

ISTANBUL KULTUR UNIVERSITY ���� INSTITUTE OF SOCIAL SCIENCES

PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUT ION
ALGORITHMS FOR CONTINUOUS FUNCTION OPTIMIZATION PRO BLEMS

MA Thesis by
İpek EKER

0310010008

Department: Business Administration
Programme: Business Administration

Supervisor: Prof .Dr. Güneş GENÇYILMAZ

AUGUST 2005

ISTANBUL KULTUR UNIVERSITY ���� INSTITUTE OF SOCIAL SCIENCE

PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUT ION
ALGORITHMS FOR CONTINUOUS FUNCTION OPTIMIZATION

PROBLEMS

İpek EKER
0310010008

Date of submission : 25 July 2005
Date of defence examination: 05 August 2005

Supervisor (Chairman): Prof. Dr. Güneş GENÇYILMAZ
Members of the Examining Committee Prof. Dr. Güneş GENÇYILMAZ

 Asst. Prof. Dr. M. Fatih TAŞGETİREN
 Asst.Prof. Dr. Rıfat Gürcan ÖZDEMİR

AUGUST 2005

ii

ACKNOWLEDGMENTS

This thesis is dedicated to my parents for their constant support and encourragement

throughout preparing this dissertation. I am greatly indebted to my advisor Prof. Dr.

Güneş Gençyılmaz for his guidance and constant support during the preparation and

investigation of this thesis. I am also indebted to Asst. Prof. Dr. M. Fatih Taşgetiren

who contributed with the idea of this research topic. I also appericate the support

provided by İstanbul Kültür University for the opportunity to obtain the master

degree in Business Administration.

İpek Eker

August, 2005

 iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ii

TABLE OF CONTENTS iii

LIST OF ABBREVIATIONS v

LIST OF TABLES vii

LIST OF FIGURES ix

LIST OF SYMBOLS x

ABSTRACT xii

ÖZET xiv

1. INTRODUCTION 1

1.1. Literature Survey on Global Optimization Algorithms 1

1.2. Frame Work of the Algorithms 1

1.3. Classification of Global Optimization Algorithms 1

1.4. General Classification 2

2. PARTICLE SWARM OPTIMIZATION ALGORITHM 7

2.1. Particle Swarm Optimization Algorithm 7

2.2. Initial Population 9

2.3. Computational Procedure 10

2.4. An Example for PSO Algorithm 12

3. DIFFERENTIAL EVOLUTION ALGORITHM 14

3.1. Differential Evolution Algorithm 14

3.2. Initial Population 16

3.3. Computational Procedure 16

3.4. An Example for DE Algorithm 18

4. BENCHMARK SUITE 22

4.1. Introduction 22

 iv

4.2. Properties of Benchmark Functions 22

4.3. Benchmark Suite 26

4.4. Evaluation Criteria 36

4.5. Performance Criteria 37

4.6. Success Rate for Each Problem 38

4.7. Convergence Graphs 38

4.8. Algorithm Complexity 38

5. COMPUTATIONAL RESULTS 39

5.1. Computational Results for the Particle Swarm Optimization

 Algorithm 39

5.2. Computational Results for the Differential Evolution

 Algorithm 43

6. COMPARISON OF PSO AND DE ALGORİTHMS 49

6.1. Comparison of PSO and DE Algorithms 49

7. CONCLUSION 54

7.1. Conclusions 54

8. REFERENCES 55

9. APPENDICES 65

 v

LIST OF ABBREVIATIONS

GA : Genetic Algorithm

SA : Simulated Annealing

EP : Evolutionary Programming

ES : Evolutionary Strategy

GP : Genetic Programming

TS : Tabu Search

CA : Chaos Algorithm

ACO : Ant Colony Optimization

PSO : Particle Swarm Optimization

DE : Differential Evolution

lbest : local best

gbest : global best

RTS : Reactive Tabu Search

NP : Population size

D : Dimension

 vi

FES : Function Evaluations

Std. D. : Standard deviation

Trm : Termination

AL : Accuracy Level

SR : Success Rate

MAGA : Multiagent Genetic Algorithm

 vii

LIST OF TABLES

Table 4.1. : Fixed Accuracy Level for Each Function 37

Table 5.1. : Mean Error and standard deviation values achieved at the

termination for PSO Algorithm 44

Table 5.2. : Mean Error and standard deviation values achieved at the

termination for DE Algorithm 48

Table 6.1. : Error values achieved in the Max_FES and Success Rate

(PSO and DE for D=10) 50

Table 6.2. : Error values achieved in the Max_FES and Success Rate

(PSO and DE for D=30) 51

Table 6.3. : Error values achieved in the Max_FES and Success Rate

(PSO and DE for D=50) 52

Table 6.4. : Complexity of the PSO Algorithm 53

Table 6.5. : Complexity of the DE Algorithm 53

Table 6.6 : Average Success Rates of PSO and DE at D=10,30,50 53

 viii

Table A.1. : Error Values Achieved at 1e3 FES, 1e4 FES,

1e5 FES and at Termination for PSO Algorithm for D=10 65

Table A.2. : Error Values Achieved at 1e3 FES, 1e4 FES,

1e5 FES and at Termination for PSO Algorithm for D=30 67

Table A.3. : Error Values Achieved at 1e3 FES, 1e4 FES,

1e5 FES and at Termination for PSO Algorithm for D=50 69

Table B.1. : Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES, and

at Termination for the DE Algorithm for D=10 71

Table B.2. : Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES, and

at Termination for the DE Algorithm for D=30 73

Table B.3. : Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES, and

at Termination for the DE Algorithm for D=50 75

 ix

LIST OF FIGURES

Figure 2.1 : A Simple PSO Algorithm 8

Figure 2.2 : Flowchart of the PSO Algorithm 13

Figure 2.3 : An Example for PSO Algorithm 14

Figure 3.1 : A Simple DE Algorithm 15

Figure 3.2 : Flowchart of the DE Algorithm 21

Figure 3.3 : An Example for DE Algorithm 20

Figure 5.1 : Convergence Graph of PSO for D=10 for functions 1-7 40

Figure 5.2 : Convergence Graph of PSO for D=10 for functions 8-14 41

Figure 5.3 : Convergence Graph of PSO for D=30 for functions 1-7 41

Figure 5.4 : Convergence Graph of PSO for D=30 for functions 8-14 42

Figure 5.5 : Convergence Graph of PSO for D=50 for functions 1-7 42

Figure 5.6 : Convergence Graph of PSO for D=50 for functions 8-14 43

Figure 5.7 : Convergence Graph of DE for D=10 for functions 1-7 45

Figure 5.8 : Convergence Graph of DE for D=10 for functions 8-14 45

Figure 5.9 : Convergence Graph of DE for D=30 for functions 1-7 46

Figure 5.10 : Convergence Graph of DE for D=30 for functions 8-14 46

Figure 5.11 : Convergence Graph of DE for D=50 for functions 1-7 47

Figure 5.12 : Convergence Graph of DE for D=50 for functions 8-14 47

 x

LIST OF SYMBOLS

t
iX : the ith particle in the swarm at iteration t

t
ijx : position value of the ith particle with respect to the jth dimension

tX : the set of NP particles in the swarm at iteration t

t
iV : the velocity of particle i at iteration t

t
ijv : the velocity of particle i at iteration t with respect to the jth dimension

tw : inertia weight

1c : acceleration coefficient

2c : acceleration coefficient

t
iP : the best position of the particle

pb
if : the fitness function of the personal best

t
ijp : the position value of the ith personal best with respect to the jth dimension

tG : the best position of the globally best particle

gbf : the fitness function of the global best

 xi

t
jg : the position value of the global best with respect to the jth dimension

1r : a uniform random number between 0 and 1

2r : a uniform random number between 0 and 1

t
if : the fitness function value of the particle tX

The basic elements of the DE algorithm is summarized as follows:

t
iX : the ith individual in the population at generation t

t
iV : the ith individual in the population at generation t

t
iU : the ith individual in the population at generation t

tX : the set of NP individuals in the population at generation t

tV : the set of NP individuals in the population at generation t

tU : the set of NP individuals in the population at generation t

F : Mutant constant ()2,0∈F

CR : user-defined crossover constant in the range [0, 1]

1t
ijr + : a uniform random number between 0 and 1

 xii

University : Istanbul Kultur University

Institute : Institute of Social Sciences

Department : Business Administration

Programme : Business Administration

Supervisor : Prof. Dr. Güneş GENÇYILMAZ

Degree Awarded and Date : MA – August 2005

ABSTRACT

PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUT ION

ALGORITHMS FOR CONTINUOUS OPTIMIZATION PROBLEMS

Ipek EKER

This study presents Particle Swarm Optimization (PSO) and Differential

Evolution (DE) algorithms to solve nonlinear continuous function optimization

problems. The algorithms were tested using 14 newly proposed benchmark

instances in Congress on Evolutionary Computation 2005.

Particle Swarm Optimization (PSO) and Differential Evolution (DE) are two of

the latest metaheuristic methods. PSO is based on the metaphor of social

interaction and communication such as bird flocking and fish schooling. PSO

and DE were both first introduced to optimize various continuous nonlinear

functions.

In a PSO algorithm, each member is called a particle, and each particle moves

around in the multi-dimensional search space with a velocity constantly updated

by the particle’s experience, the experience of the particle’s neighbors, and the

experience of the whole swarm.

 xiii

In the DE algorithm, the target population is perturbed with a mutant factor,

and the crossover operator is then introduced to combine the mutated

population with the target population so as to generate a trial population. Then

the selection operator is applied to compare the fitness function value of both

competing populations, namely, target and trial populations. The better

individuals among these two populations become members of the population for

the next generation. This process is repeated until a convergence occurs.

The computational results show that the particle swarm optimization is able to

solve the test problems. Both algorithms are promising to solve benchmark

problems. However, the differential evolution algorithm performed better for

the larger size of problems than the particle swarm optimization algorithm.

Key Words : Particle Swarm Optimization, Differential Evolution,

Continuous Optimization, Genetic Algorithms.

 xiv

Üniversitesi : İstanbul Kültür Üniversitesi

Enstitüsü : Sosyal Bilimler

Anabilim Dalı : İşletme

Programı : İşletme

Tez Danışmanı : Prof. Dr. Güneş GENÇYILMAZ

Tez Türü ve Tarihi : Yüksek Lisans – Ağustos 2005

KISA ÖZET

SÜREKLİ FONKSİYON OPTİMİZASYON PROBLEMLER İNİN ÇÖZÜMÜ

İÇİN PARÇACIK SÜRÜ OPTİMİZASYONU (PSO) VE DİFERANSİYAL

EVRİM (DE) ALGOR İTMALARI

İpek EKER

Bu çalışma, doğrusal olmayan sürekli fonksiyon optimizasyon problemlerinin

çözümü için Parçacık Sürü Optimizasyonu (PSO) ve Diferansiyal Evrim (DE)

algoritmalarını sunmaktadır. Algoritmaların perform ansı Evrimsel Hesap

Kongresi (CEC2005) için yeni geliştirilen 14 fonksiyonu kullanarak test edildi.

Parçacık Sürü Optimizasyonu (PSO) ve Diferansiyel Evrim (DE), en son

geliştirilen meta-sezgisel yöntemlerden ikisidir. PSO, kuşların ve balıkların yem

arama gibi sosyal etkileşmeleri ve iletişimleri metaforuna dayanır. PSO ve DE,

orijinal olarak çeşitli doğrusal olmayan sürekli fonksiyonları optimize etmek

için geliştirildi.

PSO algoritmasında, her bir üye, “parçacık” olarak adlandırılır ve her

parçacık, çoklu-boyutsal arama uzayında bir hız ile hareket eder. Bu hız,

parçacığın kendi deneyimi, komşularının deneyimi ya da populasyondaki bütün

 xv

parçacıkların deneyimi ile sürekli olarak güncellenir.DE algoritmasında, hedef

populasyon mutasyon faktörü ile farklılaştırılır ve daha sonra deneme

populasyonu oluşturmak için çaprazlama operatörü kullanılır. Çaprazlama

operatörünün amacı farklılaştırılan populasyonla hedef populasyonu

birleştirerek deneme populasyonunu oluşturmaktır. Son olarak, seçme

operatörü kullanılarak rekabet eden her iki populasyon özellikle hedef ve

deneme populasyonlarının amaç fonksiyon değerleri kar şılaştırılır. Seçme

operatörü vasıtasıyla bu iki populasyon arasındaki daha iyi çözümler bir

sonraki jenerasyona ait populasyonun üyeleri haline gelir. Bu proses

yakınsaklık elde edilinceye dek tekrar edilir.

Deneysel sonuçlar her iki algoritmanın test problemlerini belli bir hata payıyla

veya optimal olarak çözebildiğini göstermektedir. Her iki algoritma, test

problemlerini çözmede umut vericidir. Ancak, diferansiyel evrim algoritması

büyük çaplı problemler için parçacık sürü optimizasyonu algoritmasından daha

iyi sonuçlar üretmektedir.

Anahtar Sözcükler : Parçacık Sürü Optimizasyonu, Diferansiyel Evrim,

Sürekli Fonksiyonu Optimizasyon Problemleri, Genetik Algoritmalar.

 1

CHAPTER 1: INTRODUCTION

1.1. Literature Survey on Global Optimization Algorithms

The development of global optimization algorithm is closely bound up the

development of computer. Many global optimization problems wait for solving and

some algorithms are also put forward along with the greatness and complexity of the

structures in engineering, especially these years.

1.2. Frame Work of the Algorithms

Two stages must be experienced in the process of solving the global optimum. The

first stage can be called the global covering. The global optimum may be located in

arbitrary region in the feasible region for the optimization problems in engineering,

so any parts of the region must be considered equally critical. The stage of uniform

distributing in the region A is required in this stage. The last stage is called local fine

searching. It requires a stage of non-uniform distributing in the neighborhood of

known better points, because some parts of the feasible region may be deemed more

interesting than others and more accurate solutions in these parts are wanted.

1.3. Classification of Global Optimization Algorithms

The classification is made by Leon early in 1966 in [1], who classifies these

algorithms into three kinds according to the search techniques: Blind search, Local

search and Non-local search. Subsequently, Dixon. Szegio and Gomulka present two

basic approaches namely the deterministic and probabilistic algorithms in 1978 in [2,

3]. The former comprises grid search algorithms and trajectory algorithms, the latter

comprises random search algorithms, clustering algorithms and sampling algorithms.

 2

Thereafter, Archetti and Schoen also makes between deterministic and probabilistic

algorithms in 1984 in [4]. According to accuracy, Torn make two classifications

namely algorithms with guaranteed accuracy and algorithms without, the latter

comprises direct algorithms and indirect algorithms in [5]. Zhang Xiangsun reviews

the deterministic algorithms in detail in 1984 in [6] and Zhang Yunkang also reviews

the probabilistic algorithms in detail in 1992 in [7].

1.4. General Classification

General classification of all global algorithms primarily should be divided into three

classes according to the different searching methods: Analytic algorithm, Enumerate

algorithm and Random search algorithm. Analytic properties of objective functions

are exerted to seek the global optimum in this algorithm (such as first-order, second-

order derivative), which is divided into Direct algorithms and Indirect algorithm. The

next searching step of direct algorithms is determined by the grade of objective

functions. “Mountain climbing” strategy is adopted in this algorithm, which searches

one of the local optimum according to the steepest direction (such as Cluttering

algorithm and Generalized descent algorithm). But it is difficult to search the global

optimum. The indirect algorithm is that a group of equations is educed by the

necessary conditions of extremum, then the group of equations is solved and the

global optimum is found by comparison. But the equations are always non-linearity,

which are difficult to be solved. So it is applied for some very simple optimization,

such as algorithms approximating the level sets and algorithms approximating the

objective function. Enumerate algorithm is mostly applied in the field of dynamic

programming. Random search algorithm is composed of Blind search algorithms and

Guide search algorithms. Blind search algorithm includes covering algorithm and

Random search algorithm. A very large computing effort is needed, so it is only

applied in simple optimization; Guide search algorithms are also called Heuristic

search algorithms, which are studied more frequently in present years, which include

Meta-heuristic algorithms [8], algorithms based on uniform design [9, 10, 11] and

mixed heuristic algorithms [12-21]. Meta-heuristic algorithms are studied more

nowadays, which include simulated annealing [22] (SA), evolution algorithms

(which include Genetic Algorithm [23-30] (GA), Evolutionary Programming [31]

(EP), Evolutionary Strategy [32] (ES) and Genetic Programming [33] (GP)), Tabu

 3

Search Algorithm, Chaos Algorithm [34, 35], Ant Colony Optimization [36, 37]

(ACO), and so on. The mixed heuristic algorithms are researched relatively less at

present, which mostly aim at the shortages of the intelligent heuristic search

algorithms, and whose results and efficiency are better than the simple heuristic

search algorithms, so the algorithms are the hotspot of the optimization research.

Additionally, the heuristic search algorithms mixed with some local algorithms are

also one of the future optimization research tendencies. Meta-heuristic algorithms are

introduced as follows.

Meta-heuristic algorithms are developed along with the development of biology,

physics and artificial intelligence. Although the optimal mechanisms are different,

they are the same in optimal technological processes, which are a kind of “neighbor

region search”. The process of the algorithms is as follows: (1) start from one (or one

group) initial point; (2) search many neighbor solves by the neighbor functions under

the control of the algorithms parameters; (3) renew the current state according to the

accept rules; (4) then adjust the control parameters, so repeat this process as to satisfy

the accept rules.

SA is a clustering optimal algorithm, whose principle is: a state in the neighbor

region at present is sampled randomly, at the same time renew the probability

according to controlling “temperature”, so that the search process has the ability of

avoiding local optimum, and get the global optimum finally. The initial temperature,

the functions of withdrawing temperature, the renew mode of states and the sample

stabilization are the key factors which affect the performance of SA.

GA is a combining algorithm, which especially has the concealed combining

property. Its principle is: in the code space, the processes of select, crossover and

mutation are implemented ceaselessly according to a probability, so as to the aim of

the group’s combining evaluation. The number of group and the operations of

reproduce, crossover and mutation are the key factors, which affect the performance

of GA.

 4

TS is a clustering optimal algorithm, which avoids repeating the states according to

the operational memory structures in the near future, and which implements global

search rapidly combining the deprecate rule. The size of the tabu table and the

structure and the number of the function in neighbor region are the key factors,

which affect the performance of TS.

Chaos is a non-linearity phenomenon in nature. The movement process of chaos

variables has inherent rule. The randomness, the property of covering all over and

regularity are used to search the optimum. The operation of CA includes two steps.

Firstly, in the whole space, all points are inspected in turn by the movement of chaos

variables, and the better point is accepted the optimum at present. Secondly, after

certain steps the optimum at present is near the global optimum, then the optimum at

present become the center and are added a little chaos change, the global optimum is

attained through careful search. Repeating the two steps upwards, until the global

optimum is attained. CA is a Random search algorithm, which is researched

relatively less presently.

ACO, a new type of simulated evolutionary algorithm, is proposed first by Italian

scholars Marco Dorigo. It is used to solve some optimization problems through

simulating the process of ants searching for food, which is carried out through

searching the shortest route between the ant cave and the food according to the

individual information interchange and cooperation with one another.

Particle Swarm Optimization (PSO), one of the latest metaheuristic algorithms, was

first introduced by Kennedy and Eberhart 1995 in [38]. PSO is based on the

metaphor of social interaction and communication such as bird flocking and fish

schooling. Since PSO is population-based and socially cognitive in nature, the

members in a swarm tend to follow the leader of the group, i.e., the one with the best

performance. In a PSO algorithm, each member is called a “particle”, and each

particle flies around in the multi-dimensional search space with a velocity, which is

updated according to the particle’s current velocity, the particle’s own experience

and the experience of the neighbors. Depending on the size of neighbors, two types

of basic PSO algorithms were developed – PSO with a local neighborhood and PSO

with global neighborhood of Kennedy et al. 2001 in [39]. In the former model, called

 5

the lbest, each particle moves towards its best previous position and towards the best

particle in its restricted neighborhood. While in the latter model, called the gbest,

each particle moves towards its best previous position and towards the best particle

in the entire swarm.

Differential evolution (DE) is also one of the latest evolutionary optimization

methods proposed by Storn and Price 1997 in [40]. It is a simple but powerful

population based stochastic search method for solving global optimization problems.

Like other evolutionary-type algorithms, DE is a population-based, stochastic global

optimizer. In a DE algorithm, candidate solutions are represented as chromosomes

based on floating-point numbers. The major difference between DE and genetic

algorithm (GA) is that in DE some of the parents are generated through a mutation

process before performing crossover operator whereas GA usually selects parents

from current population, performs crossover, and then mutates the offspring. In the

mutation process of a DE algorithm, the weighted difference between two randomly

selected population members is added to a third member to generate a mutated

solution. Then, the crossover operator is introduced to combine the mutated solution

with the target solution so as to generate a trial solution. Then a selection operator is

applied to compare the fitness function value of both competing solutions, namely,

target and trial solutions to determine who can survive for next generation.

Regarding the application of optimization algorithms for the continuous functions,

few works deal with the application to the global minimization of functions

depending on continuous variables. The works related to the subject are in [41, 42,

43, 44, 45, 46, 47, 48]. In addition, a simple benchmark on a function with many

suboptimal local minima is considered in [49], where a straightforward discretization

of the domain is used. A novel algorithm for the global optimization of functions (C-

RTS) is presented in [50], in which a combinatorial optimization method cooperates

with a stochastic local minimizer. The combinatorial optimization component, based

on RTS, locates the most promising boxes , where starting points for the local

minimizer are generated. In order to cover a wide spectrum of possible applications

with no user intervention, the method is designed with adaptive mechanisms: in

addition to the reactive adaptation of the prohibition period , the box size is adapted

 6

to the local structure of the function to be optimized (boxes are larger in ``flat''

regions, smaller in regions with a ``rough'' structure).

This thesis is organized as follows. Chapter 2 and 3 develops the PSO and DE

algorithms to solve the nonlinear continuous functions, respectively. Chapter 4

introduces 14 newly developed benchmark functions and the performance criteria

employed in this study. Computational results for PSO and DE algorithms are shown

in Chapter 5. Chapter 6 compares both algorithms. Finally, Chapter 7 summarizes the

concluding remarks.

 7

CHAPTER 2: PARTICLE SWARM OPTIMIZATION ALGORITHM

2.1. Particle Swarm Optimization Algorithm

PSO was first developed to optimize continuous nonlinear functions. Since PSO is

easy to implement and is efficient to obtain quality solutions, it has attracted much

researchers’ attention in recent years. The application of PSO consists of neural

network training in [51, 52, 53], power and voltage control in [54], optimal power

system design in [55, 56], feature selection in [57], mass-spring system in [58],

electromagnetics in [59, 60], analyze of human tremor in [61], register 3D-to-3D

biomedical image in [62], play games in [63], clustering in [64], logic circuit design

in [65], lot sizing problem in [66], supplier selection and ordering problems in [67],

task assignment problem in [68], automated drilling in [69], and scheduling problems

in [70, 71, 72]. More literature can be found in [39]. Besides the wide range of

applications above, the nonlinear continuous function optimization is still considered

the benchmark problem when exploring the properties and performance of PSO

algorithms. Therefore, this thesis aims at employing PSO in optimizing 14 newly

developed test problems in Congress on Evolutionary Computation 2005.

The gbest model of Kennedy et al. 2001 in [39] is followed in this study. According

to the gbest model, each particle moves towards its best previous position and

towards the best particle in the whole swarm. In the PSO algorithm, parameters were

initialized and the initial population was generated randomly. Each particle will then

be evaluated to compute the fitness function value. After evaluation, the PSO

algorithm repeats the following steps iteratively: With its position, velocity, and

fitness value, each particle updates its personal best (best value of each individual so

far) if an improved fitness value was found. On the other hand, the best particle in

 8

the whole swarm with its position and fitness value was used to update the global

best (best particle in the whole swarm). Then the velocity of the particle is updated

by using its previous velocity, the experiences of the personal best, and the global

best in order to determine the position of each particle. Evaluation is again performed

to compute the fitness of the particles in the swarm. This process is terminated with a

predetermined stopping criterion. The pseudo code of the PSO algorithm is given in

Figure 2.1.

Initialize parameters

Initialize population

Evaluate

Do {

Find the personal best
Find the global best
Update the velocity
Update the position
Evaluate

} While (Termination)

Figure 2.1 A Simple PSO Algorithm.

The basic elements of PSO algorithm is summarized as follows:

Particle: t
iX denotes the ith particle in the swarm at iteration t and is represented by

[]t
iD

t
2i

t
1i

t
i x,..,x,xX = , where t

ijx is the position value of the ith particle with respect to

the jth dimension (D,...,2,1j =).

Population: tX is the set of NP particles in the swarm at iteration t, i.e.,

[]t
NP

ttt XXXX ,...,, 21= .

Particle velocity: t
iV is the velocity of particle i at iteration t. It can be defined as

[]t
iD

t
2i

t
1i

t
i v,...,v,vV = , where t

ijv is the velocity of particle i at iteration t with respect to

the jth dimension.

Inertia weight and acceleration coefficients: tw is a parameter to control the

impact of the previous velocities on the current velocity as described in [73, 74]. It

has an impact on the trade-off between the global and local exploration capabilities

 9

of the particle. At the beginning of the search, large inertia weight is used to enhance

the global exploration while it is reduced for better local exploitation later on in the

search. c1 and c2 are constant parameters called acceleration coefficients which

control the maximum step size that the particle can do.

Personal best: t
iP represents the best position of the particle with the best fitness

value until iteration t, so the best position associated with the best fitness value of the

particle obtained so far is called the personal best. For each particle in the swarm, tiP

can be determined and updated at each iteration t. In a minimization problem with

the objective function ()t
iXf , the personal best tiP of the ith particle is obtained such

that () ()1−≤ t
i

t
i PfPf . To simplify, the fitness function of the personal best is denoted

as ()t
i

pb
i Pff = . For each particle, the personal best is defined as []t

iD
t
2i

t
1i

t
i p,...,p,pP =

where t
ijp is the position value of the ith personal best with respect to the jth dimension

(D,...,2,1j =).

Global best: tG denotes the best position of the globally best particle achieved so

far in the whole swarm. For this reason, the global best can be obtained such that

() ()t
i

t PfGf ≤ for NPi ,.,..2,1= . To simplify, the fitness function of the global best

is denoted as ()tgb Gff = . The global best is then defined as []t
D

t
2

t
1

t g,...,g,gG = where

t
jg is the position value of the global best with respect to the jth dimension

(D,...,2,1j =).

Termination criterion: It is a condition that terminates the search process. It might

be a maximum number of function evaluations or a maximum CPU time that

terminates the search.

2.2. Initial Population

A population of particles is constructed randomly for the PSO algorithm. The

continuous values of positions are established randomly. The following formula is

used to construct the initial continuous position values of the particle uniformly:

() 1minmaxmin
0 * rxxxxij −+=

 10

where minx and maxx are the search range of the continuous functions and r1 is a

uniform random number between 0 and 1. Initial velocities are generated by a similar

formula as follows:

() 2minmaxmin
0 * rvvvvij −+=

where () 2/minmaxmax xxv −= and maxmin vv −= , and r2 is a uniform random number

between 0 and 1. Continuous velocity values are restricted to some range, namely

[]maxmin ,vvv t
ij =

During the reproduction of the PSO algorithm, it is possible to extend the search

outside of the initial range of the search space. For this reason, the position values

violating the initial range are restricted to the feasible range as follows:

() 1minmaxmin * rxxxx t
ij −+=

The only exception was the problem 7 for which the optimal was outside the search

range. The population size is taken as 100. As the formulation of 14 functions

suggests that the objective is to minimize 14 continuous functions, the fitness

function value is the objective function value of the particle tX . That is, ()t
i

t
i Xf .

For simplicity, ()t
i

t
i Xf will be denoted as t

if .

2.3. Computational Procedure

The complete computational procedure of the PSO algorithm can be summarized as

follows:

Step 1: Initialization

� Set t = 0, NP =100.

� Generate NP particles randomly as explained before, { }NP,...,2,1,0 =iX i

where []00
2

0
1

0 ,...,, iDiii xxxX = .

� Generate the initial velocities for each particle randomly, { }NP,...,2,1,0 =iVi

where []0
iD

0
2i

0
1i

0
i v,...,v,vV = .

� Evaluate each particle in the swarm using the objective function 0
if for

NPi ,...,2,1= .

 11

� For each particle in the swarm, set 00
ii XP = , where

[]000
2

0
2

0
1

0
1

0 ,...,, iDiDiiiii xpxpxpP ==== together with its best fitness value, pb
if for

NP,.,..2,1=i .

� Find the best fitness value among the whole swarm such that { }0min il ff =

for NPi ,...,2,1= with its corresponding positions0
lX . Set global best to

00
lXG = such that []DlDll xgxgxgG ,2,21,1

0 ,...,, ==== with its fitness value

l
gb ff = .

Step 2: Update iteration counter

� 1+= tt

Step 3: Update inertia weight

� ()() () nn
t wwwfesFESfesw +−−= 0*max_/max_

 where fesmax_ , FES , 0w , and nw are the maximum number of function

evaluation, number of function evaluations, initial inertia weight, and final inertia

weight respectively.

Step 4: Update velocity

� () ()11
22

11
11

11 −−−−−− −+−+= t
ij

t
j

t
ij

t
ij

t
ij

tt
ij xgrcxprcvwv

where c1 and c2 are acceleration coefficients and r1 and r2 are uniform random

numbers between 0 and 1.

Step 5: Update position

� t
ij

t
ij

t
ij vxx += −1

Step 6: Update personal best

� Each particle is evaluated to see if the personal best will improve. That is, if

pb
i

t
i ff < for NP,.,..2,1=i then personal best is updated as t

i
t

i XP = and

t
i

pb
i ff = .

Step 7: Update global best

� Find the minimum value of personal best. That is,

{ } { }.NP,...,2,1; NP;,...,2,1 ,min =∈== iiliff pb
i

t
l

� If gbt
l ff < , then the global best is updated as t

l
t XG = and t

l
gb ff = .

 12

Step 8: Stopping criterion

� If the number of function evaluations exceeds the maximum number of function

evaluations, then stop; otherwise go to step 2.

The flowchart of the computational procedure is given in Figure 2.2.

 13

Initialize the parameters, c1, c2, w, NP

Initialize the population,

Update iteration counter

t=t+1

Update inertia weight, w

Update velocity,

Update position

IF X<P Then

Update personal best

P=X

Update personal best

P=P

Sort population

Find Pmin

YES NO

IF P<G Then

Update global best

G=P

Update global best

G=G

IF

FES≤Max_FES

Then

YES NO

Stop

Record Statistic

YES

NO

tX

t
iV

t
iX

Figure 2.2 Flowchart of the PSO algorithm.

 14

2.4. An Example for PSO Algorithm

In this section, an example of minimization of Sphere Function with 3 dimensions is

given below:

Figure 2.3 An example for PSO algorithm.

 15

CHAPTER 3: DIFFERENTIAL EVOLUTION ALGORITHM

3.1. Differential Evolution Algorithm

Since DE was first introduced to solve the Chebychev polynomial fitting problem by

Storn and Price 1995 in [75], it has been successfully applied in a variety of

applications including digital filter design in [76, 77], neural network training in [78],

pattern recognition in [79], communication in [80],aerodynamic design in [81],

earthquake relocation in [82], microprocessor synthesis in [83], permutation

flowshop sequencing problems in [84], multisensor fusion in [85], heat transfer in

[86], system design in [87], cancer diagnosis in [88], and scheduling problems in

[89]. A number of recent studies comparing DE with other heuristics, such as GA

and PSO regarding real-world and artificial problems indicate superiority of DE in

single-objective, noise free, numerical optimisation in [90, 91, 92, 93]. More

introduction and literature surveys of DE can be found in [94, 95, 96, 97]. In

addition, the advantages of DE such as simple concept, immediately accessible for

practical applications, simple structure, ease of use, speed to get the solutions, and

robustness has all led itself a good candidate to solve difficult nonlinear continuous

functions. Therefore, this thesis aims at employing DE to optimize 14 newly

developed benchmark suite in Congress on Evolutionary Computation 2005.

Currently, there exist several variants of DE. We follow the DE/rand/1/bin scheme

of Storn and Price 1997 in [98]. The pseudo code of the DE algorithm is given in

Figure 3.1.

 16

Initialize parameters
Initialize target population
Evaluate
Do {

Obtain the mutant population
Obtain the trial population
Evaluate trial population
Selection
While (Termination)

Figure 3.1 A Simple DE Algorithm

The basic elements of the DE algorithm is summarized as follows:

Target individual: t
iX denotes the ith individual in the population at generation t and

is represented as []t
iD

t
i

t
i

t
i xxxX ,..,, 21= , where t

ijx is the optimized parameter value of

the ith individual with respect to the jth dimension (Dj ,...,2,1=).

Mutant individual: t
iV denotes the ith individual in the population at generation t and

is represented as []t
iD

t
i

t
i

t
i vvvV ,..,, 21= , where t

ijv is the optimized parameter value of

the ith individual with respect to the jth dimension (Dj ,...,2,1=).

Trial individual: t
iU denotes the ith individual in the population at generation t and is

represented as []t
iD

t
i

t
i

t
i uuuU ,..,, 21= , where t

iju is the optimized parameter value of the

ith individual with respect to the jth dimension (Dj ,...,2,1=).

Target population: tX is the set of NP individuals in the population at generation t,

i.e., []t
NP

ttt XXXX ,...,, 21= .

Mutant population: tV is the set of NP individuals in the population at generation

t, i.e., []t
NP

ttt VVVV ,...,, 21= .

Trial population: tU is the set of NP individuals in the population at generation t,

i.e., []t
NP

ttt UUUU ,...,, 21= .

Mutant constant: ()2,0∈F is a real constant which affects the differential variation

between two individuals.

Crossover constant: ()1,0∈CR is a crossover constant which affects the diversity of

population for the next generation.

Fitness function: In a minimization problem, the objective function is the

continuous function value denoted as ()t
iXf .

 17

Termination criterion: It is a condition that the search process will be terminated. It

might be a maximum number of function evaluations or maximum CPU time to

terminate the search.

3.2. Initial Population

A population of individuals is constructed randomly for the DE algorithm. The

continuous parameter values are established randomly. The following formula is

used to construct the initial continuous parameter values of the individual uniformly:

() 1minmaxmin
0 * rxxxxij −+=

where minx and maxx are search range of the continuous functions and r1 is a uniform

random number between 0 and 1. During the reproduction of the DE algorithm, it is

possible to extend the search outside of the initial range of the search space. For this

reason, parameter values violating the initial range are restricted to the feasible range

as follows:

() 1minmaxmin * rxxxx t
ij −+=

The population size is taken as 100. As the formulation of 14 functions suggests that

the objective is to minimize the 14 continuous functions, the fitness value is the

continuous function value of the individual tX . That is, ()t
i

t
i Xf . For simplicity,

()t
i

t
i Xf will be denoted as t

if .

3.3. Computational Procedure

The complete computational procedure of the DE algorithm can be summarized as

follows:

Step 1: Initialization

� Set t=0, NP =100.

� Generate NP individuals randomly as explained before, { }NPiX i ,...,2,1,0 =

where. []00
1

0 ,.., iDii xxX =

 18

� Evaluate each individual i in the population using the objective function ()00
ii Xf

for NPi ,...,2,1= .

Step 2: Update generation counter

� 1+= tt

Step 3: Generate mutant population

� For each target individual, t
iX , NPi ,...,2,1= , at generation t, a mutant

individual, []11
2

1
1

1 ,..,, ++++ = t
iD

t
i

t
i

t
i vvvV , is determined such that:

()t
b

t
a

t
best

t
i ii

XXFXV −+=+1

where t
bestX is the best individual so far in the population and ia , and ib are two

randomly chosen individuals from the population such that (ii ba ≠). 0>F is a

mutant factor which affects the differential variation between two individuals.

Step 4: Generate trial population

� Following the mutation phase, the crossover (recombination) operator is applied

to obtain the trial population. For each mutant individual, []11
2

1
1

1 ,..,, ++++ = t
iD

t
i

t
i

t
i vvvV ,

an integer random number between 1 and D, i.e, ()DDi ,..,2,1∈ , is chosen, and a

trial individual, []11
2

1
1

1 ,...,, ++++ = t
NP

ttt UUUU is generated such that:





 =≤

=
++

+

Otherwisex

DjorCRrifv
u t

ij

i
t

ij
t
ijt

ij ,

, 11
1

where the index D refers to a randomly chosen dimension (j=1,2,..,D), which is

used to ensure that at least one parameter of each trial individual 1+t
iU differs

from its counterpart in the previous generation t
iU , CR is a user-defined

crossover constant in the range [0, 1], and 1+t
ijr is a uniform random number

between 0 and 1. In other words, the trial individual is made up with some

parameters of mutant individual, or at least one of the parameters randomly

selected, and some other parameters of target individual.

 19

Step 5: Evaluate trial population

� Evaluate the trial population using the objective function ()11 ++ t
i

t
i Uf for

NPi ,...,2,1= .

Step 6: Selection

� To decide whether or not the trial individual 1+t
iU should be a member of the

target population for the next generation, it is compared to its counterpart target

individual t
iX at the previous generation. The selection is based on the survival

of fitness among the trial population and target population such that:

() ()


 ≤

=
++

+

otherwiseX

XfUfifU
X

t
i

t
i

t
i

t
it

i
,

, 11
1

Step 7: Stopping criterion

� If the number of function evaluations (FES) exceeds the maximum number of

function evaluations, then stop; otherwise go to step 2.

The flowchart of the computational procedure is given in Figure 3.2.

 20

Initialize the parameters, F, CR,

NP

Initialize target population

Update generation counter

Generate mutant population

Generate trial population

Evaluate trial population

IF

FES≤Max_FES

Then

Stop

Record statistic

YES

NO

tX

t
iV

t
iU

()t
iUf

() ()t
i

t
i XfUfIF ≤+111 ++ = t

i
t
i UX t

i
t
i XX =+1

YES
NO

Figure 3.2 Flowchart of the DE algorithm.

 21

3.4. An Example for DE Algorithm

In this section, an example of minimization of Sphere Function with 3 dimensions is

given below:

 22

Figure 3.3 An example for DE algorithm.

 23

CHAPTER 4: BENCHMARK SUITE

4.1. Introduction

In order to solve continuous function optimization problems, several optimization

algorithms have been presented in the literature with their results based on a small

subset of the standard test problems such as Sphere, Schwefel, Rosenbrock,

Rastrigin, and so on. Often, confusing results limited to the test problems were

reported in the literature in such a way that the same algorithm working for a set of

functions may not work for some other functions. For these reasons, these algorithms

should be evaluated more systematically by determining a common termination

criterion, size of problems, initialization scheme, running time and so on. The special

session on real-parameter optimization in CEC2005 aimed at developing new

benchmark functions to be publicly available to the researchers for evaluating their

algorithms. The problem definition files, codes and evaluation criteria are obtained

from [99].

4.2. Properties of Benchmark Functions

Many real-world problems can be formulated as optimization which can be

converted to the following form:

Minimize () []Dxxxxxf ,..,,, 21= where []maxmin,xxx ∈

Many novel algorithms are introduced to solve the above global optimization

problem. In order to compare and evaluate different algorithms, various benchmark

 24

functions with various properties have been proposed. Many of these popular

benchmark functions possess some properties that have been exploited by some

algorithms to achieve excellent results. According to Liang et. al. [100], some of

these issues are:

1. Global optimum having the same parameter values for different

variables/dimensions: Most of the popular benchmark functions have the same

parameter values for different dimensions at the global optimum because of their

symmetry. For example, Rastrigin’s functions’ and Griewank’s functions’ global

optima are []0,...,0,0,0 and Rosenbrock’s functions’ global optimum are []1,...,1,1,1 . In

this situation, if there exist some operators to copy one dimension’s value to the other

dimensions, the global optimum may be found rapidly. For example, the

neighborhood competition operator in [101] is defined as follows:

()
()Diiiiii

Diiiiii

mmmmmmmm

mmmmmmmml

,...,,,,...,,,,...,

,...,,,,...,,,,...,

11111

11111

211221

222111

++−−

+−−−

=

=

where m is the best solution in the population and l is the new generated solution, 1i

and 2i are two integer random numbers and Dii <<< 211 , D is the dimension size

of the problem. Hence, if the algorithm has found the globally optimal coordinates

for some dimensions, they will be easily copied to the other dimensions. However,

this operator might not be useful if the global optimum does not have the same value

for many dimensions. In other words, if the global optimum is shifted to make the

optimum to have different values for different dimensions, the performance of the

MAGA algorithm in [101] significantly deteriorated. When we solve the real-world

problems, global optimum is unlikely to have the same value for different

dimensions.

2. Global optimum at the origin [101] : In this case, the global optimum o is equal to

[]0,...,0,0,0 . Zhong et. al. [101] proposed the following function

() ()[]sRadiuslsRadiusl +− 1*,1* , where l is the search center and sRadius is the

local search radius, to perform the local search. It can be observed that the local

search range is much smaller when l is near the origin than when l is far from the

origin. This operator is not effective if the global optimum is not at the origin. Hence,

 25

this operator is specifically designed to exploit this common property of many

benchmark functions.

3. Global optimum lying in the center of the search range: Some algorithms have the

potential to converge to the center of the search range. The mean-centric crossover

operator is just a good example for this type. When the initial population is randomly

generated uniformly, the mean-centric method will have a trend to lead the

population to the center of the search range.

4. Global optimum on the bounds: This situation is encountered in some multi-

objective optimization algorithms as some algorithms set the dimensions moving out

of the search range to the bounds [102]. If the global optimum is on the bounds, as in

some multi-objective benchmark functions, the global optimum will be easily found.

However, if there are some local optima near the bounds, it will be easy to fall into

the local optima and fail to find the global optimum.

5. Local optima lying along the coordinate axes or no linkage among the

variables/dimensions: Most of the benchmark functions, especially high dimensional

functions, always have their symmetrical grid structure and local optima are always

along the coordinate axes. In this case, the information of the local optima could be

used to locate the global optimum. Further, for some functions it is possible to locate

the global optimum by using just D one-dimensional searches for a D dimensional

problem. Some co-evolutionary algorithms [103] and the one dimensional mutation

operator[101, 104] just use these properties to locate the global optimum rapidly.

By analyzing these problems, Liang et al. [100] recommend that the researchers

should use the following methods to avoid these problems when they use the

benchmark functions suffering from these problems, to test a novel algorithm.

1. Shift the global optimum to a random position as shown below to make the global

optimum to have different parameter values for different dimensions for benchmark

functions suffering from problems 1 to 3: () ()oldnew ooxfxF +−= where ()xF is

the new function, ()xf is the old function, oldo is the old global optimum and newo is

 26

the new setting global optimum which has different values for different dimensions

and not in the center of the search range.

2. For issue 4, considering there are real problems which have the global optimum on

the bounds, it is an acceptable method for bounds handling to set the population to

the near bounds when they are out of the search range. However, Liang et. al. [100]

suggest using different kinds of benchmark functions to test the algorithms. For

example, However, Liang et. al. [100] suggested that one can use some problems

with the global optimum on bounds, not on bounds and some problems with local

optima on bounds. One may not just test one algorithm that uses this bounds

handling method, on benchmark functions with global optimum on bounds, and

conclude the algorithm to be good.

3. Rotate the functions with issue 5 as below:

() ()xRfxF *= where R is an orthogonal rotation matrix obtained using Salmon’s

method [105]. In this way, local optima can be avoided lying along the coordinate

axes and retain the benchmark functions’ properties at the same time.

When a novel algorithm is tested, except for the global optimum’s position need be

shifted, functions having different properties should be included such as continuous

functions, non-continuous functions, global optimum on the bounds, global optimum

not on the bounds, unrotated functions, rotated functions, function with no clear

structure in the fitness landscape, narrow global basin of attraction and so on.

The first five functions are unimodal functions whereas the remaining nine functions

are multimodal where seven of them are basic functions and two of them are the

expanded functions. These functions are summarized below:

� Unimodal Functions:

� Shifted Sphere Function

� Shifted Schwefel’s Problem 1.2

� Shifted Rotated High Conditioned Elliptic Function

� Shifted Schwefel’s Problem 1.2 with noise in Fitness

� Schwefel’s Problem 2.6 with Global Optimum on Bounds

 27

� Multimodal Functions:

• Basic Functions:

� Shifted Rosenbrock’s Function

� Shifted Rotated Griewank’s Function without Bounds

� Shifted Rotated Ackley’s Function with Global Optimum on Bounds

� Shifted Rastrigin’s Function

� Shifted Rotated Rastrigin’s Function

� Shifted Rotated Weierstrass Function

� Schwefel’s Problem 2.13

• Expanded Functions:

� Expanded Extended Griewank’s plus Rosenbrock’s Function(F8F2)

� Expanded Rotated Extended Scaffer’s F6

These test functions were designed to test an optimizer’s ability to find a global

optimum under a variety of circumstances such as:

� Function landscape is highly conditioned

� Function landscape is rotated

� Optimum lies in a narrow basin

� Optimum lies on a bound

� Optimum lies beyond the initial bounds

� Function is not continuous everywhere

� Bias is added to the function evaluation

4.3. Benchmark Suite

Test functions employed in this study are given in detail below:

1. Shifted Sphere Function:

() ∑
=

+=
D

i
i biasfzxf

1

2 _ oxz −= []Dxxxx ,...,, 21=

D: Dimension

 28

[]Doooo ,...,, 21= : The shifted global optimum, to avoid the global optimum from the

origin

Properties:

� Unimodal

� Shifted

� Separable

� Scalable

� []Dx 100,100−∈ , global optimum: ox =* , () () 4501_* −== biasfxf

Data Files:

Name : sphere_func_data.txt

Variable : o 1*100 vector the shifted global optimum

Name : fbias_data.txt

Variable : f_bias 1*25 vector

2. Shifted Schwefel’s Problem 1.2

() ∑ ∑
= =

+









=

D

i

i

j
j biasfzxf

1

2

1

_ oxz −= []Dxxxx ,...,, 21=

D: Dimension

[]Doooo ,...,, 21= : The shifted global optimum

Properties:

� Unimodal

� Shifted

� Non-separable

� Scalable

� []Dx 100,100−∈ , global optimum: ox =* , () () 4502_* −== biasfxf

Data Files:

Name : schwefel_102_data.txt

Variable : o 1*100 vector the shifted global optimum

 29

3. Shifted Rotated High Conditioned Elliptic Function

() () biasfzxf i

D

i
D

i

_10 21

1

1

6 +=
−
−

=
∑ () Moxz *−= []Dxxxx ,...,, 21=

D: Dimension

[]Doooo ,...,, 21= : The shifted global optimum

M: orthogonal matrix

Properties:

� Unimodal

� Shifted

� Rotated

� Non-separable

� Scalable

� []Dx 100,100−∈ , global optimum: ox =* , () () 4503_* −== biasfxf

Data File:

Name : high_cond_elliptic_rot_data.txt

Variable : o 1*100 vector the shifted global optimum

Name : elliptic_M_D10.txt

Variable : M 10*10 matrix

Name : elliptic_M_D30.txt

Variable : M 30*30 matrix

Name : elliptic_M_D50.txt

Variable : M 50*50 matrix

4. Shifted Schwefel’s Problem 1.2 with Noise in Fitness

()() biasfNzxf
D

i

i

j
j _1,04.01*)(

1

2

1

++
























= ∑ ∑

= =

 oxz −=

 []Dxxxx ,...,, 21=

D: Dimension

[]Doooo ,...,, 21= : The shifted global optimum

Properties:

� Unimodal

� Shifted

 30

� Non-separable

� Scalable

� Noise in fitness

� []Dx 100,100−∈ , global optimum: ox =* , () () 4504_* −== biasfxf

Data File:

Name : schwefel_102_data.txt

Variable : o 1*100 vector the shifted global optimum

5. Schwefel’s Problem 2.6 with Global Optimum on Bounds

() { }52,72max 2121 −+−+= xxxxxf , ni ,...,1= , []3,1* =x , () 0* =xf

Extend to D dimensions:

() { } biasfBxAxf ii _max +−= , Di ,...,1= , []3,1* =x , []Dxxxx ,...,, 21=

D: Dimension

A is a D*D matrix, jia are integer random numbers in the range []500,500− ,

() 0det ≠A iA is the ith row of A.

oAB ii *= , o is a D*1 vector, io are random number in the range []100,100−

After loading the data file, set 100−=io , for  4/,...,2,1 Di = , 100=io for

  DDi ,...,4/3=

Properties:

� Unimodal

� Non-separable

� Scalable

� If the initialization procedure initializes the population at the bounds, this

problem will be solved easily.

� []Dx 100,100−∈ , global optimum: ox =* , () () 3105_* −== biasfxf

Data File:

Name : schwefel_206_data.txt

Variable : o 1*100 vector the shifted global optimum

 A 100*100 matrix

In schwefel_206_data.txt, the first line is o (1*100 vector), and line2-line101 is A

(100*100 matrix)

 31

6. Shifted Rosenbrock’s Function

() () ()()∑
−

=
+ +−+−=

1

1

22

1
2 _1100

D

i
iii biasfzzzxf 1+−= oxz

 []Dxxxx ,...,, 21=

D: Dimension

[]Doooo ,...,, 21= : The shifted global optimum

Properties:

� Multi-modal

� Shifted

� Non-separable

� Scalable

� Having a very narrow valley from local optimum to global optimum

� []Dx 100,100−∈ , global optimum: ox =* , () () 3906_* == biasfxf

Data File:

Name : rosenbrock_func_data.txt

Variable : o 1*100 vector the shifted global optimum

7. Shifted Rotated Griewank’s Function without Bounds

() ∑ ∏
= =

++






−=
D

i

D

i

ii biasf
i

zz
xf

1 1

2

_1cos
4000

, () Moxz *−= , []Dxxxx ,...,, 21=

D: Dimension

[]Doooo ,...,, 21= : The shifted global optimum

M’ : linear transformation matrix, condition number =3

()()1,03.01' NMM +=

Properties:

� Multi-modal

� Rotated

� Shifted

� Non-separable

� Scalable

� No bounds for variables x

 32

� Initialize population in []D600,0 , Global optimum ox =* is outside of the

initialization range, () () 1807_* −== biasfxf

Data File:

Name : griewank_func_data.txt

Variable : o 1*100 vector the shifted global optimum

Name : griewank_M_D10.txt

Variable : M 10*10 matrix

Name : griewank_M_D30.txt

Variable : M 30*30 matrix

Name : griewank_M_D50.txt

Variable : M 50*50 matrix

8. Shifted Rotated Ackley’s Function with Global Optimum on Bounds

() () biasfez
D

z
D

xf
D

i
i

D

i
i _2cos

1
exp

1
2.0exp20

11

2 ++






−













−−= ∑∑

==

π ,

() Moxz *−= , []Dxxxx ,...,, 21=

D: Dimension

[]Doooo ,...,, 21= : The shifted global optimum;

After loading the data file, set jj oo 212 32−=− are randomly distributed in the search

range, for  2/,...,2,1 Dj =

M : linear transformation matrix, condition number =100

Properties:

� Multi-modal

� Rotated

� Shifted

� Non-separable

� Scalable

� A’s condition number Cond(A) increases with the number of variables as

()2DO

� Global optimum on the bound

� If the initialization procedure initializes the population at the bounds, this

problem will be solved easily.

 33

� []Dx 32,32−∈ , global optimum: ox =* , () () 1408_* −== biasfxf

Data File:

Name : ackley_func_data.txt

Variable : o 1*100 vector the shifted global optimum

Name : ackley_M_D10.txt

Variable : M 10*10 matrix

Name : ackley_M_D30.txt

Variable : M 30*30 matrix

Name : ackley_M_D50.txt

Variable : M 50*50 matrix

9. Shifted Rastrigin’s Function

() ()()∑
=

++−=
D

i
ii biasfzzxf

1

2 _102cos10 π , oxz −= []Dxxxx ,...,, 21=

D: Dimension

[]Doooo ,...,, 21= : The shifted global optimum

Properties:

� Multi-modal

� Shifted

� Separable

� Scalable

� Local optima’s number is huge

� []Dx 5,5−∈ , global optimum: ox =* , () () 3309_* −== biasfxf

Data File:

Name : rastrigin_func_data.txt

Variable : o 1*100 vector the shifted global optimum

10. Shifted Rotated Rastrigin’s Function

() ()()∑
=

++−=
D

i
ii biasfzzxf

1

2 _102cos10 π , () Moxz *−= , []Dxxxx ,...,, 21=

D: Dimension

[]Doooo ,...,, 21= : The shifted global optimum

M : linear transformation matrix, condition number =2

 34

Properties:

� Multi-modal

� Shifted

� Rotated

� Non-separable

� Scalable

� Local optima’s number is huge

� []Dx 5,5−∈ , global optimum: ox =* , () () 33010_* −== biasfxf

Data File:

Name : rastrigin_func_data.txt

Variable : o 1*100 vector the shifted global optimum

Name : rastrigin_M_D10.txt

Variable : M 10*10 matrix

Name : rastrigin_M_D30.txt

Variable : M 30*30 matrix

Name : rastrigin_M_D50.txt

Variable : M 50*50 matrix

11. Shifted Rotated Weierstrass Function

() ()()[] ()[]∑ ∑∑
= ==

+⋅−







+=

D

i

k

k

kk
k

k
i

kk biasfbaDzbaxf
1 00

maxmax

_5.02cos5.02cos ππ , 5.0=a ,

3=b , 20max =k ,

() Moxz *−= , []Dxxxx ,...,, 21=

D: Dimension

[]Doooo ,...,, 21= : The shifted global optimum

M : linear transformation matrix, condition number =5

Properties:

� Multi-modal

� Shifted

� Rotated

� Non-separable

� Scalable

� Continuous but differentiable only on a set of points

 35

� []Dx 5.0,5.0−∈ , global optimum: ox =* , () () 9011_ == biasfxf

Data File:

Name : weierstrass_func_data.txt

Variable : o 1*100 vector the shifted global optimum

Name : weierstrass_M_D10.txt

Variable : M 10*10 matrix

Name : weierstrass_M_D30.txt

Variable : M 30*30 matrix

Name : weierstrass_M_D50.txt

Variable : M 50*50 matrix

12. Schwefel’s Problem 2.13

() ()()∑
=

+−=
D

i
ii biasfxBAxf

1

2 _ , []Dxxxx ,...,, 21=

()∑
=

+=
D

j
jjijjii baA

1

cossin αα , () ()∑
=

+=
D

j
jjijjii xbxaxB

1

cossin , for Di ,...,1=

D: Dimension

A, B are two D*D matrix, jia , jib are integer random numbers in the range

[]100,100− ,

[]Dαααα ,...,, 21= , jα are random numbers in the range []ππ ,− .

Properties:

� Multi-modal

� Shifted

� Non-separable

� Scalable

� []Dx ππ ,−∈ , global optimum: α=*x , () () 46012_* −== biasfxf

Data File:

Name : schwefel_213_data.txt

Variable : alpha 1*100 vector the shifted global optimum

 a 100*100 matrix

 b 100*100 matrix

 36

In schwefel_213_data.txt, line1-line100 is a (100*100 matrix), and line101-line200

is b (100*100 matrix), the last line is alpha (α) (1*100 vector)

Expanded Functions:

Use a two dimensional function ()yxF , as a starting function.

The corresponding expanded function

() () () () ()11322121 ,,...,,,...,, xxFxxFxxFxxFxxxEF DDDD ++++= −

13. Shifted Expanded Griewank’s plus Rosenbrock’s Function (F8F2)

F8: Griewank’s Function: () ∑ ∏
= =

+






−=
D

i

D

i

ii

i

xx
xF

1 1

2

1cos
4000

8

F2: Rosenbrock’s Function: () () ()()∑
−

=
+ −+−=

1

1

22

1
2 11002

D

i
iii xxxxF

() ()() ()() ()() ()()11322121 ,28,28...,28,28,...,,28 xxFFxxFFxxFFxxFFxxxFF DDDD ++++= −

Shift to

() ()() ()() ()() ()() biasfzzFFzzFFzzFFzzFFxf DDD _,28,28...,28,28 113221 +++++= −

1+−= oxz , []Dxxxx ,...,, 21=

D: Dimension

[]Doooo ,...,, 21= : The shifted global optimum

Properties:

� Multi-modal

� Shifted

� Non-separable

� Scalable

� []Dx 5,5−∈ , global optimum: ox =* , () () 13013_* −== biasfxf

Data File:

Name : EF8F2_func_data.txt

Variable : o 1*100 vector the shifted global optimum

 37

14. Shifted Rotated Expanded Scaffer’s F6 Function

() ()()
()()222

222

001.01

5.0sin
5.0,

yx

yx
yxF

++

−+
+=

Expanded to

() () () () () () biasfzzFzzFzzFzzFzzzEFxf DDDD _,,...,,,...,, 11322121 +++++== −

, () Moxz *−= , []Dxxxx ,...,, 21=

D: Dimension

[]Doooo ,...,, 21= : The shifted global optimum

M : linear transformation matrix, condition number =3

Properties:

� Multi-modal

� Shifted

� Non-separable

� Scalable

� []Dx 100,100−∈ , Global optimum ox =* , () () 30014_* −== biasfxf

Data File:

Name : E_ScafferF6_func_data.txt

Variable : o 1*100 vector the shifted global optimum

Name : E_ScafferF6_M_D10.txt

Variable : M 10*10 matrix

Name : E_ScafferF6_M_D30.txt

Variable : M 30*30 matrix

Name : E_ScafferF6_M_D50.txt

Variable : M 50*50 matrix

4.4. Evaluation Criteria

14 newly designed functions as indicated before are given in Suganthan et. al.[99] for

different level of dimensions ranging from 10 to 50. The population size was 100 for

all functions. For the evaluation purposes, Suganthan et. al. [99] provided several

criterion measures explained below in order to make a fair comparison of different

competing algorithms:

 38

Problems: 14 minimization problems

Dimensions: D=10, 30, 50

Number of replications: 25

Maximum number of function evaluations (Max_FES): Max_FES is set to

10000*D where it is increased with the dimension size, i.e., Max_FES_10D=

100000; for 30D= 300000; for 50D= 500000.

Initialization: Uniform random initialization within the search range is used except

for the problem 7 for which initialization ranges are specified.

Global Optimum: All problems, except for 7, have the global optimum within the

given bounds and there is no need to perform search outside of the given bounds for

these problems. Problem 7 is exception without any search bounds and with the

global optimum outside of the specified initialization range.

Termination: Search is terminated before reaching Max_FES.

4.5. Performance Criteria

Following performance measures are used consistent with Suganthan et. al.[99].

� Record the error value () ()()*xfxf − after 1e3, 1e4, 1e5 FES and at

termination for each run.

� For each function, sort the error values in 25 runs from the smallest (best) to

the largest (worst)

� Present the following: 1st (best/smallest), 7th, 13th (median), 19th, 25th

(worst/largest) values, mean and standard deviation for the 25 runs

� Record the success rate needed in each run to achieve the fixed accuracy

level. Fixed accuracy level for each function is given in Table 4.1.

Table 4.1. : Fixed Accuracy Level for Each Function

F 1 2 3 4 5 6 7
AL -450+1e-6 -450+1e-6 -450+1e-6 -450+1e-6 -310+1e-6 390+1e-2 -180+1e-2

F 8 9 10 11 12 13 14
AL -140+1e-2 -330+1e-2 -330+1e-2 90+1e-2 -460+1e-2 -130+1e-2 -300+1e-2

A successful run is defined as a run during which the algorithm achieves the fixed

accuracy level within the Max_FES for the particular problem-dimension.

 39

4.6. Success Rate for Each Problem

Success Rate= (number of successful runs according to the table above) / total runs

Success rate is computed for each problem-dimension size separately.

4.7. Convergence Graphs

Convergence Graphs for each problem size are given. The semi-log graphs will

show log () ()()*xfxf − vs FES for each dimension size.

4.8. Algorithm Complexity

Algorithm complexity is computed as follows:

a. Run the test program below:

 for i= 1: 1000000

 x= (double) 5.55;

 x= x+x; x= x./2; x= sqrt(x); x= ln(x); x= exp(x); y= x/x;

 end

 Computing time for the above= T0;

b. Evaluate the computing time just for Function 3. For 200000 evaluations

of a certain dimension D, it gives T1;

c. The complete computing time for the algorithm with 200000 evaluations

of the same D dimensional benchmark function 3 is T2. Execute step c 5

times and get T2 values. ()22 TMeanT =
)

 The complexity of the algorithm is reflected by: 2T
)

, T1,T0, and

() 0/12 TTT −
)

The algorithm complexities are calculated on 10, 30 and 50 dimensions, to

show the algorithm complexity’s relationship with dimension. In addition, it

provides sufficient details on the computing system and the programming

language used. In step c, we execute the complete algorithm 5 times to

accommodate variations in execution time due to adaptive nature of some

algorithms.

 40

CHAPTER 5: COMPUTATIONAL RESULTS

5.1 Computational Results for the Particle Swarm Optimization Algorithm

In order to solve continuous function optimization problems, several optimization

algorithms have been presented in the literature with their results based on a small

subset of the standard test problems such as Sphere, Schwefel, Rosenbrock,

Rastrigin, and so on. Often, confusing results limited to the test problems were

reported in the literature in such a way that the same algorithm working for a set of

functions may not work for some other functions. For these reasons, these algorithms

should be evaluated more systematically by determining a common termination

criterion, size of problems, initialization scheme, running time. The special session

on real-parameter optimization in Congress on Evolutionary Computation

(CEC2005) aimed at developing new benchmark functions to be publicly available to

the researchers for evaluating their algorithms. The problem definition files, codes

and evaluation criteria are made available in http://www.ntu.edu.sg/home/EPNSugan

[99].

The traditional PSO algorithm was coded in C and run on an Intel P4 1.33 GHz PC

with 256MB memory. Regarding the PSO parameters, the acceleration coefficients

were taken as 221 == cc consistent with the literature. Initial inertia weight and

final inertia weight were set to 9.00 =w and 4.0=nw respectively. The inertia

weight is linearly decreased by the following equation:

()() () nn
t wwwFESFESFESw +−−= 0*max_/max_

 The population size was taken as 100. The maximum number of function

evaluations is fixed at 10000*D where D is the size of dimension varying from 10 to

 41

50. The PSO algorithm was run for the 14 benchmark functions recently developed.

The performance evaluation of the PSO algorithm is also conducted through the

guidelines described in the evaluation criteria in the webpage above. 25 replications

are conducted for each benchmark function to record the error values, () ()*xfxf − ,

after 1e3 FES, 1e4 FES, 1e5 FES and at the termination.

The mean error values and standard deviations are given in Table 5.1. In addition, the

error values achieved at different FES levels are given in details in Appendices A.1,

A.2, and A.3. The Appendices list the test function, 1st (best/smallest), 7th, 13th

(median), 19th, 25th (worst/largest), mean and standard deviation of the error values

found at 1e3 FES, 1e4 FES, 1e5 FES and at termination for the 25 runs. The

convergence graphs are also given in Figures 5.1 to 5.6.

Since these benchmarks are newly designed, unfortunately there exist no results for

comparison purposes. For this reason, the computational results are presented along

with the convergence graphs to be compared with the DE algorithm in the next

Chapter.

1.0E-11
1.0E-09
1.0E-07
1.0E-05
1.0E-03
1.0E-01

1.0E+01
1.0E+03
1.0E+05
1.0E+07
1.0E+09

10
00

50
00

75
00

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

FES

lo
g

(f
-f

*)

p1

p2

p3

p4

p5

p6

p7

Figure 5.1 Convergence Graph of PSO for D=10 for functions 1-7

As seen in Figure 5.1, the PSO algorithm converges to the optimal solution easily in

each run whereas near-optimal solutions are obtained for the functions 2, 4, and 7. In

addition, the PSO algorithm was not able to find reasonable near-optimal solutions

 42

for the functions 3 and 6. In other words, the PSO algorithm failed for the functions 3

and 6.

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

10
00

50
00

75
00

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

FES

lo
g

(f
-f

*)

p8

p9

p10

p11

p12

p13

p14

Figure 5.2 Convergence Graph of PSO for D=10 for functions 8-14

As seen in Figure 5.2, the PSO algorithm performed relatively good by generating

near-optimal solutions for the functions 9, 11, 13, and 14 whereas it fails for the

functions 8, 10, and 12.

1.0E-09
1.0E-07
1.0E-05
1.0E-03
1.0E-01
1.0E+01
1.0E+03
1.0E+05
1.0E+07
1.0E+09
1.0E+11

10
00

50
00

75
00

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

FES

lo
g

(f
-f

*)

p1

p2

p3

p4

p5

p6

p7

Figure 5.3 Convergence Graph of PSO for D=30 for functions 1-7

As seen in Figure 5.3, the PSO algorithm performed relatively good results by

generating near-optimal solutions for only the functions 1 and 7 whereas it fails for

 43

the rest of the 5 other functions. Another interpretation of these results is that the

PSO algorithm could not be able to generate near-optimal solutions when the

dimension size is increased.

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

10
00

50
00

75
00

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

FES

lo
g

(f
-f

*)

p8

p9

p10

p11

p12

p13

p14

Figure 5.4 Convergence Graph of PSO for D=30 for functions 8-14

As seen in Figure 5.4, the PSO algorithm could not be able to generate satisfactory

solutions for the eight functions except for the function 13. Another interpretation of

these results is again that the PSO algorithm could not be able to generate near-

optimal solutions when the dimension size is increased.

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

10
00

75
00

25
00

0

75
00

0

15
00

00

25
00

00

35
00

00

45
00

00 Trm

FES

lo
g

(f
-f

*)

p1

p2

p3

p4

p5

p6

p7

Figure 5.5 Convergence Graph of PSO for D=50 for functions 1-7

As seen in Figure 5.5, the PSO algorithm performed satisfactory results only for the

functions 1 and 7 whereas it fails for the rest of the 5 other functions. Another

 44

interpretation of these results is again that the PSO algorithm could not be able to

generate near-optimal solutions when the dimension size is increased.

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

10
00

75
00

25
00

0

75
00

0

15
00

00

25
00

00

35
00

00

45
00

00 Trm

FES

lo
g

(f
-f

*)

p8

p9

p10

p11

p12

p13

p14

Figure 5.6 Convergence Graph of PSO for D=50 for functions 8-14

As seen in Figure 5.6, the PSO algorithm could not be able to generate satisfactory

solutions for the eight functions except for the function 13. Another interpretation of

these results is again that the PSO algorithm could not be able to generate near-

optimal solutions when the dimension size is increased.

From these results, we can conclude that the PSO algorithm is affected by the

dimension size. In other words, the performance of the PSO algorithm gets worsened

as the dimension size increases.

5.2 Computational Results for the Differential Evolution Algorithm

The traditional DE algorithm was coded in C and run on an Intel P4 1.33 GHz PC

with 256MB memory. Regarding the DE parameters, mutation (MR) and crossover

rates (CR) are taken as 0.9 respectively. The population size was 100. The maximum

number of function evaluations is fixed at 10000*D where D is the size of dimension

and varied from 10 to 50. The DE algorithm was run for the 14 benchmark functions

recently developed. The performance evaluation of the DE algorithm is also

conducted through the guidelines described in [99]. 25 replications are conducted for

 45

each benchmark function to record the error values, () ()*xfxf − , after 1e3 FES, 1e4

FES, 1e5 FES and at the termination.

Table 5.1. : Mean Error and standard deviation values achieved at the termination for

PSO Algorithm

Func. D=10 D=30 D=50
1 Mean 0.00000E+00 8.00000E-09 1.16368E-01
 Std D. 0.00000E+00 3.79693E-08 5.62614E-01
2 Mean 4.31888E-01 4.01956E+02 6.53038E+03
 Std D. 1.96785E+00 3.40265E+02 3.35448E+03
3 Mean 1.98704E+05 1.07647E+07 4.84217E+07
 Std D. 2.12806E+05 9.33441E+06 3.11780E+07
4 Mean 4.25415E+00 2.70271E+03 2.27204E+04
 Std D. 1.98131E+01 1.48463E+03 7.01268E+03
5 Mean 0.00000E+00 1.10620E+04 1.98764E+04
 Std D. 0.00000E+00 3.83930E+03 3.63886E+03
6 Mean 6.92385E+01 1.57711E+02 3.03737E+02
 Std D. 9.08055E+01 2.13877E+02 3.42479E+02
7 Mean 2.41916E-01 8.19353E-02 2.47858E-02
 Std D. 1.29032E-01 8.93249E-02 2.36381E-02
8 Mean 2.03441E+01 2.09311E+01 2.11326E+01
 Std D. 8.13829E-02 6.64438E-02 3.99925E-02
9 Mean 1.99013E+00 2.43572E+01 6.62258E+01
 Std D. 1.21875E+00 5.51904E+00 1.11524E+01

10 Mean 1.64690E+01 8.72283E+01 2.14250E+02
 Std D. 7.04173E+00 3.91043E+01 9.29100E+01

11 Mean 4.62658E+00 3.11684E+01 6.61378E+01
 Std D. 1.45265E+00 5.19378E+00 5.93583E+00

12 Mean 8.47897E+01 2.21836E+04 1.08151E+05
 Std D. 1.65819E+02 1.60610E+04 5.76638E+04

13 Mean 6.62293E-01 3.70427E+00 9.64705E+00
 Std D. 2.06914E-01 9.19095E-01 2.69821E+00

14 Mean 2.96542E+00 1.30484E+01 2.27563E+01
 Std D. 5.20650E-01 2.44407E-01 2.80591E-01

The mean error values and standard deviations are given in Table 5.2. In addition, the

error values achieved at different FES levels are given in details in Appendices B.1,

B.2, and B.3. The Appendices presents the test functions, 1st (best/smallest), 7th, 13th

(median), 19th, 25th (worst/largest) values, mean and standard deviation of the error

values found at 1e3 FES, 1e4 FES, 1e5 FES and at termination. The complexity of

the DE algorithm will be given in detail in the next Chapter. The convergence graphs

are also given in Figures 5.7 to 5.12.

 46

Since these benchmarks are newly designed, unfortunately there exist no results for

comparison purposes. For this reason, the computational results are presented along

with the convergence graphs to be compared with the PSO algorithm in the next

Chapter.

1.E-11
1.E-09
1.E-07
1.E-05
1.E-03
1.E-01

1.E+01
1.E+03
1.E+05
1.E+07
1.E+09

10
00

50
00

75
00

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

FES

lo
g(

f-
f*

)

p1

p2

p3

p4

p5

p6

p7

Figure 5.7 Convergence Graph of DE for D=10 for functions 1-7

As seen in Figure 5.7, the DE algorithm performed very good by generating optimal

solutions for the functions 1, 2, 4, and 5. In addition, it generated results near to the

optimal solutions for functions 3, 6 and 7.

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

10
00

50
00

75
00

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

FES

lo
g(

f-
f*

)

p8

p9

p10

p11

p12

p13

p14

Figure 5.8 Convergence Graph of DE for D=10 for functions 8-14

 47

As seen in Figure 5.8, the DE algorithm performed relatively good results by

generating near-optimal solutions for the functions 11, 13 and 14 whereas it fails for

the rest of the 4 other functions.

1.E-10
1.E-08
1.E-06
1.E-04
1.E-02

1.E+00
1.E+02
1.E+04
1.E+06
1.E+08
1.E+10
1.E+12

10
00

50
00

75
00

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

FES

lo
g(

f-
f*

)

P1

P2

P3

P4

P5

P6

P7

Figure 5.9 Convergence Graph of DE for D=30 for functions 1-7

As seen in Figure 5.9, the DE algorithm generated the optimal solution for the first

function. It also generated near-optimal results for the functions 2 and 7. However, it

fails for the functions 3, 4, 5 and 6.

1.E-11
1.E-09
1.E-07
1.E-05
1.E-03
1.E-01

1.E+01
1.E+03
1.E+05
1.E+07

10
00

50
00

75
00

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

FES

lo
g(

f-
f*

)

P8

P9

P10

P11

P12

P13

P14

Figure 5.10 Convergence Graph of DE for D=30 for functions 8-14

 48

As seen in Figure 5.10, the DE algorithm generated the optimal solution for the

function 12. It also generated near-optimal result for the functions 13. However, it

fails for the functions 8, 9, 10, 11, and 14.

1.E-11
1.E-09
1.E-07
1.E-05
1.E-03
1.E-01

1.E+01
1.E+03
1.E+05
1.E+07
1.E+09
1.E+11

10
00

50
00

75
00

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

45
00

00

50
00

00

FES

lo
g(

f-
f*

)

p1

p2

p3

p4

p5

p6

p7

Figure 5.11 Convergence Graph of DE for D=50 for functions 1-7

As seen in Figure 5.11, the DE algorithm generated the optimal solution for the first

function 1. It also generated near-optimal result for the function 7. However, it fails

for the functions 2, 3, 4, 5 and 6.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

10
00

50
00

75
00

10
00

0

25
00

0

50
00

0

75
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

45
00

00

50
00

00

FES

lo
g(

f-
f*

)

p8

p9

p10

p11

p12

p13

p14

Figure 5.12 Convergence Graph of DE for D=50 for functions 8-14

 49

As seen in Figure 5.12, the DE algorithm generated the near-optimal solution only

for the function 13. It fails for the functions 8, 9, 10, 11, 12 and 14. Another

interpretation of these results is that the DE algorithm could not be able to generate

near-optimal solutions when the dimension size is increased.

From these results, we can conclude that the DE algorithm is affected by the

dimension size. In other words, the performance of the DE algorithm gets worsened

as the dimension size increases.

Table 5.2. : Mean Error and standard deviation values achieved at the termination

for the DE Algorithm

Func. D=10 D=30 D=50
1 Mean 0.00000E+00 0.00000E+00 0.00000E+00
 Std D. 0.00000E+00 0.00000E+00 0.00000E+00
2 Mean 0.00000E+00 6.18957E-02 6.70521E+01
 Std D. 0.00000E+00 4.21461E-02 2.92809E+01
3 Mean 5.46328E-05 7.34622E+05 2.18206E+06
 Std D. 1.01191E-04 3.83248E+05 9.15385E+05
4 Mean 0.00000E+00 4.06987E+00 3.00509E+03
 Std D. 0.00000E+00 4.20637E+00 2.18711E+03
5 Mean 0.00000E+00 1.89052E+03 5.49715E+03
 Std D. 0.00000E+00 1.88807E+03 2.49397E+03
6 Mean 6.37853E-01 9.45834E+00 9.13380E+01
 Std D. 1.49164E+00 5.37511E+00 8.49118E+01
7 Mean 1.50829E-01 4.16067E-02 1.07342E-02
 Std D. 6.40648E-02 6.68922E-02 1.58607E-02
8 Mean 2.03384E+01 2.09600E+01 2.11374E+01
 Std D. 7.50173E-02 5.14799E-02 3.69487E-02
9 Mean 5.09419E+00 4.08729E+01 9.27698E+01
 Std D. 2.09729E+00 1.12049E+01 2.10559E+01

10 Mean 1.65177E+01 5.02670E+01 9.14884E+01
 Std D. 6.98306E+00 1.33351E+01 1.68417E+01

11 Mean 7.09222E-01 1.17990E+01 5.32926E+01
 Std D. 9.72805E-01 4.16057E+00 1.83731E+01

12 Mean 5.89551E+01 0.00000E+00 1.06185E+04
 Std D. 2.68501E+02 0.00000E+00 8.53809E+03

13 Mean 7.66957E-01 3.49835E+00 9.58925E+00
 Std D. 3.34237E-01 1.17383E+00 3.20361E+00

14 Mean 3.44692E+00 1.33659E+01 2.31630E+01
 Std D. 5.73178E-01 1.99834E-01 1.74935E-01

 50

CHAPTER 6: COMPARISON OF PSO AND DE ALGORITHMS

6.1 Comparison of PSO and DE Algorithms

In this chapter, PSO and DE algorithms have been compared according to best mean,

standard deviation of the error values achieved at the termination as well as their

success ratio. Error values achieved within the maximum number of function

evaluation and the success ratio achieved within the fixed accuracy levels are

presented in Tables 6.1 to 6.3. The fixed accuracy levels obtained from Suganthan et.

al. [99] for the 14 test functions as given in Chapter 4 are 1e-6 for functions 1 to 5

and 1e-2 for functions 6 to 14.

 51

Table 6.1. : Error values achieved in the Max_FES and Success Rate (PSO and DE

for D=10)

Func. 1st(Min) 7th 13th(Median) 19th 25th(Max) Mean Std. SR(%)

1 PSO 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100

 DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100

2 PSO 1.76600E-05 2.65480E-04 9.93690E-04 1.26971E-02 9.86478E+00 4.31888E-01 1.96785E+00 100

 DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100

3 PSO 2.50113E+04 8.09600E+04 1.24667E+05 2.06380E+05 8.50952E+05 1.98704E+05 2.12806E+05 0

 DE 4.10000E-07 2.02000E-06 7.09000E-06 6.23900E-05 3.83810E-04 5.46328E-05 1.01191E-04 44

4 PSO 1.03240E-04 1.14938E-03 2.06002E-02 1.41357E-01 9.92933E+01 4.25415E+00 1.98131E+01 0

 DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100

5 PSO 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100

 DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100

6 PSO 3.84650E-01 3.66355E+00 8.44764E+00 1.42832E+02 2.88304E+02 6.92385E+01 9.08055E+01 0

 DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 3.98658E+00 6.37853E-01 1.49164E+00 100

7 PSO 6.01463E-02 1.56842E-01 2.16706E-01 3.42226E-01 5.35337E-01 2.41916E-01 1.29032E-01 0

 DE 5.08014E-02 1.03748E-01 1.50057E-01 2.07027E-01 2.58674E-01 1.50829E-01 6.40648E-02 0

8 PSO 2.01574E+01 2.02826E+01 2.03568E+01 2.04105E+01 2.04617E+01 2.03441E+01 8.13829E-02 0

 DE 2.01870E+01 2.02973E+01 2.03631E+01 2.03872E+01 2.05102E+01 2.03384E+01 7.50173E-02 0

9 PSO 0.00000E+00 9.94959E-01 1.98992E+00 2.98488E+00 3.97990E+00 1.99013E+00 1.21875E+00 92

 DE 1.98992E+00 2.98488E+00 4.97480E+00 6.96471E+00 8.95463E+00 5.09419E+00 2.09729E+00 0

10 PSO 5.28933E+00 1.25393E+01 1.58296E+01 1.88197E+01 3.25179E+01 1.64690E+01 7.04173E+00 0

 DE 7.79445E+00 1.14447E+01 1.52435E+01 1.89897E+01 3.63416E+01 1.65177E+01 6.98306E+00 0

11 PSO 2.56900E+00 3.60895E+00 4.63681E+00 5.43349E+00 8.49518E+00 4.62658E+00 1.45265E+00 0

 DE 7.93340E-04 2.43548E-03 5.85140E-03 1.50192E+00 3.00221E+00 7.09222E-01 9.72805E-01 80

12 PSO 9.48824E-01 1.04495E+01 2.02180E+01 3.96839E+01 7.12255E+02 8.47897E+01 1.65819E+02 0

 DE 0.00000E+00 0.00000E+00 2.00000E-08 1.00030E+01 1.34735E+03 5.89551E+01 2.68501E+02 96

13 PSO 3.89080E-01 5.06936E-01 6.38670E-01 7.38544E-01 1.22706E+00 6.62293E-01 2.06914E-01 0

 DE 3.81196E-01 5.33667E-01 7.16250E-01 9.19178E-01 1.56296E+00 7.66957E-01 3.34237E-01 0

14 PSO 1.57958E+00 2.61841E+00 3.12565E+00 3.29433E+00 3.62920E+00 2.96542E+00 5.20650E-01 0

 DE 1.00236E+00 3.45017E+00 3.58983E+00 3.75966E+00 3.92519E+00 3.44692E+00 5.73178E-01 0

Avg. PSO 1.78876E+03 5.78677E+03 8.91019E+03 1.47582E+04 6.08666E+04 1.42079E+04 1.52211E+04 28

 DE 2.24332E+00 2.77264E+00 3.21739E+00 4.48089E+00 1.01849E+02 7.61552E+00 2.00780E+01 51.43

As seen in Table 6.1, the DE algorithm was superior to the PSO algorithm for all the

performance measures taken when overall average of the performance measures for

14 functions. In other words, the DE algorithm was better than the PSO algorithm in

terms of min, median, max, mean, standard deviation and success ratio. When

comparing the success ratio of both algorithms, the DE algorithm outperformed the

PSO algorithm with a 51.43 percent which is almost twice as much as a success ratio

of 28% for the PSO algorithm.

 52

Table 6.2. : Error values achieved in the Max_FES and Success Rate (PSO and DE

for D=30)

Func. 1st(Min) 7th 13th(Median) 19th 25th(Max) Mean Std. SR(%)

1 PSO 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.90000E-07 8.00000E-09 3.79693E-08 100

 DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100

2 PSO 9.19895E+01 1.44785E+02 2.84253E+02 5.35763E+02 1.37277E+03 4.01956E+02 3.40265E+02 0

 DE 1.00082E-02 2.69799E-02 4.70619E-02 8.74604E-02 1.58316E-01 6.18957E-02 4.21461E-02 0

3 PSO 2.14739E+06 3.51459E+06 5.23473E+06 1.76596E+07 3.46473E+07 1.07647E+07 9.33441E+06 0

 DE 2.52866E+05 3.63513E+05 6.71938E+05 9.74700E+05 1.45497E+06 7.34622E+05 3.83248E+05 0

4 PSO 8.49725E+02 1.54421E+03 2.65265E+03 3.59317E+03 6.77614E+03 2.70271E+03 1.48463E+03 0

 DE 4.44201E-01 1.56985E+00 2.26303E+00 4.37445E+00 1.58945E+01 4.06987E+00 4.20637E+00 0

5 PSO 1.80210E+01 8.76067E+03 1.08879E+04 1.35322E+04 1.80297E+04 1.10620E+04 3.83930E+03 0

 DE 1.08400E-05 9.65160E-03 2.19951E+03 2.91858E+03 5.93939E+03 1.89052E+03 1.88807E+03 0

6 PSO 1.28023E+01 2.84509E+01 9.26050E+01 1.63450E+02 1.08048E+03 1.57711E+02 2.13877E+02 0

 DE 7.91052E-01 6.02897E+00 1.01827E+01 1.26779E+01 1.80863E+01 9.45834E+00 5.37511E+00 0

7 PSO 4.92000E-06 1.03743E-02 4.04980E-02 1.50584E-01 3.08387E-01 8.19353E-02 8.93249E-02 64

 DE 0.00000E+00 0.00000E+00 1.00000E-08 5.39371E-02 2.89677E-01 4.16067E-02 6.68922E-02 100

8 PSO 2.07623E+01 2.08980E+01 2.09448E+01 2.09789E+01 2.10350E+01 2.09311E+01 6.64438E-02 0

 DE 2.08070E+01 2.09520E+01 2.09705E+01 2.09984E+01 2.10302E+01 2.09600E+01 5.14799E-02 0

9 PSO 1.39294E+01 1.98992E+01 2.48740E+01 2.88538E+01 3.28336E+01 2.43572E+01 5.51904E+00 0

 DE 2.18891E+01 3.28336E+01 4.07933E+01 4.77579E+01 6.06924E+01 4.08729E+01 1.12049E+01 0

10 PSO 4.46290E+01 6.76721E+01 7.70619E+01 9.74682E+01 2.44440E+02 8.72283E+01 3.91043E+01 0

 DE 2.34153E+01 4.49232E+01 5.00901E+01 5.49342E+01 7.95865E+01 5.02670E+01 1.33351E+01 0

11 PSO 2.10586E+01 2.74924E+01 3.04811E+01 3.50665E+01 3.94895E+01 3.11684E+01 5.19378E+00 0

 DE 5.37358E+00 8.52891E+00 1.09034E+01 1.56893E+01 1.87345E+01 1.17990E+01 4.16057E+00 0

12 PSO 2.21992E+03 9.09589E+03 1.75403E+04 3.40146E+04 6.06273E+04 2.21836E+04 1.60610E+04 0

 DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0

13 PSO 2.12003E+00 3.06190E+00 3.71451E+00 4.08763E+00 6.58410E+00 3.70427E+00 9.19095E-01 0

 DE 1.97830E+00 2.68041E+00 2.95265E+00 4.04031E+00 5.77030E+00 3.49835E+00 1.17383E+00 0

14 PSO 1.24395E+01 1.29290E+01 1.30828E+01 1.32259E+01 1.34684E+01 1.30484E+01 2.44407E-01 0

 DE 1.29578E+01 1.32526E+01 1.33953E+01 1.35254E+01 1.36599E+01 1.33659E+01 1.99834E-01 0

Avg PSO 1.53621E+05 2.52451E+05 3.76169E+05 1.26512E+06 2.48111E+06 7.71527E+05 6.68314E+05 11.71

 DE 1.80681E+04 2.59746E+04 4.81635E+04 6.98423E+04 1.04367E+05 5.26191E+04 2.75126E+04 14.29

As seen in Table 6.2, the DE algorithm again outperformed the PSO algorithm for all

the performance measures taken when overall average of the performance measures

for 14 functions for the dimension size of 30. In other words, the DE algorithm was

better than the PSO algorithm in terms of min, median, max, mean, standard

deviation and success ratio. When comparing the success ratio of both algorithms,

the DE algorithm outperformed the PSO algorithm since DE’s success ratio was

14.29 percent whereas PSO’s success ratio was 11.71 percent.

 53

Table 6.3. : Error values achieved in the Max_FES and Success Rate (PSO and DE

for D=50)

Func. 1st(Min) 7th 13th(Median) 19th 25th(Max) Mean Std. SR(%)

1 PSO 2.00000E-08 6.80000E-07 3.72000E-06 1.92900E-05 2.81544E+00 1.16368E-01 5.62614E-01 100

 DE 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 100

2 PSO 2.73281E+03 4.12783E+03 5.65296E+03 7.55080E+03 1.50197E+04 6.53038E+03 3.35448E+03 0

 DE 2.67056E+01 5.11244E+01 5.74726E+01 7.93419E+01 1.40927E+02 6.70521E+01 2.92809E+01 0

3 PSO 7.18257E+06 2.71240E+07 3.66474E+07 6.29808E+07 1.21738E+08 4.84217E+07 3.11780E+07 0

 DE 9.83717E+05 1.49749E+06 2.10192E+06 2.56510E+06 4.52991E+06 2.18206E+06 9.15385E+05 0

4 PSO 1.01778E+04 1.82279E+04 2.25180E+04 2.79352E+04 3.50883E+04 2.27204E+04 7.01268E+03 0

 DE 6.42150E+02 1.61209E+03 2.26646E+03 3.58110E+03 1.04788E+04 3.00509E+03 2.18711E+03 0

5 PSO 1.25707E+04 1.71181E+04 1.95252E+04 2.21800E+04 2.88438E+04 1.98764E+04 3.63886E+03 0

 DE 5.38846E+02 3.66471E+03 5.61799E+03 7.33205E+03 1.04086E+04 5.49715E+03 2.49397E+03 0

6 PSO 4.24331E+01 1.09911E+02 1.71295E+02 3.04782E+02 1.36723E+03 3.03737E+02 3.42479E+02 0

 DE 2.13773E+01 4.01439E+01 8.45228E+01 9.32595E+01 3.88045E+02 9.13380E+01 8.49118E+01 0

7 PSO 1.02000E-03 6.85393E-03 1.99886E-02 3.07924E-02 1.05730E-01 2.47858E-02 2.36381E-02 72

 DE 1.00000E-07 6.60000E-07 2.66000E-06 1.66393E-02 4.86660E-02 1.07342E-02 1.58607E-02 96

8 PSO 2.10415E+01 2.11087E+01 2.11392E+01 2.11633E+01 2.11908E+01 2.11326E+01 3.99925E-02 0

 DE 2.10276E+01 2.11233E+01 2.11432E+01 2.11634E+01 2.11989E+01 2.11374E+01 3.69487E-02 0

9 PSO 4.57681E+01 5.87025E+01 6.96471E+01 7.26319E+01 8.75563E+01 6.62258E+01 1.11524E+01 0

 DE 6.66622E+01 7.95966E+01 8.65613E+01 9.65108E+01 1.42279E+02 9.27698E+01 2.10559E+01 0

10 PSO 1.01273E+02 1.39716E+02 1.84071E+02 2.89274E+02 4.04977E+02 2.14250E+02 9.29100E+01 0

 DE 5.59457E+01 8.37425E+01 9.01580E+01 9.74667E+01 1.33335E+02 9.14884E+01 1.68417E+01 0

11 PSO 5.32597E+01 6.31906E+01 6.70882E+01 7.08982E+01 7.45000E+01 6.61378E+01 5.93583E+00 0

 DE 2.44855E+01 3.74256E+01 5.70049E+01 7.11363E+01 7.44238E+01 5.32926E+01 1.83731E+01 0

12 PSO 1.80026E+04 6.22675E+04 1.02842E+05 1.39305E+05 2.27342E+05 1.08151E+05 5.76638E+04 0

 DE 6.30067E+02 4.08555E+03 8.10495E+03 1.60856E+04 3.08875E+04 1.06185E+04 8.53809E+03 0

13 PSO 5.33924E+00 7.66812E+00 9.28354E+00 1.16804E+01 1.55820E+01 9.64705E+00 2.69821E+00 0

 DE 5.19514E+00 7.35488E+00 8.78431E+00 1.15155E+01 1.59468E+01 9.58925E+00 3.20361E+00 0

14 PSO 2.20372E+01 2.26008E+01 2.27769E+01 2.28943E+01 2.32639E+01 2.27563E+01 2.80591E-01 0

 DE 2.26743E+01 2.30478E+01 2.32035E+01 2.32611E+01 2.34932E+01 2.31630E+01 1.74935E-01 0

Avg PSO 5.16167E+05 1.94473E+06 2.62846E+06 4.51275E+06 8.71759E+06 3.46998E+06 2.23215E+06 12.29

 DE 7.04123E+04 1.07657E+05 1.51310E+05 1.85185E+05 3.27330E+05 1.57259E+05 6.63413E+04 14

As seen in Table 6.3, the DE algorithm again outperformed the PSO algorithm for all

the performance measures taken when overall average of the performance measures

for 14 functions for the dimension size of 50. In other words, the DE algorithm was

better than the PSO algorithm in terms of min, median, max, mean, standard

deviation and success ratio. When comparing the success ratio of both algorithms,

the DE algorithm outperformed the PSO algorithm since DE’s success ratio was 14

percent whereas PSO’s success ratio was 12.29 percent.

 54

Finally, the computational complexity of each algorithm is considered. The

algorithm complexity, which is defined in chapter 4, is computed for 10, 30, and 50

dimensions by using function 3 in order to show the algorithm complexity

relationship with increasing dimensions. The computational complexity of each

algorithm is given. Table 6.4 and Table 6.5 show the complexity of the PSO and DE

algorithms, respectively.

Table 6.4. : Complexity of the PSO Algorithm

 PSO
 D=10 D=30 D=50

T0 551 551 551
T1 1442 4526 7481
T2 7312 25671 50476

Complexity 10.65 38.37 78.03

Table 6.5. : Complexity of the DE Algorithm

 DE
 D=10 D=30 D=50

T0 551 551 551
T1 1442 4526 7481
T2 7150 25094 49497

Complexity 10.36 37.33 76.25

As seen from Table 6.4 and 6.5, the time complexity of both algorithm show similar

behavior in terms of CPU times

Table 6.6 : Average Success Rates of PSO and DE at D=10,30,50

Dimension 10 30 50

PSO Avg. SR.(%) 28 11.72 12.29

DE Avg. SR.(%) 51.43 14.29 14

To sum up all the results, overall average success ratio for both algorithms with

different dimensions are given in Table 6.6. The DE algorithm perfoms better than

the PSO algorithm according to average success ratio. However, as the dimension

size increases, the DE algorithm also deteriorates.

 55

CHAPTER 7: CONCLUSION

7.1 Conclusions

In this research, latest metaheuristic approaches so called the particle swarm

optimization and differential evolution algorithms are presented to solve continuous

function optimization. The benchmark suite is taken from Suganthan et. al. [99].

According to the results, the DE algorithm performed better than the PSO algorithm

in general for the functions considered. Main contribution of this research is the

development of both algorithm for newly designed benchmark problems. Since these

benchmarks are newly designed, unfortunately there exist no results for comparison

purposes. For this reason, the computational results are presented to be compared

with the DE algorithm only.

For the future work, these algorithms can be extended to other versions of the PSO

and DE algorithms such as multi-swarm parallel algorithms with master-slave or

island models to obtain better results. In addition, there exist different types of local

search algorithms that can be embedded in these algorithms. These algorithms are

Nelder and Mead algorithm, Solis and Wets algorithm, Pattern Search etc. Including

these local searches in the PSO and DE algorithms may lead to better results.

 56

REFERENCES

[1] Leon, A., 1966. “A classified bibliography on optimization.” Recent

advances in optimization techniques.

[2] Dixon, L.C.W. and Szego, G.P., 1978. “ The global optimization problem:

an introduction.” Towards Global Optimization 2. , 1-15.

[3] Gomulka, J., 1978. “A user’s experience with Torn’s clustering algorithm.”

Towards Global Optimization 2. , 63-70.

[4] Archetti, F. and Schoen, F., 1984. “A Survey on the global optimization

problem: general theory and computational approaches.” Annals of Operations

Research 1, J.C.Baltzer A.G. Publishing. pp. 87-110.

[5] Torn, A., Zilinskas, A., 1989. Global Optimisation. Lecture notes in

Computer Science, vol. 350. Springer-Verlag, Berlin.

[6] Xiangsun, Z., 1984. “Survey on the global optimum deterministic

algorithms”, Chinese journal of operation research, Vol.3, No.2, 1-13

[7] Yunkang, Z., 1992. “Survey on the global optimum probabilistic

algorithms”, Chinese journal of operation research, Vol.11, No.2, 28-41

[8] Ling, W., 2000. “Meta-heuristic algorithms: A review, Control and

Decision,” Beijin, Vol.15, No.3,257-262

[9] Peng, Z., and Chuan H., 2000. “A global optimization method based on

uniform design”, Proceeding of the 1st International Conference on Mechanical

Engineering,Shanghai.

 57

[10] Qisheng, G., 1999. “The genetic algorithm and application based on

uniform design”, Information and Control, Beijin, Vol.28, No.3, 236-239

[11] Qisheng, G., 2000. “Dimulsted annealing concurrent algorithm of

parameter design”, Theory and practice of system engineering, Beijin, No.8, 41-

44

[12] Shaojun, L., 2000. “Study on Genetic-Alopex algorithms for seeking the

global optimization”, Information and Control, Beijin, Vol.29, No.4, 304-308

[13] Zhiyuan, W., 1998. “Annealing accuracy penalty function based nonlinear

constrained optimization method with genetic algorithms”, Control and Decision,

Beijin, Vol.13, No.2, 136-140

[14] Ling, W., 1998. “Study on GASA hybrid strategy and its convergence

behaviour”, Control and Decision, Beijin, Vol.13, No.6, 669-672

[15] Ting, H., 2000. “Research on SAA-based new hybrid evolutionary

algorithm and its application”, Control and Decision, Beijin, Vol.15, No.4, 504-

506

[16] Chenzhong, L., 2000. “Evolutionary algorithms with chaotic mutation”,

Control and Decision, Beijin, Vol.15, No5, 557-560

[17] Zicai, W., 1999. “Simulated annealing algorithm based on chaotic

variable”, Control and Decision, Beijin, Vol.14, No.4, 381-384

[18] Ling, W., 1999. “Genetic algorithm combined with a chaotic sequence”,

Theory and practice of system engineering, Beijin, No.11, 1-7

[19] Ling, W., 2000. “A kind of chaotic neural network optimization algorithm

based on annealing strategy”, Control Theory and Applications, Beijin, Vol.17,

No.1, 139-142

[20] Wei, P., 1999. “A hybrid genetic algorithm for function optimization”,

Journal of Software, Beijin,Vol.10, No.8, 819-823

[21] Junling, W., 1998. “A heuristic search method by analogy”, Journal of

computer science, Beijin, Vol.25, No. 5, 33-37

[22] Lishan, K., 1994. “non-numeric merged algorithms- Simulated annealing

algorithm”, the science press, Beijin.

 58

[23] Zhenjun, P., 1998. Evolvement computation, the press of Qinghua

University , Beijin.

[24] Yang, J.M., 1997. “A Continuous Genetic Algorithm for Global

Optimization”, Editor: Thomas Back, Proceedings of the Seventh International

Conference on Genetic Algorithms. Morgan Kaufmann Publishers, Inc. San

Francisco, California. 230-237

[25] Lishan, K., 1994. “non-numeric merged algorithms- Genetic algorithm”,

the science press, Beijin.

[26] Guoliang, C., 1996. “Genetic algorithm and its application”, the press of

people’s post, Beijin.

[27] Gen, M., and Cheng, R., 2000. “Genetic algorithms and engineering

design”, the science press, Beijin.

[28] Yugeng, X., 1996. “Survey on genetic algorithm”, Control Theory and

Applications, Beijin, Vol.13, No.6, 697-708

[29] Yanfeng, S., 1996. “The application of genetic algorithm in optimization”,

Control and Decision, Beijin, Vol.11, No.4, 425-431

[30] Cong, D., 1998. “Generalized genetic algorithm”, Exploration of Nature,

Beijin, Vol.17, No.63, 33-37

[31] Fogel, L. J., Owens, A. J., and Walsh, M. J., 1966. Artifical Intelligence

through Simulated Evolution. John Wiley, New York.

[32] Schwefel, H. P., 1981. Numerical Optimization of Computer Models. John

Wiley, Chichester, UK.

[33] Koza, J. R., 1994. Genetic Programming: On the Programming of

Computer by Means of Natural Selection, MIT Press, Cambridge.

[34] Bing, L., 1997. “Chaos optimization method and its application”, Control

Theory and Applications, Beijin, Vol.14, No.4, 613-615

[35] Chenzhong, L., 2000. “Chaos search method for nonlinear constrained

optimization”, Theory of system engineering and its applications, No.8, 54-57

[36] Zhang, J., 1999. “A new evolution algorithm-Ant Colony Algorithm”,

Theory of system engineering and its applications, Beijin, No.3, 84-87

 59

[37] Zhang, J., 2000. “A self-adaptive ant colony algorithm”, Control Theory

and Applications, Beijin, Vol.17, No.1, 1-3

[38] Kennedy, J. and Eberhart, R. C., 1995. “Particle Swarm Optimization,”

Proc. of IEEE International Conference on Neural Networks, Piscataway, NJ,

USA, pp. 1942-1948.

[39] Kennedy, J., Eberhart, R. C., and Shi, Y., 2001. Swarm Intelligence,

Morgan Kaufmann, San Mateo, CA.

[40] Storn, R. and Price, K., 1997. “Differential Evolution - A Simple and

Efficient Heuristic for Global Optimization over Continuous Space,” Journal of

Global Optimization, vol. 11, pp. 341-359.

[41] De Jong, K.A., 1975. “An Analysis of the Behavior of a Class of Genetic

Adaptative Systems”, Ph.D. Thesis, University microfilms no. 76-9381,

University of Michigan, Ann Arbor, MI.

[42] Baker, J.E., 1985. “Reducing Bias and Inefficiency in the Selection

Algorithm.” In Proceedings of the Second International Conference on Genetic

Algorithms and their Applications, New Jersey, USA.

[43] Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley, New York.

[44] Mühlenbein H. and Schlierkamp-Voosen, D., 1993. “Analysis of

Selection, Mutation and Recombination in Genetic Algorithms.” Technical

Report 93/94, GMD.

[45] Chipperfield, A.J., P.J. Fleming, H. Pohleim, and C.M. Fonseca., 1994.

“Genetic Algorithm Toolbox User’s Guide.” ACSE Research Report No. 512,

University of Sheffield.

[46] Reeves, C.R. (ed.), 1995. “Modern Heuristic Techniques for Combinatorial

Problems.” In Advanced Topics in Computer Science. McGraw-Hill, Chap. 4.

[47] Michalewicz, Z., 1996. Genetic Algorithms+Data Structures=Evolution

Programs.Third ed., Springer- Verlag, New York.

 60

[48] Siarry, P., G. Berthiau, F. Durbin, and J. Haussy, 1997. “Enhanced

Simulated Annealing for Globally Minimizing Functions of Many Continuous

Variables.” ACM Transactions on Mathematical Software, 23(2), 209–228.

[49] Battiti, R., and Tecchiolli, G., 1994. “The reactive tabu search”, ORSA

Journal on Computing, 6(2):126—140.

[50] Battiti, R., and Tecchiolli, G., 1995. “The continuous reactive tabu search:

blending combinatorial optimization and stochastic search for global

optimization”, Annals of Operations Research (in press).

[51] Salerno, J., 1997. “Using the Particle Swarm Optimization Technique to

Train a Recurrent Neural Model,” Proc. of the IEEE International Conference on

Tools with Artificial Intelligence, pp. 45-49.

[52] Ismail, A. and Engelbrecht, A. P. , 1999. “Training Product Units in

Feedforward Neural Networks Using Particle Swarm Optimization,” Proc. of the

International Conference on Artificial Intelligence, Durban, South Africa, pp. 36-

40.

[53] Gudise, V. G. and Venayagamoorthy, G. K. , 2003. “Comparison of

Particle Swarm Optimization and Backpropagation as Training Algorithms for

Neural Networks,” Proc. of the IEEE Swarm Intelligent Symposium 2003,

Indianapolis, Indiana, USA, pp. 110-117.

[54] Yoshida, H., Kawata, K., Fukuyama, Y., and Nakanishi, Y. , 2000. “A

Particle Swarm Optimization for Reactive Power and Voltage Control

Considering Voltage Security Assessment,” IEEE Transactions on Power

Systems, vol. 15, pp.1232-1239.

[55] Abido, M. A. , 2002. “Optimal Power Flow Using Particle Swarm

Optimization,” Electrical Power and Energy Systems, vol. 24, pp. 563-571.

[56] Abido, M. A. , 2002. “Optimal Design of Power System Stabilizers Using

Particle Swarm Optimization,” IEEE Transactions on Energy Conversion, vol.

17, pp. 406-413.

[57] Agrafiotis, D. K. ad Cedeno, W. , 2002. “Feature Selection for Structure-

Activity Correlation Using Binary Particle Swarms,” Journal of Medicinal

Chemistry, vol. 45, pp. 1098-1107.

 61

[58] Brandstatter, B. and Baumgartner, U. , 2002. “Particle Swarm

Optimization – Mass-Spring System Analogon,” IEEE Transactions on

Magnetics, vol. 38, pp. 997-1000.

[59] Ciuprina, G., Ioan, D., and Munteanu, I. , 2002. “Use of Intelligent-

Particle Swarm Optimization in Electromagnetics,” IEEE Transactions on

Magnetics, vol. 38, pp. 1037-1040.

[60] Robinson, J. and Rahmat-Samii, Y. , 2004. “Particle Swarm Optimization

in Electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 52,

pp. 397-407.

[61] Eberhart, R. C. , and Hu, X. , 1999. “Human tremor analysis using

particle swarm optimization,” Proc. Congress on Evolutionary Computation

1999, Washington, DC, pp 1927-1930. Piscataway, NJ: IEEE Service Center.

[62] Wachowiak, M. P. , Smolikova`, R. , Zheng, Y. , Zurada, J. M. , and

Elmaghraby, A. S. , 2004. “An approach to multimodal biomedical image

registration utilizing particle swarm optimization,” IEEE Transactions on

Evolutionary Computation (accepted for special issue on PSO).

[63] Messerschmidt, L. , Engelbrecht, A. P. , 2004. “Learning to play games

using a PSO-based competitive learning approach,” IEEE Transactions on

Evolutionary Computation (accepted for special issue on PSO).

[64] Van der Merwe, D. W. and Engelbrecht, A. P. , 2003. “Data Clustering

Using Particle Swarm Optimization,” Proc. of IEEE Congress on Evolutionary

Computation 2003, Canbella, Australia, pp. 215-220.

[65] Coello Coello, C. A., Luna, E. H. n., and Aguirre, A. H. n. , 2003. “Use

of Particle Swarm Optimization to Design Combinational Logic Circuits,”

Lecture Notes in Computer Science (LNCS), no. 2606, pp. 398-409.

[66] Tasgetiren, M. F. and Liang, Y.-C. , 2003. “A Binary Particle Swarm

Optimization Algorithm for Lot Sizing Problem,” Journal of Economic and

Social Research, vol. 5, no. 2, pp. 1-20.

[67] L.-W. Yeh, 2003. Optimal Procurement Policies for Multi-product Multi-

supplier with Capacity Constraint and Price Discount, Master thesis, Department

of Industrial Engineering and Management, Yuan Ze University, Taiwan, R.O.C.

 62

[68] Salman, A., Ahmad, I., and Al-Madani, S., 2003. “Particle Swarm

Optimization for Task Assignment Problem,” Microprocessors and

Microsystems, vol. 26, pp. 363-371.

[69] Onwubolu, G. C. and Clerc, M., 2004. “Optimal Path for Automated

Drilling Operations by a New Heuristic Approach Using Particle Swarm

Optimization,” International Journal of Production Research, vol. 4, pp. 473-

491.

[70] Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., and Gencyilmaz, G., 2004.

“Particle Swarm Optimization Algorithm for Makespan and Maximum Lateness

Minimization in Permutation Flowshop Sequencing Problem,” Proc. of the

Fourth International Symposium on Intelligent Manufacturing Systems, Sakarya,

Turkey, pp. 431-441.

[71] Tasgetiren, M. F., Sevkli, M., Liang, Y.-C., and Gencyilmaz, G., 2004.

“Particle Swarm Optimization Algorithm for Single Machine Total Weighted

Tardiness Problem,” Proc. of IEEE Congress on Evolutionary Computation

2004, Portland, Oregon, USA, pp. 1412-1419.

[72] Tasgetiren, M. F., Sevkli, M., Liang, Y.-C., and Gencyilmaz, G., 2004.

“Particle Swarm Optimization Algorithm for Permutation Flowshop Sequencing

Problem,” Lecture Notes in Computer Science (LNCS), no. 3172, pp. 382-390.

[73] Y. Shi and R. C. Eberhart, 1998. ”Parameter Selection in Particle Swarm

Optimization”, Evolutionary Programming VII (1998), Lecture Notes in

Computer Science 1447, pp. 591–600, Springer, 1998.

[74] Y. Shi and R. C. Eberhart, 1998. ”A modified Particle Swarm Optimiser”,

IEEE International Conference on Evolutionary Computation, Anchorage,

Alaska.

[75] Storn, R. and Price, K., 1995. “Differential Evolution – a Simple and

Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,”

Technical Report, TR-95-012, ICSI.

[76] Storn, R., 1999. “Designing Digital Filters with Differential Evolution.” In

D. Corne, M. Dorigo, and F. Glover (eds.), New Ideas in Optimization, London:

McGraw-Hill, UK, 109-125.

 63

[77] Storn, R., 1996. “Differential Evolution Design of an IIT-Filter with

Requirements for Magnitude and Group Delay,” Proc. of IEEE International

Conference on Evolutionary Computation, pp. 268-273.

[78] Masters, T. and Land, W., 1997. “A New Training algorithm for the

General Regression Neural Network,” Proc. of the 1997 IEEE International

Conference on Systems, Man, and Cybernetics, pp. 1990-1994.

[79] J. Ilonen, J.-K. Kamarainen and J. Lampinen, “Differential Evolution

Training Algorithm for Feed-Forward Neural Networks,” In: Neural Processing

Letters Vol. 7, No. 1 93-105. 2003.

[80] R. Storn, 1996. “Differential evolution design of an IIR-filter,” In:

Proceedings of IEEE Int. Conference on Evolutionary Computation ICEC'96.

IEEE Press, New York. 268-273.

[81] Rogalsky, T., S. Kocabiyik and R. W. Derksen. ,2000. “Differential

Evolution in Aerodynamic Optimization.” Canadian Aeronautics and Space

Journal, 46(4), 183-190.

[82] Ruzek, B. and M. Kvasnicka. , 2001. “Differential Evolution Algorithm in

the Earthquake Hypocenter Location.” Pure and Applied Geophysics, 158(4),

667-693.

[83] Rae, A. and S. Parameswaran. , 2001. “Synthesising Application-Specific

Heterogenous Multiprocessors Using Differential Evolution.” IEICE

Transactions on Fundamentals of Electronics, Communications and Computer

Sciences E84-A(12), 3125-3131.

[84] Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., and Gencyilmaz, G., 2004.

“Differential Evolution Algorithm for Permutation Flowshop Sequencing

Problem with Makespan Criterion,” Proc. of the Fourth International Symposium

on Intelligent Manufacturing Systems, Sakarya, Turkey, pp. 442-452.

[85] Joshi, R. and Sanderson, A. C., 1999. “Minimal Representation

Multisensor Fusion Using Differential Evolution,” IEEE Transactions on

Systems, Man, and Cybernetics, Part A, vol. 29, pp. 63-76.

 64

[86] Babu, B. V. and Sastry, K. K. N., 1999. “Estimation of Heat Transfer

Parameters in a Trickle-Bed Reactor Using Differential Evolution and

Orthogonal Collocation,” Computers and Chemical Engineering, vol. 23, pp.

327-339.

[87] Storn, R., 1999. “System Design by Constraint Adaptation and Differential

Evolution,” IEEE Transactions on Evolutionary Computation, vol. 3, pp. 22-34.

[88] Abbass, H. A., 2002. “An Evolutionary Artificial Neural Networks

Approach for Breast Cancer Diagnosis,” Artificial Intelligence in Medicine, vol.

25, pp. 265-281.

[89] Rüttgers, M., 1997. “Design of a New Algorithm for Scheduling in Parallel

Machine Shops,” Proc. of the Fifth European Congress on Intelligent Techniques

and Soft Computing, pp. 2182-2187.

[90] Ursem, R., Vadstrup, R., 2003. “Parameter identification of induction

motors using differential evolution,” In: Proceedings of the Fifth Congress on

Evolutionary Computation (CEC-2003), IEE Press, Piscataway, NJ, USA, pp.

790–796.

[91] Thomsen, R., 2003. “Flexible ligand docking using differential evolution,”

In: Proceedings of the Fifth Congress on Evolutionary Computation, (CEC-

2003,. IEE Press, Piscataway, NJ, USA, pp. 2354–2361.

[92] Krink, T., Filipiˇc, B., Fogel, G., Thomsen, R., 2004. “Noisy optimisation

problems—a particular challenge for differential evolution?” In: Proceedings of

the Sixth Congress on Evolutionary Computation (CEC-2004), IEE Press,

Piscataway, NJ, USA, pp. 332–339.

[93] VesterstrZm, J., Thomsen, R., 2004. “A comparative study of differential

evolution, particle swarm optimization and evolutionary algorithms on numerical

benchmark problems,” In: Proceedings of the Sixth Congress on Evolutionary

Computation (CEC-2004), IEE Press, Piscataway, NJ, USA, pp. 1980–1987.

[94] Corne, D., Dorigo, M., and Glover, F. (eds.) , 1999. “Part Two:

Differential Evolution,” New Ideas in Optimization, McGraw-Hill, pp. 77-158.

 65

[95] Lampinen, J., 2001. “A Bibliography of Differential Evolution Algorithm”.

Technical Report, Lappeenranta University of Technology, Department of

Information Technology, Laboratory of Information Processing.

[96] Babu, B. V. and Onwubolu, G. C. (eds.), 2004. New Optimization

Techniques in Engineering, Springer Verlag.

[97] Price, K., Storn, R., and Lampinen, J., 2005. Differential Evolution – A

Practical Approach to Global Optimization, Springer-Verlag.

[98] Storn, R. and Price, K., 1997. “Differential Evolution - A Simple and

Efficient Heuristic for Global Optimization over Continuous Space,” Journal of

Global Optimization, vol. 11, pp. 341-359.

[99] The problem definition files, codes and evaluation criteria are made

available in http://www.ntu.edu.sg/home/EPNSugan

[100] Liang, J. J., Suganthan, P. N., and Deb, K., 2005. “Novel composition

test functions for numerical global optimization”, IEEE Swarm Intelligence

Symposium, pp. 68-75.

[101] Zhong, W. C. , Liu, J. , Xue, M. Z. and Jiao, L. C. , 2004. “A multiagent

genetic algorithm for global numerical optimization,” IEEE Trans. On Systems,

Man and Cybernetics (Part B) , vol. 34, pp. 1128-1141.

[102] Coello Coello, C. A. , Pulido, G. T. and Lechuga, M. S. , 2004. “Handling

multiple objectives with particle swarm optimization,” IEEE Transactions on

Evolutionary Computation, 8(3), pp. 256-279.

[103] Van den Bergh, F. and Engelbrecht, A. P. , 2004. “A cooperative

approach to particle swarm optimization,” IEEE Transactions on Evolutionary

Computation, 8(3), pp. 225-239.

[104] Leung, Y. W. and Wang, Y. P., 2001. “An orthogonal genetic algorithm

with quantization for global numerical optimization,” IEEE Transactions on

Evolutionary Computation, 5(1), pp. 41-53.

[105] Salomon, R., 1996. “Reevaluating genetic algorithm performance under

coordinate rotation of benchmark functions,” Biosystems, vol. 39, pp. 263-278.

 66

APPENDIX A

Table A.1. : Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES and at

Termination for PSO Algorithm for D=10

FES 1 2 3 4 5 6 7

 1st 1.47948E+03 3.21335E+03 9.68577E+06 2.28773E+03 2.13117E+02 2.13503E+07 1.06912E+01

 7th 2.75122E+03 4.86396E+03 2.50273E+07 4.73202E+03 5.60503E+02 7.49290E+07 2.35460E+01

 13th 3.99646E+03 5.51322E+03 4.22674E+07 7.41025E+03 6.33911E+02 1.26762E+08 2.96474E+01

1e3 19th 4.23627E+03 6.41568E+03 5.39285E+07 8.83893E+03 9.41594E+02 1.97655E+08 4.49104E+01

 25th 6.24589E+03 9.45018E+03 1.29522E+08 1.28319E+04 3.34479E+03 3.15349E+08 6.35104E+01

 Mean 3.67483E+03 5.57230E+03 4.40712E+07 7.06576E+03 8.21209E+02 1.36002E+08 3.34451E+01

 Std D. 1.16968E+03 1.48813E+03 2.46624E+07 2.67136E+03 6.09282E+02 7.29025E+07 1.33728E+01

 1st 4.83387E+02 1.42596E+03 3.92467E+06 9.03847E+02 2.49714E+01 3.30793E+06 3.30480E+00

 7th 1.07941E+03 2.04405E+03 7.82193E+06 2.02561E+03 6.31861E+01 1.99488E+07 6.30282E+00

 13th 1.30838E+03 2.23742E+03 9.91559E+06 2.54786E+03 1.01348E+02 2.53140E+07 7.45523E+00

1e4 19th 1.72260E+03 2.51689E+03 1.31614E+07 2.90955E+03 1.27797E+02 3.51203E+07 8.56092E+00

 25th 2.22004E+03 3.21198E+03 2.08326E+07 3.94517E+03 1.74643E+02 5.77292E+07 1.34647E+01

 Mean 1.35595E+03 2.24009E+03 1.05080E+07 2.49749E+03 9.50043E+01 2.71476E+07 7.51574E+00

 Std D. 4.79773E+02 4.22656E+02 4.05245E+06 7.94431E+02 4.03227E+01 1.49223E+07 2.24194E+00

 1st 0.00000E+00 1.76600E-05 2.50113E+04 1.03240E-04 0.00000E+00 3.84650E-01 6.01463E-02

 7th 0.00000E+00 2.65480E-04 8.09600E+04 1.14938E-03 0.00000E+00 3.66355E+00 1.56842E-01

 13th 0.00000E+00 9.93690E-04 1.24667E+05 2.06002E-02 0.00000E+00 8.44764E+00 2.16706E-01

1e5 19th 0.00000E+00 1.26971E-02 2.06380E+05 1.41357E-01 0.00000E+00 1.42832E+02 3.42226E-01

 25th 0.00000E+00 9.86478E+00 8.50952E+05 9.92933E+01 0.00000E+00 2.88304E+02 5.35337E-01

 Mean 0.00000E+00 4.31888E-01 1.98704E+05 4.25415E+00 0.00000E+00 6.92385E+01 2.41916E-01

 Std D. 0.00000E+00 1.96785E+00 2.12806E+05 1.98131E+01 0.00000E+00 9.08055E+01 1.29032E-01

 67

FES 8 9 10 11 12 13 14

 1st 2.04495E+01 5.53821E+01 6.69360E+01 9.61917E+00 2.57417E+04 3.15227E+01 3.88626E+00

 7th 2.06269E+01 6.48798E+01 7.50317E+01 1.08404E+01 3.25720E+04 1.46080E+02 4.22190E+00

 13th 2.07588E+01 6.97970E+01 8.53185E+01 1.12605E+01 4.50141E+04 2.65613E+02 4.34066E+00

1e3 19th 2.08260E+01 7.71770E+01 8.94315E+01 1.19421E+01 4.98899E+04 4.76715E+02 4.43381E+00

 25th 2.09419E+01 9.11886E+01 1.03635E+02 1.26457E+01 7.60014E+04 1.34741E+03 4.51309E+00

 Mean 2.07317E+01 7.08314E+01 8.34598E+01 1.13093E+01 4.47763E+04 3.48797E+02 4.28668E+00

 Std D. 1.37932E-01 9.09859E+00 1.08567E+01 8.33069E-01 1.38980E+04 3.05521E+02 1.75099E-01

 1st 2.03398E+01 3.19782E+01 4.66520E+01 8.09263E+00 5.23562E+03 7.29153E+00 3.79794E+00

 7th 2.04698E+01 4.31703E+01 5.06742E+01 9.90019E+00 1.40645E+04 1.06259E+01 3.91413E+00

 13th 2.05270E+01 5.12512E+01 5.64420E+01 1.01939E+01 1.83108E+04 1.30385E+01 3.99351E+00

1e4 19th 2.05660E+01 5.57051E+01 5.96499E+01 1.04326E+01 2.19604E+04 1.81350E+01 4.02913E+00

 25th 2.06885E+01 5.92326E+01 7.49138E+01 1.10542E+01 2.98589E+04 3.44424E+01 4.16541E+00

 Mean 2.05206E+01 4.93295E+01 5.67747E+01 1.00724E+01 1.79268E+04 1.45014E+01 3.98123E+00

 Std D. 8.29416E-02 8.02532E+00 6.63481E+00 6.71169E-01 6.29392E+03 6.11292E+00 9.40904E-02

 1st 2.01574E+01 0.00000E+00 5.28933E+00 2.56900E+00 9.48824E-01 3.89080E-01 1.57958E+00

 7th 2.02826E+01 9.94959E-01 1.25393E+01 3.60895E+00 1.04495E+01 5.06936E-01 2.61841E+00

 13th 2.03568E+01 1.98992E+00 1.58296E+01 4.63681E+00 2.02180E+01 6.38670E-01 3.12565E+00

1e5 19th 2.04105E+01 2.98488E+00 1.88197E+01 5.43349E+00 3.96839E+01 7.38544E-01 3.29433E+00

 25th 2.04617E+01 3.97990E+00 3.25179E+01 8.49518E+00 7.12255E+02 1.22706E+00 3.62920E+00

 Mean 2.03441E+01 1.99013E+00 1.64690E+01 4.62658E+00 8.47897E+01 6.62293E-01 2.96542E+00

 Std D. 8.13829E-02 1.21875E+00 7.04173E+00 1.45265E+00 1.65819E+02 2.06914E-01 5.20650E-01

 68

Table A.2. : Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES and at

Termination for PSO Algorithm for D=30

FES 1 2 3 4 5 6 7

 1st 3.26609E+04 3.72956E+04 3.61002E+08 7.16017E+04 1.61519E+04 7.46561E+09 3.67427E+02

 7th 4.00946E+04 6.95113E+04 6.72351E+08 8.45589E+04 1.97316E+04 1.40431E+10 4.55083E+02

 13th 4.34139E+04 7.34467E+04 8.66443E+08 9.35033E+04 2.18862E+04 1.67137E+10 5.03242E+02

1e3 19th 4.63498E+04 8.61529E+04 1.06733E+09 1.07016E+05 2.49962E+04 2.16686E+10 5.71819E+02

 25th 5.05507E+04 1.03745E+05 1.37145E+09 1.19937E+05 3.02311E+04 2.61949E+10 6.47344E+02

 Mean 4.27186E+04 7.73655E+04 8.70683E+08 9.44374E+04 2.21673E+04 1.73596E+10 5.05097E+02

 Std D. 4.72393E+03 1.37158E+04 2.51636E+08 1.37182E+04 3.31320E+03 5.28564E+09 8.17832E+01

 1st 1.81602E+04 3.26952E+04 2.62316E+08 4.28805E+04 7.64483E+03 2.60587E+09 1.36284E+02

 7th 2.65052E+04 4.64983E+04 3.76459E+08 5.12360E+04 1.21514E+04 5.02081E+09 1.68826E+02

 13th 2.82050E+04 5.15790E+04 4.16373E+08 5.91561E+04 1.39636E+04 5.85878E+09 2.01139E+02

1e4 19th 2.98952E+04 5.45213E+04 4.86897E+08 6.22452E+04 1.76609E+04 6.96080E+09 2.18251E+02

 25th 3.44228E+04 6.57085E+04 6.47755E+08 7.70740E+04 1.89739E+04 8.14435E+09 2.59205E+02

 Mean 2.76529E+04 5.06327E+04 4.26770E+08 5.83211E+04 1.43102E+04 5.75436E+09 1.96106E+02

 Std D. 3.98255E+03 8.03226E+03 9.10987E+07 8.75533E+03 3.26674E+03 1.37951E+09 3.41709E+01

 1st 5.12188E+03 1.77790E+04 8.31522E+07 2.02395E+04 6.57582E+02 2.99734E+08 1.51934E+01

 7th 8.58031E+03 2.00173E+04 1.27527E+08 2.39511E+04 9.19801E+03 6.54437E+08 2.21534E+01

 13th 9.60244E+03 2.07185E+04 1.53377E+08 2.70384E+04 1.15765E+04 8.46761E+08 2.77779E+01

1e5 19th 1.01966E+04 2.36774E+04 1.88294E+08 3.13016E+04 1.41361E+04 9.25307E+08 3.19367E+01

 25th 1.32968E+04 3.42341E+04 2.50549E+08 3.76261E+04 1.82480E+04 1.40014E+09 4.45827E+01

 Mean 9.26168E+03 2.24131E+04 1.58325E+08 2.73436E+04 1.18024E+04 7.96579E+08 2.80197E+01

 Std D. 1.80831E+03 4.12476E+03 4.36007E+07 5.06482E+03 4.07392E+03 2.58387E+08 7.61752E+00

 1st 0.00000E+00 9.19895E+01 2.14739E+06 8.49725E+02 1.80210E+01 1.28023E+01 4.92000E-06

 7th 0.00000E+00 1.44785E+02 3.51459E+06 1.54421E+03 8.76067E+03 2.84509E+01 1.03743E-02

 13th 0.00000E+00 2.84253E+02 5.23473E+06 2.65265E+03 1.08879E+04 9.26050E+01 4.04980E-02

Trm 19th 0.00000E+00 5.35763E+02 1.76596E+07 3.59317E+03 1.35322E+04 1.63450E+02 1.50584E-01

 25th 1.90000E-07 1.37277E+03 3.46473E+07 6.77614E+03 1.80297E+04 1.08048E+03 3.08387E-01

 Mean 8.00000E-09 4.01956E+02 1.07647E+07 2.70271E+03 1.10620E+04 1.57711E+02 8.19353E-02

 Std D. 3.79693E-08 3.40265E+02 9.33441E+06 1.48463E+03 3.83930E+03 2.13877E+02 8.93249E-02

 69

FES 8 9 10 11 12 13 14

 1st 2.10547E+01 3.26795E+02 3.69252E+02 4.18514E+01 7.10021E+05 3.02854E+04 1.39278E+01

 7th 2.11412E+01 3.58184E+02 4.09542E+02 4.48355E+01 1.25821E+06 6.51057E+04 1.40790E+01

 13th 2.11902E+01 3.75054E+02 4.34987E+02 4.54701E+01 1.33873E+06 8.17115E+04 1.41698E+01

1e3 19th 2.12538E+01 3.85413E+02 4.52458E+02 4.66307E+01 1.50883E+06 1.38745E+05 1.42488E+01

 25th 2.13254E+01 4.21830E+02 4.71608E+02 4.71774E+01 1.73783E+06 2.76638E+05 1.43932E+01

 Mean 2.11965E+01 3.72422E+02 4.30582E+02 4.54119E+01 1.34176E+06 1.11227E+05 1.41733E+01

 Std D. 6.86168E-02 2.35558E+01 2.72296E+01 1.42015E+00 2.26488E+05 6.48907E+04 1.23281E-01

 1st 2.10274E+01 2.82904E+02 3.15219E+02 4.03378E+01 7.03553E+05 5.98967E+03 1.35924E+01

 7th 2.10897E+01 3.00134E+02 3.43194E+02 4.17414E+01 8.36977E+05 1.53346E+04 1.38242E+01

 13th 2.11288E+01 3.16519E+02 3.66039E+02 4.33941E+01 9.16778E+05 1.89644E+04 1.39211E+01

1e4 19th 2.11559E+01 3.28077E+02 3.80618E+02 4.42463E+01 9.79474E+05 2.41404E+04 1.39874E+01

 25th 2.11869E+01 3.55479E+02 4.00969E+02 4.46045E+01 1.10252E+06 3.86288E+04 1.40973E+01

 Mean 2.11206E+01 3.15133E+02 3.61031E+02 4.28959E+01 9.10468E+05 1.98403E+04 1.38910E+01

 Std D. 4.59126E-02 1.90067E+01 2.35740E+01 1.41244E+00 1.17351E+05 6.96427E+03 1.27295E-01

 1st 2.08904E+01 1.90559E+02 1.97211E+02 3.51733E+01 2.40193E+05 3.81373E+01 1.30270E+01

 7th 2.09677E+01 2.05704E+02 2.37464E+02 3.98904E+01 3.20629E+05 7.69832E+01 1.33430E+01

 13th 2.10060E+01 2.13758E+02 2.63121E+02 4.03886E+01 3.86757E+05 1.07775E+02 1.34803E+01

1e5 19th 2.10232E+01 2.32828E+02 2.82439E+02 4.09082E+01 4.79624E+05 1.59699E+02 1.36382E+01

 25th 2.10996E+01 2.66556E+02 2.99724E+02 4.20882E+01 6.41161E+05 3.96238E+02 1.38246E+01

 Mean 2.09969E+01 2.20419E+02 2.56298E+02 4.01637E+01 4.12067E+05 1.26483E+02 1.34869E+01

 Std D. 4.72351E-02 2.17877E+01 2.98414E+01 1.61163E+00 1.16896E+05 7.77277E+01 1.95144E-01

 1st 2.07623E+01 1.39294E+01 4.46290E+01 2.10586E+01 2.21992E+03 2.12003E+00 1.24395E+01

 7th 2.08980E+01 1.98992E+01 6.76721E+01 2.74924E+01 9.09589E+03 3.06190E+00 1.29290E+01

 13th 2.09448E+01 2.48740E+01 7.70619E+01 3.04811E+01 1.75403E+04 3.71451E+00 1.30828E+01

Trm 19th 2.09789E+01 2.88538E+01 9.74682E+01 3.50665E+01 3.40146E+04 4.08763E+00 1.32259E+01

 25th 2.10350E+01 3.28336E+01 2.44440E+02 3.94895E+01 6.06273E+04 6.58410E+00 1.34684E+01

 Mean 2.09311E+01 2.43572E+01 8.72283E+01 3.11684E+01 2.21836E+04 3.70427E+00 1.30484E+01

 Std D. 6.64438E-02 5.51904E+00 3.91043E+01 5.19378E+00 1.60610E+04 9.19095E-01 2.44407E-01

 70

Table A.3. : Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES and at

Termination for PSO Algorithm for D=50

FES 1 2 3 4 5 6 7

 1st 7.99289E+04 1.50482E+05 1.52688E+09 1.36997E+05 3.10210E+04 3.56895E+10 1.49758E+03

 7th 9.58299E+04 2.11843E+05 2.52811E+09 2.22054E+05 3.83738E+04 4.84342E+10 1.66213E+03

 13th 1.02728E+05 2.29513E+05 2.79278E+09 2.49396E+05 4.09088E+04 6.23082E+10 1.76736E+03

1e3 19th 1.13268E+05 2.46106E+05 3.69842E+09 2.77223E+05 4.40263E+04 6.95955E+10 1.90823E+03

 25th 1.24383E+05 2.71331E+05 4.49212E+09 3.68676E+05 5.05454E+04 9.19626E+10 2.12386E+03

 Mean 1.03584E+05 2.29645E+05 2.93190E+09 2.46886E+05 4.12608E+04 6.00769E+10 1.79297E+03

 Std D. 1.17906E+04 2.71755E+04 7.35651E+08 4.96471E+04 4.34388E+03 1.41053E+10 1.68187E+02

 1st 5.32826E+04 1.04767E+05 1.12401E+09 1.13852E+05 2.31834E+04 1.94511E+10 4.71562E+02

 7th 6.99214E+04 1.35100E+05 1.32787E+09 1.44872E+05 2.57065E+04 2.37890E+10 6.99388E+02

 13th 7.53881E+04 1.45078E+05 1.91380E+09 1.63151E+05 2.69704E+04 2.75951E+10 7.53584E+02

1e4 19th 7.92484E+04 1.63923E+05 1.96641E+09 1.72928E+05 2.91061E+04 3.01735E+10 8.03569E+02

 25th 9.05838E+04 1.89837E+05 2.36448E+09 1.99026E+05 3.28848E+04 3.77934E+10 8.77140E+02

 Mean 7.41496E+04 1.48924E+05 1.71664E+09 1.58780E+05 2.75222E+04 2.75653E+10 7.31137E+02

 Std D. 7.86464E+03 2.16255E+04 3.75210E+08 2.12488E+04 2.71337E+03 5.16234E+09 1.08171E+02

 1st 3.10871E+04 5.31299E+04 5.55355E+08 7.43091E+04 1.94062E+04 4.64346E+09 1.95477E+02

 7th 4.05697E+04 8.25054E+04 8.70376E+08 9.39969E+04 2.07428E+04 7.36180E+09 2.37282E+02

 13th 4.33032E+04 9.40284E+04 9.47788E+08 1.04543E+05 2.17470E+04 9.04666E+09 2.67250E+02

1e5 19th 4.95761E+04 1.00028E+05 1.06812E+09 1.18148E+05 2.42312E+04 1.05491E+10 3.15088E+02

 25th 5.27993E+04 1.17661E+05 1.21389E+09 1.30751E+05 3.00622E+04 1.48500E+10 3.53566E+02

 Mean 4.42244E+04 9.32410E+04 9.60764E+08 1.05018E+05 2.28238E+04 9.21952E+09 2.76141E+02

 Std D. 6.35030E+03 1.39237E+04 1.52366E+08 1.60333E+04 2.78956E+03 2.50171E+09 4.69342E+01

 1st 2.00000E-08 2.73281E+03 7.18257E+06 1.01778E+04 1.25707E+04 4.24331E+01 1.02000E-03

 7th 6.80000E-07 4.12783E+03 2.71240E+07 1.82279E+04 1.71181E+04 1.09911E+02 6.85393E-03

 13th 3.72000E-06 5.65296E+03 3.66474E+07 2.25180E+04 1.95252E+04 1.71295E+02 1.99886E-02

Trm 19th 1.92900E-05 7.55080E+03 6.29808E+07 2.79352E+04 2.21800E+04 3.04782E+02 3.07924E-02

 25th 2.81544E+00 1.50197E+04 1.21738E+08 3.50883E+04 2.88438E+04 1.36723E+03 1.05730E-01

 Mean 1.16368E-01 6.53038E+03 4.84217E+07 2.27204E+04 1.98764E+04 3.03737E+02 2.47858E-02

 Std D. 5.62614E-01 3.35448E+03 3.11780E+07 7.01268E+03 3.63886E+03 3.42479E+02 2.36381E-02

 71

FES 8 9 10 11 12 13 14

 1st 2.12328E+01 6.39437E+02 7.17584E+02 7.79921E+01 4.31863E+06 2.78433E+05 2.36851E+01

 7th 2.13198E+01 7.34444E+02 8.01193E+02 7.99720E+01 5.48904E+06 5.22436E+05 2.39080E+01

 13th 2.13472E+01 7.52918E+02 8.23799E+02 8.18222E+01 6.22901E+06 7.52823E+05 2.40274E+01

1e3 19th 2.13757E+01 7.68611E+02 8.48158E+02 8.25800E+01 6.86861E+06 9.04863E+05 2.41006E+01

 25th 2.14093E+01 8.27755E+02 9.09537E+02 8.40386E+01 7.41755E+06 1.27489E+06 2.41817E+01

 Mean 2.13445E+01 7.46962E+02 8.21172E+02 8.13983E+01 6.12130E+06 7.17402E+05 2.39839E+01

 Std D. 4.50871E-02 4.38789E+01 4.38956E+01 1.71280E+00 8.43808E+05 2.57650E+05 1.49434E-01

 1st 2.11240E+01 5.18483E+02 6.33732E+02 7.34549E+01 3.47085E+06 9.38962E+04 2.32017E+01

 7th 2.12328E+01 6.25779E+02 7.02869E+02 7.69962E+01 4.19723E+06 1.62513E+05 2.35572E+01

 13th 2.12615E+01 6.45175E+02 7.25085E+02 7.77338E+01 4.63587E+06 2.15659E+05 2.36576E+01

1e4 19th 2.12898E+01 6.67905E+02 7.35191E+02 7.88030E+01 4.87297E+06 2.56635E+05 2.37189E+01

 25th 2.13195E+01 7.24445E+02 7.79969E+02 8.06125E+01 5.64425E+06 4.25250E+05 2.38053E+01

 Mean 2.12529E+01 6.43071E+02 7.17591E+02 7.77269E+01 4.55114E+06 2.19146E+05 2.36111E+01

 Std D. 4.81156E-02 3.97923E+01 3.61348E+01 1.46475E+00 5.64677E+05 7.48052E+04 1.51861E-01

 1st 2.11240E+01 4.67534E+02 5.38989E+02 7.25566E+01 2.02089E+06 4.44730E+03 2.30449E+01

 7th 2.11681E+01 5.29000E+02 5.88400E+02 7.38230E+01 2.87356E+06 1.25456E+04 2.32017E+01

 13th 2.11910E+01 5.48867E+02 5.99826E+02 7.47650E+01 3.07729E+06 1.78642E+04 2.33826E+01

1e5 19th 2.12065E+01 5.69679E+02 6.12452E+02 7.58665E+01 3.38339E+06 2.96162E+04 2.34807E+01

 25th 2.12357E+01 6.03010E+02 6.50944E+02 7.78157E+01 3.79779E+06 5.50305E+04 2.35869E+01

 Mean 2.11848E+01 5.44062E+02 5.95392E+02 7.48973E+01 3.07672E+06 2.20874E+04 2.33599E+01

 Std D. 2.95916E-02 3.38632E+01 2.77647E+01 1.39268E+00 4.18751E+05 1.19801E+04 1.61707E-01

 1st 2.10415E+01 4.57681E+01 1.01273E+02 5.32597E+01 1.80026E+04 5.33924E+00 2.20372E+01

 7th 2.11087E+01 5.87025E+01 1.39716E+02 6.31906E+01 6.22675E+04 7.66812E+00 2.26008E+01

 13th 2.11392E+01 6.96471E+01 1.84071E+02 6.70882E+01 1.02842E+05 9.28354E+00 2.27769E+01

Trm 19th 2.11633E+01 7.26319E+01 2.89274E+02 7.08982E+01 1.39305E+05 1.16804E+01 2.28943E+01

 25th 2.11908E+01 8.75563E+01 4.04977E+02 7.45000E+01 2.27342E+05 1.55820E+01 2.32639E+01

 Mean 2.11326E+01 6.62258E+01 2.14250E+02 6.61378E+01 1.08151E+05 9.64705E+00 2.27563E+01

 Std D. 3.99925E-02 1.11524E+01 9.29100E+01 5.93583E+00 5.76638E+04 2.69821E+00 2.80591E-01

 72

APPENDIX B

Table B.1. : Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES, and at

Termination for the DE Algorithm for D=10

FES 1 2 3 4 5 6 7

 1st 1.85424E+03 3.01951E+03 1.90610E+07 5.26307E+03 1.15819E+03 5.02058E+07 5.58453E+01

 7th 3.59667E+03 5.04843E+03 3.02341E+07 7.50755E+03 1.72110E+03 1.11428E+08 1.04098E+02

 13th 4.29586E+03 6.09160E+03 4.51607E+07 8.48740E+03 2.26924E+03 1.93328E+08 1.16678E+02

1e3 19th 5.00820E+03 7.77914E+03 6.24066E+07 9.40238E+03 2.83959E+03 2.92390E+08 1.47886E+02

 25th 6.60096E+03 9.57528E+03 9.00851E+07 1.35384E+04 5.75893E+03 5.35614E+08 2.48523E+02

 Mean 4.23316E+03 6.29732E+03 4.63044E+07 8.64123E+03 2.44959E+03 2.18675E+08 1.23055E+02

 Std D. 1.25635E+03 1.73963E+03 1.95728E+07 1.90330E+03 1.09490E+03 1.28321E+08 4.04756E+01

 1st 3.09619E+00 6.46120E+01 1.13580E+05 1.34154E+02 3.03966E-03 3.28694E+03 1.04623E+00

 7th 1.44383E+01 1.26493E+02 6.82542E+05 1.83790E+02 8.20477E-03 7.95177E+03 1.24116E+00

 13th 1.87169E+01 1.86524E+02 9.17870E+05 2.58114E+02 1.61937E-02 1.27184E+04 1.39226E+00

1e4 19th 2.16114E+01 2.21809E+02 1.10022E+06 3.61044E+02 2.02880E-02 2.18604E+04 1.46352E+00

 25th 3.38957E+01 6.97320E+02 2.52789E+06 4.37839E+02 1.05464E-01 4.11938E+04 1.77393E+00

 Mean 1.88167E+01 1.94335E+02 1.00105E+06 2.67162E+02 1.88126E-02 1.55603E+04 1.37673E+00

 Std D. 6.52482E+00 1.16798E+02 5.43200E+05 9.98847E+01 1.98726E-02 1.01946E+04 1.74155E-01

 1st 0.00000E+00 0.00000E+00 4.10000E-07 0.00000E+00 0.00000E+00 0.00000E+00 5.08014E-02

 7th 0.00000E+00 0.00000E+00 2.02000E-06 0.00000E+00 0.00000E+00 0.00000E+00 1.03748E-01

 13th 0.00000E+00 0.00000E+00 7.09000E-06 0.00000E+00 0.00000E+00 0.00000E+00 1.50057E-01

1e5 19th 0.00000E+00 0.00000E+00 6.23900E-05 0.00000E+00 0.00000E+00 0.00000E+00 2.07027E-01

 25th 0.00000E+00 0.00000E+00 3.83810E-04 0.00000E+00 0.00000E+00 3.98658E+00 2.58674E-01

 Mean 0.00000E+00 0.00000E+00 5.46328E-05 0.00000E+00 0.00000E+00 6.37853E-01 1.50829E-01

 Std D. 0.00000E+00 0.00000E+00 1.01191E-04 0.00000E+00 0.00000E+00 1.49164E+00 6.40648E-02

 73

FES 8 9 10 11 12 13 14

 1st 2.04153E+01 6.17860E+01 6.21051E+01 9.68019E+00 1.57966E+04 7.07425E+01 3.97909E+00

 7th 2.06656E+01 7.06628E+01 8.11575E+01 1.14143E+01 4.72954E+04 3.73213E+02 4.31508E+00

 13th 2.07916E+01 7.49743E+01 9.09541E+01 1.16786E+01 5.14369E+04 6.16887E+02 4.37866E+00

1e3 19th 2.08319E+01 8.13895E+01 9.64874E+01 1.22943E+01 6.01442E+04 1.20720E+03 4.41749E+00

 25th 2.09123E+01 8.93128E+01 1.02935E+02 1.30496E+01 8.13749E+04 2.72287E+03 4.51682E+00

 Mean 2.07451E+01 7.57054E+01 8.74951E+01 1.16931E+01 5.28403E+04 9.12928E+02 4.35079E+00

 Std D. 1.31186E-01 7.77410E+00 1.07634E+01 8.09603E-01 1.44527E+04 6.91357E+02 1.18453E-01

 1st 2.03216E+01 2.02641E+01 3.34415E+01 7.73432E+00 7.49916E+02 2.32086E+00 3.58983E+00

 7th 2.05162E+01 3.29482E+01 4.42874E+01 9.11807E+00 1.42068E+03 3.89395E+00 3.93832E+00

 13th 2.05686E+01 3.74767E+01 5.22460E+01 9.96183E+00 2.23430E+03 5.13630E+00 4.03647E+00

1e4 19th 2.05919E+01 4.16618E+01 5.45106E+01 1.03578E+01 3.35670E+03 5.86467E+00 4.08288E+00

 25th 2.06642E+01 4.52072E+01 6.31435E+01 1.11138E+01 8.52400E+03 7.46224E+00 4.32129E+00

 Mean 2.05474E+01 3.58943E+01 5.00818E+01 9.78996E+00 2.91231E+03 4.99484E+00 3.99999E+00

 Std D. 7.82286E-02 7.37228E+00 7.99405E+00 8.82700E-01 2.08499E+03 1.35427E+00 1.82657E-01

 1st 2.01870E+01 1.98992E+00 7.79445E+00 7.93340E-04 0.00000E+00 3.81196E-01 1.00236E+00

 7th 2.02973E+01 2.98488E+00 1.14447E+01 2.43548E-03 0.00000E+00 5.33667E-01 3.45017E+00

 13th 2.03631E+01 4.97480E+00 1.52435E+01 5.85140E-03 2.00000E-08 7.16250E-01 3.58983E+00

1e5 19th 2.03872E+01 6.96471E+00 1.89897E+01 1.50192E+00 1.00030E+01 9.19178E-01 3.75966E+00

 25th 2.05102E+01 8.95463E+00 3.63416E+01 3.00221E+00 1.34735E+03 1.56296E+00 3.92519E+00

 Mean 2.03384E+01 5.09419E+00 1.65177E+01 7.09222E-01 5.89551E+01 7.66957E-01 3.44692E+00

 Std D. 7.50173E-02 2.09729E+00 6.98306E+00 9.72805E-01 2.68501E+02 3.34237E-01 5.73178E-01

 74

Table B.2. : Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES, and at

Termination for the DE Algorithm for D=30

FES 1 2 3 4 5 6 7

 1st 3.88765E+04 6.34975E+04 4.19986E+08 6.74118E+04 1.84970E+04 1.13668E+10 1.09900E+03

 7th 4.97149E+04 7.33956E+04 8.27105E+08 8.60348E+04 2.21715E+04 1.87084E+10 1.34025E+03

 13th 5.45561E+04 8.31323E+04 1.04649E+09 1.03477E+05 2.39906E+04 2.26591E+10 1.44405E+03

1e3 19th 6.04220E+04 9.42252E+04 1.20097E+09 1.13990E+05 2.56209E+04 3.12496E+10 1.57084E+03

 25th 6.54650E+04 1.22545E+05 1.34340E+09 1.48995E+05 2.85592E+04 4.41784E+10 1.90925E+03

 Mean 5.44088E+04 8.59290E+04 1.00926E+09 9.98429E+04 2.39570E+04 2.60007E+10 1.45692E+03

 Std D. 7.20866E+03 1.74239E+04 2.39042E+08 1.86456E+04 2.63151E+03 9.42864E+09 1.95042E+02

 1st 7.37041E+03 2.50505E+04 1.43161E+08 3.43311E+04 7.59217E+03 8.00479E+08 1.91022E+02

 7th 1.17346E+04 4.66858E+04 2.87888E+08 4.82081E+04 9.70474E+03 1.21021E+09 3.46103E+02

 13th 1.28905E+04 5.00936E+04 3.13126E+08 5.11596E+04 1.02530E+04 1.49848E+09 4.21542E+02

1e4 19th 1.47663E+04 5.40392E+04 3.84733E+08 5.52670E+04 1.15160E+04 1.78987E+09 5.45858E+02

 25th 1.81025E+04 6.45800E+04 5.20868E+08 6.71006E+04 1.31915E+04 4.59954E+09 7.43594E+02

 Mean 1.27943E+04 4.91997E+04 3.26878E+08 5.08241E+04 1.04777E+04 1.65636E+09 4.44259E+02

 Std D. 2.62879E+03 9.25481E+03 8.82836E+07 8.59486E+03 1.34589E+03 8.34416E+08 1.41394E+02

 1st 8.83870E-04 1.75557E+02 1.84217E+06 3.61277E+02 1.33228E+01 3.78990E+01 1.85172E-01

 7th 5.89966E-03 3.60806E+02 3.24895E+06 9.14246E+02 7.03626E+02 6.80512E+01 3.63210E-01

 13th 9.70001E-03 4.29233E+02 4.18139E+06 1.27675E+03 2.82633E+03 1.23097E+02 5.09019E-01

1e5 19th 1.15735E-02 6.19901E+02 5.42530E+06 1.85842E+03 3.25818E+03 1.99468E+02 7.65749E-01

 25th 2.69409E-02 8.46557E+02 9.51084E+06 3.56928E+03 6.61989E+03 1.62802E+03 9.68942E-01

 Mean 9.85310E-03 4.82823E+02 4.64793E+06 1.45545E+03 2.56002E+03 2.31275E+02 5.40389E-01

 Std D. 6.55476E-03 1.89156E+02 2.02291E+06 8.24726E+02 1.93257E+03 3.50876E+02 2.32872E-01

 1st 0.00000E+00 1.00082E-02 2.52866E+05 4.44201E-01 1.08400E-05 7.91052E-01 0.00000E+00

 7th 0.00000E+00 2.69799E-02 3.63513E+05 1.56985E+00 9.65160E-03 6.02897E+00 0.00000E+00

 13th 0.00000E+00 4.70619E-02 6.71938E+05 2.26303E+00 2.19951E+03 1.01827E+01 1.00000E-08

Trm 19th 0.00000E+00 8.74604E-02 9.74700E+05 4.37445E+00 2.91858E+03 1.26779E+01 5.39371E-02

 25th 0.00000E+00 1.58316E-01 1.45497E+06 1.58945E+01 5.93939E+03 1.80863E+01 2.89677E-01

 Mean 0.00000E+00 6.18957E-02 7.34622E+05 4.06987E+00 1.89052E+03 9.45834E+00 4.16067E-02

 Std D. 0.00000E+00 4.21461E-02 3.83248E+05 4.20637E+00 1.88807E+03 5.37511E+00 6.68922E-02

 75

FES 8 9 10 11 12 13 14

 1st 2.10371E+01 3.51505E+02 3.86808E+02 4.30150E+01 1.21493E+06 7.96154E+04 1.36177E+01

 7th 2.11788E+01 3.81350E+02 4.53468E+02 4.48355E+01 1.35209E+06 1.57959E+05 1.41172E+01

 13th 2.12375E+01 4.08661E+02 4.74526E+02 4.54247E+01 1.49368E+06 2.18095E+05 1.41871E+01

1e3 19th 2.12775E+01 4.20831E+02 4.93344E+02 4.61805E+01 1.66345E+06 3.04821E+05 1.42367E+01

 25th 2.13002E+01 4.74661E+02 5.22231E+02 4.80001E+01 2.02808E+06 4.92661E+05 1.44037E+01

 Mean 2.12195E+01 4.04524E+02 4.69685E+02 4.55424E+01 1.51555E+06 2.28311E+05 1.41610E+01

 Std D. 6.80106E-02 2.94053E+01 3.16319E+01 1.28294E+00 2.01895E+05 1.06164E+05 1.48381E-01

 1st 2.09520E+01 2.33280E+02 2.84955E+02 4.06643E+01 4.32073E+05 1.46393E+03 1.36177E+01

 7th 2.10683E+01 2.59949E+02 3.18478E+02 4.25440E+01 6.48983E+05 2.67125E+03 1.38431E+01

 13th 2.11071E+01 2.80316E+02 3.42835E+02 4.30718E+01 6.71627E+05 3.83519E+03 1.39494E+01

1e4 19th 2.11398E+01 2.91904E+02 3.51147E+02 4.35359E+01 7.95226E+05 5.17356E+03 1.40068E+01

 25th 2.11875E+01 3.13804E+02 3.81147E+02 4.43857E+01 1.05816E+06 7.88898E+03 1.41080E+01

 Mean 2.10956E+01 2.76174E+02 3.34933E+02 4.28564E+01 7.10077E+05 4.00502E+03 1.39081E+01

 Std D. 5.95784E-02 2.17571E+01 2.61489E+01 9.64590E-01 1.36521E+05 1.86825E+03 1.32341E-01

 1st 2.08070E+01 2.19159E+01 3.00719E+01 1.75625E+01 0.00000E+00 2.44370E+00 1.30431E+01

 7th 2.09824E+01 3.28623E+01 6.86397E+01 3.83301E+01 0.00000E+00 4.40461E+00 1.35254E+01

 13th 2.10002E+01 4.09024E+01 1.14043E+02 3.96573E+01 0.00000E+00 5.26838E+00 1.36172E+01

1e5 19th 2.10286E+01 4.77876E+01 1.95522E+02 4.06290E+01 0.00000E+00 9.04498E+00 1.36717E+01

 25th 2.10878E+01 6.07723E+01 2.28969E+02 4.27992E+01 0.00000E+00 1.55170E+01 1.37656E+01

 Mean 2.09986E+01 4.09120E+01 1.26306E+02 3.82544E+01 0.00000E+00 6.64955E+00 1.35707E+01

 Std D. 5.40783E-02 1.12045E+01 6.52610E+01 5.23822E+00 0.00000E+00 3.19829E+00 1.60776E-01

 1st 2.08070E+01 2.18891E+01 2.34153E+01 5.37358E+00 0.00000E+00 1.97830E+00 1.29578E+01

 7th 2.09520E+01 3.28336E+01 4.49232E+01 8.52891E+00 0.00000E+00 2.68041E+00 1.32526E+01

 13th 2.09705E+01 4.07933E+01 5.00901E+01 1.09034E+01 0.00000E+00 2.95265E+00 1.33953E+01

Trm 19th 2.09984E+01 4.77579E+01 5.49342E+01 1.56893E+01 0.00000E+00 4.04031E+00 1.35254E+01

 25th 2.10302E+01 6.06924E+01 7.95865E+01 1.87345E+01 0.00000E+00 5.77030E+00 1.36599E+01

 Mean 2.09600E+01 4.08729E+01 5.02670E+01 1.17990E+01 0.00000E+00 3.49835E+00 1.33659E+01

 Std D. 5.14799E-02 1.12049E+01 1.33351E+01 4.16057E+00 0.00000E+00 1.17383E+00 1.99834E-01

 76

Table B.3. : Error Values Achieved at 1e3 FES, 1e4 FES, 1e5 FES and at

Termination for the DE Algorithm for D=50

FES 1 2 3 4 5 6 7

 1st 1.09919E+05 1.58505E+05 2.07215E+09 2.01008E+05 3.60708E+04 6.24047E+10 2.70670E+03

 7th 1.24213E+05 2.15679E+05 3.34100E+09 2.49303E+05 4.19097E+04 7.05402E+10 3.24870E+03

 13th 1.32942E+05 2.51152E+05 4.15515E+09 2.69409E+05 4.37841E+04 7.54364E+10 3.42658E+03

1e3 19th 1.42118E+05 2.72774E+05 4.62201E+09 3.15076E+05 4.60202E+04 9.19463E+10 3.55218E+03

 25th 1.55557E+05 3.38458E+05 5.17139E+09 3.67871E+05 4.96220E+04 1.23848E+11 3.87867E+03

 Mean 1.32369E+05 2.47597E+05 4.02174E+09 2.80243E+05 4.39236E+04 8.17463E+10 3.40663E+03

 Std D. 1.30691E+04 4.56185E+04 8.47471E+08 4.69922E+04 3.58509E+03 1.70617E+10 2.88949E+02

 1st 3.98083E+04 1.08123E+05 7.87258E+08 1.24568E+05 2.00128E+04 6.18604E+09 1.06680E+03

 7th 4.43059E+04 1.36973E+05 1.07956E+09 1.53487E+05 2.50087E+04 9.91087E+09 1.34262E+03

 13th 4.65329E+04 1.49204E+05 1.17726E+09 1.61514E+05 2.60129E+04 1.20288E+10 1.50405E+03

1e4 19th 5.08941E+04 1.56631E+05 1.46263E+09 1.79026E+05 2.73082E+04 1.53635E+10 1.67263E+03

 25th 6.81645E+04 1.93490E+05 1.82079E+09 2.08217E+05 3.01435E+04 1.82119E+10 2.08144E+03

 Mean 4.79236E+04 1.47232E+05 1.26728E+09 1.63019E+05 2.60249E+04 1.23105E+10 1.51560E+03

 Std D. 6.01150E+03 2.03001E+04 2.65941E+08 1.99857E+04 2.39857E+03 3.46091E+09 2.61940E+02

 1st 3.91216E+00 1.05025E+04 9.72750E+06 1.36500E+04 4.43186E+03 7.58733E+03 1.89023E+00

 7th 5.40717E+00 1.82658E+04 2.42321E+07 3.05233E+04 7.12124E+03 2.55062E+04 2.40129E+00

 13th 7.11906E+00 1.99615E+04 3.64855E+07 3.30409E+04 9.76172E+03 3.59316E+04 3.05294E+00

1e5 19th 9.80515E+00 2.11416E+04 4.16241E+07 3.99110E+04 1.03183E+04 8.55643E+04 3.79685E+00

 25th 2.13350E+01 3.28744E+04 7.62817E+07 5.55904E+04 1.24092E+04 4.16202E+05 7.23378E+00

 Mean 8.63916E+00 2.00253E+04 3.73887E+07 3.53287E+04 9.03571E+03 6.28620E+04 3.50589E+00

 Std D. 4.72937E+00 4.71459E+03 1.68236E+07 9.48968E+03 2.21534E+03 8.09670E+04 1.51754E+00

 1st 0.00000E+00 2.67056E+01 9.83717E+05 6.42150E+02 5.38846E+02 2.13773E+01 1.00000E-07

 7th 0.00000E+00 5.11244E+01 1.49749E+06 1.61209E+03 3.66471E+03 4.01439E+01 6.60000E-07

 13th 0.00000E+00 5.74726E+01 2.10192E+06 2.26646E+03 5.61799E+03 8.45228E+01 2.66000E-06

Trm 19th 0.00000E+00 7.93419E+01 2.56510E+06 3.58110E+03 7.33205E+03 9.32595E+01 1.66393E-02

 25th 0.00000E+00 1.40927E+02 4.52991E+06 1.04788E+04 1.04086E+04 3.88045E+02 4.86660E-02

 Mean 0.00000E+00 6.70521E+01 2.18206E+06 3.00509E+03 5.49715E+03 9.13380E+01 1.07342E-02

 Std D. 0.00000E+00 2.92809E+01 9.15385E+05 2.18711E+03 2.49397E+03 8.49118E+01 1.58607E-02

 77

FES 8 9 10 11 12 13 14

 1st 2.11750E+01 7.39051E+02 7.59304E+02 7.53534E+01 5.39738E+06 3.04674E+05 2.36851E+01

 7th 2.13133E+01 7.74119E+02 8.65020E+02 7.97841E+01 6.42235E+06 9.05402E+05 2.38686E+01

 13th 2.13442E+01 7.99986E+02 8.88168E+02 8.14681E+01 6.91974E+06 1.06373E+06 2.39823E+01

1e3 19th 2.13676E+01 8.31190E+02 9.14221E+02 8.26106E+01 7.23733E+06 1.34206E+06 2.40377E+01

 25th 2.13887E+01 8.72940E+02 9.52398E+02 8.52554E+01 8.34791E+06 1.82215E+06 2.41530E+01

 Mean 2.13327E+01 8.03630E+02 8.81999E+02 8.12444E+01 6.86581E+06 1.07915E+06 2.39449E+01

 Std D. 4.94163E-02 3.42247E+01 4.49513E+01 2.23697E+00 7.18680E+05 3.54193E+05 1.40011E-01

 1st 2.11554E+01 5.37857E+02 5.77085E+02 7.40360E+01 2.74711E+06 1.98473E+04 2.33465E+01

 7th 2.12198E+01 5.93322E+02 6.24283E+02 7.67951E+01 3.11405E+06 3.29731E+04 2.36235E+01

 13th 2.12656E+01 6.18468E+02 6.48086E+02 7.78537E+01 3.39804E+06 5.31764E+04 2.37075E+01

1e4 19th 2.12915E+01 6.26707E+02 6.60825E+02 7.85654E+01 3.69401E+06 7.25397E+04 2.37938E+01

 25th 2.13343E+01 6.50201E+02 7.11174E+02 7.98899E+01 4.19302E+06 1.11901E+05 2.39553E+01

 Mean 2.12563E+01 6.09454E+02 6.47203E+02 7.76677E+01 3.41839E+06 5.45568E+04 2.36952E+01

 Std D. 5.06526E-02 2.99158E+01 3.30762E+01 1.39661E+00 3.99081E+05 2.55809E+04 1.59301E-01

 1st 2.10799E+01 7.02114E+01 3.75240E+02 7.17453E+01 1.24834E+04 2.46534E+01 2.29297E+01

 7th 2.11601E+01 8.80808E+01 4.02222E+02 7.41917E+01 6.09260E+04 3.06321E+01 2.33554E+01

 13th 2.11858E+01 9.69369E+01 4.17646E+02 7.48307E+01 8.93236E+04 3.50081E+01 2.34080E+01

1e5 19th 2.12055E+01 1.16184E+02 4.35728E+02 7.62536E+01 1.30699E+05 3.75569E+01 2.35048E+01

 25th 2.12311E+01 1.46614E+02 4.84708E+02 7.72227E+01 1.99062E+05 4.37736E+01 2.36513E+01

 Mean 2.11808E+01 1.01463E+02 4.20275E+02 7.50219E+01 9.48683E+04 3.44406E+01 2.33992E+01

 Std D. 3.33359E-02 2.02831E+01 2.47438E+01 1.35699E+00 4.33802E+04 4.87466E+00 1.52068E-01

 1st 2.10276E+01 6.66622E+01 5.59457E+01 2.44855E+01 6.30067E+02 5.19514E+00 2.26743E+01

 7th 2.11233E+01 7.95966E+01 8.37425E+01 3.74256E+01 4.08555E+03 7.35488E+00 2.30478E+01

 13th 2.11432E+01 8.65613E+01 9.01580E+01 5.70049E+01 8.10495E+03 8.78431E+00 2.32035E+01

Trm 19th 2.11634E+01 9.65108E+01 9.74667E+01 7.11363E+01 1.60856E+04 1.15155E+01 2.32611E+01

 25th 2.11989E+01 1.42279E+02 1.33335E+02 7.44238E+01 3.08875E+04 1.59468E+01 2.34932E+01

 Mean 2.11374E+01 9.27698E+01 9.14884E+01 5.32926E+01 1.06185E+04 9.58925E+00 2.31630E+01

 Std D. 3.69487E-02 2.10559E+01 1.68417E+01 1.83731E+01 8.53809E+03 3.20361E+00 1.74935E-01

