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ABSTRACT

PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUT  ION
ALGORITHMS FOR CONTINUOUS OPTIMIZATION PROBLEMS

Ipek EKER

This study presents Particle Swarm Optimization (P®) and Differential
Evolution (DE) algorithms to solve nonlinear contimous function optimization
problems. The algorithms were tested using 14 newlproposed benchmark

instances in Congress on Evolutionary Computation@5.

Particle Swarm Optimization (PSO) and Differential Evolution (DE) are two of
the latest metaheuristic methods. PSO is based omet metaphor of social
interaction and communication such as bird flockingand fish schooling. PSO
and DE were both first introduced to optimize variais continuous nonlinear

functions.

In a PSO algorithm, each member is called garticle, and each particle moves
around in the multi-dimensional search space with &elocity constantly updated
by the particle’s experience, the experience of thegarticle’s neighbors, and the

experience of the whole swarm.
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In the DE algorithm, the target population is pertubed with a mutant factor,

and the crossover operator is then introduced to cuobine the mutated
population with the target population so as to genate a trial population. Then

the selection operator is applied to compare thetfiess function value of both
competing populations, namely, target and trial poplations. The better
individuals among these two populations become menals of the population for
the next generation. This process is repeated untl convergence occurs.

The computational results show that the particle sarm optimization is able to
solve the test problems. Both algorithms are promisg to solve benchmark
problems. However, the differential evolution algoithm performed better for

the larger size of problems than the particle swarnoptimization algorithm.

Key Words : Particle Swarm Optimization, Diferential Evolution,

Continuous Optimization, Genetic Algorithms.
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KISA OZET

SUREKLI FONKSIYON OPTiMiZASYON PROBLEMLER iNiN COzUMU
ICIN PARCACIK SURU OPTIMiZASYONU (PSO) VE DIFERANSIYAL
EVRIM (DE) ALGOR iTMALARI

ipek EKER

Bu calisma, daggrusal olmayan surekli fonksiyon optimizasyon problenlerinin
¢Ozumu igin Pargacik Surt Optimizasyonu (PSO) ve Beransiyal Evrim (DE)
algoritmalarint  sunmaktadir. Algoritmalarin perform ansi Evrimsel Hesap

Kongresi (CEC2005) icin yeni geftirilen 14 fonksiyonu kullanarak test edildi.

Parcacik Surd Optimizasyonu (PSO) ve Diferansiyel &im (DE), en son
gelistirilen meta-sezgisel yontemlerden ikisidir. PSO, kslarin ve baliklarin yem
arama gibi sosyal etkilgmeleri ve iletisimleri metaforuna dayanir. PSO ve DE,
orijinal olarak cesitli dogrusal olmayan surekli fonksiyonlari optimize etmek
icin gelistirildi.

PSO algoritmasinda, her bir dye, “parcacik” olarak adlandirilir ve her

parcacik, coklu-boyutsal arama uzayinda bir hiz ilehareket eder. Bu hiz,
parcacigin kendi deneyimi, konsularinin deneyimi ya da populasyondaki buttn
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parcaciklarin deneyimi ile surekli olarak gtincellenr.DE algoritmasinda, hedef
populasyon mutasyon faktéria ile farklilastiriir ve daha sonra deneme
populasyonu olwturmak icin caprazlama operatérd kullanilir. Caprazlama
operatorinin amaci farklilastirilan  populasyonla hedef populasyonu
birlestirerek deneme populasyonunu olgturmaktir. Son olarak, se¢me
operatori kullanilarak rekabet eden her iki populagon 6zellikle hedef ve
deneme populasyonlarinin amacg fonksiyon derleri kar silastirihr. Segme
operatorii vasitasiyla bu iki populasyon arasindakidaha iyi ¢oézumler bir
sonraki jenerasyona ait populasyonun dyeleri haline gelir. Bu proses

yakinsaklik elde edilinceye dek tekrar edilir.

Deneysel sonuclar her iki algoritmanin test problererini belli bir hata payiyla

veya optimal olarak c¢ozebildgini gostermektedir. Her iki algoritma, test
problemlerini ¢ézmede umut vericidir. Ancak, diferansiyel evrim algoritmasi
blyuk caph problemler icin parcacik suri optimizag/onu algoritmasindan daha

iyi sonuclar Uretmektedir.

Anahtar Sozcukler Parcacik Surt Optinzasyonu, Diferansiyel Evrim,
Surekli Fonksiyonu Optimizasyon Problemleri, Genetk Algoritmalar.
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CHAPTER 1: INTRODUCTION

1.1. Literature Survey on Global Optimization Algorithms

The development of global optimization algorithm dsosely bound up the
development of computer. Many global optimizationkpems wait for solving and
some algorithms are also put forward along withgtreatness and complexity of the

structures in engineering, especially these years.

1.2. Frame Work of the Algorithms

Two stages must be experienced in the processhohgdhe global optimum. The
first stage can be called the global covering. glodal optimum may be located in
arbitrary region in the feasible region for theimptation problems in engineering,
so any parts of the region must be considered bBgcidical. The stage of uniform
distributing in the regior\ is required in this stage. The last stage is caddledl fine
searching. It requires a stage of non-uniform iisting in the neighborhood of
known better points, because some parts of thébfeaggion may be deemed more

interesting than others and more accurate solutiotigese parts are wanted.

1.3. Classification of Global Optimization Algorithms

The classification is made by Leon early in 1966[1), who classifies these
algorithms into three kinds according to the sededhniques: Blind search, Local
search and Non-local search. Subsequently, Dixeegi§ and Gomulka present two
basic approaches namely the deterministic and pridiec algorithms in 1978 in [2,

3]. The former comprises grid search algorithms @magctory algorithms, the latter

comprises random search algorithms, clusteringrifigos and sampling algorithms.



Thereafter, Archetti and Schoen also makes betwleggrministic and probabilistic
algorithms in 1984 in [4]. According to accuracyorit make two classifications
namely algorithms with guaranteed accuracy and riigos without, the latter
comprises direct algorithms and indirect algorithm$5]. Zhang Xiangsun reviews
the deterministic algorithms in detail in 1984 &) and Zhang Yunkang also reviews

the probabilistic algorithms in detail in 1992 ifi.|

1.4. General Classification

General classification of all global algorithmsrparily should be divided into three
classes according to the different searching methadalytic algorithm, Enumerate
algorithm and Random search algorithm. Analyticperties of objective functions
are exerted to seek the global optimum in thisritlym (such as first-order, second-
order derivative), which is divided into Direct afghms and Indirect algorithm. The
next searching step of direct algorithms is deteeaii by the grade of objective
functions. “Mountain climbing” strategy is adoptedthis algorithm, which searches
one of the local optimum according to the steemi®ction (such as Cluttering
algorithm and Generalized descent algorithm). Big difficult to search the global
optimum. The indirect algorithm is that a group exjuations is educed by the
necessary conditions of extremum, then the groupqufations is solved and the
global optimum is found by comparison. But the dmuns are always non-linearity,
which are difficult to be solved. So it is appliead some very simple optimization,
such as algorithms approximating the level sets agdrithms approximating the
objective function. Enumerate algorithm is mostppked in the field of dynamic

programming. Random search algorithm is composelinfl search algorithms and
Guide search algorithms. Blind search algorithmudes covering algorithm and
Random search algorithm. A very large computingréffs needed, so it is only
applied in simple optimization; Guide search altjonis are also called Heuristic
search algorithms, which are studied more frequentpresent years, which include
Meta-heuristic algorithms [8], algorithms based wmform design [9, 10, 11] and
mixed heuristic algorithms [12-21]. Meta-heuristdgorithms are studied more
nowadays, which include simulated annealing [22P)(Sevolution algorithms

(which include Genetic Algorithm [23-30] (GA), Ewdionary Programming [31]

(EP), Evolutionary Strategy [32] (ES) and GenetiogPamming [33] (GP)), Tabu



Search Algorithm, Chaos Algorithm [34, 35], Ant Goy Optimization [36, 37]

(ACO), and so on. The mixed heuristic algorithms eesearched relatively less at
present, which mostly aim at the shortages of tmelligent heuristic search
algorithms, and whose results and efficiency argebe¢han the simple heuristic
search algorithms, so the algorithms are the hotspohe optimization research.
Additionally, the heuristic search algorithms mixeth some local algorithms are
also one of the future optimization research tensn Meta-heuristic algorithms are

introduced as follows.

Meta-heuristic algorithms are developed along with development of biology,
physics and artificial intelligence. Although thetional mechanisms are different,
they are the same in optimal technological processhich are a kind of “neighbor
region search”. The process of the algorithms i®k®ws: (1) start from one (or one
group) initial point; (2) search many neighbor ssh\by the neighbor functions under
the control of the algorithms parameters; (3) retlesvcurrent state according to the
accept rules; (4) then adjust the control pararagter repeat this process as to satisfy
the accept rules.

SA is a clustering optimal algorithm, whose priteifs: a state in the neighbor
region at present is sampled randomly, at the same renew the probability
according to controlling “temperature”, so that #earch process has the ability of
avoiding local optimum, and get the global optimfimally. The initial temperature,
the functions of withdrawing temperature, the remaade of states and the sample

stabilization are the key factors which affect peeformance of SA.

GA is a combining algorithm, which especially hds tconcealed combining
property. Its principle is: in the code space, phecesses of select, crossover and
mutation are implemented ceaselessly accordingpimlaability, so as to the aim of
the group’s combining evaluation. The number ofugrand the operations of
reproduce, crossover and mutation are the keyrgoidhich affect the performance
of GA.



TS is a clustering optimal algorithm, which avordpeating the states according to
the operational memory structures in the near éjtand which implements global
search rapidly combining the deprecate rule. Thxe sif the tabu table and the
structure and the number of the function in neightegion are the key factors,

which affect the performance of TS.

Chaos is a non-linearity phenomenon in nature. Mowement process of chaos
variables has inherent rule. The randomness, thpepty of covering all over and
regularity are used to search the optimum. Theatjwer of CA includes two steps.
Firstly, in the whole space, all points are inspddh turn by the movement of chaos
variables, and the better point is accepted thenojph at present. Secondly, after
certain steps the optimum at present is near tigagbptimum, then the optimum at
present become the center and are added a liitessathange, the global optimum is
attained through careful search. Repeating the st@ps upwards, until the global
optimum is attained. CA is a Random search algwritiwhich is researched

relatively less presently.

ACO, a new type of simulated evolutionary algoriths proposed first by Italian
scholars Marco Dorigo. It is used to solve somenapation problems through
simulating the process of ants searching for fosHich is carried out through
searching the shortest route between the ant cadetree food according to the

individual information interchange and cooperatiath one another.

Particle Swarm Optimization (PSO), one of the katestaheuristic algorithms, was
first introduced by Kennedy and Eberhart 1995 i8][3PSO is based on the
metaphor of social interaction and communicationhsas bird flocking and fish
schooling. Since PSO is population-based and $pcagnitive in nature, the
members in a swarm tend to follow the leader ofgitwup, i.e., the one with the best
performance. In a PSO algorithm, each member iedca “particle”, and each
particle flies around in the multi-dimensional sgaspace with a velocity, which is
updated according to the particle’s current vejodhe particle’s own experience
and the experience of the neighbors. Dependindersize of neighbors, two types
of basic PSO algorithms were developed — PSO witita neighborhood and PSO
with global neighborhood of Kennedy et al. 200138]. In the former model, called



thelbest, each particle moves towards its best previougtipnsand towards the best
particle in its restricted neighborhood. While hetlatter model, called thgbest,
each particle moves towards its best previous iposénd towards the best particle

in the entire swarm.

Differential evolution (DE) is also one of the lsteevolutionary optimization
methods proposed by Storn and Price 1997 in [40is la simple but powerful
population based stochastic search method forreplyiobal optimization problems.
Like other evolutionary-type algorithms, DE is goptation-based, stochastic global
optimizer. In a DE algorithm, candidate solutiome eepresented as chromosomes
based on floating-point numbers. The major diffeeetbetween DE and genetic
algorithm (GA) is that in DE some of the parents generated through a mutation
process before performing crossover operator wee@@a usually selects parents
from current population, performs crossover, arehtmutates the offspring. In the
mutation process of a DE algorithm, the weightdtedénce between two randomly
selected population members is added to a third beerto generate a mutated
solution. Then, the crossover operator is introducecombine the mutated solution
with the target solution so as to generate a $oéltion. Then a selection operator is
applied to compare the fitness function value ahbmmpeting solutions, namely,

target and trial solutions to determine who cawiserfor next generation.

Regarding the application of optimization algorithfior the continuous functions,
few works deal with the application to the globainmization of functions
depending on continuous variables. The works rel&tethe subject are in [41, 42,
43, 44, 45, 46, 47, 48]. In addition, a simple enark on a function with many
suboptimal local minima is considered in [49], wdharstraightforward discretization
of the domain is used. A novel algorithm for thelgll optimization of functions (C-
RTS) is presented in [50], in which a combinatoaptimization method cooperates
with a stochastic local minimizer. The combinatbaptimization component, based
on RTS, locates the most promising boxes , wheaetirsg points for the local
minimizer are generated. In order to cover a wigkecgum of possible applications
with no user intervention, the method is designeth \adaptive mechanisms: in
addition to the reactive adaptation of the prolobitperiod , the box size is adapted



to the local structure of the function to be opt#ied ( boxes are larger in "flat"

regions, smaller in regions with a ““rough" stauej.

This thesis is organized as follows. Chapter 2 @ndevelops the PSO and DE
algorithms to solve the nonlinear continuous funtd respectively. Chapter 4
introduces 14 newly developed benchmark functioms$ the performance criteria
employed in this study. Computational results f8OPand DE algorithms are shown
in Chapter 5. Chapter 6 compares both algorithimallly, Chapter 7 summarizes the
concluding remarks.



CHAPTER 2: PARTICLE SWARM OPTIMIZATION ALGORITHM

2.1. Particle Swarm Optimization Algorithm

PSO was first developed to optimize continuous inear functions. Since PSO is
easy to implement and is efficient to obtain qyadiblutions, it has attracted much
researchers’ attention in recent years. The appitaof PSO consists of neural
network training in [51, 52, 53], power and voltag@ntrol in [54], optimal power
system design in [55, 56], feature selection in],[3Wass-spring system in [58],
electromagnetics in [59, 60], analyze of human trem [61], register 3D-to-3D
biomedical image in [62], play games in [63], cargtg in [64], logic circuit design
in [65], lot sizing problem in [66], supplier set@m and ordering problems in [67],
task assignment problem in [68], automated drilim§c9], and scheduling problems
in [70, 71, 72]. More literature can be found ir®]3 Besides the wide range of
applications above, the nonlinear continuous fumctiptimization is still considered
the benchmark problem when exploring the properéied performance of PSO
algorithms. Therefore, this thesis aims at emplgy80 in optimizing 14 newly

developed test problems in Congress on EvolutioGampputation 2005.

The gbest model of Kennedy et al. 2001 in [39] is followedthis study. According
to the gbest model, each particle moves towards its best pusviposition and
towards the best particle in the whole swarm. |RISO algorithm, parameters were
initialized and the initial population was genedatandomly. Each particle will then
be evaluated to compute the fitness function valu&fter evaluation, the PSO
algorithm repeats the following steps iterativelWyith its position, velocity, and
fitness value, each particle updates its persosstl (est value of each individual so
far) if an improved fitness value was found. On thikeer hand, the best particle in



the whole swarm with its position and fitness valugs used to update the global
best (best particle in the whole swarm). Then thiecity of the particle is updated
by using its previous velocity, the experiencesh&f personal best, and the global
best in order to determine the position of eachigar Evaluation is again performed
to compute the fitness of the particles in the sawalhis process is terminated with a
predetermined stopping criterion. The pseudo cddbeoPSO algorithm is given in

Figure 2.1.

Initialize parameters
Initialize population
Evaluate

Do{

Find the personal best
Find the global best
Update the vel ocity
Update the position
Evaluate

} While (Termination)

Figure 2.1 A Simple PSO Algorithm.
The basic elements of PSO algorithm is summarizddlbws:

Particle: X/denotes thé" particle in the swarm at iteratidrand is represented by
X! = x{l,xfz,..,x}D], where x; is the position value of thi' particle with respect to

thej™ dimension ( =12...,D).

Population: X' is the set of NP particles in the swarm at iteratian i.e.,

XU=[XE XX

Particle velocity: V' is the velocity of particlé at iterationt. It can be defined as
V' =i Ve, v}DJ, wherev; is the velocity of particlé at iterationt with respect to

thej™ dimension.

Inertia weight and acceleration coefficients: w' is a parameter to control the
impact of the previous velocities on the curreribeiy as described in [73, 74]. It

has an impact on the trade-off between the globdllacal exploration capabilities



of the particle. At the beginning of the searchgéainertia weight is used to enhance
the global exploration while it is reduced for leettocal exploitation later on in the
search.c; and c, are constant parameters called acceleration ceafts which
control the maximum step size that the particle dan

Personal best: P' represents the best position of the particle whith best fitness

value until iteratiort, so the best position associated with the bestdg value of the

particle obtained so far is called thesonal best. For each particle in the swarr,
can be determined and updated at each iteratibna minimization problem with
the objective functionf (Xit ) the personal be®' of thei" particle is obtained such
that f(Pit)s f(Pi“l). To simplify, the fitness function of the persobakt is denoted
asf ™ = f(Pi‘). For each particle, the personal best is defirazeei‘a:[pi‘l,pi‘2 ..... pH
where pi‘j is the position value of th& personal best with respect to {fledimension
(j=12,..,D).

Global best: G' denotes the best position of the globally bestiglarachieved so

far in the whole swarm. For this reason, the gldi®st can be obtained such that

f(G')< f(P') for i = 12..,NP. To simplify, the fitness function of the globags

gtj is the position value of the global best with extpto thej™ dimension
(j=12,..,D).
Termination criterion: It is a condition that terminates the search meck might

be a maximum number of function evaluations or aximam CPU time that

terminates the search.

2.2. Initial Population

A population of particles is constructed randomty the PSO algorithm. The
continuous values of positions are establishedaahyg The following formula is

used to construct the initial continuous positiatues of the particle uniformly:

0 — _ *
Xij - Xmin +(Xmax Xmin) rl



wherex,,and x_,are the search range of the continuous functiors rans a

uniform random number between 0 and 1. Initial egies are generated by a similar

formula as follows:

wherev,_, =(x —xmm)/2 andv,_. =-v. ., andry is a uniform random number

max max?

between 0 and 1. Continuous velocity values ar&ictsd to some range, namely

Vi :[v

min Vmax

During the reproduction of the PSO algorithm, itpisssible to extend the search
outside of the initial range of the search space.this reason, the position values
violating the initial range are restricted to tleagible range as follows:

t

Xij = Xmin + (Xmax - Xmin )* rl

The only exception was the problem 7 for which dipimal was outside the search
range. The population size is taken as 100. Asfonmulation of 14 functions

suggests that the objective is to minimize 14 cwdus functions, the fitness

function value is the objective function value bétparticle X'. That is, fi‘(xf).

For simplicity, f,'(X!) will be denoted a8'.

2.3. Computational Procedure

The complete computational procedure of the PSOritfign can be summarized as
follows:
Sep 1: Initialization
= Sett=0,NP =100.
= GenerateNP particles randomly as explained befor{@(io,i :LZ,...,NP}
where X° = |x3,x3,....x3 .
= Generate the initial velocities for each partidadomly, {Vio,i = 12,...,NP}
whereV; :lviol,vioz ..... Vi(I)DI-
= Evaluate each particle in the swarm using the dibdunction f° for

1=12,...,NP.
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= For each particle in the swarm, setP’°=X°  where
P° =[pd =x3, p% =x3.....pS, = xS, | together with its best fitness valug? for
1=212..,NP.

* Find the best fitness value among the whole swarah shatf, = min{fio}
for i=122...,NP with its corresponding position&’ . Set global best to

G® =X such thatG® =[g, =% 1,0, =X 5,-0p :x,,D] with its fitness value

Sep 2: Update iteration counter
= t=t+1
Sep 3: Update inertia weight

= W' =((max_fes— FES)/max_fes)* (w, —w, )+w,

n

where max_fes, FES, w,, and w, are the maximum number of function
evaluation, number of function evaluations, initiaértia weight, and final inertia
weight respectively.

Sep 4: Update velocity

"V =WV Clrl(pitj_l - Xitj_l) tCyl, (gtj_l - Xitj_l)

where c; and ¢, are acceleration coefficients amd andr, are uniform random
numbers between 0 and 1.

Sep 5: Update position

t

=X =X Y

Sep 6: Update personal best

= Each particle is evaluated to see if the persoeat Wwill improve. That is, if
f'<f™ for i=12..,NP then personal best is updated BS= X' and
frP=f"

Sep 7. Update global best

* Find the minimum value of personal best. That is,
£, =min{f,®},i =12,...NP;l O{i;i = 12,...,NP}.

= If f'<f%, then the global best is updatedGls= X'and f % = f'.
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Sep 8: Sopping criterion

= If the number of function evaluations exceeds tleximum number of function
evaluations, then stop; otherwise go to step 2.

The flowchart of the computational procedure isegivn Figure 2.2.
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Initialize the parameters, c1, c2, w, NP

.

Initialize the population, Xt

!

Update iteration counter

A

t=t+1

v

Update inertia weight, w

A

Update velocity, Vi‘

v

Update position Xi‘

X<P Then

¢ YES NO ¢
Update personal best Update personal best
P=X P=P

Sort population
Find Pmin

A

YES IF P<G Then NO

Update global best Update global best
G=P G=G

Y

IF
FES<Max_FES

Then

YES
v

‘ Stop ‘

I

Record Statistic

Figure 2.2 Flowchart of the PSO algorithm.
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2.4. An Examplefor PSO Algorithm

In this section, an example of minimization of SghEunction with 3 dimensions is

given below:

=0
dimensien i Fitness=EXi’ personal best Fitness=IXi® Globalbest Fitness=ZXi?
xij 4.8 36  -1.8 | 3924 | 4.8 36 -1.8 | 3924
vij 36 | 49 | -24
xij -390 | 28 2 4069 | -39 -2.8 4.2 40.69
vij 3.7 | -3. 2.8
xij 21 34 | 37 2966 | 21 34 -3.7 | 2966 | 2.1 34 -3.7 29.66
vij 48 | 36| -1.8
t=1
Xij 534 | 781 -586| 12385 | 4.8 36 -1.8 | 3924
vij 054 | 1141 -4.06
Xij 543 | 034 -1.18 3099 543 034 |-1.18| 30.99
vij 933 314 -538
Xij 6.42 | 016 -532 69354 | 211 34 37 2966 | 21 34 -3.7 29.66
vij 432 |-324|-162
=2
xij 205 226 -3.29 2014 205 226 -329 2014 205 226 -329 2014
vij -3.29 | -555| 257
xij 10.50 | 6.23 | -8.54 22192 543 0.34 -1.18 30.99
vij 507 | 589 |-736
xij 1.67 | 3.72 |-3.534 2917 167 372 -334 2917
vij 475 356 | 1.78
=3
xij 092 -2.74 098 930 -0.92 -2.74 -098 930 |-0.92 -2.74 -0.98 9.30
vij -2 -5.00| 231
xij 1.54 | 1.67 |-2.536| 11.70 | 154 1.67 |-2.36 11.70
vij -896 | -456 | 598
xij 223 | 547 |-1.69| 37.72 |1.67| 3.72 |-3.54| 29.17
vij -390 174 | 1.85
t=4
xij 359 -7.23 109 6638 -0.92 274 -0.98 930 |-0.92 -2.74 -0.98 9.30
vij -267 | -4.50 ) 2.08
xij -8.98 | -6.84 440 14676 |1.34| 1.67 -2.36 11.70

vij |-10.52] -8.31 6.96
xij -0.53 | -2.91 -1.17| 1012 |-0.53 -2.91 -1.17| 10.12
1.70 | -8.38 | 0.52

vij

Figure 2.3 An example for PSO algorithm.
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CHAPTER 3: DIFFERENTIAL EVOLUTION ALGORITHM

3.1. Differential Evolution Algorithm

Since DE was first introduced to solve the Chebychev polynomial fitting problem by
Storn and Price 1995 in [75], it has been successfully applied in a variety of
applications including digital filter designin [76, 77], neural network training in [78],
pattern recognition in [79], communication in [80],aerodynamic design in [81],
earthquake relocation in [82], microprocessor synthesis in [83], permutation
flowshop sequencing problems in [84], multisensor fusion in [85], heat transfer in
[86], system design in [87], cancer diagnosis in [88], and scheduling problems in
[89]. A number of recent studies comparing DE with other heuristics, such as GA
and PSO regarding real-world and artificial problems indicate superiority of DE in
single-objective, noise free, numerical optimisation in [90, 91, 92, 93]. More
introduction and literature surveys of DE can be found in [94, 95, 96, 97]. In
addition, the advantages of DE such as simple concept, immediately accessible for
practical applications, ssimple structure, ease of use, speed to get the solutions, and
robustness has all led itself a good candidate to solve difficult nonlinear continuous
functions. Therefore, this thesis ams at employing DE to optimize 14 newly

devel oped benchmark suite in Congress on Evolutionary Computation 2005.
Currently, there exist severa variants of DE. We follow the DE/rand/1/bin scheme

of Storn and Price 1997 in [98]. The pseudo code of the DE algorithm is given in
Figure 3.1.
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Initialize parameters

Initialize target population

Evaluate

Do {
Obtain the mutant population
Obtain the trial population
Evaluate trial population
SHlection
While (Termination)

Figure3.1 A Simple DE Algorithm

The basic elements of the DE algorithm is summarized as follows:

Target individual: X/ denotes the i™ individual in the population at generation t and
is represented as X/ = [xitl, >¢2,..,fo], where x; is the optimized parameter value of
the i™ individual with respect to thej" dimension (j =1,2,...,D).

Mutant individual: V,' denotesthe i™ individual in the population at generation t and
is represented as V' = [v}l,vfz,..,vi‘D], where v; is the optimized parameter value of
thei™ individual with respect to thej" dimension (j =1,2,..., D).

Trial individual: U denotes the i™ individual in the population at generation t and is
represented as U; = [ui‘l, Ul ey ufDJ, where u; isthe optimized parameter value of the
i™ individual with respect to thej™ dimension (j =12,..., D).

Target population: X' isthe set of NP individualsin the population at generation t,
e, X'=[XE X0 X ] -

Mutant population: V' isthe set of NP individuals in the population at generation
A -AVAE VARVASNRAVAN B

Trial population:U" isthe set of NP individualsin the population at generation t,
ie, U'=|UlUL,...Ul] .

Mutant constant: F [(0,2)is areal constant which affects the differential variation

between two individuals.

Crossover constant: CR(0,1)is a crossover constant which affects the diversity of

population for the next generation.

Fitness function: In a minimization problem, the objective function is the

continuous function value denoted as f (X ! ) .
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Termination criterion: It isacondition that the search process will be terminated. It
might be a maximum number of function evaluations or maximum CPU time to

terminate the search.

3.2. Initial Population

A population of individuals is constructed randomly for the DE agorithm. The
continuous parameter values are established randomly. The following formula is

used to construct theinitial continuous parameter values of the individual uniformly:

0 —
Xij - Xmin + (Xmax - Xmin)* r.1

wherex;,and X, are search range of the continuous functions and r1 is a uniform

random number between 0 and 1. During the reproduction of the DE algorithm, it is
possible to extend the search outside of the initial range of the search space. For this
reason, parameter values violating the initial range are restricted to the feasible range

asfollows:
t —
Xij - Xmin + (Xmax - Xmin )* r1

The population size is taken as 100. As the formulation of 14 functions suggests that

the objective is to minimize the 14 continuous functions, the fitness value is the

continuous function value of the individual X'. That is, f!(X!). For simplicity,

f,'(X!) will be denoted as f;'.

3.3. Computational Procedure

The complete computational procedure of the DE algorithm can be summarized as

follows:
Sep 1: Initialization

=  Sett=0, NP =100.
= Generate NP individuals randomly as explained before, {Xio,i =12,.., NP}

where. X = [x,‘ixf},]
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Evaluate each individual i in the population using the objective function f.° (Xio)

fori=12,...,NP

Sep 2: Update generation counter

t=t+1

Sep 3: Generate mutant population

For each target individual, X/, i=212,..,NP, at generation t, a mutant
individual, V""" = [vflﬂ, vt ,v,‘glj is determined such that:

V= X +F(XE - X{)

where Xfm is the best individual so far in the population and a,, and b are two

randomly chosen individuals from the population such that (a, #b ). F >0 isa

mutant factor which affects the differential variation between two individuals.

Sep 4. Generatetrial population

Following the mutation phase, the crossover (recombination) operator is applied
to obtain the trial population. For each mutant individual, V,"** = [vflﬂ, vt ,v,‘glj

an integer random number between 1 and D, i.e, D, 0(1,2,..,D), is chosen, and a

trial individual, U™ = [U LUt U}jplj is generated such that:

t+1 _
ij

]

o Otherwise

! {VF+1 if r;"<CR or j=D

where the index D refers to a randomly chosen dimension (j=1,2,..,D), which is

used to ensure that at least one parameter of each trial individual U, ™ differs

from its counterpart in the previous generation U/, CR is a user-defined

1

crossover constant in the range [0, 1], and rt+ is a uniform random number

between O and 1. In other words, the trial individual is made up with some
parameters of mutant individual, or at least one of the parameters randomly

selected, and some other parameters of target individual.
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Sep 5: Evaluatetrial population

= Evaluate the trial population using the objective function fi“l(U“l) for

i=12,...,NP.
Sep 6: Section

= To decide whether or not the trial individual U™ should be a member of the
target population for the next generation, it is compared to its counterpart target
individual X/ at the previous generation. The selection is based on the survival
of fitness among the trial population and target population such that:

o2 JUL flur)< £(x)
b X!, otherwise

Sep 7: Sopping criterion

= If the number of function evaluations (FES) exceeds the maximum number of
function evaluations, then stop; otherwise go to step 2.

The flowchart of the computational procedureisgivenin Figure 3.2.

19



1l g t+l
X =,

Initialize the parameters, F, CR,
NP

4

Initialize target population

Xt

4

Update generation counter

.

Generate mutant population

Vt

4

Generate trial population

U

4

Evaluate trial population

fu)

YES

NO

X-H—l = x-t

IF
FES<Max_FES

Then

YES

Stop

4

Record statistic

Figure 3.2 Flowchart of the DE algorithm.
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3.4. An Examplefor DE Algorithm

In this section, an example of minimization of Sphere Function with 3 dimensionsis

given below:
F=04
vt =xi v Fe(xl - x)
=0 TARGET POPULATION MUTANT POPULATION
Dimension j 1 2 3 Fitness=Sxi2 Dimension j 1 2 3
xij 4.80 -3.60 -1.80 39.24 Xa vij 2.54 332 554
xij -3.90 -2.80 4.20 40.69 vij 2.04 378 -0.72
xij 2.10 140 -3.70 29.66 Xbest vij 4.54 -2.04 132
1] 3.60 4.90 -2.40 42.73 vij 1.44 196 -0.96
xij 3.70 -3.40 2.80 33.09 Xb vij 1.48 -1.36 112
¥ FUt)= Flxl) ey fr=CR
otharwise it otherwise
CR=0.5 D=2
SELECTION TRIAL POPULATION
Dimension j 1 2 3 Fitness=Sxi2 Dimension j 1 2 3 r i(9)]
xij 4.80 -3.60 -1.80 39.24  |3924==64.75 uij 4.80 332 -5.54 0.7 0.2 04 6475
xij 2.04 1.78 4.2 36.09  36.09==40.69 uij 2.04 1.78 42 03 01 0.8 3609
xij 210 -2.04 -3.7 2226 1226<=1966 uij 2.10 -2.04 37 |07/02/09 2226
xij 3.60 1.96 -2.40 2256 |22356==4173 uij 3.60 1.96 -2.40 0.8 0.6 0.9 2236
xij 1.48 -3.40 2.80 21.59  |21.359==33.09 uij 1.48 -3.40 2.8 04 0709 2159
=1 TARGET POPULATION MUTANT POPULATION
Dimension j 1 2 3 Fitness=Sxi2 Dimension j 1 2 3
xij 4.80 3.60 -1.80 39.24 vij 0.86 -2.67 5.44
xij 2.04 3.78 4.20 36.09 Xa vij 0.25 0.54 -2.60
xij 2.10 2.04 -3.70 2126 vij 1.44 0.78 -0.96
xij 3.60 1.96 -2.40 E Xhb vij 0.59 -1.36 112
xij 1.48 3.40 2.80 21.59 Xhest vij 0.00 0.00 0.00
Di=1
TRIAL POPULATION
Dimension j Fithess=Sxi2 Ditnension j 1 2 3 r i)
xij 4.80 -3.60 -1.80 3924 [39.24<=5977 uij 4.80 -2.67 544 07 02 04 3977
xij 0.25 0.54 4.20 18.00 18.00==36.09 uij 0.25 0.54 420 03 01 08 1800
xij 2.10 0.78 -3.70 18.71 18.71==22.26 uij 2.10 0.78 -370 07 02 09 1871
xij 0.59 1.96 -2.40 9.95 9.95<=22.56 uij 0.59 1.96 -240 0.8 06 09 995
xij 0.00 -3.40 2.80 19.40 19 40==21 59 uij 0.00 -3.40 280 04 0.7 09 1940
t=2 TARGET POPULATION MUTANT POPULATION
Dimension j 1 2 3 Fitness=Sxi2 Dimension j 1 2 3
xij 4.80 -1.60 -1.80 39.24 Xb vij -0.49 in -31.16
xij 0.25 0.54 4.20 18.00 vij 0.14 -2.83 0.16
xij 210 0.78 -3.70 18.71 Xa vij -0.84 -1.67 2.60
xij 0.59 1.96 -2.40 9.95 Xbest vij -0.24 -0.78 0.96
xij 0.00 -3.40 2.80 19.40 vij 0.00 1.36 -1.12
Di=3
SELECTION TRIAL POPULATION
Dimension j 1 2 3 Fitness=Sxi2 Dimension j 1 2 3 r i)
xij 4.50 -3.60 -1.80 39.24 39.24==46.82 uij 4.80 371 -316 0.7 0.2 0.4 4682
xij 0.25 0.54 4.20 18.00 18.00==25.69 uij 0.14 -2.83 420 0.3 01 0.8 2569
xij 2.10 0.78 -3.70 18.71 18.71==20.90 uij 2.10 -1.67 -370 0.7 0.2 09 2090
xij 0.59 1.96 0.96 511 5.11<=995 uij 0.59 1.96 096 08 0.6 09 511
xij 0.00 -3.40 2.80 19.40 19.40==19.40 uij 0.00 -3.40 280 0.4 0709 1940
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=3 TARGET POPULATION MUTANT POPULATION

Dimension j 1 2 3 Fitness=Sxi2 Dimension j 1 2 3
xij 4.80 -3.60 -1.80 39.24 vij 1.43 3.63 -1.64
xij 0.25 0.54 4.20 18.00 vij 0.24 -2.62 118
1] 210 0.78 -3.70 18.71 Xa vij 0.00 -1.36 112
xij 0.59 1.96 0.96 511 Xbest vij 0.00 0.00 0.00
xij 0.00 -3.40 2.80 19.40 Xb vij 0.00 0.00 0.00
Di=1
SELECTION TRIAL POPULATION
Dimension j 1 2 3 Fithess=Sxil Ditension j 1 2 3 r i)
xij 4.80 363 -1.64 3893  |3893<=39.24 uij 4.80 3.63 -1.64 | 0.7 0.2 0.4 3893
xij 0.25 0.54 4.20 18.00  |18.00==24.54 uij 0.24 -2.62 420 0.3 0.1 0.8 24354
xij 210 0.78 -3.70 18.71 18.71==19.95 uij 2.10 -1.36 -3.70 |07 0.2/0.9 1995
xij 0.00 1.96 0.96 476 4.76<=5.11 uij 0.00 1.96 09 0.8 0.6 0.9 476
xij 0.00 -3.40 2.80 19.4 19 40==19.40 uij 0.00 -3.40 280 (0.4 0.7 09 1940

Figure 3.3 An example for DE algorithm.
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CHAPTER 4: BENCHMARK SUITE
4.1. Introduction

In order to solve continuous function optimizatiproblems, several optimization
algorithms have been presented in the literatuth thieir results based on a small
subset of the standard test problems such as SpBeftavefel, Rosenbrock,
Rastrigin, and so on. Often, confusing results tiahito the test problems were
reported in the literature in such a way that thme algorithm working for a set of
functions may not work for some other functionsr these reasons, these algorithms
should be evaluated more systematically by detengira common termination
criterion, size of problems, initialization scheméanning time and so on. The special
session on real-parameter optimization in CEC200Be@ at developing new
benchmark functions to be publicly available to thsearchers for evaluating their
algorithms. The problem definition files, codes analuation criteria are obtained
from [99].

4.2. Properties of Benchmark Functions

Many real-world problems can be formulated as op#tion which can be
converted to the following form:

Minimize f(x),x = [X,%,,...%,| Where xO[X, ., %]

Many novel algorithms are introduced to solve thmwve global optimization

problem. In order to compare and evaluate diffeedgorithms, various benchmark
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functions with various properties have been progoddany of these popular
benchmark functions possess some properties thet baen exploited by some
algorithms to achieve excellent results. AccordiagLiang et. al. [100], some of
these issues are:

1. Global optimum having the same parameter values different
variables/dimensions: Most of the popular benchmiamkctions have the same
parameter values for different dimensions at theba@l optimum because of their
symmetry. For example, Rastrigin’s functions’ ande@ank’s functions’ global
optima are[0,0,0,...,O] and Rosenbrock’s functions’ global optimum[dﬂ,],...l] .In
this situation, if there exist some operators fpycone dimension’s value to the other
dimensions, the global optimum may be found rapidkor example, the
neighborhood competition operator in [101] is defiras follows:

=My MM e MM ey )

= (e, M)

wherem is the best solution in the population and | is tiew generated solution,
andi, are two integer random numbers &adi, <i, <D, D is the dimension size
of the problem. Hence, if the algorithm has fouhd globally optimal coordinates
for some dimensions, they will be easily copiedhe other dimensions. However,
this operator might not be useful if the globalimptm does not have the same value
for many dimensions. In other words, if the globptimum is shifted to make the
optimum to have different values for different dimsens, the performance of the
MAGA algorithm in [101] significantly deteriorate#Vhen we solve the real-world
problems, global optimum is unlikely to have themsavalue for different

dimensions.

2. Global optimum at the origin [101] : In this eashe global optimuno is equal to
[0,0,0,...,O] . Zhong et. al. [101] proposed the followingundtion
[I* (1- sRadius),| * (1+ sRadius)|, where| is the search center arsRadius is the

local search radius, to perform the local seartltah be observed that the local
search range is much smaller whers near the origin than whdnis far from the

origin. This operator is not effective if the gldlogtimum is not at the origin. Hence,
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this operator is specifically designed to explditstcommon property of many

benchmark functions.

3. Global optimum lying in the center of the searahge: Some algorithms have the
potential to converge to the center of the seaaclye. The mean-centric crossover
operator is just a good example for this type. Wiheninitial population is randomly
generated uniformly, the mean-centric method willvdr a trend to lead the

population to the center of the search range.

4. Global optimum on the bounds: This situationergountered in some multi-
objective optimization algorithms as some algorglset the dimensions moving out
of the search range to the bounds [102]. If théa@loptimum is on the bounds, as in
some multi-objective benchmark functions, the glamimum will be easily found.
However, if there are some local optima near thends, it will be easy to fall into

the local optima and fail to find the global optimu

5. Local optima lying along the coordinate axes rar linkage among the
variables/dimensions: Most of the benchmark fumstjaspecially high dimensional
functions, always have their symmetrical grid stuoe and local optima are always
along the coordinate axes. In this case, the irdtion of the local optima could be
used to locate the global optimum. Further, for adumctions it is possible to locate
the global optimum by using jut one-dimensional searches foDadimensional
problem. Some co-evolutionary algorithms [1@B|d the one dimensional mutation

operator[101, 104st use these properties to locate the globafmaph rapidly.

By analyzing these problems, Liang et al. [100Joremend that the researchers
should use the following methods to avoid theseblpras when they use the

benchmark functions suffering from these probleims$est a novel algorithm.

1. Shift the global optimum to a random positiorsaewn below to make the global
optimum to have different parameter values foreddht dimensions for benchmark

functions suffering from problems 1 to &(x)= f(x-o., +0,,) where F(x) is

the new function,f (x) is the old functionp,, is the old global optimum and,,, is
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the new setting global optimum which has differealues for different dimensions

and not in the center of the search range.

2. For issue 4, considering there are real probleghish have the global optimum on
the bounds, it is an acceptable method for bouasiling to set the population to
the near bounds when they are out of the searderatowever, Liang et. al. [100]
suggest using different kinds of benchmark functiaa test the algorithms. For
example, However, Liang et. al. [100] suggested tme can use some problems
with the global optimum on bounds, not on boundd smme problems with local
optima on bounds. One may not just test one alguorithat uses this bounds
handling method, on benchmark functions with globptimum on bounds, and

conclude the algorithm to be good.

3. Rotate the functions with issue 5 as below:
F(x)= f(R* x) whereR is an orthogonal rotation matrix obtained usingnfa'’s

method [105]. In this way, local optima can be dedi lying along the coordinate

axes and retain the benchmark functions’ propedig¢ke same time.

When a novel algorithm is tested, except for thabgl optimum’s position need be
shifted, functions having different properties sdolbe included such as continuous
functions, non-continuous functions, global optimamthe bounds, global optimum
not on the bounds, unrotated functions, rotatedtfans, function with no clear
structure in the fitness landscape, narrow globalrbof attraction and so on.

The first five functions are unimodal functions wé&s the remaining nine functions
are multimodal where seven of them are basic fanstiand two of them are the

expanded functions. These functions are summabiebxiv:

» Unimodal Functions:
= Shifted Sphere Function
» Shifted Schwefel's Problem 1.2
= Shifted Rotated High Conditioned Elliptic Function
= Shifted Schwefel’s Problem 1.2 with noise in Fithes

» Schwefel’'s Problem 2.6 with Global Optimum on Bosind
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» Multimodal Functions:

+ Basic Functions:

Shifted Rosenbrock’s Function

Shifted Rotated Griewank’s Function without Bounds

Shifted Rotated Ackley’s Function with Global Optim on Bounds
Shifted Rastrigin’s Function

Shifted Rotated Rastrigin’s Function

Shifted Rotated Weierstrass Function

Schwefel's Problem 2.13

* Expanded Functions:

Expanded Extended Griewank’s plus Rosenbrock’s framE8F2)
Expanded Rotated Extended Scaffer's F6

These test functions were designed to test an @i ability to find a global

optimum under a variety of circumstances such as:

» Function landscape is highly conditioned

» Function landscape is rotated

= Optimum lies in a narrow basin

= Optimum lies on a bound

= Optimum lies beyond the initial bounds

» Function is not continuous everywhere

= Bias is added to the function evaluation

4.3. Benchmark Suite

Test functions employed in this study are givedetail below:

1. Shifted Sphere Function:

f(x):ZD:zi2+f_bias Z=X-0 X = X, X0 Xo |

i=1

D: Dimension
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0= [01,02,...,0,3]: The shifted global optimum, to avoid the globptimum from the
origin
Properties:

= Unimodal

» Shifted

= Separable

= Scalable

= x0[-100100° |, global optimum:x’ =0, f(x )= f _bias(l) = -450

Data Files:

Name : sphere_func_data.txt

Variable : o] 1*100 vector the shifgddbal optimum
Name : fbias_data.txt

Variable : f bias 1*25 vector

2. Shifted Schwefel’'s Problem 1.2
e 2
f(x):Z( zjj +f _bias z=x-0 X =%, %000 % ]
=1\ j=1
D: Dimension
0=[0,,0,,....0, | : The shifted global optimum
Properties:
= Unimodal
» Shifted
= Non-separable

= Scalable

= x0[-100100° , global optimumx’ =0, f(x )= f _bias(2) = -450

Data Files:
Name : schwefel 102 data.txt
Variable : 0 1*100 vector the shiftddlgzal optimum
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3. Shifted Rotated High Conditioned Elliptic Fucti
i-1

1‘(x)=ZD:(106)D_lzi2 +f_bias z=(x=0)* M X =[x, Xy,....%p ]

i1
D: Dimension
0= [01,02,...,0D] : The shifted global optimum
M: orthogonal matrix
Properties:

= Unimodal

= Shifted

* Rotated

= Non-separable

= Scalable

= x0[-100100° |, global optimumx’ =0, f(x )= f _bias(3)=-450
Data File:

Name : high_cond_elliptic_roatal txt

Variable : o] 1*100 vector the shifgddbal optimum
Name : elliptic_M_D210.txt

Variable : M 10*10 matrix

Name : elliptic_M_D30.txt

Variable : M 30*30 matrix

Name : elliptic_M_D50.txt

Variable : M 50*50 matrix

4. Shifted Schwefel's Problem 1.2 with Noise imegs
D i 2

f(X)=[Z[ zj] ]*(1+ 04N(01))+ f _bias z=x-o0
i=1\ j=1

X =%, X000 X ]
D: Dimension
0= [01,02,...,0,3] : The shifted global optimum
Properties:

= Unimodal
= Shifted
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» Non-separable

= Scalable

* Noise in fitness

= x0[-100100° , global optimumx’ =0, f(x )= f _bias(4) = -450
Data File:
Name : schwefel 102 data.txt
Variable : o0 1*100 vector the shifigldbal optimum

5. Schwefel's Problem 2.6 with Global Optimum oruBds
f(x)=maxx, +2x, - 7,[2x +x, -5}, i =1...,n, x =[13], f(x')=0
Extend toD dimensions:

f(x)= maxﬂAx— Bi|}+ f _bias, i=1...D, X =[13], x =[x, %,,....%, |
D: Dimension

A is a D*D matrix, a; are integer random numbers in the rar{géOQSOd,

def{A)#0 A is theith row of A.
B, = A *0, ois aD*1 vector, o, are random number in the randeQlOO]
After loading the data file, seb, =— 1Q0Ofor i=12,.../D/4], o =100 for
i =|3D/4],...D
Properties:
= Unimodal
»= Non-separable
= Scalable

= |If the initialization procedure initializes the pdation at the bounds, this

problem will be solved easily.

= x0[-100100° , global optimumx’ =0, f(x' )= f _bias(5) = -310
Data File:
Name : schwefel 206 data.txt
Variable : 0 1*100 vector #igfted global optimum

A 100*100 mat

In schwefel_206_data.txt, the first line is o (161@ector), and line2-linel01 is A
(100*100 matrix)
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6. Shifted Rosenbrock’s Function
D-1 ) ) 5 )
f(x):ZQLOC(zi ~z,.f +(z -1) )+ f _bias z=x-0+1
i=1

X = [xl,xz,...,xD]
D: Dimension
0=[0,,0,,....0, | : The shifted global optimum
Properties:
= Multi-modal
» Shifted
= Non-separable
= Scalable
= Having a very narrow valley from local optimum tolgal optimum
= x0[-100100° , global optimumx’ =0, f(x )= f _bias(6) =390
Data File:
Name : rosenbrock_func_data.txt
Variable ; o] 1*100 vector the shifgldbal optimum

7. Shifted Rotated Griewank’s Function without Bounds

D 2

f(x):;4300_ .[: co{%]+l+ f_bias, z=(x=0)*M,  x=[x,%,,....X,]

D: Dimension
0=[0,,0,,....0, | : The shifted global optimum
M’ : linear transformation matrix, condition numbe3
M =M {1+ 03N(01))
Properties:
* Multi-modal
* Rotated
» Shifted
= Non-separable
= Scalable

= No bounds for variables x
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» |nitialize population in[O,60dD, Global optimumx™ =0 is outside of the

initialization range,f (x )= f _bias(7) = -180

Data File:

Name ; griewank_func_data.txt

Variable : o] 1*100 vector the shifgldbal optimum
Name : griewank_M_D10.txt

Variable : M 10*10 matrix

Name : griewank_M_D30.txt

Variable : M 30*30 matrix

Name X griewank_M_D50.txt

Variable : M 50*50 matrix

8. Shifted Rotated Ackley’s Function with Global Optim on Bounds

f(x)= —20ex;{— 0.2@ J ex;{—Zcos(Z;z ] +e+ f _bias,

z=(x-0)*M, X =%, X100 X ]
D: Dimension
0= [01,02,...,0[,] : The shifted global optimum;

After loading the data file, set,; , =-320,; are randomly distributed in the search

range, forj =12,...| D /2]
M : linear transformation matrix, condition numbetO0
Properties:
= Multi-modal
* Rotated
» Shifted
= Non-separable
= Scalable
= A’s condition number Cond(A) increases with the inemof variables as
o(p?)
» Global optimum on the bound
= [f the initialization procedure initializes the pdption at the bounds, this

problem will be solved easily.
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= x0[-3232° , global optimum:xx’ =0, f(x')= f _bias(8) = -140

Data File:

Name : ackley_ func_data.txt

Variable X o] 1*100 vector the shifigldbal optimum
Name : ackley M_D10.txt

Variable : M 10*10 matrix

Name : ackley M_D30.txt

Variable : M 30*30 matrix

Name : ackley M_D50.txt

Variable : M  50*50 matrix

9. Shifted Rastrigin’s Function

f(x)= ZD:(ziZ ~10coq27z, ) +10)+ f _bias, z=x-0 X=X, X, .

i1
D: Dimension
0= [01,02,...,0D] : The shifted global optimum
Properties:

= Multi-modal

= Shifted

= Separable

= Scalable

= Local optima’s number is huge

= xO[-55]° , global optimum:x’ =0, f(x')=f _bias(9) = -330

Data File:
Name X rastrigin_func_data.txt
Variable : o] 1*100 vector the shifgdbal optimum

10. Shifted Rotated Rastrigin’s Function

f(x):i(zi2 ~10coq27z,)+10)+ f _bias, z=(x—0)* M, X =[%,%,,...

i=1
D: Dimension
0= [01,02,...,0,3] : The shifted global optimum

M : linear transformation matrix, condition numiz
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Properties:
= Multi-modal
» Shifted
* Rotated
»= Non-separable
= Scalable

» Local optima’s number is huge

= x0O[-55]° , global optimum:x’ =o, f(x)=f _bias(L0) = -330

Data File:

Name : rastrigin_func_data.txt

Variable : o] 1*100 vector the shifgldbal optimum
Name X rastrigin_M_D10.txt

Variable : M 10*10 matrix

Name X rastrigin_M_D30.txt

Variable : M 30*30 matrix

Name : rastrigin_M_D50.txt

Variable : M 50*50 matrix

11. Shifted Rotated Weierstrass Function

kmax

f(x)= ZD:(kZmaf[ak cod2rb* (z + OS))U - DZ[ak cod27b" [0.5)] + f _bias, a= 05,

i=1 \ k=0

b=3, k.., =20,
z:(x—o)*M , x:[xl,xz,...,xD]
D: Dimension
0=[o0,,0,,...,0, | : The shifted global optimum
M : linear transformation matrix, condition numby
Properties:

= Multi-modal

» Shifted

* Rotated

= Non-separable

= Scalable

= Continuous but differentiable only on a set of p®in
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= xO[- 0505]° , global optimum:x’ =0, f(x)= f _bias(11) =90

Data File:

Name : weierstrass_func_data.txt

Variable : 0 1*100 vector the shifigldbal optimum
Name : weierstrass_M_D10.txt

Variable : M 10*10 matrix

Name : weierstrass_M_D30.txt

Variable : M 30*30 matrix

Name : weierstrass_M_D50.txt

Variable : M  50*50 matrix

12. Schwefel’s Problem 2.13

=3 (A - B () + f _bias, x=[x. %% ]

i=1
D D
A :;(a"i sina; +b, cosaj), B, (x):;(a” sinx; +b, cosxj), fori =1,....D
D: Dimension

A, B are twoD*D matrix, &,, b, are integer random numbers in the range

[-10010d,
a= [al,az,...,aD], a; are random numbers in the rar{gen,n].
Properties:

* Multi-modal

= Shifted

»= Non-separable

= Scalable

= xO[-7,7]°, global optimum:x’ =a, f(x')= f _bias(12) = -460

Data File:
Name ; schwefel 213 data.txt
Variable : alpha 1*100 vector the shiftgdbal optimum

a 100*100 mat
b 100*100 mmat
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In schwefel 213 data.txt, linel-linel00 is a (10@31Imatrix), and line101-line200
is b (100*100 matrix), the last line is alpha ) (1*100 vector)

Expanded Functions:

Use a two dimensional functiofi(x, y) as a starting function.
The corresponding expanded function

EF (X, Xy 00 X5 ) = F (%) + F (%, %5 )+ F (X1, %0 )+ F (x5, %))

13. Shifted Expanded Griewank’s plus Rosenbrockisckion (F8F2)

D
F8: Griewank’s FunctlonF8 X' I_| co +1
~ 4000 J
F2: Rosenbrock’s Functior 2(x (10((x %) +(x —1)? )

F8F2(X,, Xy, Xp ) = F8(F2(xl,x2))+ F8(F2(x2,x3))+...+ F8(F2(x,,. %, ) + F8(F2(x5, X))

Shift to
f(x) = F8(F2(21, 22))+ F8(F2(22, 23))+...+ F8(F2(ZD_1, ZD))+ F8(F2(ZD,21))+ f _bias

z=Xx—-0+1, x= [xl,xz,...,xD]
D: Dimension
0=[0,,0,,....0, | : The shifted global optimum
Properties:
* Multi-modal
» Shifted
»= Non-separable

= Scalable

= x0[-55]°, global optimum:x” =o, f(x')= f _bias(13)=-130

Data File:
Name : EF8F2_func_data.txt
Variable : 0o  1*100 vector stafted global optimum
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14. Shifted Rotated Expanded Scaffer's F6 Function

F(x y)= 05+ [sin*[x*+y?)- 05)

(L+0.001x? +y2)f

Expanded to
f(x) = EF(zi,zz,...,zD) = F(zl,zz)+ F(zz,23)+...+ F(zD_l,zD)+ F(zD,zi)+ f _bias
, Z= (x—o)* M, x= [xl,xz,...,xD]
D: Dimension
0=[o0,,0,,...,0, | : The shifted global optimum
M : linear transformation matrix, condition numb<3
Properties:
= Multi-modal
= Shifted
»= Non-separable

= Scalable

= x0[-100100°, Global optimumx’ =o, f(x)= f _bias(14) = -300

Data File:

Name : E_ScafferF6_func_data.tx

Variable : o 1*100 vector theftgd global optimum
Name : E_ScafferF6_M_D10.txt

Variable : M 10*10 matrix

Name : E_ScafferF6_M_D30.txt

Variable : M 30*30 matrix

Name : E_ScafferF6_M_D50.txt

Variable : M 50*50 matrix

4.4. Evaluation Criteria

14 newly designed functions as indicated beforegasen in Suganthan et. al.[99] for
different level of dimensions ranging from 10 ta 30e population size was 100 for
all functions. For the evaluation purposes, Sugantét. al. [99] provided several
criterion measures explained below in order to maKair comparison of different

competing algorithms:
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Problems. 14 minimization problems

Dimensions: D=10, 30, 50

Number of replications: 25

Maximum number of function evaluations (Max_FES): Max_FES is set to
10000*D where it is increased with the dimensiomesii.e., Max_FES 10D=
100000; for 30D= 300000; for 50D= 500000.

Initialization: Uniform random initialization within the searchhge is used except
for the problem 7 for which initialization range® &pecified.

Global Optimum: All problems, except for 7, have the global optimwithin the
given bounds and there is no need to perform seartdide of the given bounds for
these problems. Problem 7 is exception without segrch bounds and with the
global optimum outside of the specified initialipat range.

Termination: Search is terminated before reaching Max_FES.

4.5. Performance Criteria

Following performance measures are used consmsfémSuganthan et. al.[99].

= Record the error valugf(x)- f(x*)) after 1e3, 1le4, 1e5 FES and at
termination for each run.

= For each function, sort the error values in 25 fuo the smallest (best) to
the largest (worst)

= Present the following: 1 (best/smallest), "7 13" (median), 19, 25"
(worst/largest) values, mean and standard devi&biotne 25 runs

= Record the success rate needed in each run tovactie fixed accuracy

level. Fixed accuracy level for each functioniigeg in Table 4.1.

Table 4.1. : Fixed Accuracy Level for Each Fuoiati

F 1 2 3 4 5 6 7

AL | -450+1e-6 -450+1e-6 -450+1e-6 -450+1e-§ -310+1e6390+1e-2 -180+1e-2
F 8 9 10 11 12 13 14

AL -140+1e-2 -330+1e-2 -330+1e-2 90+1e-2 -460+1e-2 130+1e-2 -300+1e-2

A successful run is defined as a run during which the algorithmiewbs the fixed

accuracy level within the Max_FES for the particydeoblem-dimension.
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4.6. Success Rate for Each Problem

Success Rate= (number of successful runs accoralitng table above) / total runs

Success rate is computed for each problem-dimesszerseparately.

4.7. Convergence Graphs

Convergence Graphs for each problem size are giVka.semi-log graphs will

show logf (x)- f(x*)) vs FES for each dimension size.

4.8. Algorithm Complexity

Algorithm complexity is computed as follows:
a. Run the test program below:
for i= 1: 2000000
x= (double) 5.55;
X= X+X; X= X./2; Xx= sqrt(X); x= In()}x= exp(X); y= x/X;
end
Computing time for the above= TO;
b. Evaluate the computing time just for Function 3r EB0000 evaluations
of a certain dimension D, it gives T1;
c. The complete computing time for the algorithm w0000 evaluations

of the same D dimensional benchmark function 33sHxecute step ¢ 5

times and get T2 value$2 = Mean(T 2)
The complexity of the algorithm is reflectdsy: T2, T1,TO, and
(r2-T1)/710

The algorithm complexities are calculated on 10,a8d 50 dimensions, to
show the algorithm complexity’s relationship withmgnsion. In addition, it
provides sufficient details on the computing systend the programming
language used. In step c, we execute the complgteitam 5 times to
accommodate variations in execution time due tgotda nature of some

algorithms.

39



CHAPTER 5: COMPUTATIONAL RESULTS

5.1 Computational Resultsfor the Particle Swarm Optimization Algorithm

In order to solve continuous function optimization problems, several optimization
algorithms have been presented in the literature with their results based on a small
subset of the standard test problems such as Sphere, Schwefel, Rosenbrock,
Rastrigin, and so on. Often, confusing results limited to the test problems were
reported in the literature in such a way that the same algorithm working for a set of
functions may not work for some other functions. For these reasons, these algorithms
should be evaluated more systematically by determining a common termination
criterion, size of problems, initialization scheme, running time. The special session
on rea-parameter optimization in Congress on Evolutionary Computation
(CEC2005) aimed at devel oping new benchmark functions to be publicly available to
the researchers for evaluating their algorithms. The problem definition files, codes
and evaluation criteria are made available in http://www.ntu.edu.sg/home/EPN Sugan
[99].

The traditional PSO algorithm was coded in C and run on an Intel P4 1.33 GHz PC
with 256MB memory. Regarding the PSO parameters, the acceleration coefficients

were taken as ¢, =c, =2 consistent with the literature. Initia inertia weight and
final inertia weight were set to w, =0.9 and w, =0.4 respectively. The inertia
weight islinearly decreased by the following equation:
w' = ((max_FES- FES)/ max_FES)* (w, - w, )+ Ww,

The population size was taken as 100. The maximum number of function

evaluationsis fixed at 10000* D where D is the size of dimension varying from 10 to
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50. The PSO agorithm was run for the 14 benchmark functions recently developed.
The performance evaluation of the PSO algorithm is also conducted through the
guidelines described in the evaluation criteria in the webpage above. 25 replications

are conducted for each benchmark function to record the error values, f (x)- f(x'),

after 1e3 FES, 1e4 FES, 165 FES and at the termination.

The mean error values and standard deviations are given in Table 5.1. In addition, the
error values achieved at different FES levels are given in details in Appendices A.1,
A.2, and A.3. The Appendices list the test function, 1% (best/smallest), 7", 13"
(median), 19", 25™ (worst/largest), mean and standard deviation of the error values
found at 1e3 FES, 1e4 FES, 1e5 FES and at termination for the 25 runs. The

convergence graphs are also given in Figures 5.1 to 5.6.

Since these benchmarks are newly designed, unfortunately there exist no results for
comparison purposes. For this reason, the computational results are presented along

with the convergence graphs to be compared with the DE algorithm in the next

Chapter.
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Figure 5.1 Convergence Graph of PSO for D=10 for functions 1-7

As seen in Figure 5.1, the PSO algorithm converges to the optimal solution easily in
each run whereas near-optimal solutions are obtained for the functions 2, 4, and 7. In

addition, the PSO algorithm was not able to find reasonable near-optimal solutions

41



for the functions 3 and 6. In other words, the PSO algorithm failed for the functions 3
and 6.
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Figure 5.2 Convergence Graph of PSO for D=10 for functions 8-14

As seen in Figure 5.2, the PSO agorithm performed relatively good by generating
near-optimal solutions for the functions 9, 11, 13, and 14 whereas it fails for the
functions 8, 10, and 12.
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Figure 5.3 Convergence Graph of PSO for D=30 for functions 1-7

As seen in Figure 5.3, the PSO agorithm performed relatively good results by
generating near-optimal solutions for only the functions 1 and 7 whereas it fails for
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the rest of the 5 other functions. Another interpretation of these results is that the

PSO agorithm could not be able to generate near-optimal solutions when the

dimension size is increased.
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Figure 5.4 Convergence Graph of PSO for D=30 for functions 8-14

As seen in Figure 5.4, the PSO algorithm could not be able to generate satisfactory

solutions for the eight functions except for the function 13. Another interpretation of

these results is again that the PSO algorithm could not be able to generate near-

optimal solutions when the dimension sizeisincreased.

log(f-f*)

1.0E+12
1.0E+10 -
1.0E+08 -
1.0E+06 -
1.0E+04 -
1.0E+02 -
1.0E+00

1.0E-02

Figure 5.5 Convergence Graph of PSO for D=50 for functions 1-7

As seen in Figure 5.5, the PSO algorithm performed satisfactory results only for the

functions 1 and 7 whereas it fails for the rest of the 5 other functions. Another



interpretation of these results is again that the PSO algorithm could not be able to

generate near-optimal solutions when the dimension sizeisincreased.
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Figure 5.6 Convergence Graph of PSO for D=50 for functions 8-14

As seen in Figure 5.6, the PSO algorithm could not be able to generate satisfactory
solutions for the eight functions except for the function 13. Another interpretation of
these results is again that the PSO agorithm could not be able to generate near-

optimal solutions when the dimension size isincreased.

From these results, we can conclude that the PSO algorithm is affected by the
dimension size. In other words, the performance of the PSO algorithm gets worsened

as the dimension size increases.

5.2 Computational Resultsfor the Differential Evolution Algorithm

The traditional DE algorithm was coded in C and run on an Intel P4 1.33 GHz PC
with 256MB memory. Regarding the DE parameters, mutation (MR) and crossover
rates (CR) are taken as 0.9 respectively. The population size was 100. The maximum
number of function evaluationsis fixed at 10000* D where D is the size of dimension
and varied from 10 to 50. The DE agorithm was run for the 14 benchmark functions
recently developed. The performance evauation of the DE algorithm is also
conducted through the guidelines described in [99]. 25 replications are conducted for



each benchmark function to record the error values, f (x)- f(x ), after 1e3 FES, 1e4
FES, 1e5 FES and at the termination.

Table5.1. : Mean Error and standard deviation values achieved at the termination for
PSO Algorithm

Func. D=10 D=30 D=50
1 |Mean 0.00000E+00 8.00000E-09 1.16368E-01
Std D. 0.00000E+00 3.79693E-08 5.62614E-01
2 |Mean 4.31888E-01 4.01956E+02 | 6.53038E+03
Std D. 1.96785E+00 3.40265E+02 3.35448E+03
3 |[Mean 1.98704E+05 | 1.07647E+07 | 4.84217E+07
Std D. 2.12806E+05 9.33441E+06 3.11780E+07
4 | Mean 4.25415E+00 | 2.70271E+03 | 2.27204E+04
Std D. 1.98131E+01 1.48463E+03 7.01268E+03
5 [Mean 0.00000E+00 | 1.10620E+04 | 1.98764E+04
Std D. 0.00000E+00 3.83930E+03 3.63886E+03
6 |Mean 6.92385E+01 | 1.57711E+02 | 3.03737E+02
Std D. 9.08055E+01 2.13877E+02 3.42479E+02
7 |Mean 2.41916E-01 8.19353E-02 2.47858E-02
Std D. 1.29032E-01 8.93249E-02 2.36381E-02
8 |[Mean 2.03441E+01 | 2.09311E+01 | 2.11326E+01
Std D. 8.13829E-02 6.64438E-02 3.99925E-02
9 |Mean 1.99013E+00 | 2.43572E+01 | 6.62258E+01
Std D. 1.21875E+00 5.51904E+00 1.11524E+01
10 |Mean 1.64690E+01 | 8.72283E+01 | 2.14250E+02
Std D. 7.04173E+00 3.91043E+01 9.29100E+01
11 |Mean 4.62658E+00 | 3.11684E+01 | 6.61378E+01
Std D. 1.45265E+00 5.19378E+00 5.93583E+00
12 |Mean 8.47897E+01 | 2.21836E+04 | 1.08151E+05
Std D. 1.65819E+02 1.60610E+04 5.76638E+04
13 |Mean 6.62293E-01 3.70427E+00 | 9.64705E+00
Std D. 2.06914E-01 9.19095E-01 2.69821E+00
14 |Mean 2.96542E+00 | 1.30484E+01 | 2.27563E+01
Std D. 5.20650E-01 2.44407E-01 2.80591E-01

The mean error values and standard deviations are given in Table 5.2. In addition, the
error values achieved at different FES levels are given in details in Appendices B.1,
B.2, and B.3. The Appendices presents the test functions, 1% (best/smallest), 7", 13"
(median), 19", 25" (worst/largest) values, mean and standard deviation of the error
values found at 1€3 FES, 1e4 FES, 1e5 FES and at termination. The complexity of
the DE algorithm will be given in detail in the next Chapter. The convergence graphs

arealso given in Figures 5.7 t0 5.12.
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Since these benchmarks are newly designed, unfortunately there exist no results for
comparison purposes. For this reason, the computational results are presented along

with the convergence graphs to be compared with the PSO algorithm in the next

Chapter.
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Figure 5.7 Convergence Graph of DE for D=10 for functions 1-7

As seen in Figure 5.7, the DE algorithm performed very good by generating optimal
solutions for the functions 1, 2, 4, and 5. In addition, it generated results near to the

optimal solutions for functions 3, 6 and 7.
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Figure 5.8 Convergence Graph of DE for D=10 for functions 8-14
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As seen in Figure 5.8, the DE algorithm performed relatively good results by
generating near-optimal solutions for the functions 11, 13 and 14 whereas it fails for

the rest of the 4 other functions.

——P1
—=—P2
P3
P4

—%—P5

log(f-f*)

—e—P6

—+—P7

Figure 5.9 Convergence Graph of DE for D=30 for functions 1-7

As seen in Figure 5.9, the DE algorithm generated the optimal solution for the first
function. It also generated near-optimal results for the functions 2 and 7. However, it
failsfor the functions 3, 4, 5 and 6.
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Figure 5.10 Convergence Graph of DE for D=30 for functions 8-14
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As seen in Figure 5.10, the DE algorithm generated the optimal solution for the
function 12. It also generated near-optimal result for the functions 13. However, it
failsfor the functions 8, 9, 10, 11, and 14.

log(f-f*)

Figure 5.11 Convergence Graph of DE for D=50 for functions 1-7

As seen in Figure 5.11, the DE algorithm generated the optimal solution for the first
function 1. It also generated near-optimal result for the function 7. However, it fails
for the functions 2, 3, 4, 5 and 6.

—e—p8

—=—p9
pl0
pll

—x—p12
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Figure 5.12 Convergence Graph of DE for D=50 for functions 8-14
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As seen in Figure 5.12, the DE algorithm generated the near-optimal solution only
for the function 13. It fails for the functions 8, 9, 10, 11, 12 and 14. Another
interpretation of these results is that the DE agorithm could not be able to generate
near-optimal solutions when the dimension size isincreased.

From these results, we can conclude that the DE agorithm is affected by the
dimension size. In other words, the performance of the DE algorithm gets worsened

as the dimension size increases.

Table 5.2. Mean Error and standard deviation values achieved at the termination

for the DE Algorithm

Func. D=10 D=30 D=50
1 Mean | 0.00000E+00 | 0.00000E+00 | 0.00000E+00
Std D. | 0.00000E+00 | 0.00000E+00 | 0.00000E+00
2 Mean | 0.00000E+00 | 6.18957E-02 |6.70521E+01
StdD. | 0.00000E+00 | 4.21461E-02 | 2.92809E+01
3 Mean | 5.46328E-05 | 7.34622E+05 | 2.18206E+06
StdD. | 1.01191E-04 | 3.83248E+05 | 9.15385E+05
4 Mean | 0.00000E+00 | 4.06987E+00 | 3.00509E+03
Std D. | 0.00000E+00 | 4.20637E+00 | 2.18711E+03
5 Mean | 0.00000E+00 | 1.89052E+03 | 5.49715E+03
Std D. | 0.00000E+00 | 1.88807E+03 | 2.49397E+03
6 Mean | 6.37853E-01 | 9.45834E+00 |9.13380E+01
StdD. | 1.49164E+00 | 5.37511E+00 | 8.49118E+01
7 M ean 1.50829E-01 | 4.16067E-02 | 1.07342E-02
StdD. | 6.40648E-02 | 6.68922E-02 | 1.58607E-02
8 Mean | 2.03384E+01 | 2.09600E+01 | 2.11374E+01
StdD. | 7.50173E-02 | 5.14799E-02 | 3.69487E-02
9 Mean | 5.09419E+00 | 4.08729E+01 | 9.27698E+01
Std D. | 2.09729E+00 | 1.12049E+01 | 2.10559E+01
10 |Mean | 1.65177E+01 | 5.02670E+01 | 9.14884E+01
StdD. | 6.98306E+00 | 1.33351E+01 | 1.68417E+01
11 |Mean | 7.09222E-01 | 1.17990E+01 | 5.32926E+01
StdD. | 9.72805E-01 | 4.16057E+00 | 1.83731E+01
12 |Mean | 5.89551E+01 | 0.00000E+00 | 1.06185E+04
StdD. | 2.68501E+02 | 0.00000E+00 | 8.53809E+03
13 |Mean | 7.66957E-01 | 3.49835E+00 | 9.58925E+00
StdD. | 3.34237E-01 | 1.17383E+00 | 3.20361E+00
14 |Mean | 3.44692E+00 | 1.33659E+01 | 2.31630E+01
StdD. | 5.73178E-01 | 1.99834E-01 | 1.74935E-01
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CHAPTER 6: COMPARISON OF PSO AND DE ALGORITHMS

6.1 Comparison of PSO and DE Algorithms

In this chapter, PSO and DE algorithms have beerpeoed according to best mean,
standard deviation of the error values achievethattermination as well as their
success ratio. Error values achieved within the imasm number of function
evaluation and the success ratio achieved withian fitked accuracy levels are
presented in Tables 6.1 to 6The fixed accuracy levels obtained from Suganthan e
al. [99] for the 14 test functions as given in Clieap! are 1le-6 for functions 1 to 5

and 1le-2 for functions 6 to 14.
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Table 6.1.

Error values achieved in the Max_F&i#8l Success Rate (PSO and DE

for D=10)
Func. 1st(Min) 7th 13th(Median 19th 25th(Max) Mean Std. | SR(%)
1 PSO| 0.00000E+00| 0.00000E+00 0.00000E+00 0.00000EH00 000@E+00| 0.00000E+00 | 0.00000E+00 100
DE | 0.00000E+00 0.00000E+Q0 0.00000E+00 0.00000E+0@O000E+00| 0.00000E+00 | 0.00000E+00) 100
2 PSO| 1.76600E-05| 2.65480E-O4 9.93690E-D4 1.26971H-02 6498E+00| 4.31888E-01 1.96785E+DO 10
DE | 0.00000E+00 0.00000E+Q0 0.00000E+00 0.000005+0@0000E+00| 0.00000E+00 | 0.00000E+00 100
3 PSO| 2.50113E+04| 8.09600E+04 1.24667E+05 2.06380E+05098ZE+05| 1.98704E+0b5 2.12806E+p5 0
DE | 4.10000E-07| 2.02000E-Op 7.09000E-D6 6.23900H-(H583810E-04| 5.46328E-05 | 1.01191E-04| 44
4 PSO| 1.03240E-04| 1.14938E-08 2.06002E-p2 1.41357H-01 2933E+01| 4.25415E+0p 1.98131E+p1 0
DE | 0.00000E+00 0.00000E+Q0 0.00000E+00 0.00000E+0@®O0000E+00| 0.00000E+00 | 0.00000E+00] 100
5 PSO| 0.00000E+00| 0.00000E+00D 0.00000E:r)O 0.00000E{+00 000@E+00| 0.00000E+00 | 0.00000E+00] 100
DE | 0.00000E+00 0.00000E+Q0 0.00000E+00 0.000005+0@0000E+00| 0.00000E+00 | 0.00000E+00 100
6 PSO| 3.84650E-01| 3.66355E+00 8.44764E+00 1.42832EH0283R4E+02| 6.92385E+01l 9.08055E+p1 0
DE | 0.00000E+0Q 0.00000E+00 0.00000E+00 0.00000E+B®8658E+00| 6.37853E-01 | 1.49164E+00] 100
7 PSO| 6.01463E-02| 1.56842E-01 2.16706E-p1  3.42226H-01 533BE-01| 2.41916E-01 1.29032E-(01 0
DE | 5.08014E-02| 1.03748E-OL 1.50057E-D1 2.07027H-®58674E-01| 1.50829E-01 | 6.40648E-02 0
8 PSO| 2.01574E+01| 2.02826E+Ql 2.03568E+01 2.04105E+0146271E+01| 2.03441E+0L 8.13829E-02 0
DE | 2.01870E+01] 2.02973E+(1 2.03631E+01 2.03872E+RD5102E+01| 2.03384E+01 | 7.50173E-02 0
9 PSO| 0.00000E+00| 9.94959E-0Ll 1.98992E+00 2.98488ER00 793®E+00| 1.99013E+00 | 1.21875E+00 92
DE | 1.98992E+00 2.98488E+00 4.97480E+00 6.96471H+B8M5463E+00 5.09419E+00 2.09729E+H00 0
10 | PSO| 5.28933E+00| 1.25393E+0{lL 1.58296E+01 1.88197E{+01513%E+01| 1.64690E+01 | 7.04173E+00 0
DE | 7.79445E+0Q0 1.14447E+01 1.52435E+01 1.89897H+BB3416E+01| 1.65177E+0l 6.98306E+00
11 PSO| 2.56900E+00| 3.60895E+00 4.63681E+00 5.43349E+009588E+00| 4.62658E+0D 1.45265E+p0 0
DE | 7.93340E-04| 2.43548E-08 5.85140E-D3 1.50192E+B8®M0221E+00| 7.09222E-01 | 9.72805E-01 80
12 PSO| 9.48824E-01| 1.04495E+0[L 2.02180E+01 3.96839Ef0122B3E+02| 8.47897E+01l 1.65819E+p2 0
DE | 0.00000E+00 0.00000E+00 2.00000E-D8 1.00030H+0B4735E+03| 5.89551E+01 | 2.68501E+02| 96
13 | PSO| 3.89080E-01| 5.06936E-O1 6.38670E-p1  7.38544H-01 27D0@E+00| 6.62293E-01 | 2.06914E-01 0
DE | 3.81196E-01| 5.33667E-OfL 7.16250E-D1  9.19178H-0156296E+00] 7.66957E-0l  3.34237E-01 0|
14 | PSO| 1.57958E+00| 2.61841E+00 3.12565E+00 3.29433E{+00292@E+00| 2.96542E+00 | 5.20650E-01 0
DE | 1.00236E+00 3.45017E+00 3.58983E+00 3.75966H+BM®2519E+00| 3.44692E+00 5.73178E-p1 0
Avg. PSO | 1.78876E+03 | 5.78677E+03 | 8.91019E+03 | 1.47582E+04 | 6.08666E+04 | 1.42079E+04 | 1.52211E+04 28
DE | 2.24332E+00 | 2.77264E+00 | 3.21739E+00 | 4.48089E+00 | 1.01849E+02 | 7.61552E+00 | 2.00780E+01 | 51.43

As seen in Table 6.1, the DE algorithm was supadadhe PSO algorithm for all the

performance measures taken when overall averaffgegferformance measures for

14 functions. In other words, the DE algorithm \kaster than the PSO algorithm in

terms of min, median, max, mean, standard deviasind success ratio. When

comparing the success ratio of both algorithms,Bealgorithm outperformed the

PSO algorithm with a 51.43 percent which is alntaste as much as a success ratio
of 28% for the PSO algorithm.
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Table 6.2. : Error values achieved in the Max_RB8 Success Rate (PSO and DE

for D=30)
Func. 1st(Min) 7th 13th(Median 19th 25th(Max) Mean Std. SR(%

1 | PSO| 0.00000E+0) 0.00000E+(O 0.00000E+00 0.000BDE+1.90000E-07| 8.00000E-09 3.79693E-D8  1p0
DE | 0.00000E+0Q 0.00000E+Q0 0.00000E+00 0.00000H+0.00000E+0Q 0.00000E+00 | 0.00000E+00| 100

2 PSO| 9.19895E+01 1.44785E+02 2.84253E#+02 5.35MBBE+1.37277E+03 4.01956E+Q2 3.40265E+02 D
DE | 1.00082E-02| 2.69799E-0R 4.70619E-02 8.74602H-0.58316E-01| 6.18957E-02 | 4.21461E-02

3 PSO| 2.14739E+06 3.51459E+06 5.23473E+06 1.76596E+3.46473E+07 1.07647E+07 | 9.33441E+06|
DE | 2.52866E+05 3.63513E+(05 6.71938E+405 9.74706+0.45497E+06§ 7.34622E+05 3.83248E+405

4 | PSO| 8.49725E+02 1.54421E+(Q3 2.65265E+03 3.59FE46.77614E+03 2.70271E+Q3 1.48463E+03 D
DE | 4.44201E-01] 1.56985E+Q0 2.26303E+00 4.3744BH+0.58945E+01] 4.06987E+00 | 4.20637E+00 0

5 | PSO| 1.80210E+01 8.76067E+03 1.08879E+04 1.35322f+1.80297E+04 1.10620E+Q4 3.83930E+03 D
DE | 1.08400E-05 9.65160E-08 2.19951E+03 2.91858H+8.93939E+03 1.89052E+03 | 1.88807E+03

6 PSO| 1.28023E+01 2.84509E+01 9.26050E+01 1.634BDE+1.08048E+03 1.57711E+02 | 2.13877E+02
DE 7.91052E-01] 6.02897E+0J0 1.01827E+401 1.2677%F+0.80863E+01] 9.45834E+00 | 5.37511E+00

7 | PSO| 4.92000E-0¢ 1.03743E-02 4.04980E{02 1.50B84F-3.08387E-01| 8.19353E-0R  8.93249E-D2 64
DE | 0.00000E+0Q 0.00000E+Q0 1.00000E{08 5.39372AH-(.89677E-01| 4.16067E-02 | 6.68922E-02| 100

8 | PSO| 2.07623E+01 2.08980E+D1 2.09448E+01 2.097®PE+2.10350E+01 2.09311E+01 | 6.64438E-02 0
DE | 2.08070E+01 2.09520E+Q1 2.09705E+401 2.09984H+2.10302E+01] 2.09600E+Q01 5.14799E-D2

9 PSO| 1.39294E+01 1.98992E+01 2.48740E+01 2.885BBE+3.28336E+0] 2.43572E+01 | 5.51904E+00 0
DE | 2.18891E+01] 3.28336E+(Q1 4.07933E+401 4.775792F+6.06924E+01] 4.08729E+01 1.12049E+401

10 | PSO| 4.46290E+0l 6.76721E+P1 7.70619E#+01 9.746BRE 2.44440E+04 8.72283E+Q1 3.91043E+01 D
DE | 2.34153E+01] 4.49232E+(Q1 5.00901E+401 5.49342H+0.95865E+01] 5.02670E+01 | 1.33351E+01] 0

11 | PSO| 2.10586E+01l 2.74924E+D1 3.04811E#01 3.5068BbE 3.94895E+01] 3.11684E+Q1 5.19378E+00 D
DE | 5.37358E+0QJ 8.52891E+(Q0 1.09034E+01 1.56893H+0.87345E+01] 1.17990E+01 | 4.16057E+00, 0

12 | PSO| 2.21992E+08 9.09589E+p3 1.75403E#+04 3.4CHABE 6.06273E+04 2.21836E+Q4 1.60610E+04 D
DE | 0.00000E+0Q 0.00000E+Q0 0.00000E+400 0.00000F+0.00000E+0Q 0.00000E+00 | 0.00000E+00| 0

13 | PSO| 2.12003E+0p 3.06190E+Pp0 3.71451E#00 4.087®BBE 6.58410E+0Q 3.70427E+Q0 9.19095E-01 D
DE | 1.97830E+0Q 2.68041E+Q0 2.95265E+00 4.04030H+B.77030E+0Q 3.49835E+00 | 1.17383E+00

14 | PSO| 1.24395E+01 1.29290E+p1 1.30828E#+01 1.32&BBE 1.34684E+01 1.30484E+01 | 2.44407E-01
DE 1.29578E+01 1.32526E+01 1.33953E+01 1.35254F+0.36599E+01 1.33659E+(01 1.99834E-D1

Avg | PSO | 1.53621E+05 | 2.52451E+05 | 3.76169E+05 | 1.26512E+06 | 2.48111E+06 | 7.71527E+05 | 6.68314E+05 | 11.71

DE | 1.80681E+04 | 2.59746E+04 | 4.81635E+04 | 6.98423E+04 | 1.04367E+05 | 5.26191E+04 | 2.75126E+04 | 14.29

As seen in Table 6.2, the DE algorithm again oditpered the PSO algorithm for all

the performance measures taken when overall averfatpe performance measures

for 14 functions for the dimension size of 30. they words, the DE algorithm was

better than the PSO algorithm in terms of min, raedimax, mean, standard

deviation and success ratio. When comparing theesscratio of both algorithms,

the DE algorithm outperformed the PSO algorithncailDE’S success ratio was

14.29 percent whereas PSQO’s success ratio was fiérzént.
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Table 6.3. : Error values achieved in the Max_RB8 Success Rate (PSO and DE

for D=50)
Func. 1st(Min) 7th 13th(Median 19th 25th(Max) Mean Std. SR(%)
1 | PSO| 2.00000E-08 6.80000E-07 3.72000E{06 1.929@0E-2.81544E+0Q 1.16368E-O1 5.62614E-D1 1d
DE | 0.00000E+0Q 0.00000E+Q0 0.00000E+400 0.00000E+0.00000E+00 0.00000E+00 | 0.00000E+00 100
2 PSO| 2.73281E+08 4.12783E+03 5.65296E+03 7.550B®E+L.50197E+04 6.53038E+(03 3.35448E+03 Q
DE 2.67056E+01 5.11244E+Q1 5.74726E+01 7.93419H+0.40927E+02 6.70521E+01 | 2.92809E+01 0
3 PSO| 7.18257E+06 2.71240E+(Q7 3.66474E+07 6.2980BE+1.21738E+08 4.84217E+(Q7 3.11780E+07 Q
DE | 9.83717E+05 1.49749E+(Q6 2.10192E+406 2.56516H+8.52991E+06 2.18206E+06 | 9.15385E+05 0
4 | PSO| 1.01778E+04 1.82279E+D4 2.25180E+04 2.79352E+3.50883E+04 2.27204E+Q4 7.01268E+03 a
DE | 6.42150E+02 1.61209E+(Q3 2.26646E+03 3.58118H+0.04788E+04 3.00509E+03 | 2.18711E+03 0
5 PSO| 1.25707E+04 1.71181E+04 1.95252E+04 2.21800KE+2.88438E+04 1.98764E+(04 3.63886E+03 Q
DE 5.38846E+027 3.66471E+(Q3 5.61799E+03 7.33208H+0.04086E+04 5.49715E+03 | 2.49397E+03 0
6 PSO| 4.24331E+01 1.09911E+02 1.71295E+02 3.047@2E+1.36723E+03 3.03737E+(02 3.42479E+02 Q
DE 2.13773E+01 4.01439E+(Q1 8.45228E+401 9.3259%H+8.88045E+02 9.13380E+01 | 8.49118E+01 0
7 | PSO| 1.02000E-03 6.85393E-03 1.99886E{02 3.07924E-1.05730E-01| 2.47858E-0R 2.36381E-D2 7P
DE | 1.00000E-07| 6.60000E-OF 2.66000E-06 1.66398E-01.86660E-02| 1.07342E-02 | 1.58607E-02| 96
8 PSO| 2.10415E+01 2.11087E+01 2.11392E+01 2.116BBE+2.11908E+01 2.11326E+01 | 3.99925E-02 0
DE 2.10276E+01] 2.11233E+(Q1 2.11432E+01 2.11634H+R.11989E+01 2.11374E+Ql 3.69487E-D2 Q
9 PSO| 4.57681E+01 5.87025E+D1 6.96471E+01 7.2631BE+B.75563E+0] 6.62258E+01 | 1.11524E+01] 0
DE | 6.66622E+01 7.95966E+(Q1 8.65613E+401 9.65108F+0.42279E+02] 9.27698E+(Q1 2.10559E+01 q
10 | PSO| 1.01273E+02 1.39716E+pP2 1.84071E#02 2.892¥AE 4.04977E+024 2.14250E+Q2 9.29100E+01 a
DE 5.59457E+01 8.37425E+(Q1 9.01580E+4#01 9.7466TH+0.33335E+02 9.14884E+01 | 1.68417E+01 0
11 | PSO| 5.32597E+0Ll 6.31906E+P1 6.70882E#+01 7.089BRE 7.45000E+01 6.61378E+(Q1 5.93583E+00 a
DE 2.44855E+01] 3.74256E+(Q1 5.70049E+01 7.11363H+0.44238E+01 5.32926E+01 | 1.83731E+01 0
12 | PSO| 1.80026E+04 6.22675E+P4 1.02842E#+05 1.398WHE 2.27342E+05 1.08151E+Q5 5.76638E+04 a
DE | 6.30067E+02 4.08555E+(Q3 8.10495E+03 1.60858H+8.08875E+04 1.06185E+04 | 8.53809E+03 0
13 | PSO| 5.33924E+0p 7.66812E+D0 9.28354Ef00 1.168MME 1.55820E+01 9.64705E+Q0 2.69821E+00 ¢
DE 5.19514E+0Q 7.35488E+(Q0 8.78431E+400 1.1515%H+0.59468E+01 9.58925E+00 | 3.20361E+00
14 | PSO| 2.20372E+0L 2.26008E+P1 2.27769E#01 2.28@MBE 2.32639E+01 2.27563E+01 | 2.80591E-01
DE 2.26743E+01] 2.30478E+(Q1 2.32035E+01 2.32611H+R.34932E+01 2.31630E+(Ql1 1.74935E-PD1 Q
Avg | PSO | 5.16167E+05 | 1.94473E+06 | 2.62846E+06 | 4.51275E+06 | 8.71759E+06 | 3.46998E+06 | 2.23215E+06 | 12.29
DE | 7.04123E+04 | 1.07657E+05 | 1.51310E+05 | 1.85185E+05 | 3.27330E+05 | 1.57259E+05 | 6.63413E+04 14

As seen in Table 6.3, the DE algorithm again oditpared the PSO algorithm for all

the performance measures taken when overall avefatpe performance measures

for 14 functions for the dimension size of 50. they words, the DE algorithm was

better than the PSO algorithm in terms of min, rmegdimax, mean, standard

deviation and success ratio. When comparing theesscratio of both algorithms,

the DE algorithm outperformed the PSO algorithntsiDE'’s success ratio was 14

percent whereas PSO’s success ratio was 12.29perce

5

3



Finally, the computational complexity of each alton is considered. The
algorithm complexity, which is defined in chapterigtcomputed for 10, 30, and 50
dimensions by using function 3 in order to show thlgorithm complexity

relationship with increasing dimensions. The corapabal complexity of each

algorithm is given. Table 6.4 and Table 6.5 shoewdbmplexity of the PSO and DE

algorithms, respectively.

Table 6.4. : Complexity of the PSO Algorithm

PSO
D=10 | D=30 | D=50
T0 551 551 551
T1 1442 4526 7481
T2 7312 | 25671 50476
Complexity| 10.65 | 38.37| 78.03

Table 6.5. : Complexity of the DE Algorithm

DE
D=10 | D=30| D=50
T0 551 551 551
T1 1442 4526 7481
T2 7150 | 25094| 49497
Complexity| 10.36 37.33 76.25

As seen from Table 6.4 and 6.5, the time complexitigoth algorithm show similar

behavior in terms of CPU times

Table 6.6 : Average Success Rates of PSO and DEH1,30,50

Dimension 10 30 50
PSO | Avg. SR.(%) 28 [11.7312.29
DE Avg. SR.(%)51.4314.29 14

To sum up all the results, overall average succatis for both algorithms with
different dimensions are given in Table 6.6. The &gorithm perfoms better than
the PSO algorithm according to average success. tdowever, as the dimension

size increases, the DE algorithm also deteriorates.
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CHAPTER 7: CONCLUSION

7.1 Conclusions

In this research, latest metaheuristic approaches so called the particle swarm
optimization and differential evolution algorithms are presented to solve continuous
function optimization. The benchmark suite is taken from Suganthan et. a. [99].
According to the results, the DE algorithm performed better than the PSO agorithm
in general for the functions considered. Main contribution of this research is the
development of both algorithm for newly designed benchmark problems. Since these
benchmarks are newly designed, unfortunately there exist no results for comparison
purposes. For this reason, the computational results are presented to be compared

with the DE agorithm only.

For the future work, these algorithms can be extended to other versions of the PSO
and DE algorithms such as multi-swarm parallel agorithms with master-slave or
island models to obtain better results. In addition, there exist different types of local
search algorithms that can be embedded in these algorithms. These algorithms are
Nelder and Mead algorithm, Solis and Wets algorithm, Pattern Search etc. Including
these local searchesin the PSO and DE algorithms may lead to better results.
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APPENDIX A

Table A.1. : Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES and at
Termination for PSO Algorithm for D=10

FES 1 2 3 4 5 6 7
1st 1.47948E+03 | 3.21335E+03 | 9.68577E+06 | 2.28773E+03 | 2.13117E+02 | 2.13503E+07 | 1.06912E+01
7th 2.75122E+03 | 4.86396E+03 | 2.50273E+07 | 4.73202E+03 | 5.60503E+02 | 7.49290E+07 | 2.35460E+01
13th | 3.99646E+03 | 5.51322E+03 | 4.22674E+07 | 7.41025E+03 | 6.33911E+02 | 1.26762E+08 | 2.96474E+01
1e3 [ 19th | 4.23627E+03 | 6.41568E+03 | 5.39285E+07 | 8.83893E+03 | 9.41594E+02 | 1.97655E+08 | 4.49104E+01
25th 6.24589E+03 | 9.45018E+03 | 1.29522E+08 | 1.28319E+04 | 3.34479E+03 | 3.15349E+08 | 6.35104E+01
Mean | 3.67483E+03 | 5.57230E+03 | 4.40712E+07 | 7.06576E+03 | 8.21209E+02 | 1.36002E+08 | 3.34451E+01
Std D. | 1.16968E+03 | 1.48813E+03 | 2.46624E+07 | 2.67136E+03 | 6.09282E+02 | 7.29025E+07 | 1.33728E+01
1st 4.83387E+02 | 1.42596E+03 | 3.92467E+06 | 9.03847E+02 | 2.49714E+01 | 3.30793E+06 | 3.30480E+00
7th 1.07941E+03 | 2.04405E+03 | 7.82193E+06 | 2.02561E+03 | 6.31861E+01 | 1.99488E+07 | 6.30282E+00
13th 1.30838E+03 | 2.23742E+03 | 9.91559E+06 | 2.54786E+03 | 1.01348E+02 | 2.53140E+07 | 7.45523E+00
led4 | 19th 1.72260E+03 | 2.51689E+03 | 1.31614E+07 | 2.90955E+03 | 1.27797E+02 | 3.51203E+07 | 8.56092E+00
25th 2.22004E+03 | 3.21198E+03 | 2.08326E+07 | 3.94517E+03 | 1.74643E+02 | 5.77292E+07 | 1.34647E+01
Mean | 1.35595E+03 | 2.24009E+03 | 1.05080E+07 | 2.49749E+03 | 9.50043E+01 | 2.71476E+07 | 7.51574E+00
Std D. | 4.79773E+02 | 4.22656E+02 | 4.05245E+06 | 7.94431E+02 | 4.03227E+01 | 1.49223E+07 | 2.24194E+00
1st 0.00000E+00 | 1.76600E-05 | 2.50113E+04 | 1.03240E-04 | 0.00000E+00 | 3.84650E-01 | 6.01463E-02
7th 0.00000E+00 | 2.65480E-04 | 8.09600E+04 | 1.14938E-03 | 0.00000E+00 | 3.66355E+00 | 1.56842E-01
13th | 0.00000E+00 | 9.93690E-04 | 1.24667E+05 | 2.06002E-02 | 0.00000E+00 | 8.44764E+00 | 2.16706E-01
le5 | 19th | 0.00000E+00 | 1.26971E-02 | 2.06380E+05 | 1.41357E-01 | 0.00000E+00 | 1.42832E+02 | 3.42226E-01
25th | 0.00000E+00 | 9.86478E+00 | 8.50952E+05 | 9.92933E+01 | 0.00000E+00 | 2.88304E+02 | 5.35337E-01
Mean | 0.00000E+00 | 4.31888E-01 | 1.98704E+05 | 4.25415E+00 | 0.00000E+00 | 6.92385E+01 | 2.41916E-01
Std D. | 0.00000E+00 | 1.96785E+00 | 2.12806E+05 | 1.98131E+01 | 0.00000E+00 | 9.08055E+01 | 1.29032E-01

66




FES 8 9 10 11 12 13 14
1st 2.04495E+01 | 5.53821E+01 | 6.69360E+01 | 9.61917E+00 | 2.57417E+04 | 3.15227E+01 | 3.88626E+00
7th 2.06269E+01 | 6.48798E+01 | 7.50317E+01 | 1.08404E+01 | 3.25720E+04 | 1.46080E+02 | 4.22190E+00
13th 2.07588E+01 | 6.97970E+01 | 8.53185E+01 | 1.12605E+01 | 4.50141E+04 | 2.65613E+02 | 4.34066E+00
1e3 | 19th 2.08260E+01 | 7.71770E+01 | 8.94315E+01 | 1.19421E+01 | 4.98899E+04 | 4.76715E+02 | 4.43381E+00
25th 2.09419E+01 | 9.11886E+01 | 1.03635E+02 | 1.26457E+01 | 7.60014E+04 | 1.34741E+03 | 4.51309E+00
Mean | 2.07317E+01 | 7.08314E+01 | 8.34598E+01 | 1.13093E+01 | 4.47763E+04 | 3.48797E+02 | 4.28668E+00
StdD. | 1.37932E-01 | 9.09859E+00 | 1.08567E+01 | 8.33069E-01 | 1.38980E+04 | 3.05521E+02 | 1.75099E-01
1st 2.03398E+01 | 3.19782E+01 | 4.66520E+01 | 8.09263E+00 | 5.23562E+03 | 7.29153E+00 | 3.79794E+00
7th 2.04698E+01 | 4.31703E+01 | 5.06742E+01 | 9.90019E+00 | 1.40645E+04 | 1.06259E+01 | 3.91413E+00
13th 2.05270E+01 | 5.12512E+01 | 5.64420E+01 | 1.01939E+01 | 1.83108E+04 | 1.30385E+01 | 3.99351E+00
led | 19th 2.05660E+01 | 5.57051E+01 | 5.96499E+01 | 1.04326E+01 | 2.19604E+04 | 1.81350E+01 | 4.02913E+00
25th 2.06885E+01 | 5.92326E+01 | 7.49138E+01 | 1.10542E+01 | 2.98589E+04 | 3.44424E+01 | 4.16541E+00
Mean | 2.05206E+01 | 4.93295E+01 | 5.67747E+01 | 1.00724E+01 | 1.79268E+04 | 1.45014E+01 | 3.98123E+00
StdD. | 8.29416E-02 | 8.02532E+00 | 6.63481E+00 | 6.71169E-01 | 6.29392E+03 | 6.11292E+00 | 9.40904E-02
1st 2.01574E+01 | 0.00000E+00 | 5.28933E+00 | 2.56900E+00 | 9.48824E-01 | 3.89080E-01 | 1.57958E+00
7th 2.02826E+01 | 9.94959E-01 | 1.25393E+01 | 3.60895E+00 | 1.04495E+01 | 5.06936E-01 | 2.61841E+00
13th 2.03568E+01 | 1.98992E+00 | 1.58296E+01 | 4.63681E+00 | 2.02180E+01 | 6.38670E-01 | 3.12565E+00
1e5 | 19th 2.04105E+01 | 2.98488E+00 | 1.88197E+01 | 5.43349E+00 | 3.96839E+01 | 7.38544E-01 | 3.29433E+00
25th 2.04617E+01 | 3.97990E+00 | 3.25179E+01 | 8.49518E+00 | 7.12255E+02 | 1.22706E+00 | 3.62920E+00
Mean | 2.03441E+01 | 1.99013E+00 | 1.64690E+01 | 4.62658E+00 | 8.47897E+01 | 6.62293E-01 | 2.96542E+00
StdD. | 8.13829E-02 | 1.21875E+00 | 7.04173E+00 | 1.45265E+00 | 1.65819E+02 | 2.06914E-01 | 5.20650E-01
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Table A.2. : Error Values Achieved at 1€3 FES, 1e4 FES, 1e5 FES and at
Termination for PSO Algorithm for D=30

FES 1 2 3 4 5 6 7
1st 3.26609E+04 | 3.72956E+04 | 3.61002E+08 | 7.16017E+04 | 1.61519E+04 | 7.46561E+09 | 3.67427E+02
7th 4.00946E+04 | 6.95113E+04 | 6.72351E+08 | 8.45589E+04 | 1.97316E+04 | 1.40431E+10 | 4.55083E+02
13th | 4.34139E+04 | 7.34467E+04 | 8.66443E+08 | 9.35033E+04 | 2.18862E+04 | 1.67137E+10 | 5.03242E+02
1e3 [ 19th | 4.63498E+04 | 8.61529E+04 | 1.06733E+09 | 1.07016E+05 | 2.49962E+04 | 2.16686E+10 | 5.71819E+02
25th 5.05507E+04 | 1.03745E+05 | 1.37145E+09 | 1.19937E+05 | 3.02311E+04 | 2.61949E+10 | 6.47344E+02
Mean | 4.27186E+04 | 7.73655E+04 | 8.70683E+08 | 9.44374E+04 | 2.21673E+04 | 1.73596E+10 | 5.05097E+02
Std D. | 4.72393E+03 | 1.37158E+04 | 2.51636E+08 | 1.37182E+04 | 3.31320E+03 | 5.28564E+09 | 8.17832E+01
1st 1.81602E+04 | 3.26952E+04 | 2.62316E+08 | 4.28805E+04 | 7.64483E+03 | 2.60587E+09 | 1.36284E+02
7th 2.65052E+04 | 4.64983E+04 | 3.76459E+08 | 5.12360E+04 | 1.21514E+04 | 5.02081E+09 | 1.68826E+02
13th 2.82050E+04 | 5.15790E+04 | 4.16373E+08 | 5.91561E+04 | 1.39636E+04 | 5.85878E+09 | 2.01139E+02
led | 19th 2.98952E+04 | 5.45213E+04 | 4.86897E+08 | 6.22452E+04 | 1.76609E+04 | 6.96080E+09 | 2.18251E+02
25th 3.44228E+04 | 6.57085E+04 | 6.47755E+08 | 7.70740E+04 | 1.89739E+04 | 8.14435E+09 | 2.59205E+02
Mean | 2.76529E+04 | 5.06327E+04 | 4.26770E+08 | 5.83211E+04 | 1.43102E+04 | 5.75436E+09 | 1.96106E+02
Std D. | 3.98255E+03 | 8.03226E+03 | 9.10987E+07 | 8.75533E+03 | 3.26674E+03 | 1.37951E+09 | 3.41709E+01
1st 5.12188E+03 | 1.77790E+04 | 8.31522E+07 | 2.02395E+04 | 6.57582E+02 | 2.99734E+08 | 1.51934E+01
7th 8.58031E+03 | 2.00173E+04 | 1.27527E+08 | 2.39511E+04 | 9.19801E+03 | 6.54437E+08 | 2.21534E+01
13th 9.60244E+03 | 2.07185E+04 | 1.53377E+08 | 2.70384E+04 | 1.15765E+04 | 8.46761E+08 | 2.77779E+01
1e5 | 19th 1.01966E+04 | 2.36774E+04 | 1.88294E+08 | 3.13016E+04 | 1.41361E+04 | 9.25307E+08 | 3.19367E+01
25th 1.32968E+04 | 3.42341E+04 | 2.50549E+08 | 3.76261E+04 | 1.82480E+04 | 1.40014E+09 | 4.45827E+01
Mean | 9.26168E+03 | 2.24131E+04 | 1.58325E+08 | 2.73436E+04 | 1.18024E+04 | 7.96579E+08 | 2.80197E+01
Std D. | 1.80831E+03 | 4.12476E+03 | 4.36007E+07 | 5.06482E+03 | 4.07392E+03 | 2.58387E+08 | 7.61752E+00
1st 0.00000E+00 | 9.19895E+01 | 2.14739E+06 | 8.49725E+02 | 1.80210E+01 | 1.28023E+01 | 4.92000E-06
7th 0.00000E+00 | 1.44785E+02 | 3.51459E+06 | 1.54421E+03 | 8.76067E+03 | 2.84509E+01 | 1.03743E-02
13th | 0.00000E+00 | 2.84253E+02 | 5.23473E+06 | 2.65265E+03 | 1.08879E+04 | 9.26050E+01 | 4.04980E-02
Trm | 19th | 0.00000E+00 | 5.35763E+02 | 1.76596E+07 | 3.59317E+03 | 1.35322E+04 | 1.63450E+02 | 1.50584E-01
25th 1.90000E-07 | 1.37277E+03 | 3.46473E+07 | 6.77614E+03 | 1.80297E+04 | 1.08048E+03 | 3.08387E-01
Mean | 8.00000E-09 | 4.01956E+02 | 1.07647E+07 | 2.70271E+03 | 1.10620E+04 | 1.57711E+02 | 8.19353E-02
Std D. | 3.79693E-08 | 3.40265E+02 | 9.33441E+06 | 1.48463E+03 | 3.83930E+03 | 2.13877E+02 | 8.93249E-02
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FES 8 9 10 11 12 13 14
1st 2.10547E+01 | 3.26795E+02 | 3.69252E+02 | 4.18514E+01 | 7.10021E+05 | 3.02854E+04 | 1.39278E+01
7th 2.11412E+01 | 3.58184E+02 | 4.09542E+02 | 4.48355E+01 | 1.25821E+06 | 6.51057E+04 | 1.40790E+01
13th | 2.11902E+01 | 3.75054E+02 | 4.34987E+02 | 4.54701E+01 | 1.33873E+06 | 8.17115E+04 | 1.41698E+01
le3 | 19th | 2.12538E+01 | 3.85413E+02 | 4.52458E+02 | 4.66307E+01 | 1.50883E+06 | 1.38745E+05 | 1.42488E+01
25th | 2.13254E+01 | 4.21830E+02 | 4.71608E+02 | 4.71774E+01 | 1.73783E+06 | 2.76638E+05 | 1.43932E+01
Mean | 2.11965E+01 | 3.72422E+02 | 4.30582E+02 | 4.54119E+01 | 1.34176E+06 | 1.11227E+05 | 1.41733E+01
StdD. | 6.86168E-02 | 2.35558E+01 | 2.72296E+01 | 1.42015E+00 | 2.26488E+05 | 6.48907E+04 | 1.23281E-01
1st 2.10274E+01 | 2.82904E+02 | 3.15219E+02 | 4.03378E+01 | 7.03553E+05 | 5.98967E+03 | 1.35924E+01
7th 2.10897E+01 | 3.00134E+02 | 3.43194E+02 | 4.17414E+01 | 8.36977E+05 | 1.53346E+04 | 1.38242E+01
13th | 2.11288E+01 | 3.16519E+02 | 3.66039E+02 | 4.33941E+01 | 9.16778E+05 | 1.89644E+04 | 1.39211E+01
led | 19th | 2.11559E+01 | 3.28077E+02 | 3.80618E+02 | 4.42463E+01 | 9.79474E+05 | 2.41404E+04 | 1.39874E+01
25th | 2.11869E+01 | 3.55479E+02 | 4.00969E+02 | 4.46045E+01 | 1.10252E+06 | 3.86288E+04 | 1.40973E+01
Mean | 2.11206E+01 | 3.15133E+02 | 3.61031E+02 | 4.28959E+01 | 9.10468E+05 | 1.98403E+04 | 1.38910E+01
Std D. | 4.59126E-02 | 1.90067E+01 | 2.35740E+01 | 1.41244E+00 | 1.17351E+05 | 6.96427E+03 | 1.27295E-01
1st 2.08904E+01 | 1.90559E+02 | 1.97211E+02 | 3.51733E+01 | 2.40193E+05 | 3.81373E+01 | 1.30270E+01
7th 2.09677E+01 | 2.05704E+02 | 2.37464E+02 | 3.98904E+01 | 3.20629E+05 | 7.69832E+01 | 1.33430E+01
13th | 2.10060E+01 | 2.13758E+02 | 2.63121E+02 | 4.03886E+01 | 3.86757E+05 | 1.07775E+02 | 1.34803E+01
1e5 | 19th | 2.10232E+01 | 2.32828E+02 | 2.82439E+02 | 4.09082E+01 | 4.79624E+05 | 1.59699E+02 | 1.36382E+01
25th | 2.10996E+01 | 2.66556E+02 | 2.99724E+02 | 4.20882E+01 | 6.41161E+05 | 3.96238E+02 | 1.38246E+01
Mean | 2.09969E+01 | 2.20419E+02 | 2.56298E+02 | 4.01637E+01 | 4.12067E+05 | 1.26483E+02 | 1.34869E+01
StdD. | 472351E-02 | 2.17877E+01 | 2.98414E+01 | 1.61163E+00 | 1.16896E+05 | 7.77277E+01 | 1.95144E-01
1st 2.07623E+01 | 1.39294E+01 | 4.46290E+01 | 2.10586E+01 | 2.21992E+03 | 2.12003E+00 | 1.24395E+01
7th 2.08980E+01 | 1.98992E+01 | 6.76721E+01 | 2.74924E+01 | 9.09589E+03 | 3.06190E+00 | 1.29290E+01
13th | 2.09448E+01 | 2.48740E+01 | 7.70619E+01 | 3.04811E+01 | 1.75403E+04 | 3.71451E+00 | 1.30828E+01
Trm [ 19th | 2.09789E+01 | 2.88538E+01 | 9.74682E+01 | 3.50665E+01 | 3.40146E+04 | 4.08763E+00 | 1.32259E+01
25th | 2.10350E+01 | 3.28336E+01 | 2.44440E+02 | 3.94895E+01 | 6.06273E+04 | 6.58410E+00 | 1.34684E+01
Mean | 2.09311E+01 | 2.43572E+01 | 8.72283E+01 | 3.11684E+01 | 2.21836E+04 | 3.70427E+00 | 1.30484E+01
Std D. | 6.64438E-02 | 5.51904E+00 | 3.91043E+01 | 5.19378E+00 | 1.60610E+04 | 9.19095E-01 | 2.44407E-01
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Table A.3. : Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES and at
Termination for PSO Algorithm for D=50

FES 1 2 3 4 5 6 7
1st 7.99289E+04 | 1.50482E+05 | 1.52688E+09 | 1.36997E+05 | 3.10210E+04 | 3.56895E+10 | 1.49758E+03
7th 9.58299E+04 | 2.11843E+05 | 2.52811E+09 | 2.22054E+05 | 3.83738E+04 | 4.84342E+10 | 1.66213E+03
13th 1.02728E+05 | 2.29513E+05 | 2.79278E+09 | 2.49396E+05 | 4.09088E+04 | 6.23082E+10 | 1.76736E+03
1e3 | 19th 1.13268E+05 | 2.46106E+05 | 3.69842E+09 | 2.77223E+05 | 4.40263E+04 | 6.95955E+10 | 1.90823E+03
25th 1.24383E+05 | 2.71331E+05 | 4.49212E+09 | 3.68676E+05 | 5.05454E+04 | 9.19626E+10 | 2.12386E+03
Mean | 1.03584E+05 | 2.29645E+05 | 2.93190E+09 | 2.46886E+05 | 4.12608E+04 | 6.00769E+10 | 1.79297E+03
StdD. | 1.17906E+04 | 2.71755E+04 | 7.35651E+08 | 4.96471E+04 | 4.34388E+03 | 1.41053E+10 | 1.68187E+02
1st 5.32826E+04 | 1.04767E+05 | 1.12401E+09 | 1.13852E+05 | 2.31834E+04 | 1.94511E+10 | 4.71562E+02
7th 6.99214E+04 | 1.35100E+05 | 1.32787E+09 | 1.44872E+05 | 2.57065E+04 | 2.37890E+10 | 6.99388E+02
13th 7.53881E+04 | 1.45078E+05 | 1.91380E+09 | 1.63151E+05 | 2.69704E+04 | 2.75951E+10 | 7.53584E+02
led | 19th 7.92484E+04 | 1.63923E+05 | 1.96641E+09 | 1.72928E+05 | 2.91061E+04 | 3.01735E+10 | 8.03569E+02
25th 9.05838E+04 | 1.89837E+05 | 2.36448E+09 | 1.99026E+05 | 3.28848E+04 | 3.77934E+10 | 8.77140E+02
Mean | 7.41496E+04 | 1.48924E+05 | 1.71664E+09 | 1.58780E+05 | 2.75222E+04 | 2.75653E+10 | 7.31137E+02
Std D. | 7.86464E+03 | 2.16255E+04 | 3.75210E+08 | 2.12488E+04 | 2.71337E+03 | 5.16234E+09 | 1.08171E+02
1st 3.10871E+04 | 5.31299E+04 | 5.55355E+08 | 7.43091E+04 | 1.94062E+04 | 4.64346E+09 | 1.95477E+02
7th 4.05697E+04 | 8.25054E+04 | 8.70376E+08 | 9.39969E+04 | 2.07428E+04 | 7.36180E+09 | 2.37282E+02
13th 4.33032E+04 | 9.40284E+04 | 9.47788E+08 | 1.04543E+05 | 2.17470E+04 | 9.04666E+09 | 2.67250E+02
1e5 | 19th 4.95761E+04 | 1.00028E+05 | 1.06812E+09 | 1.18148E+05 | 2.42312E+04 | 1.05491E+10 | 3.15088E+02
25th 5.27993E+04 | 1.17661E+05 | 1.21389E+09 | 1.30751E+05 | 3.00622E+04 | 1.48500E+10 | 3.53566E+02
Mean | 4.42244E+04 | 9.32410E+04 | 9.60764E+08 | 1.05018E+05 | 2.28238E+04 | 9.21952E+09 | 2.76141E+02
Std D. | 6.35030E+03 | 1.39237E+04 | 1.52366E+08 | 1.60333E+04 | 2.78956E+03 | 2.50171E+09 | 4.69342E+01
1st 2.00000E-08 | 2.73281E+03 | 7.18257E+06 | 1.01778E+04 | 1.25707E+04 | 4.24331E+01 | 1.02000E-03
7th 6.80000E-07 | 4.12783E+03 | 2.71240E+07 | 1.82279E+04 | 1.71181E+04 | 1.09911E+02 | 6.85393E-03
13th 3.72000E-06 | 5.65296E+03 | 3.66474E+07 | 2.25180E+04 | 1.95252E+04 | 1.71295E+02 | 1.99886E-02
Trm | 19th 1.92900E-05 | 7.55080E+03 | 6.29808E+07 | 2.79352E+04 | 2.21800E+04 | 3.04782E+02 | 3.07924E-02
25th 2.81544E+00 | 1.50197E+04 | 1.21738E+08 | 3.50883E+04 | 2.88438E+04 | 1.36723E+03 | 1.05730E-01
Mean | 1.16368E-01 | 6.53038E+03 | 4.84217E+07 | 2.27204E+04 | 1.98764E+04 | 3.03737E+02 | 2.47858E-02
StdD. | 5.62614E-01 | 3.35448E+03 | 3.11780E+07 | 7.01268E+03 | 3.63886E+03 | 3.42479E+02 | 2.36381E-02
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FES 8 9 10 11 12 13 14
1st 2.12328E+01 | 6.39437E+02 | 7.17584E+02 | 7.79921E+01 | 4.31863E+06 | 2.78433E+05 | 2.36851E+01
7th 2.13198E+01 | 7.34444E+02 | 8.01193E+02 | 7.99720E+01 | 5.48904E+06 | 5.22436E+05 | 2.39080E+01
13th 2.13472E+01 | 7.52918E+02 | 8.23799E+02 | 8.18222E+01 | 6.22901E+06 | 7.52823E+05 | 2.40274E+01
1e3 | 19th 2.13757E+01 | 7.68611E+02 | 8.48158E+02 | 8.25800E+01 | 6.86861E+06 | 9.04863E+05 | 2.41006E+01
25th 2.14093E+01 | 8.27755E+02 | 9.09537E+02 | 8.40386E+01 | 7.41755E+06 | 1.27489E+06 | 2.41817E+01
Mean | 2.13445E+01 | 7.46962E+02 | 8.21172E+02 | 8.13983E+01 | 6.12130E+06 | 7.17402E+05 | 2.39839E+01
StdD. | 4.50871E-02 | 4.38789E+01 | 4.38956E+01 | 1.71280E+00 | 8.43808E+05 | 2.57650E+05 | 1.49434E-01
1st 2.11240E+01 | 5.18483E+02 | 6.33732E+02 | 7.34549E+01 | 3.47085E+06 | 9.38962E+04 | 2.32017E+01
7th 2.12328E+01 | 6.25779E+02 | 7.02869E+02 | 7.69962E+01 | 4.19723E+06 | 1.62513E+05 | 2.35572E+01
13th 2.12615E+01 | 6.45175E+02 | 7.25085E+02 | 7.77338E+01 | 4.63587E+06 | 2.15659E+05 | 2.36576E+01
led | 19th 2.12898E+01 | 6.67905E+02 | 7.35191E+02 | 7.88030E+01 | 4.87297E+06 | 2.56635E+05 | 2.37189E+01
25th 2.13195E+01 | 7.24445E+02 | 7.79969E+02 | 8.06125E+01 | 5.64425E+06 | 4.25250E+05 | 2.38053E+01
Mean | 2.12529E+01 | 6.43071E+02 | 7.17591E+02 | 7.77269E+01 | 4.55114E+06 | 2.19146E+05 | 2.36111E+01
StdD. | 4.81156E-02 | 3.97923E+01 | 3.61348E+01 | 1.46475E+00 | 5.64677E+05 | 7.48052E+04 | 1.51861E-01
1st 2.11240E+01 | 4.67534E+02 | 5.38989E+02 | 7.25566E+01 | 2.02089E+06 | 4.44730E+03 | 2.30449E+01
7th 2.11681E+01 | 5.29000E+02 | 5.88400E+02 | 7.38230E+01 | 2.87356E+06 | 1.25456E+04 | 2.32017E+01
13th 2.11910E+01 | 5.48867E+02 | 5.99826E+02 | 7.47650E+01 | 3.07729E+06 | 1.78642E+04 | 2.33826E+01
1e5 | 19th 2.12065E+01 | 5.69679E+02 | 6.12452E+02 | 7.58665E+01 | 3.38339E+06 | 2.96162E+04 | 2.34807E+01
25th 2.12357E+01 | 6.03010E+02 | 6.50944E+02 | 7.78157E+01 | 3.79779E+06 | 5.50305E+04 | 2.35869E+01
Mean | 2.11848E+01 | 5.44062E+02 | 5.95392E+02 | 7.48973E+01 | 3.07672E+06 | 2.20874E+04 | 2.33599E+01
StdD. | 2.95916E-02 | 3.38632E+01 | 2.77647E+01 | 1.39268E+00 | 4.18751E+05 | 1.19801E+04 | 1.61707E-01
1st 2.10415E+01 | 4.57681E+01 | 1.01273E+02 | 5.32597E+01 | 1.80026E+04 | 5.33924E+00 | 2.20372E+01
7th 2.11087E+01 | 5.87025E+01 | 1.39716E+02 | 6.31906E+01 | 6.22675E+04 | 7.66812E+00 | 2.26008E+01
13th 2.11392E+01 | 6.96471E+01 | 1.84071E+02 | 6.70882E+01 | 1.02842E+05 | 9.28354E+00 | 2.27769E+01
Trm | 19th 2.11633E+01 | 7.26319E+01 | 2.89274E+02 | 7.08982E+01 | 1.39305E+05 | 1.16804E+01 | 2.28943E+01
25th 2.11908E+01 | 8.75563E+01 | 4.04977E+02 | 7.45000E+01 | 2.27342E+05 | 1.55820E+01 | 2.32639E+01
Mean | 2.11326E+01 | 6.62258E+01 | 2.14250E+02 | 6.61378E+01 | 1.08151E+05 | 9.64705E+00 | 2.27563E+01
StdD. | 3.99925E-02 | 1.11524E+01 | 9.29100E+01 | 5.93583E+00 | 5.76638E+04 | 2.69821E+00 | 2.80591E-01
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APPENDIX B

Table B.1. : Error Vaues Achieved at 1€3 FES, 1e4 FES, 1e5 FES, and at
Termination for the DE Algorithm for D=10

FES 1 2 3 4 5 6 7

1st 1.85424E+03 | 3.01951E+03 | 1.90610E+07 | 5.26307E+03 | 1.15819E+03 | 5.02058E+07 | 5.58453E+01
7th 3.59667E+03 | 5.04843E+03 | 3.02341E+07 | 7.50755E+03 | 1.72110E+03 | 1.11428E+08 | 1.04098E+02
13th 4.29586E+03 | 6.09160E+03 | 4.51607E+07 | 8.48740E+03 | 2.26924E+03 | 1.93328E+08 | 1.16678E+02
1e3 | 19th 5.00820E+03 | 7.77914E+03 | 6.24066E+07 | 9.40238E+03 | 2.83959E+03 | 2.92390E+08 | 1.47886E+02
25th 6.60096E+03 | 9.57528E+03 | 9.00851E+07 | 1.35384E+04 | 5.75893E+03 | 5.35614E+08 | 2.48523E+02
Mean | 4.23316E+03 | 6.29732E+03 | 4.63044E+07 | 8.64123E+03 | 2.44959E+03 | 2.18675E+08 | 1.23055E+02
Std D. | 1.25635E+03 | 1.73963E+03 | 1.95728E+07 | 1.90330E+03 | 1.09490E+03 | 1.28321E+08 | 4.04756E+01

1st 3.09619E+00 | 6.46120E+01 | 1.13580E+05 | 1.34154E+02 | 3.03966E-03 | 3.28694E+03 | 1.04623E+00
7th 1.44383E+01 | 1.26493E+02 | 6.82542E+05 | 1.83790E+02 | 8.20477E-03 | 7.95177E+03 | 1.24116E+00
13th 1.87169E+01 | 1.86524E+02 | 9.17870E+05 | 2.58114E+02 | 1.61937E-02 | 1.27184E+04 | 1.39226E+00
led | 19th 2.16114E+01 | 2.21809E+02 | 1.10022E+06 | 3.61044E+02 | 2.02880E-02 | 2.18604E+04 | 1.46352E+00
25th 3.38957E+01 | 6.97320E+02 | 2.52789E+06 | 4.37839E+02 | 1.05464E-01 | 4.11938E+04 | 1.77393E+00
Mean | 1.88167E+01 | 1.94335E+02 | 1.00105E+06 | 2.67162E+02 | 1.88126E-02 | 1.55603E+04 | 1.37673E+00
Std D. | 6.52482E+00 | 1.16798E+02 | 5.43200E+05 | 9.98847E+01 | 1.98726E-02 | 1.01946E+04 | 1.74155E-01

1st 0.00000E+00 | 0.00000E+00 | 4.10000E-07 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 5.08014E-02
7th 0.00000E+00 | 0.00000E+00 | 2.02000E-06 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 1.03748E-01
13th 0.00000E+00 | 0.00000E+00 | 7.09000E-06 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 1.50057E-01
1le5 | 19th 0.00000E+00 | 0.00000E+00 | 6.23900E-05 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 2.07027E-01
25th 0.00000E+00 | 0.00000E+00 | 3.83810E-04 | 0.00000E+00 | 0.00000E+00 | 3.98658E+00 | 2.58674E-01
Mean | 0.00000E+00 | 0.00000E+00 | 5.46328E-05 | 0.00000E+00 | 0.00000E+00 | 6.37853E-01 | 1.50829E-01
Std D. | 0.00000E+00 | 0.00000E+00 | 1.01191E-04 | 0.00000E+00 | 0.00000E+00 | 1.49164E+00 | 6.40648E-02
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FES 8 9 10 11 12 13 14
1st 2.04153E+01 | 6.17860E+01 | 6.21051E+01 | 9.68019E+00 | 1.57966E+04 | 7.07425E+01 | 3.97909E+00
7th 2.06656E+01 | 7.06628E+01 | 8.11575E+01 | 1.14143E+01 | 4.72954E+04 | 3.73213E+02 | 4.31508E+00
13th 2.07916E+01 | 7.49743E+01 | 9.09541E+01 | 1.16786E+01 | 5.14369E+04 | 6.16887E+02 | 4.37866E+00
1e3 | 19th 2.08319E+01 | 8.13895E+01 | 9.64874E+01 | 1.22943E+01 | 6.01442E+04 | 1.20720E+03 | 4.41749E+00
25th 2.09123E+01 | 8.93128E+01 | 1.02935E+02 | 1.30496E+01 | 8.13749E+04 | 2.72287E+03 | 4.51682E+00
Mean | 2.07451E+01 | 7.57054E+01 | 8.74951E+01 | 1.16931E+01 | 5.28403E+04 | 9.12928E+02 | 4.35079E+00
Std D. | 1.31186E-01 | 7.77410E+00 | 1.07634E+01 | 8.09603E-01 | 1.44527E+04 | 6.91357E+02 | 1.18453E-01
1st 2.03216E+01 | 2.02641E+01 | 3.34415E+01 | 7.73432E+00 | 7.49916E+02 | 2.32086E+00 | 3.58983E+00
7th 2.05162E+01 | 3.29482E+01 | 4.42874E+01 | 9.11807E+00 | 1.42068E+03 | 3.89395E+00 | 3.93832E+00
13th 2.05686E+01 | 3.74767E+01 | 5.22460E+01 | 9.96183E+00 | 2.23430E+03 | 5.13630E+00 | 4.03647E+00
led | 19th 2.05919E+01 | 4.16618E+01 | 5.45106E+01 | 1.03578E+01 | 3.35670E+03 | 5.86467E+00 | 4.08288E+00
25th 2.06642E+01 | 4.52072E+01 | 6.31435E+01 | 1.11138E+01 | 8.52400E+03 | 7.46224E+00 | 4.32129E+00
Mean | 2.05474E+01 | 3.58943E+01 | 5.00818E+01 | 9.78996E+00 | 2.91231E+03 | 4.99484E+00 | 3.99999E+00
Std D. | 7.82286E-02 | 7.37228E+00 | 7.99405E+00 | 8.82700E-01 | 2.08499E+03 | 1.35427E+00 | 1.82657E-01
1st 2.01870E+01 | 1.98992E+00 | 7.79445E+00 | 7.93340E-04 | 0.00000E+00 | 3.81196E-01 | 1.00236E+00
7th 2.02973E+01 | 2.98488E+00 | 1.14447E+01 | 2.43548E-03 | 0.00000E+00 | 5.33667E-01 | 3.45017E+00
13th 2.03631E+01 | 4.97480E+00 | 1.52435E+01 | 5.85140E-03 | 2.00000E-08 | 7.16250E-01 | 3.58983E+00
1e5 | 19th 2.03872E+01 | 6.96471E+00 | 1.89897E+01 | 1.50192E+00 | 1.00030E+01 | 9.19178E-01 | 3.75966E+00
25th 2.05102E+01 | 8.95463E+00 | 3.63416E+01 | 3.00221E+00 | 1.34735E+03 | 1.56296E+00 | 3.92519E+00
Mean | 2.03384E+01 | 5.09419E+00 | 1.65177E+01 | 7.09222E-01 | 5.89551E+01 | 7.66957E-01 | 3.44692E+00
Std D. | 7.50173E-02 | 2.09729E+00 | 6.98306E+00 | 9.72805E-01 | 2.68501E+02 | 3.34237E-01 | 5.73178E-01
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Table B.2. : Error Vaues Achieved at 1€3 FES, 1e4 FES, 1e5 FES, and at
Termination for the DE Algorithm for D=30

FES 1 2 3 4 5 6 7

1st 3.88765E+04 | 6.34975E+04 | 4.19986E+08 | 6.74118E+04 | 1.84970E+04 | 1.13668E+10 | 1.09900E+03
7th 4.97149E+04 | 7.33956E+04 | 8.27105E+08 | 8.60348E+04 | 2.21715E+04 | 1.87084E+10 | 1.34025E+03
13th 5.45561E+04 | 8.31323E+04 | 1.04649E+09 | 1.03477E+05 | 2.39906E+04 | 2.26591E+10 | 1.44405E+03
1e3 | 19th 6.04220E+04 | 9.42252E+04 | 1.20097E+09 | 1.13990E+05 | 2.56209E+04 | 3.12496E+10 | 1.57084E+03
25th 6.54650E+04 | 1.22545E+05 | 1.34340E+09 | 1.48995E+05 | 2.85592E+04 | 4.41784E+10 | 1.90925E+03
Mean | 5.44088E+04 | 8.59290E+04 | 1.00926E+09 | 9.98429E+04 | 2.39570E+04 | 2.60007E+10 | 1.45692E+03
Std D. | 7.20866E+03 | 1.74239E+04 | 2.39042E+08 | 1.86456E+04 | 2.63151E+03 | 9.42864E+09 | 1.95042E+02
1st 7.37041E+03 | 2.50505E+04 | 1.43161E+08 | 3.43311E+04 | 7.59217E+03 | 8.00479E+08 | 1.91022E+02
7th 1.17346E+04 | 4.66858E+04 | 2.87888E+08 | 4.82081E+04 | 9.70474E+03 | 1.21021E+09 | 3.46103E+02
13th 1.28905E+04 | 5.00936E+04 | 3.13126E+08 | 5.11596E+04 | 1.02530E+04 | 1.49848E+09 | 4.21542E+02
led | 19th 1.47663E+04 | 5.40392E+04 | 3.84733E+08 | 5.52670E+04 | 1.15160E+04 | 1.78987E+09 | 5.45858E+02
25th 1.81025E+04 | 6.45800E+04 | 5.20868E+08 | 6.71006E+04 | 1.31915E+04 | 4.59954E+09 | 7.43594E+02
Mean | 1.27943E+04 | 4.91997E+04 | 3.26878E+08 | 5.08241E+04 | 1.04777E+04 | 1.65636E+09 | 4.44259E+02
Std D. | 2.62879E+03 | 9.25481E+03 | 8.82836E+07 | 8.59486E+03 | 1.34589E+03 | 8.34416E+08 | 1.41394E+02
1st 8.83870E-04 | 1.75557E+02 | 1.84217E+06 | 3.61277E+02 | 1.33228E+01 | 3.78990E+01 | 1.85172E-01
7th 5.89966E-03 | 3.60806E+02 | 3.24895E+06 | 9.14246E+02 | 7.03626E+02 | 6.80512E+01 | 3.63210E-01
13th 9.70001E-03 | 4.29233E+02 | 4.18139E+06 | 1.27675E+03 | 2.82633E+03 | 1.23097E+02 | 5.09019E-01
1e5 | 19th 1.15735E-02 | 6.19901E+02 | 5.42530E+06 | 1.85842E+03 | 3.25818E+03 | 1.99468E+02 | 7.65749E-01
25th 2.69409E-02 | 8.46557E+02 | 9.51084E+06 | 3.56928E+03 | 6.61989E+03 | 1.62802E+03 | 9.68942E-01
Mean | 9.85310E-03 | 4.82823E+02 | 4.64793E+06 | 1.45545E+03 | 2.56002E+03 | 2.31275E+02 | 5.40389E-01
Std D. | 6.55476E-03 | 1.89156E+02 | 2.02291E+06 | 8.24726E+02 | 1.93257E+03 | 3.50876E+02 | 2.32872E-01
1st 0.00000E+00 | 1.00082E-02 | 2.52866E+05 | 4.44201E-01 | 1.08400E-05 | 7.91052E-01 | 0.00000E+00
7th 0.00000E+00 | 2.69799E-02 | 3.63513E+05 | 1.56985E+00 | 9.65160E-03 | 6.02897E+00 | 0.00000E+00
13th 0.00000E+00 | 4.70619E-02 | 6.71938E+05 | 2.26303E+00 | 2.19951E+03 | 1.01827E+01 | 1.00000E-08
Trm | 19th 0.00000E+00 | 8.74604E-02 | 9.74700E+05 | 4.37445E+00 | 2.91858E+03 | 1.26779E+01 | 5.39371E-02
25th 0.00000E+00 | 1.58316E-01 | 1.45497E+06 | 1.58945E+01 | 5.93939E+03 | 1.80863E+01 | 2.89677E-01
Mean | 0.00000E+00 | 6.18957E-02 | 7.34622E+05 | 4.06987E+00 | 1.89052E+03 | 9.45834E+00 | 4.16067E-02
Std D. | 0.00000E+00 | 4.21461E-02 | 3.83248E+05 | 4.20637E+00 | 1.88807E+03 | 5.37511E+00 | 6.68922E-02
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FES 8 9 10 11 12 13 14
1st 2.10371E+01 | 3.51505E+02 | 3.86808E+02 | 4.30150E+01 | 1.21493E+06 | 7.96154E+04 | 1.36177E+01
7th 2.11788E+01 | 3.81350E+02 | 4.53468E+02 | 4.48355E+01 | 1.35209E+06 | 1.57959E+05 | 1.41172E+01
13th 2.12375E+01 | 4.08661E+02 | 4.74526E+02 | 4.54247E+01 | 1.49368E+06 | 2.18095E+05 | 1.41871E+01
1e3 | 19th 2.12775E+01 | 4.20831E+02 | 4.93344E+02 | 4.61805E+01 | 1.66345E+06 | 3.04821E+05 | 1.42367E+01
25th 2.13002E+01 | 4.74661E+02 | 5.22231E+02 | 4.80001E+01 | 2.02808E+06 | 4.92661E+05 | 1.44037E+01
Mean | 2.12195E+01 | 4.04524E+02 | 4.69685E+02 | 4.55424E+01 | 1.51555E+06 | 2.28311E+05 | 1.41610E+01
StdD. | 6.80106E-02 | 2.94053E+01 | 3.16319E+01 | 1.28294E+00 | 2.01895E+05 | 1.06164E+05 | 1.48381E-01
1st 2.09520E+01 | 2.33280E+02 | 2.84955E+02 | 4.06643E+01 | 4.32073E+05 | 1.46393E+03 | 1.36177E+01
7th 2.10683E+01 | 2.59949E+02 | 3.18478E+02 | 4.25440E+01 | 6.48983E+05 | 2.67125E+03 | 1.38431E+01
13th 2.11071E+01 | 2.80316E+02 | 3.42835E+02 | 4.30718E+01 | 6.71627E+05 | 3.83519E+03 | 1.39494E+01
led | 19th 2.11398E+01 | 2.91904E+02 | 3.51147E+02 | 4.35359E+01 | 7.95226E+05 | 5.17356E+03 | 1.40068E+01
25th 2.11875E+01 | 3.13804E+02 | 3.81147E+02 | 4.43857E+01 | 1.05816E+06 | 7.88898E+03 | 1.41080E+01
Mean | 2.10956E+01 | 2.76174E+02 | 3.34933E+02 | 4.28564E+01 | 7.10077E+05 | 4.00502E+03 | 1.39081E+01
StdD. | 5.95784E-02 | 2.17571E+01 | 2.61489E+01 | 9.64590E-01 | 1.36521E+05 | 1.86825E+03 | 1.32341E-01
1st 2.08070E+01 | 2.19159E+01 | 3.00719E+01 | 1.75625E+01 | 0.00000E+00 | 2.44370E+00 | 1.30431E+01
7th 2.09824E+01 | 3.28623E+01 | 6.86397E+01 | 3.83301E+01 | 0.00000E+00 | 4.40461E+00 | 1.35254E+01
13th 2.10002E+01 | 4.09024E+01 | 1.14043E+02 | 3.96573E+01 | 0.00000E+00 | 5.26838E+00 | 1.36172E+01
1e5 | 19th 2.10286E+01 | 4.77876E+01 | 1.95522E+02 | 4.06290E+01 | 0.00000E+00 | 9.04498E+00 | 1.36717E+01
25th 2.10878E+01 | 6.07723E+01 | 2.28969E+02 | 4.27992E+01 | 0.00000E+00 | 1.55170E+01 | 1.37656E+01
Mean | 2.09986E+01 | 4.09120E+01 | 1.26306E+02 | 3.82544E+01 | 0.00000E+00 | 6.64955E+00 | 1.35707E+01
StdD. | 5.40783E-02 | 1.12045E+01 | 6.52610E+01 | 5.23822E+00 | 0.00000E+00 | 3.19829E+00 | 1.60776E-01
1st 2.08070E+01 | 2.18891E+01 | 2.34153E+01 | 5.37358E+00 | 0.00000E+00 | 1.97830E+00 | 1.29578E+01
7th 2.09520E+01 | 3.28336E+01 | 4.49232E+01 | 8.52891E+00 | 0.00000E+00 | 2.68041E+00 | 1.32526E+01
13th 2.09705E+01 | 4.07933E+01 | 5.00901E+01 | 1.09034E+01 | 0.00000E+00 | 2.95265E+00 | 1.33953E+01
Trm | 19th 2.09984E+01 | 4.77579E+01 | 5.49342E+01 | 1.56893E+01 | 0.00000E+00 | 4.04031E+00 | 1.35254E+01
25th 2.10302E+01 | 6.06924E+01 | 7.95865E+01 | 1.87345E+01 | 0.00000E+00 | 5.77030E+00 | 1.36599E+01
Mean | 2.09600E+01 | 4.08729E+01 | 5.02670E+01 | 1.17990E+01 | 0.00000E+00 | 3.49835E+00 | 1.33659E+01
Std D. | 5.14799E-02 | 1.12049E+01 | 1.33351E+01 | 4.16057E+00 | 0.00000E+00 | 1.17383E+00 | 1.99834E-01
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Table B.3. : FError Vaues Achieved at 1e3 FES, 1e4 FES, 1e5 FES and at
Termination for the DE Algorithm for D=50

FES 1 2 3 4 5 6 7

1st 1.09919E+05 | 1.58505E+05 | 2.07215E+09 | 2.01008E+05 | 3.60708E+04 | 6.24047E+10 | 2.70670E+03
7th 1.24213E+05 | 2.15679E+05 | 3.34100E+09 | 2.49303E+05 | 4.19097E+04 | 7.05402E+10 | 3.24870E+03
13th 1.32942E+05 | 2.51152E+05 | 4.15515E+09 | 2.69409E+05 | 4.37841E+04 | 7.54364E+10 | 3.42658E+03
1e3 | 19th 1.42118E+05 | 2.72774E+05 | 4.62201E+09 | 3.15076E+05 | 4.60202E+04 | 9.19463E+10 | 3.55218E+03
25th 1.55557E+05 | 3.38458E+05 | 5.17139E+09 | 3.67871E+05 | 4.96220E+04 | 1.23848E+11 | 3.87867E+03
Mean | 1.32369E+05 | 2.47597E+05 | 4.02174E+09 | 2.80243E+05 | 4.39236E+04 | 8.17463E+10 | 3.40663E+03
Std D. | 1.30691E+04 | 4.56185E+04 | 8.47471E+08 | 4.69922E+04 | 3.58509E+03 | 1.70617E+10 | 2.88949E+02
1st 3.98083E+04 | 1.08123E+05 | 7.87258E+08 | 1.24568E+05 | 2.00128E+04 | 6.18604E+09 | 1.06680E+03
7th 4.43059E+04 | 1.36973E+05 | 1.07956E+09 | 1.53487E+05 | 2.50087E+04 | 9.91087E+09 | 1.34262E+03
13th 4.65329E+04 | 1.49204E+05 | 1.17726E+09 | 1.61514E+05 | 2.60129E+04 | 1.20288E+10 | 1.50405E+03
led | 19th 5.08941E+04 | 1.56631E+05 | 1.46263E+09 | 1.79026E+05 | 2.73082E+04 | 1.53635E+10 | 1.67263E+03
25th 6.81645E+04 | 1.93490E+05 | 1.82079E+09 | 2.08217E+05 | 3.01435E+04 | 1.82119E+10 | 2.08144E+03
Mean | 4.79236E+04 | 1.47232E+05 | 1.26728E+09 | 1.63019E+05 | 2.60249E+04 | 1.23105E+10 | 1.51560E+03
Std D. | 6.01150E+03 | 2.03001E+04 | 2.65941E+08 | 1.99857E+04 | 2.39857E+03 | 3.46091E+09 | 2.61940E+02
1st 3.91216E+00 | 1.05025E+04 | 9.72750E+06 | 1.36500E+04 | 4.43186E+03 | 7.58733E+03 | 1.89023E+00
7th 5.40717E+00 | 1.82658E+04 | 2.42321E+07 | 3.05233E+04 | 7.12124E+03 | 2.55062E+04 | 2.40129E+00
13th 7.11906E+00 | 1.99615E+04 | 3.64855E+07 | 3.30409E+04 | 9.76172E+03 | 3.59316E+04 | 3.05294E+00
1e5 | 19th 9.80515E+00 | 2.11416E+04 | 4.16241E+07 | 3.99110E+04 | 1.03183E+04 | 8.55643E+04 | 3.79685E+00
25th 2.13350E+01 | 3.28744E+04 | 7.62817E+07 | 5.55904E+04 | 1.24092E+04 | 4.16202E+05 | 7.23378E+00
Mean | 8.63916E+00 | 2.00253E+04 | 3.73887E+07 | 3.53287E+04 | 9.03571E+03 | 6.28620E+04 | 3.50589E+00
Std D. | 4.72937E+00 | 4.71459E+03 | 1.68236E+07 | 9.48968E+03 | 2.21534E+03 | 8.09670E+04 | 1.51754E+00
1st 0.00000E+00 | 2.67056E+01 | 9.83717E+05 | 6.42150E+02 | 5.38846E+02 | 2.13773E+01 | 1.00000E-07
7th 0.00000E+00 | 5.11244E+01 | 1.49749E+06 | 1.61209E+03 | 3.66471E+03 | 4.01439E+01 | 6.60000E-07
13th 0.00000E+00 | 5.74726E+01 | 2.10192E+06 | 2.26646E+03 | 5.61799E+03 | 8.45228E+01 | 2.66000E-06
Trm | 19th 0.00000E+00 | 7.93419E+01 | 2.56510E+06 | 3.58110E+03 | 7.33205E+03 | 9.32595E+01 | 1.66393E-02
25th 0.00000E+00 | 1.40927E+02 | 4.52991E+06 | 1.04788E+04 | 1.04086E+04 | 3.88045E+02 | 4.86660E-02
Mean | 0.00000E+00 | 6.70521E+01 | 2.18206E+06 | 3.00509E+03 | 5.49715E+03 | 9.13380E+01 | 1.07342E-02
Std D. | 0.00000E+00 | 2.92809E+01 | 9.15385E+05 | 2.18711E+03 | 2.49397E+03 | 8.49118E+01 | 1.58607E-02
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FES 8 9 10 11 12 13 14
1st 2.11750E+01 | 7.39051E+02 | 7.59304E+02 | 7.53534E+01 | 5.39738E+06 | 3.04674E+05 | 2.36851E+01
7th 2.13133E+01 | 7.74119E+02 | 8.65020E+02 | 7.97841E+01 | 6.42235E+06 | 9.05402E+05 | 2.38686E+01
13th 2.13442E+01 | 7.99986E+02 | 8.88168E+02 | 8.14681E+01 | 6.91974E+06 | 1.06373E+06 | 2.39823E+01
1e3 | 19th 2.13676E+01 | 8.31190E+02 | 9.14221E+02 | 8.26106E+01 | 7.23733E+06 | 1.34206E+06 | 2.40377E+01
25th 2.13887E+01 | 8.72940E+02 | 9.52398E+02 | 8.52554E+01 | 8.34791E+06 | 1.82215E+06 | 2.41530E+01
Mean | 2.13327E+01 | 8.03630E+02 | 8.81999E+02 | 8.12444E+01 | 6.86581E+06 | 1.07915E+06 | 2.39449E+01
Std D. | 4.94163E-02 | 3.42247E+01 | 4.49513E+01 | 2.23697E+00 | 7.18680E+05 | 3.54193E+05 | 1.40011E-01
1st 2.11554E+01 | 5.37857E+02 | 5.77085E+02 | 7.40360E+01 | 2.74711E+06 | 1.98473E+04 | 2.33465E+01
7th 2.12198E+01 | 5.93322E+02 | 6.24283E+02 | 7.67951E+01 | 3.11405E+06 | 3.29731E+04 | 2.36235E+01
13th 2.12656E+01 | 6.18468E+02 | 6.48086E+02 | 7.78537E+01 | 3.39804E+06 | 5.31764E+04 | 2.37075E+01
led | 19th 2.12915E+01 | 6.26707E+02 | 6.60825E+02 | 7.85654E+01 | 3.69401E+06 | 7.25397E+04 | 2.37938E+01
25th 2.13343E+01 | 6.50201E+02 | 7.11174E+02 | 7.98899E+01 | 4.19302E+06 | 1.11901E+05 | 2.39553E+01
Mean | 2.12563E+01 | 6.09454E+02 | 6.47203E+02 | 7.76677E+01 | 3.41839E+06 | 5.45568E+04 | 2.36952E+01
Std D. | 5.06526E-02 | 2.99158E+01 | 3.30762E+01 | 1.39661E+00 | 3.99081E+05 | 2.55809E+04 | 1.59301E-01
1st 2.10799E+01 | 7.02114E+01 | 3.75240E+02 | 7.17453E+01 | 1.24834E+04 | 2.46534E+01 | 2.29297E+01
7th 2.11601E+01 | 8.80808E+01 | 4.02222E+02 | 7.41917E+01 | 6.09260E+04 | 3.06321E+01 | 2.33554E+01
13th 2.11858E+01 | 9.69369E+01 | 4.17646E+02 | 7.48307E+01 | 8.93236E+04 | 3.50081E+01 | 2.34080E+01
1e5 | 19th 2.12055E+01 | 1.16184E+02 | 4.35728E+02 | 7.62536E+01 | 1.30699E+05 | 3.75569E+01 | 2.35048E+01
25th 2.12311E+01 | 1.46614E+02 | 4.84708E+02 | 7.72227E+01 | 1.99062E+05 | 4.37736E+01 | 2.36513E+01
Mean | 2.11808E+01 | 1.01463E+02 | 4.20275E+02 | 7.50219E+01 | 9.48683E+04 | 3.44406E+01 | 2.33992E+01
Std D. | 3.33359E-02 | 2.02831E+01 | 2.47438E+01 | 1.35699E+00 | 4.33802E+04 | 4.87466E+00 | 1.52068E-01
1st 2.10276E+01 | 6.66622E+01 | 5.59457E+01 | 2.44855E+01 | 6.30067E+02 | 5.19514E+00 | 2.26743E+01
7th 2.11233E+01 | 7.95966E+01 | 8.37425E+01 | 3.74256E+01 | 4.08555E+03 | 7.35488E+00 | 2.30478E+01
13th 2.11432E+01 | 8.65613E+01 | 9.01580E+01 | 5.70049E+01 | 8.10495E+03 | 8.78431E+00 | 2.32035E+01
Trm | 19th 2.11634E+01 | 9.65108E+01 | 9.74667E+01 | 7.11363E+01 | 1.60856E+04 | 1.15155E+01 | 2.32611E+01
25th 2.11989E+01 | 1.42279E+02 | 1.33335E+02 | 7.44238E+01 | 3.08875E+04 | 1.59468E+01 | 2.34932E+01
Mean | 2.11374E+01 | 9.27698E+01 | 9.14884E+01 | 5.32926E+01 | 1.06185E+04 | 9.58925E+00 | 2.31630E+01
Std D. | 3.69487E-02 | 2.10559E+01 | 1.68417E+01 | 1.83731E+01 | 8.53809E+03 | 3.20361E+00 | 1.74935E-01
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