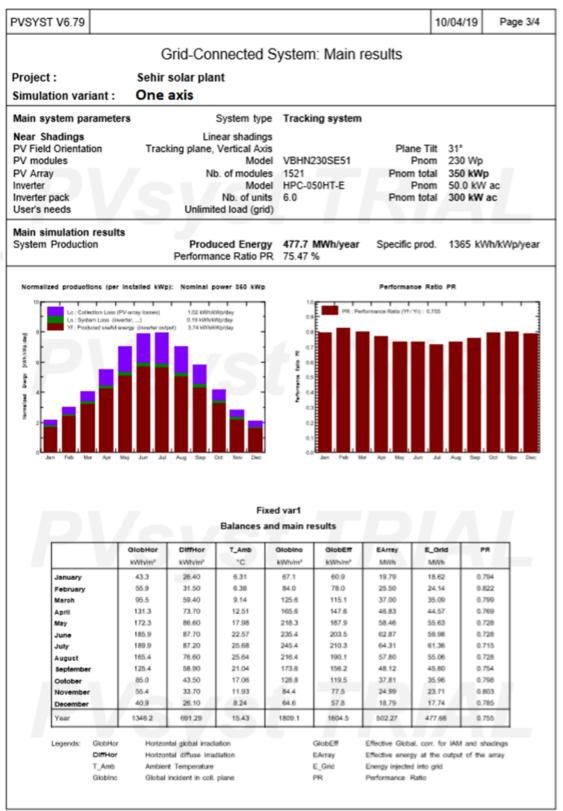


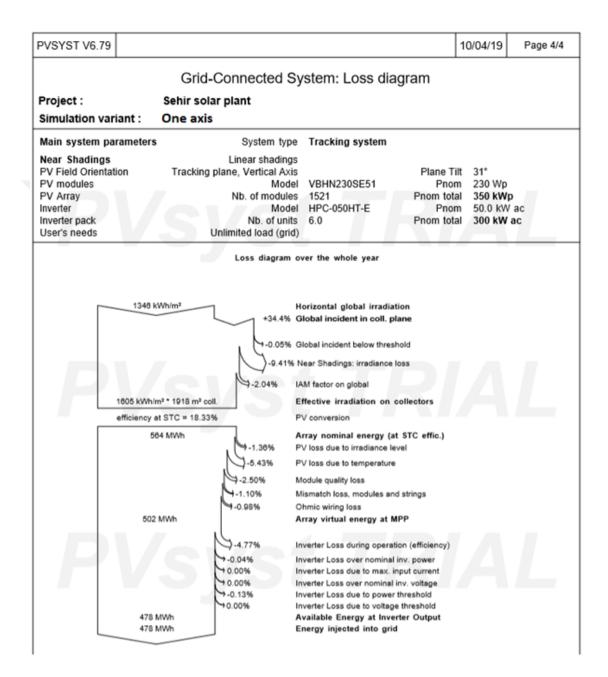

Grid C	opported System	n: Simulatia	n paramotor		
Gild-C	onnected System	n. Simulauu	in parameters	5	
Project : Sehir s	solar plant				
Geographical Site	Cevizli		Countr	y Turkey	
Situation Time defined as		40.90° N Time zone UT+ 0.20	Longitud +3 Altitud	le 29.16° le 0m	E
Meteo data:			2 (2004-2010), Sat=	=100% - Syr	nthetic
Simulation variant : One a	axis				
PVS	Simulation date	10/04/19 19h2	1		
Simulation parameters	System type	Tracking syst	em		
Tracking plane, Vertical Axis	Plane Tilt	31°			
Rotation Limitations	Minimum Azimuth	-120°	Maximum Azimut	h 120°	
Trackers configuration	Nb. of trackers	1120	Identical array	S	
_	Tracker Spacing		Collector widt ind cov. Ratio (GCF		
		Grou	ING COV. RAND (GCF	·/ JU.U %	
Models used	Transposition	Perez	Diffus	e Perez, I	Meteonorm
Horizon	Free Horizon				
Near Shadings	Linear shadings				
Near Shadings User's needs :	Linear shadings Unlimited load (grid)		K	A	
	Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area	YL310P-35b Yingli Solar 17 modules 1122 348 kWp 558 V 2177 m ² Solarmax 501 SolarMax 430-800 V	Unit Nom. Powe At operating cond I mp Cell are TS Unit Nom. Powe	1. 311 kW p 557 A a 1965 m er 50.0 kV er 300 kW	p (50°C) z Wac
User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array global power Array operating characteristics (50°C Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors	Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area Model Manufacturer Operating Voltage Nb. of inverters	YL310P-35b Yingli Solar 17 modules 1122 348 kWp 558 V 2177 m ² SolarMax 430-800 V 6 units	Unit Nom. Powe At operating cond I mp Cell are TS Unit Nom. Powe Total Powe Pnom rati	er 310 Wp 1. 311 kW p 557 A a 1965 m er 50.0 kV er 300 kW io 1.16	y (50°C) z Vac
User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor	Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area Model Manufacturer Operating Voltage Nb. of inverters	YL310P-35b Yingli Solar 17 modules 1122 348 kWp 558 V 2177 m ² SolarMax 430-800 V 6 units 20.0 W/m ² K	Unit Nom. Powe At operating cond I mp Cell are TS Unit Nom. Powe Total Powe Pnom rati	er 310 Wp i. 311 kW p 557 A ia 1965 m ² er 50.0 kW er 300 kW io 1.16 d) 0.0 W/r	p (50°C) z Wac /ac
User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradation	Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC) C) U mpp Module area Model Manufacturer Operating Voltage Nb. of inverters	YL310P-35b Yingli Solar 17 modules 1122 348 kWp 558 V 2177 m ² SolarMax 430-800 V 6 units 20.0 W/m ² K	Unit Nom. Powe At operating cond I mp Cell are Unit Nom. Powe Total Powe Pnom rati	er 310 Wp i. 311 kW p 557 A a 1965 m er 50.0 kV er 300 kW io 1.16 d) 0.0 W/r in 1.5 % a in 1.3 %	p (50°C) z Wac /ac
User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradation Module Quality Loss Module Mismatch Losses Strings Mismatch Losse	Unlimited load (grid) Si-poly Model Manufacturer In series No. modules Nominal (STC) O) U mpp Module area Model Manufacturer Operating Voltage Nb. of inverters Uc (const) Global array res.	YL310P-35b Yingli Solar 17 modules 1122 348 kWp 558 V 2177 m ² SolarMax 430-800 V 6 units 20.0 W/m ² K	Unit Nom. Powe At operating cond I mp Cell are TS Unit Nom. Powe Total Powe Pnom rati	er 310 Wp d. 311 kW p 557 A a 1965 m er 50.0 kW er 300 kW io 1.16 d) 0.0 W/r in 1.5 % a in 1.3 % in -0.8 % in 1.0 % a	y (50°C) z Wac //ac m ² K / m/s tt STC at MPP
User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor	Unlimited load (grid) Si-poly Model Manufacturer In series Nb. modules Nominal (STC) U mpp Module area Model Manufacturer Operating Voltage Nb. of inverters Uc (const) Global array res.	YL310P-35b Yingli Solar 17 modules 1122 348 kWp 558 V 2177 m ² SolarMax 430-800 V 6 units 20.0 W/m ² K	Unit Nom. Powe At operating cond Imp Cell are Unit Nom. Powe Total Powe Pnom rati Uv (wind Loss Fractio Loss Fractio Loss Fractio Loss Fractio	er 310 Wp i. 311 kW p 557 A a 1965 m er 50.0 kV er 300 kW io 1.16 d) 0.0 W/r in 1.5 % a in 1.3 % in .0.8 % in 0.10 %	y (50°C) z Wac //ac m ² K / m/s tt STC at MPP

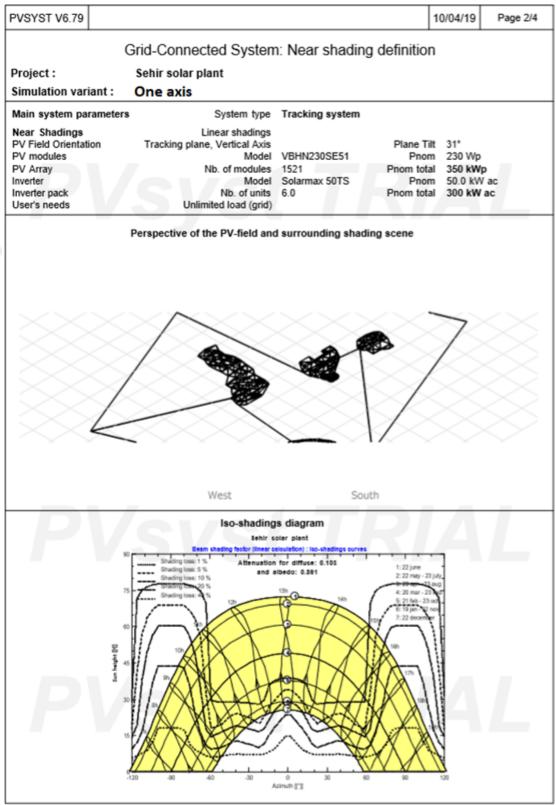


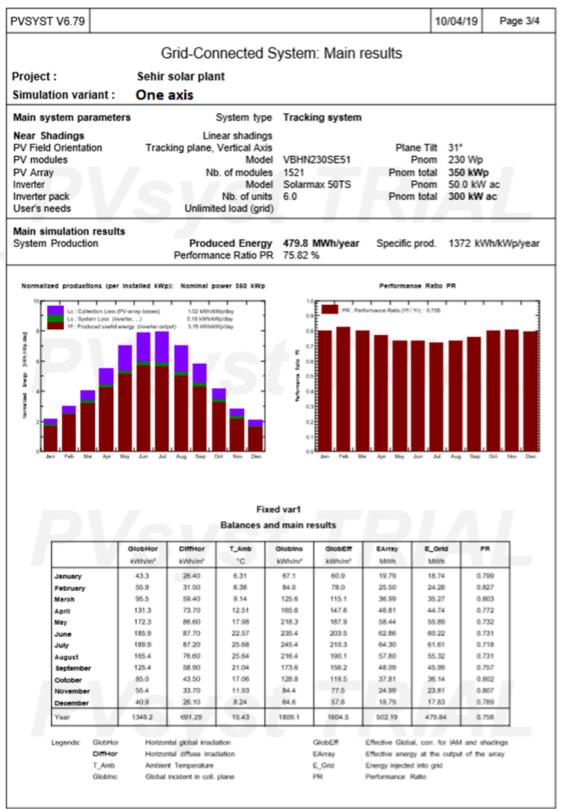


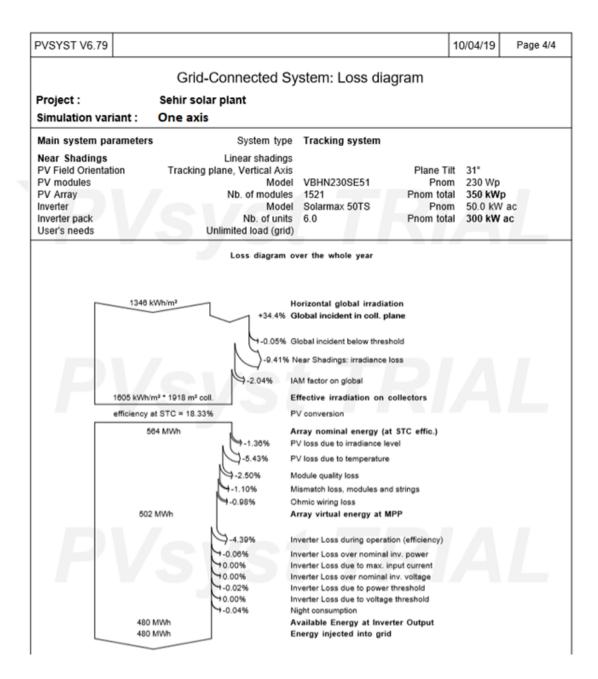




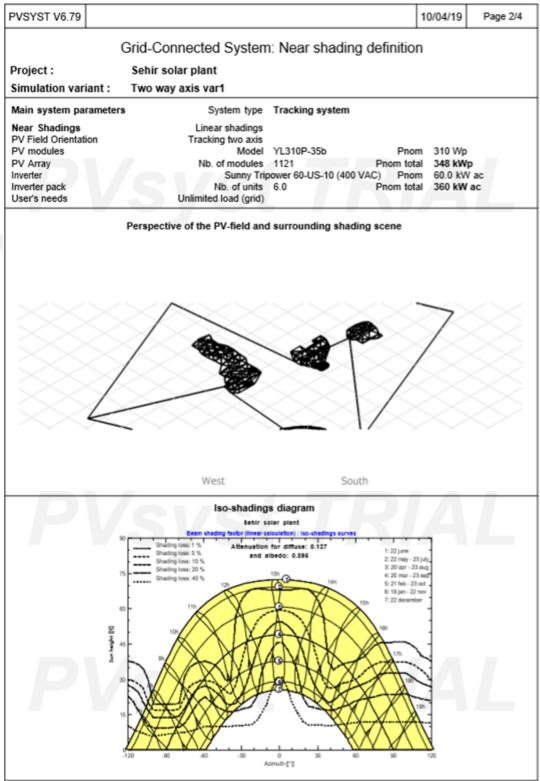


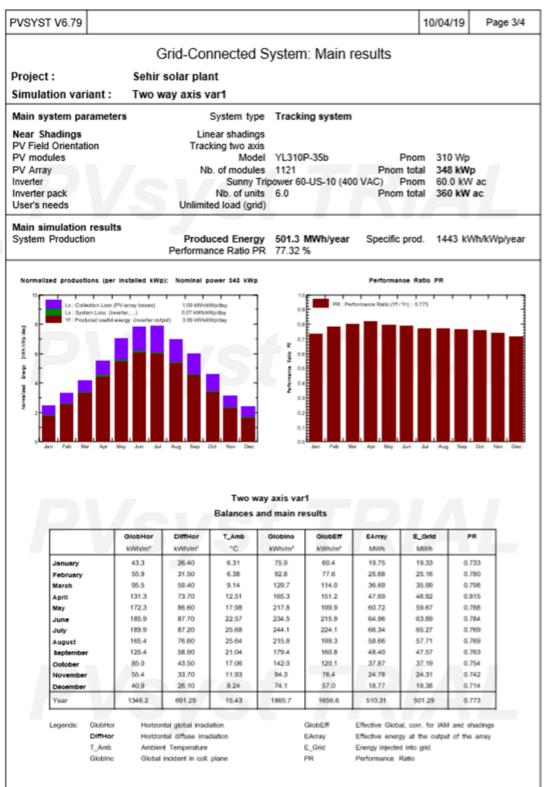

Grid-Cor	nected System	n: Simulation	parameters	
Project : Sehir sol	ar plant			
Geographical Site	Cevizli		Country	Turkey
Situation	Latitude	40.90° N	Longitude	-
Time defined as	Legal Time	Time zone UT+3	-	
Meteo data:	Albedo	0.20 Meteonorm 7.2 ()	2004-2010) Sat=1	00% - Synthetic
		Meteonomi 7.2 (2004-2010), 341-1	vo x - Synancae
Simulation variant : One a		10/04/19 19h18		
Simulation parameters	System type	Tracking system	n	
Tracking plane, Vertical Axis	Plane Tilt			
Rotation Limitations	Minimum Azimuth	-120° N	Maximum Azimuth	120°
Trackers configuration	Nb. of trackers	1120	Identical arrays	
Huekere comgaration	Tracker Spacing		Collector width	1.00 m
		Ground	d cov. Ratio (GCR)	50.0 %
Models used	Transposition	Perez	Diffuse	Perez, Meteonorm
Horizon	Free Horizon			
Near Shadings	Linear shadings			
User's needs :	Unlimited load (grid)			
PV Array Characteristics PV module	HIT Model	VBHN230SE51		
Original PVsyst database	Manufacturer			
Number of PV modules	In series	9 modules		169 strings
Total number of PV modules	Nb. modules		Unit Nom. Power	
Array global power	Nominal (STC)		At operating cond.	
Array operating characteristics (50°C)		361 V	I mpp	
Total area	Module area	1918 m²	Cell area	1667 m²
		HPC-050HT-E		
Original PVsyst database	Manufacturer	Hyundai		
		Hyundai	Unit Nom. Power	
Original PVsyst database	Manufacturer	Hyundai 300-600 V		300 kWac
Original PVsyst database Characteristics Inverter pack	Manufacturer Operating Voltage	Hyundai 300-600 V	Total Power	300 kWac
Original PVsyst database Characteristics Inverter pack	Manufacturer Operating Voltage Nb. of inverters	Hyundai 300-600 V	Total Power	300 kWac 1.17
Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss	Manufacturer Operating Voltage Nb. of inverters	Hyundai 300-600 V 6 units 20.0 W/m ² K	Total Power Pnom ratio Uv (wind) Loss Fraction	300 kWac 1.17 0.0 W/m²K / m/s 1.5 % at STC
Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss Module Quality Loss	Manufacturer Operating Voltage Nb. of inverters Uc (const)	Hyundai 300-600 V 6 units 20.0 W/m ² K	Total Power Pnom ratio Uv (wind) Loss Fraction Loss Fraction	300 kWac 1.17 0.0 W/m²K / m/s 1.5 % at STC 2.5 %
Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss Module Quality Loss Module Mismatch Losses	Manufacturer Operating Voltage Nb. of inverters Uc (const)	Hyundai 300-600 V 6 units 20.0 W/m ² K	Total Power Pnom ratio Uv (wind) Loss Fraction Loss Fraction Loss Fraction	300 kWac 1.17 0.0 W/m²K / m/s 1.5 % at STC 2.5 % 1.0 % at MPP
Characteristics Inverter pack PV Array loss factors Thermal Loss factor	Manufacturer Operating Voltage Nb. of inverters Uc (const) Global array res.	Hyundai 300-600 V 6 units 20.0 W/m ² K	Total Power Pnom ratio Uv (wind) Loss Fraction Loss Fraction Loss Fraction Loss Fraction	300 kWac 1.17 0.0 W/m ² K / m/s 1.5 % at STC 2.5 % 1.0 % at MPP 0.10 %
Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss Module Quality Loss Module Mismatch Losses Strings Mismatch loss	Manufacturer Operating Voltage Nb. of inverters Uc (const) Global array res.	Hyundai 300-600 V 6 units 20.0 W/m ² K 6.5 mOhm	Total Power Pnom ratio Uv (wind) Loss Fraction Loss Fraction Loss Fraction Loss Fraction	300 kWac 1.17 0.0 W/m ² K / m/s 1.5 % at STC 2.5 % 1.0 % at MPP 0.10 %
Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss Module Quality Loss Module Mismatch Losses Strings Mismatch loss	Manufacturer Operating Voltage Nb. of inverters Uc (const) Global array res.	Hyundai 300-600 V 6 units 20.0 W/m ² K 6.5 mOhm	Total Power Pnom ratio Uv (wind) Loss Fraction Loss Fraction Loss Fraction Loss Fraction	300 kWac 1.17 0.0 W/m ² K / m/s 1.5 % at STC 2.5 % 1.0 % at MPP 0.10 %
Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss Module Quality Loss Module Mismatch Losses Strings Mismatch loss	Manufacturer Operating Voltage Nb. of inverters Uc (const) Global array res.	Hyundai 300-600 V 6 units 20.0 W/m ² K 6.5 mOhm	Total Power Pnom ratio Uv (wind) Loss Fraction Loss Fraction Loss Fraction Loss Fraction	300 kWac 1.17 0.0 W/m ² K / m/s 1.5 % at STC 2.5 % 1.0 % at MPP 0.10 %

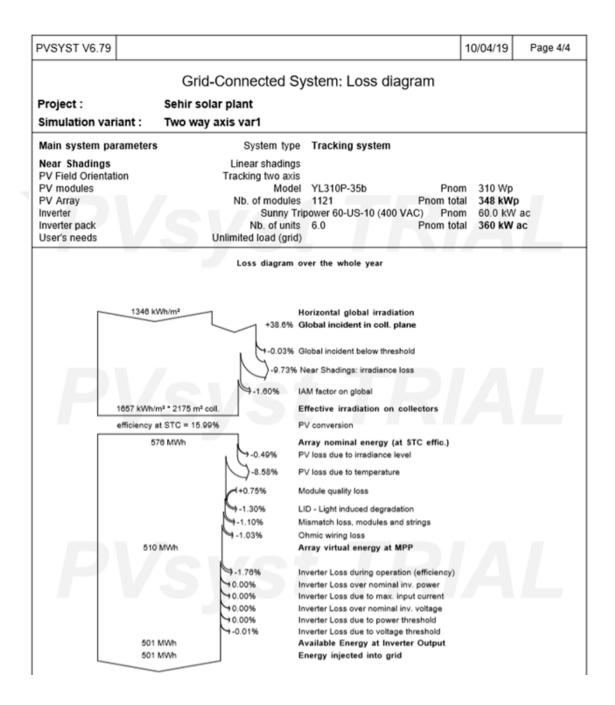




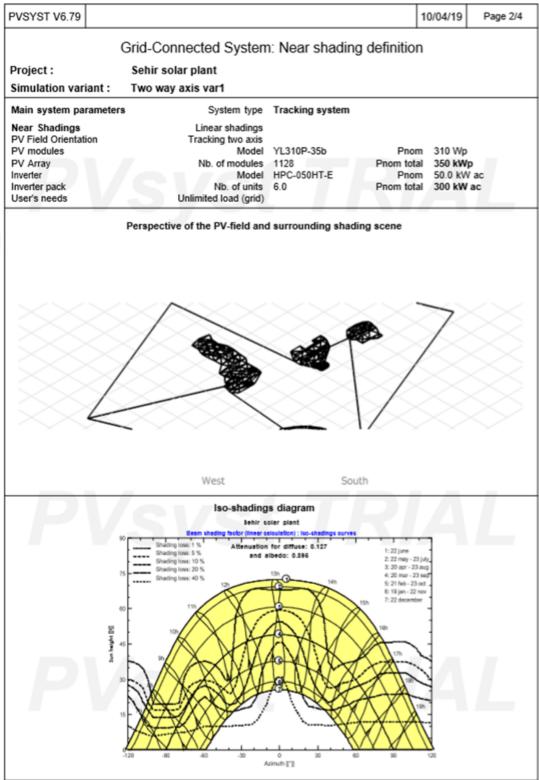
Grid-Co	nnected Systen	n: Simulation p	arameters	
Project : Sehir so	olar plant			
Geographical Site	Cevizli		Country	Turkey
Situation Time defined as	Legal Time Albedo		Longitude Altitude	0 m
Meteo data:	Cevizli	Meteonorm 7.2 (20	04-2010), Sat=1	00% - Synthetic
Simulation variant : One a		10/04/19 19h20		
Simulation parameters	System type	Tracking system		
Tracking plane, Vertical Axis Rotation Limitations	Plane Tilt Minimum Azimuth		ximum Azimuth	120°
Trackers configuration	Nb. of trackers Tracker Spacing	2.00 m	Identical arrays Collector width ov. Ratio (GCR)	
Models used	Transposition	Perez	Diffuse	Perez, Meteonorm
Horizon	Free Horizon			
Near Shadings	Linear shadings			
User's needs :	Unlimited load (grid)			
PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area	Manufacturer In series Nb. modules Nominal (STC) U mpp Module area	13 modules 1521 U 350 kWp At 521 V	In parallel Init Nom. Power operating cond. I mpp Cell area	326 kWp (50°C) 625 A
Inverter Original PVsyst database Characteristics	Manufacturer Operating Voltage	SolarMax 430-800 V U	Init Nom. Power	50.0 kWac
Original PVsyst database	Manufacturer	SolarMax 430-800 V U		300 kWac
Original PVsyst database Characteristics	Manufacturer Operating Voltage	SolarMax 430-800 V U	Total Power	300 kWac
Original PVsyst database Characteristics Inverter pack	Manufacturer Operating Voltage	SolarMax 430-800 V U 6 units	Total Power	300 kWac 1.17 0.0 W/m²K / m/s

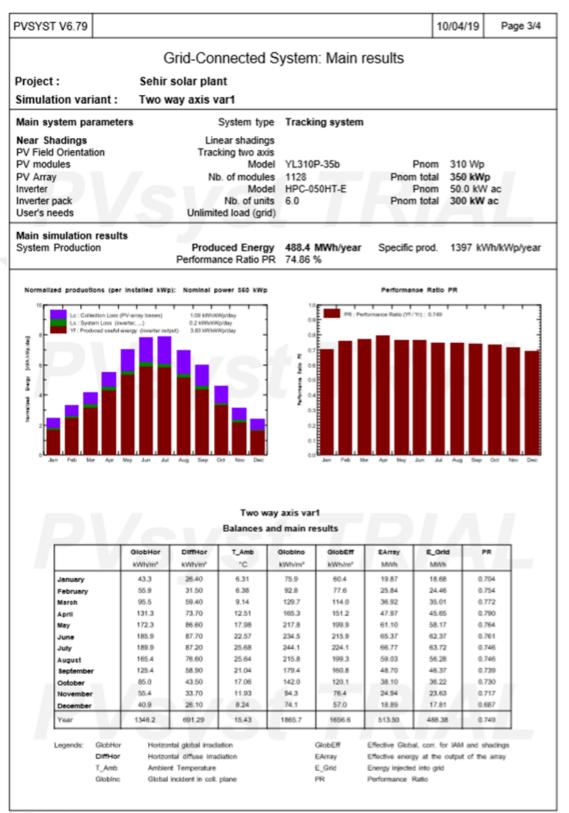


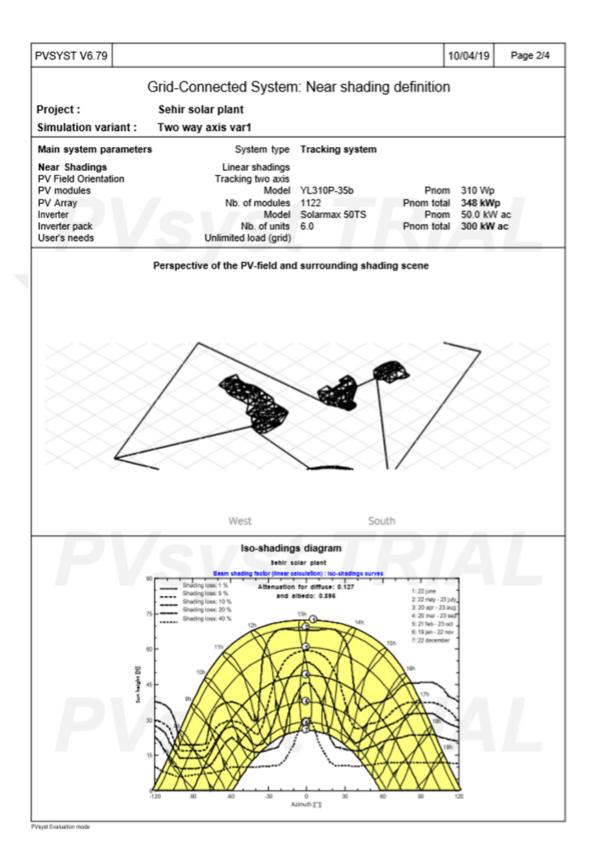


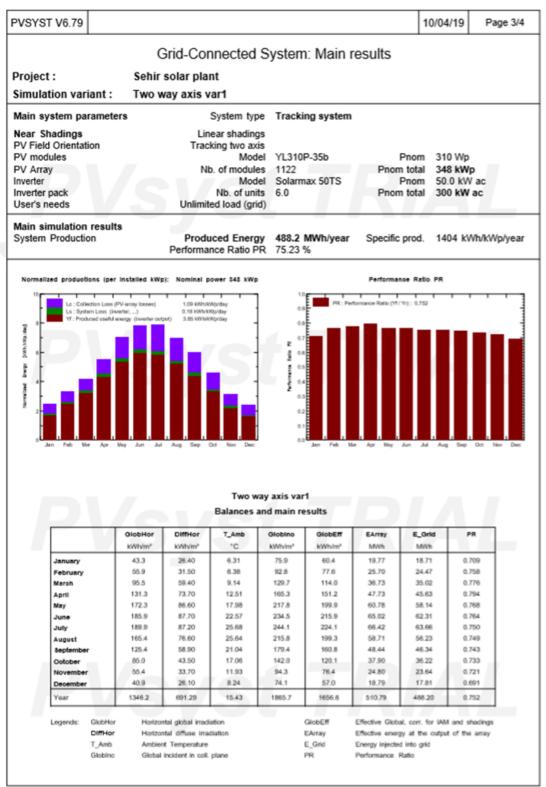

Appendix C

Two axis Appendix

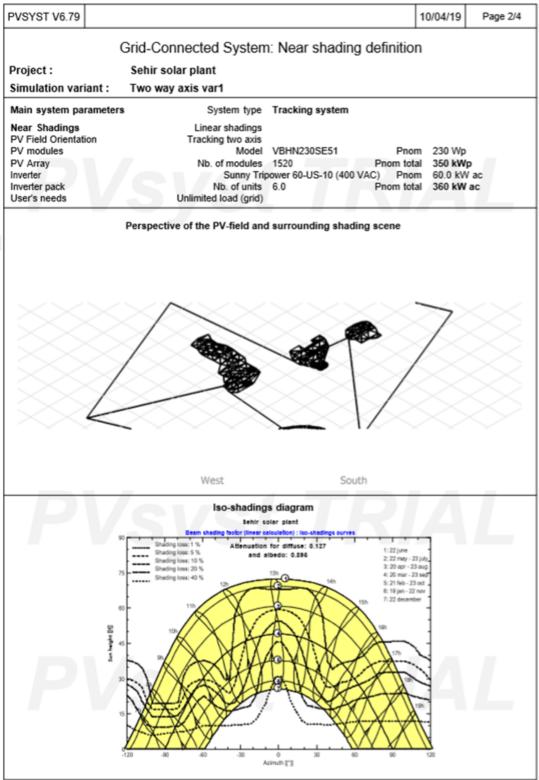

PVSYST V6.79			1	10/04/19	Page 1
Grid-Co	nnected System	n: Simulatio	on parameters		
	lar plant				
Geographical Site	Cevizli		Country	Turkey	
Situation	Latitude	40.90° N	Longitude		
Time defined as	Legal Time	Time zone UT			
	Albedo	0.20			
leteo data:	Cevizli	Meteonorm 7.	2 (2004-2010), Sat=1	00% - Syntl	hetic
Simulation variant : Two way	axis var1				
	Simulation date	10/04/19 20h0	e		
	Simulation date	10/04/19 2010	5	_	_
Simulation parameters	System type	Tracking syst	tem		
Tracking plane, two axis	Minimum Tilt	0°	Maximum Tilt	80°	
Rotation Limitations	Minimum Azimuth	-120*	Maximum Azimuth	120*	
Trackers configuration	Nb. of trackers	1120	Identical arrays		
and a set of the set o	Tracker Spacing	2.20 m	Collector width		
		Gro	und cov. Ratio (GCR)	45.9 %	
Models used	Transposition	Perez	Diffuse	Perez, M	eteonorm
Horizon	Free Horizon				
Near Shadings	Linear shadings				
User's needs :	Unlimited load (grid)				
PV Array Characteristics					
PV module	Si-poly Model	YL310P-35b			
Original PVsyst database Number of PV modules	Manufacturer In series	Yingli Solar 19 modules	In parallel	59 strings	
Total number of PV modules	Nb. modules	1121	Unit Nom. Power		5
Array global power	Nominal (STC)	348 kWp	At operating cond.	311 kWp	(50°C)
Array operating characteristics (50°C)	Ú mpp		Impp	498 A	()
fotal area	Module area	2175 m ²	Cell area	1964 m ²	
nverter	Model	Sunny Tripov	ver 60-US-10 (400 V/	AC)	
Original PVsyst database	Manufacturer	SMA		,	
Characteristics	Operating Voltage	570-800 V	Unit Nom. Power	60.0 kWa	C
nverter pack	Nb. of inverters	6 units	Total Power Pnom ratio		C
			Filom Tabo	0.37	
PV Array loss factors					
Thermal Loss factor	Uc (const)	20.0 W/m ² K	Uv (wind)		
Wiring Ohmic Loss	Global array res.	21 mOhm	Loss Fraction		STC
ID - Light Induced Degradation Module Quality Loss			Loss Fraction		
Module Mismatch Losses			Loss Fraction		MPP
Strings Mismatch loss ncidence effect (IAM): User defined pr	ofile		Loss Fraction		
		70° 75°	80* 85	. 90	-
0° 20° 40			00		

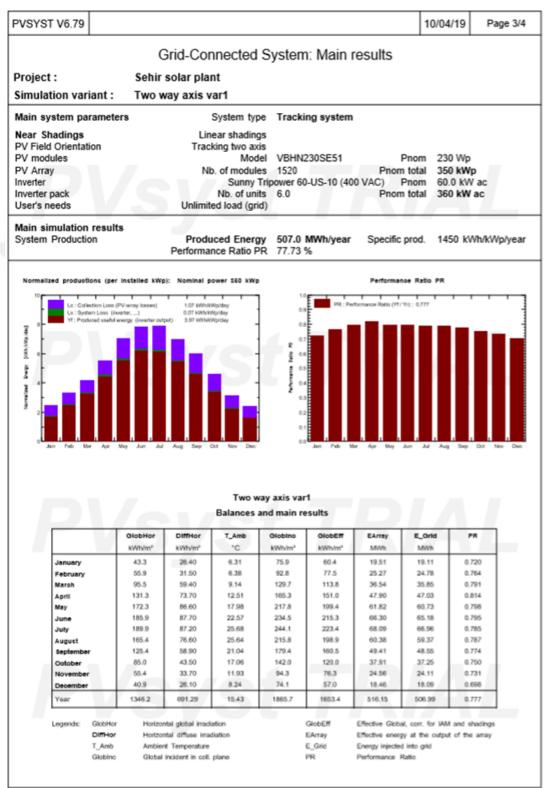


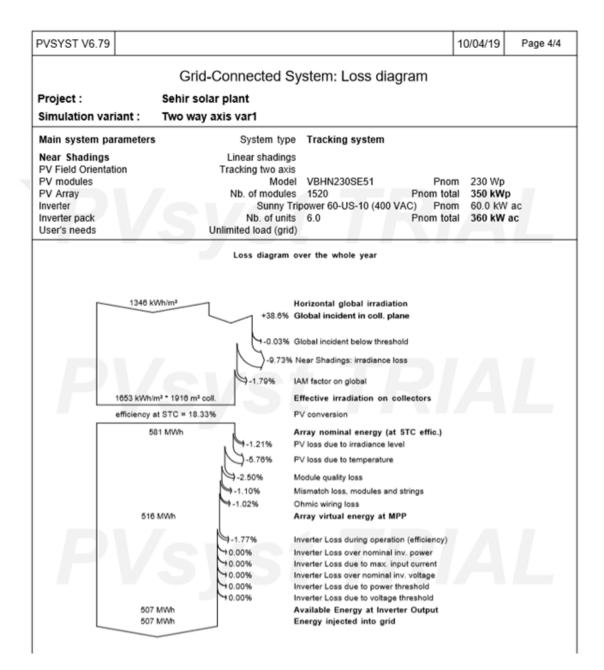

	id Commonte d (4:				
G	id-Connected \$	system	n: Simula	tion pa	arame	ters		
Project : S	ehir solar plant							
Geographical Site		Cevizli			Co	ountry	Turkey	
Situation Time defined as			40.90° N Time zone U 0.20	JT+3	-	gitude titude	29.16° l 0 m	E
Meteo data:			Meteonorm	7.2 (2004	4-2010),	Sat=1	00% - Syr	nthetic
Simulation variant : T	wo way axis var1		C					
	Simulat	ion date	10/04/19 20	h08	-			
Simulation parameters	Syste	em type	Tracking sy	ystem				
Tracking plane, two axis		num Tilt	0°		Maximu		80°	
Rotation Limitations	Minimum	Azimuth	-120°	Maxi	mum Az	imuth	120°	
Trackers configuration	Nb. of	trackers	1120	lo	dentical a	arrays		
	Tracker	Spacing		(round co	Collector		1.01 m 45.9 %	
			9		v. Rauo (GUR)	43.3 %	
Models used	Trans	position	Perez		D	iffuse	Perez, I	Meteonom
Horizon	Free	Horizon						
Near Shadings	Linear s	hadings						
User's needs :	Unlimited Io	ad (grid)						
PV Array Characteristics PV module Original PVsyst database	Si-poly Manu	facturer	YL310P-35 Yingli Solar 12 modules				94 strin	
Number of PV modules Total number of PV modules Array global power Array operating characteristic Total area	Nb. r Nomina s (50°C)	nodules al (STC) U mpp	350 kWp	Uni	perating	cond. I mpp	310 Wp 313 kW 794 A 1976 m ²	p (50°C)
Total number of PV modules Array global power Array operating characteristic Total area Inverter	Nb. r Nomina s (50°C) Mod	nodules al (STC) U mpp ule area Model	350 kWp 394 V 2189 m ² HPC-050HT	Uni At op	perating	cond. I mpp	313 KW 794 A	
Total number of PV modules Array global power Array operating characteristic Total area	Nb. r Nomina s (50°C) Mod Manu	nodules al (STC) U mpp ule area Model afacturer	350 kWp 394 V 2189 m ² HPC-050HT Hyundai	Uni At op	perating Cel	cond. I mpp I area	313 KW 794 A	
Total number of PV modules Array global power Array operating characteristic Total area Inverter Original PVsyst database	Nb. r Nomina s (50°C) Mod Operating	nodules al (STC) U mpp ule area Model afacturer	350 kWp 394 V 2189 m ² HPC-050HT Hyundai 300-600 V	Uni At op	Cell it Nom. F Total F	cond. I mpp I area	313 kW 794 A 1976 m ³	Vac
Total number of PV modules Array global power Array operating characteristic Total area Inverter Original PVsyst database Characteristics	Nb. r Nomina s (50°C) Mod Manu Operating Nb. of i	nodules al (STC) U mpp ule area Model ffacturer Voltage	350 kWp 394 V 2189 m ² HPC-050HT Hyundai 300-600 V 6 units	Uni At op -E Un	cell Cell it Nom. F Total F Pnom	cond. I mpp I area Power Power n ratio	313 kW 794 A 1976 m ² 50.0 kV 300 kW 1.17	Vac
Total number of PV modules Array global power Array operating characteristic Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradati Module Quality Loss Module Quality Loss Strings Mismatch Losses	Nb. r Nomina s (50°C) Mod Manu Operating Nb. of i Uc Global at	nodules al (STC) U mpp ule area Model nfacturer Voltage nverters	350 kWp 394 V 2189 m ² HPC-050HT Hyundai 300-600 V 6 units	Uni At op -E Un	Uv (Loss Fra Loss Fra Loss Fra	cond. Impp I area Power Power I ratio (wind) action action	313 kW 794 A 1976 m ² 50.0 kV 300 kW 1.17 0.0 W/m 1.5 % a	Vac /ac m ² K / m/s t STC
Total number of PV modules Array global power Array operating characteristic Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradati Module Quality Loss Module Mismatch Losses Strings Mismatch loss Incidence effect (IAM): User of	Nb. r Nomina s (50°C) Mod Operating Nb. of i Uc Global at on	nodules al (STC) U mpp ule area Model ifacturer Voltage nverters : (const) rray res.	350 kWp 394 V 2189 m ² HPC-050HT Hyundai 300-600 V 6 units 20.0 W/m ² k	Uni At of -E Un	Uv (Loss Fra Loss Fra Loss Fra	cond. Impp I area Power Power I ratio (wind) action action	313 kW 794 A 1976 m ² 50.0 kV 300 kW 1.17 0.0 W/m 1.5 % a 1.3 % -0.8 % 1.0 % a 0.10 %	Vac /ac m ^a K / m/s t STC at MPP
Total number of PV modules Array global power Array operating characteristic Total area Inverter Original PVsyst database Characteristics Inverter pack PV Array loss factors Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradati Module Quality Loss Module Mismatch Losses Strings Mismatch loss Incidence effect (IAM): User of	Nb. r Nomina s (50°C) Mod Operating Nb. of i Uc Global at on	nodules al (STC) U mpp ule area Model ifacturer Voltage nverters : (const) rray res.	350 kWp 394 V 2189 m ² HPC-050HT Hyundai 300-600 V 6 units 20.0 W/m ² k 8.3 mOhm	Uni At op -E Un	Uv (Loss Fra Loss Fra Loss Fra	cond. I mpp I area Power Power A ratio (wind) action action action action	313 kW 794 A 1976 m ² 50.0 kW 300 kW 1.17 0.0 W/m 1.5 % a 1.3 % -0.8 % 1.0 % a 0.10 %	Vac /ac m ² K / m/s t STC



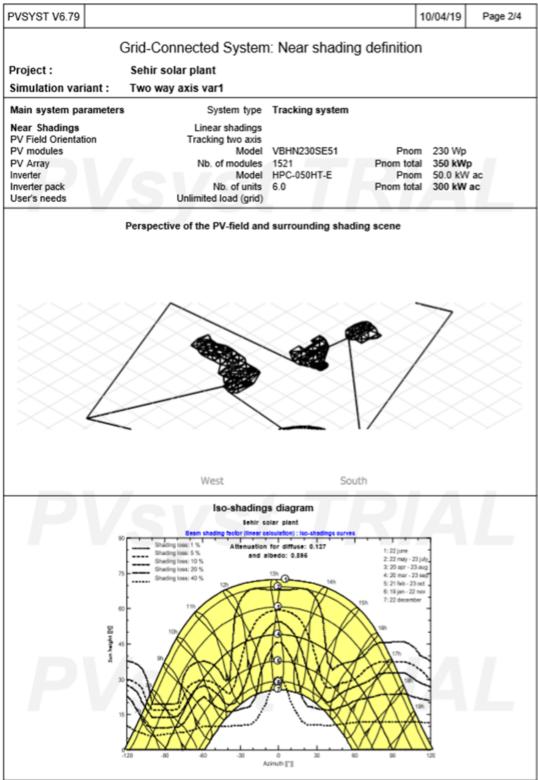
PVSYST V6.79			10	0/04/19	Page
	Grid-Connected	d System: Loss dia	agram		
Project :	Sehir solar plant				
Simulation variant :	Two way axis var1				
Main system paramete	rs System	type Tracking system			
Near Shadings	Linear shad				
PV Field Orientation	Tracking two				
PV modules		lodel YL310P-35b	Pnom	310 Wp	
PV Array		dules 1128	Pnom total	350 kW	
Inverter		Iodel HPC-050HT-E	Pnom	50.0 kW	
Inverter pack		units 6.0	Pnom total	300 kW	ac
User's needs	Unlimited load ((grid)		_	_
	Loss diagr	ram over the whole year			
1348	kWh/m ²	Horizontal global irradia			
	+38	.6% Global incident in coll.	olane		
	-				
	0.0.0	3% Global incident below three	shold		
	3-9.	73% Near Shadings: irradiance	loss		
	9-1.00%	IAM factor on global			
1657 kW	h/m² * 2189 m² coll.	IAM factor on global Effective irradiation on	collectors		
			collectors		
	h/m² * 2189 m² coll. y at STC = 15.99%	Effective irradiation on PV conversion			
	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh	Effective irradiation on PV conversion Array nominal energy (a	at STC effic.)		
	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance l	at STC effic.) evel		
	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh	Effective irradiation on PV conversion Array nominal energy (a	at STC effic.) evel		
	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance l	at STC effic.) evel		
	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh -0.49% -8.58%	Effective irradiation on PV conversion Array nominal energy (2 PV loss due to irradiance I PV loss due to temperature Module quality loss	at STC effic.) evel e		
	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh -0.49% -8.58% +0.75%	Effective irradiation on PV conversion Array nominal energy (2 PV loss due to irradiance I PV loss due to temperature Module quality loss LID - Light induced degrad	at STC effic.) evel e		
	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh -0.49% -8.58% +0.75% -1.30% -1.10%	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance I PV loss due to temperature Module quality loss LID - Light induced degrad Mismatch loss, modules ar	at STC effic.) evel e		
efficienc	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh -0.49% -8.58% +0.75%	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance l PV loss due to temperatur Module quality loss LID - Light induced degrad Mismatch loss, modules an Ohmic wiring loss	at STC effic.) evel e ation nd strings		
efficienc	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh -0.49% -8.58% +0.75% -1.30% -1.10% -1.03%	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance I PV loss due to temperature Module quality loss LID - Light induced degrad Mismatch loss, modules ar	at STC effic.) evel e ation nd strings		
efficienc	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh -0.49% -8.58% (+0.75% -1.30% -1.0% -1.0% 14 MWh	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance l PV loss due to temperatur Module quality loss LID - Light induced degrad Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at l	at STC effic.) evel e ation nd strings MPP		
efficienc	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh -0.49% -8.58% +0.75% -1.30% -1.03% 14 MWh -4.75%	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance I PV loss due to temperatur Module quality loss LID - Light induced degrad Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at 1 Inverter Loss during operation	at STC effic.) evel e ation nd strings MPP ation (efficiency)		
efficienc	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh -0.49% -8.58% (+0.75% -1.30% -1.0% -1.0% 14 MWh	Effective irradiation on PV conversion Array nominal energy (A PV loss due to irradiance I PV loss due to temperatur Module quality loss LID - Light induced degrad Mismatch loss, modules an Ohmic wiring loss Array virtual energy at I Inverter Loss during opera Inverter Loss over nomina	at STC effic.) evel e ation nd strings MPP ation (efficiency) I inv. power		
efficienc	h/m ² * 2189 m ² coll. y at STC = 15.99% 580 MWh -0.49% -8.58% +0.75% -1.30% -1.10% -1.03% 14 MWh -4.75% -0.01%	Effective irradiation on PV conversion Array nominal energy (a PV loss due to irradiance I PV loss due to temperatur Module quality loss LID - Light induced degrad Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at 1 Inverter Loss during operation	at STC effic.) evel e ation nd strings MPP ation (efficiency) I inv. power input current		
efficienc	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh -0.49% -8.58% +0.75% -1.30% -1.0% -1.0% -1.0% -0.01% -0.01% 0.00%	Effective irradiation on PV conversion Array nominal energy (A PV loss due to irradiance I PV loss due to temperatur Module quality loss LID - Light induced degrad Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at 1 Inverter Loss during opera Inverter Loss during opera Inverter Loss due to max.	at STC effic.) evel e ation nd strings MPP ation (efficiency) i inv. power input current l inv. voltage		
efficienc	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh -0.49% -8.58% +0.75% -1.30% -1.0% -1.0% -1.0% -1.0% -0.1% 0.00% 0.00%	Effective irradiation on PV conversion Array nominal energy (i PV loss due to irradiance I PV loss due to temperatur Module quality loss LID - Light induced degrad Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at I Inverter Loss during opera Inverter Loss over nomina Inverter Loss due to max.	at STC effic.) evel e ation nd strings MPP tion (efficiency) d inv. power input current l inv. voltage r threshold		
efficiency 5 48	h/m² * 2189 m² coll. y at STC = 15.99% 580 MWh -0.49% -8.58% +0.75% -1.30% -1.0% -1.0% -1.0% -1.0% -0.01% -0.00% -0.00% -0.00% -0.00% -0.15%	Effective irradiation on PV conversion Array nominal energy (2 PV loss due to irradiance I PV loss due to temperature Module quality loss LID - Light induced degrad Mismatch loss, modules ar Ohmic wiring loss Array virtual energy at 1 Inverter Loss during opera Inverter Loss due to max. Inverter Loss due to max.	at STC effic.) evel e ation nd strings MPP tion (efficiency) d inv. power input current l inv. voltage r threshold erter Output		

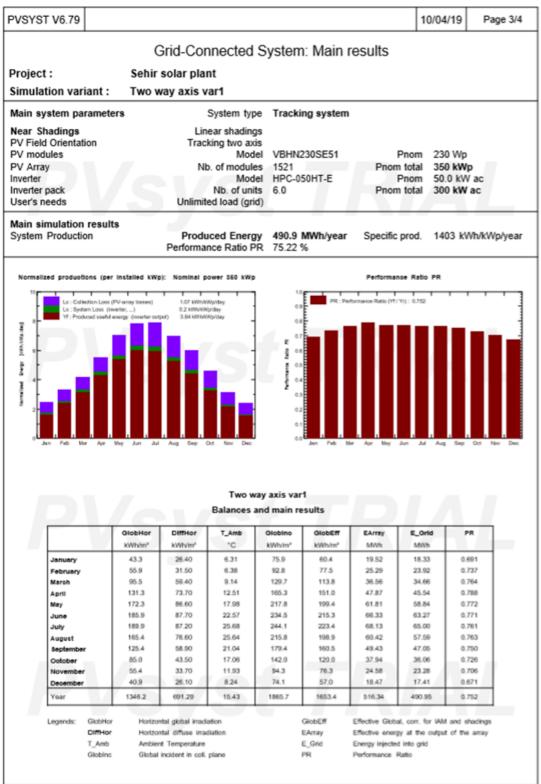

Horizon Free Horizon Near Shadings Linear shadings User's needs : Unlimited load (grid) PV Array Characteristics Yunimited load (grid) PV module Si-poly Model YL310P-35b Original PVsyst database Manufacturer 17 modules In parallel 66 strings Total number of PV modules In series 17 modules In parallel 66 strings Array global power Nb. modules 1122 Unit Nom. Power 310 Wp Array operating characteristics (50°C) U mpp 553 V Impp 557 A Total area Module area 2177 m² Cell area 1955 m² Inverter Module Solarmax 50TS SolarMax Original PVsyst database Nb. of inverters 6 units Total Power 300 kWac Inverter pack Nb. of inverters 6 units Total Power 300 kWac Phormaratic Loss Global array res. 17 mohm Loss Fraction 1.5 % at STC Viring Ohmic Loss Global array res. 17 mohm Loss Fraction 1.5 % at STC LID - Light Induced Degradation Loss Fraction 1.5 % at STC Loss Fraction 1.5 % at STC Solardiax Loss Fraction 1	Grid-Co	onnected System	n: Simulatio	n parameters	
Geographical Site Cevizli County Turkey Situation Lagiltime 40.90° N Longitude 29.16° E Time defined as Albedo 0.20 Albedo 0.20 Meteo data: Cevizli Meteonorm 7.2 (2004-2010), Sat=100% - Synthetic Simulation variant: Two way axis vari Simulation date 10/04/19 20h10 Simulation parameters System type Tracking system Tracking plane, two axis Minimum Titt 0° Maximum Aimuth Rotation Limitations Minimum Azimuth -120° Maximum Aimuth Trackers configuration Nb. of trackers 1120 Identical arrays Collector width 1.01 m Collector width 1.01 m Ground cov. Ratio (GCR) 45.9 % Models used Transposition Perez Diffuse PV module Nb. modules In parallel 65 strings Original PVsyst database Nominal (STC) 348 kWp Al operating cond. 311 kWp (S0°C) Array operating characteristics Operating Voltage 403-80 V Unit Nom. Power 50.0 KWac PV module Nb. of inverters 6 units Total area 1965 m² 116 Original PVsyst database Operating Voltage	Droject · Sehir s	olar plant			
Situation Latitude 40.90° N Longitude 29.16° E Time defined as Legal Time Time zone UT+3 Alittude 0 m Meteo data: Ceviziti Meteonorm 7.2 (2004-2010), Sat=100% - Synthetic Simulation variant : Two way axis var1 Simulation parameters System type Tracking system Tracking plane, two axis Minimum Azimuth -120° Maximum Azimuth 120° Trackers configuration Nb. of trackers 1120 Identical arrays Collector width 1.01 m Ground cov. Ratio (GCR) 45.9 % Models used Transposition Perez Diffuse Perez, Meteonor Horizon Free Horizon No of trackers 177 modules In parallel 66 strings Number of PV modules In series 177 modules In parallel 66 strings Number of PV modules Nb. of inverters Slapoly Model area 2177 m ² Cell area 1965 m ² Norarg operating characteristics Goror Y 130P-35b In parallel 66 strings Original PVsyst database Nb. monual (STC) 348 kWp	•	-		Country	Turkey
Meteo data: Cevizit Meteonorm 7.2 (2004-2010), Sat=100% - Synthetic Simulation variant : Two way axis var1 Simulation date 10/04/19 20h10 Simulation parameters System type Tracking system Tracking plane, two axis Minimum Tilt 0* Maximum Tilt 80* Rotation Limitations Minimum Azimuth -120* Maximum Azimuth 120* Trackers configuration Nb. of trackers 1120 Identical arrays Collector width 1.01 m Ground cov. Ratio (GGR) 45.9 % Models used Transposition Perez Diffuse Perez, Meteonor Horizon Free Horizon Linear shadings User's needs : Unlimited load (grid) PV module Si-poly Model YL310P-35b Original PVsyst database Number of PV modules Nominal (STC) 348 kWp At operating cond. 311 kWp (50*C) Array global power Nominal (STC) 348 kWp At operating cond. 311 kWp (50*C) Array global power Model Solarmax 50TS 300 kWac Noriginal PVsyst database Operating Voltage 430-800 V Unit Nom. Power 50.0 kWac Inverter Model Solarmax 50TS SolarMax Operating Voltage <	Situation	Legal Time	Time zone UT+	Longitude	29.16° E
Simulation date 10/04/19 20h10 Simulation parameters Rotation Limitations System type Minimum Azimuth Tracking system Minimum Azimuth Tracking system Minimum Azimuth Trackers configuration Nb. of trackers Tracker Spacing 120 Identical arrays Maximum Azimuth 10 m 10° Trackers configuration Nb. of trackers Tracker Spacing 120 Identical arrays Goldector with 1.01 m Ground cov. Ratio (GCR) 45.9 % Models used Transposition Free Horizon Perez Diffuse Perez, Meteonol Horizon Free Horizon Free Horizon Perez Diffuse Perez, Meteonol PV Array Characteristics Inear shadings Unimited load (grid) Manufacturer Yingil Solar PV module Si-poly Model YL310P-35b In parallel 66 strings Original PVsyst database Nb. modules In parallel 66 strings 310 Wp Array operating characteristics (50°C) U mpp 55X V Impp 557 A Total area Model Solarmax 50TS SolarMax SolarMax Original PVsyst database Manufacturer SolarMax Out Nom. Power 50.0 kWac Inverter Model Solarmax 50TS Total Power 30.0 W/vac Original PVsyst database </td <td>Meteo data:</td> <td></td> <td></td> <td>(2004-2010), Sat=1</td> <td>00% - Synthetic</td>	Meteo data:			(2004-2010), Sat=1	00% - Synthetic
Simulation parameters System type Tracking system Tracking plane, two axis Rotation Limitations Minimum Titl Minimum Azimuth Azimuth Trackers configuration 0° Maximum Azimuth Trackers pacing Trackers Spacing Tracker Spacing 2.20 m Maximum Titl 0° Maximum Azimuth 120° 0° Maximum Azimuth 120° Trackers configuration Nb. of trackers Tracker Spacing 2.20 m 1120 Collector width Collector width 1.01 m 1.01 m Ground cov. Ratio (GCR) 45.9 % Models used Transposition Free Horizon Perez Diffuse Perez, Meteono Free Horizon Near Shadings Linear shadings User's needs : Unlimited load (grid) PV Array Characteristics PV module Si-poly Model Model Nb. modules In parallel 10 series 66 strings 10 Wp 558 / Array operating characteristics (50°C) U mp 555 / Si-poly Module area 2177 m ² Cell area 1965 m ² Inverter Model Original PVsyst database Manufacturer Nominal (STC) Solarmax 501S 430.800 V Total Power 300 kWac Inverter Model Operating Voltage Solarmax 430-800 V Total Power 300 kWac PV Array loss factors Global array res. Global array res. LiD-Lipht Induced Degradation Module Quality Loss Module Mismatch Losse Loss Fraction 1.0 % at MPP Loss Fraction 0.0 % at MPP Loss Fraction 0.10 %	Simulation variant : Two wa	y axis var1			
Tracking plane, two axis Rotation Limitations Minimum Tilt Minimum Azimuth 0" -120" Maximum Azimuth Maximum Azimuth 80" 120" Trackers configuration Nb. of trackers Tracker Spacing 1120 2.20 m Identical arrays Collector width 1.01 m Models used Transposition Perez Diffuse Perez, Meteonor Horizon Free Horizon Perez Diffuse Perez, Meteonor Verar Shadings Linear shadings Unlimited load (grid) YL310P-35b In parallel 66 strings Verary Characteristics Si-poly Model YL310P-35b In parallel 66 strings Vortay Characteristics Si-poly Model YL310P-35b In parallel 66 strings Vortay Characteristics Si-poly Model YL310P-35b In parallel 66 strings No. modules 12.2 Unit Nom. Power 310 Wp Strings In parallel 66 strings No. modules No. Modules 12.2 Unit Nom. Power 30.0 W/ac Promoter Modules Si-poly Model Solarmax SolarMax Original PVsyst database Manufac	PVS	Simulation date	10/04/19 20h10		
Rotation Limitations Minimum Azimuth -120* Maximum Azimuth 120* Trackers configuration Nb. of trackers 1120 Identical arrays Collector width 1.01 m Ground cov. Ratio (GCR) 45.9 % Models used Transposition Perez Diffuse Perez, Meteono Horizon Free Horizon Near Shadings Linear shadings User's needs : Unlimited load (grid) PV Array Characteristics Si-poly Models YL310P-35b orginal PVsyst database Number of PV modules Si-poly Modules 1122 Unit Nom. Power 310 Wp Array obal power Nb. modules Nb. modules 1122 Unit Nom. Power 310 Wp Array operating characteristics (50°C) U mpp 558 V Imp 557 A Total number of PV modules Manufacturer Operating Voltage 430-800 V Unit Nom. Power 50.0 kWac Characteristics Operating Voltage SolarMax Total Power 300 kWac Pnom ratio 1.16 PV Array loss factors Iby of inverters 6 units Total Power 300 kWac Pnom ratio </td <td>Simulation parameters</td> <td>System type</td> <td>Tracking syste</td> <td>em</td> <td></td>	Simulation parameters	System type	Tracking syste	em	
Tracker Spacing 2.20 m Collector width Ground cov. Ratio (GCR) 1.01 m Models used Transposition Perez Diffuse Perez, Meteono Horizon Free Horizon Preez Diffuse Perez, Meteono Near Shadings Linear shadings User's needs : Unlimited load (grid) Viragi Solar In parallel 66 strings PV module Si-poly Model YL310P-35b Original PVsyst database Manufacturer Yingli Solar Number of PV modules In series 17 modules In parallel 66 strings Array global power Nominal (STC) 348 kWp At operating cond. 310 Wp Array operating characteristics (50°C) U mpp 558 V I mpp 557 A Total area Module area 2177 m² Cell area 1965 m² Inverter Model SolarMax 50.0 kWac 90.0 kWac Original PVsyst database Operating Voltage 430-800 V Unit Nom. Power 50.0 kWac Inverter pack Nb. of inverters 6 units Total Power 1.16 1.5 % at STC ID - Light Induced Degradat			-		
Horizon Free Horizon Near Shadings Linear shadings User's needs : Unlimited load (grid) PV Array Characteristics PV module PV module Si-poly Number of PV modules In series Total number of PV modules Nb. modules Array global power Nb. modules Array operating characteristics (50°C) U mpp Total area Model Inverter Model Original PVsyst database Module area Collarea Module area Original PVsyst database Module area Original PVsyst database Module area Original PVsyst database Manufacturer Operating Voltage Solarmax 50TS Solarmax fort S Solarmax 50TS Operating Voltage Solarmax 50TS Solarmatics Solarmatics Inverter pack Nb. of inverters PV Array loss factors Uc (const) Thermal Loss factor Uc (const) Viring Ohmic Loss Global array res. Module S Loss Fraction Lib - Lipt Induced Degradation Loss Fraction Module Kismatch Loss Loss Fraction Stings Mismatch Loss Loss Fraction Sting	Trackers configuration		2.20 m	Collector width	1.01 m
Near Shadings Linear shadings User's needs : Unlimited load (grid) PV Array Characteristics Si-poly Model YL310P-35b PV module Si-poly Model YL310P-35b Original PVsyst database Manufacturer Yingli Solar Number of PV modules In series 17 modules In parallel 66 strings Array global power Nb. modules Nb. modules 1122 Unit Nom. Power 310 Wp Array operating characteristics (50°C) U mpp 558 V I mpp 557 A Total area Model Solarmax 50TS 2172 Cell area 1965 m² Inverter Model Solarmax 50TS S SolarMax 00 kWac Original PVsyst database Manufacturer SolarMax 00 kWac 0.0 kWac Original PVsyst database Manufacturer SolarMax 00 kWac Nb. of inverters 6 units Total Power 300 kWac Phorm ratio 1.16 Solarmax Total Power 300 kWac Nb. of inverters 6 units Total Power 300 kWac Nb. Oss Fraction 1.5	Models used	Transposition	Perez	Diffuse	Perez, Meteonorm
User's needs : Unlimited load (grid) PV Array Characteristics Si-poly Model YL310P-35b PV module Si-poly Model YL310P-35b Number of PV modules In series 17 modules In parallel 66 strings Total number of PV modules Nb. modules 1122 Unit Nom. Power 310 Wp Array global power Nominal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array operating characteristics (50°C) U mpp 558 V Impp 557 A Total area Module area 2177 m² Cell area 1965 m² Inverter Module area 2177 m² Cell area 1965 m² Original PVsyst database Operating Voltage 430-800 V Unit Nom. Power 50.0 kWac Inverter pack Nb. of inverters 6 units Total Power 300 kWac Pnom ratio 1.16 PV Array loss factors Global array res. 17 mOhm Loss Fraction 1.5 % at STC LID - Light Induced Degradation Global array res. 17 mOhm Loss Fraction 1.0 % at MPP Strings Mismatch	Horizon	Free Horizon			
PV Array Characteristics Si-poly Model YL310P-35b PV module Si-poly Model YL310P-35b Number of PV modules In series 17 modules In parallel 66 strings Total number of PV modules Nb. modules 1122 Unit Nom. Power 310 Wp Array global power Nominal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array operating characteristics (50°C) U mpp 558 V I mpp 557 A Total area Module area 2177 m² Cell area 1965 m² Inverter Module Solarmax 50TS SolarMax Original PVsyst database Manufacturer SolarMax Vunit Nom. Power 50.0 kWac Inverter Model Solarmax 50TS SolarMax Vunit Nom. Power 50.0 kWac Inverter pack Nb. of inverters 6 units Total Power 300 kWac Pnom ratio 1.16 PV Array loss factors Global array res. 17 mOhm Loss Fraction 1.5 % at STC LID - Light Induced Degradation Global array res. 17 mOhm Loss Fraction 0.3 %	Near Shadings	Linear shadings			
PV module Original PVsyst database Number of PV modules Si-poly Manufacturer In series Manufacturer Yingli Solar In parallel 66 strings 66 strings Total number of PV modules Nb. modules 17 modules In parallel 66 strings Array global power Nominal (STC) 348 kWp At operating cond. 311 kWp (50°C) Array operating characteristics (50°C) U mpp 558 V I mpp 557 A Total area Model Solarmax 50TS SolarMax Cell area 1965 m² Inverter Model Solarmax 50TS SolarMax 50.0 kWac Inverter pack Nb. of inverters 6 units Total Power 300 kWac Prom ratio 1.16 16 11.16 16 PV Array loss factors Thermal Loss factors Global array res. 17 mOhm Loss Fraction 1.5 % at STC LID - Light Induced Degradation Global array res. 17 mOhm Loss Fraction 1.0 % at MPP Strings Mismatch Loss Global array res. Loss Fraction 0.0 % 1.0 % 1.0 % Viring Ohmic Loss Loss Fraction 0.0 % 1.0 %	User's needs :	Unlimited load (grid)			
Inverter pack Nb. of inverters 6 units Total Power Pnom ratio 300 kWac 1.16 PV Array loss factors Internal Loss factor Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Wiring Ohmic Loss LID - Light Induced Degradation Module Quality Loss Module Mismatch Losses Strings Mismatch loss Incidence effect (IAM): User defined profile Global array res. 17 mOhm Loss Fraction 1.5 % at STC Loss Fraction 0* 20* 40* 60* 70* 75* 80* 85* 90*	PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C Total area Inverter Original PVsyst database	Manufacturer In series Nb. modules Nominal (STC)) U mpp Module area Model Manufacturer	Yingli Solar 17 modules 1122 348 kWp 558 V 2177 m ² Solarmax 50T SolarMax	Unit Nom. Power At operating cond. I mpp Cell area	310 Wp 311 kWp (50°C) 557 A 1965 m ²
Thermal Loss factor Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Wiring Ohmic Loss Global array res. 17 mOhm Loss Fraction 1.5 % at STC LID - Light Induced Degradation Module Quality Loss Loss Fraction 1.3 % Module Quality Loss Loss Fraction 1.0 % at MPP Strings Mismatch Losses Loss Fraction 1.0 % at MPP O* 20° 40° 60° 70° 75° 80° 85° 90°				Total Power	300 kWac
					0.0 10/0725 / 02/0
	Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradation Module Quality Loss Module Mismatch Losses Strings Mismatch loss	Global array res.		Loss Fraction Loss Fraction Loss Fraction Loss Fraction	1.5 % at STC 1.3 % -0.8 % 1.0 % at MPP
1.000 1.000 1.000 0.960 0.880 0.800 0.670 0.430 0.000	Thermal Loss factor Wiring Ohmic Loss LID - Light Induced Degradation Module Quality Loss Module Mismatch Losses Strings Mismatch Ioss Incidence effect (IAM): User defined p	Global array res.	17 mOhm	Loss Fraction Loss Fraction Loss Fraction Loss Fraction Loss Fraction	1.5 % at STC 1.3 % -0.8 % 1.0 % at MPP 0.10 %

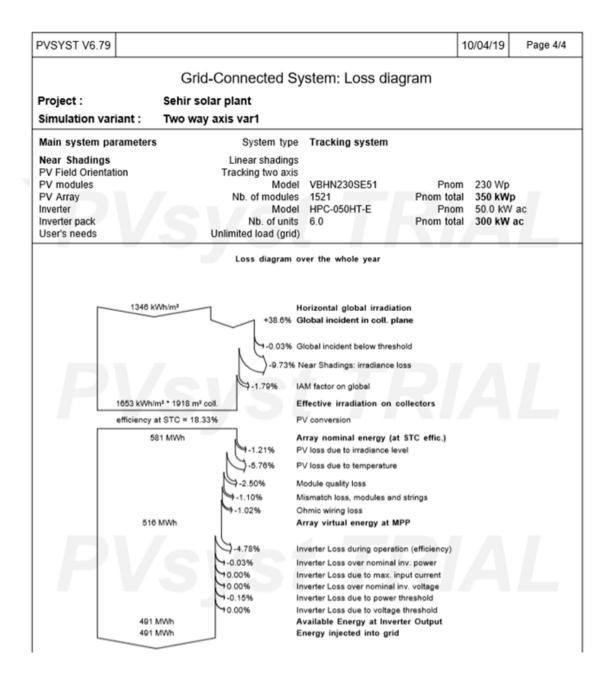


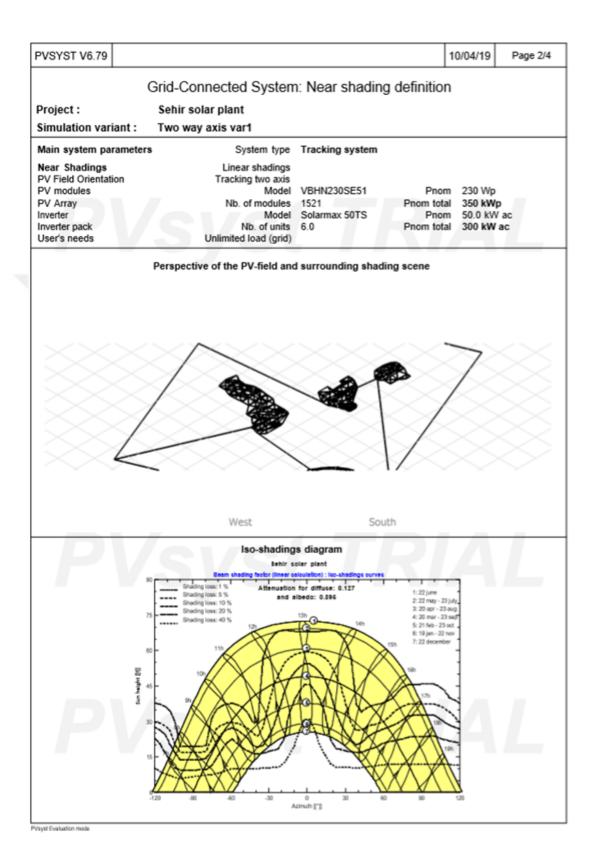


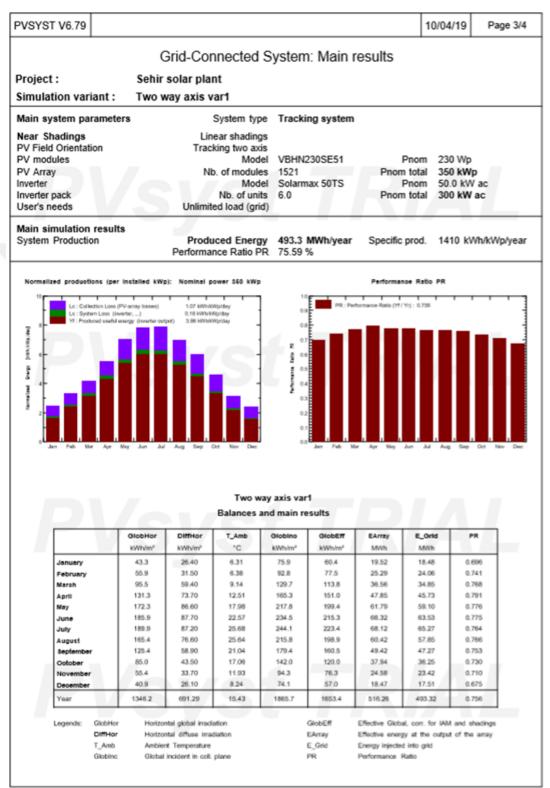
PVSYST V6.79			10	/04/19	Page 4/
	Grid-Connected	System: Loss dia	gram		
Project :	Sehir solar plant	-	-		
Simulation variant :	Two way axis var1				
Simulation variant .	Two way axis vari				
Main system parameter	s System t	type Tracking system			
Near Shadings	Linear shad				
PV Field Orientation	Tracking two		-		
PV modules		odel YL310P-35b ules 1122		310 Wp	
PV Array Inverter		odel Solarmax 50TS		348 kWp 50.0 kW a	c .
Inverter pack		inits 6.0		300 kW ac	-
User's needs	Unlimited load (
	Loss diagra	am over the whole year			
1348	kWh/m ²	Horizontal global irradiat	ion		
	+38.0	3% Global incident in coll. pla	ane		
		3% Global incident below thresh	ald		
	-0.7	73% Near Shadings: irradiance k	oss		
	9-1.80%	IAM factor on global			
1657 kWh	/m ² * 2177 m ² coll.	Effective irradiation on c	ollectors		
	at STC = 15.99%	PV conversion			
	577 MWh	Array nominal energy (at	STC effic.)		
	→-0.49%	PV loss due to irradiance lev			
	-8.58%	PV loss due to temperature			
	+0.75%				
	(+0.75%	Module quality loss	1		
	-1.30%	Module quality loss			
	-1.30% -1.10%	Module quality loss LID - Light induced degradat Mismatch loss, modules and			
51	-1.30%	Module quality loss	l strings		
51	-1.30% -1.10% -1.03%	Module quality loss LID - Light induced degradat Mismatch loss, modules and Ohmic wiring loss	l strings		
51	-1.30% -1.10% -1.03%	Module quality loss LID - Light induced degradat Mismatch loss, modules and Ohmic wiring loss	l strings PP		
51	1 MWh	Module quality loss LID - Light induced degradat Mismatch loss, modules and Ohmic wiring loss Array virtual energy at M	s strings PP on (efficiency)		
51	1 MWh	Module quality loss LID - Light induced degradat Mismatch loss, modules and Ohmic wiring loss Array virtual energy at M Inverter Loss during operation Inverter Loss over nominal inverter Loss due to max. in	I strings PP on (efficiency) inv. power iput current		
51	1 MWh	Module quality loss LID - Light induced degradat Mismatch loss, modules and Ohmic wiring loss Array virtual energy at M Inverter Loss during operati Inverter Loss over nominal i Inverter Loss over nominal in	I strings PP on (efficiency) inv. power iput current nv. voltage		
51	1 MWh	Module quality loss LID - Light induced degradat Mismatch loss, modules and Ohmic wiring loss Array virtual energy at M Inverter Loss during operati Inverter Loss over nominal i Inverter Loss over nominal i Inverter Loss over nominal i Inverter Loss due to max. In Inverter Loss due to power to	I strings PP on (efficiency) inv. power iput current nv. voltage threshold		
51	1 MWh	Module quality loss LID - Light induced degradat Mismatch loss, modules and Ohmic wiring loss Array virtual energy at M Inverter Loss during operati Inverter Loss over nominal i Inverter Loss over nominal in	I strings PP on (efficiency) inv. power iput current nv. voltage threshold		
483	1 MWh 1 MWh 1 MWh 1 0.00% 1 0.00%	Module quality loss LID - Light induced degradat Mismatch loss, modules and Ohmic wiring loss Array virtual energy at M Inverter Loss during operati Inverter Loss over nominal i Inverter Loss due to max. in Inverter Loss due to max. in Inverter Loss due to power 1 Inverter Loss due to power 1	i strings PP on (efficiency) inv. power iput current nv. voltage threshold threshold ter Output		

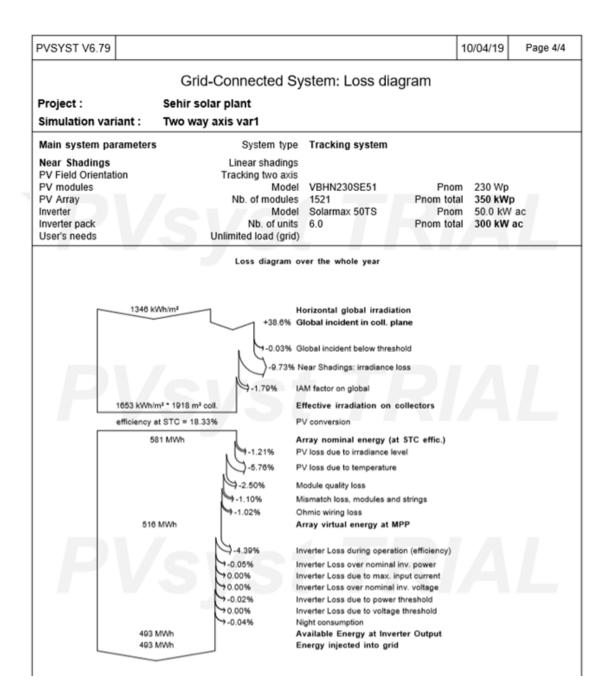

Grid-Con	nected Systen	n: Simulation	parameters	
Project : Sehir sol	ar plant			
Geographical Site	Cevizli		Country	Turkey
Situation Time defined as		40.90° N Time zone UT+3 0.20	-	29.16° E 0 m
Meteo data:		Meteonorm 7.2 (2	2004-2010), Sat=1	00% - Synthetic
Simulation variant : Two way	axis var1			
PVS	Simulation date	10/04/19 20h15	KI.	
Simulation parameters	System type	Tracking system	1	
Tracking plane, two axis Rotation Limitations	Minimum Tilt Minimum Azimuth	-	Maximum Tilt Maximum Azimuth	
Trackers configuration	Nb. of trackers Tracker Spacing	2.20 m	Identical arrays Collector width I cov. Ratio (GCR)	
Models used	Transposition	Perez	Diffuse	Perez, Meteonorm
Horizon	Free Horizon			
Near Shadings	Linear shadings			
User's needs :	Unlimited load (grid)			
PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area	Manufacturer In series Nb. modules Nominal (STC) U mpp Module area Model	16 modules 1520 350 kWp 642 V 1916 m ² Sunny Tripower	Unit Nom. Power At operating cond. I mpp Cell area	326 kWp (50°C) 508 A 1666 m ²
Original PVsyst database Characteristics	Manufacturer Operating Voltage		Unit Nom, Power	60.0 kWac
Inverter pack	Nb. of inverters		Total Power Pnom ratio	360 kWac 0.97
PV Array loss factors				
Thermal Loss factor	Uc (const)	20.0 W/m ² K	Uv (wind)	0.0 W/m²K / m/s
Wiring Ohmic Loss Module Quality Loss Module Mismatch Losses	Global array res.		Loss Fraction Loss Fraction Loss Fraction	1.5 % at STC 2.5 %
Strings Mismatch Losses Incidence effect, ASHRAE parametriza	tion IAM =	1 - bo (1/cos i - 1	Loss Fraction	0.10 %






PVSYST V6.79				10/04/19	Page 1
Grid-Con	nected Systen	n: Simulation p	parameters		
Project : Sehir sol	ar plant				
Geographical Site	Cevizli		Country	Turkey	
Situation Time defined as	Latitude Legal Time Albedo	Time zone UT+3	Longitude Altitude	29.16°8 0 m	E
Meteo data:	Cevizli		004-2010), Sat=	100% - Syr	thetic
Simulation variant : Two way	axis var1				
PVS	Simulation date	10/04/19 20h13	KI		
Simulation parameters	System type	Tracking system			
Tracking plane, two axis Rotation Limitations	Minimum Tilt Minimum Azimuth	0° -120° Ma	Maximum Til aximum Azimuth		
Trackers configuration	Nb. of trackers Tracker Spacing	2.20 m	Identical arrays Collector width cov. Ratio (GCR	1.01 m	
Models used	Transposition	Perez	Diffuse	Perez, M	Meteonorm
Horizon	Free Horizon				
Near Shadings	Linear shadings				
User's needs :	Unlimited load (grid)				
PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area Inverter Original PVsyst database Characteristics	HIT Model Manufacturer In series Nb. modules Nominal (STC) U mpp Module area Model Manufacturer Operating Voltage	Panasonic 9 modules 1521 U 350 kWp At 361 V 1918 m ² HPC-050HT-E Hyundai	In paralle Jnit Nom. Powe operating cond. I mpp Cell area Jnit Nom. Powe	r 230 Wp 326 kWp 903 A 1667 m ²	p (50°C)
Inverter pack	Nb. of inverters	6 units	Total Powe Pnom ratio		ac
PV Array loss factors					
Thermal Loss factor	Uc (const)		Uv (wind		n ² K / m/s
Wiring Ohmic Loss Module Quality Loss Module Mismatch Losses Strings Mismatch loss	Global array res.	6.5 mOhm	Loss Fraction Loss Fraction Loss Fraction Loss Fraction	1.0 % a	
Incidence effect, ASHRAE parametriza	tion IAM =	1 - bo (1/cos i - 1)	bo Param	0.05	
Vsyst Evaluation mode					





				10/04/19	Page 1/
Grid-Cor	nected System	n: Simulation	parameters		
Project : Sehir so	ar plant				
Geographical Site	Cevizli		Country	Turkey	
Situation Time defined as	Albedo	Time zone UT+3 0.20		e 0 m	_
Meteo data:	Cevizli	Meteonorm 7.2 (2	004-2010), Sat=	100% - Syr	nthetic
Simulation variant : Two way	axis var1				
PVS	Simulation date	10/04/19 20h11		74	
Simulation parameters	System type	Tracking system			
Tracking plane, two axis Rotation Limitations	Minimum Tilt Minimum Azimuth	0° -120° M	Maximum Til aximum Azimuth		
Trackers configuration	Nb. of trackers Tracker Spacing	2.20 m	Identical arrays Collector width cov. Ratio (GCR)	n 1.01 m	
Models used	Transposition	Perez	Diffuse	e Perez, I	Meteonorm
Horizon	Free Horizon				
Horizon Near Shadings	Free Horizon Linear shadings				
			K	A	
Near Shadings	Linear shadings Unlimited load (grid) HIT Model Manufacturer In series Nb. modules Nominal (STC) U mpp Module area	13 modules 1521 U 350 kWp Al 521 V 1918 m ² Solarmax 50TS SolarMax 430-800 V	In paralle Unit Nom. Power t operating cond. I mpp Cell area Unit Nom. Power Total Power Pnom ratio	r 230 Wp 326 kW 625 A 1667 m r 50.0 kV r 300 kW) p (50°C) z Wac
Near Shadings User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array operating characteristics (50°C) Total area Inverter Original PVsyst database Characteristics Inverter pack	Linear shadings Unlimited load (grid) HIT Model Manufacturer In series Nb. modules Nominal (STC) U mpp Module area Model Manufacturer Operating Voltage	Panasonic 13 modules 1521 1 350 kWp At 521 V 1918 m² Solarmax 50TS SolarMax 430-800 V	Unit Nom. Power t operating cond. I mpp Cell area Unit Nom. Power Total Power	r 230 Wp 326 kW 625 A 1667 m r 50.0 kV r 300 kW) p (50°C) z Wac
Near Shadings User's needs : PV Array Characteristics PV module Original PVsyst database Number of PV modules Total number of PV modules Array global power Array global power Array operating characteristics (50°C) Total area Inverter Original PVsyst database Characteristics	Linear shadings Unlimited load (grid) HIT Model Manufacturer In series Nb. modules Nominal (STC) U mpp Module area Model Manufacturer Operating Voltage	Panasonic 13 modules 1521 1 350 kWp At 521 V 1918 m² Solarmax 50TS SolarMax 430-800 V	Unit Nom. Power t operating cond. I mpp Cell area Unit Nom. Power Total Power	r 230 Wp 326 kW 625 A 1667 m r 50.0 kV r 300 kW 5 1.17) p (50°C) z Wac

Bibliography

- [1] Fixed and track systems available at. URL https://www.researchgate.net/ publication/331532305_A_Study_on_Implementation_of_PV_Tracking_for_ Sites_Proximate_and_Away_from_the_Equator/figures?lo=1.
- [2] Experimental performance comparison of a 2-axis sun tracking system with fixed system under the climatic conditions of düzce, turkey. Turk J Elec Eng & Comp Sci, 24:4383-4390, 2016.
- [3] All earth solar. Solar comparison: Dual-axis tracker vs. fixed roof mount, 2016. URL https://cdn2.hubspot.net/hubfs/415283/Documents/Case% 20Studies/Case_Study_Fixed_vs_Tracking_Comparison.pdf.
- [4] S. Stephen and MJ. Shiao. Solar pv balance of system (bos) markets: Technologies, costs and leading companies, 2013-2016. Solar Market Research, GTM Research, 01 November 2012. URL https://www.greentechmedia.com/articles/ read/solar-balance-of-system-to-track-or-not-to-track-part-i.
- [5] Real time array output available at. URL https://www.builditsolar.com/ Projects/PV/EnphasePV/Shading.htm.
- [6] Proposed grid location available at. URL https://forum.donanimhaber.com/ istanbul-sehir-universitesi-ogrenci-birligi-2017-girisliler--78510721.
- [7] Surroundings elevations available at. URL https://www.google.com/maps/@40. 9073139,29.1518747,1399m/data=!3m1!1e3.
- [8] Islands elevations available at. URL https://www.google.com/maps/@40. 8622151,29.1117786,8510m/data=!3m1!1e3.
- [9] Central inverter available at. URL https://ourenergyfuture.org.au/ choosing-the-right-solar-system/.

- [10] Solar panel row spacing available at. URL https://www.slideserve.com/fineen/ pv-mounting-systems.
- [11] Iam factor available at. URL http://files.pvsyst.com/help/iam_loss.htm.
- [12] UNFCCC and V. Adoption of the paris agreement. i: Proposal by the president (draft decision). United Nations Office, Geneva (Switzerland), 2015.
- [13] H. Le Treut, R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson, and M. Prather. Historical overview of climate change. *Climate Change* 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007.
- [14] T. Gopal Nath and M. Rajeev Kumar. Advanced renewable energy sources. Royal Society of Chemistry, 2012.
- B. John and S. Michael. Introduction to photovoltaic system design. Jones & Bartlett Publishers, 2011.
- [16] Redding and Kurtis. The photoelectric effect.
- [17] H. Harald and B. Frank. Integrating global energy and climate governance: The changing role of the international energy agency. *Energy Policy*, 87:229-239, 2015.
- [18] B. Raul, M. Francisco, FG. Montoya, G. Consolacion, A. Alfredo, and G. Julio. Optimization methods applied to renewable and sustainable energy: A review. *Renewable and sustainable energy reviews*, 15(4):1753–1766, 2011.
- [19] Solar FlexRack. Single-axis and dual-axis tracking: Advantages and disadvantages, November 21, 2013. URL http://solarflexrack.com/ single-axis-and-dual-axis-tracking-advantages-and-disadvantages/.
- [20] Y. Yingxue, H. Yeguang, G. Shengdong, and D. Jinguang. A multipurpose dual-axis solar tracker with two tracking strategies. *Renewable Energy*, 72:88–98, 2014.
- [21] H. Jason and S. Kailyn. Photovoltaic effect. *Energy education*, August 26, 2015.
- [22] Solar cell cross section available at. URL https://www.valuewalk.com/2017/02/ solar-panels-explained/.
- [23] Bee Bee Jump. How is solar energy used today, 2019, October 15. URL http: //www.beebeejump.com/2018/10/15/1339/.

- [24] Free Map Tools. Elevation finder map tool, 9th April 2019. URL https://www. freemaptools.com/elevation-finder.htm.
- [25] Yingli pv model specification available at. URL http://sepbatteries.com/media/ add_info/YGE_72_Cell_Series_EN.pdf.
- [26] Panasonic pv model specification available at. URL https://www.manualslib.com/ manual/1070164/Panasonic-Vbhn240se10.html#manual.
- [27] Sma inverter model specification available at. URL https://www.sma.de/en/ products/solarinverters/sunny-tripower-60.html.
- [28] Hyundai inverter model specification available at. URL http://www. solarwholesale.co.za/8P_SolarInverter_ENG_201212.pdf.
- [29] Solarmax inverter model specification available at. URL http://www.sonel.si/ UserFiles/File/TS_Product_BR.pdf.
- [30] Mangan, D. Suzi, and O. Gül. Energy and cost analyses of solar photovoltaic (pv) microgeneration systems for different climate zones of turkey. *Energy and Power Engineering*, 8:117–129, 2016.
- [31] Keisan. Azimuth & altitude finder, 2009. URL https://keisan.casio.com/exec/ system/1224682331.
- [32] Clean energy council. Techinfo pv array row spacing, March, 2010. URL http://www.solaraccreditation.com.au/dam/ cec-solar-accreditation-shared/technical-information/fact-sheets/ TechInfo-PV-Array-Row-Spacing-Mar-2010.pdf.
- [33] PVsyst 6 Help Content. Iso-shading diagram, 1994-2018. URL http://files. pvsyst.com/help/near_shadings_isoshadings.htm.
- [34] PVsyst 6 Help Content. Performance ratio, 1994-2018. URL http://files. pvsyst.com/help/performance_ratio.htm.
- [35] C. Subhash, A. Purohit, S. Anshu, SP. Nehra, MS. Dhaka, Dhaka, and et al. A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature. *Energy Reports*, 1:104–109, 2015.

- [36] M. Khalis, R. Masrour, G. Khrypunov, M. Kirichenko, D. Kudiy, and M. Zazoui. Effects of temperature and concentration mono and polycrystalline silicon solar cells: extraction parameters. In *Journal of Physics: Conference Series*, volume 758, page 012001. IOP Publishing, 2016.
- [37] PVsyst 6 Help Content. Array mismatch losses, 1994-2018. URL http://files. pvsyst.com/help/mismatch_loss.htm.
- [38] PVsyst 6 Help Content. How to define the "module quality loss" and the "lid" parameter ?, 1994-2018. URL https://forum.pvsyst.com/viewtopic.php?t=46.
- [39] PVsyst 6 Help Content. Array incidence loss (iam), 1994-2018. URL http://files. pvsyst.com/help/iam_loss.htm.
- [40] Andrew Marsh. Pd: 3d sun-path, 2019. URL http://andrewmarsh.com/apps/ staging/sunpath3d.html.
- [41] Solar Edge. Inverter dc oversizing guide, July, 2016. URL https://www.solaredge. com/sites/default/files/inverter_dc_oversizing_guide.pdf.
- [42] K. Onur. Panels, inverters and operation expenses prices. unpublished, 2019.
- [43] A. Bora. Asst.prof. of civil engineering. Istanbul Schir University.
- [44] D. Selcuk. Steel design pricing. unpublished, May, 2019. URL https://www. erbayaluminyum.com.tr.
- [45] Electricity price in turkey available at. URL https://www.globalpetrolprices. com/Turkey/electricity_prices/.
- [46] L. Dan. Solar grid parity-[power solar]. Engineering & Technology, 4(9):50-53, 2009.
- [47] Degradation rate for yingli pv model available at. URL https://www. renewableenergyhub.co.uk/main/solar-panels/yingli-solar-panels/.
- [48] Hit solar panels available at. URL https://www.azocleantech.com/article. aspx?ArticleID=603.
- [49] M. Hadis, A. Amir, and M. Roger. Annual performance comparison between tracking and fixed photovoltaic arrays. 06 2016.

- [50] A. Tallal, K. Waqas, and S. Imran. Comparison of single and dual axis tracker controlled with fixed tilt solar pv system in pakistan. International Journal on Power Engineering and Energy, 9(9):832-837, April, 2009.
- [51] R. Amelia, YM. Irwan, WZ. Leow, M. Irwanto, I. Safwati, and M. Zhafarina. Investigation of the effect temperature on photovoltaic (pv) panel output performance. *International Journal on Advanced Science, Engineering and Information Technol*ogy, 6(5):682–688, 2016.
- [52] Z. Xingxing, S. Jingchun, X. Peng, Z. Xudong, and X. Ying. Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions. *Applied energy*, 135:20–34, 2014.
- [53] N. Sendhil, M. Tapas, K. Matty, and W. Simon. Numerical investigations of solar cell temperature for photovoltaic concentrator system with and without passive cooling arrangements. *International journal of thermal sciences*, 50(12):2514–2521, 2011.