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ABSTRACT 

 

PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUT ION 

ALGORITHMS FOR CONTINUOUS OPTIMIZATION PROBLEMS 

 

Ipek EKER 

 

This study presents Particle Swarm Optimization (PSO) and Differential 

Evolution (DE) algorithms to solve nonlinear continuous function optimization 

problems. The algorithms were tested using 14 newly proposed benchmark 

instances in Congress on Evolutionary Computation 2005.  

 

Particle Swarm Optimization (PSO) and Differential Evolution (DE) are two of 

the latest metaheuristic methods. PSO is based on the metaphor of social 

interaction and communication such as bird flocking and fish schooling. PSO 

and DE were both first introduced to optimize various continuous nonlinear 

functions. 

 

In a PSO algorithm, each member is called a particle, and each particle moves 

around in the multi-dimensional search space with a velocity constantly updated 

by the particle’s experience, the experience of the particle’s neighbors, and the 

experience of the whole swarm. 



 xiii 

In the DE algorithm, the target population is perturbed with a mutant factor, 

and the crossover operator is then introduced to combine the mutated 

population with the target population so as to generate a trial population. Then 

the selection operator is applied to compare the fitness function value of both 

competing populations, namely, target and trial populations. The better 

individuals among these two populations become members of the population for 

the next generation. This process is repeated until a convergence occurs. 

 

The computational results show that the particle swarm optimization is able to 

solve the test problems. Both algorithms are promising to solve benchmark 

problems. However, the differential evolution algorithm performed better for 

the larger size of problems than the particle swarm optimization algorithm. 

 

Key Words        :  Particle Swarm Optimization, Differential Evolution,                                                  

Continuous Optimization, Genetic Algorithms. 

 

 

 

 

 

 

 

 

 

 

 



 xiv 

Üniversitesi                           :          İstanbul Kültür Üniversitesi 

Enstitüsü   : Sosyal Bilimler 

Anabilim Dalı  : İşletme 

Programı   : İşletme 

Tez Danışmanı   : Prof. Dr. Güneş GENÇYILMAZ 

Tez Türü ve Tarihi  : Yüksek Lisans – Ağustos 2005 

 

 

KISA ÖZET 

 

SÜREKLİ FONKSİYON OPTİMİZASYON PROBLEMLER İNİN ÇÖZÜMÜ 

İÇİN PARÇACIK SÜRÜ OPTİMİZASYONU (PSO) VE DİFERANSİYAL 

EVRİM (DE) ALGOR İTMALARI 

 

İpek EKER 

 

Bu çalışma, doğrusal olmayan sürekli fonksiyon optimizasyon problemlerinin 

çözümü için Parçacık Sürü Optimizasyonu (PSO) ve Diferansiyal Evrim (DE) 

algoritmalarını sunmaktadır. Algoritmaların perform ansı Evrimsel Hesap 

Kongresi (CEC2005) için yeni geliştirilen 14 fonksiyonu kullanarak test edildi.  

 

Parçacık Sürü Optimizasyonu (PSO) ve Diferansiyel Evrim (DE), en son 

geliştirilen meta-sezgisel yöntemlerden ikisidir. PSO, kuşların ve balıkların yem 

arama gibi sosyal etkileşmeleri ve iletişimleri metaforuna dayanır. PSO ve DE, 

orijinal olarak çeşitli doğrusal olmayan sürekli fonksiyonları optimize etmek 

için geliştirildi. 

 

PSO algoritmasında, her bir üye, “parçacık” olarak adlandırılır ve her 

parçacık, çoklu-boyutsal arama uzayında bir hız ile hareket eder. Bu hız, 

parçacığın kendi deneyimi, komşularının deneyimi ya da populasyondaki bütün 
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parçacıkların deneyimi ile sürekli olarak güncellenir.DE algoritmasında, hedef 

populasyon mutasyon faktörü ile farklılaştırılır ve daha sonra deneme 

populasyonu oluşturmak için çaprazlama operatörü kullanılır. Çaprazlama 

operatörünün amacı farklılaştırılan populasyonla hedef populasyonu 

birleştirerek deneme populasyonunu oluşturmaktır. Son olarak, seçme 

operatörü kullanılarak rekabet eden her iki populasyon özellikle hedef ve 

deneme populasyonlarının amaç fonksiyon değerleri kar şılaştırılır. Seçme 

operatörü vasıtasıyla bu iki populasyon arasındaki daha iyi çözümler bir 

sonraki jenerasyona ait populasyonun üyeleri haline gelir. Bu proses 

yakınsaklık elde edilinceye dek tekrar edilir. 

 

Deneysel sonuçlar her iki algoritmanın test problemlerini belli bir hata payıyla 

veya optimal olarak çözebildiğini göstermektedir. Her iki algoritma, test 

problemlerini çözmede umut vericidir. Ancak, diferansiyel evrim algoritması 

büyük çaplı problemler için parçacık sürü optimizasyonu algoritmasından daha 

iyi sonuçlar üretmektedir. 

 

Anahtar Sözcükler     :         Parçacık Sürü Optimizasyonu, Diferansiyel Evrim, 

Sürekli Fonksiyonu Optimizasyon Problemleri, Genetik Algoritmalar.    
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CHAPTER 1:  INTRODUCTION 

1.1. Literature Survey on Global Optimization Algorithms 

The development of global optimization algorithm is closely bound up the 

development of computer. Many global optimization problems wait for solving and 

some algorithms are also put forward along with the greatness and complexity of the 

structures in engineering, especially these years. 

1.2. Frame Work of the Algorithms 

Two stages must be experienced in the process of solving the global optimum. The 

first stage can be called the global covering. The global optimum may be located in 

arbitrary region in the feasible region for the optimization problems in engineering, 

so any parts of the region must be considered equally critical. The stage of uniform 

distributing in the region A is required in this stage. The last stage is called local fine 

searching. It requires a stage of non-uniform distributing in the neighborhood of 

known better points, because some parts of the feasible region may be deemed more 

interesting than others and more accurate solutions in these parts are wanted. 

1.3. Classification of Global Optimization Algorithms 

The classification is made by Leon early in 1966 in [1], who classifies these 

algorithms into three kinds according to the search techniques: Blind search, Local 

search and Non-local search. Subsequently, Dixon. Szegio and Gomulka present two 

basic approaches namely the deterministic and probabilistic algorithms in 1978 in [2, 

3]. The former comprises grid search algorithms and trajectory algorithms, the latter 

comprises random search algorithms, clustering algorithms and sampling algorithms. 
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Thereafter, Archetti and Schoen also makes between deterministic and probabilistic 

algorithms in 1984 in [4]. According to accuracy, Torn make two classifications 

namely algorithms with guaranteed accuracy and algorithms without, the latter 

comprises direct algorithms and indirect algorithms in [5]. Zhang Xiangsun reviews 

the deterministic algorithms in detail in 1984 in [6] and Zhang Yunkang also reviews 

the probabilistic algorithms in detail in 1992 in [7]. 

1.4. General Classification 

General classification of all global algorithms primarily should be divided into three 

classes according to the different searching methods: Analytic algorithm, Enumerate 

algorithm and Random search algorithm. Analytic properties of objective functions 

are exerted to seek the global optimum in this algorithm (such as first-order, second-

order derivative), which is divided into Direct algorithms and Indirect algorithm. The 

next searching step of direct algorithms is determined by the grade of objective 

functions. “Mountain climbing” strategy is adopted in this algorithm, which searches 

one of the local optimum according to the steepest direction (such as Cluttering 

algorithm and Generalized descent algorithm). But it is difficult to search the global 

optimum. The indirect algorithm is that a group of equations is educed by the 

necessary conditions of extremum, then the group of equations is solved and the 

global optimum is found by comparison. But the equations are always non-linearity, 

which are difficult to be solved. So it is applied for some very simple optimization, 

such as algorithms approximating the level sets and algorithms approximating the 

objective function. Enumerate algorithm is mostly applied in the field of dynamic 

programming. Random search algorithm is composed of Blind search algorithms and 

Guide search algorithms. Blind search algorithm includes covering algorithm and 

Random search algorithm. A very large computing effort is needed, so it is only 

applied in simple optimization; Guide search algorithms are also called Heuristic 

search algorithms, which are studied more frequently in present years, which include 

Meta-heuristic algorithms [8], algorithms based on uniform design [9, 10, 11] and 

mixed heuristic algorithms [12-21]. Meta-heuristic algorithms are studied more 

nowadays, which include simulated annealing [22] (SA), evolution algorithms 

(which include Genetic Algorithm [23-30] (GA), Evolutionary Programming [31] 

(EP), Evolutionary Strategy [32] (ES) and Genetic Programming [33] (GP)), Tabu 
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Search Algorithm, Chaos Algorithm [34, 35], Ant Colony Optimization [36, 37] 

(ACO), and so on. The mixed heuristic algorithms are researched relatively less at 

present, which mostly aim at the shortages of the intelligent heuristic search 

algorithms, and whose results and efficiency are better than the simple heuristic 

search algorithms, so the algorithms are the hotspot of the optimization research. 

Additionally, the heuristic search algorithms mixed with some local algorithms are 

also one of the future optimization research tendencies. Meta-heuristic algorithms are 

introduced as follows.  

 

Meta-heuristic algorithms are developed along with the development of biology, 

physics and artificial intelligence. Although the optimal mechanisms are different, 

they are the same in optimal technological processes, which are a kind of “neighbor 

region search”. The process of the algorithms is as follows: (1) start from one (or one 

group) initial point; (2) search many neighbor solves by the neighbor functions under 

the control of the algorithms parameters; (3) renew the current state according to the 

accept rules; (4) then adjust the control parameters, so repeat this process as to satisfy 

the accept rules.  

 

SA is a clustering optimal algorithm, whose principle is: a state in the neighbor 

region at present is sampled randomly, at the same time renew the probability 

according to controlling “temperature”, so that the search process has the ability of 

avoiding local optimum, and get the global optimum finally. The initial temperature, 

the functions of withdrawing temperature, the renew mode of states and the sample 

stabilization are the key factors which affect the performance of SA.  

 

GA is a combining algorithm, which especially has the concealed combining 

property. Its principle is: in the code space, the processes of select, crossover and 

mutation are implemented ceaselessly according to a probability, so as to the aim of 

the group’s combining evaluation. The number of group and the operations of 

reproduce, crossover and mutation are the key factors, which affect the performance 

of GA.  
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TS is a clustering optimal algorithm, which avoids repeating the states according to 

the operational memory structures in the near future, and which implements global 

search rapidly combining the deprecate rule. The size of the tabu table and the 

structure and the number of the function in neighbor region are the key factors, 

which affect the performance of TS.  

 

Chaos is a non-linearity phenomenon in nature. The movement process of chaos 

variables has inherent rule. The randomness, the property of covering all over and 

regularity are used to search the optimum. The operation of CA includes two steps. 

Firstly, in the whole space, all points are inspected in turn by the movement of chaos 

variables, and the better point is accepted the optimum at present. Secondly, after 

certain steps the optimum at present is near the global optimum, then the optimum at 

present become the center and are added a little chaos change, the global optimum is 

attained through careful search. Repeating the two steps upwards, until the global 

optimum is attained. CA is a Random search algorithm, which is researched 

relatively less presently.  

 

ACO, a new type of simulated evolutionary algorithm, is proposed first by Italian 

scholars Marco Dorigo. It is used to solve some optimization problems through 

simulating the process of ants searching for food, which is carried out through 

searching the shortest route between the ant cave and the food according to the 

individual information interchange and cooperation with one another.  

 

Particle Swarm Optimization (PSO), one of the latest metaheuristic algorithms, was 

first introduced by Kennedy and Eberhart 1995 in [38]. PSO is based on the 

metaphor of social interaction and communication such as bird flocking and fish 

schooling. Since PSO is population-based and socially cognitive in nature, the 

members in a swarm tend to follow the leader of the group, i.e., the one with the best 

performance. In a PSO algorithm, each member is called a “particle”, and each 

particle flies around in the multi-dimensional search space with a velocity, which is 

updated according to the particle’s current velocity, the particle’s own experience 

and the experience of the neighbors. Depending on the size of neighbors, two types 

of basic PSO algorithms were developed – PSO with a local neighborhood and PSO 

with global neighborhood of Kennedy et al. 2001 in [39]. In the former model, called 
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the lbest, each particle moves towards its best previous position and towards the best 

particle in its restricted neighborhood. While in the latter model, called the gbest, 

each particle moves towards its best previous position and towards the best particle 

in the entire swarm.   

 

Differential evolution (DE) is also one of the latest evolutionary optimization 

methods proposed by Storn and Price 1997 in [40]. It is a simple but powerful 

population based stochastic search method for solving global optimization problems. 

Like other evolutionary-type algorithms, DE is a population-based, stochastic global 

optimizer. In a DE algorithm, candidate solutions are represented as chromosomes 

based on floating-point numbers. The major difference between DE and genetic 

algorithm (GA) is that in DE some of the parents are generated through a mutation 

process before performing crossover operator whereas GA usually selects parents 

from current population, performs crossover, and then mutates the offspring. In the 

mutation process of a DE algorithm, the weighted difference between two randomly 

selected population members is added to a third member to generate a mutated 

solution. Then, the crossover operator is introduced to combine the mutated solution 

with the target solution so as to generate a trial solution. Then a selection operator is 

applied to compare the fitness function value of both competing solutions, namely, 

target and trial solutions to determine who can survive for next generation.  

 

Regarding the application of optimization algorithms for the continuous functions, 

few works deal with the application to the global minimization of functions 

depending on continuous variables. The works related to the subject are in [41, 42, 

43, 44, 45, 46, 47, 48]. In addition, a simple benchmark on a function with many 

suboptimal local minima is considered in [49], where a straightforward discretization 

of the domain is used. A novel algorithm for the global optimization of functions (C-

RTS) is presented in [50], in which a combinatorial optimization method cooperates 

with a stochastic local minimizer. The combinatorial optimization component, based 

on RTS, locates the most promising boxes , where starting points for the local 

minimizer are generated. In order to cover a wide spectrum of possible applications 

with no user intervention, the method is designed with adaptive mechanisms: in 

addition to the reactive adaptation of the prohibition period , the box size is adapted 
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to the local structure of the function to be optimized ( boxes are larger in ``flat'' 

regions, smaller in regions with a ``rough'' structure). 

 

This thesis is organized as follows. Chapter 2 and 3 develops the PSO and DE 

algorithms to solve the nonlinear continuous functions, respectively. Chapter 4 

introduces 14 newly developed benchmark functions and the performance criteria 

employed in this study. Computational results for PSO and DE algorithms are shown 

in Chapter 5. Chapter 6 compares both algorithms. Finally, Chapter 7 summarizes the 

concluding remarks. 
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CHAPTER 2:  PARTICLE SWARM OPTIMIZATION ALGORITHM 

2.1. Particle Swarm Optimization Algorithm 

PSO was first developed to optimize continuous nonlinear functions. Since PSO is 

easy to implement and is efficient to obtain quality solutions, it has attracted much 

researchers’ attention in recent years. The application of PSO consists of neural 

network training in [51, 52, 53], power and voltage control in [54], optimal power 

system design in [55, 56], feature selection in [57], mass-spring system in [58], 

electromagnetics in [59, 60], analyze of human tremor in [61], register 3D-to-3D 

biomedical image in [62], play games in [63], clustering in [64], logic circuit design 

in [65], lot sizing problem in [66], supplier selection and ordering problems in [67], 

task assignment problem in [68], automated drilling in [69], and scheduling problems 

in [70, 71, 72]. More literature can be found in [39].  Besides the wide range of 

applications above, the nonlinear continuous function optimization is still considered 

the benchmark problem when exploring the properties and performance of PSO 

algorithms. Therefore, this thesis aims at employing PSO in optimizing 14 newly 

developed test problems in Congress on Evolutionary Computation 2005.  

 

The gbest model of Kennedy et al. 2001 in [39] is followed in this study. According 

to the gbest model, each particle moves towards its best previous position and 

towards the best particle in the whole swarm. In the PSO algorithm, parameters were 

initialized and the initial population was generated randomly. Each particle will then 

be evaluated to compute the fitness function value.  After evaluation, the PSO 

algorithm repeats the following steps iteratively: With its position, velocity, and 

fitness value, each particle updates its personal best (best value of each individual so 

far) if an improved fitness value was found. On the other hand, the best particle in 



 8 

the whole swarm with its position and fitness value was used to update the global 

best (best particle in the whole swarm). Then the velocity of the particle is updated 

by using its previous velocity, the experiences of the personal best, and the global 

best in order to determine the position of each particle. Evaluation is again performed 

to compute the fitness of the particles in the swarm. This process is terminated with a 

predetermined stopping criterion. The pseudo code of the PSO algorithm is given in 

Figure 2.1.  

 

Initialize parameters 

Initialize population 

Evaluate  

Do { 

Find the personal best  
Find the global best 
Update the velocity 
Update the position 
Evaluate 

} While (Termination) 

Figure 2.1  A Simple PSO Algorithm. 

The basic elements of PSO algorithm is summarized as follows: 

Particle: t
iX denotes the ith particle in the swarm at iteration t and is represented by 

[ ]t
iD

t
2i

t
1i

t
i x,..,x,xX = , where t

ijx  is the position value of the ith particle with respect to 

the jth dimension ( D,...,2,1j = ).  

Population: tX  is the set of NP  particles in the swarm at iteration t, i.e., 

[ ]t
NP

ttt XXXX ,...,, 21=  . 

Particle velocity: t
iV  is the velocity of particle i at iteration t. It can be defined as 

[ ]t
iD

t
2i

t
1i

t
i v,...,v,vV = , where t

ijv  is the velocity of particle i at iteration t with respect to 

the jth dimension. 

Inertia weight and acceleration coefficients: tw  is a parameter to control the 

impact of the previous velocities on the current velocity as described in [73, 74]. It 

has an impact on the trade-off between the global and local exploration capabilities 
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of the particle. At the beginning of the search, large inertia weight is used to enhance 

the global exploration while it is reduced for better local exploitation later on in the 

search. c1 and c2 are constant parameters called acceleration coefficients which 

control the maximum step size that the particle can do. 

Personal best: t
iP  represents the best position of the particle with the best fitness 

value until iteration t, so the best position associated with the best fitness value of the 

particle obtained so far is called the personal best. For each particle in the swarm, tiP  

can be determined and updated at each iteration t. In a minimization problem with 

the objective function ( )t
iXf , the personal best tiP  of the ith particle is obtained such 

that ( ) ( )1−≤ t
i

t
i PfPf . To simplify, the fitness function of the personal best is denoted 

as ( )t
i

pb
i Pff = . For each particle, the personal best is defined as [ ]t

iD
t
2i

t
1i

t
i p,...,p,pP =  

where t
ijp is the position value of the ith personal best with respect to the jth dimension 

( D,...,2,1j = ). 

Global best: tG  denotes the best position of the globally best particle achieved so 

far in the whole swarm. For this reason, the global best can be obtained such that 

( ) ( )t
i

t PfGf ≤  for NPi ,.,..2,1= . To simplify, the fitness function of the global best 

is denoted as ( )tgb Gff = . The global best is then defined as [ ]t
D

t
2

t
1

t g,...,g,gG =  where 

t
jg  is the position value of the global best with respect to the jth dimension 

( D,...,2,1j = ). 

Termination criterion: It is a condition that terminates the search process. It might 

be a maximum number of function evaluations or a maximum CPU time that 

terminates the search. 

2.2. Initial Population 

A population of particles is constructed randomly for the PSO algorithm. The 

continuous values of positions are established randomly. The following formula is 

used to construct the initial continuous position values of the particle uniformly: 

( ) 1minmaxmin
0 * rxxxxij −+=   
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where minx and maxx are the search range of the continuous functions and r1 is a 

uniform random number between 0 and 1. Initial velocities are generated by a similar 

formula as follows: 

( ) 2minmaxmin
0 * rvvvvij −+=  

where ( ) 2/minmaxmax xxv −=  and maxmin vv −= , and r2 is a uniform random number 

between 0 and 1. Continuous velocity values are restricted to some range, namely 

[ ]maxmin ,vvv t
ij =   

During the reproduction of the PSO algorithm, it is possible to extend the search 

outside of the initial range of the search space. For this reason, the position values 

violating the initial range are restricted to the feasible range as follows: 

( ) 1minmaxmin * rxxxx t
ij −+=  

The only exception was the problem 7 for which the optimal was outside the search 

range. The population size is taken as 100. As the formulation of 14 functions 

suggests that the objective is to minimize 14 continuous functions, the fitness 

function value is the objective function value of the particle tX . That is, ( )t
i

t
i Xf . 

For simplicity, ( )t
i

t
i Xf  will be denoted as t

if . 

2.3. Computational Procedure 

The complete computational procedure of the PSO algorithm can be summarized as 

follows: 

Step 1: Initialization 

� Set t = 0, NP =100. 

� Generate NP particles randomly as explained before, { }NP,...,2,1,0 =iX i  

where [ ]00
2

0
1

0 ,...,, iDiii xxxX = . 

� Generate the initial velocities for each particle randomly, { }NP,...,2,1,0 =iVi  

where [ ]0
iD

0
2i

0
1i

0
i v,...,v,vV = .  

� Evaluate each particle in the swarm using the objective function 0
if  for 

NPi ,...,2,1= . 
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� For each particle in the swarm, set 00
ii XP = , where 

[ ]000
2

0
2

0
1

0
1

0 ,...,, iDiDiiiii xpxpxpP ====  together with its best fitness value, pb
if  for 

NP,.,..2,1=i . 

� Find the best fitness value among the whole swarm such that { }0min il ff =  

for NPi ,...,2,1=  with its corresponding positions0
lX  . Set global best to 

00
lXG =  such that [ ]DlDll xgxgxgG ,2,21,1

0 ,...,, ====  with its fitness value 

l
gb ff = . 

Step 2: Update iteration counter 

� 1+= tt  

Step 3: Update inertia weight 

� ( )( ) ( ) nn
t wwwfesFESfesw +−−= 0*max_/max_  

 where fesmax_ , FES , 0w , and nw  are the maximum number of function 

evaluation, number of function evaluations, initial inertia weight, and final inertia 

weight respectively. 

Step 4: Update velocity 

� ( ) ( )11
22

11
11

11 −−−−−− −+−+= t
ij

t
j

t
ij

t
ij

t
ij

tt
ij xgrcxprcvwv  

where c1 and c2 are acceleration coefficients and r1 and r2 are uniform random 

numbers between 0 and 1.  

Step 5: Update position  

� t
ij

t
ij

t
ij vxx += −1  

Step 6: Update personal best 

� Each particle is evaluated to see if the personal best will improve. That is, if 

pb
i

t
i ff <  for NP,.,..2,1=i  then personal best is updated as t

i
t

i XP =  and 

t
i

pb
i ff = . 

Step 7: Update global best 

� Find the minimum value of personal best. That is, 

{ } { }.NP,...,2,1; NP;,...,2,1 ,min =∈== iiliff pb
i

t
l  

� If gbt
l ff < , then the global best is updated as t

l
t XG = and t

l
gb ff = . 
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Step 8: Stopping criterion 

� If the number of function evaluations exceeds the maximum number of function 

evaluations, then stop; otherwise go to step 2. 

The flowchart of the computational procedure is given in Figure 2.2. 
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Initialize the parameters, c1, c2, w, NP

Initialize the population, 

Update iteration counter

t=t+1

Update inertia weight, w

Update velocity, 

Update position

IF  X<P Then

Update personal best

P=X

Update personal best

P=P

Sort population

Find  Pmin

YES NO

IF P<G Then

Update global best

G=P

Update global best

G=G

IF 

FES≤Max_FES 

Then

YES NO

Stop

Record Statistic

YES

NO

tX

t
iV

t
iX

 

Figure 2.2 Flowchart of the PSO algorithm. 
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2.4. An Example for PSO Algorithm 

In this section, an example of minimization of Sphere Function with 3 dimensions is 

given below: 

 

Figure 2.3 An example for PSO algorithm. 
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CHAPTER 3:  DIFFERENTIAL EVOLUTION ALGORITHM 

3.1. Differential Evolution Algorithm 

Since DE was first introduced to solve the Chebychev polynomial fitting problem by 

Storn and Price 1995 in [75], it has been successfully applied in a variety of 

applications including digital filter design in [76, 77], neural network training in [78], 

pattern recognition in [79], communication in [80],aerodynamic design in [81], 

earthquake relocation in [82], microprocessor synthesis in [83], permutation 

flowshop sequencing problems in [84], multisensor fusion in [85], heat transfer in 

[86], system design in [87], cancer diagnosis in [88], and scheduling problems in 

[89]. A number of recent studies comparing DE with other heuristics, such as GA 

and PSO regarding real-world and artificial problems indicate superiority of DE in 

single-objective, noise free, numerical optimisation in [90, 91, 92, 93]. More 

introduction and literature surveys of DE can be found in [94, 95, 96, 97]. In 

addition, the advantages of DE such as simple concept, immediately accessible for 

practical applications, simple structure, ease of use, speed to get the solutions, and 

robustness has all led itself a good candidate to solve difficult nonlinear continuous 

functions. Therefore, this thesis aims at employing DE to optimize 14 newly 

developed benchmark suite in Congress on Evolutionary Computation 2005. 

 

Currently, there exist several variants of DE. We follow the DE/rand/1/bin scheme 

of Storn and Price 1997 in [98]. The pseudo code of the DE algorithm is given in 

Figure 3.1. 
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Initialize parameters 
Initialize target population 
Evaluate  
Do { 

Obtain the mutant population 
Obtain the trial population  
Evaluate trial population 
Selection 
While (Termination) 

Figure 3.1  A Simple DE Algorithm 

The basic elements of the DE algorithm is summarized as follows: 

Target individual: t
iX denotes the ith individual in the population at generation t and 

is represented as [ ]t
iD

t
i

t
i

t
i xxxX ,..,, 21= , where t

ijx  is the optimized parameter value of 

the ith individual with respect to the jth dimension ( Dj ,...,2,1= ).  

Mutant individual: t
iV denotes the ith individual in the population at generation t and 

is represented as [ ]t
iD

t
i

t
i

t
i vvvV ,..,, 21= , where t

ijv  is the optimized parameter value of 

the ith individual with respect to the jth dimension ( Dj ,...,2,1= ).  

Trial individual: t
iU denotes the ith individual in the population at generation t and is 

represented as [ ]t
iD

t
i

t
i

t
i uuuU ,..,, 21= , where t

iju  is the optimized parameter value of the 

ith individual with respect to the jth dimension ( Dj ,...,2,1= ).  

Target population: tX  is the set of NP  individuals in the population at generation t, 

i.e., [ ]t
NP

ttt XXXX ,...,, 21=  . 

Mutant population: tV  is the set of NP  individuals in the population at generation 

t, i.e., [ ]t
NP

ttt VVVV ,...,, 21=  . 

Trial population: tU  is the set of NP  individuals in the population at generation t, 

i.e., [ ]t
NP

ttt UUUU ,...,, 21=  . 

Mutant constant: ( )2,0∈F is a real constant which affects the differential variation 

between two individuals. 

Crossover constant: ( )1,0∈CR is a crossover constant which affects the diversity of 

population for the next generation. 

Fitness function: In a minimization problem, the objective function is the 

continuous function value denoted as ( )t
iXf .  
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Termination criterion: It is a condition that the search process will be terminated. It 

might be a maximum number of function evaluations or maximum CPU time to 

terminate the search. 

3.2. Initial Population 

A population of individuals is constructed randomly for the DE algorithm. The 

continuous parameter values are established randomly. The following formula is 

used to construct the initial continuous parameter values of the individual uniformly: 

( ) 1minmaxmin
0 * rxxxxij −+=  

where minx and maxx are search range of the continuous functions and r1 is a uniform 

random number between 0 and 1. During the reproduction of the DE algorithm, it is 

possible to extend the search outside of the initial range of the search space. For this 

reason, parameter values violating the initial range are restricted to the feasible range 

as follows: 

( ) 1minmaxmin * rxxxx t
ij −+=  

The population size is taken as 100. As the formulation of 14 functions suggests that 

the objective is to minimize the 14 continuous functions, the fitness value is the 

continuous function value of the individual tX . That is, ( )t
i

t
i Xf . For simplicity, 

( )t
i

t
i Xf  will be denoted as t

if . 

3.3. Computational Procedure 

The complete computational procedure of the DE algorithm can be summarized as 

follows: 

Step 1: Initialization 

� Set t=0, NP =100. 

� Generate NP  individuals randomly as explained before, { }NPiX i ,...,2,1,0 =  

where. [ ]00
1

0 ,.., iDii xxX =  



 18 

� Evaluate each individual i in the population using the objective function ( )00
ii Xf  

for NPi ,...,2,1= . 

Step 2: Update generation counter 

� 1+= tt  

Step 3: Generate mutant population 

� For each target individual, t
iX , NPi ,...,2,1= , at generation t, a mutant 

individual, [ ]11
2

1
1

1 ,..,, ++++ = t
iD

t
i

t
i

t
i vvvV , is determined such that: 

( )t
b

t
a

t
best

t
i ii

XXFXV −+=+1  

where t
bestX  is the best individual so far in the population and ia , and ib  are two 

randomly chosen individuals from the population such that ( ii ba ≠ ). 0>F  is a 

mutant factor which affects the differential variation between two individuals. 

Step 4: Generate trial population  

� Following the mutation phase, the crossover (recombination) operator is applied 

to obtain the trial population. For each mutant individual, [ ]11
2

1
1

1 ,..,, ++++ = t
iD

t
i

t
i

t
i vvvV , 

an integer random number between 1 and D, i.e, ( )DDi ,..,2,1∈ , is chosen, and a 

trial individual, [ ]11
2

1
1

1 ,...,, ++++ = t
NP

ttt UUUU  is generated such that: 





 =≤

=
++

+

Otherwisex

DjorCRrifv
u t

ij

i
t

ij
t
ijt

ij ,

, 11
1  

where the index D refers to a randomly chosen dimension (j=1,2,..,D), which is 

used to ensure that at least one parameter of each trial individual 1+t
iU differs 

from its counterpart in the previous generation t
iU , CR is a user-defined 

crossover constant in the range [0, 1], and 1+t
ijr  is a uniform random number 

between 0 and 1. In other words, the trial individual is made up with some 

parameters of mutant individual, or at least one of the parameters randomly 

selected, and some other parameters of target individual. 
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Step 5: Evaluate trial population 

� Evaluate the trial population using the objective function ( )11 ++ t
i

t
i Uf  for 

NPi ,...,2,1= . 

Step 6: Selection 

� To decide whether or not the trial individual 1+t
iU  should be a member of the 

target population for the next generation, it is compared to its counterpart target 

individual t
iX  at the previous generation. The selection is based on the survival 

of fitness among the trial population and target population such that: 

( ) ( )


 ≤

=
++

+

otherwiseX

XfUfifU
X

t
i

t
i

t
i

t
it

i
,

, 11
1  

Step 7: Stopping criterion 

� If the number of function evaluations (FES) exceeds the maximum number of 

function evaluations, then stop; otherwise go to step 2. 

The flowchart of the computational procedure is given in Figure 3.2. 
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Initialize the parameters, F, CR, 

NP

Initialize target population

Update generation counter

Generate mutant population

Generate trial population

Evaluate trial population

IF 

FES≤Max_FES 

Then

Stop

Record statistic

YES

NO

tX

t
iV

t
iU

( )t
iUf

( ) ( )t
i

t
i XfUfIF ≤+111 ++ = t

i
t
i UX t

i
t
i XX =+1

YES
NO

 

Figure 3.2  Flowchart of the DE algorithm. 
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3.4. An Example for DE Algorithm 

In this section, an example of minimization of Sphere Function with 3 dimensions is 

given below: 
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Figure 3.3 An example for DE algorithm. 
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CHAPTER 4:  BENCHMARK SUITE 

4.1. Introduction 

In order to solve continuous function optimization problems, several optimization 

algorithms have been presented in the literature with their results based on a small 

subset of the standard test problems such as Sphere, Schwefel, Rosenbrock, 

Rastrigin, and so on. Often, confusing results limited to the test problems were 

reported in the literature in such a way that the same algorithm working for a set of 

functions may not work for some other functions. For these reasons, these algorithms 

should be evaluated more systematically by determining a common termination 

criterion, size of problems, initialization scheme, running time and so on. The special 

session on real-parameter optimization in CEC2005 aimed at developing new 

benchmark functions to be publicly available to the researchers for evaluating their 

algorithms. The problem definition files, codes and evaluation criteria are obtained 

from [99].  

4.2. Properties of Benchmark Functions 

Many real-world problems can be formulated as optimization which can be 

converted to the following form: 

Minimize ( ) [ ]Dxxxxxf ,..,,, 21=  where [ ]maxmin,xxx ∈  

Many novel algorithms are introduced to solve the above global optimization 

problem. In order to compare and evaluate different algorithms, various benchmark 
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functions with various properties have been proposed. Many of these popular 

benchmark functions possess some properties that have been exploited by some 

algorithms to achieve excellent results. According to Liang et. al. [100], some of 

these issues are: 

 

1. Global optimum having the same parameter values for different 

variables/dimensions: Most of the popular benchmark functions have the same 

parameter values for different dimensions at the global optimum because of their 

symmetry. For example, Rastrigin’s functions’ and Griewank’s functions’ global 

optima are [ ]0,...,0,0,0  and Rosenbrock’s functions’ global optimum are [ ]1,...,1,1,1 . In 

this situation, if there exist some operators to copy one dimension’s value to the other 

dimensions, the global optimum may be found rapidly. For example, the 

neighborhood competition operator in [101] is defined as follows: 

( )
( )Diiiiii

Diiiiii

mmmmmmmm

mmmmmmmml

,...,,,,...,,,,...,

,...,,,,...,,,,...,

11111

11111

211221

222111

++−−

+−−−

=

=
  

where m is the best solution in the population and l is the new generated solution, 1i  

and 2i  are two integer random numbers and Dii <<< 211 , D is the dimension size 

of the problem. Hence, if the algorithm has found the globally optimal coordinates 

for some dimensions, they will be easily copied to the other dimensions. However, 

this operator might not be useful if the global optimum does not have the same value 

for many dimensions. In other words, if the global optimum is shifted to make the 

optimum to have different values for different dimensions, the performance of the 

MAGA algorithm in [101] significantly deteriorated. When we solve the real-world 

problems, global optimum is unlikely to have the same value for different 

dimensions. 

 

2. Global optimum at the origin [101] : In this case, the global optimum o  is equal to 

[ ]0,...,0,0,0 . Zhong et. al. [101] proposed the following function 

( ) ( )[ ]sRadiuslsRadiusl +− 1*,1* , where l  is the search center and sRadius  is the 

local search radius, to perform the local search. It can be observed that the local 

search range is much smaller when l  is near the origin than when l  is far from the 

origin. This operator is not effective if the global optimum is not at the origin. Hence, 
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this operator is specifically designed to exploit this common property of many 

benchmark functions. 

 

3. Global optimum lying in the center of the search range: Some algorithms have the 

potential to converge to the center of the search range. The mean-centric crossover 

operator is just a good example for this type. When the initial population is randomly 

generated uniformly, the mean-centric method will have a trend to lead the 

population to the center of the search range. 

 

4. Global optimum on the bounds: This situation is encountered in some multi-

objective optimization algorithms as some algorithms set the dimensions moving out 

of the search range to the bounds [102]. If the global optimum is on the bounds, as in 

some multi-objective benchmark functions, the global optimum will be easily found. 

However, if there are some local optima near the bounds, it will be easy to fall into 

the local optima and fail to find the global optimum. 

 

5. Local optima lying along the coordinate axes or no linkage among the 

variables/dimensions: Most of the benchmark functions, especially high dimensional 

functions, always have their symmetrical grid structure and local optima are always 

along the coordinate axes. In this case, the information of the local optima could be 

used to locate the global optimum. Further, for some functions it is possible to locate 

the global optimum by using just D one-dimensional searches for a D dimensional 

problem. Some co-evolutionary algorithms [103] and the one dimensional mutation 

operator[101, 104] just use these properties to locate the global optimum rapidly. 

 

By analyzing these problems, Liang et al. [100] recommend that the researchers 

should use the following methods to avoid these problems when they use the 

benchmark functions suffering from these problems, to test a novel algorithm. 

 

1. Shift the global optimum to a random position as shown below to make the global 

optimum to have different parameter values for different dimensions for benchmark 

functions suffering from problems 1 to 3: ( ) ( )oldnew ooxfxF +−=  where ( )xF  is 

the new function, ( )xf  is the old function, oldo  is the old global optimum and newo  is 
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the new setting global optimum which has different values for different dimensions 

and not in the center of the search range. 

 

2. For issue 4, considering there are real problems which have the global optimum on 

the bounds, it is an acceptable method for bounds handling to set the population to 

the near bounds when they are out of the search range. However, Liang et. al. [100] 

suggest using different kinds of benchmark functions to test the algorithms. For 

example, However, Liang et. al. [100] suggested that one can use some problems 

with the global optimum on bounds, not on bounds and some problems with local 

optima on bounds. One may not just test one algorithm that uses this bounds 

handling method, on benchmark functions with global optimum on bounds, and 

conclude the algorithm to be good. 

 

3. Rotate the functions with issue 5 as below: 

( ) ( )xRfxF *=  where R  is an orthogonal rotation matrix obtained using Salmon’s 

method [105]. In this way, local optima can be avoided lying along the coordinate 

axes and retain the benchmark functions’ properties at the same time. 

 

When a novel algorithm is tested, except for the global optimum’s position need be 

shifted, functions having different properties should be included such as continuous 

functions, non-continuous functions, global optimum on the bounds, global optimum 

not on the bounds, unrotated functions, rotated functions, function with no clear 

structure in the fitness landscape, narrow global basin of attraction and so on.  

The first five functions are unimodal functions whereas the remaining nine functions 

are multimodal where seven of them are basic functions and two of them are the 

expanded functions. These functions are summarized below: 

 

� Unimodal Functions: 

� Shifted Sphere Function 

� Shifted Schwefel’s Problem 1.2 

� Shifted Rotated High Conditioned Elliptic Function 

� Shifted Schwefel’s Problem 1.2 with noise in Fitness 

� Schwefel’s Problem 2.6 with Global Optimum on Bounds 
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� Multimodal Functions: 

• Basic Functions: 

� Shifted Rosenbrock’s Function 

� Shifted Rotated Griewank’s Function without Bounds  

� Shifted Rotated Ackley’s Function with Global Optimum on Bounds 

� Shifted Rastrigin’s Function 

� Shifted Rotated Rastrigin’s Function 

� Shifted Rotated Weierstrass Function 

� Schwefel’s Problem 2.13 

• Expanded Functions: 

� Expanded Extended Griewank’s plus Rosenbrock’s Function(F8F2) 

� Expanded  Rotated Extended Scaffer’s F6 

 

These test functions were designed to test an optimizer’s ability to find a global 

optimum under a variety of circumstances such as: 

 

� Function landscape is highly conditioned 

� Function landscape is rotated 

� Optimum lies in a narrow basin 

� Optimum lies on a bound 

� Optimum lies beyond the initial bounds 

� Function is not continuous everywhere 

� Bias is added to the function evaluation 

4.3. Benchmark Suite 

Test functions employed in this study are given in detail below: 

 

1. Shifted Sphere Function: 

( ) ∑
=

+=
D

i
i biasfzxf

1

2 _   oxz −=   [ ]Dxxxx ,...,, 21=   

D: Dimension 
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[ ]Doooo ,...,, 21= : The shifted global optimum, to avoid the global optimum from the 

origin 

Properties: 

� Unimodal 

� Shifted 

� Separable 

� Scalable 

� [ ]Dx 100,100−∈  , global optimum: ox =* , ( ) ( ) 4501_* −== biasfxf  

Data Files: 

Name              :        sphere_func_data.txt 

Variable :        o       1*100 vector the shifted global optimum 

Name             :        fbias_data.txt 

Variable :        f_bias   1*25 vector 

 

2. Shifted Schwefel’s Problem 1.2 

( ) ∑ ∑
= =

+









=

D

i

i

j
j biasfzxf

1

2

1

_  oxz −=   [ ]Dxxxx ,...,, 21=  

D: Dimension 

[ ]Doooo ,...,, 21= : The shifted global optimum 

Properties: 

� Unimodal 

� Shifted 

� Non-separable 

� Scalable 

� [ ]Dx 100,100−∈  , global optimum: ox =* , ( ) ( ) 4502_* −== biasfxf  

Data Files: 

Name             :         schwefel_102_data.txt 

Variable :         o     1*100 vector the shifted global optimum 
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3. Shifted Rotated High Conditioned Elliptic Function 

( ) ( ) biasfzxf i

D

i
D

i

_10 21

1

1

6 +=
−
−

=
∑  ( ) Moxz *−=  [ ]Dxxxx ,...,, 21=  

D: Dimension 

[ ]Doooo ,...,, 21= : The shifted global optimum 

M: orthogonal matrix 

Properties: 

� Unimodal 

� Shifted 

� Rotated 

� Non-separable 

� Scalable 

� [ ]Dx 100,100−∈  , global optimum: ox =* , ( ) ( ) 4503_* −== biasfxf  

Data File: 

Name             :         high_cond_elliptic_rot_data.txt 

Variable :         o       1*100 vector the shifted global optimum 

Name              :         elliptic_M_D10.txt 

Variable :         M      10*10 matrix 

Name             :         elliptic_M_D30.txt 

Variable :         M      30*30 matrix 

Name              :         elliptic_M_D50.txt 

Variable :         M      50*50 matrix 

 

4. Shifted Schwefel’s Problem 1.2 with Noise in Fitness 

( )( ) biasfNzxf
D

i

i

j
j _1,04.01*)(

1

2

1

++
























= ∑ ∑

= =

 oxz −=  

 [ ]Dxxxx ,...,, 21=  

D: Dimension 

[ ]Doooo ,...,, 21= : The shifted global optimum 

Properties: 

� Unimodal 

� Shifted 
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� Non-separable 

� Scalable 

� Noise in fitness 

� [ ]Dx 100,100−∈  , global optimum: ox =* , ( ) ( ) 4504_* −== biasfxf  

Data File: 

Name             :        schwefel_102_data.txt 

Variable :         o      1*100 vector the shifted global optimum 

 

5. Schwefel’s Problem 2.6 with Global Optimum on Bounds 

( ) { }52,72max 2121 −+−+= xxxxxf , ni ,...,1= , [ ]3,1* =x , ( ) 0* =xf  

Extend to D dimensions: 

( ) { } biasfBxAxf ii _max +−= , Di ,...,1= , [ ]3,1* =x , [ ]Dxxxx ,...,, 21=  

D: Dimension 

A is a D*D matrix, jia  are integer random numbers in the range [ ]500,500− , 

( ) 0det ≠A  iA  is the ith row of A. 

oAB ii *= , o is a D*1 vector, io  are random number in the range [ ]100,100−  

After loading the data file, set 100−=io , for  4/,...,2,1 Di = , 100=io  for 

  DDi ,...,4/3=  

Properties: 

� Unimodal 

� Non-separable 

� Scalable 

� If the initialization procedure initializes the population at the bounds, this 

problem will be solved easily. 

� [ ]Dx 100,100−∈  , global optimum: ox =* , ( ) ( ) 3105_* −== biasfxf  

Data File: 

Name              :         schwefel_206_data.txt 

Variable          :        o       1*100 vector the shifted global optimum 

                                 A      100*100 matrix 

In schwefel_206_data.txt, the first line is o (1*100 vector), and line2-line101 is A 

(100*100 matrix) 
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6. Shifted Rosenbrock’s Function 

( ) ( ) ( )( )∑
−

=
+ +−+−=

1

1

22

1
2 _1100

D

i
iii biasfzzzxf  1+−= oxz  

 [ ]Dxxxx ,...,, 21=  

D: Dimension 

[ ]Doooo ,...,, 21= : The shifted global optimum 

Properties: 

� Multi-modal 

� Shifted 

� Non-separable 

� Scalable 

� Having a very narrow valley from local optimum to global optimum 

� [ ]Dx 100,100−∈  , global optimum: ox =* , ( ) ( ) 3906_* == biasfxf  

Data File: 

Name             :        rosenbrock_func_data.txt 

Variable :        o       1*100 vector the shifted global optimum 

 

7. Shifted Rotated Griewank’s Function without Bounds 

( ) ∑ ∏
= =

++






−=
D

i

D

i

ii biasf
i

zz
xf

1 1

2

_1cos
4000

, ( ) Moxz *−= ,  [ ]Dxxxx ,...,, 21=  

D: Dimension 

[ ]Doooo ,...,, 21= : The shifted global optimum 

M’ : linear transformation matrix, condition number =3 

( )( )1,03.01' NMM +=  

Properties: 

� Multi-modal 

� Rotated  

� Shifted 

� Non-separable 

� Scalable 

� No bounds for variables x 
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� Initialize population in [ ]D600,0 , Global optimum ox =*  is outside of the 

initialization range, ( ) ( ) 1807_* −== biasfxf   

Data File: 

Name             :        griewank_func_data.txt 

Variable :        o       1*100 vector the shifted global optimum 

Name             :        griewank_M_D10.txt 

Variable :        M      10*10 matrix 

Name             :        griewank_M_D30.txt 

Variable          :        M      30*30 matrix 

Name              :        griewank_M_D50.txt 

Variable :        M      50*50 matrix 

 

8. Shifted Rotated Ackley’s Function with Global Optimum on Bounds 

( ) ( ) biasfez
D

z
D

xf
D

i
i

D

i
i _2cos

1
exp

1
2.0exp20

11

2 ++






−













−−= ∑∑

==

π ,

( ) Moxz *−= ,  [ ]Dxxxx ,...,, 21=  

D: Dimension 

[ ]Doooo ,...,, 21= : The shifted global optimum; 

After loading the data file, set jj oo 212 32−=−  are randomly distributed in the search 

range, for  2/,...,2,1 Dj =   

M : linear transformation matrix, condition number =100 

Properties: 

� Multi-modal 

� Rotated  

� Shifted 

� Non-separable 

� Scalable 

� A’s condition number Cond(A) increases with the number of variables as 

( )2DO  

� Global optimum on the bound 

� If the initialization procedure initializes the population at the bounds, this 

problem will be solved easily. 
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� [ ]Dx 32,32−∈  , global optimum: ox =* , ( ) ( ) 1408_* −== biasfxf  

Data File: 

Name              :        ackley_func_data.txt 

Variable :        o       1*100 vector the shifted global optimum 

Name              :        ackley_M_D10.txt 

Variable :        M      10*10 matrix 

Name             :        ackley_M_D30.txt 

Variable :        M      30*30 matrix 

Name             :        ackley_M_D50.txt 

Variable :        M      50*50 matrix 

 

9. Shifted Rastrigin’s Function 

( ) ( )( )∑
=

++−=
D

i
ii biasfzzxf

1

2 _102cos10 π ,  oxz −=   [ ]Dxxxx ,...,, 21=  

D: Dimension 

[ ]Doooo ,...,, 21= : The shifted global optimum 

Properties: 

� Multi-modal 

� Shifted 

� Separable  

� Scalable 

� Local optima’s number is huge 

� [ ]Dx 5,5−∈  , global optimum: ox =* , ( ) ( ) 3309_* −== biasfxf  

Data File: 

Name              :        rastrigin_func_data.txt 

Variable :        o       1*100 vector the shifted global optimum 

 

10. Shifted Rotated Rastrigin’s Function 

( ) ( )( )∑
=

++−=
D

i
ii biasfzzxf

1

2 _102cos10 π , ( ) Moxz *−= ,  [ ]Dxxxx ,...,, 21=  

D: Dimension 

[ ]Doooo ,...,, 21= : The shifted global optimum 

M : linear transformation matrix, condition number =2 
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Properties: 

� Multi-modal 

� Shifted 

� Rotated  

� Non-separable  

� Scalable 

� Local optima’s number is huge 

� [ ]Dx 5,5−∈  , global optimum: ox =* , ( ) ( ) 33010_* −== biasfxf  

Data File: 

Name             :        rastrigin_func_data.txt 

Variable :        o       1*100 vector the shifted global optimum 

Name              :        rastrigin_M_D10.txt 

Variable :        M      10*10 matrix 

Name              :        rastrigin_M_D30.txt 

Variable :        M      30*30 matrix 

Name             :        rastrigin_M_D50.txt 

Variable :        M      50*50 matrix 

 

11. Shifted Rotated Weierstrass Function 

( ) ( )( )[ ] ( )[ ]∑ ∑∑
= ==

+⋅−







+=

D

i

k

k

kk
k

k
i

kk biasfbaDzbaxf
1 00

maxmax

_5.02cos5.02cos ππ , 5.0=a , 

3=b , 20max =k ,  

( ) Moxz *−= ,  [ ]Dxxxx ,...,, 21=  

D: Dimension 

[ ]Doooo ,...,, 21= : The shifted global optimum 

M : linear transformation matrix, condition number =5 

Properties: 

� Multi-modal 

� Shifted 

� Rotated  

� Non-separable  

� Scalable 

� Continuous but differentiable only on a set of points 
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� [ ]Dx 5.0,5.0−∈  , global optimum: ox =* , ( ) ( ) 9011_ == biasfxf   

Data File: 

Name             :        weierstrass_func_data.txt 

Variable :        o       1*100 vector the shifted global optimum 

Name              :        weierstrass_M_D10.txt 

Variable :        M      10*10 matrix 

Name             :        weierstrass_M_D30.txt 

Variable :        M      30*30 matrix 

Name             :        weierstrass_M_D50.txt 

Variable :        M      50*50 matrix 

 

12. Schwefel’s Problem 2.13 

( ) ( )( )∑
=

+−=
D

i
ii biasfxBAxf

1

2 _ , [ ]Dxxxx ,...,, 21=  

( )∑
=

+=
D

j
jjijjii baA

1

cossin αα , ( ) ( )∑
=

+=
D

j
jjijjii xbxaxB

1

cossin , for Di ,...,1=  

D: Dimension 

A, B are two D*D matrix, jia , jib  are integer random numbers in the range 

[ ]100,100− ,  

[ ]Dαααα ,...,, 21= , jα  are random numbers in the range [ ]ππ ,− . 

Properties: 

� Multi-modal 

� Shifted 

� Non-separable  

� Scalable 

� [ ]Dx ππ ,−∈  , global optimum: α=*x , ( ) ( ) 46012_* −== biasfxf  

Data File: 

Name             :        schwefel_213_data.txt 

Variable :        alpha    1*100 vector the shifted global optimum 

                                a       100*100 matrix     

                                b       100*100 matrix 
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In schwefel_213_data.txt, line1-line100 is a (100*100 matrix), and line101-line200 

is b (100*100 matrix), the last line is alpha (α ) (1*100 vector) 

 

Expanded Functions: 

 

Use a two dimensional function ( )yxF ,  as a starting function. 

The corresponding expanded function 

( ) ( ) ( ) ( ) ( )11322121 ,,...,,,...,, xxFxxFxxFxxFxxxEF DDDD ++++= −  

 

13. Shifted Expanded Griewank’s plus Rosenbrock’s Function (F8F2) 

F8: Griewank’s Function: ( ) ∑ ∏
= =

+






−=
D

i

D

i

ii

i

xx
xF

1 1

2

1cos
4000

8  

F2: Rosenbrock’s Function: ( ) ( ) ( )( )∑
−

=
+ −+−=

1

1

22

1
2 11002

D

i
iii xxxxF  

( ) ( )( ) ( )( ) ( )( ) ( )( )11322121 ,28,28...,28,28,...,,28 xxFFxxFFxxFFxxFFxxxFF DDDD ++++= −

 

Shift to 

( ) ( )( ) ( )( ) ( )( ) ( )( ) biasfzzFFzzFFzzFFzzFFxf DDD _,28,28...,28,28 113221 +++++= −

 

1+−= oxz , [ ]Dxxxx ,...,, 21=  

D: Dimension 

[ ]Doooo ,...,, 21= : The shifted global optimum 

Properties: 

� Multi-modal 

� Shifted 

� Non-separable  

� Scalable 

� [ ]Dx 5,5−∈ , global optimum: ox =* , ( ) ( ) 13013_* −== biasfxf   

Data File: 

Name              :        EF8F2_func_data.txt 

Variable          :        o      1*100 vector the shifted global optimum 
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14. Shifted Rotated Expanded Scaffer’s F6 Function  

( ) ( )( )
( )( )222

222

001.01

5.0sin
5.0,

yx

yx
yxF

++

−+
+=  

Expanded to 

( ) ( ) ( ) ( ) ( ) ( ) biasfzzFzzFzzFzzFzzzEFxf DDDD _,,...,,,...,, 11322121 +++++== −

, ( ) Moxz *−= , [ ]Dxxxx ,...,, 21=  

D: Dimension 

[ ]Doooo ,...,, 21= : The shifted global optimum 

M : linear transformation matrix, condition number =3 

Properties: 

� Multi-modal 

� Shifted 

� Non-separable  

� Scalable 

� [ ]Dx 100,100−∈ , Global optimum ox =* , ( ) ( ) 30014_* −== biasfxf  

Data File: 

Name              :        E_ScafferF6_func_data.txt 

Variable          :        o    1*100 vector the shifted global optimum 

Name             :        E_ScafferF6_M_D10.txt 

Variable :        M      10*10 matrix 

Name              :        E_ScafferF6_M_D30.txt 

Variable :        M      30*30 matrix 

Name             :        E_ScafferF6_M_D50.txt 

Variable          :        M      50*50 matrix 

 

4.4. Evaluation Criteria 

14 newly designed functions as indicated before are given in Suganthan et. al.[99] for 

different level of dimensions ranging from 10 to 50. The population size was 100 for 

all functions. For the evaluation purposes, Suganthan et. al. [99] provided several 

criterion measures explained below in order to make a fair comparison of different 

competing algorithms: 
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Problems: 14 minimization problems  

Dimensions: D=10, 30, 50 

Number of replications: 25 

Maximum number of function evaluations (Max_FES): Max_FES is set to 

10000*D where it is increased with the dimension size, i.e., Max_FES_10D= 

100000; for 30D= 300000; for 50D= 500000. 

Initialization: Uniform random initialization within the search range is used except 

for the problem 7 for which initialization ranges are specified. 

Global Optimum: All problems, except for 7, have the global optimum within the 

given bounds and there is no need to perform search outside of the given bounds for 

these problems. Problem 7 is exception without any search bounds and with the 

global optimum outside of the specified initialization range. 

Termination: Search is terminated before reaching  Max_FES. 

4.5. Performance Criteria 

Following performance measures are used consistent with Suganthan et. al.[99]. 

 

� Record the error value ( ) ( )( )*xfxf −   after 1e3, 1e4, 1e5 FES and at 

termination for each run. 

� For each function, sort the error values in 25 runs from the smallest (best) to 

the largest (worst)  

� Present the following: 1st (best/smallest), 7th, 13th (median), 19th, 25th 

(worst/largest) values, mean and standard deviation for the 25 runs 

� Record the success rate needed in each run to achieve the fixed accuracy 

level.  Fixed accuracy level for each function is given in Table 4.1. 

Table 4.1.  :  Fixed Accuracy Level for Each Function 

F 1 2 3 4 5 6 7 
AL -450+1e-6 -450+1e-6 -450+1e-6 -450+1e-6 -310+1e-6 390+1e-2 -180+1e-2 

 
F 8 9 10 11 12 13 14 
AL -140+1e-2 -330+1e-2 -330+1e-2 90+1e-2 -460+1e-2 -130+1e-2 -300+1e-2 

 

A successful run is defined as a run during which the algorithm achieves the fixed 

accuracy level within the Max_FES for the particular problem-dimension. 
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4.6. Success Rate for Each Problem 

Success Rate= (number of successful runs according to the table above) / total runs 

Success rate is computed for each problem-dimension size separately. 

4.7. Convergence Graphs  

Convergence Graphs for each problem size are given. The semi-log graphs will 

show log ( ) ( )( )*xfxf −   vs FES for each dimension size. 

4.8. Algorithm Complexity 

Algorithm complexity is computed as follows:  

a. Run the test program below: 

              for i= 1: 1000000 

              x= (double) 5.55; 

              x= x+x; x= x./2; x= sqrt(x); x= ln(x); x= exp(x); y= x/x; 

              end 

              Computing time for the above= T0; 

b. Evaluate the computing time just for Function 3. For 200000 evaluations 

of a certain dimension D, it gives T1; 

c. The complete computing time for the algorithm with 200000 evaluations 

of the same D dimensional benchmark function 3 is T2. Execute step c 5 

times and  get T2 values. ( )22 TMeanT =
)

    

      The complexity of the algorithm is reflected by: 2T
)

, T1,T0, and 

( ) 0/12 TTT −
)

 

 

The algorithm complexities are calculated on 10, 30 and 50 dimensions, to 

show the algorithm complexity’s relationship with dimension. In addition, it 

provides sufficient details on the computing system and the programming 

language used. In step c, we execute the complete algorithm 5 times to 

accommodate variations in execution time due to adaptive nature of some 

algorithms. 
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CHAPTER 5:  COMPUTATIONAL RESULTS  

5.1 Computational Results for the Particle Swarm Optimization Algorithm 

In order to solve continuous function optimization problems, several optimization 

algorithms have been presented in the literature with their results based on a small 

subset of the standard test problems such as Sphere, Schwefel, Rosenbrock, 

Rastrigin, and so on. Often, confusing results limited to the test problems were 

reported in the literature in such a way that the same algorithm working for a set of 

functions may not work for some other functions. For these reasons, these algorithms 

should be evaluated more systematically by determining a common termination 

criterion, size of problems, initialization scheme, running time. The special session 

on real-parameter optimization in Congress on Evolutionary Computation 

(CEC2005) aimed at developing new benchmark functions to be publicly available to 

the researchers for evaluating their algorithms. The problem definition files, codes 

and evaluation criteria are made available in http://www.ntu.edu.sg/home/EPNSugan 

[99].  

 

The traditional PSO algorithm was coded in C and run on an Intel P4 1.33 GHz PC 

with 256MB memory. Regarding the PSO parameters, the acceleration coefficients 

were taken as 221 == cc  consistent with the literature. Initial inertia weight and 

final inertia weight were set to 9.00 =w  and 4.0=nw  respectively. The inertia 

weight is linearly decreased by the following equation: 

( )( ) ( ) nn
t wwwFESFESFESw +−−= 0*max_/max_  

 

 The population size was taken as 100. The maximum number of function 

evaluations is fixed at 10000*D where D is the size of dimension varying from 10 to 
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50. The PSO algorithm was run for the 14 benchmark functions recently developed. 

The performance evaluation of the PSO algorithm is also conducted through the 

guidelines described in the evaluation criteria in the webpage above. 25 replications 

are conducted for each benchmark function to record the error values, ( ) ( )*xfxf − , 

after 1e3 FES, 1e4 FES, 1e5 FES and at the termination. 

 

The mean error values and standard deviations are given in Table 5.1. In addition, the 

error values achieved at different FES levels are given in details in Appendices A.1, 

A.2, and A.3. The Appendices list the test function, 1st (best/smallest), 7th, 13th 

(median), 19th, 25th (worst/largest), mean and standard deviation of the error values 

found  at 1e3 FES, 1e4 FES, 1e5 FES and at termination for the 25 runs. The 

convergence graphs are also given in Figures 5.1 to 5.6.  

 

Since these benchmarks are newly designed, unfortunately there exist no results for 

comparison purposes. For this reason, the computational results are presented along 

with the convergence graphs to be compared with the DE algorithm in the next 

Chapter.  
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Figure 5.1 Convergence Graph of PSO for D=10 for functions 1-7 

As seen in Figure 5.1, the PSO algorithm converges to the optimal solution easily in 

each run whereas near-optimal solutions are obtained for the functions 2, 4, and 7. In 

addition, the PSO algorithm was not able to find reasonable near-optimal solutions 
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for the functions 3 and 6. In other words, the PSO algorithm failed for the functions 3 

and 6. 
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Figure 5.2 Convergence Graph of PSO for D=10 for functions 8-14 

As seen in Figure 5.2, the PSO algorithm performed relatively good by generating 

near-optimal solutions for the functions 9, 11, 13, and 14 whereas it fails for the 

functions 8, 10, and 12. 

 

1.0E-09
1.0E-07
1.0E-05
1.0E-03
1.0E-01
1.0E+01
1.0E+03
1.0E+05
1.0E+07
1.0E+09
1.0E+11

10
00

50
00

75
00

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

FES

lo
g

(f
-f

*)

p1

p2

p3

p4

p5

p6

p7

 
 

Figure 5.3 Convergence Graph of PSO for D=30 for functions 1-7 

As seen in Figure 5.3, the PSO algorithm performed relatively good results by 

generating near-optimal solutions for only the functions 1 and 7 whereas it fails for 
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the rest of the 5 other functions. Another interpretation of these results is that the 

PSO algorithm could not be able to generate near-optimal solutions when the 

dimension size is increased. 
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Figure 5.4 Convergence Graph of PSO for D=30 for functions 8-14 

As seen in Figure 5.4, the PSO algorithm could not be able to generate satisfactory 

solutions for the eight functions except for the function 13. Another interpretation of 

these results is again that the PSO algorithm could not be able to generate near-

optimal solutions when the dimension size is increased. 
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Figure 5.5 Convergence Graph of PSO for D=50 for functions 1-7 

As seen in Figure 5.5, the PSO algorithm performed satisfactory results only for the 

functions 1 and 7 whereas it fails for the rest of the 5 other functions. Another 
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interpretation of these results is again that the PSO algorithm could not be able to 

generate near-optimal solutions when the dimension size is increased. 
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Figure 5.6 Convergence Graph of PSO for D=50 for functions 8-14 

As seen in Figure 5.6, the PSO algorithm could not be able to generate satisfactory 

solutions for the eight functions except for the function 13. Another interpretation of 

these results is again that the PSO algorithm could not be able to generate near-

optimal solutions when the dimension size is increased. 

 

From these results, we can conclude that the PSO algorithm is affected by the 

dimension size. In other words, the performance of the PSO algorithm gets worsened 

as the dimension size increases. 

5.2 Computational Results for the Differential Evolution Algorithm 

The traditional DE algorithm was coded in C and run on an Intel P4 1.33 GHz PC 

with 256MB memory. Regarding the DE parameters, mutation (MR) and crossover 

rates (CR) are taken as 0.9 respectively. The population size was 100. The maximum 

number of function evaluations is fixed at 10000*D where D is the size of dimension 

and varied from 10 to 50. The DE algorithm was run for the 14 benchmark functions 

recently developed. The performance evaluation of the DE algorithm is also 

conducted through the guidelines described in [99]. 25 replications are conducted for 



 45 

each benchmark function to record the error values, ( ) ( )*xfxf − , after 1e3 FES, 1e4 

FES, 1e5 FES and at the termination.  

Table 5.1. : Mean Error and standard deviation values achieved at the termination for 

PSO Algorithm 

Func.   D=10 D=30 D=50 
1 Mean 0.00000E+00 8.00000E-09 1.16368E-01 
  Std D. 0.00000E+00 3.79693E-08 5.62614E-01 
2 Mean 4.31888E-01 4.01956E+02 6.53038E+03 
  Std D. 1.96785E+00 3.40265E+02 3.35448E+03 
3 Mean 1.98704E+05 1.07647E+07 4.84217E+07 
  Std D. 2.12806E+05 9.33441E+06 3.11780E+07 
4 Mean 4.25415E+00 2.70271E+03 2.27204E+04 
  Std D. 1.98131E+01 1.48463E+03 7.01268E+03 
5 Mean 0.00000E+00 1.10620E+04 1.98764E+04 
  Std D. 0.00000E+00 3.83930E+03 3.63886E+03 
6 Mean 6.92385E+01 1.57711E+02 3.03737E+02 
  Std D. 9.08055E+01 2.13877E+02 3.42479E+02 
7 Mean 2.41916E-01 8.19353E-02 2.47858E-02 
  Std D. 1.29032E-01 8.93249E-02 2.36381E-02 
8 Mean 2.03441E+01 2.09311E+01 2.11326E+01 
  Std D. 8.13829E-02 6.64438E-02 3.99925E-02 
9 Mean 1.99013E+00 2.43572E+01 6.62258E+01 
  Std D. 1.21875E+00 5.51904E+00 1.11524E+01 

10 Mean 1.64690E+01 8.72283E+01 2.14250E+02 
  Std D. 7.04173E+00 3.91043E+01 9.29100E+01 

11 Mean 4.62658E+00 3.11684E+01 6.61378E+01 
  Std D. 1.45265E+00 5.19378E+00 5.93583E+00 

12 Mean 8.47897E+01 2.21836E+04 1.08151E+05 
  Std D. 1.65819E+02 1.60610E+04 5.76638E+04 

13 Mean 6.62293E-01 3.70427E+00 9.64705E+00 
  Std D. 2.06914E-01 9.19095E-01 2.69821E+00 

14 Mean 2.96542E+00 1.30484E+01 2.27563E+01 
  Std D. 5.20650E-01 2.44407E-01 2.80591E-01 

 

The mean error values and standard deviations are given in Table 5.2. In addition, the 

error values achieved at different FES levels are given in details in Appendices B.1, 

B.2, and B.3. The Appendices presents the test functions, 1st (best/smallest), 7th, 13th 

(median), 19th, 25th (worst/largest) values, mean and standard deviation of the error 

values found  at 1e3 FES, 1e4 FES, 1e5 FES and at termination. The complexity of 

the DE algorithm will be given in detail in the next Chapter. The convergence graphs 

are also given in Figures 5.7 to 5.12.  
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Since these benchmarks are newly designed, unfortunately there exist no results for 

comparison purposes. For this reason, the computational results are presented along 

with the convergence graphs to be compared with the PSO algorithm in the next 

Chapter.  
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Figure 5.7 Convergence Graph of DE for D=10 for functions 1-7 

As seen in Figure 5.7, the DE algorithm performed very good by generating optimal 

solutions for the functions 1, 2, 4, and 5. In addition, it generated results near to the 

optimal solutions for functions 3, 6 and 7.  
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Figure 5.8 Convergence Graph of DE for D=10 for functions 8-14 
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As seen in Figure 5.8, the DE algorithm performed relatively good results by 

generating near-optimal solutions for the functions 11, 13 and 14 whereas it fails for 

the rest of the 4 other functions.  
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Figure 5.9 Convergence Graph of DE for D=30 for functions 1-7 

As seen in Figure 5.9, the DE algorithm generated the optimal solution for the first 

function. It also generated near-optimal results for the functions 2 and 7. However, it 

fails for the functions 3, 4, 5 and 6.  
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Figure 5.10 Convergence Graph of DE for D=30 for functions 8-14 
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As seen in Figure 5.10, the DE algorithm generated the optimal solution for the 

function 12. It also generated near-optimal result for the functions 13. However, it 

fails for the functions 8, 9, 10, 11, and 14.  
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Figure 5.11 Convergence Graph of DE for D=50 for functions 1-7 

As seen in Figure 5.11, the DE algorithm generated the optimal solution for the first 

function 1. It also generated near-optimal result for the function 7. However, it fails 

for the functions 2, 3, 4, 5 and 6.  
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Figure 5.12 Convergence Graph of DE for D=50 for functions 8-14 
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As seen in Figure 5.12, the DE algorithm generated the near-optimal solution only 

for the function 13. It fails for the functions 8, 9, 10, 11, 12 and 14. Another 

interpretation of these results is that the DE algorithm could not be able to generate 

near-optimal solutions when the dimension size is increased. 

 

From these results, we can conclude that the DE algorithm is affected by the 

dimension size. In other words, the performance of the DE algorithm gets worsened 

as the dimension size increases. 

Table 5.2.  :  Mean Error and standard deviation values achieved at the termination 

for the DE Algorithm  

Func.   D=10 D=30 D=50 
1 Mean 0.00000E+00 0.00000E+00 0.00000E+00 
  Std D. 0.00000E+00 0.00000E+00 0.00000E+00 
2 Mean 0.00000E+00 6.18957E-02 6.70521E+01 
  Std D. 0.00000E+00 4.21461E-02 2.92809E+01 
3 Mean 5.46328E-05 7.34622E+05 2.18206E+06 
  Std D. 1.01191E-04 3.83248E+05 9.15385E+05 
4 Mean 0.00000E+00 4.06987E+00 3.00509E+03 
  Std D. 0.00000E+00 4.20637E+00 2.18711E+03 
5 Mean 0.00000E+00 1.89052E+03 5.49715E+03 
  Std D. 0.00000E+00 1.88807E+03 2.49397E+03 
6 Mean 6.37853E-01 9.45834E+00 9.13380E+01 
  Std D. 1.49164E+00 5.37511E+00 8.49118E+01 
7 Mean 1.50829E-01 4.16067E-02 1.07342E-02 
  Std D. 6.40648E-02 6.68922E-02 1.58607E-02 
8 Mean 2.03384E+01 2.09600E+01 2.11374E+01 
  Std D. 7.50173E-02 5.14799E-02 3.69487E-02 
9 Mean 5.09419E+00 4.08729E+01 9.27698E+01 
  Std D. 2.09729E+00 1.12049E+01 2.10559E+01 

10 Mean 1.65177E+01 5.02670E+01 9.14884E+01 
  Std D. 6.98306E+00 1.33351E+01 1.68417E+01 

11 Mean 7.09222E-01 1.17990E+01 5.32926E+01 
  Std D. 9.72805E-01 4.16057E+00 1.83731E+01 

12 Mean 5.89551E+01 0.00000E+00 1.06185E+04 
  Std D. 2.68501E+02 0.00000E+00 8.53809E+03 

13 Mean 7.66957E-01 3.49835E+00 9.58925E+00 
  Std D. 3.34237E-01 1.17383E+00 3.20361E+00 

14 Mean 3.44692E+00 1.33659E+01 2.31630E+01 
  Std D. 5.73178E-01 1.99834E-01 1.74935E-01 
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CHAPTER 6:  COMPARISON OF PSO AND DE ALGORITHMS 

6.1 Comparison of PSO and DE Algorithms 

In this chapter, PSO and DE algorithms have been compared according to best mean, 

standard deviation of the error values achieved at the termination as well as their 

success ratio. Error values achieved within the maximum number of function 

evaluation and the success ratio achieved within the fixed accuracy levels are 

presented in Tables 6.1 to 6.3. The fixed accuracy levels obtained from Suganthan et. 

al. [99] for the 14 test functions as given in Chapter 4 are 1e-6 for functions 1 to 5 

and  1e-2 for functions 6 to 14.  
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Table 6.1.  :  Error values achieved in the Max_FES  and Success Rate (PSO and DE 

for D=10) 

Func.   1st(Min) 7th 13th(Median) 19th 25th(Max) Mean Std. SR(%) 

1 PSO 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100 

  DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100 

2 PSO 1.76600E-05 2.65480E-04 9.93690E-04 1.26971E-02 9.86478E+00 4.31888E-01 1.96785E+00 100 

  DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100 

3 PSO 2.50113E+04 8.09600E+04 1.24667E+05 2.06380E+05 8.50952E+05 1.98704E+05 2.12806E+05 0 

  DE 4.10000E-07 2.02000E-06 7.09000E-06 6.23900E-05 3.83810E-04 5.46328E-05 1.01191E-04 44 

4 PSO 1.03240E-04 1.14938E-03 2.06002E-02 1.41357E-01 9.92933E+01 4.25415E+00 1.98131E+01 0 

  DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100 

5 PSO 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100 

  DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100 

6 PSO 3.84650E-01 3.66355E+00 8.44764E+00 1.42832E+02 2.88304E+02 6.92385E+01 9.08055E+01 0 

  DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 3.98658E+00 6.37853E-01 1.49164E+00 100 

7 PSO 6.01463E-02 1.56842E-01 2.16706E-01 3.42226E-01 5.35337E-01 2.41916E-01 1.29032E-01 0 

  DE 5.08014E-02 1.03748E-01 1.50057E-01 2.07027E-01 2.58674E-01 1.50829E-01 6.40648E-02 0 

8 PSO 2.01574E+01 2.02826E+01 2.03568E+01 2.04105E+01 2.04617E+01 2.03441E+01 8.13829E-02 0 

  DE 2.01870E+01 2.02973E+01 2.03631E+01 2.03872E+01 2.05102E+01 2.03384E+01 7.50173E-02 0 

9 PSO 0.00000E+00 9.94959E-01 1.98992E+00 2.98488E+00 3.97990E+00 1.99013E+00 1.21875E+00 92 

  DE 1.98992E+00 2.98488E+00 4.97480E+00 6.96471E+00 8.95463E+00 5.09419E+00 2.09729E+00 0 

10 PSO 5.28933E+00 1.25393E+01 1.58296E+01 1.88197E+01 3.25179E+01 1.64690E+01 7.04173E+00 0 

  DE 7.79445E+00 1.14447E+01 1.52435E+01 1.89897E+01 3.63416E+01 1.65177E+01 6.98306E+00 0 

11 PSO 2.56900E+00 3.60895E+00 4.63681E+00 5.43349E+00 8.49518E+00 4.62658E+00 1.45265E+00 0 

  DE 7.93340E-04 2.43548E-03 5.85140E-03 1.50192E+00 3.00221E+00 7.09222E-01 9.72805E-01 80 

12 PSO 9.48824E-01 1.04495E+01 2.02180E+01 3.96839E+01 7.12255E+02 8.47897E+01 1.65819E+02 0 

  DE 0.00000E+00 0.00000E+00 2.00000E-08 1.00030E+01 1.34735E+03 5.89551E+01 2.68501E+02 96 

13 PSO 3.89080E-01 5.06936E-01 6.38670E-01 7.38544E-01 1.22706E+00 6.62293E-01 2.06914E-01 0 

  DE 3.81196E-01 5.33667E-01 7.16250E-01 9.19178E-01 1.56296E+00 7.66957E-01 3.34237E-01 0 

14 PSO 1.57958E+00 2.61841E+00 3.12565E+00 3.29433E+00 3.62920E+00 2.96542E+00 5.20650E-01 0 

 DE 1.00236E+00 3.45017E+00 3.58983E+00 3.75966E+00 3.92519E+00 3.44692E+00 5.73178E-01 0 

Avg. PSO 1.78876E+03 5.78677E+03 8.91019E+03 1.47582E+04 6.08666E+04 1.42079E+04 1.52211E+04 28 

  DE 2.24332E+00 2.77264E+00 3.21739E+00 4.48089E+00 1.01849E+02 7.61552E+00 2.00780E+01 51.43 

 

As seen in Table 6.1, the DE algorithm was superior to the PSO algorithm for all the 

performance measures taken when overall average of the performance measures for 

14 functions. In other words, the DE algorithm was better than the PSO algorithm in 

terms of min, median, max, mean, standard deviation and success ratio. When 

comparing the success ratio of both algorithms, the DE algorithm outperformed the 

PSO algorithm with a 51.43 percent which is almost twice as much as a success ratio 

of 28% for the PSO algorithm. 
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Table 6.2.  : Error values achieved in the Max_FES and Success Rate (PSO and DE 

for D=30) 

Func.   1st(Min) 7th 13th(Median) 19th 25th(Max) Mean Std. SR(%) 

1 PSO 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.90000E-07 8.00000E-09 3.79693E-08 100 

  DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100 

2 PSO 9.19895E+01 1.44785E+02 2.84253E+02 5.35763E+02 1.37277E+03 4.01956E+02 3.40265E+02 0 

  DE 1.00082E-02 2.69799E-02 4.70619E-02 8.74604E-02 1.58316E-01 6.18957E-02 4.21461E-02 0 

3 PSO 2.14739E+06 3.51459E+06 5.23473E+06 1.76596E+07 3.46473E+07 1.07647E+07 9.33441E+06 0 

  DE 2.52866E+05 3.63513E+05 6.71938E+05 9.74700E+05 1.45497E+06 7.34622E+05 3.83248E+05 0 

4 PSO 8.49725E+02 1.54421E+03 2.65265E+03 3.59317E+03 6.77614E+03 2.70271E+03 1.48463E+03 0 

  DE 4.44201E-01 1.56985E+00 2.26303E+00 4.37445E+00 1.58945E+01 4.06987E+00 4.20637E+00 0 

5 PSO 1.80210E+01 8.76067E+03 1.08879E+04 1.35322E+04 1.80297E+04 1.10620E+04 3.83930E+03 0 

  DE 1.08400E-05 9.65160E-03 2.19951E+03 2.91858E+03 5.93939E+03 1.89052E+03 1.88807E+03 0 

6 PSO 1.28023E+01 2.84509E+01 9.26050E+01 1.63450E+02 1.08048E+03 1.57711E+02 2.13877E+02 0 

  DE 7.91052E-01 6.02897E+00 1.01827E+01 1.26779E+01 1.80863E+01 9.45834E+00 5.37511E+00 0 

7 PSO 4.92000E-06 1.03743E-02 4.04980E-02 1.50584E-01 3.08387E-01 8.19353E-02 8.93249E-02 64 

  DE 0.00000E+00 0.00000E+00 1.00000E-08 5.39371E-02 2.89677E-01 4.16067E-02 6.68922E-02 100 

8 PSO 2.07623E+01 2.08980E+01 2.09448E+01 2.09789E+01 2.10350E+01 2.09311E+01 6.64438E-02 0 

  DE 2.08070E+01 2.09520E+01 2.09705E+01 2.09984E+01 2.10302E+01 2.09600E+01 5.14799E-02 0 

9 PSO 1.39294E+01 1.98992E+01 2.48740E+01 2.88538E+01 3.28336E+01 2.43572E+01 5.51904E+00 0 

  DE 2.18891E+01 3.28336E+01 4.07933E+01 4.77579E+01 6.06924E+01 4.08729E+01 1.12049E+01 0 

10 PSO 4.46290E+01 6.76721E+01 7.70619E+01 9.74682E+01 2.44440E+02 8.72283E+01 3.91043E+01 0 

  DE 2.34153E+01 4.49232E+01 5.00901E+01 5.49342E+01 7.95865E+01 5.02670E+01 1.33351E+01 0 

11 PSO 2.10586E+01 2.74924E+01 3.04811E+01 3.50665E+01 3.94895E+01 3.11684E+01 5.19378E+00 0 

  DE 5.37358E+00 8.52891E+00 1.09034E+01 1.56893E+01 1.87345E+01 1.17990E+01 4.16057E+00 0 

12 PSO 2.21992E+03 9.09589E+03 1.75403E+04 3.40146E+04 6.06273E+04 2.21836E+04 1.60610E+04 0 

  DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0 

13 PSO 2.12003E+00 3.06190E+00 3.71451E+00 4.08763E+00 6.58410E+00 3.70427E+00 9.19095E-01 0 

  DE 1.97830E+00 2.68041E+00 2.95265E+00 4.04031E+00 5.77030E+00 3.49835E+00 1.17383E+00 0 

14 PSO 1.24395E+01 1.29290E+01 1.30828E+01 1.32259E+01 1.34684E+01 1.30484E+01 2.44407E-01 0 

  DE 1.29578E+01 1.32526E+01 1.33953E+01 1.35254E+01 1.36599E+01 1.33659E+01 1.99834E-01 0 

Avg PSO 1.53621E+05 2.52451E+05 3.76169E+05 1.26512E+06 2.48111E+06 7.71527E+05 6.68314E+05 11.71 

  DE 1.80681E+04 2.59746E+04 4.81635E+04 6.98423E+04 1.04367E+05 5.26191E+04 2.75126E+04 14.29 

 

As seen in Table 6.2, the DE algorithm again outperformed the PSO algorithm for all 

the performance measures taken when overall average of the performance measures 

for 14 functions for the dimension size of 30. In other words, the DE algorithm was 

better than the PSO algorithm in terms of min, median, max, mean, standard 

deviation and success ratio. When comparing the success ratio of both algorithms, 

the DE algorithm outperformed the PSO algorithm since DE’s success ratio was 

14.29 percent whereas PSO’s success ratio was 11.71 percent. 
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Table 6.3.  : Error values achieved in the Max_FES and Success Rate (PSO and DE 

for D=50) 

Func.   1st(Min) 7th 13th(Median) 19th 25th(Max) Mean Std. SR(%) 

1 PSO 2.00000E-08 6.80000E-07 3.72000E-06 1.92900E-05 2.81544E+00 1.16368E-01 5.62614E-01 100 

  DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100 

2 PSO 2.73281E+03 4.12783E+03 5.65296E+03 7.55080E+03 1.50197E+04 6.53038E+03 3.35448E+03 0 

  DE 2.67056E+01 5.11244E+01 5.74726E+01 7.93419E+01 1.40927E+02 6.70521E+01 2.92809E+01 0 

3 PSO 7.18257E+06 2.71240E+07 3.66474E+07 6.29808E+07 1.21738E+08 4.84217E+07 3.11780E+07 0 

  DE 9.83717E+05 1.49749E+06 2.10192E+06 2.56510E+06 4.52991E+06 2.18206E+06 9.15385E+05 0 

4 PSO 1.01778E+04 1.82279E+04 2.25180E+04 2.79352E+04 3.50883E+04 2.27204E+04 7.01268E+03 0 

  DE 6.42150E+02 1.61209E+03 2.26646E+03 3.58110E+03 1.04788E+04 3.00509E+03 2.18711E+03 0 

5 PSO 1.25707E+04 1.71181E+04 1.95252E+04 2.21800E+04 2.88438E+04 1.98764E+04 3.63886E+03 0 

  DE 5.38846E+02 3.66471E+03 5.61799E+03 7.33205E+03 1.04086E+04 5.49715E+03 2.49397E+03 0 

6 PSO 4.24331E+01 1.09911E+02 1.71295E+02 3.04782E+02 1.36723E+03 3.03737E+02 3.42479E+02 0 

  DE 2.13773E+01 4.01439E+01 8.45228E+01 9.32595E+01 3.88045E+02 9.13380E+01 8.49118E+01 0 

7 PSO 1.02000E-03 6.85393E-03 1.99886E-02 3.07924E-02 1.05730E-01 2.47858E-02 2.36381E-02 72 

  DE 1.00000E-07 6.60000E-07 2.66000E-06 1.66393E-02 4.86660E-02 1.07342E-02 1.58607E-02 96 

8 PSO 2.10415E+01 2.11087E+01 2.11392E+01 2.11633E+01 2.11908E+01 2.11326E+01 3.99925E-02 0 

  DE 2.10276E+01 2.11233E+01 2.11432E+01 2.11634E+01 2.11989E+01 2.11374E+01 3.69487E-02 0 

9 PSO 4.57681E+01 5.87025E+01 6.96471E+01 7.26319E+01 8.75563E+01 6.62258E+01 1.11524E+01 0 

  DE 6.66622E+01 7.95966E+01 8.65613E+01 9.65108E+01 1.42279E+02 9.27698E+01 2.10559E+01 0 

10 PSO 1.01273E+02 1.39716E+02 1.84071E+02 2.89274E+02 4.04977E+02 2.14250E+02 9.29100E+01 0 

  DE 5.59457E+01 8.37425E+01 9.01580E+01 9.74667E+01 1.33335E+02 9.14884E+01 1.68417E+01 0 

11 PSO 5.32597E+01 6.31906E+01 6.70882E+01 7.08982E+01 7.45000E+01 6.61378E+01 5.93583E+00 0 

  DE 2.44855E+01 3.74256E+01 5.70049E+01 7.11363E+01 7.44238E+01 5.32926E+01 1.83731E+01 0 

12 PSO 1.80026E+04 6.22675E+04 1.02842E+05 1.39305E+05 2.27342E+05 1.08151E+05 5.76638E+04 0 

  DE 6.30067E+02 4.08555E+03 8.10495E+03 1.60856E+04 3.08875E+04 1.06185E+04 8.53809E+03 0 

13 PSO 5.33924E+00 7.66812E+00 9.28354E+00 1.16804E+01 1.55820E+01 9.64705E+00 2.69821E+00 0 

  DE 5.19514E+00 7.35488E+00 8.78431E+00 1.15155E+01 1.59468E+01 9.58925E+00 3.20361E+00 0 

14 PSO 2.20372E+01 2.26008E+01 2.27769E+01 2.28943E+01 2.32639E+01 2.27563E+01 2.80591E-01 0 

  DE 2.26743E+01 2.30478E+01 2.32035E+01 2.32611E+01 2.34932E+01 2.31630E+01 1.74935E-01 0 

Avg PSO 5.16167E+05 1.94473E+06 2.62846E+06 4.51275E+06 8.71759E+06 3.46998E+06 2.23215E+06 12.29 

  DE 7.04123E+04 1.07657E+05 1.51310E+05 1.85185E+05 3.27330E+05 1.57259E+05 6.63413E+04 14 

 

As seen in Table 6.3, the DE algorithm again outperformed the PSO algorithm for all 

the performance measures taken when overall average of the performance measures 

for 14 functions for the dimension size of 50. In other words, the DE algorithm was 

better than the PSO algorithm in terms of min, median, max, mean, standard 

deviation and success ratio. When comparing the success ratio of both algorithms, 

the DE algorithm outperformed the PSO algorithm since DE’s success ratio was 14 

percent whereas PSO’s success ratio was 12.29 percent. 
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Finally, the computational complexity of each algorithm is considered. The 

algorithm complexity, which is defined in chapter 4, is computed for 10, 30, and 50 

dimensions by using function 3 in order to show the algorithm complexity 

relationship with increasing dimensions. The computational complexity of each 

algorithm is given. Table 6.4 and Table 6.5 show the complexity of the PSO and DE 

algorithms, respectively.  

Table 6.4.  :  Complexity of the PSO Algorithm 

  PSO  
 D=10 D=30 D=50 

T0 551 551 551 
T1 1442 4526 7481 
T2 7312 25671 50476 

Complexity 10.65 38.37 78.03 

Table 6.5.  :  Complexity of the DE Algorithm 

  DE  
 D=10 D=30 D=50 

T0 551 551 551 
T1 1442 4526 7481 
T2 7150 25094 49497 

Complexity 10.36 37.33 76.25 

As seen from Table 6.4 and 6.5, the time complexity of both algorithm show similar 

behavior in terms of CPU times 

Table 6.6 : Average Success Rates of PSO and DE at D=10,30,50 

Dimension  10 30 50 

PSO Avg. SR.(%) 28 11.72 12.29 

DE Avg. SR.(%) 51.43 14.29 14 
 

To sum up all the results, overall average success ratio for both algorithms with 

different dimensions are given in Table 6.6. The DE algorithm perfoms better than 

the PSO algorithm according to average success ratio. However, as the dimension 

size increases, the DE algorithm also deteriorates. 
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CHAPTER 7:  CONCLUSION 

7.1 Conclusions 

In this research, latest metaheuristic approaches so called the particle swarm 

optimization and differential evolution algorithms are presented to solve continuous 

function optimization. The benchmark suite is taken from Suganthan et. al. [99]. 

According to the results, the DE algorithm performed better than the PSO algorithm 

in general for the functions considered. Main contribution of this research is the 

development of both algorithm for newly designed benchmark problems. Since these 

benchmarks are newly designed, unfortunately there exist no results for comparison 

purposes. For this reason, the computational results are presented to be compared 

with the DE algorithm only.  

 

For the future work, these algorithms can be extended to other versions of the PSO 

and DE algorithms such as multi-swarm parallel algorithms with master-slave or 

island models to obtain better results. In addition, there exist different types of local 

search algorithms that can be embedded in these algorithms. These algorithms are 

Nelder and Mead algorithm, Solis and Wets algorithm, Pattern Search etc. Including 

these local searches in the PSO and DE algorithms may lead to better results. 
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APPENDIX A 

 

Table A.1.  :  Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES and at 

Termination for PSO Algorithm for D=10 

FES  1 2 3 4 5 6 7 

 1st 1.47948E+03 3.21335E+03 9.68577E+06 2.28773E+03 2.13117E+02 2.13503E+07 1.06912E+01 

 7th 2.75122E+03 4.86396E+03 2.50273E+07 4.73202E+03 5.60503E+02 7.49290E+07 2.35460E+01 

 13th 3.99646E+03 5.51322E+03 4.22674E+07 7.41025E+03 6.33911E+02 1.26762E+08 2.96474E+01 

1e3 19th 4.23627E+03 6.41568E+03 5.39285E+07 8.83893E+03 9.41594E+02 1.97655E+08 4.49104E+01 

 25th 6.24589E+03 9.45018E+03 1.29522E+08 1.28319E+04 3.34479E+03 3.15349E+08 6.35104E+01 

 Mean 3.67483E+03 5.57230E+03 4.40712E+07 7.06576E+03 8.21209E+02 1.36002E+08 3.34451E+01 

 Std D. 1.16968E+03 1.48813E+03 2.46624E+07 2.67136E+03 6.09282E+02 7.29025E+07 1.33728E+01 

 1st 4.83387E+02 1.42596E+03 3.92467E+06 9.03847E+02 2.49714E+01 3.30793E+06 3.30480E+00 

 7th 1.07941E+03 2.04405E+03 7.82193E+06 2.02561E+03 6.31861E+01 1.99488E+07 6.30282E+00 

 13th 1.30838E+03 2.23742E+03 9.91559E+06 2.54786E+03 1.01348E+02 2.53140E+07 7.45523E+00 

1e4 19th 1.72260E+03 2.51689E+03 1.31614E+07 2.90955E+03 1.27797E+02 3.51203E+07 8.56092E+00 

 25th 2.22004E+03 3.21198E+03 2.08326E+07 3.94517E+03 1.74643E+02 5.77292E+07 1.34647E+01 

 Mean 1.35595E+03 2.24009E+03 1.05080E+07 2.49749E+03 9.50043E+01 2.71476E+07 7.51574E+00 

 Std D. 4.79773E+02 4.22656E+02 4.05245E+06 7.94431E+02 4.03227E+01 1.49223E+07 2.24194E+00 

 1st 0.00000E+00 1.76600E-05 2.50113E+04 1.03240E-04 0.00000E+00 3.84650E-01 6.01463E-02 

 7th 0.00000E+00 2.65480E-04 8.09600E+04 1.14938E-03 0.00000E+00 3.66355E+00 1.56842E-01 

 13th 0.00000E+00 9.93690E-04 1.24667E+05 2.06002E-02 0.00000E+00 8.44764E+00 2.16706E-01 

1e5 19th 0.00000E+00 1.26971E-02 2.06380E+05 1.41357E-01 0.00000E+00 1.42832E+02 3.42226E-01 

 25th 0.00000E+00 9.86478E+00 8.50952E+05 9.92933E+01 0.00000E+00 2.88304E+02 5.35337E-01 

 Mean 0.00000E+00 4.31888E-01 1.98704E+05 4.25415E+00 0.00000E+00 6.92385E+01 2.41916E-01 

 Std D. 0.00000E+00 1.96785E+00 2.12806E+05 1.98131E+01 0.00000E+00 9.08055E+01 1.29032E-01 
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FES  8 9 10 11 12 13 14 

 1st 2.04495E+01 5.53821E+01 6.69360E+01 9.61917E+00 2.57417E+04 3.15227E+01 3.88626E+00 

 7th 2.06269E+01 6.48798E+01 7.50317E+01 1.08404E+01 3.25720E+04 1.46080E+02 4.22190E+00 

 13th 2.07588E+01 6.97970E+01 8.53185E+01 1.12605E+01 4.50141E+04 2.65613E+02 4.34066E+00 

1e3 19th 2.08260E+01 7.71770E+01 8.94315E+01 1.19421E+01 4.98899E+04 4.76715E+02 4.43381E+00 

 25th 2.09419E+01 9.11886E+01 1.03635E+02 1.26457E+01 7.60014E+04 1.34741E+03 4.51309E+00 

 Mean 2.07317E+01 7.08314E+01 8.34598E+01 1.13093E+01 4.47763E+04 3.48797E+02 4.28668E+00 

 Std D. 1.37932E-01 9.09859E+00 1.08567E+01 8.33069E-01 1.38980E+04 3.05521E+02 1.75099E-01 

 1st 2.03398E+01 3.19782E+01 4.66520E+01 8.09263E+00 5.23562E+03 7.29153E+00 3.79794E+00 

 7th 2.04698E+01 4.31703E+01 5.06742E+01 9.90019E+00 1.40645E+04 1.06259E+01 3.91413E+00 

 13th 2.05270E+01 5.12512E+01 5.64420E+01 1.01939E+01 1.83108E+04 1.30385E+01 3.99351E+00 

1e4 19th 2.05660E+01 5.57051E+01 5.96499E+01 1.04326E+01 2.19604E+04 1.81350E+01 4.02913E+00 

 25th 2.06885E+01 5.92326E+01 7.49138E+01 1.10542E+01 2.98589E+04 3.44424E+01 4.16541E+00 

 Mean 2.05206E+01 4.93295E+01 5.67747E+01 1.00724E+01 1.79268E+04 1.45014E+01 3.98123E+00 

 Std D. 8.29416E-02 8.02532E+00 6.63481E+00 6.71169E-01 6.29392E+03 6.11292E+00 9.40904E-02 

 1st 2.01574E+01 0.00000E+00 5.28933E+00 2.56900E+00 9.48824E-01 3.89080E-01 1.57958E+00 

 7th 2.02826E+01 9.94959E-01 1.25393E+01 3.60895E+00 1.04495E+01 5.06936E-01 2.61841E+00 

 13th 2.03568E+01 1.98992E+00 1.58296E+01 4.63681E+00 2.02180E+01 6.38670E-01 3.12565E+00 

1e5 19th 2.04105E+01 2.98488E+00 1.88197E+01 5.43349E+00 3.96839E+01 7.38544E-01 3.29433E+00 

 25th 2.04617E+01 3.97990E+00 3.25179E+01 8.49518E+00 7.12255E+02 1.22706E+00 3.62920E+00 

 Mean 2.03441E+01 1.99013E+00 1.64690E+01 4.62658E+00 8.47897E+01 6.62293E-01 2.96542E+00 

 Std D. 8.13829E-02 1.21875E+00 7.04173E+00 1.45265E+00 1.65819E+02 2.06914E-01 5.20650E-01 
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Table A.2.  :  Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES and at 

Termination for PSO Algorithm for D=30 

FES  1 2 3 4 5 6 7 

 1st 3.26609E+04 3.72956E+04 3.61002E+08 7.16017E+04 1.61519E+04 7.46561E+09 3.67427E+02 

 7th 4.00946E+04 6.95113E+04 6.72351E+08 8.45589E+04 1.97316E+04 1.40431E+10 4.55083E+02 

 13th 4.34139E+04 7.34467E+04 8.66443E+08 9.35033E+04 2.18862E+04 1.67137E+10 5.03242E+02 

1e3 19th 4.63498E+04 8.61529E+04 1.06733E+09 1.07016E+05 2.49962E+04 2.16686E+10 5.71819E+02 

 25th 5.05507E+04 1.03745E+05 1.37145E+09 1.19937E+05 3.02311E+04 2.61949E+10 6.47344E+02 

 Mean 4.27186E+04 7.73655E+04 8.70683E+08 9.44374E+04 2.21673E+04 1.73596E+10 5.05097E+02 

 Std D. 4.72393E+03 1.37158E+04 2.51636E+08 1.37182E+04 3.31320E+03 5.28564E+09 8.17832E+01 

 1st 1.81602E+04 3.26952E+04 2.62316E+08 4.28805E+04 7.64483E+03 2.60587E+09 1.36284E+02 

 7th 2.65052E+04 4.64983E+04 3.76459E+08 5.12360E+04 1.21514E+04 5.02081E+09 1.68826E+02 

 13th 2.82050E+04 5.15790E+04 4.16373E+08 5.91561E+04 1.39636E+04 5.85878E+09 2.01139E+02 

1e4 19th 2.98952E+04 5.45213E+04 4.86897E+08 6.22452E+04 1.76609E+04 6.96080E+09 2.18251E+02 

 25th 3.44228E+04 6.57085E+04 6.47755E+08 7.70740E+04 1.89739E+04 8.14435E+09 2.59205E+02 

 Mean 2.76529E+04 5.06327E+04 4.26770E+08 5.83211E+04 1.43102E+04 5.75436E+09 1.96106E+02 

 Std D. 3.98255E+03 8.03226E+03 9.10987E+07 8.75533E+03 3.26674E+03 1.37951E+09 3.41709E+01 

 1st 5.12188E+03 1.77790E+04 8.31522E+07 2.02395E+04 6.57582E+02 2.99734E+08 1.51934E+01 

 7th 8.58031E+03 2.00173E+04 1.27527E+08 2.39511E+04 9.19801E+03 6.54437E+08 2.21534E+01 

 13th 9.60244E+03 2.07185E+04 1.53377E+08 2.70384E+04 1.15765E+04 8.46761E+08 2.77779E+01 

1e5 19th 1.01966E+04 2.36774E+04 1.88294E+08 3.13016E+04 1.41361E+04 9.25307E+08 3.19367E+01 

 25th 1.32968E+04 3.42341E+04 2.50549E+08 3.76261E+04 1.82480E+04 1.40014E+09 4.45827E+01 

 Mean 9.26168E+03 2.24131E+04 1.58325E+08 2.73436E+04 1.18024E+04 7.96579E+08 2.80197E+01 

 Std D. 1.80831E+03 4.12476E+03 4.36007E+07 5.06482E+03 4.07392E+03 2.58387E+08 7.61752E+00 

 1st 0.00000E+00 9.19895E+01 2.14739E+06 8.49725E+02 1.80210E+01 1.28023E+01 4.92000E-06 

 7th 0.00000E+00 1.44785E+02 3.51459E+06 1.54421E+03 8.76067E+03 2.84509E+01 1.03743E-02 

 13th 0.00000E+00 2.84253E+02 5.23473E+06 2.65265E+03 1.08879E+04 9.26050E+01 4.04980E-02 

Trm 19th 0.00000E+00 5.35763E+02 1.76596E+07 3.59317E+03 1.35322E+04 1.63450E+02 1.50584E-01 

 25th 1.90000E-07 1.37277E+03 3.46473E+07 6.77614E+03 1.80297E+04 1.08048E+03 3.08387E-01 

 Mean 8.00000E-09 4.01956E+02 1.07647E+07 2.70271E+03 1.10620E+04 1.57711E+02 8.19353E-02 

 Std D. 3.79693E-08 3.40265E+02 9.33441E+06 1.48463E+03 3.83930E+03 2.13877E+02 8.93249E-02 
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FES  8 9 10 11 12 13 14 

 1st 2.10547E+01 3.26795E+02 3.69252E+02 4.18514E+01 7.10021E+05 3.02854E+04 1.39278E+01 

 7th 2.11412E+01 3.58184E+02 4.09542E+02 4.48355E+01 1.25821E+06 6.51057E+04 1.40790E+01 

 13th 2.11902E+01 3.75054E+02 4.34987E+02 4.54701E+01 1.33873E+06 8.17115E+04 1.41698E+01 

1e3 19th 2.12538E+01 3.85413E+02 4.52458E+02 4.66307E+01 1.50883E+06 1.38745E+05 1.42488E+01 

 25th 2.13254E+01 4.21830E+02 4.71608E+02 4.71774E+01 1.73783E+06 2.76638E+05 1.43932E+01 

 Mean 2.11965E+01 3.72422E+02 4.30582E+02 4.54119E+01 1.34176E+06 1.11227E+05 1.41733E+01 

 Std D. 6.86168E-02 2.35558E+01 2.72296E+01 1.42015E+00 2.26488E+05 6.48907E+04 1.23281E-01 

 1st 2.10274E+01 2.82904E+02 3.15219E+02 4.03378E+01 7.03553E+05 5.98967E+03 1.35924E+01 

 7th 2.10897E+01 3.00134E+02 3.43194E+02 4.17414E+01 8.36977E+05 1.53346E+04 1.38242E+01 

 13th 2.11288E+01 3.16519E+02 3.66039E+02 4.33941E+01 9.16778E+05 1.89644E+04 1.39211E+01 

1e4 19th 2.11559E+01 3.28077E+02 3.80618E+02 4.42463E+01 9.79474E+05 2.41404E+04 1.39874E+01 

 25th 2.11869E+01 3.55479E+02 4.00969E+02 4.46045E+01 1.10252E+06 3.86288E+04 1.40973E+01 

 Mean 2.11206E+01 3.15133E+02 3.61031E+02 4.28959E+01 9.10468E+05 1.98403E+04 1.38910E+01 

 Std D. 4.59126E-02 1.90067E+01 2.35740E+01 1.41244E+00 1.17351E+05 6.96427E+03 1.27295E-01 

 1st 2.08904E+01 1.90559E+02 1.97211E+02 3.51733E+01 2.40193E+05 3.81373E+01 1.30270E+01 

 7th 2.09677E+01 2.05704E+02 2.37464E+02 3.98904E+01 3.20629E+05 7.69832E+01 1.33430E+01 

 13th 2.10060E+01 2.13758E+02 2.63121E+02 4.03886E+01 3.86757E+05 1.07775E+02 1.34803E+01 

1e5 19th 2.10232E+01 2.32828E+02 2.82439E+02 4.09082E+01 4.79624E+05 1.59699E+02 1.36382E+01 

 25th 2.10996E+01 2.66556E+02 2.99724E+02 4.20882E+01 6.41161E+05 3.96238E+02 1.38246E+01 

 Mean 2.09969E+01 2.20419E+02 2.56298E+02 4.01637E+01 4.12067E+05 1.26483E+02 1.34869E+01 

 Std D. 4.72351E-02 2.17877E+01 2.98414E+01 1.61163E+00 1.16896E+05 7.77277E+01 1.95144E-01 

 1st 2.07623E+01 1.39294E+01 4.46290E+01 2.10586E+01 2.21992E+03 2.12003E+00 1.24395E+01 

 7th 2.08980E+01 1.98992E+01 6.76721E+01 2.74924E+01 9.09589E+03 3.06190E+00 1.29290E+01 

 13th 2.09448E+01 2.48740E+01 7.70619E+01 3.04811E+01 1.75403E+04 3.71451E+00 1.30828E+01 

Trm 19th 2.09789E+01 2.88538E+01 9.74682E+01 3.50665E+01 3.40146E+04 4.08763E+00 1.32259E+01 

 25th 2.10350E+01 3.28336E+01 2.44440E+02 3.94895E+01 6.06273E+04 6.58410E+00 1.34684E+01 

 Mean 2.09311E+01 2.43572E+01 8.72283E+01 3.11684E+01 2.21836E+04 3.70427E+00 1.30484E+01 

 Std D. 6.64438E-02 5.51904E+00 3.91043E+01 5.19378E+00 1.60610E+04 9.19095E-01 2.44407E-01 
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Table A.3.  :  Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES and at 

Termination for PSO Algorithm for D=50 

FES  1 2 3 4 5 6 7 

 1st 7.99289E+04 1.50482E+05 1.52688E+09 1.36997E+05 3.10210E+04 3.56895E+10 1.49758E+03 

 7th 9.58299E+04 2.11843E+05 2.52811E+09 2.22054E+05 3.83738E+04 4.84342E+10 1.66213E+03 

 13th 1.02728E+05 2.29513E+05 2.79278E+09 2.49396E+05 4.09088E+04 6.23082E+10 1.76736E+03 

1e3 19th 1.13268E+05 2.46106E+05 3.69842E+09 2.77223E+05 4.40263E+04 6.95955E+10 1.90823E+03 

 25th 1.24383E+05 2.71331E+05 4.49212E+09 3.68676E+05 5.05454E+04 9.19626E+10 2.12386E+03 

 Mean 1.03584E+05 2.29645E+05 2.93190E+09 2.46886E+05 4.12608E+04 6.00769E+10 1.79297E+03 

 Std D. 1.17906E+04 2.71755E+04 7.35651E+08 4.96471E+04 4.34388E+03 1.41053E+10 1.68187E+02 

 1st 5.32826E+04 1.04767E+05 1.12401E+09 1.13852E+05 2.31834E+04 1.94511E+10 4.71562E+02 

 7th 6.99214E+04 1.35100E+05 1.32787E+09 1.44872E+05 2.57065E+04 2.37890E+10 6.99388E+02 

 13th 7.53881E+04 1.45078E+05 1.91380E+09 1.63151E+05 2.69704E+04 2.75951E+10 7.53584E+02 

1e4 19th 7.92484E+04 1.63923E+05 1.96641E+09 1.72928E+05 2.91061E+04 3.01735E+10 8.03569E+02 

 25th 9.05838E+04 1.89837E+05 2.36448E+09 1.99026E+05 3.28848E+04 3.77934E+10 8.77140E+02 

 Mean 7.41496E+04 1.48924E+05 1.71664E+09 1.58780E+05 2.75222E+04 2.75653E+10 7.31137E+02 

 Std D. 7.86464E+03 2.16255E+04 3.75210E+08 2.12488E+04 2.71337E+03 5.16234E+09 1.08171E+02 

 1st 3.10871E+04 5.31299E+04 5.55355E+08 7.43091E+04 1.94062E+04 4.64346E+09 1.95477E+02 

 7th 4.05697E+04 8.25054E+04 8.70376E+08 9.39969E+04 2.07428E+04 7.36180E+09 2.37282E+02 

 13th 4.33032E+04 9.40284E+04 9.47788E+08 1.04543E+05 2.17470E+04 9.04666E+09 2.67250E+02 

1e5 19th 4.95761E+04 1.00028E+05 1.06812E+09 1.18148E+05 2.42312E+04 1.05491E+10 3.15088E+02 

 25th 5.27993E+04 1.17661E+05 1.21389E+09 1.30751E+05 3.00622E+04 1.48500E+10 3.53566E+02 

 Mean 4.42244E+04 9.32410E+04 9.60764E+08 1.05018E+05 2.28238E+04 9.21952E+09 2.76141E+02 

 Std D. 6.35030E+03 1.39237E+04 1.52366E+08 1.60333E+04 2.78956E+03 2.50171E+09 4.69342E+01 

 1st 2.00000E-08 2.73281E+03 7.18257E+06 1.01778E+04 1.25707E+04 4.24331E+01 1.02000E-03 

 7th 6.80000E-07 4.12783E+03 2.71240E+07 1.82279E+04 1.71181E+04 1.09911E+02 6.85393E-03 

 13th 3.72000E-06 5.65296E+03 3.66474E+07 2.25180E+04 1.95252E+04 1.71295E+02 1.99886E-02 

Trm 19th 1.92900E-05 7.55080E+03 6.29808E+07 2.79352E+04 2.21800E+04 3.04782E+02 3.07924E-02 

 25th 2.81544E+00 1.50197E+04 1.21738E+08 3.50883E+04 2.88438E+04 1.36723E+03 1.05730E-01 

 Mean 1.16368E-01 6.53038E+03 4.84217E+07 2.27204E+04 1.98764E+04 3.03737E+02 2.47858E-02 

 Std D. 5.62614E-01 3.35448E+03 3.11780E+07 7.01268E+03 3.63886E+03 3.42479E+02 2.36381E-02 
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FES  8 9 10 11 12 13 14 

 1st 2.12328E+01 6.39437E+02 7.17584E+02 7.79921E+01 4.31863E+06 2.78433E+05 2.36851E+01 

 7th 2.13198E+01 7.34444E+02 8.01193E+02 7.99720E+01 5.48904E+06 5.22436E+05 2.39080E+01 

 13th 2.13472E+01 7.52918E+02 8.23799E+02 8.18222E+01 6.22901E+06 7.52823E+05 2.40274E+01 

1e3 19th 2.13757E+01 7.68611E+02 8.48158E+02 8.25800E+01 6.86861E+06 9.04863E+05 2.41006E+01 

 25th 2.14093E+01 8.27755E+02 9.09537E+02 8.40386E+01 7.41755E+06 1.27489E+06 2.41817E+01 

 Mean 2.13445E+01 7.46962E+02 8.21172E+02 8.13983E+01 6.12130E+06 7.17402E+05 2.39839E+01 

 Std D. 4.50871E-02 4.38789E+01 4.38956E+01 1.71280E+00 8.43808E+05 2.57650E+05 1.49434E-01 

 1st 2.11240E+01 5.18483E+02 6.33732E+02 7.34549E+01 3.47085E+06 9.38962E+04 2.32017E+01 

 7th 2.12328E+01 6.25779E+02 7.02869E+02 7.69962E+01 4.19723E+06 1.62513E+05 2.35572E+01 

 13th 2.12615E+01 6.45175E+02 7.25085E+02 7.77338E+01 4.63587E+06 2.15659E+05 2.36576E+01 

1e4 19th 2.12898E+01 6.67905E+02 7.35191E+02 7.88030E+01 4.87297E+06 2.56635E+05 2.37189E+01 

 25th 2.13195E+01 7.24445E+02 7.79969E+02 8.06125E+01 5.64425E+06 4.25250E+05 2.38053E+01 

 Mean 2.12529E+01 6.43071E+02 7.17591E+02 7.77269E+01 4.55114E+06 2.19146E+05 2.36111E+01 

 Std D. 4.81156E-02 3.97923E+01 3.61348E+01 1.46475E+00 5.64677E+05 7.48052E+04 1.51861E-01 

 1st 2.11240E+01 4.67534E+02 5.38989E+02 7.25566E+01 2.02089E+06 4.44730E+03 2.30449E+01 

 7th 2.11681E+01 5.29000E+02 5.88400E+02 7.38230E+01 2.87356E+06 1.25456E+04 2.32017E+01 

 13th 2.11910E+01 5.48867E+02 5.99826E+02 7.47650E+01 3.07729E+06 1.78642E+04 2.33826E+01 

1e5 19th 2.12065E+01 5.69679E+02 6.12452E+02 7.58665E+01 3.38339E+06 2.96162E+04 2.34807E+01 

 25th 2.12357E+01 6.03010E+02 6.50944E+02 7.78157E+01 3.79779E+06 5.50305E+04 2.35869E+01 

 Mean 2.11848E+01 5.44062E+02 5.95392E+02 7.48973E+01 3.07672E+06 2.20874E+04 2.33599E+01 

 Std D. 2.95916E-02 3.38632E+01 2.77647E+01 1.39268E+00 4.18751E+05 1.19801E+04 1.61707E-01 

 1st 2.10415E+01 4.57681E+01 1.01273E+02 5.32597E+01 1.80026E+04 5.33924E+00 2.20372E+01 

 7th 2.11087E+01 5.87025E+01 1.39716E+02 6.31906E+01 6.22675E+04 7.66812E+00 2.26008E+01 

 13th 2.11392E+01 6.96471E+01 1.84071E+02 6.70882E+01 1.02842E+05 9.28354E+00 2.27769E+01 

Trm 19th 2.11633E+01 7.26319E+01 2.89274E+02 7.08982E+01 1.39305E+05 1.16804E+01 2.28943E+01 

 25th 2.11908E+01 8.75563E+01 4.04977E+02 7.45000E+01 2.27342E+05 1.55820E+01 2.32639E+01 

 Mean 2.11326E+01 6.62258E+01 2.14250E+02 6.61378E+01 1.08151E+05 9.64705E+00 2.27563E+01 

 Std D. 3.99925E-02 1.11524E+01 9.29100E+01 5.93583E+00 5.76638E+04 2.69821E+00 2.80591E-01 
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APPENDIX B 

Table B.1.  :  Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES, and at 

Termination for the DE Algorithm for D=10 

FES  1 2 3 4 5 6 7 

 1st 1.85424E+03 3.01951E+03 1.90610E+07 5.26307E+03 1.15819E+03 5.02058E+07 5.58453E+01 

 7th 3.59667E+03 5.04843E+03 3.02341E+07 7.50755E+03 1.72110E+03 1.11428E+08 1.04098E+02 

 13th 4.29586E+03 6.09160E+03 4.51607E+07 8.48740E+03 2.26924E+03 1.93328E+08 1.16678E+02 

1e3 19th 5.00820E+03 7.77914E+03 6.24066E+07 9.40238E+03 2.83959E+03 2.92390E+08 1.47886E+02 

 25th 6.60096E+03 9.57528E+03 9.00851E+07 1.35384E+04 5.75893E+03 5.35614E+08 2.48523E+02 

 Mean 4.23316E+03 6.29732E+03 4.63044E+07 8.64123E+03 2.44959E+03 2.18675E+08 1.23055E+02 

 Std D. 1.25635E+03 1.73963E+03 1.95728E+07 1.90330E+03 1.09490E+03 1.28321E+08 4.04756E+01 

 1st 3.09619E+00 6.46120E+01 1.13580E+05 1.34154E+02 3.03966E-03 3.28694E+03 1.04623E+00 

 7th 1.44383E+01 1.26493E+02 6.82542E+05 1.83790E+02 8.20477E-03 7.95177E+03 1.24116E+00 

 13th 1.87169E+01 1.86524E+02 9.17870E+05 2.58114E+02 1.61937E-02 1.27184E+04 1.39226E+00 

1e4 19th 2.16114E+01 2.21809E+02 1.10022E+06 3.61044E+02 2.02880E-02 2.18604E+04 1.46352E+00 

 25th 3.38957E+01 6.97320E+02 2.52789E+06 4.37839E+02 1.05464E-01 4.11938E+04 1.77393E+00 

 Mean 1.88167E+01 1.94335E+02 1.00105E+06 2.67162E+02 1.88126E-02 1.55603E+04 1.37673E+00 

 Std D. 6.52482E+00 1.16798E+02 5.43200E+05 9.98847E+01 1.98726E-02 1.01946E+04 1.74155E-01 

 1st 0.00000E+00 0.00000E+00 4.10000E-07 0.00000E+00 0.00000E+00 0.00000E+00 5.08014E-02 

 7th 0.00000E+00 0.00000E+00 2.02000E-06 0.00000E+00 0.00000E+00 0.00000E+00 1.03748E-01 

 13th 0.00000E+00 0.00000E+00 7.09000E-06 0.00000E+00 0.00000E+00 0.00000E+00 1.50057E-01 

1e5 19th 0.00000E+00 0.00000E+00 6.23900E-05 0.00000E+00 0.00000E+00 0.00000E+00 2.07027E-01 

 25th 0.00000E+00 0.00000E+00 3.83810E-04 0.00000E+00 0.00000E+00 3.98658E+00 2.58674E-01 

 Mean 0.00000E+00 0.00000E+00 5.46328E-05 0.00000E+00 0.00000E+00 6.37853E-01 1.50829E-01 

 Std D. 0.00000E+00 0.00000E+00 1.01191E-04 0.00000E+00 0.00000E+00 1.49164E+00 6.40648E-02 
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FES  8 9 10 11 12 13 14 

 1st 2.04153E+01 6.17860E+01 6.21051E+01 9.68019E+00 1.57966E+04 7.07425E+01 3.97909E+00 

 7th 2.06656E+01 7.06628E+01 8.11575E+01 1.14143E+01 4.72954E+04 3.73213E+02 4.31508E+00 

 13th 2.07916E+01 7.49743E+01 9.09541E+01 1.16786E+01 5.14369E+04 6.16887E+02 4.37866E+00 

1e3 19th 2.08319E+01 8.13895E+01 9.64874E+01 1.22943E+01 6.01442E+04 1.20720E+03 4.41749E+00 

 25th 2.09123E+01 8.93128E+01 1.02935E+02 1.30496E+01 8.13749E+04 2.72287E+03 4.51682E+00 

 Mean 2.07451E+01 7.57054E+01 8.74951E+01 1.16931E+01 5.28403E+04 9.12928E+02 4.35079E+00 

 Std D. 1.31186E-01 7.77410E+00 1.07634E+01 8.09603E-01 1.44527E+04 6.91357E+02 1.18453E-01 

 1st 2.03216E+01 2.02641E+01 3.34415E+01 7.73432E+00 7.49916E+02 2.32086E+00 3.58983E+00 

 7th 2.05162E+01 3.29482E+01 4.42874E+01 9.11807E+00 1.42068E+03 3.89395E+00 3.93832E+00 

 13th 2.05686E+01 3.74767E+01 5.22460E+01 9.96183E+00 2.23430E+03 5.13630E+00 4.03647E+00 

1e4 19th 2.05919E+01 4.16618E+01 5.45106E+01 1.03578E+01 3.35670E+03 5.86467E+00 4.08288E+00 

 25th 2.06642E+01 4.52072E+01 6.31435E+01 1.11138E+01 8.52400E+03 7.46224E+00 4.32129E+00 

 Mean 2.05474E+01 3.58943E+01 5.00818E+01 9.78996E+00 2.91231E+03 4.99484E+00 3.99999E+00 

 Std D. 7.82286E-02 7.37228E+00 7.99405E+00 8.82700E-01 2.08499E+03 1.35427E+00 1.82657E-01 

 1st 2.01870E+01 1.98992E+00 7.79445E+00 7.93340E-04 0.00000E+00 3.81196E-01 1.00236E+00 

 7th 2.02973E+01 2.98488E+00 1.14447E+01 2.43548E-03 0.00000E+00 5.33667E-01 3.45017E+00 

 13th 2.03631E+01 4.97480E+00 1.52435E+01 5.85140E-03 2.00000E-08 7.16250E-01 3.58983E+00 

1e5 19th 2.03872E+01 6.96471E+00 1.89897E+01 1.50192E+00 1.00030E+01 9.19178E-01 3.75966E+00 

 25th 2.05102E+01 8.95463E+00 3.63416E+01 3.00221E+00 1.34735E+03 1.56296E+00 3.92519E+00 

 Mean 2.03384E+01 5.09419E+00 1.65177E+01 7.09222E-01 5.89551E+01 7.66957E-01 3.44692E+00 

 Std D. 7.50173E-02 2.09729E+00 6.98306E+00 9.72805E-01 2.68501E+02 3.34237E-01 5.73178E-01 
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Table B.2.  :  Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES, and at 

Termination for the DE Algorithm for D=30 

FES  1 2 3 4 5 6 7 

 1st 3.88765E+04 6.34975E+04 4.19986E+08 6.74118E+04 1.84970E+04 1.13668E+10 1.09900E+03 

 7th 4.97149E+04 7.33956E+04 8.27105E+08 8.60348E+04 2.21715E+04 1.87084E+10 1.34025E+03 

 13th 5.45561E+04 8.31323E+04 1.04649E+09 1.03477E+05 2.39906E+04 2.26591E+10 1.44405E+03 

1e3 19th 6.04220E+04 9.42252E+04 1.20097E+09 1.13990E+05 2.56209E+04 3.12496E+10 1.57084E+03 

 25th 6.54650E+04 1.22545E+05 1.34340E+09 1.48995E+05 2.85592E+04 4.41784E+10 1.90925E+03 

 Mean 5.44088E+04 8.59290E+04 1.00926E+09 9.98429E+04 2.39570E+04 2.60007E+10 1.45692E+03 

 Std D. 7.20866E+03 1.74239E+04 2.39042E+08 1.86456E+04 2.63151E+03 9.42864E+09 1.95042E+02 

 1st 7.37041E+03 2.50505E+04 1.43161E+08 3.43311E+04 7.59217E+03 8.00479E+08 1.91022E+02 

 7th 1.17346E+04 4.66858E+04 2.87888E+08 4.82081E+04 9.70474E+03 1.21021E+09 3.46103E+02 

 13th 1.28905E+04 5.00936E+04 3.13126E+08 5.11596E+04 1.02530E+04 1.49848E+09 4.21542E+02 

1e4 19th 1.47663E+04 5.40392E+04 3.84733E+08 5.52670E+04 1.15160E+04 1.78987E+09 5.45858E+02 

 25th 1.81025E+04 6.45800E+04 5.20868E+08 6.71006E+04 1.31915E+04 4.59954E+09 7.43594E+02 

 Mean 1.27943E+04 4.91997E+04 3.26878E+08 5.08241E+04 1.04777E+04 1.65636E+09 4.44259E+02 

 Std D. 2.62879E+03 9.25481E+03 8.82836E+07 8.59486E+03 1.34589E+03 8.34416E+08 1.41394E+02 

 1st 8.83870E-04 1.75557E+02 1.84217E+06 3.61277E+02 1.33228E+01 3.78990E+01 1.85172E-01 

 7th 5.89966E-03 3.60806E+02 3.24895E+06 9.14246E+02 7.03626E+02 6.80512E+01 3.63210E-01 

 13th 9.70001E-03 4.29233E+02 4.18139E+06 1.27675E+03 2.82633E+03 1.23097E+02 5.09019E-01 

1e5 19th 1.15735E-02 6.19901E+02 5.42530E+06 1.85842E+03 3.25818E+03 1.99468E+02 7.65749E-01 

 25th 2.69409E-02 8.46557E+02 9.51084E+06 3.56928E+03 6.61989E+03 1.62802E+03 9.68942E-01 

 Mean 9.85310E-03 4.82823E+02 4.64793E+06 1.45545E+03 2.56002E+03 2.31275E+02 5.40389E-01 

 Std D. 6.55476E-03 1.89156E+02 2.02291E+06 8.24726E+02 1.93257E+03 3.50876E+02 2.32872E-01 

 1st 0.00000E+00 1.00082E-02 2.52866E+05 4.44201E-01 1.08400E-05 7.91052E-01 0.00000E+00 

 7th 0.00000E+00 2.69799E-02 3.63513E+05 1.56985E+00 9.65160E-03 6.02897E+00 0.00000E+00 

 13th 0.00000E+00 4.70619E-02 6.71938E+05 2.26303E+00 2.19951E+03 1.01827E+01 1.00000E-08 

Trm 19th 0.00000E+00 8.74604E-02 9.74700E+05 4.37445E+00 2.91858E+03 1.26779E+01 5.39371E-02 

 25th 0.00000E+00 1.58316E-01 1.45497E+06 1.58945E+01 5.93939E+03 1.80863E+01 2.89677E-01 

 Mean 0.00000E+00 6.18957E-02 7.34622E+05 4.06987E+00 1.89052E+03 9.45834E+00 4.16067E-02 

 Std D. 0.00000E+00 4.21461E-02 3.83248E+05 4.20637E+00 1.88807E+03 5.37511E+00 6.68922E-02 
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FES  8 9 10 11 12 13 14 

 1st 2.10371E+01 3.51505E+02 3.86808E+02 4.30150E+01 1.21493E+06 7.96154E+04 1.36177E+01 

 7th 2.11788E+01 3.81350E+02 4.53468E+02 4.48355E+01 1.35209E+06 1.57959E+05 1.41172E+01 

 13th 2.12375E+01 4.08661E+02 4.74526E+02 4.54247E+01 1.49368E+06 2.18095E+05 1.41871E+01 

1e3 19th 2.12775E+01 4.20831E+02 4.93344E+02 4.61805E+01 1.66345E+06 3.04821E+05 1.42367E+01 

 25th 2.13002E+01 4.74661E+02 5.22231E+02 4.80001E+01 2.02808E+06 4.92661E+05 1.44037E+01 

 Mean 2.12195E+01 4.04524E+02 4.69685E+02 4.55424E+01 1.51555E+06 2.28311E+05 1.41610E+01 

 Std D. 6.80106E-02 2.94053E+01 3.16319E+01 1.28294E+00 2.01895E+05 1.06164E+05 1.48381E-01 

 1st 2.09520E+01 2.33280E+02 2.84955E+02 4.06643E+01 4.32073E+05 1.46393E+03 1.36177E+01 

 7th 2.10683E+01 2.59949E+02 3.18478E+02 4.25440E+01 6.48983E+05 2.67125E+03 1.38431E+01 

 13th 2.11071E+01 2.80316E+02 3.42835E+02 4.30718E+01 6.71627E+05 3.83519E+03 1.39494E+01 

1e4 19th 2.11398E+01 2.91904E+02 3.51147E+02 4.35359E+01 7.95226E+05 5.17356E+03 1.40068E+01 

 25th 2.11875E+01 3.13804E+02 3.81147E+02 4.43857E+01 1.05816E+06 7.88898E+03 1.41080E+01 

 Mean 2.10956E+01 2.76174E+02 3.34933E+02 4.28564E+01 7.10077E+05 4.00502E+03 1.39081E+01 

 Std D. 5.95784E-02 2.17571E+01 2.61489E+01 9.64590E-01 1.36521E+05 1.86825E+03 1.32341E-01 

 1st 2.08070E+01 2.19159E+01 3.00719E+01 1.75625E+01 0.00000E+00 2.44370E+00 1.30431E+01 

 7th 2.09824E+01 3.28623E+01 6.86397E+01 3.83301E+01 0.00000E+00 4.40461E+00 1.35254E+01 

 13th 2.10002E+01 4.09024E+01 1.14043E+02 3.96573E+01 0.00000E+00 5.26838E+00 1.36172E+01 

1e5 19th 2.10286E+01 4.77876E+01 1.95522E+02 4.06290E+01 0.00000E+00 9.04498E+00 1.36717E+01 

 25th 2.10878E+01 6.07723E+01 2.28969E+02 4.27992E+01 0.00000E+00 1.55170E+01 1.37656E+01 

 Mean 2.09986E+01 4.09120E+01 1.26306E+02 3.82544E+01 0.00000E+00 6.64955E+00 1.35707E+01 

 Std D. 5.40783E-02 1.12045E+01 6.52610E+01 5.23822E+00 0.00000E+00 3.19829E+00 1.60776E-01 

 1st 2.08070E+01 2.18891E+01 2.34153E+01 5.37358E+00 0.00000E+00 1.97830E+00 1.29578E+01 

 7th 2.09520E+01 3.28336E+01 4.49232E+01 8.52891E+00 0.00000E+00 2.68041E+00 1.32526E+01 

 13th 2.09705E+01 4.07933E+01 5.00901E+01 1.09034E+01 0.00000E+00 2.95265E+00 1.33953E+01 

Trm 19th 2.09984E+01 4.77579E+01 5.49342E+01 1.56893E+01 0.00000E+00 4.04031E+00 1.35254E+01 

 25th 2.10302E+01 6.06924E+01 7.95865E+01 1.87345E+01 0.00000E+00 5.77030E+00 1.36599E+01 

 Mean 2.09600E+01 4.08729E+01 5.02670E+01 1.17990E+01 0.00000E+00 3.49835E+00 1.33659E+01 

 Std D. 5.14799E-02 1.12049E+01 1.33351E+01 4.16057E+00 0.00000E+00 1.17383E+00 1.99834E-01 
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Table B.3.  :  Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES and at 

Termination for the DE Algorithm for D=50 

FES  1 2 3 4 5 6 7 

 1st 1.09919E+05 1.58505E+05 2.07215E+09 2.01008E+05 3.60708E+04 6.24047E+10 2.70670E+03 

 7th 1.24213E+05 2.15679E+05 3.34100E+09 2.49303E+05 4.19097E+04 7.05402E+10 3.24870E+03 

 13th 1.32942E+05 2.51152E+05 4.15515E+09 2.69409E+05 4.37841E+04 7.54364E+10 3.42658E+03 

1e3 19th 1.42118E+05 2.72774E+05 4.62201E+09 3.15076E+05 4.60202E+04 9.19463E+10 3.55218E+03 

 25th 1.55557E+05 3.38458E+05 5.17139E+09 3.67871E+05 4.96220E+04 1.23848E+11 3.87867E+03 

 Mean 1.32369E+05 2.47597E+05 4.02174E+09 2.80243E+05 4.39236E+04 8.17463E+10 3.40663E+03 

 Std D. 1.30691E+04 4.56185E+04 8.47471E+08 4.69922E+04 3.58509E+03 1.70617E+10 2.88949E+02 

 1st 3.98083E+04 1.08123E+05 7.87258E+08 1.24568E+05 2.00128E+04 6.18604E+09 1.06680E+03 

 7th 4.43059E+04 1.36973E+05 1.07956E+09 1.53487E+05 2.50087E+04 9.91087E+09 1.34262E+03 

 13th 4.65329E+04 1.49204E+05 1.17726E+09 1.61514E+05 2.60129E+04 1.20288E+10 1.50405E+03 

1e4 19th 5.08941E+04 1.56631E+05 1.46263E+09 1.79026E+05 2.73082E+04 1.53635E+10 1.67263E+03 

 25th 6.81645E+04 1.93490E+05 1.82079E+09 2.08217E+05 3.01435E+04 1.82119E+10 2.08144E+03 

 Mean 4.79236E+04 1.47232E+05 1.26728E+09 1.63019E+05 2.60249E+04 1.23105E+10 1.51560E+03 

 Std D. 6.01150E+03 2.03001E+04 2.65941E+08 1.99857E+04 2.39857E+03 3.46091E+09 2.61940E+02 

 1st 3.91216E+00 1.05025E+04 9.72750E+06 1.36500E+04 4.43186E+03 7.58733E+03 1.89023E+00 

 7th 5.40717E+00 1.82658E+04 2.42321E+07 3.05233E+04 7.12124E+03 2.55062E+04 2.40129E+00 

 13th 7.11906E+00 1.99615E+04 3.64855E+07 3.30409E+04 9.76172E+03 3.59316E+04 3.05294E+00 

1e5 19th 9.80515E+00 2.11416E+04 4.16241E+07 3.99110E+04 1.03183E+04 8.55643E+04 3.79685E+00 

 25th 2.13350E+01 3.28744E+04 7.62817E+07 5.55904E+04 1.24092E+04 4.16202E+05 7.23378E+00 

 Mean 8.63916E+00 2.00253E+04 3.73887E+07 3.53287E+04 9.03571E+03 6.28620E+04 3.50589E+00 

 Std D. 4.72937E+00 4.71459E+03 1.68236E+07 9.48968E+03 2.21534E+03 8.09670E+04 1.51754E+00 

 1st 0.00000E+00 2.67056E+01 9.83717E+05 6.42150E+02 5.38846E+02 2.13773E+01 1.00000E-07 

 7th 0.00000E+00 5.11244E+01 1.49749E+06 1.61209E+03 3.66471E+03 4.01439E+01 6.60000E-07 

 13th 0.00000E+00 5.74726E+01 2.10192E+06 2.26646E+03 5.61799E+03 8.45228E+01 2.66000E-06 

Trm 19th 0.00000E+00 7.93419E+01 2.56510E+06 3.58110E+03 7.33205E+03 9.32595E+01 1.66393E-02 

 25th 0.00000E+00 1.40927E+02 4.52991E+06 1.04788E+04 1.04086E+04 3.88045E+02 4.86660E-02 

 Mean 0.00000E+00 6.70521E+01 2.18206E+06 3.00509E+03 5.49715E+03 9.13380E+01 1.07342E-02 

 Std D. 0.00000E+00 2.92809E+01 9.15385E+05 2.18711E+03 2.49397E+03 8.49118E+01 1.58607E-02 
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FES  8 9 10 11 12 13 14 

 1st 2.11750E+01 7.39051E+02 7.59304E+02 7.53534E+01 5.39738E+06 3.04674E+05 2.36851E+01 

 7th 2.13133E+01 7.74119E+02 8.65020E+02 7.97841E+01 6.42235E+06 9.05402E+05 2.38686E+01 

 13th 2.13442E+01 7.99986E+02 8.88168E+02 8.14681E+01 6.91974E+06 1.06373E+06 2.39823E+01 

1e3 19th 2.13676E+01 8.31190E+02 9.14221E+02 8.26106E+01 7.23733E+06 1.34206E+06 2.40377E+01 

 25th 2.13887E+01 8.72940E+02 9.52398E+02 8.52554E+01 8.34791E+06 1.82215E+06 2.41530E+01 

 Mean 2.13327E+01 8.03630E+02 8.81999E+02 8.12444E+01 6.86581E+06 1.07915E+06 2.39449E+01 

 Std D. 4.94163E-02 3.42247E+01 4.49513E+01 2.23697E+00 7.18680E+05 3.54193E+05 1.40011E-01 

 1st 2.11554E+01 5.37857E+02 5.77085E+02 7.40360E+01 2.74711E+06 1.98473E+04 2.33465E+01 

 7th 2.12198E+01 5.93322E+02 6.24283E+02 7.67951E+01 3.11405E+06 3.29731E+04 2.36235E+01 

 13th 2.12656E+01 6.18468E+02 6.48086E+02 7.78537E+01 3.39804E+06 5.31764E+04 2.37075E+01 

1e4 19th 2.12915E+01 6.26707E+02 6.60825E+02 7.85654E+01 3.69401E+06 7.25397E+04 2.37938E+01 

 25th 2.13343E+01 6.50201E+02 7.11174E+02 7.98899E+01 4.19302E+06 1.11901E+05 2.39553E+01 

 Mean 2.12563E+01 6.09454E+02 6.47203E+02 7.76677E+01 3.41839E+06 5.45568E+04 2.36952E+01 

 Std D. 5.06526E-02 2.99158E+01 3.30762E+01 1.39661E+00 3.99081E+05 2.55809E+04 1.59301E-01 

 1st 2.10799E+01 7.02114E+01 3.75240E+02 7.17453E+01 1.24834E+04 2.46534E+01 2.29297E+01 

 7th 2.11601E+01 8.80808E+01 4.02222E+02 7.41917E+01 6.09260E+04 3.06321E+01 2.33554E+01 

 13th 2.11858E+01 9.69369E+01 4.17646E+02 7.48307E+01 8.93236E+04 3.50081E+01 2.34080E+01 

1e5 19th 2.12055E+01 1.16184E+02 4.35728E+02 7.62536E+01 1.30699E+05 3.75569E+01 2.35048E+01 

 25th 2.12311E+01 1.46614E+02 4.84708E+02 7.72227E+01 1.99062E+05 4.37736E+01 2.36513E+01 

 Mean 2.11808E+01 1.01463E+02 4.20275E+02 7.50219E+01 9.48683E+04 3.44406E+01 2.33992E+01 

 Std D. 3.33359E-02 2.02831E+01 2.47438E+01 1.35699E+00 4.33802E+04 4.87466E+00 1.52068E-01 

 1st 2.10276E+01 6.66622E+01 5.59457E+01 2.44855E+01 6.30067E+02 5.19514E+00 2.26743E+01 

 7th 2.11233E+01 7.95966E+01 8.37425E+01 3.74256E+01 4.08555E+03 7.35488E+00 2.30478E+01 

 13th 2.11432E+01 8.65613E+01 9.01580E+01 5.70049E+01 8.10495E+03 8.78431E+00 2.32035E+01 

Trm 19th 2.11634E+01 9.65108E+01 9.74667E+01 7.11363E+01 1.60856E+04 1.15155E+01 2.32611E+01 

 25th 2.11989E+01 1.42279E+02 1.33335E+02 7.44238E+01 3.08875E+04 1.59468E+01 2.34932E+01 

 Mean 2.11374E+01 9.27698E+01 9.14884E+01 5.32926E+01 1.06185E+04 9.58925E+00 2.31630E+01 

 Std D. 3.69487E-02 2.10559E+01 1.68417E+01 1.83731E+01 8.53809E+03 3.20361E+00 1.74935E-01 

 
 

 

 


