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ABSTRACT

DEVELOPING DE-NOISING ALGORITHM IMPROVED WITH LEAST MEAN

SQUARES FILTER FOR AUTONOMOUS-VEHICLES LIDAR IN SNOWFALL

The environmental perception is major requirement for autonomous vehicles. While

the detection of the environment in autonomous vehicles is provided by LIDAR, cam-

era and radar, some adverse environmental conditions deteriorate this detection process.

Particularly when driving in heavy snow, the snowflakes reduce the vision quality by

preventing the images of the objects behind them. In this study, for the LIDAR sensor

the De-noising Algorithm is used which is improved by Least Mean Squares (LMS)

Filter in order to purify the LIDAR data in snowy weathers. Furthermore, the positions

of the objects behind the snowflakes, which are not shown, are estimated by referring

the data recorded earlier. In order to develop this algorithm, the LIDAR sensor data in

snowy weather is recorded via the Nvidia Jetson TX1 developer platform and the Robot

Operating System (ROS). An algorithm is developed to detect sudden distance changes

due to snowflakes in sensor data using a variable threshold value. The proposed algo-

rithm is performed by real-time tests on an autonomous vehicle using an artificial snow

machine. The existing median filter results are compared with the results of the devel-

oped algorithm. The experimental results show that the proposed algorithm presents

99% de-noising success even under heavy snowfalls.

Keywords: De-noising, Least Mean Squares Filter, Adverse Weather Conditions, LI-

DAR, Autonomous Vehicles
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KISA ÖZET

OTONOM ARAÇLAR’DA LIDAR İÇİN KAR YAĞIŞINDA EN KÜÇÜK

ORTALAMALI KARELER FİLTRESİYLE GÜÇLENDİRİLMİŞ GÜRÜLTÜ

GİDERİCİ ALGORİTMA GELİŞTİRİLMESİ

Otonom araçlar için çevresel algı ana gereksinimdir. Otonom araçlarda çevrenin tespiti

LIDAR, kamera ve radar tarafından sağlanırken, bazı olumsuz çevresel koşullar bu

tespit sürecini kötüleştirir. Özellikle şiddetli kar yağışı sırasında kar taneleri, arkaların-

daki nesnelerin görüntülerini engelleyerek görüş kalitesini düşürür. Bu çalışmada LI-

DAR sensörü için, LIDAR verilerini karlı havalarda arındırmak amacıyla En Küçük

Ortalamalı Kareler Filtresi ile güçlendirilen gürültü giderici algoritma geliştirilmiştir.

Ayrıca, kar taneleri arkasındaki gösterilmeyen nesnelerin pozisyonları daha önce kayde-

dilen verilere bakılarak tahmin edilmektedir. Bu algoritmayı geliştirmek için, karlı

havalarda LIDAR sensör verileri Nvidia Jetson TX1 geliştirici platformu ve Robot

İşletim Sistemi (ROS) ile kaydedilmektedir. Sensör verilerindeki kar tanelerinin ne-

den olduğu ani mesafe değişikliklerini tespit etmek için değişken bir eşik değeri kul-

lanılarak algoritma geliştirilmiştir. Önerilen algoritma yapay bir kar makinesi kul-

lanılarak otonom bir araç üzerinde gerçek zamanlı testlerle denenmiştir. Mevcutta bulu-

nan median filtre sonuçlarıyla geliştirilen algortimanın sonuçları kıyaslanmıştır. Deney-

sel sonuçlar, önerilen algoritmanın yoğun kar yağışı altında bile %99 gürültü azaltma

başarısı gösterdiğini göstermektedir.

Anahtar Kelimeler: Gürültü Giderici, En Küçük Ortalamalı Kareler Filtresi, Olumsuz

Hava Koşulları, LIDAR, Otonom Araçlar
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I. INTRODUCTION

In these days, autonomous cars are the most exciting and important topic of the automo-

tive industry. It is expected that the future cars will be autonomous, which don’t need

to any human for vehicle operations. In this way, ninety percent of the traffic accidents

caused by human error and deaths in these accidents will be avoided. Additionally the

traffic congestion can be prevented, as well as the substantialreduction in fuel consump-

tion and environmental pollution caused by vehicles will be achieved. In addition, it is

thought that with driverless cars, which enables the elderly or disabled people to move

more easily, may have effects that facilitate social life and bring balance.

Looking at the history of autonomous vehicles, the first radio-controlled vehicle is in-

troduced in 1925 by a company called Houdina Radio Control. Then, in 1956, the

Firebird vehicle of General Motors went on the highway automatically, reading the

signals from the radio transmitters installed on the road. After a short period of two

years, the Chrysler company Imperial model vehicle for the first time is used cruise

control. The first models that could travel on their own are introduced in the 1980s.

The first vehicle which has applied computer vision, sensors and high-speed proces-

sors to create vehicles that drive themselves, is built in 1984 with the Navlab and ALV

projects of Carnegie Mellon University. In the 90s, technological innovations such as

anti-lock braking system (ABS) which prevents slipping and skidding during braking,

cruise control system that keeps the vehicle constant at the determined speed in 2000s

and automatic parking assistant are developed. These are technologies that supported

drivers, but systems where cruise control was still human [1].

Since 1987, numerous large companies and research organizations have worked on

driverless vehicles including Mercedes-Benz, General Motors, Bosch, Nissan, Toyota,

Volvo, Mitsubishi, Renault, Audi, Peugeot, Tesla Motors and Google each exhibited

different prototypes [2–10]. In 2002, a competition organized by the American DARPA
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agency began to provide funding for autonomous vehicles [11]. In 2009, Google an-

nounced the launch of its first driverless vehicle project [12]. In June 2010, a Linea

model vehicle has been equipped with a LIDAR, an electric steer, brake and an elec-

tronic card to control the throttle through CAN Bus. An obsticle avoidance program

were developed and this autonomous vehicle were tested successfully at Okan Univer-

sity Campus in June 2011 [13]. In July 2013, Vislab demonstrated BRAiVE, a vehicle

that moved autonomously on a mixed traffic route open to public traffic [14].

Autonomous vehicles will bring some dangers and disadvantages with the ease and

advantages it brings to human life. The vehicles will need to be connected to the internet

to communicate with other vehicles (V2V) and infrastructure protocol (V2I) and this

will facilitate the means of hacking [15]. Moreover, it will be a great convenience for

terrorist attacks becaouse of their full autonomy and remote control capability.

Apart from these, there are still some problems about ethical and moral reasoning.

There are, for example, contradictions as to whether the vehicle will hit the bus in

an inevitable collision or if it breaks in another direction, risking possible pedestrians

or passengers in the vehicle. Even taking a decision on an imminent fatality between

two animals is very important moral issue.

In 2016, the Google Driverless Vehicle made its first accident [16]. In the same year, a

Tesla car crashed while in driverless mode and the driver lost his life [17]. This is the

first fatal accident involving a driverless vehicle. However, an incident in 2018 was the

first accident in which a driverless vehicle caused the death of a pedestrian [18].

In recent years, autonomous vehicles capable of traveling without human intervention

in automotive technology have been the last point in the light of intelligent systems

and have been able to successfully accomplish almost all tasks in controlled environ-

ments.
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Thanks to the automatic control systems in autonomous vehicles in good weather con-

ditions, it can detect road, traffic signs, traffic flow and environment without the need of

driver and travel without the intervention of the driver. Autonomous vehicles can detect

objects around them using technologies and techniques such as radar, LIDAR, camera,

GPS, odometer, computer vision. But the most challenging situation for autonomously

moving vehicles is adverse weather conditions. Those conditions like foggy, snowy,

rainy corrupt the data from the sensors and causes noise. Sensors that allow autonomous

vehicles to move on their own in adverse weather conditions, as with the same people,

have difficulty in providing accurate data.

1.1. Literature Review

With the progress of technology and the introduction of autonomous vehicles into

our lives more and more, the number of academic studies on the performance of au-

tonomous vehicles is increasing. Even when driving in a man-controlled vehicle, ad-

verse weather conditions are very challenging and dangerous to human vision. This

also applies to autonomous vehicles. Especially in adverse weather conditions, many

autonomous vehicles use multiple sensors to detect obstacles and support the naviga-

tion system such as cameras, LIDAR, radar, sonar. The performance of these sensors in

weather conditions such as rain, fog, snow and hail is not at the desired level and this

situation makes the autonomous movement ability very difficult. Therefore, especially

for autonomous vehicles, it is important to study on improving the performance of these

sensors. In this section, studies on improving the performance of sensors used in au-

tonomous vehicles in adverse weather conditions are examined in the literature.

A comprehensive literature survey on the effects of bad weather on sensors commonly

used in autonomous vehicles such as LIDAR, radar, camera and GPS is provided in

[19]. A useful study has been made to summarize the responses of each sensor in

different weather conditions and summarize the studies on these subjects. They also
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characterized the effects of rain on millimeter-wave (mm-wave) radar.

In [20], LIDAR can identify objects superior to other sensors, especially in adverse

weather. In this study, a neural network technique which is used to detect the weather

by fusion with LIDAR and camera sensors is proposed in order to automatically adjust

the vehicle speed depending on the weather.

Upon the effect of LIDAR sensor on weather conditions, theoretical study is analyzed

in [21] based on LIDAR sensor and fog, snow, rain weather phenomena based on physi-

cal principles and prediction of effects. In this theoretical study, mathematical formulas

of the extinction coefficients of LIDAR rays and the varying backscatter coefficients in

adverse weather conditions are presented according to the distribution of particle diam-

eters and snowfall/rainfall precipitation ratios for each weather situation. In addition,

electro-optical laser radar target simulator is produced to test sensor performances and

laser radar performance in foggy environment is simulated.

In [22], order to give a vision to the studies related to autonomous vehicles and adverse

weather conditions, various sensors are operated in an outdoor environment for a long

time to understand what is happening in adverse weather conditions with the test results

are emphasized. In general, radar is used for driving functions, optical sensors are used

for distances of 100-400 meters, and at least two distance sensors, such as radar and

LIDAR, have to be used.

Ultra-Wideband (UWB) Radar and LIDAR sensors are compared with the tests in [23].

Tests are performed in artificial fog environment by mounting LIDAR and UWB Radar

on the robot. When the results are analyzed, in dense foggy environments it is observed

that the vision of LIDAR is reduced to less than 1 meter and UWB radar has the same

vision like in the clean air. UWB Radar has been advocated that it is not affected

by adverse weather conditions and that LIDAR is not efficient. In the open air, it is

emphasized that UWB Radar has less resolution than LIDAR and that LIDAR will
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always provide more sensitivity.

2D LIDAR data is applied in five and seven dimensional Median Filters in two stages,

from right to left and in time space in polar space and a study that is claimed to be suc-

cessful [24]. In this study, it is argued that the distribution of the snowflakes detected

by gamma distribution can be explained. Information is also given on how LIDARs,

pulsed laser scanners, detect snowflakes. LIDAR sends laser pulses and scattering oc-

curs when a laser beam hits snowflakes. Some of the emitted light is reflected back to

the detector, and if the pulse is strong enough, the detector is triggered and the range

can be calculated.

In adverse weather conditions, the quality of the sensors and the detection conditions

are also very important. In [25], four different LIDAR sensors are tested during six

different snowfalls and their behavior is characterized. It is emphasized that one of

the most important features among sensors is the echo number and the other is the

wavelength of the laser beams of the sensors.

On the snow and wet road surfaces, the LIDAR point cloud is disrupted by the re-

flection of the LIDAR rays hitting the wet ground. In [26] and [27], the structure and

density modeling of the map images in the vehicle location is reconstructed the accumu-

lated LIDAR image using Principal Component Analysis (PCA). Also, the edge profile

matching method is used to reduce the effects of snow lines on the edge profiles of LI-

DAR and map images, and to estimate the lateral position of the vehicle and to reduce

its lateral uncertainty. When testing these methods on a real car, it has been argued that

the lateral error is reduced to 20 cm when traveling at a speed of 60 km / h and the error

is reliable for autonomous movement.

Using 3D point cloud data from 3D LIDAR, a study to filter snow noise in snowy

weather is investigated in [28]. Existing 2D and 3D noise reduction studies and filters

are explained in detail and even a 2D filter has been tested as an example, due to the
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small number of studies performed in the literature to remove snow noise from LIDAR

data during snowfall. It is argued that Radius Outlier Removal (ROR) filter is the best

cleaning filter for snow noise in 3D point cloud filters which is the main focus of the

article. However, it has been found that ROR filter also eliminates important environ-

mental features at long distances, i.e. objects become sparse as they move away from

LIDAR. This is considered to be a major problem in autonomous driving, especially

since LIDAR is needed for localization, object detection and planning. As a result, the

Dynamic Radius Outlier Removal (DROR) filter algorithm is developed. It has also

been advocated that the DROR filter eliminates more snowflake after three meters from

LIDAR compared to the ROR filter.

The electronic Signal to Noise Ratio (SNR) has performed using formulas of collected

power from the background (using LIDAR equation), detected photocurrent signal in-

tensity out of detector and responsivity of detector [29]. Also, extinction and backscat-

tering coefficients of adverse weathers has analyzed which are (5x10−3 to 1, 5x10−3

m−1) for fogs, (10−3 to 5x10−3 m−1) for snowfalls and under (10−3 m−1) for rain-

falls.

LIDAR is an optical sensor for detecting the distance or surface of the objects around it.

LIDAR uses light differently than radar, which operates in a similar way and uses radio

waves. The method used is to estimate the distance after sending pulsed laser light to

the target, measuring the reflected pulses with a sensor, and with respect to the flight

time of the light. 3D LIDARs are often used for three-dimensional scanning and map-

ping. LIDAR’s are characterized by their scan frequency (maximum scanning speed),

horizontal angle (maximum scanning angle), range (maximum measurement distance),

resolution (minimum angle between two consecutive measurements) and number of

layers (number of simultaneous scanning planes) [30].

In [31] and [32], LIDAR has a much smaller wavelength than radar. This shows that
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LIDAR has a higher spatial resolution, which means that it can perform 3D scanning of

targets such as buildings, bridges and rock, unlike radar. Another advantage of LIDAR

is that laser beams can detect targets at very long distances with very low error rates.

The disadvantage of such a low wavelength is that it is difficult to detect small water

vapor particles in adverse weather conditions such as fog, snow, rain and snow.

A study to detect the presence of rain or snow is given in [33]. In this study, Gauss Mix-

ture Model is used to differentiate the foreground of dynamic weather events from the

background. The Histogram of Orientations (HOS) of rain or snow streaks is calculated

based on photometry and size to detect rain in the foreground extracted.

Especially for snowfall, the snowfall rendering methods in simulation environment are

presented in [34–37] by considering their physical properties.

In [38], it is argued that the snowflakes are destroyed by using Median Filter according

to the speed and size of the moving particles from the images recorded through the

camera. It is reported that the study also destroyed small and moving objects and failed

in heavy snowfall.

In order to eliminate Gaussian, impulse, speckle noises in the reflected signal from the

target, an mean filter algorithm that fused LIDAR intensity and range data is investi-

gated in [39].

The λ/µ filtering algorithm, which uses the Mean Shift method to parse the full wave-

form data of LIDAR, is proposed in [40].

A new noise reduction algorithm for Adaptive Mean Filter (ADMF) has been developed

for the full waveform LIDAR signal [41]. According to the tests performed in the study,

the high contrast and signal-to-noise ratio of the ADMF has been advocated to be more

efficient than the median and mean filters and very suitable for reducing noise.
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A universal de-noising algorithm for LIDAR has been studied on the basis of signal

segmentation and reconstruction [42].

The properties, theoretical analysis and applications of the median filter are mentioned

in [43–45]. The median filter is used to eliminate salt and pepper noises in the image

and averaged neighboring pixels to improve in [46]. Other studies on the median filter,

as an image-processing technique, where noise is tried to be eliminated and compared

to other filters are shown in [47] and [48]. The vector median filter (VMF) is described

in [49] and the noise reduction method using VMF is presented in [50].

In addition, a number of studies are performed that use and describe the least mean

squares filter [51–53]. The adaptation to very quick changes in signal characteristics

is described in [54] to cancel noise and predict future implementation. The local least

squares approach to scattered data for the linear system equations and derived weighted

least squares (WLS) and moving least squares (MLS) methods are presented in [55].

Also a weighted least squares algorithm used for time-of flight depth image de-noising

is shown in [56].

1.2. Hypothesis

According to the studies conducted in the literature, there are some published material

that characterize the particles of weather events such as fog, snow, rain and hail in

adverse weather conditions. However, there are very few studies aimed at improving

sensor vision, especially in these weather conditions. In some articles, median filter has

been used to improve sensor data. However, the median filter is particularly effective

in improving noise in a single frame or picture. It will distort the image too much in an

environment with real-time and moving objects. While most of the studies examined

focused on snow, it is found that it is mostly worked under light snowfall and from a

fixed point.
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In this thesis, based on the aforementioned issues, De-noising algorithm improved by

Least Mean Squares Filter for autonomous vehicles in snowfall, has been developed.

This algorithm can be used effectively in a vehicle under heavy snowfall and in real

time, can remove noise such as snowflakes and try to estimate objects which are behind

the snowflakes while removing these noises.

1.3. Outline of Thesis

The thesis is organized as follows. In the second chapter, the filters and the methodology

used to develop the de-noising algorithm are described. In addition, the necessary tools

for testing the developed algorithm are mentioned. In the third chapter, the experimental

results on a autonomous vehicle are mentioned. Finally, chapter four describes the

conclusion.



II. DE-NOISING ALGORITHM DEVELOPMENT &
METHODOLOGY

To study on noise-causing snowflakes, data collection is required using a LIDAR sen-

sor in snowy weather. In order to collect data from LIDAR, required to the Nvidia

Jetson TX1 developer kit, which is frequently used in autonomous vehicles and runs

autonomous machine software quickly, with less power, needed performance and power

efficiency. Robot Operating System (ROS) platform is used to communicate with the

sensor and hardware and to record data from LIDAR connected to the Jetson card. The

data recorded with ROSBAG command is worked on MATLAB and filtered. In Fig.

2.1., the diagram describing these operations is shown.

SICK	
LMS111-10100

NVIDIA
JETSON	TX1

ROBOT
OPERATING	SYSTEM

MATHWORKS
MATLAB

Fig. 2.1.: Connection of Tools

2.1. Tools

2.1.1. Laser Imaging Detection and Ranging

LIDAR is a device for measuring distance using laser beams. The range calculation to

measure how far laser beam has travelled to and from an object, is given in Equation

(2.1) from [57].

Distance =
(Speed of F light) ∗ (Time of F light)

2
(2.1)

In this study, SICK LMS111-10100 (shown in Fig. 2.2.) are used as a LIDAR, which

is designed to work both in indoor and outdoor environment [58]. The LMS111 is a

2D laser measurement sensor that scans its surroundings. Using a laser diode and a
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rotating mirror, it emits infrared laser pulses with a wavelength of 905 nm. It measures

reflected laser pulses within the angular range of 270°. Information on the features and

performance of the LMS111-10100 [59] are given in Table 2.1. and Table 2.2.

Fig. 2.2.: LIDAR (SICK, LMS111-10100)

Table 2.1.: Features of LMS111-10100

Application Outdoor
Light source Infrared (905 nm)
Laser class 1 (IEC 60825-1:2014, EN 60825-1:2014)

Aperture angle Horizontal 270°
Scanning frequency 25 Hz / 50 Hz
Angular resolution 0.25°/ 0.5°

Heating Yes
Working range 0.5 m ... 20 m
Scanning range 18 m (At 10% remission), 20 m (At 90% remission )

Amount of evaluated echoes 2
Fog correction Yes

Table 2.2.: Performance of LMS111-10100

Response time ≥ 20 ms
Detectable object shape Almost any

Systematic error ± 30 mm
Statistical error 12 mm

Integrated application Field evaluation with flexible fields
Number of field sets 10 fields

Simultaneous evaluation cases 10
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The LMS111 sends a laser pulse to each degree of scanning (0.25° or 0.5° depending

on resolution) and waits for it to be reflected back. If the laser pulse strikes an object

within the measuring range (20 meters), it is reflected back to the loss. LIDAR measures

the time between the outgoing and incoming pulses and determines the distance of the

object according to this difference. Working range diagram of LMS111 [59] shown in

Fig. 2.3.

Fig. 2.3.: Working Range Diagram of LMS111-10100

The LMS111 can analyze two echo signals for each measuring beam. This enables it

to provide reliable measurement results at all times even if it is behind glass or exposed

to adverse weather and environmental influences outdoors [60]. Filters providing this

Multi-Eco Technology are switched off for study.

2.1.2. NVIDIA - Jetson TX1 Developer Kit

Nvidia Jetson TX1 Developer Kit shown in Fig. 2.4. which is a full-featured devel-

opment platform for artificial intelligence programming designed for high performance

and speed. Technical specification of Jetson TX1 [61] is given in Table 2.3.
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Fig. 2.4.: Nvidia Jetson TX1 Developer Kit

Table 2.3.: Technical Specifications of Nvidia Jetson TX1 Developer Kit

GPU NVIDIA Maxwell with 256 NVIDIA CUDA Cores
CPU Quad-core ARM Cortex A57 MPcore

Memory 4 GB LPDDR4
Storage 16 GB eMMC 5.1

Connectivity Connects to 801.11ac WLAN and Bluetooth
Camera 5 MP MIPI CSI
Display HDMI

2.1.3. Robot Operating System

ROS is an open-source, meta-operating system. It provides hardware abstraction, low-

level device control, implementation of commonly-used functionality, message-passing

between processes, and package management. It also provides tools and libraries for

obtaining, building, writing, and running code across multiple computers [62].

For this study, mostly "rosbag" [63] and "lms1xx" [64] packages are used. Rosbag

package used for recording and playing Ros Topics. LMS1xx package is ROS driver

for Sick LMS1XX LIDARs and used for get datas from sensor.

2.2. Proposed De-Noising Algorithm Approach

2.2.1. Median Filter

Median filter is a popular non-linear noise reduction technique that is frequently used

in signal and image processing. It is particularly effective in removing random noises
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such as impulse or salt-pepper. It is a good alternative to linear filters due to the ability

to protect the edges of the signal or image while eliminating noise.

The Median Filter is mainly useful for reducing noise by smoothing images or signals.

It can maintain discontinuity and smooth noise without affecting surroundings.

As used in this study, the one-dimensional (1D) Median Filter takes the points inside a

2N + 1 length window and begins to shift the window as small as the filter size. Median

Filter is applied separately in each small window. This is done by sorting the values

within the small window from small to large, and then retrieving the median as a result.

The formula of the Median Filter is given in Equation (2.2) from [45].

y(k) = med{x(k −N), ..., x(k − 1), x(k), x(k + 1), ..., x(k +N)} (2.2)

2.2.2. Least Mean Squares Filter

Least Mean Squares (LMS) Filter is the most popular adaptive filter with its simplicity

and ease of application. It is particularly suitable for signal processing and is the first

filter of choice for real-time systems, as it requires less computation than other adap-

tive filters. It does not require any information about the statistical properties of the

environment, so it is robust in the face of unknown environmental influences.

Adaptive filter should be used for fast convergence and low mean square error [65].

They are digital filters with features that adjust filter parameters to accommodate chang-

ing signal characteristics at the input. They adapt quickly and automatically to changes

in the input signal.

Discovered by Bernard Widrow and Ted Hoff in 1960, the LMS filter continuously up-

dates the output to filter weights. At first, all coefficients in the filter are set to an initial

value. The filter output is then calculated using the available coefficients. Estimation

error is calculated according to the estimated output and the coefficients are updated by

returning to the beginning. LMS filter formulas are given in Equation (2.3), Equation
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(2.4) and Equation (2.5) from [66].

(X1, Y1), (X2, Y2) , ... (Xn, Yn) = (Xi, Yi) = (time, range) (2.3)

Ŷ = a + bX (2.4)

ε =
N∑
i=1

(Yi − Ŷi)
2 =

N∑
i=1

[Yi − (a + bXi)]
2 (2.5)

2.2.3. Proposed Method

In order to determine how often snowflakes appeared in LIDAR data and to study them,

it is necessary to record in a snowy weather. Therefore, initial data are collected on

Sunday, 24 February 2019, which is shown in Fig. 2.5., via the LIDAR sensor in real

snow. Data from the LIDAR sensor is plotted using the Robot Operating System (ROS)

on the NVIDIA Jetson TX1 card and recorded as a bag file (rosbag). Then, the recorded

data are processed by MATLAB and various studies are performed. As a result of these

studies, improvements are made to filter out undesirable particles such as snowflake

against adverse weather conditions which are problematic in LIDAR and similar sen-

sors which enable mapping or object detection for autonomous systems to act on their

own.

Fig. 2.5.: Sunday, 24 February 2019 - Snowfall
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First, the data structures are edited using the MATLAB library to make the bag file

transferred to MATLAB ready for filtering. Then, how often and how snowflakes ap-

peared in the LIDAR data obtained in snowy weather are examined. As a result of

this examination, it is determined that the distance of snowflakes showed very sudden

changes when compared with the distance of other objects around. Considering this

situation, it is provided to determine the points causing the sudden change between the

ranges (t) and (t-1) by using the threshold value.

r(k, t) − Ranges(k, (t− 1)) < TH (2.6)

In Equation (2.6), r(k, t) is the range data from LIDAR, which is currently received (t

moment) and not yet processed. Ranges(k, (t − 1)) is the range data from LIDAR,

which was filtered and stored at the previous moment (t-1).

In case the detected point was an object moving in the frame, (t-2), (t-3) moments of

the current points are checked additionally which is shown in Equation (2.7).

r(k, t) − r(k, (t− 1)) < TH & r(k, t) − r(k, (t− 2)) < TH &

r(k, t) − r(k, (t− 3)) < TH
(2.7)

For example, the moving object that enters the frame with a sudden change at (t) will

be considered as noise and removed. However, due to the fact that some historical data

is recorded, the algorithm gives the output from the moment (t + 1) instead of deleting

it if (t + 1), (t + 2) and (t + 3) are similar to the value at (t). In order to detect noises

such as snowflakes, if differences between the point at the time (t) and any of the points

of (t-1), (t-2), (t-3) remain above the threshold value, the point in the moment of (t) is

assumed to be noise. Fig. 2.6. shows flowchart showing these steps.
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Obtain
LIDAR	Data

Is	there	a	sudden	
change	in	ranges?

Yes

Decision	of
Snowflake
(Noise)

No

OutputIs	it	a	object	?
(moving)

No

Yes

Fig. 2.6.: Noise Detection Flowchart

The next step is to remove the detected snowflakes and use the historical data to estimate

the objects which are behind of snowflake, should actually be in. Used historical data

is given in Equation (2.8).

V ector = [Ranges(k, (t− 1)) Ranges(k, (t− 2)) ... Ranges(k, (t− n))] (2.8)

In order to estimate objects, LMS filter, which continuously updates itself according to

the input information, makes a possible prediction. The pseudocode in Fig. 2.7. that

shows how this filter is integrated into the algorithm created to select noisy points.

y(k, t) = LMSFilter(V ector) (2.9)

In Equation (2.9), y(k, t) is the result data obtained from the LMS filter.

As a result, the study is about detecting and filtering points that change suddenly and

exceeding a certain threshold, while at the same time keeping moving objects. The

proposed method is De-noising Algorithm improved with Least Mean Squares Filter.

The flowchart of the final proposed method is shown in Fig. 2.8.
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Fig. 2.7.: Pseudocode of Proposed Method

Is	there	a	sudden	
change	in	ranges?

Yes

No

OutputIs	it	a	object	?
(moving)

Yes

Start

No

De-noising	Algorithm
improved	with	LMS	Filter

Obtain
LIDAR	Data

Decision	of
Snowflake
(Noise)

Least	Mean	
Squares	Filter

Fig. 2.8.: Flowchart of De-Noising Algortihm Improved with Least Mean Squares Filter



III. EXPERIMENTAL RESULTS

This section describes the experimental results. The first record which is in snowy

weather, used to understand snowy conditions and improve the algorithm for these con-

ditions. All following experimental results are obtained with Autonomous Research

Vehicle OKANOM, which is performed by Istanbul Okan University UTAS Center in

2012 [13]. OKANOM which is shown in Fig. 3.1., is a second level autonomous ground

vehicle that can move from place to place without any external intervention by using

the route it creates with the position information it receives via GPS.

Fig. 3.1.: Autonomous Research Vehicle, OKANOM

In order to observe experiments at different snow densities and insufficient snowfall

in the city, an artificial snow machine with 1500 Watt power, which can be adjusted

to different snow throwing densities, is purchased and the test environment is created.

LIDAR is fitted with a weather protection cover with an angle of 190°to prevent any

damage. In Fig. 3.2., there is a representative photograph of working of the snow

machine.
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Fig. 3.2.: Artificial Snowfall

The first record which is taken on snowy weather on Sunday, February 24, 2019, con-

sists of a total of 24777 frames. The first frame of this record plotted on MATLAB is as

in Fig. 3.3. The transition between each frame is 0.02 seconds and therefore the total

recording is 8.26 minutes. In order to determine how much snowy points (noises) exist

in this 24777 frame and to understand how effective the applied filters are, where the

noisy points are formed, this area is selected as a polygon. With the selected area, the

number of points inside and outside the area is checked. Fig. 3.3. shows the frame with

the highest noise (11 points) among the 24777 frames and in Fig. 3.5. the polygonal

method is applied to this frame and the points are marked. When all the recorded data

are checked in this way, it is found that there were 7312 unwanted points in the total of

24777 frames and approximately 0.3 snowflakes per frame. This proves that snowfall

is very rare and slow (or that some of the snowflakes are too small to be detected by the

LIDAR sensor).
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Fig. 3.3.: First Frame of Snowy Weather

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0- 5

0

5

1 0

1 5

2 0

 

 

y-p
osi

tio
n (

m)

x - p o s i t i o n  ( m )
Fig. 3.4.: The Highest Noisy Frame of Snowy Weather
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Fig. 3.5.: Marked Noisy Frame of Snowy Weather

Various existing filters have been tested to eliminate noisy points and algorithm has

been developed based on these results. The median filter used to eliminate noise in

a picture frame and the LMS filter, which is an adaptive filter also used to eliminate

noises, do not perform very well when used in an environment with moving objects.

Using these filters alone causes image distortion and badly removing unwanted points.

The mentioned before and developed algorithm is to identify only distances that vary

greatly from a sudden and certain treshold value as noise, clearing selected noises and

estimating objects behind the noises with the LMS filter and at the same time keeping

moving objects.

Table 3.1. shows the recorded sensor data and the results of the applied filters. All filters

worked very well as snow was sparse. In Median Filter (5) and Median Filter (15), the

numbers 5 and 15 indicate the filter size. These filters are processed for all points

in the frame by navigating from the current time to the points before the filter size.
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Although they were good, they caused some deterioration of the original frames and

greatly extended the time per frame due to the multiplicity of processing. De-noising

filter is the main algorithm developed. In this filter, an algorithm is created for detecting

points that change instantaneously and instead of the point where the detected noise is

located, the point located in the same frame in the previous frame is placed. Although

the filter gives very good results in this state, it causes some distortion when a moving

object such as human enters the frame. To correct this, De-noising with LMS Filter is

used. The difference of this filter from the previous one is that instead of replacing the

detected noise with the point in the previous frame, it goes back to the current filter size

by forming a vector and inserting this vector into the LMS filter. In this way, moving

objects do not disappear and the success rate is one hundred percent. For comparison,

Median Filter is used together with de-noising algorithm. The filter indicated by De-

noising with Median showed 100% success due to the very rare snowfall but it took

longer in terms of time than the filter installed with LMS.

Table 3.1.: Compare of Filters - Real Snow

Original
Data

Median
Filter

(5)

Median
Filter
(15)

De-
noising
Filter

De-
noising

with
Median

De-
noising

with
LMS

Total
Number of

Noisy
Points

7312 68 0 7 0 0

Snow
Density for
per Frame

0.3 0.003 0 0 0 0

Success
Rate (%)

- 99.1 100 99.9 100 100

Total Time
(sec)

495.4 3517.5 5652.5 1320 2169.2 1837.3

Time for
Each

Frame (sec)
0.02 0.142 0.228 0,053 0.087 0.074
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The plots of all filters shown in Table 3.1. for frame 4763 are as follows. Fig. 3.6. shows

the original version of the data and there are eight unwanted points (noises).

In Fig. 3.7. and Fig. 3.8., median filters are applied directly to the original data. In

Median (5) there are two noises while in Median (15) there is no noise. However, the

size of the filter increases the time per frame. It also carried a few spots above the frame,

although snowfall was very rare. It is noticeable when looked carefully.

In Fig. 3.10. and Fig. 3.11., the results of using De-noising Algorithm with Median

Filter and LMS Filter are shown. The results are very similar due to very little snowfall.

As shown in Table 3.1., both of them achieve 100% success rate. However, Median

Filter is slower than LMS filter.
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Fig. 3.6.: Original Data, (4763. Frame) - 8 Noisy Points



25

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0- 5

0

5

1 0

1 5

2 0

 

 

y-p
osi

tio
n (

m)

x - p o s i t i o n  ( m )
Fig. 3.7.: Median (5) Filter, (4763. Frame) - 2 Noisy Points
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Fig. 3.8.: Median (15) Filter, (4763. Frame) - No Noisy Points
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Fig. 3.9.: De-noising Filter, (4763. Frame) - No Noisy Points
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Fig. 3.10.: De-noising with Median Filter, (4763. Frame) - No Noisy Points
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Fig. 3.11.: De-noising with LMS Filter, (4763. Frame) - No Noisy Points

A plotted version of the noise numbers in each frame of filtered and unfiltered data is

shown in Fig. 3.12. Frames where noise number is zero in all filters are not plotted, and

since there are too many frames in this recording, part of frames are plotted.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

0

2

4

6

8

1 0

1 2
 

 

Num
ber

 of 
Sno

w P
arti

cles

F r a m e  N u m b e r

 O r i g i n a l  D a t a
 M e d i a n  ( 5 )  F i l t e r  R e s u l t s
 M e d i a n  ( 1 5 )  F i l t e r  R e s u l t s
 D e - n o i s i n g  F i l t e r  R e s u l t s
 D e - n o i s i n g  w i t h  M e d i a n  F i l t e r  R e s u l t s
 D e - n o i s i n g  w i t h  L M S  F i l t e r  R e s u l t s

Fig. 3.12.: Noise Numbers of Frames (Real Snow)
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Similar results of real snowfall conditions are also observed in tests with artificial snow.

In the first artificial snow record consisting of a total of 2282 frames, 34283 snowflakes

are identified in the total of all frames. Considering the time between starting and

closing the artificial snow machine (2000 frames), there are 17.14 snowflake average

per frame. This means that there is a heavy snowfall. Table 3.2. clearly shows that

with the increase in snow density, the success rates of the Median (5) and Median (15)

filters applied to the entire frame have decreased significantly. Although de-noising

filter appears to be the filter that eliminates snow (noise) the most, it causes serious

distortion and disappearance in the frame or moving objects. For these reasons, the

values of the median and de-noising filters used alone are not taken into consideration

in the tests performed hereinafter.

Table 3.2.: Compare of Filters - Artificial Snow 1

Original
Data

Median
Filter

(5)

Median
Filter
(15)

De-
noising
Filter

De-
noising

with
Median

De-
noising

with
LMS

Total
Number of

Noisy
Points

34283 29919 20307 132 1408 144

Snow
Density for
per Frame

17.1415 14.9595 10.1535 0.066 0.704 0.072

Success
Rate (%)

- 12.7 40.8 99.6 95.9 99.6

Total Time
(sec)

45.64 129.4 132.7 58.6 66.3 63.6

Time for
Each

Frame (sec)
0.02 0.057 0.058 0.026 0.029 0.028

Fig. 3.13. shows the original version of the data and there are 34 unwanted points(noises).

In Fig. 3.14. and Fig. 3.15., median filters have shown. There are lots of snow parti-

cles still. Disturbances in the de-noising filter which is shown in Fig. 3.16., are clearly

visible when compared to the original data.
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Fig. 3.13.: Original Data, (1634. Frame) - 34 Noisy Points
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Fig. 3.14.: Median (5) Filter, (1634. Frame) - 24 Noisy Points
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Fig. 3.15.: Median (15) Filter, (1634. Frame) - 16 Noisy Points
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Fig. 3.16.: De-noising Filter, (1634. Frame) - No Noisy Points
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The De-noising with Median Filter which is given in Fig. 3.17., has carried some snow

noises up in the frame as before, although it eliminates most snow noises. This part is

circled in red in the figure. De-noising with LMS Filter, which is shown in Fig. 3.18.

has best results still. It removed snowflakes as desired. It is not distort any object in the

frame. It also predicted the objects that should behind the snowflakes.

For first artificial snow record, a plotted version of the noise numbers in each frame of

filtered and unfiltered data is given in Fig. 3.19. Frames where noise number is zero in

all filters are not plotted.
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Fig. 3.17.: De-noising with Median Filter, (1634. Frame) - No Noisy Points
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Fig. 3.18.: De-noising with LMS Filter, (1634. Frame) - No Noisy Points
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Fig. 3.19.: Noise Numbers of Each Frame at First Artificial Snow Record
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According to Artificial Snow - Second Record, with the increase in snowfall, the num-

ber of snowflakes per frame increased, the LMS filter showed a better percentage of

success than median and caused less delay in time per frame. While LMS filter main-

tains a success rate of around 98-99%, the success rate of median filter is declining and

the time per frame is increasing. The filter size can be increased to improve the results

of the median filter, but this will result in more processing load and thus delay. The

results of this recording can be viewed from Table 3.3. and the number of noise per

frame is shown in Fig. 3.20.

Table 3.3.: Compare of Filters - Artificial Snow 2

Original Data
De-noising

with Median
De-noising
with LMS

Total Number of
Noisy Points

60137 2250 1039

Snow Density for
per Frame

20.694 0.774 0.358

Success Rate (%) - 96.3 98.3
Total Time (sec) 68.04 138.6 130.7
Time for Each
Frame (sec)

0.02 0.041 0.038
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Fig. 3.20.: Noise Numbers of Each Frame at Second Artificial Snow Record
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Table 3.4. shows the results of all artificial snow experiments. According to Table 3.4.,

De-noising with LMS Filter maintains its success rate, no matter how the snow densities

and how much snowflakes appear at same point. However, De-noising with Median

Filter shows varying success rates depending on the frequency of snow flakes and the

intensity of snowfall. The comparison of the two filters according to their success rates

and snow density is also shown in Fig. 3.21.

Table 3.4.: Compare of Filters - All Artificial Snow Tests

Org. Org. Med. LMS Med. LMS Med. LMS Med. LMS

Rec.
Snow
Points

Dens.
Noisy
Points

Noisy
Points

Dens. Dens. Time Time Succ. Succ.

1. 34283 17.14 1408 144 0.70 0.07 0.029 0.027 95.89 99.57
2. 60137 20.69 2250 1039 0.78 0.35 0.041 0.038 95.25 98.27
3. 42374 21.19 4141 239 2.07 0.12 0.036 0.032 92.70 99.44
4. 32309 17.66 1810 169 0.99 0.09 0.029 0.026 94.40 99.47
5. 31843 17.18 1747 210 0.94 0.11 0.034 0.031 94.51 99.34
6. 18274 16.84 908 110 0.84 0.10 0.027 0.024 95.03 99.40
7. 17433 19.31 1980 126 2.19 0.14 0.027 0.024 88.64 99.27
8. 25742 20.22 1483 109 1.16 0.09 0.026 0.024 94.24 99.58
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Fig. 3.21.: Comparison of Filter Success Rates due to Snow Density

"Org" is original data. "Med." are De-noising with Median Filter. "LMS" are De-

noising with LMS Filter. "Rec" is artificial snow records. "Snow Points" is total
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snowflakes at original data. "Dens." are average noises (snowflakes) for each frame.

"Noisy Points" are remaining noises after filtering. "Time" are elapsed time (sec) for

each frame. "Succ." are success rate (%) of filters.



IV. CONCLUSION

In order for autonomous vehicles to move safely, it is very important that the sensor

data is pure and accurate. Therefore, sensor data in adverse weather conditions is one

of the most important and challenging issues for autonomous vehicles. Starting from

this, academic studies for LIDAR sensor in snowy weather have been examined and

improving these studies has been the main focus of this thesis.

In this study, an algorithm that can remove the snowflakes under any kind of snowfall

and predict the objects behind the snowflakes is proposed. Snowflakes are detected by

checking with a changing threshold value if it causes sudden changes in distances from

the sensor data based on the short history. After it is decided that the snowflakes are

noise, the objects behind the snowflakes are tried to be predicted with the help of LMS

filter and these objects are replaced with snowflakes. The accuracy of these studies

is tested with the LIDAR sensor on the autonomous research vehicle " OKANOM "

in the artificial snow environment created. Also the existing median filter results are

compared with the proposed method. As a result, The developed De-noising Algorithm

improved with Least Mean Squares Filter presents 99% de-noising success even under

heavy snowfalls.

4.1. Future Work

In future studies, it is planned to improve this algorithm developed for snowy weather

further and make it able to detect other adverse weather conditions such as fog, rain, hail

and air pollution and eliminate the noise that will occur in the sensor data because of

these adverse weather conditions. In order to achieve this goal, it is considered to detect

the weather with the help of the camera and to fuse the data from the distance sensors

such as LIDAR and radar to achieve the lowest error rate and increase the stability. This

study, which is thought to be done, is also planned to test on an autonomous vehicle and
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it is aimed to move the vehicle based on the results of this algorithm.
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