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ABSTRACT 

HIGH DEGREE B-SPLINE SOLUTION FOR SINGULARlY 

PERTURBED BOUNDARY VALUE PROBLEM 

Khaled Elfaituri 

This study deals with the singularly perturbed boundary value problems. It is very 

active filed now a days, especially with improvement technology of the computer 

machine which is help us to do million and million of mathematical operations. The 

perturbation theory benefits from this improvement to solve the boundary value 

problems, this kind of a applications can help us to solve a lot of problems occur in 

many areas of engineering and applied mathematics such as fluid mechanics, quantum 

mechanics, optimal control, chemical reactor theory, aerodynamics, reaction-diffusion 

process, geophysics, heat transport problems with large Peclet number and Navier-

Strokes flows with large Reynolds numbers etc. 

 

Perturbation theory comprises mathematical methods that are used to find an 

approximation solution to a problem which cannot be solved exactly, by starting from 

the exact solution to a related problem. Perturbation theory is applicable if the problem 

at hand can be formulated by adding a "small" term to the mathematical description of 

the exactly solvable problem. 

 

The study focuses on the some methods that solved this kind of the problems, the new 

scheme was used to apply the high degree b-spline interpolation, the result compared 

with the published methods recently.  

 

Keywords: Perturbation theory, B-spline Interpolation, Finite Deference       Method, 

Shooting Method. 
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HIGH DEGREE B-SPLINE SOLUTION FOR SINGULARLY 

PERTURBED BOUNDARY VALUE PROBLEM 

1. Introduction 

Singularly perturbed boundary value problems are very active filed now a days, this 

kind of an applications can help us to solve a lot of problems occur in many areas of 

engineering and applied mathematics such as fluid mechanics, quantum mechanic, 

optimal control, chemical reactor theory, aerodynamics, reaction-diffusion process, 

geophysics, heat transport problems with large Peclet number and Navier-Strokes 

flows with large Reynolds numbers etc. Mathematically, Perturbation theory 

comprises mathematical methods that are used to find an approximate solution to a 

problem that cannot be solved exactly, by starting from the exact solution of a related 

problem. 

 

Perturbation theory has its roots in 17th century celestial mechanics, where the 

theory of epicycles was used to make small corrections to the predicted paths of 

planets. Curiously, it was the need for more and more epicycles that eventually lead 

to the Copernican revolution in the understanding of planetary orbits. The 

development of basic perturbation theory for differential equations was fairly 

complete by the middle of the 19th century. It was at that time that Charles Delaunay 

was studying the perturbative expansion for the Earth-Moon-Sun system, and 

discovered the so-called "problem of small denominators". Here, the denominator 

appearing in the n'th term of the perturbative expansion could become arbitrarily 

small, causing the n'th correction to be as large as or larger than the first-order 

correction. At the turn of the 20th century, this problem lead Henri Poincare to make 

one of the first deductions of the existence of chaos, or what is prosaically called the 

"butterfly effect": that even a very small perturbation can have a very large effect on 

a system. 

 

Perturbation theory saw a particularly dramatic expansion and evolution with the 

arrival of quantum mechanics. Although perturbation theory was used in the semi-
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classical theory of the Bohr atom, the calculations were monstrously complicated, 

and subject to somewhat ambiguous interpretation. The discovery of Heisenberg's 

matrix mechanics allowed a vast simplification of the application of perturbation 

theory. Notable examples are the Stark effect and the Zeeman effect, which have a 

simple enough theory to be included in standard undergraduate textbooks in quantum 

mechanics. Other early applications include the fine structure and the hyperfine 

structure in the hydrogen atom. 

 

In modern times, perturbation theory underlies almost all of quantum chemistry and 

quantum field theory. In chemistry, perturbation theory was used to obtain the first 

solutions for the helium atom. The earliest use of perturbation theory for molecular 

physics was the development of the linear combination of atomic orbital’s molecular 

orbital method (LCAO-MO) by Ugo Fano and others in the 1930's. 

 

In the middle of the 20'th century, Richard Feynman realized that the perturbative 

expansion could be given a dramatic and beautiful graphical representation in terms 

of what are now called Feynman diagrams. Although originally applied only in 

quantum field theory, such diagrams now find increasing use in any area where 

perturbative expansions are studied. 

A partial resolution of the small-divisor problem was given by the statement of the 

KAM theorem in 1954. Developed by Andrey Kolmogorov, Vladimir Arnold and 

Jurgen Moser, this theorem stated the conditions under which a system of partial 

differential equations will have only mildly chaotic behavior under small 

perturbations. 

 

In the late 20th century, broad dissatisfaction with perturbation theory in the quantum 

physics community, including not only the difficulty of going beyond second order 

in the expansion, but also questions about whether the perturbative expansion is even 

convergent, has lead to a strong interest in the area of non-perturbative analysis, that 

is, the study of exactly solvable models. See [18]. 
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Physical problems that are position-dependent rather than time-dependent are often 

described in terms of differential equations with conditions imposed at more than one 

point. The general two-point boundary-value problems in involve a second-order 

differential equation of the form: 

                                        ( , , ),y f x y y a x b′′ ′= ≤ ≤ ,                                          (1.1)    

Together with the boundary conditions: 

                                       ( ) , ( )y a and y bα β= =                                                 (1.2) 

Most of the material concerning second-order boundary-value problems can be 

extended to problems with boundary conditions of the form: 

                       1 1 2 2( ) ( ) , ( ) ( )y a y a and y a y bα β α α β β′ ′− = − =
                      (1.3)  

Where 1 1 0α β+ ≠ , and,  but some of the techniques become quite 

complicated. The reader who is interested in problems of this type is advised to 

consider a book specializing in boundary-value problems, such as [15]. 

 

Perturbation theory is applicable if the problem at hand can be formulated by adding 

a "small" term to the mathematical description of the exactly solvable problem. 

 

In this study, in the first section the two famous methods will be presented which are 

the finite differences methods and the shooting method to solve the boundary value 

problems. In the next section, the definitions of five b-spline basis and the 

interpolating by use these b-spline bases will be exhibited, then it is used to solve the 

boundary value problem and will be compared its results with the results that 

published in the  famous applied journal. In the last section, the singularly perturbed 

boundary value problem definition and its applications will be dissection, after that 

the new scheme will be applied to help the fifth degree b-spline interpolation to solve 

the singularly perturbed boundary value problem. Finally, the results will be 

compared by published result in the famous applied journal.                     
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2. Boundary value problem 

2.1. Introduction  

Physical problems that are position-dependent rather than time-dependent are often 

descried in terms of differential equations with conditions imposed at more than one 

point. The general two-point boundary-value problems in this study involve a 

second-order differential equation of the form: 

                                     ),,( yyxfy ′=′′ ,   bxa ≤≤                                               (2.1) 

Together with the boundary conditions 

                                          α=)(ay , and β=)(by .                                               (2.2) 

In the following sections, many of the methods will be described. All of them 

interpolate the solutions of the equation of the form (2.1) with the conditions of the 

form (2.2). This kind of the problems occurs in many areas of engineering branches 

of the sciences and mathematics such as fluid mechanic, quantum mechanic, optimal 

control, chemical reactor theory, aerodynamics, reaction-diffusion process, 

geophysics, heat transport problems with large Peclet numbers and Navier-Strokes 

flows with large Reynolds numbers etc. Recently, a lot of people prefer an 

interpolating the solutions instead of not solving these problems, this is why this 

study have been considered to add as soon as possible some of these interpolating 

methods. 

2.1.1. Theorem 

Suppose the function  in the boundary-value problem 

                             ),,( yyxfy ′′=′′ ,   bxa ≤≤ ,     α=)(ay , β=)(by .                  (2.3) 

is continuous on the set  

{ }( , , ) , ,D x y y a x b y y′′ ′= ≤ ≤ − ∞ < < ∞ − ∞ < < ∞  

and that  
y

f

∂

∂
 and 

y

f

′∂

∂
 are also continuous on . If 
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1. 0),,( >′
∂

∂
yyx

y

f
 for all Dyyx ∈′),,(  , and 

2. A constant M exists, with  

                           Myyx
y

f
≤′

∂

∂
|),,( ,  for all Dyyx ∈)',,(  . 

Then the boundary-value problem has a unique solution. The proofs see [15]. 

2.1.2. Example 

The boundary value problem considered in [17] 

                             -xyy e sin 0, 1 2, (1) (2) 0y x y y′′ ′+ + = ≤ ≤ = =                       (2.4) 

Has an exact solution yeyyxf xy ′−−=′ − sin),,( . 

And since  

0),,( >=′
∂

∂ −xyexyyx
y

f
, and 1cos),,( ≤′−=′

′∂

∂
yyyx

y

f
 

Then the problem has a unique solution. 

2.1.3. Definition 

 When  ),,( yyxf ′  can be expressed in the form: 

                                  )()()(),,( xryxqyxpyyxf ++′=′        .                             (2.5) 

The differential equation:  

                                                            ),,( yyxfy ′=′′                                                     (2.6) 

is called linear differential equation, which is accure quite often in practice 

problems. 

2.1.4. Corollary 

If the linear boundary problem: 

)()()( xryxqyxpy ++′=′′ , bxa ≤≤ , α=)(ay , β=)(by .                                   (2.7) 
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Satisfies: 

1. )(),(),( xrandxqxp are continuous on [a, b]. 

2. 0)( >xq  on [a, b], 

Then the problem has a unique solution. 

 

The proof of this corollary problem is this, suppose that changing to the two initial 

condition value problems  

 )()()( xryxqyxpy ++′=′′ , bxa ≤≤ ,     α=)(ay , 0)( =′ ay , and     

                     yxqyxpy )()( +′=′′ , bxa ≤≤ , 0)( =ay , 1)( =′ ay . 

 By Lipschitz condition theorem [17] - p.263 - the two problems have a unique 

solution, for example )(),( 21 xyandxy  are the solutions, respectively. 

 Then:   

                                      )(
)(

)(
)()( 2

2

1
1 xy

by

by
xyxy 








−+= β                                    (2.8) 

is the unique solution of our boundary value problem, provided that 0)(2 ≠by .  

Graphically in the figure (2.1), its clear that the solution can be approximated by 

)(xy  which is our unique solution. 

 

 

Fig. (2.1) shows uniqueness solution. 
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2.2 The Finite Difference Method 

Consider the problem defined on the interval [a, b] of the form: 

                           )()()( xryxqyxpy ++′=′′                                                          (2.9) 

With the boundary conditions: 

                                         βα == )(,)( byanday       .                                      (2.10) 

Where ( ), ( ), ( )p x q x and r x  are known smooth functions. 

This kind of the problems (2.9) is a linear differential equation of second order which 

is clamped by boundary conditions (2.10). It is very important in many mathematical, 

physical sciences and engineering branches. In this section we will be focused on the 

solutions of this kind of the problems because we will study and compare the 

solution of these kinds of the problems by several methods later, finite difference 

method is one of them. 

 

First of all, the interval will be divided to N subintervals, which length is
N

ab
h

−
= , 

The interpolation solution is denoted by iy  for the exact solution )( ixy , and from 

equation (2.10) denote that α=0y , and β=Ny , the other interior nodes denotes by 

1 2 3 1, , , ..., Ny y y y −  that corresponding to the interior net points in the interval [a, b],  

The following graph in figure (1.2) is explaining that: 

 

Fig. (2.2) shows boundary values and the unknown nodes 

The equation (2.9) at nx x= leads to: 

                           ( ) ( ) ( ) ( ) ( ) ( )n n n n n ny x p x y x q x y x r x′′ ′= + +                          (2.11) 

The simplest way to interpolate the equation (2.11) is replaced the 

differentiation ( )ny x′′ , and ( )ny x′  by its centered difference respectively which are: 
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                                                1 1( )
2

n n
n

y y
y x

h

+ −−
′ ≅                                             (2.12) 

                                                1 1

2

2
( ) n n n

n

y y y
y x

h

+ −− +
′′ ≅                                  (2.13)  

Then substitute the equations (2.12) and (2.13) in the equation (2.11) leads to the 

form: 

                               1 1 1 1

2

2

2

n n n n n
n n n n

y y y y y
p q y r

h h

+ − + −− + −   
= + +   

   
             (2.14) 

Where ( ) , ( )
n n n n

r r x p p x= = , and ( )
n n

q q x= . 

 

The equation (1.14) can be rewriting it as the form: 

                     ( )2 2

1 11 2 1
2 2

n n
n n n n n

hp hp
y h q y y h r− +

   
+ − + + + =   

   
                   (2.15) 

The equation (2.15) can be applying on the all interior nodes that belongs to [a, b] for 

n = 1, 2, …, N-1 respectively. Then, the system of the equations at the nodes is 

consisting of N-1 linear equations with N-1unknowns, which are 1 2 3 1, , ,...,
N

y y y y − . 

Because of 0y α= , and
N

y β= , the first equation and the last equation leads to 

these forms respectively: 

                    ( )2 21 1
1 1 2 12 1 1

2 2

hp hp
h q y y h r α

   
− + + − = − +   

   
                           (2.16) 

              ( )2 21 1
2 1 1 11 2 1

2 2

N N
N N N N

hp hp
y h q y h r β− −

− − − −

   
+ − + = − −   

   
             (2.17)  

Then the value of where n = 1, 2, 3,…, N-1 can be calculated from the following 

system of the matrix form A Y C⋅ = where A, Y, and C as the following form 

respectively: 
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( )

( )

( )

( )

( )

2 1
1

22 2
2

23 3
3

22 2
2

21
1

2 1 0 . . ... 0
2

1 2 1 0 . ... .
2 2

0 1 2 1 0 ... .
2 2

. . . . . . .

. . . . . . .

. ... . 0 1 2 1
2 2

0 ... . . 0 1 2
2

N N
N

N
N

hp
h q

hp hp
h q

hp hp
h q

A

hp hp
h q

hp
h q

− −
−

−
−

  
− + − 

 
   

+ − + −   
   
    

+ − + −    
   =



   
+ − + −   

   

 
+ − + 

 












 
 
 
 
 
 
 
 

(2.18) 

                   

1

2

3

2

1

.

.

.

N

N

y

y

y

Y

y

y

−

−

 
 
 
 
 
 =
 
 
 
 
 
  

 , and 

2 1
1

2

2

2

3

2

2

2 1
1

(1 )
2

.

.

.

(1 )
2

N

N
N

h p
h r

h r

h r

C

h r

h p
h r

α

β

−

−
−

 
− + 

 
 
 
 
 

=  
 
 
 
 
 

− − 
 

                              (2.19) 

This system can be easily to solve. Then the unknowns which are denoted by vector 

 will be known. These values are the interpolating values of ’s by using the finite 

difference method. For more explanation, the next example will be demonstrating all 

the previous steps.  

2.2.1 Example 

Consider the problem: 

                                             4 xy y xe′′ − = −                                                      (2.20) 

 With boundary conditions (0) 0y =  and (1) 0y = defining on the interval [0, 1], 

whose exact solution is: 

                                        (1 ) xy x x e= − .                                                           (2.21) 
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Take h = 0.1, and then apply the system of the equations (2.18) & (2.19) to get: 

2.01 1 0 . . ... . 0

1 2.01 1 0 . . ... .

0 1 2.01 1 0 . ... .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. ... . . 0 1 2.01 1

0 ... . . . 0 1 2.01

A

− 
 − 
 −
 
 =
 
 
 
 −
 

−  

 

And for Y and C are derived as the follows respectively: 

  

1

2

3

8

9

.

.

.

y

y

y

Y

y

y

 
 
 
 
 
 =
 
 
 
 
 
  

 , and C = 

0.0044

0.0098

0.0162

0.0239

0.0330

0.0437

0.0564

0.0712

0.885

− 
 − 
 −
 
− 
 −
 
− 
 −
 
− 
 − 

. 

This system of the form 1Y A C−= ⋅ can be solved to find the interpolating values 

of ’s.  

 

The result will be compared with the exact solution which is clear in the figure (2.3), 

the interpolating result by the finite difference method is denoted by (*). 

 

Fig. (2.3) shows exact function and I.F.D.M. by ( . 
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The table (2.1) gives the final result of our problem and the difference is clear 

between the exact solution and the finite difference method: 

 Exact solution  F.D.M.   

0 0 0 --------- 

0.1 0.0995 0.0989 0.0006 

0.2 0.1954 0.1944 0.0010 

0.3 0.2853 0.2820 0.0014 

0.4 0.3580 0.3563 0.0017 

0.5 0.4122 0.4103 0.0019 

0.6 0.4373 0.4354 0.0020 

0.7 0.4229 0.4211 0.0018 

0.8 0.3561 0.3546 0.0015 

0.9 0.2214 0.2205 0.0009 

1.0 0 0 ------- 

Table (2.1) shows the result of example (2.2.1), and its error. 

2.2.2. Max. Error: 

The maximum absolute error is 0.0020 which can be smaller than it if is smaller 

than (0.1). 

2.3. Shooting Method 

The main idea of the shooting method is looks like the soldier who shoots a bomb to 

the target for example a castle and he try to change the coordinates of the mortar 

until towards to the target. The figure (2.4) explains this idea see [12]. 

 

 

Fig. (2.4) shows the idea of shooting method 
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Now, we will explain the shooting method to solve the boundary value problem 

defined on (2.1) & (2.2). The main idea of this method is changing the boundary 

value problem to the initial value problem, and by help of guessing of the first 

derivative at the point [ , ]a a b∈ which is ( )y a λ′ = , the problem will be changed to 

the form: 

             ( , , )y f x y y′′ ′= , with ( )y a α=  and ( )y a λ′ =                                     (2.21)  

Then the problem will be solved as initial value problem by chose any method for 

example Runge-Kutta method and the result be compared with exact value 

of ( )y b β= . If the error is big enough then the value of ( )y a λ′ =  will be changed 

until the result is near as soon as possible to the exact value which is depending on 

the error of our hypotheses. The next example will be showing these steps 

practically.  

2.3.1. Example 

Let 3 2 0y y y′′ ′− + =  with clamped condition (0) 0y =  and (1) 2y = , defined 

on [0,1] . The exact solution of this problem is: 

                                                
2

2

2
( ) ( )x x

y x e e
e e

= −
−

                                         (2.22) 

First of all, the problem will be changed to the first order of two differential 

equations to decrease the order as this form: 

                                          u v′ = , and 3 2v v u′ = −                                           (2.23) 

With two conditions (0) 0u =  and (0)v λ= , then our problem leads to the initial 

value problem and then the shooting method can be apply with the target (1) 2u = .  

 

Now, there is many methods can be apply to solve this problem, the Runge-Kutta 

with forth steps will be chosen with 0.1h = . Fore a step n the forth steps Runge-

Kutta method as the followed form:  

1 ( , , )n n nk f x u v= , 1 ( , , )n n nl g x u v= . 
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2 1 1( , , )
2 2 2

n n n

h h h
k f x u k v l= + + + , 2 1 1l ( , , )

2 2 2
n n n

h h h
g x u k v l= + + +  

3 2 2( , , )
2 2 2

n n n

h h h
k f x u k v l= + + + , 3 2 2( , , )

2 2 2
n n n

h h h
l g x u k v l= + + + . 

4 3 3( , , )n n nk f x h u h k v h l= + + + , 4 3 3( , , )n n nl g x h u h k v h l= + + + . 

1 1 2 3 4[ 2 2 ]
6

n n

h
u u k k k k+ = + + + + , 1 1 2 3 4[ 2 2 ]

6
n n

h
v v l l l l+ = + + + + .    

Now, we construct a matlab program (kutta4.m) see [appendix] to do these steps 

starting by the initial value of 1 0.5v λ= = , and with help of matlab programs that 

define the input of two functions ( , , )n n nf x u v and ( , , )n n ng x u v  which gave the 

output u ′ and v ′  functions which comes from equation (2.23) respectively. Next, the 

following looping is necessary to get the results for all interior nodes which belong to 

the interval [0, 1]: 

         1 1 10.1, 0, 0 0.5h x u and v= = = = . 

            1:10for i =  

      1 1[ , ] 4( , , , )i i i i iu v kutta x u v h+ + = . 

             end.  

This looping is derive the ’s and ’s which are the interpolating value of exact 

values ’s and iy ′ ’s respectively. The table (1.2) shows this result starting 

with 1 0.5v = , and tries to improve our choice until we get the target exact result 

which is 10 2u = . By this shooting method, not only found the values of our problem 

but also the derivative at the nodes will be found too. 

 

Denote in the first column which is containing the values of iv λ= , the changing of 

these value leads to the changing of the last column which is containing the value 

of 10 (1) 2u y= = . And also the last raw gives the interpolating of the values of  
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for the nodes [0,1]ix ∈ , where i = 0, 1, …, 10. The maximum error of this problem 

is: 

Error = max i iy u−  = 4.5013e-005. 

The figure (2.5) shows the exact solution and the solution of example (2.3.1) by 

shooting method denoted by (*) which is in the last raw of table (2.2). 

 

 

 

Fig. (2.5) shows the result of example (2.3.1) 
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3. B-spline Interpolation 

3.1 Introduction 

The approach involves using the so called B-splines as a basis function. These are so 

named because of their use as basis function, but also because of their characteristic 

bell shape. Such curves are consistent with a spline approach in that their value and 

their first and second derivatives would have continuity at their extremes. Thus, 

continuity of ( )f x and its lower derivatives at the nodes is ensured. See [4]. 

In this section will be focus on the b-spline basis and their definitions. Next, the 

interpolation theory by b-spline bassis considered, So the b-spline have been used as 

a basis to interpolate the difficult function. Finally the results will be compared with 

other methods.          

3.2 Piecewise Polynomial 

Let Rba ⊂],[  be a finite interval and we introduce a set of partition 

0 1 2{ , , , ..., }n nx x x xΩ = of [ , ]a b , where ( 0, 1, 2, 3, ..., )ix i n=  are called the 

nodes of the partition as shown in figure (3.1). 

 

Fig. (3.1) shows nodes of partition 

3.2.1. Definition 

The set of piecewise polynomial of degree k defined on a partition 

0 1 2{ , , , ..., }n nx x x xΩ = denoted by )( nkP Ω . A function belonging to
 

)( nkP Ω in 

each subinterval ],[ 1 iii xxI ==  is a k-th degree polynomial. Thus a piecewise 

polynomial of degree one see figure (3.2) is a function consisting of piecewise 

straight line segments. 

 

Fig. (3.2) shows a piecewise polynomial of degree one 

4321 ++++ iiiiii xxxxxx
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3.3. The interpolation theory and B-spline 

The interpolation theory is significant in many engineering fields especially 

those concerning applied mathematics such as chemical reactor theory, 

aerodynamics, quantum mechanics, optimal control, reaction-diffusion process, 

geophysics, ect.  

 

The B-spline is chosen to apply the interpolation theory for these reasons: 

• It can change a function of the difficult structure by a linear 

combination of simpler polynomial. 

• The polynomial interpolation is one of the best methods used in 

practice, because of simplicity, differentiation, and calculating of its 

zeros. 

• The approximations are piecewise polynomial of low degree, which is 

easily constructed, and the individual parts are smoothly connected.   

• The B-spline functions constitute a very active field in the 

approximation theory because of using the boundary value conditions. 

• The approximation converges and produces accurate results for a 

large class of function. 

3.3.1. Statement of the problem of interpolation 

On an interval [a, b] is specified (n+ 1) point 0 1 2, , , ..., nx x x x , called nodes (mesh 

points or interpolation points), and the value of some function )(xf  at these points: 

                nn yxfyxfyxf === )(,....,)(,)( 1100                                                 (3.1) 

It is required to construct a function )(xF (interpolating function) belonging to a 

known class and assuming the same value at the interpolation points as )(xf , that is, 

such that 

              nn yxFyxFyxF === )(,....,)(,)( 1100                                                  (3.2) 
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Geometrically, this means that one has to find a curve )(xFy =  of some specific 

type that passes through the given set of points niwhereyxM iii ,...,3,2,1,0),( =  , 

 

 

Fig.( 3.3 ) Shows the nodes on the curve  

 

In such a general statement, the problem can have infinity of solutions or none at all. 

However, the problem becomes unambiguous if in place of arbitrary function )(xF  

we seek a polynomial )(xPn of degree not higher than n that satisfies the condition 

(2.2); that is, such that  

           nnnnn yxPyxPyxP === )(,.....,)(,)( 1100                          (3.3)
 

The resulting interpolation formula   )(xFy =  is ordinarily used to approximate the 

values of the given function )(xf  for values of the argument  x  that differ from the 

interpolation points. This operation is called interpolation in the narrow sense 

when ],[ 0 nxxx ∈ , that is the value of x  is intermediate between nxandx0 , and 

extrapolation, when ],[ 0 nxxx ∉ . See [10]. 

Note:  

Specifically, we will use the equidistant partitions for all this study. 

Moreover, we extend the set of nodes in the interval [a, b] by taking  

                     .,......,3,2,1,,, 00 niwhereihxxandax
n

ab
h i =+==

−
=
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3.3.2. B-spline Basis 

 The theory of spline function is very active field of approximation theory and 

boundary value problems (BVPs), when numerical aspects are considered. 

A series of papers by [5-7] the BVPs of order third, fourth and fifth were solved 

using fourth and sixth-degree B-splines is very interesting to study. In the present 

study, several of different kind of B-spline interpolation degrees, definitions and 

applications, are focused to circulate the benefit. We will introduce two equivalent 

definitions for B-spline basis (Implicit, and Explicit definition). 

3.3.2.1. Implicit definition 

Let { }nΩ be a partition of [ ],a b R⊂ . A B-spline of order l  is a spline from 

)( nlS Ω with minimal support and the partition of unity holding. 

 

To explain this, let us defined ZiwherexB ji ∈)(, is a B-spline of degree l , the left 

end of which support is equal to ix , and then we have the following properties: 

1.  Supp ],[)( 1, ++= liiil xxB                                                                       (3.4) 

  2. RxxB il ∈∀≥ ,0)(,          (Non-negativity)                                    (3.5) 

 3.  RxxB
i

il ∈∀=∑
∞

−∞=

,1)(,        (Partition of unity)                                 (3.6) 

The proof of these property see [9] p.131, and[1]. 

3.3.2.2. Explicit definition (recursion): 

Let { }nΩ  be a set of partitions of [ ],a b R⊂ , we define the following basis: 

1. The zero degree B-spline basis figure (3.4) is defined as: 

    
1

0,

1, [ , ].
( )

0, .

i i

i

if x x x
B x

otherwise

+∈
= 


                                                     (3.7) 
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Fig.(3.4) shows 0,1( )B x basis. 

 For a positive l we define the following recursion: 

              1
, 1, 1, 1

1 1

( ) ( ) ( )i l i
l i l i l i

l i i l i i

x x x x
B x B x B x

x x x x

+ +
− − +

+ + + +

   − −
= +   

− −   
                    (3.8)       

Then by (3.7) and recursion (3.8) the important high degree B-spline basis can be 

defend as follows: 

2. The first degree B-spline basis defined as: 

                        

1

1

2
1, 1 2

2 1

( )
, [ , ].

( )

( )
( ) , [ , ].

( )

0, .

i
i i

i i

i
i i i

i i

x x
if x x x

x x

x x
B x if x x x

x x

otherwise

+

+

+
+ +

+ +

−
∈ −


−

= ∈
−





                             (3.9) 

Figure (3.5) illustrates the graph of the first degree b-spline basis (3.9), the properties 

(3.4), (3.5), and (3.6) are clear from the graph. 

  

 

Fig.(3.5) shows  basis. 
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3. The second degree B-spline basis as the following form: 

2

1

2 2

1 1 1 2

2, 2 2

3 2 3

( ) , [ , ].

2 ( ) 2( ) , [ , ].1
( )

2 ( ) , [ , ].

0 , .

i i i

i i i i

i

i i i

x x if x x x

h h x x x x if x x x
B x

h x x if x x x

otherwise

+

+ + + +

+ + +

 − ∈


+ − − − ∈
= 

− ∈



          (3.10) 

Figure (3.6) illustrates the second degree B-spline basis (3.10) as the follows: 

 

 

Fig. (3.6) illustrates  basis 

The values and their derivatives of the second degree b-spline basis at the nodes are 

derived from the general form of the basis (3.10) by substitute the value of x by ix , 

The table (2.1) is illustrate all this values which is very important when  the 

interpolation method have been applied practically. 

 

 ix  1ix +  2ix +  3ix +  

2, ( )iB x  0 1/2 1/2 0 

2, ( )iB x′  0 1/h -1/h 0 

Table (3.1) illustrate the values of 2.iB ’s and their derivatives 

4. The third degree B-spline basis 3, ( )iB x  is very important; because in 

the next sections we will be use this basis to solve the high degree 

problems. The form of third degree b-spline as the following form: 
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3

1

3 2 2

1 1

3

1 1 2

3 2 2

3, 3 33

3

3 3 4

3

4 4 5

( ) , [ , ].

3 ( ) 3 ( ) ...

3( ) , [ , ].
1

( ) 3 ( ) 3 ( ) ...
6

3( ) , [ , ].

( ) [ , ].

0 , .

i i i

i i

i i i

i i i

i i i

i i i

x x if x x x

h h x x h x x

x x if x x x

B x h h x x h x x
h

x x if x x x

x x if x x x

otherwise

+

+ +

+ + +

+ +

+ + +

+ + +

 − ∈


+ − + −
 − − ∈


= + − + −


− − ∈
 − ∈



                         (3.11) 

The Figure (3.7) shows the third degree b-spline basis and the property (3.4), (3.5), 

and (3.6) are clear in the graph. 

 

 

Fig. (3.7) shows  basis 

The value of the third degree b-spline basis at the nodes and their derivatives are 

easy to fit from the basis (3.11), the table (3.2) shows these values: 

 

 ix  1ix +  2ix +  3ix +  4ix +  

3, ( )iB x  0 
1

6
 

2

3
 

1

6
 0 

3, ( )iB x′  0 
1

2h
 0 

1

2h
−  0 

3, ( )iB x′′  0 
2

1

h
 

2

2

h

−
 

2

1

h
 0 

Table (3.2) shows the values of 3,iB ’s and their derivatives. 
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5. The fourth degree B-spline basis defined in the equation (3.13),  

4

1

4 3 2 2

1 1

3 4

1 1 1 2

4 3 2 2

2 2

3 4

4, 2 2 2 34

4 3 2

4

( ) , [ , ].

4 ( ) 6 ( ) ...

4 ( ) 4( ) , [ , ].

11 12 ( ) 6 ( ) ...
1

( ) 12 ( ) 6( ) , [ , ].
24

4 ( ) 6 (

i i i

i i

i i i i

i i

i i i i i

i i

x x if x x x

h h x x h x x

h x x x x if x x x

h h x x h x x

B x h x x x x if x x x
h

h h x x h x

+

+ +

+ + + +

+ +

+ + + +

+

− ∈

+ − + −

+ − − − ∈

+ − − −

= − − + − ∈

+ − + 2

4

3 4

4 4 3 4

4

5 4 5

) ...

4 ( ) 4( ) , [ , ].

( ) , [ , ].

0, .

i i i i

i i i

x

h x x x x if x x x

x x if x x x

otherwise

+

+ + + +

+ + +











−
 + − − − ∈

 − ∈



          (3.12) 

The value of the b-spline at the nodes and its derivative are considered in the 

following table: 

 ix  1ix +  2ix +  3ix +  4ix +  5ix +  

4, ( )iB x  0 
1

24
 

11

24
 

11

24
 

1

24
 0 

4, ( )iB x′  0 
1

6h
 

1

2h
 

1

2h
−  

1

6h
−  0 

4, ( )iB x′′  0 2

1

2h
 

2

1

2h
−  

2

1

2h
−  

2

1

2h
 0 

Table (3.3) shows the values of 4, ( )iB x ’s and their derivatives. 

The figure (3.8) shows the fourth degree B-spline function and the corresponding 

value of the nodes which is clear the sum of these values equal to one (partition of 

unity property three equation (3.6)). 

 

 

Fig. (3.8) shows 4, ( )iB x  basis 
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6. The fifth degree B-spline basis defined as: 

 

5

1

5 4 3 2 2 3

1 1 1

4 5

1 1 1 2

5 4 3 2 3 3

2 2 2

4 5

2 2

5, 5

( ) , [ , ].

5 ( ) 10 ( ) 10 ( ) ...

5 ( ) 5( ) , [ , ].

26 50 ( ) 20 ( ) 20 ( ) ...

20 ( ) 10( ) , [
1

( )
120

i i i

i i i

i i i i

i i i

i i

i

x x if x x x

h h x x h x x h x x

h x x x x if x x x

h h x x h x x h x x

h x x x x if x

B x
h

+

+ + +

+ + + +

+ + +

+ +

− ∈

+ − + − + −

+ − − − ∈

+ − + − − −

− − + − ∈

=

2 3

5 4 3 2 3 3

4 4 4

4 5

4 4 3 4

5 4 3 2 2 3

5 5 5

4 5

5 5 4 5

5

6

, ].

26 50 ( ) 20 ( ) 20 ( ) ...

20 ( ) 10( ) , [ , ].

5 ( ) 10 ( ) 10 ( ) ...

5 ( ) 5( ) , [ , ].

( ) ,

i i

i i i

i i i i

i i i

i i i i

i

x x

h h x x h x x h x x

h x x x x if x x x

h h x x h x x h x x

h x x x x if x x x

x x if x

+ +

+ + +

+ + + +

+ + +

+ + + +

+

+ − + − − −

− − + − ∈

+ − + − + −

+ − − − ∈

− ∈ 5 6[ , ].

0, .

i ix x

otherwise

+ +





















 (3.13)  

The graph of 5, ( )iB x  basis is very important in the next sections; because we will be 

apply this basis to solve the high degree b-spline problems. Figure (3.9) shows the 

graph of this basis. 

 

 

Fig. (3.9) shows 5, ( )iB x basis 

The value and the derivatives of the fifth degree b-spline basis at the nodes are listed 

in the following table (3.4): 
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 ix  1ix +  2ix +  3ix +  4ix +  5ix +  6ix +  

5, ( )iB x  0 
1

120
 

26

120
 

66

120
 

26

120
 

1

120
 0 

5, ( )iB x′  0 
5

120h
 

5

12h
 0 

5

12h
−  

5

120h
−  0 

5, ( )iB x′′  0 2

1

6h
 

2

1

3h
 

2

1

h
−  

2

1

3h
 

2

1

6h
 0 

Table (3.4) shows the values of 5, ( )iB x ’s and their derivatives. 

3.4. B-Spline Interpolation 

The set { }
1

, ( )
n

l i
i l

B x
−

=−
is defined as a basis for ( )l nS Ω , so any spline 

( )l ns S∈ Ω can be written as: 

                                

1

,( ) ( )
n

i l i

i l

s x C B x
−

=−

= ∑                                             (3.14) 

Given a function :[ , ]f a b R→ , we can find ( )l ns S∈ Ω , such that ( ) ( )j js x f x= , 

where 0 j n≤ ≤ . This interpolation problem has (l-1) free parameter, where (l) is the 

degree of the b-spline interpolation. In the next section we will describe the b-spline 

interpolation of the high degree started form the second degree b-spline interpolation. 

3.4.1. The Second Degree B-spline Interpolation 

In the second degree B-spline interpolation we have to built a system of order 

( 1) ( 2)n n+ × +  equations.  

 

Fig. (3.10) shows 2, ( )iB x basis 
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This means we need to add one free parameter to solve this system because this 

system is not a square. For example, the first derivative at the 0x is a good enough to 

complete this system. 

    

Now, we can construct the whole system of the equations by using the general form 

(3.14) of the second degree b-spline interpolation: 

First of all, at any nodes ix  where 0,1, 2,...,i n= , we have 

                    2 2, 2 1 2, 1( ) ( ) ( ) ( )i i i i i i i is x C B x C B x f x− − − −= + =                               (3.15) 

Where 0,1, 2,...,i n=  

We note that at the nodes we have only two C’s are not zero and the other C’s are 

zero because there is only two basses intersect at the nodes in the second degree b-

spline, this is clear in figure (3.10). Then we have (n+1) nodes and (n+2) basis, this 

leads to ( 1) ( 2)n n+ × +  system of equations which is not square matrix. We should 

add one free parameter fore example the first derivative at  is enough to do that; 

                 0 2 2, 2 0 1 2, 1 0 0( ) ( ) ( ) ( )s x C B x C B x f x− − − −
′ ′ ′ ′= + =                                     (3.16) 

Then the system is defined as the following form: 

             

2 0

1 0

0 1

1

2

1

1 1
( )0 . . . . 0

( )
1 1

0 . . . . . ( )
2 2

.1 1
0 0 . . . .

. .2 2

. .. . . . . . . .

. .. . . . . . . .

.1 1
. . . 0 0 0

2 2 .

1 1 .. . . . 0 0
2 2

1 1
0 . . . . 0

2 2

n

n

C f x
h h

C f x

C f x

C

C

C

−

−

−

−

  ′ −                          =                            

2

1

.

.

.

( )

( )

n

n

f x

f x

−

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                       (3.17) 
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   Solving this system will give us the value of the C’s. Then substitute it in the 

original formula (2.14) to found the best piecewise interpolation functions of the 

second degree b-spline interpolation.  

3.4.1.1. Example 

 Consider the function 

                               

2

2

( 1) , [0,1].

( ) 0, [1, 2].

( 2) , [2,3].

x if x

f x if x

x if x

− − ∈


= ∈


− ∈

                                      (3.18) 

Where (0) 2, 1.f and h′ = =  

Now we apply the system (3.17) to approximate this function by second degree b-

spline. Then the system of the equations as the following form: 

2

1

0

1

2

2 2 0 0 0 4

1 1 0 0 0 2

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 1 1 2

C

C

C

C

C

−

−

−     
    −    
    =
    
    
        

 

Solving this system leads to 2 1 0 1 22, 0, 0, 0, 2C C C C and C− −= − = = = = . 

Now we have: 

           

n-1

i 2, 2 2, 2 2 2,2

i=-2

S(x) = C ( ) ( ) ( )iB x C B x C B x− −= +∑ .                           (3.19) 

But
2

2, 2

(1 )
( )

2

x
B x−

−
=   and

2

2,2

( 2)
( )

2

x
B x

−
= , 

 Then  

2

2

(1 ) , [0,1].

( ) ( 2) , [2,3].

0, .

x if x

S x x if x

otherwise

− − ∈


= − ∈


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Fig. (3.11) shows the solution of example (2.3.1.1) 

 

This result is clear in Figure (3.11) which is completely the same of our original 

function. 

3.4.2. The Third Degree B-Spline Interpolation 

In the third degree B-spline interpolation the system of the equations is more 

complicated than the second degree b-spline interpolation, because we have to built a 

system of order ( 1) ( 3)n n+ × +  equations, this means we need to add two free 

parameter to solve this system. These kinds of problems are called the boundary 

conditions problems or clamped problems, for example we can chose 0( )f x′  and 

0 0( ), ( ) ( )nf x or f x and f x′ ′ ′′ to complete and solve this system. In figure (3.12), we 

can denote this kind of structure. 

 

 

Fig. (3.12) shows 3, ( )iB x   
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In the figure (2.12), we can denote that at any  where i = 0, 1, 2, 3, … , n there are 

three basis ( 3, ( )iB x ) not equal to zero. For example, at 0 3, 3 0 3, 2 0, ( ), ( )x B x B x− − , and 

3, 1 0( )B x−  is not equal to zero, this means by equation (2.14) we have: 

3 3, 3 2 3, 2 1 3, 1( ) ( ) ( ) ( ) ( )i i i i i i i i i i is x C B x C B x C B x f x− − − − − −= + + =                     (3.20)           

Where i = 0, 1, 2, …, n.. 

Now, the boundary conditions or clamped conditions will be added to our system of 

linear equations to solve it. For example, the clamped condition is enough to 

complete our system which was taken from (2.16). 

  

Then 

  0 3 3, 3 0 2 3, 2 0 1 3, 1 0 0S (x ) ( ) ( ) ( ) ( )C B x C B x C B x f x− − − − − −
′ ′ ′ ′ ′= + + =                           (3.21) 

n 3 3, 3 2 3, 2 1 3, 1S (x ) ( ) ( ) ( ) ( )n n n n n n n n n nC B x C B x C B x f x− − − − − −
′ ′ ′ ′ ′= + + =                   (3.22) 

Now, by equations (3.20), (3.21), and (3.22) the following system will be 

constructing at all the nodes belonging to the interval [a, b] as this form: 

           

3 0

2 0

1 1

0

2

1

3 3 ( )0 0 0 . . . 0

( )
1 4 1 0 0 . . . .

( )
0 1 4 1 0 0 . . .

.
. . . . . . . . .

. .
6. . . . . . . . .

. .
. . . . . . . . .

. .
. . . . 0 1 4 1 0

. .
. . . . . 0 1 4 1

3 3
0 . . . . 0 0

n

n

C f x
h h

C f x

C f x

C

C f

C
h h

−

−

−

−

−

  ′ −   
   
   
   
   
   
  = 
   
   
   
   
   
   
 −     

( )

( )

n

n

x

f x

 
 
 
 
 
 
 
 
 
 
 
 
 
 

′  

                (3.23) 

The first and the last rows applied the conditions (3.21) and (3.22) respectively. After 

solving the system (3.23), we can find the  iC  where i = -3, -2, -1, 0, … , n-1, and 

then substitute it in the equation (3.14) to approximate the original function. The 
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following example will be illustrating the previous steps practically which is very 

important to understanding the idea. 

3.4.2.1. Example 

 Let ( ) cos ( )f x xπ=  is defined on the interval [a, b] = [0, 1], with h = 1/2, then we 

have
1

0, , 1
2

 
Ω =  

 
, we approximate this function by cubic b-spline which was 

illustrated in the previous section by clamped conditions (0) (1) 0f f′ ′= = , this 

means, we have to find ( )S x  satisfies these conditions, then  

                              
1 1

3, 3,

3 3

( ) ( ) ( )
n

i i i i

i i

S x C B x C B x
−

=− =−

= =∑ ∑                                   (3.24) 

with boundary conditions at  we have 0 0( ) ( )S x f x′ ′= , and at nx we 

have ( ) ( )n nS x f x′ ′= , then  

0

0 3, 0

3

( ) ( )i i

i

S x C B x
=−

′ ′= ∑  

            3 3, 3 2 3, 2 1 3, 1 0 3, 1 3,1(0) (0) (0) (0) (0) 0oC B C B C B C B C B− − − − − −
′ ′ ′ ′ ′= + + + + =       (3.25) 

Use the derivative of the nodes in table (2.2) to get:  

( )3 2 1 3 1

1 1
0 0 0

2 2
C C C C C

h h
− − − − −

   
− + + = ⇒ − + =   
   

                                (3.26) 

And by the same way at nx we have: 

( ) (1)nS x S′ ′=  

            3 3, 3 2 3, 2 1 3, 1 0 3, 1 3,1(1) (1) (1) (1) (1) 0oC B C B C B C B C B− − − − − −
′ ′ ′ ′ ′= + + + + =          (3.27) 

This means we get the second equation: 

( )1 0 1 1 1

1 1
0 0 0

2 2
C C C C C

h h
− −

   
− + + = ⇒ − + =   
   

                        (3.28) 
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Now the system of equation (3.23) leads to the form: 

                         

3

2

1

0

1

1 0 1 0 0 0

1 4 1 0 0 6

0 1 4 1 0 0

0 0 1 4 1 6

0 0 1 0 1 0

C

C

C

C

C

−

−

−

−     
    
    
    =
    

−    
    −    

                                            (3.29) 

Solving the equation (3.29) will give us the value of ’s whish are: 

3 2 1 0 10, 1.5, 0, 1.5, 0C C C C C− − −= = = = − =  

Now, substitute these values of iC ’s in the formal equation (3.14) to find the 

approximation interpolation by cubic b-spline which gives us the following two 

results, because we divided our interval [0, 1] to two subintervals which are [0, 0.5], 

and [0.5, 1]. That means we have two equations. The first one is: 

                  1 3 3, 3 2 3, 2 1 3, 1 0 3,( ) ( ) ( ) ( ) ( )oS x C B x C B x C B x C B x− − − − − −= + + +              (3.30) 

 

 

Fig.(3.13) shows the 3, ( )iB x  

We take the only these 3, ( )iB x ’s, where i = -3, -2, -1, and 0. Because it through in 

the interval [0, .5], which is the others are not through, this is clear in figure (3.13).  

Then, by collect these functions the first approximation function will be come out as: 

3 2

1( ) 4 6 1S x x x= − +  

 By the same way we can found the second one, which is:                                            
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             2 2 3, 2 1 3, 1 0 3,0 1 3,1( ) ( ) ( ) ( ) ( )S x C B x C B x C B x C B x− − − −= + + +                    (3.31) 

Then    3 2

2 ( ) 4 6 1S x x x= − +  

The maximum error is: 

( ) ( ) 0.02iMaxerror S x f x= − = , where i=1, and 2 

Note: 

           This error is looks like big, because we divided the interval [0, 1] to two 

subintervals only. If the interval is divided to many subintervals then the errors will 

be decrease to small and small. And there is anther notes, which is the outside of our 

interval [0, 1] has a big error because we interst with the interior nodes only. See 

figure(3.14). 

 

Fig. (3.14) shows the original function ( )f x , and the b-spline interpolation function ( )iS x  

3.4.3. The Fourth Degree B-spline Interpolation 

In this part we will try to brevity, because the fourth b-spline has the same as 

the way to built it as the cubic b-spline interpolation. The important changing 

deference than the cubic b-spline is tries to find and add a new condition to solve 

their system of equations. 

 

The order of the system of the fourth b-spline interpolation is ( 1) ( 4)n n+ × +  

equations which are not the same as the third degree b-spline. This means the three 

boundary conditions are needed to solve this system. As an example, we will take the 

follows clamed conditions: 
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0 0( ) ( ), ( ) ( )n nS x f x S x f x′ ′ ′ ′= = , and 0 0( ) ( )S x f x′′ ′′= , or ( ) ( )n nS x f x′′ ′′= .  (3.32) 

If we denote the coefficient matrix by A, this system of equations will be generating 

the following matrix: 

2 2 2 2

1 1 1 1
0 0 . . . 0

2 2 2 2

1 1 1 1
0 0 . . . .

6 6 6 6

1 11 11 1
0 0 . . . .

24 24 24 24

1 11 11 1
0 0 . . . .

24 24 24 24

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

1 11 11 1
. . . . 0 0

24 24 24 24

1 11 11 1
. . . . . 0

24 24 24 24

1 1 1 1
0 . . . . .

6 6 6 6

h h h h

h h h h

A

h h h h


− −


− −







=










 − −

























     (3.33) 

It’s clear that, the first, the second, and the last row are defined the clamped 

conditions. 

And the reminder of this system A C B⋅ = can be defined as C and B respectively, 

which are of the forms:   

                                  

4 0

3 0

02

1

2

1

( )

( )

( )

( ).

..

.,.

..

..

..

( )

( )

nn

nn

C f x

C f x

f xC

f x

C and B

f xC

f xC

−

−

−

−

−

′′   
   ′
   
   
   
   
   
   

= =   
   
   
   
   
   
   
   

′  

                                       (3.34) 
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Finally, after solving this system the value of C’s are found by 1C A B−= ⋅ , and 

substitute it in the equation (3.14) to find the fourth degree piecewise b-spline 

interpolation functions. In the figure (3.15) we can denote that at the 

interval 1[ , ]i ix x + , there are five equations not equal to zero. 

 

Fig. (3.15) shows 4, ( )iB x  basis in 1[ , ]i ix x + . 

This means at any piecewise subinterval the following form of b-spline interpolation 

is appear:  

                    4,

4

( ) ( )
i

i j j

j i

S x C B x
= −

= ∑ , where i = 0, 1, 2, 3, . . ., n-1.                    (3.35) 

3.4.4. The Fifth Degree B-spline Interpolation 

By the same way in the previous sections, the fifth degree b-spline interpolation can 

be built. But now we need to add anther condition to solve this system of the linear 

equations of fifth degree b-spline interpolation because this system has order 

of ( 1) ( 5)n n+ × + , which is not a square system. See figure (3.16).  

 

Fig. (3.16) shows 5, ( )iB x  basis in 1[ , ]i ix x +  
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 For example, the clamped conditions are necessary to add to this system. We will 

take these conditions as the follows form:  

0 0( ) ( ), ( ) ( )n nS x f x S x f x′ ′ ′ ′= = , 0 0( ) ( ), ( ) ( )n nS x f x and S x f x′′ ′′ ′′ ′′= =      (3.36) 

If we defined again the coefficient matrix by A, this system of the linear fifth degree 

b-spline interpolation is defined as A C B⋅ = , where A, C, and B as the follows forms  

2 2 2 2 2

1 1 1 1 1
0 . . . 0

6 3 3 6

5 5 5 5
0 0 . . . .

120 12 12 120

1 26 66 26 1
0 . . . .

120 120 120 120 120

1 26 66 26 1
0 0 . . .

120 120 120 120 120

. . . . . . . . . .

. . . . . . . . . .

1 26 66 26 1
. . . 0 0

120 120 120 120 120

1 26 66 26 1
. . . . 0

120 120 120 120 120

5 5
. . . . 0

120 12

h h h h h

h h h h

A

h

−

− −

=

− −

2 2 2 2 2

5 5
0

12 120

1 1 1 1 1
0 . . . 0

6 3 3 6

h h h

h h h h h

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− 
  

      (3.37) 

                          

5 0

04

03

1

2

1

( )

( )

( )

( ).

..

.,.

..

..

( ).

( )

( )

n

nn

nn

C f x

f xC

f xC

f x

C and B

f x

f xC

f xC

−

−

−

−

−

′′   
   ′
   
   
   
   
   
   

= =   
   
   
   
   
   

′   
   

′′  

                                             (3.38) 



 46

After solving this system the C’s are found by 1
C A B

−= ⋅ , and we substitute it in 

(3.14) to approximate the original function by fifth degree b-spline interpolation 

piecewise functions. 

3.5. Case Study  

B-Spline interpolation compared with finite difference, finite elements and finite 

volume methods which applied to two-point boundary value problems.   

3.5.1. Introduction 

After the b-spline interpolation section have introduced, it is important to apply this 

method to solve some problems which have not solved exactly yet. This section 

considers the comparing study between cubic b-spline interpolation and the subject 

that was published in [14] to solve the two-point boundary value problems as the 

form: 

                                   ( ) ( ),
d du

p x f x a x b
dx dx

 
− = < < 

 
                                   (3.39) 

                                     1( ) ( ) 0, [ , ].u a u b where p C a b= = ∈                                 (3.40) 

3.5.2. Problem 

Now, we will take 1( ) xp x e −= and
1( ) 1 xf x e −= + in the interval 

[ , ] [0,1]a b = as an applied example see [8] to see how dose the cubic b-spline 

interpolations is the best method than the other methods? 

The analytic solution for this problem is ( )1( ) 1 xu x x e −= − . We obtain from (3.39) 

the equation of this form: 

1 1( ) ( ) 1x xd du d du
p x f x e e

dx dx dx dx

− −   
− = ⇒ − = +   

     

Then  

                                        
2

1

2
1xd u du

e
dx dx

−− = − −                                                    (3.41) 
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The b-spline solution can be obtained by using (3.41) in (3.24) for n = 10 and 3l = , 

because the third degree b-spline will be used to solve this problem, and the interval 

will be divided to ten subintervals. 

 

Now, we apply the general form of the cubic b-spline interpolation and their 

derivatives on the defined interval, then 

3 3 2 2 9 9( ) ( ) ( ) ... ( )u x C B x C B x C B x− − − − − −= + + + , 

3 3 2 2 9 9( ) ( ) ( ) ... ( )u x C B x C B x C B x− − − − − −
′ ′ ′ ′= + + + , 

                     And 3 3 2 2 9 9( ) ( ) ( ) ... ( )u x C B x C B x C B x− − − − − −
′′ ′′ ′′ ′′= + + +                     (3.42) 

We have the first derivative at nodes are:  

3 2 1

1 1
(0) (0)

2 2
u C C C

h h
− − −

−   
′ = + +   

   
,
 

2 1 0

1 1
(0.1) (0)

2 2
u C C C

h h
− −

−   
′ = + +   

   
, 

 - - - - - - - - - - - - - - 

- - - - - - - - - - - - - - 

                                         7 8 9

1 1
(1) (0)

2 2
u C C C

h h

−   
′ = + +   

   
.                            (3.43) 

 

And also have the second derivatives at nodes are: 

3 2 12 2 2

1 2 1
(0)

2 2
u C C C

h h h
− − −

−     
′′ = + +     

     
, 

2 1 02 2 2

1 2 1
(0.1)

2 2
u C C C

h h h
− −

−     
′′ = + +     

     
, 

- - - - - - - - - - - - - - - - -  - -                               
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                                     -- - - - - - - - - - - - - - - - - 

                                    7 8 92 2 2

1 2 1
(1)

2 2
u C C C

h h h

−     
′′ = + +     

     
                         (3.44) 

Now, substitute the equations (3.43), and (3.44) in the general problem in equation 

(3.41). Then the result of equations can be written in a matrix form such that: 

      

1 2 1
0 . . . 0

6 3 6

2 4 2 0 . . . .

0 2 4 2 0 . . .

. . . . . . . .

. . . . . . . .

. . . 0 2 4 2 0

. . . . 0 2 4 2

1 2 1
0 . . . 0

6 3 6

h h

h h

A

h h

h h

 
 
 

+ − − 
 + − −
 
 

=  
 

+ − − 
 

+ − − 
 
 
 

                (3.45) 

Add he first row and the last row as the clamped conditions. They come from 

equation (0) 0, (1) 0u and u= = . The order of the matrix A is (13 13)× , and for C and 

B defined as the forms: 

                           

3

2

2

9

1.3679

1.4066

. .
, 2

. .

. .

2

C

C

C and B h

C

−

−

−   
   −   
   

= =   
   
   
   

−    

                                     (3.46) 

The previous of the linear system A C B⋅ = can be solved to find the values of C’s,  

 For example (5.1) in [14], 0.1h =  have been taken, then the values of C’s will be 

find respectively: 

[ 0.0657 0.0012 0.0608 0.1119 0.1531 ... 0.0050 0.1102]C = − −  

Then the approximation solution of the exact solution can be found by the cubic b-

spline interpolation as follows: 



 49

                                             
1

3,

3

( ) ( )
n

i i

i

S x C B x
−

=−

= ∑                                               (3.47) 

Then 

3 2

1( ) 0.2000 0.3649 0.6325 0.000016S x x x x= − − + − , at the interval [0,0.1] , 

3 2

2 ( ) 0.2333 0.3550 0.6315 0.000016S x x x x= − − + + , at the interval [0.1,0.2]   

3 2

3( ) 0.2500 0.3449 0.6294 0.000015S x x x x= − − + + , at the interval [0.2,0.3], 

3 2

4 ( ) 0.3000 0.2999 0.6159 0.0014S x x x x= − − + + , at the interval [0.3,0.4], 

3 2

5( ) 0.3166 0.2800 0.6080 0.00526S x x x x= − − + + , at the interval [0.4,0.5] , 

3 2

6 ( ) 0.400 0.1549 0.5455 0.012983S x x x x= − − + + , at the interval [0.5,0.6] , 

3 2

7 ( ) 0.4166 0.1250 0.5275 0.01658S x x x x= − − + + , at the interval [0.6,0.7] , 

3 2

8( ) 0.4666 0.01999 0.4539 0.03373S x x x x= − − + + , at the interval [0.7,0.8], 

3 2

9 ( ) 0.6000 0.3000 0.1979 0.1020S x x x x= − + + + , at the interval [0.8,0.9] , 

3 2

10 ( ) 0.6000 0.3000 0.1979 0.1020S x x x x= − + + + , at the interval [0.9,1], 

For more detail see [8]. If we compare our results with the results published in [14], 

we will see the difference between them and conclude that the B-spline interpolation 

is the better methods to interpolate any smooth functions than others. The numerical 

results for the previous example are shown in Table (3.5), which shows that there are 

big differences errors between B-spline interpolation and the other methods unless 

there is no remarkable difference among the accuracy of the other three methods in 

the case where f is sufficiently smooth. 
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Methods  Max-norm/  

Finite difference solution 

0.1 

0.01 

8.24 e-3 

8.31e-3 

Finite element solution 

0.1 

0.01 

6.35 e-3 

6.36 e-3 

Finite volume solution 

0.1 

0.01 

3.18 e-3 

3.18 e-3 

B-spline interpolation 

0.1 

0.01 

2.9 e-4 

2.8 e-6 

Table (3.5) shows the comparing result of b-spline method and other method 

The figure (3.17) will be shows these results of some subintervals of [ , ]a b . 

 

           1( )S x at the interval [0, 0.1]                          3( )S x at the interval [0.2, 0.3] 

 

           5( )S x at the interval [0.4, 0.5].                        7 ( )S x at the interval [0.6, 0.7] 
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10 ( )S x at the interval [0.9, 1]. 

Fig(3.17) shows the graph of the piecewise b-spline interpolation in problem (3.2) 

and the exact solution of ( )f x  

4. Perturbation Theory 

Mathematically, Perturbation theory comprises mathematical methods that are used 

to find an approximate solution to a problem that cannot be solved exactly, by 

starting from the exact solution of a related problem. 

The general two-point boundary-value problems involve a second-order differential 

equation of the form: 

                                        ( , , ),y f x y y a x b′′ ′= ≤ ≤ ,                                          (4.1)    

Together with the boundary conditions: 

                                       ( ) , ( )y a and y bα β= =                                                 (4.2) 

Most of the material concerning second-order boundary-value problems can be 

extended to problems with boundary conditions of the form: 

                       1 1 2 2( ) ( ) , ( ) ( )y a y a and y a y bα β α α β β′ ′− = − =
                      (4.3)  

Where 1 1 0α β+ ≠ , and,  but some of the techniques become quite 

complicated. 
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4.1. Introduction 

The approximate solution of boundary-value problems with a small parameter 

affecting highest derivative of the differential equation is described. It is a well-

known fact that the solution of singularly perturbed boundary-value problem exhibits 

a multiscale character. That is, there is a thin layer where the solution varies rapidly, 

while away from the layer the solution behaves regularly and varies slowly. This 

class of problems has recently gained importance in the literature for two main 

reasons. Firstly, they occur frequently in many areas of science and engineering, for 

example, combustion, chemical reactor theory, nuclear engineering, control theory, 

elasticity, Euid mechanics etc. A few notable examples are boundary-layer problems, 

WKB Theory, the modeling of steady and unsteady viscous Eow problems with large 

Reynolds number and convective heat transport problems with large Peclet number. 

Secondly, the occurrence of sharp boundary-layers as , the coefficient of highest 

derivative, approaches zero creates difficulty for most standard numerical schemes. 

There exist a variety of techniques for solving singularly perturbed boundary value 

problems. The numerical solution of two point boundary-value problems using high 

degree b-spline has been considered. 

4.2. Derivation of the method 

The general form of singularly perturbed boundary value problem is defined as: 

                                      ( ) ( ) ( )y p x y q x y r xε ′′ ′+ + =                                         (4.4) 

Such that p(x), q(x), and r(x) are smooth and bounded functions. It is known that 

problem exhibits boundary layers at one or both ends of the interval depending on 

the properties of p(x) see [11]. This kind of problems occur in many engineering 

fields especially that interested in applied mathematics such as quantum mechanics, 

chemical reactor theory, optimal control, reaction-diffusion process ect.  

 

Before starting, we have to introduce the basic concepts of this study. First of all, the 

meaning of perturbed theory comprises the mathematical methods that are used to 

find an approximate solution to a problem which cannot be solved exactly, 

Perturbation theory is applicable if the problem can be formulated by adding a 

”small” term to the mathematical description of the exactly solvable problem. 
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Second, the shape preserving means that the interpolated polynomial has the same 

property as the original function as. These properties are the smoothness and the 

increasing or the decreasing of our function. 

 

In fact, a lot of people think that if the first derivative terms are not given at the 

boundary value problems then the high B-spline interpolation can’t be used to solve 

the singularly perturbed boundary value problems because the high b-spline 

interpolation needs more and more conditions depends on their degrees. This study 

utilizes the new scheme that approximate the first derivative at the boundary values 

by using the second degree polynomial that passes the nodes ( ), ( )i ix f x  see [13]. 

4.3. The brief of the used scheme 

If we have S as polynomial spline of the second degree, and we have a free 

parameter ( )d S a′= , where { }0 1 2, , , ...,n nx x x xΩ = is a set of nodes of a partition 

on the interval [a, b], such that 0 1 2 ...
n

a x x x x b= < < < < = , and ( )
i i

f x y=  is 

given for all 0, 1, 2, ...,i n= , and suppose 2( )S x  is continuous on [a, b] and 

differentiable that is 1

2 [ , ]S C a b∈ , then we can find 0( ) ( )S a S x d′ ′= =  such 

that ( )2 ,nS S f∈ Ω  is shape preserving. For more detail of this scheme; denote
i

S as 

the second-degree polynomial on the interval 1[ , ]
i i i

I x x +=  as a restriction of S such 

that |
ii I

S S= , also we assume 21, ( ), ( )
i i

x x x x− − as a basis, this means that at any 

nodes
i

x  where i = 0, 1, 2, …,n, we get: 

    21

1

[ , ] ( )
( ) ( ) ( )( ) ( )i i i

i i i i i

i i

S x x S x
S x S x S x x x x x

x x

+

+

 ′−
′= + − + − 

− 
                    (4.5) 

Collect and put all of the given information in a matrix forms denoted by q, in this 

matrix the hypotheses will be decreeing as mush as possible until the following form 

will be appear: 

         1
1 1

1

0, 2 i i
i i

i i

y y
q and q q

x x

+
+

+

 −
= = − 

− 
                                                           (4.6) 
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Then we have to decide that whether the function is monotony decreasing or 

increasing, if denote d as the interval which contains the best of the derivative then: 

                

{ } { }: 2 : 2 1

1,2,3,..., , .

( ) ( ) .

i i

i add i i even i

max q i k d max q i k

d where k n if S is monoton dec

min q d min q if S is monoton inc

 = ≤ ≤ − = −


= =
− ≤ ≤

                  (4.7)

 

Now, a matlab program can be written to solve this problem (4.6) by employing the 

equation (4.7) to determine the smallest interval which contains the best derivative at 

the boundary points. For more detail see [13].The next example will be apply this 

scheme to understanding these steps. 

4.3.1. Example 

Let
1

( )f x
x

= , and x = [1, 5], by the previous steps we can find the interval which 

contains the best derivatives a 0 1x = , and compare our result by the exact derivative 

at 0 1x = which is (1) 1f ′ = − . By a matlab [16] we can write a program of the 

previous steps to find the interval which contain the best derivative. This interval 

is [ 0.7726, 0.7725]− − . 

 

Now, we compute this result by a program (spl2), see appendix of programs, which 

is found and drawn the best interpolating spline polynomial of quadratic degree that 

passes the known nodes and uses the first derivative at , by interring the two 

values (1) 1f ′ = − . which is the exact derivative and (1) 0.7725f ′ = −  which is the 

value that compute by previous step. The figure (3.1) and (3.2) are showing these 

results. 

 

The errors are error1 = 0.0583 and error2 = 0.0239 showing in the Figure (4.1) and 

Figure (4.2) respectively. In the graph the result is clear, that means our scheme gives 

the best result. By the same way we can find ( ) ( )
n

S x S b′ ′= . Then, the high B-spline 

can be applied now to approximate the solution of the ‘‘Shape Preserving Linear 

Singularly Perturbed Boundary Value Problems”. 
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Fig. (4.1) shows I.S.P. by (1) 1f ′ = − .    Fig. (4.2) shows I.S.P. by (1) 0.7725f ′ = −  

4.4. Description of this method 

After approximate the values of the first derivative at the boundary values of the 

main interval [a, b] which are ( )S a′  and ( )S b′ the forth and the fifth degree b-spline 

interpolation can be applied to find the solution of the shape preserving singularity 

perturbed boundary value problems by the following steps. First of all, the problem 

will be solved by cubic B-spline method to find the best of the approximation 

nodes ( ), ( )i ix f x by using the previous section. The general form of the linear 

singularly perturbed boundary value problem as the form: 

                                  ( ) ( ) ( )y p x y q x y r xε ′′ ′+ + = ,                                            (4.8) 

where ( ) , ( ) , 0 1.y a y b andα β ε= = < <  

The cubic b-spline basis will be used to solve this problem which is: 

 

            

3

1

3 2 2

1 1

3

1 1 2

3 2 2

3, 3 33

3

3 3 4

3

4 4 5

( ) , [ , ].

3 ( ) 3 ( ) ...

3( ) , [ , ].
1

( ) 3 ( ) 3 ( ) ...
6

3( ) , [ , ].

( ) [ , ].

0 , .

i i i

i i

i i i

i i i

i i i

i i i

x x if x x x

h h x x h x x

x x if x x x

B x h h x x h x x
h

x x if x x x

x x if x x x

otherwise

+

+ +

+ + +

+ +

+ + +

+ + +

 − ∈


+ − + −
 − − ∈


= + − + −


− − ∈
 − ∈



                        (4.9) 

Then construct the following system by the previous basis in the general form (4.8) 

of the linear singularly perturbed boundary value problem which is of the form: 
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3

2 0

0 0 0

1 1

1 1 1

2

1

1 2 1
0 . . . 0

6 3 6
( )

0 . . . .
( )

0 0 . . .
. .

. . . . . . . .
. .

. 0 0 . .
. .

. . . . . . . .
. .

. . . . 0
( )

1 2 1
0 . . . 0

6 3 6

i i i

n n n

n n

n

C

C r x
u v s

C r x
u v s

u v s

u v s
C r x

C

α

β

−

−

−

−

−

     
     
    
    
    
    
    =    
    
    
    
    
    
     













                        (4.10) 

Where 
2 2 2

( ) ( ) 2 ( ) ( )2
, , ( )

2 6 3 2

i i i i
i i i i

p x q x q x p x
u v and s q x

h h h h h

ε ε ε−
= − + = + = + +  

For i = 0, 1, 2, 3, …, n. 

Also we have the first and the last raw are the boundary conditions: 

                                          ( ) , ( ) .y a and y bα β= =                                             (4.11) 

This system as the form A C B⋅ = , then solve this system to find C, and substitute it 

in the cubic B-spline interpolation form: 

                                          
1

3,

3

( ) ( )
n

f i i

i

S x C B x
−

=−

= ∑                                                (4.12) 

Then the ( )
i

f x  where i = 0,1, 2, 3, …, n-1, can be approximated from (4.12). 

Second, the scheme which is in the previous section of finding the best derivative at 

the boundary value can be applied now, because all the values of nodes are 

approximated, Then it’s known, the next step gives the approximation of ( )y a δ′ ≅ , 

and ( )y b γ′ ≅ . This means we have a new information to apply the forth degree b-

spline interpolation method if we use ( )y a δ′ ≅ only or the fifth degree B-spline 

interpolation method if we use the ( )y b γ′ ≅ too. It’s interested if we apply the cubic 

B-spline interpolation to solve the shape preserving singularity perturbed boundary 

value problems; this means without use the first derivative at the boundary values. 

We will do this and compare the error of the cubic b-spline interpolation results with 
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the error of the fifth degree B-spline interpolation results later. The fifth degree B-

spline as follows: 

5

1

5 4 3 2 2 3

1 1 1

4 5

1 1 1 2

5 4 3 2 3 3

2 2 2

4 5

2 2

5, 5

( ) , [ , ].

5 ( ) 10 ( ) 10 ( ) ...

5 ( ) 5( ) , [ , ].

26 50 ( ) 20 ( ) 20 ( ) ...

20 ( ) 10( ) , [
1

( )
120

i i i

i i i

i i i i

i i i

i i

i

x x if x x x

h h x x h x x h x x

h x x x x if x x x

h h x x h x x h x x

h x x x x if x

B x
h

+

+ + +

+ + + +

+ + +

+ +

− ∈

+ − + − + −

+ − − − ∈

+ − + − − −

− − + − ∈

=

2 3

5 4 3 2 3 3

4 4 4

4 5

4 4 3 4

5 4 3 2 2 3

5 5 5

4 5

5 5 4 5

5

6

, ].

26 50 ( ) 20 ( ) 20 ( ) ...

20 ( ) 10( ) , [ , ].

5 ( ) 10 ( ) 10 ( ) ...

5 ( ) 5( ) , [ , ].

( ) ,

i i

i i i

i i i i

i i i

i i i i

i

x x

h h x x h x x h x x

h x x x x if x x x

h h x x h x x h x x

h x x x x if x x x

x x if x

+ +

+ + +

+ + + +

+ + +

+ + + +

+

+ − + − − −

− − + − ∈

+ − + − + −

+ − − − ∈

− ∈ 5 6[ , ].

0, .

i i
x x

otherwise

+ +





















(4.13) 

Now, after all this information has been found the fifth degree B-spline can be 

applied by using the previous basis. 

Finally, construct the following system by substitute the previous basis (4.13) in the 

general form (4.4) of the linear singularly perturbed boundary value problem, Then 

the system of  the fifth degree B-spline will be appear like this: 

0 0 0 0 0

1 1 1 1 1

5 5 5 5
0 0 . . ... 0

120 12 12 120

1 26 66 26 1
0 . . ... .

120 120 120 120 120

0 . . ... .

0 0 . ... .

. . . . . . . . ... .

. 0 0 ... .

. . . . . . . . ... .

. ... . . 0

1 26 66 26 1
. ... . . 0

120 120 120 120 120

5 5
0 ... . . 0

120 12

i i i i i

n n n n n

h h h h

u v s w z

u v s w z

A
u v s w z

u v s w z

h h

− −

=

− − 5 5
0

12 120h h

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (4.14) 
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Where
2

5 ( ) ( )

6 120 120

i i
i

p x q x
u

h h

ε
= − + ,

2

5 ( ) 26 ( )

3 12 120

i i
i

p x q x
v

h h

ε
= − + ,

2

66 ( )

120

i
i

q x
s

h

ε−
= + , 

2

5 ( ) 26 ( )

3 12 120

i i
i

p x q x
w

h h

ε
= + + , and

2

5 ( ) ( )

6 120 120

i i
i

p x q x
z

h h

ε
= + +

 

 i = 0, 1, 2, 3, …, n, and h = 1/n.                                                                          (4.15) 

For C and B defend as follows respectively. 

                                     

5

4

3 0

1

1

( )

. ( )

. .

,. .

. .

. .

. ( )

.

n

n

C

C

C r x

r x

C and B

r x

C

δ

α

β

γ

−

−

−

−

   
   
   
   
   
   
   
   

= =   
   
   
   
   
   
   
   

  

                                             (4.16) 

The first two rows and the last two rows are the boundary conditions. The system 

(4.14) and (4.16) lead to the form: A C B⋅ = , then compute C and substitute it in the 

following fifth degree B-spline interpolation formula to get the best result : 

                                          
1

5,

5

( ) ( )
n

f i i

i

S x C B x
−

= −

= ∑                                             (4.17) 

This scheme will be demonstrated practically in the following example and 

compared with the results that published in [3]. 

4.4.1. Example 

Consider the problem which is of the form of equation (4.1) as an example that 

published in [3] and [2] to apply the previous scheme, and the result will be 

comparing too. 

              
1

2(1 ) exp (1 )(3 )
2 2 2

x
y y x y x x

ε
ε

−   
′′ ′+ + + = + − +        

                      (4.18) 
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With the boundary conditions: 

                        
1 7

(0) 0, (1) exp exp
2 3

y y
ε

− −   
= = −   

   
                                        (4.19) 

The exact solution is: 

                  
( )2 3 3

( ) exp exp
2 3

x x xx
y x

ε

 − + +−   = − 
    

                                    (4.20) 

The solution of this example will be applying the previous steps, the result is 

demonstrated with the maximum absolute error: ( )i imax y x y− at the nodes. A 

deferent values of (ε  ) will be used where
1

h
n

= . And also the differentiating of the 

boundary values by using the cubic B-spline depending on the values of (ε  ) will be 

found too. The next tables (4.1) and (4.2) will be shows all these results. 

The maximum error table for n = 256: 

ε  
Kadalbajoo & 

Patidar’s method 

Aziz & 

Khan’s method 

Rajesh K. 

Bawa method 

1/8 2.20e-04 3.934416e-05 1.007339e-09 

1/16 1.10e-03 1.367532e-04 1.054689e-08 

1/32 5.00e-03 5.116162e-04 1.429318e-07 

1/64 2.30e-02 1.991524e-03 2.134858e-06 

1/128 … 8.007187e-03 3.345245e-05 

Table (4.1) shows the result of problem in [3] for n = 256. 

Proposed method: 

ε  Cubic B-spline ( )f aδ ′=  ( )f bγ ′=  
Fifth degree B-

spline 

1/8 1.66118787e-05 7,499998 -0.30326887 9.32321797e-09 

1/16 9.08945084e-05 15.50000 -.030327385 2.44180388e-08 

1/32 4.42022286e-04 31.50000 -0.30327015 5.24520294e-08 

1/64 1.80759128e-03 63.49999 -0.30327105 1.40487648e-06 

1/128 7.62065557e-03 127.4998 -0.30322423 2.43253474e-05 

Table (4.2) shows the present result for n = 256. 
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The maximum error table for n = 512: 

 

Kadalbajoo & 

Patidar’s method 

Aziz & 

Khan’s method 

Rajesh K. 

Bawa method 

1/8 5.60e-05 9.835160e-06 6.295980e-11 

1/16 2.70e-04 3.417675e-04 6.596570e-10 

1/32 1.20e-03 1.277339e-04 8.926741e-09 

1/64 5.50e-03 4.952798e-04 1.330488e-07 

1/128 2.40e-02 1.959883-03 2.067402e-06 

Table (4.3) shows the result of [3] for n = 512. 

 

Proposed method: 

 Cubic B-spline ( )f aδ ′=  ( )f bγ ′=  
Fifth degree B-

spline 

1/8 4.16573269e-06 7,499998 -0.30326887 9.32321797e-09 

1/16 2.27226995e-05 15.50000 -.030327385 2.44180388e-08 

1/32 1.05016167e-04 31.50000 -0.30327015 5.24520294e-08 

1/64 4.49877279e-04 63.49999 -0.30327105 1.40487648e-06 

1/128 1.86820104e-03 127.4998 -0.30322423 2.43253474e-05 

Table (4.4) shows the present result for n=512. 
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5. Conclusion 

The boundary value problems constitute an ancient problem. There are a lot of 

science branches that relate in these kinds of the problems. Recently, there are 

numerous of scientists trying to solve these problems by different methods. In the 

first section two methods have been produced to solve it. In the second section, the b-

spline definition and the five kinds of the basis have been described, at the end of the 

second section, which is in the case study, the boundary value problem has been 

solved by third degree b-spline interpolation and the result compared with the study 

which was published in [14]. That result concludes that the b-spline interpolation is 

the best way to give the best result. Not only was this, but also in the third section an 

alternative method was described to solve the linear singularly perturbed boundary 

value problems. The high degree b-spline was used to solve the perturbed boundary 

value problems. Again, the b-spline interpolation proved that it is the best way which 

is gives the best result, because the results were compared with the results that 

published in [2, 3]. Finally, throughout in the considering study concludes that the b-

spline interpolation is one of the best methods to solve the boundary value problems 

until now. In the future, the third degree natural interpolation spline will be studied to 

approximate a better result.            
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Appendix of Programs 

 

 

Program (kutta4.m) applies for four steps Runge-Kutta method. 

 

 

Program (Spl2.m) which is a matlab program interpolate quadratic spline polynomial that passes’’ n’’ 

nodes in [a, b] by known of  = d. 
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