<u>İSTANBUL KÜLTÜR ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

İNCE DANELİ ZEMİNLERİN KONİ PENETRASYONUNDA BOŞLUK SUYU BASINÇLARININ SÖNÜMLENMESİ

YÜKSEK LİSANS TEZİ Yeşim YEKTE 0709071039

Tezin Enstitüye Verildiği Tarih : 15 Mayıs 2009 Tezin Savunulduğu Tarih : 17 Haziran 2009

Tez Danışmanı :	Prof. Dr. Akın ÖNALP
Diğer Jüri Üyeleri :	Yrd. Doç. Dr. Ersin AREL
	Yrd. Doç. Dr. Sedat SERT (SAÜ)

HAZİRAN 2009

ÖNSÖZ

İstanbul Kültür Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Geoteknik Programında yüksek lisans tezi olarak hazırlanan bu çalışmanın konusu ince daneli zeminlerin koni penetrasyonunda boşluk suyu basınçlarının sönümlenmesidir.

Çalışmamın başından itibaren bana her konuda yardımcı olan, hiçbir zaman bilgisini ve yardımını esirgemeyen, kendisinden her türlü desteği gördüğüm ve öğrencisi olmaktan her zaman gurur duyduğum danışman hocam Prof. Dr. Akın Önalp'e teşekkür ederim.

Tüm çalışmam süresince desteklerini esirgemeyen hocalarım; Yrd. Doç. Dr. Ersin Arel, Yrd. Doç. Dr. Sedat Sert, Yrd. Doç. Dr. Aşkın Özocak, Yrd. Doç. Dr. Ertan Bol ve Yrd. Doç. Dr. Nazile Ural, sönümlenme eğrilerinin modellenmesi konusunda yardımcı olan Penn State Üniversitesi öğretim üyelerinden Prof. Dr. Derek Elsworth, İstanbul Kültür Üniversitesi Geoteknik Laboratuvarından çalışma arkadaşlarım İlhan Burak Duran, Suat Yakut ve Aykut Aydın'a teşekkür ederim.

Varlığıyla bana güç veren manevi kardeşim Selin Kuşçuoğlu, kuzenim Seda Arık ve dostlarım Aslı Karabal, Ece Akçura, Esra Kılıçvuran ve Öznur Tetikoğulları'na teşekkür ederim.

Ayrıca eğitim hayatım süresince maddi ve manevi olarak her zaman yanımda olan babam Mehmet Yekte, annem Sema Yekte, abim Murat Yekte ve eşi Serpil Yekte, teyzelerim Sevim-Serap Arık ve dedem Enver Arık'a teşekkür ederim.

Haziran 2009

Yeşim YEKTE

İÇİNDEKİLER	
KISALTMALAR	v
TABLO LÍSTESÍ	vi
ŞEKİL LİSTESİ	vii
SEMBOL LİSTESİ	ix
ÖZET	xi
SUMMARY	xii
1. GİRİŞ	1
1.1. Çalışmanın Amacı	1
1.2. Yöntem	1
1.3. Adapazarı Zeminlerinin Özellikleri	1
1.4. Sondalama	6
2. KONİ PENETRASYON DENEYİ	7
2.1. Deneyin Tanıtılması	7
2.1.1. Deneyin yararları	8
2.1.2. Deneyin olumsuz yanları	8
2.2. Deneyin Uygulanması	9
2.3. Ölçümler ve Tanımlamalar	9
2.3.1. Hesaplamalarda kullanılan koninin geometrik özellikleri	10
2.3.2. CPT sistemi ile elde edilen veriler	10
2.3.3. CPTU sistemi ile elde edilen veriler	12
3. SÖNÜMLENME İLE ÖLÇÜM	14
3.1. Sönümlenme Deneyi	14
3.1.1. Tekdüze sönümlenme	17
3.1.2. Genleşme (Kabarma) sönümlenmesi	17
3.1.3. Sönümlenmeyi etkileyen faktörler	18
3.1.4. Sönümlenme deneyinden elde edilen veriler	21
3.1.4.1. Zorlanma modülü	21
3.1.4.2. Rijitlik indisi	25

3.1.4.3. Akım ve konsolidasyon özellikleri	27	
4. SÖNÜMLENME EĞRİLERİ		
4.1. Eğrilerin Modellenmesi	37	
4.2. COMSOL Programının Tanıtılması	42	
4.2.1. Modelleme	42	
4.2.2. Çözümlemede kullanılacak denklemlerin tanımlanması	46	
4.2.3. Çözümleme	50	
5. ARAZİDE GERÇEKLEŞTİRİLEN SÖNÜMLENME DENEYLERİNİN		
ANALİZİ	56	
5.1. Arazi CPTU Sönümlenme Eğrilerinin COMSOL Programı ile Analizi	56	
5.1.1. Tip 1 eğrisi	60	
5.1.2. Tip 2 eğrisi	62	
5.1.3. Tip 3 eğrisi	64	
6. BULGULARIN TARTIŞILMASI		
7. SONUÇ VE ÖNERİLER	68	
KAYNAKÇA		
EKLER		
ÖZGEÇMİŞ		

KISALTMALAR

CPT	: Koni penetrasyon deneyi	
CPTU	: Boşluk suyu ölçümü yapılan koni penetrasyon deneyi	
SCPTU	: Boşluk suyu ölçümü yapılan sismik koni penetrasyon deneyi	
DPRR	: Boşluk suyu basıncı oranı	
RR	: Aşırı konsolide aralıkta sıkışma oranı	

TABLO LÍSTESÍ

<u>Sayfa No</u>

Tablo 3.1.	Killi zeminler için zorlanma modülünün tayini22	
Tablo 3.2.	Değiştirilmiş zaman faktörü (T*)2	
Tablo 3.3.	3.3. \sqrt{zaman} çiziminde sönümlenme eğrilerinin eğimi (M)	
Tablo 3.4.	3.4. Killerin hidrolik iletkenlik oranı (k_h / k_v) 34	
Tablo 3.5.	Robertson vd. 1986 ve 1990 CPT zemin davranışı tiplerinden	
	hidrolik iletkenlik tahmini	35
Tablo 5.1.	Tip 1 sönümlenme eğrileri listesi	60
Tablo 5.2.	Tip 2 sönümlenme eğrileri listesi	62
Tablo 5.3.	Tip 3 sönümlenme eğrileri listesi	64

ŞEKİL LİSTESİ

<u>Sayfa No</u>

Şekil 1.1	: Adapazarı zemin haritaları		
Şekil 1.2	: a) Yenigün Mahallesi (CTYG02) zemin profili		
	b) Karaosman Mahallesi (CTKO13) zemin profili5		
Şekil 2.1	: Kablosuz (akustik) CPT sistemi8		
Şekil 2.2	: Koni penetrasyon deneyi aleti9		
Şekil 2.3	: Sonda ve konik ucun şematik gösterimi10		
Şekil 3.1	: Boşluk suyu basıncı elemanı yerleri15		
Şekil 3.2	: Yumuşak kilde tipik tekdüze sönümlenme eğrisi17		
Şekil 3.3	: Aşırı konsolide kilde genleşme tipi sönümlenme eğrisi18		
Şekil 3.4	: Doygun killerde boşluk suyu basıncı dağılımı19		
Şekil 3.5	: Silt ve kumlarda koni etrafında oluşan boşluk suyu basıncı		
	dağılımı19		
Şekil 3.6	: Tipik sönümlenme eğrileri, Aşırı Konsolide Gault Kili		
	Madingley, İngiltere20		
Şekil 3.7	: Zorlanma Modülü (M) - Düzeltilmiş koni uç direnci22		
Şekil 3.8	: Zorlanma modülünün değişimi23		
Şekil 3.9	: Zorlanma modülü ile net koni direnci arasındaki ilişki24		
Şekil 3.10	: Rijitlik indisinin tayini25		
Şekil 3.11	: Rijitlik indisinin OCR ve I_p 'den tayini		
Şekil 3.12	: Bothkennar deney alanından sönümleme deneyi sonuçları27		
Şekil 3.13	: Teorik çözümle normalleştirilmiş sönümleme eğrileri30		
Şekil 3.14	14 : Ortalama laboratuvar c _h değerleri ve CPTU sonuçları31		
Şekil 3.15	5 : c_h 'ın t_{50} 'den tayini		
Şekil 3.16	: 10 cm ² 'lik piyezokonide k _h 'ın bulunması35		
Şekil 3.17	: Tek düze tipte sönümlenme eğrisinde t ₅₀ değerinden k'nın tayini36		
Şekil 4.1	: Boşluk geometrisi modeli		

Şekil 4.2	: Fazla boşluk suyu basıncı dağılımlarının	
	$a) \frac{G}{C_u} = 2, b) \frac{G}{C_u} = 20, c) \frac{G}{C_u} = 200$ değeri için A _f ile değişimi	40
Şekil 4.3	: Fazla boşluk suyu basıncı dağılımlarının mutlak değerlerinin	
	$a) \frac{G}{C_u} = 2, b) \frac{G}{C_u} = 20, c) \frac{G}{C_u} = 200 \text{ değerleri için A_f ile değişimi}$	41
Şekil 5.1	: Log t – (1-U) eksenlerine göre CPT arazi sönümleme eğrileri	
	tipleri5	6
Şekil 5.2	: Tip 1 ve Tip 2 eğrilerinin karşılaştırılması5	57
Şekil 5.3	: Tip 4 ve Tip 6 eğrilerinin karşılaştırması5	8
Şekil 5.4	: u ₂ sondasında gözlemlenen yeni eğri tipleri 5	59
Şekil 5.5	: Zemin sınıflarına göre Tip 1 eğrileri6	51
Şekil 5.6	: Zemin sınıflarına göre Tip 2 Eğrileri6	3
Şekil 5.7	: Zemin sınıflarına göre Tip 3 eğrileri6	55
Şekil A.1	: Tip 1 eğrileri ML zemin sınıfı7	'2
Şekil A.2	: Tip 1 eğrileri MI zemin sınıfı7	'3
Şekil A.3	: Tip 1 eğrileri SM zemin sınıfı7	5
Şekil A.4	: Tip 1 eğrisi SW-SM zemin sınıfı7	6
Şekil B.1	: Tip 2 eğrileri CH zemin sınıfı7	9
Şekil B.2	: Tip 2 eğrisi MH zemin sınıfı	9
Şekil B.3	: Tip 2 eğrisi SM zemin sınıfı8	30
Şekil B.4	: Tip 2 eğrisi CL zemin sınıfı	30
Şekil C.1	: Tip 3 eğrileri ML zemin sınıfı8	34
Şekil C.2	: Tip 3 eğrileri MI zemin sınıfı8	34

SEMBOL LİSTESİ

u ₁ , u ₂ , u ₃	: Penetrasyon sırasında meydana gelen boşluk suyu basınçları		
$\mathbf{q}_{\mathbf{c}}, \ \mathbf{q}_{\mathbf{t}}$: Koni uç direnci		
$\mathbf{f}_{s}, \mathbf{f}_{t}$: Sürtünme direnci		
Vs	: Kayma dalgası hızı		
a	: Uç alanı faktörü		
b	: Sürtünme alanı faktörü		
$\mathbf{R}_{\mathbf{f}}$: Sürtünme oranı		
$\mathbf{I_f}$: Sürtünme indisi		
u _{w0}	: Denge boşluk suyu basıncı		
Δu_w	: Oluşan boşluk suyu basıncı		
Qt	: Normalleştirilmiş koni uç direnci		
σ_{v0}	: Düşey gerilme		
σ'_{v0}	: Efektif düşey gerilme		
Fr	: Normalleștirilmiș sürtünme oranı		
Uwt	: t zamanda normalleştirilmiş fazla boşluk suyu basıncı		
u _{wt}	: t zamanda fazla boşluk suyu basıncı		
u _{wi}	: Penetrasyon durduğundaki (t=0) başlangıç fazla boşluk suyu basıncı		
Μ	: Zorlanma modülü		
m	: Boyutsuz modül sayısı		
p _a	: Referans gerilmesi		
Ir	: Rijitlik indisi		
Ε	: Eşdeğer young modülü		
G	: Kayma modülü		
υ	: Poisson orani		
S _u , C _u	: Drenajsız kayma direnci		
Ip	: Plastisite indisi		
c	: Konsolidasyon katsayısı		
k	: Hidrolik iletkenlik		

- T₅₀ : Teorik çözümlerden bulunan zaman faktörü
- t₅₀ : %50 sönümlenme için geçen zaman
- **r**₀ : Penetrometre yarıçapı
- A : Skempton parametresi
- κ : Hidrolik sönümleme katsayısı

ÖZET

İstanbul Kültür Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Geoteknik Bilim Dalı Programında yüksek lisans tezi olarak hazırlanan bu çalışmanın amacı; ince daneli zeminlerde CPTU sönümlenme deneyi ile elde edilen boşluk suyu basıncı sönümlenme eğrilerinin COMSOL Multiphysics yazılımı yardımıyla Elsworth ve diğ. (2006)'nin boşluk genleşmesi teorisine dayanarak modellenmesidir.

Bu çalışmada, koni penetrasyon deneyi (CPT)'nin olumlu ve olumsuz yanları, deneyin uygulanması, ölçümler sonucu elde edilen veriler ele alınmıştır. Esas olarak; CPTU sönümlenme deneyi incelenmiştir. Deneyin yapılışı, avantajları, sönümlenmeyi etkileyen faktörler ve deneyden elde edilen zorlanma modülü(M), rijitlik indisi(Ir), konsolidasyon katsayısı(c) ve hidrolik iletkenlik(k) ayrıntılı olarak açıklanmıştır.

Arazi CPTU sönümlenme eğrilerinin modellenmesi konusunda Elsworth ve diğ. (2006)'nin önerdiği boşluk genleşmesi modeli kullanılmıştır. Bu modelde boşluk suyu basıncı artışları izotrop ve deviatörik gerilmelerin etkisinde drenajsız kayma direnci Cu, kayma modülü G ve Skempton A parametresi ile tanımlanmaktadır.

Zemin sınıflarına göre farklılık gösteren arazi sönümlenme eğrileri üç tipe ayrılmıştır. Tip 1 sönümlenme eğrisi çoğunlukla siltli (ML, MI) ve kumlu (SM, SW-SM) zeminlerde görülmektedir. Tip 2 sönümlenme eğrisi çoğunlukla killi (CH, CL) zeminlerde karşımıza çıkmaktadır; ancak nadiren de olsa siltli ve kumu zeminlerde de görülmektedir. Tip 3 sönümlenme eğrisi ise siltli zeminlerde (ML, MI) karşımıza çıkmaktadır. Bu eğri tiplerine göre boşluk genleşmesi teorisine dayanarak COMSOL Multiphysics yazılımı ile analizler yapılmıştır. Tip 1 eğrilerinde SM ve SW-SM kumlar dışında siltli olan zeminlerde arazi eğrileri ile programın eğrileri uyum göstermiştir. Tip 2 eğrilerinde killi ve siltli olan örneklerde uyum yakalanmıştır ancak SM kumda uyum gözlenmemiştir. Tip 3 eğrilerinde arazi ve program sonucu elde edilen eğriler arasında tam bir uyum gözlenmiştir. Analizler sonucu kumlu(SM, SW-SM) zeminler dışında diğer zemin sınıflarının sönümlenme eğrisi tiplerinin (Tip 1, Tip 2, Tip 3) Elsworth ve diğ., (2006)'nin boşluk genleşmesi modeli ile temsil edilebileceği açıklanmıştır.

Anahtar kelimeler : CPT, CPTU, Sönümlenme, Boşluk Genleşmesi, COMSOL Multiphysics

SUMMARY

This thesis discusses the procedures to model the process of the dissipation of excess porewater pressures induced by the penetration of a rigid object into fine grained soils during a cone penetrattin test (CPTU). The model is selected after the numerical solutions proposed by Elsworth et al.(2006) using the cavity expansion theory.

The numerical solutions are provided using the software COMSOL Multiphysics. An introduction for the applications of the cone penetration test(CPTU) quoting its implementation, advantages and disadvantages is given . A description of the dissipation test is made in detail whereby the constrained modulus(M), rigidity index (I_r), coeffficient of consolidation (c), and the coefficient of hydraulic conductivity (k) is provided.

The dissipation curves obtained after the penetration of the cone is arrested have been modelled using the cavity expansion model proposed by Elsworth et al(2006). This model describes how the porewater pressures rise under the influence of the isotropic and deviatoric stresses induced by the penetration using the undrained shear strength (c_u), shear modulus(G) and the Skempton pore pressure parameter B.

Three groups of dissipation curves have thus been identified. Curve Type 1 is obtained mostly for silts(ML,MI) and sandy soils (SM,SW-SM). Type 2 curves appear for clays (CH,CL). Type 3 Curve is encountered in ML,MI silts. The curves obtained from numerical analysis by COMSOL agree well with the Type 1 dissipation curves for silts, whereas same agreement is not observed for SM,SW-SM sands. Agreement has been obtained for silty and clayey soils but not for SM sands for Type 2 curves. Almost perfect agreement was achieved for Type 3 curves by numerical analysis and the field curves for all cases excepts sands. It was concluded that apart from sandy soils, the dissipation curves can be modelled by the numerical methods using the cavity expansion theory.

Keywords : Cone penetration test, piezocone, cavity expansion, penetration, dissipation, COMSOL Multiphysics

1. GİRİŞ

1.1 Çalışmanın Amacı

Bu çalışmanın amacı, 1999 depreminde zemin Adapazarı kentinde zemin özelliklerinden kaynaklanmış yapı hasarlarına neden olduğu düşünülen zemin yumuşaması ve sıvılaşmanın nedenlerini araştırmaya yönelik bir ölçüm yöntemi geliştirilmesidir.

1.2 Yöntem

Zemin özellikleri en sağlıklı biçimde arazi deneyleri ile ölçülebilir. Bu deneylerin en gelişmişlerinden biri de koni sondalama yöntemidir (CPTU). Bu gelişmiş akustik/elektronik deneyde koninin batık zemine itilirken oluşturduğu su basınçları duyarlı biçimde ölçülebilmektedir.

Bu tezde penetrasyon sırasında yükselmiş/düşmüş boşluk suyu basınçlarının koni durdurulup bağlandıktan sonra sönümlenme sürecinin değerlendirilmesi ve buradan gelen bilgilerle zemin özelliklerinin tanımlanmasına çalışılmıştır.

1.3 Adapazarı Zeminlerinin Özellikleri

Adapazarı Türkiye'nin kuzey batısında yaklaşık 32 yükseltisinde, Karadeniz'den 50 km. güneydedir. Sakarya Nehri güncel olarak güneyden gelip şehrin ortasından geçerek Karadeniz'e yönelir. Ayrıca şehrin merkezine yakından geçen ve Sapanca gölünün fazla sularını boşaltan eden Çark Deresi de Sakarya nehrinin bir kolunu oluşturur. Adapazarı %90'ı genç akarsu ve bunların taşkın ürünü çökeller (alüvyon) üzerine, geri kalan bölümü ise tortul kayaçlar üzerinde kurulmuştur. Nehrin taşıdığı çökeller ve genç oluşumlardan meydana gelen zeminlerinin güney batı kesimlerindeki kayaların, alüvyon dolgusu altından çıkarak yüzeylendiği bölge inceleme alanının güneybatı kesimlerindeki yüksek kesimlerdir. Alçak kesimdeki zeminlerde çok genç kil, silt ve kum tabakaları egemendir. Yeraltı su seviyesi çoğu

zaman yüzeye yakındır, Çark Deresi ve Sakarya Nehri'ne yönelmektedir. Y.A.S.S. mevsimsel olarak 0.60–3.95 m arasında değişmektedir(Bol, 2003, 72-88).

Yapılan sondaj çalışmalarından elde edilen örselenmiş ve örselenmemiş numuneler üzerinde yapılan sınıflandırma deneyleri sonucunda 1.5 m derinlikte kentin batısında orta ve yüksek plastisiteli killer, doğusunda ise orta ve yüksek plastisiteli siltler hakimdir. 3.00 m derinlikte siltlerin daha yaygın olduğu görülmektedir. 4.50 m derinlikte ise eski nehir yatağını temsil eden çakıllar kentin ortasından kuzeye doğru yönelmişlerdir. 6.00 m' de bu eski nehir yatağı daha da belirginleşmektedir. 7.50 m' de batıdan gelen başka bir kolun bu yatakla birleştiği görülmektedir. 9.00 ve 10.50 m derinliklerde kentin ortasında yatağın kaybolduğu ve batıdaki yatağın hakimiyetinin öne çıktığı görülmektedir. 12.00 ve 13.50 metrelerde ise kentin batı ve doğusunda iki ayrı nehir yatağının tekrar egemen olduğu gözlenebilir. Şekil 1.1'de yüzeyde 15.00 m derinliğe kadar olan Adapazarı'nın 1.5 metrede bir karşılaşılan zemin cinsleri verilmiştir(Bol ve diğ., 2007).

Şekil 1.1 : Adapazarı zemin haritaları (Bol ve diğ., 2007)

Adapazarı alçak kesimlerindeki zemin yapısı derinlikle büyük değişkenlik gösterir. Bu değişkenlik Şekil 1.2'de verilmiş örnek profillerde açık olarak görülebilmektedir.

Şekil 1.2 : a) Yenigün Mahallesi (CTYG02) zemin profili b) Karaosman Mahallesi (CTKO13) zemin profili (Önalp ve diğ., 2007)

1.4 Sondalama

Sondalama çalışmaları ilk olarak 1920'li yıllarda Hollanda'da kumlarda uygulanmaya başlanmıştır. İlk konik penetrometre testi bir mekanik alet ile Rijkswaterstraat'da (Bayındırlık) mühendis olan P.Barentsen tarafından 1932 yılında Hollanda'da yapılmıştır. Farklı özelliklerde olan mekanik koni penetrometreler, Belçika, İsveç, Almanya, Fransa ve Rusya gibi ülkelerde geliştirilmiştir (Broms ve Flodin, 1988; Sanglerat 1972). Broms ve Flodin'e uvgun olarak ilk elektrik donanımlı koni penetrometre 2. Berlin'de Dünya Savası sırasında Deutsche Forschungsgesellschaft für Bodenmechanik (DEGEBO)'de geliştirilmiş ve birçok dünya ülkesinde kullanımı yaygınlaşmıştır.

Güncel elektrikli piyezometre (piyezokoni-CPTU) 1974 yılında Norveç Geoteknik Enstitüsünde tarafından geliştirilmiştir. Penetrasyon sırasında boşluk suyu basıncı ölçümü ise Janbu ve Senneset (1974) ve Schmertmann (1974) tarafından gerçekleştirilmiştir.

Koni penetrasyon deneyi (CPT) yönteminin çalışma prensibi, aşağı doğru itilen konik uçlu bir çelik sondaya zeminin gösterdiği direncin ölçümü şeklindedir. Günümüzde uç direnci ve çevre sürtünmesinin yanında (CPT), boşluk suyu basınçlarını (CPTU) ve kayma dalgası hızlarını ölçebilen sistemler (SCPTU) geliştirilmiştir.

BÖLÜM 2. KONİ PENETRASYON DENEYİ

2.1 Deneyin Tanıtılması

Koni penetrasyon deneyi, özellikle yumuşak/gevşek ince daneli zeminlerden çakıl boyutundaki iri daneli zeminlere kadar kesit boyunca karşılaşılan zemin tabakalarında zemin özelliklerinin örselenme olmaksızın yerinde belirlenmesi amacıyla kullanılmaktadır. Deneyin temel amacı zemin profilinin tanımlanması, zemin tabakalarının geoteknik özelliklerinin ve tasarıma yönelik parametrelerin ölçüm sonuçlarından belirlenmesidir. CPT deneyinde, kesit alanı 10 cm², konik uç açısı 60° olan silindir şeklinde bir sonda 20 mm/s sabit hızla zemine itilir. Bu işlem esnasında koni ucunda oluşan direnç (q_c), silindirik gömlekte oluşan sürtünme direnci (f_s) ve konik ucun farklı kısımlarında penetrasyon sırasında meydana gelen boşluk suyu basınçları(u₁,u₂,u₃) elektronik olarak ölçülerek zemin kesiti ve zemin sınıfları elde edilmektedir. Ayrıca istenilen derinliklerde penetrasyon durdurulduğunda boşluk suyu basınçlarının sönümlenmesi izlenerek zeminin geçirimlilik özellikleri hakkında bilgi edinilebilmekte, aynı zamanda statik boşluk suyu basınçları da belirlenebilmektedir. Son yıllarda geliştirilen kablosuz (akustik) CPT sisteminde, ölçülen değerler bir mikroişlemci tarafından ses sinyaline çevrilerek yüzeye yollanmaktadır. Bu sinyal sondanın bağlandığı mikrofon tarafından algılanarak ara bağlantısı yapılmış veri toplayıcıya aktarılmaktadır (Şekil 2.1). Veri toplayıcıda ayrıca sinyallerin gönderildiği derinliğin kaydı da yapılmaktadır (Önalp ve diğ., 2006).

Şekil 2.1 : Kablosuz (akustik) CPT sistemi (Önalp ve diğ., 2006)

Deney ölçüm sisteminin ilk yüksek maliyeti nedeniyle Türkiye'de henüz yaygın uygulama bulamamış ise de özellikle ince aluviyal formasyonlarda ve su altında ölçüm yapma potansiyeli bu deneyin kısa zamanda geniş uygulama bulacağını göstermektedir (Önalp ve Sert, 2006, 71).

2.1.1 Deneyin yararları

- Hızlı olması ve zemin profilinin gerçeğe yakın şekilde belirlenebilmesi
- Zemin parametrelerinin numune alınmasına ve laboratuvar çalışmasına gerek duyulmadan elde edilebilmesi
- Sonuçların deneyi yapan operatörün müdahalesine bağlı olmaması
- Numune alımı çok zor olan yumuşak killer ve siltli zeminler için uygun olması
- Konsolide olmamış zeminlerde kullanılabilmesi
- Deney sonuçlarının yorumlanması için teorik yöntemlerin bulunması
- Verilerin bilgisayar tarafından belirli derinlik aralıklarında gerçek zamanlı olarak kaydedilebilmesi

2.1.2 Deneyin olumsuz yanları

- Türkiye'de ekipmanın sınırlı olması
- Deneyin uzman bir operatör tarafından yapılması gerekliliği
- Aletin belirli aralıklarla kalibrasyon gerektirmesi

- Zemin numunesi alınamaması
- Katı/sert zeminlerde uygulanamaması

2.2 Deneyin Uygulanması

Koni penetrasyon aleti kamyon ya da paletli bir araç üzerine bindirilmiş şekilde çalışmaktadır. Kullanılan sondanın tipine göre ölçülebilecek maksimum uç direnci, çevre sürtünmesi ve boşluk suyu basıncı değerleri değişmektedir. Deneyin yapılacağı alana getirilen araç helezon ankrajlar vasıtasıyla zemine sabitlendikten sonra sonda zemine itilmeye başlanır. Deneyin bilgisayar kontrollü olarak yapılması sebebiyle tijlerin düşeyliği sürekli gözlenmekte, böylece hatalı veri alımına izin verilmemektedir. Deney esnasında veri toplama aralıkları 1 cm'ye kadar düşürülebilmektedir. Bu da zemin özelliklerinin ölçümünde süreklilik sağlamaktadır (Önalp ve diğ., 2007).

Şekil 2.2 : Koni penetrasyon deneyi aleti (Önalp ve diğ., 2007)

2.3 Ölçümler ve Tanımlamalar

Koni zemine itilirken uçta ölçülen kuvvetin kesit alanına bölünmesi ile bulunan uç direnci (q_c), yan yüzeydeki kuvvet hücresinin ölçtüğü toplam yükün sonda yanak alanına bölünmesiyle bulunan çevre sürtünme/yapışması (f_s); boşluk suyu basınçları (u_1 , u_2 , u_3) sistemi denetleyen bilgisayarca sürekli kaydedilmektedir. Buna ek olarak CPTU sistemlerde istenilen derinlikte sönümlenme deneyi ; ve SCPTU sistemlerde kayma dalgası hızları (v_s), gaz ölçümü yapılabilmektedir. Alınan ölçüm sonuçlarından zemin sınıfları tayin edilmekte, zeminin taşıma gücü ve sıvılaşma davranışı hakkında fikir edinilebilmektedir (Önalp ve diğ., 2006).

Şekil 2.3 : Sonda ve konik ucun şematik gösterimi (Önalp ve diğ., 2006)

2.3.1 Hesaplamalarda kullanılan koninin geometrik özellikleri

- A_N : Koni ucu net alanı
- A_T : Koni ucu toplam kesit alanı
- A_L : Sürtünme gömleğinin son alt kısmında kesit alanı
- A_U : Sürtünme gömleğinin son üst kısmında kesit alanı
- A_s : Sürtünme gömleği yüzey alanı

2.3.2 CPT sistemi ile elde edilen veriler

Uç alanı faktörü (a) : Uç direncinin ölçülen değerlerinin düzeltilmesi için kullanılır.

$$a = \frac{A_N}{A_T} = \frac{(A_T - A_L)}{A_L}$$
(2.1)

Sürtünme alanı faktörü (b) : Yanakta oluşan sürtünme direncinin ölçülen değerlerinin düzeltilmesi için kullanılır.

$$b = \frac{(A_L - A_U)}{A_S} \tag{2.2}$$

Koni direnci (\mathbf{q}_c - \mathbf{q}_t): Koni direnci koni ucunun karşılaştığı toplam eksenel yükün koni ucunun kesit alanına bölünmesi ile elde edilir. Burada \mathbf{q}_t : düzeltilmiş koni uç direncidir.

Boşluk suyu basıncının sıfıra yakın olduğu (u ≈ 0) olduğu özel durumlarda $q_c \approx q_t$ 'dir. Koni direnci MPa veya kPa birimi ile ifade edilir.

$$q_c = \frac{F_T}{A_T} \text{(düzeltilmemiş)}$$
(2.3)

$$q_t = q_c + u \cdot (1 - a) \text{ (düzeltilmiş)}$$
(2.4)

Sürtünme direnci ($\mathbf{f_s}$ - $\mathbf{f_t}$) : Sürtünme direnci sürtüne gömleğinin karşılaştığı toplam eksenel yükün sürtünme gömleğinin dış yüzey alanına bölünmesi ile elde edilir. Burada f_t : düzeltilmiş sürtünme direncidir. Boşluk suyu basıncının sıfıra yakın (u \approx 0) olduğu özel durumlarda $f_c \approx f_t$ ' dir. Koni direnci MPa veya kPa birimi ile ifade edilir.

$$f_s = \frac{F_s}{A_s} \text{(düzeltilmemiş)}$$
(2.5)

$$f_t = f_s - u \cdot b + 0.3 \cdot \Delta u \cdot \frac{(1-a)}{(15-b)}$$
(düzeltilmiş) (2.6)

Sürtünme oranı (\mathbf{R}_{f}) : Sürtünme oranı sürtünme direncinin koni uç direncine bölünmesiyle elde edilir.

$$R_{f} = \frac{f_{t}}{q_{t}} \cdot 100 \; (\%) \tag{2.7}$$

Sürtünme indisi (I_f) : Koni uç direncinin sürtünme direncine bölünmesiyle elde edilir.

$$I_f = \frac{q_t}{f_t}$$
(2.8)

2.3.3 CPTU sistemi ile elde edilen veriler

Koni zemine sabit bir hızla itilirken kaydedilen boşluk suyu basınçları (u_1,u_2,u_3) dinamik değerlerdir. $(u=u_0+\Delta u)$. Deney esnasında statik boşluk suyu basıncında (u_0) meydana gelen değişiklik (Δu) zemin cinsine göre pozitif veya negatif değer alabilir. Deney sırasında koni ucunda ve arkasında oluşan dengelenmemiş boşluk suyu basınçlarının etkisini ortadan kaldırmak amacıyla uç direnci ve çevre sürtünmesi için boşluk suyu basıncına göre düzeltme yapılmalıdır. (Larsson,1995)

Denge boşluk suyu basıncı (u_{w0}) : Deneyden önce arazideki mevcut boşluk suyu basıncıdır. Penetrasyonu izleyerek yükselen boşluk suyu basıncının sönümlenmesi ile eşitlenir.

Oluşan boşluk suyu basıncı (Δu_w) : Penetrasyon sırasında koni etrafında üretilen boşluk suyu basıncındaki değişimdir.

$$\Delta u_w = u_{(1,2,3)} - u_{w0} \tag{2.9}$$

Boşluk suyu basıncı oranı (DPRR) : Oluşan boşluk suyu basıncının ölçüm seviyesinde koni uç direncine oranıdır.

$$DPRR = \frac{\Delta u_w}{q_t}$$
(2.10)

Normalleştirilmiş koni uç direnci (Q_t) :

$$Q_{t} = \frac{(q_{t} - \sigma_{v0})}{\sigma'_{v0}}$$
(2.11)

$$\sigma'_{v0} = \sigma_{v0} - u_0 \tag{2.12}$$

 σ'_{v0} : efektif düşey gerilme

Normalleştirilmiş sürtünme oranı (Fr) :

$$F_r = \frac{f_s}{(q_t - \sigma_{v0})} \tag{2.13}$$

3. SÖNÜMLENME İLE ÖLÇÜM

3.1 Sönümlenme Deneyi

CPTU'da (piyezokoni) penetrasyonun herhangi bir aşamasında durulduğunda koni etrafında oluşan fazla boşluk suyu basınçları sönümlenmeye başlar. Sönümlenmenin hızı konsolidasyon katsayısına, zeminin sıkışabilirliğine ve hidrolik iletkenliğe bağlıdır.

Sönümlenme deneyi penetrasyonun durdurulmasının ardından istenilen derinlikte boşluk suyu basınçlarının (u) zamana bağlı olarak ölçümüyle gerçekleştirilir. u değişkeni filtrenin yerine göre u_1, u_2 veya u_3 şeklinde ifade edilir.

- u₁: koni ucuna veya yüzeyine yerleştirilen filtrede ölçülen boşluk suyu basıncı
- u₂: koninin hemen arkasında sürtünme gömleğinin altına yerleştirilen filtrede ölçülen boşluk suyu basıncı
- u₃ : sürtünme gömleğinin arkasına yerleştirilen filtrede ölçülen boşluk suyu basıncı

Şekil 3.1 : Boşluk suyu basıncı elemanı yerleri (Önalp ve diğ., 2007)

Boşluk suyu basınçlarının sönümleme oranı tijlerin kilitlenip kilitlenmediğine ve penetrasyonun durup durmadığına da bağlı olabilir. Tijler sabit tutulsa bile bunların içinde gelişen elastik deformasyon enerjisinden ve koni yükünün azalmasından dolayı çok yavaş ta olsa bir hareket oluşabilir. Söz konusu bu hareket konik ucun etrafındaki zeminde toplam gerilmeyi değiştirebilir. Bu da boşluk suyu basınçlarının zamana bağlı olan dağılımlarını etkiler.

Boşluk suyu basıncı ölçümlerinde de koni penetrasyon testinin (CPTU sönümleme testi) kullanılması çeşitli avantajlar sağlamaktadır.

Bunlar;

- Koni penetrasyonu sırasında drenaj koşullarının ayırtlanabilmesi devam ederken drenaj durumunun belirlenebilmesi
- Hatasız koni penetrasyon direnci ölçümü (q_c)
- Doğal yer altı suyu durumunun belirlenmesi
- Zemin profilinin oluşturulması
- Geoteknik parametrelerin değerlerinin daha doğru değerlendirilebilmesi düzeltilmesi
- Akım ve konsolidasyon karakteristiklerinin (c, k) ölçülebilmesi

Tüm zeminler için sönümleme deneyine, sönümlemenin belli bir periyoduna veya önceden belirlenmiş bir sönümleme oranına ulaşıncaya kadar devam edilir.

Koninin herhangi bir noktasında(u₁,u₂,u₃) yapılan penetrasyon boşluk suyu basıncı ölçümleri ikiye ayrılmaktadır:

- 1. Yerel yer altı suyu rejimi tarafından kontrol edilen doğal denge değeri (uw0)
- 2. Zemin davranışının ve koni geometrisinin fonksiyonu olan koni penetrasyonundan üretilen fazla boşluk suyu basıncı (Δu_w).

Fazla boşluk suyu basıncının zamanla çürümesi zeminin konsolidasyon katsayısı hakkında bilgi sağlamaktadır. Üretilmiş fazla boşluk suyu basıncının sönümlenmesini değerlendirmek için koni penetrasyon durdurulur ve boşluk suyu basıncının çürümesi zamana karşı kaydedilir. Boşluk suyu basıncındaki değişiklikler zamana karşı grafik üzerinde işaretlenir. Grafikteki zaman ekseni çoğunlukla logaritmiktir. Fazla boşluk suyu basıncı veya normalleştirilmiş fazla boşluk suyu basıncı çürümesi grafik üzeride gösterilebilir.

$$U_{wt} = \frac{(u_{wt} - u_{w0})}{(u_{wi} - u_{w0})}$$
(3.1)

Uwt = t zamanda normalleştirilmiş fazla boşluk suyu basıncı

uwt = t zamanda fazla boşluk suyu basıncı

uwi = penetrasyon durduğundaki (t=0) başlangıç fazla boşluk suyu basıncı

 u_{w0} = arazide dengedeki boşluk suyu basıncı

 U_{wt} değeri genellikle fazla boşluk suyu basıncı sönümlenmesi tamamlandığında ve $u_{wt}=u_{w0}$ olduğunda 1 (t=0) ile 0 arasında değişmektedir (Robertson ve diğ., 1992a).

Deney genellikle boşluk sönümlenme oranının en az %50'ye ulaştığı zamana kadar sürdürülür. Denge boşluk suyu basıncını elde etmek gerekiyorsa deneye boşluk suyu basınçlarında herhangi bir değişim gözlenmediği ana kadar devam edilir. Oluşan fazla boşluk suyu basınçlarına genellikle penetrasyon boşluk suyu basıncı denir. Orta ve iri daneli kumlarda oluşan fazla boşluk suyu basınçlarının sönümlenmesi hızlı bir şekilde gerçekleşir. Bu tür zeminlerde boşluk suyu basıncı penetrasyonu ölçümü çoğu kez eşit veya statik denge boşluk suyu basıncına yakındır. Bu nedenle penetrasyon süreci drenajlı olabilir. Silt ve kil gibi ince daneli zeminlerde penetrasyon süreci drenajsızdır ve büyük penetrasyon boşluk suyu basıncı oluşabilir. Boşluk suyu basınçları zamana karşı kaydedilir. Sönümlenme deney başlangıcında hızlı geliştiğinden veri toplanmasına sönümlemenin oldukça erken safhalarında başlanmasına dikkat edilmelidir (Burns ve Mayne, 1998).

3.1.1 Tekdüze sönümlenme

Killerde yapılan sönümlenme deneyinde Tip 1 konilerinde u_1 her zaman için zamanla azalma gösterir. Buna karşın Tip 2 konilerde yumuşak killerde Δu_2 zamanla azalırken aşırı konsolide killerde önce artmakta, bir maksimum değere ulaşmakta ve tekrar hidrostatik su basıncı seviyesine doğru yönelmektedir(Sully,1991). Tip 1 ve Tip 2 konileri Şekil.3.1'de görülmektedir.

Temsili bir tek düze sönümleme deney sonucu Şekil 3.2'de gösterilmiştir. Bu tip sönümlenmede eğri zamana bağlı olarak devamlı bir azalma göstermekte ve hidrostatik su basıncı seviyesine kadar kararlı olarak düşmektedir.

3.1.2 Genleşme (Kabarma) sönümlenmesi

Birçok aşırı konsolide kil ve fisürlü ortamda yapılan sönümlenme deneylerinde Δu 'da başlangıçta zamanla bir artış olmakta ve bir doruk değere ulaşılmaktadır. Sönümlenmenin ileri aşamalarında u_w zamanla düşerek statik su seviyesine yönelmektedir. Bu davranış kabarmanın bir sonucu olduğundan bu tip sönümlenmeye kabarma sönümlenmesi denmektedir(Şekil 3.3). Bu durumda t₅₀ tayini kesin olarak yapılamadığından konsolidasyon katsayısının hesaplanması da mümkün olmamaktadır(Önalp ve diğ., 2007).

Şekil 3.3 : Aşırı konsolide kilde genleşme tipi sönümlenme eğrisi (Önalp ve diğ., 2007)

3.1.3 Sönümlenmeyi etkileyen faktörler

a) Başlangıç boşluk suyu basıncı dağılımı

Deneyimlere göre koni etrafındaki başlangıç boşluk suyu basıncı Şekil 3.4'de gösterildiği gibi koniden uzaklaştıkça ve koni şaftı boyunca değişmektedir. Ağır derecede aşırı konsolide killerde koniden gövdeye doğru giderken oluşan boşluk suyu basıncı değerlerinde çok büyük eğimler vardır. Bu nedenle bu tür zeminlerde negatif boşluk suyu basınçları gözlenebilir. Sıkı kumlarda oluşabilecek dilatasyondan(kabarma) dolayı koni arkasında ölçülen (u₂) boşluk suyu basınçlarında negatif okumalar alınabilir(Şekil 3.5). Boşluk suyu basıncı sönümlenmesi başlamadan önce, koninin arkasındaki boşluk suyu basıncında başlangıçta artmasına yol açan yerel yeniden dağılım gerçekleşmektedir(Şekil 3.6).

Şekil 3.4 : Doygun killerde boşluk suyu basıncı dağılımı (Sully vd., 1988)

Şekil 3.5 : Silt ve kumlarda koni etrafında oluşan boşluk suyu basıncı dağılımı (Önalp ve diğ., 2007)

Şekil 3.6 : Tipik sönümlenme eğrileri, Aşırı Konsolide Gault Kili Madingley,İngiltere (Lunne ve diğ., 1997, 220)

Teorik analizlerin laboratuvar ve arazi deneyi sonuçları ile karşılaştırılması, piyezokoni testlerinden elde edilen konsolidasyon katsayısı tahmininin güvenilirliği geliştirmek için t=0 zamanda başlangıç boşluk suyu basıncının (u_{wi})belirlenmesi gerektiğini göstermiştir.

Başlangıç boşluk suyu basıncı değerinin en iyi şekilde belirlenmesi için, sönümleme başlangıcında zemin numunesinin fonksiyonu olacak sık zaman aralığında boşluk suyu basıncı kaydı alınması esastır. Karekök zaman çiziminin lineer gösterimi u_{wi}(başlangıç fazla boşluk suyu basıncı) için güvenilir bir tahmin sağlamaktadır (Lunne ve diğ., 1997, 79).

Powell ve Quatermann'a (1997) göre; yumuşak killerde karekök zaman çiziminden belirlenen u_{wi} 'nin kullanılması normalleştirilmiş sönümleme eğrilerinin yinelenebilirliğini önemli bir şeklide geliştirir.

b) Penetrasyon sırasında zeminde meydana gelen örselenmenin etkisi

Bu etki örselenmemiş zeminden daha düşük geçirimliliğe sahip olan koni etrafında örselenen zemin bölgesinde penetrasyon sırasında oluşabilmektedir(Lunne ve diğ., 1997, 79).

c) Hem Yatay Hem Düşey Sönümlenmenin Önemi

Her ne kadar sönümlenmenin çoğunlukla radyal konsolidayon katsayısı tarafından yönetildiği söylense de (Levadoux ve Baligh,1986) c_v ve c_h 'ın göreli (relatif) önemiyle ilgili zeminin anizotropisine bağlı bazı belirsizlikler olabilir(Lunne ve diğ., 1997, 79).

d) Zeminin Anizotropisi

Çoğu zeminlerde geçirimlilik ve konsolidasyon katsayısı yatay yönde daha yüksektir. Ancak bu özellik zeminden zemine değişebilmektedir(Lunne ve diğ., 1997, 79).

3.1.4 Sönümlenme deneyinden elde edilen veriler

3.1.4.1 Zorlanma modülü (M)

Farklı zemin türleri için zeminin sıkışabilirliği efektif gerilmenin değeriyle değişebilen zorlanma modülü ile ifade edilebilir (Janbu, 1963) :

$$M = mp_a \left(\frac{\sigma v'}{p_a}\right)^{(1-a)}$$
(3.2)

Burada;

m : boyutsuz modül sayısı

pa : referans gerilmesi (100 kPa)

a : gerilme üstlüğü (aşırı konsolide yanda a=1, normal yüklenmiş ayakta a=0)

Ödometre deneyinden elde edilen zorlanma modülü ile koni uç direncinden elde edilen değer arasındaki genel ilişki aşağıdaki şekildedir:

$$M = \alpha \cdot q_c \tag{3.3}$$

Sanglerat (1972) koni uç direnci ile zorlanma modülü arasında Tablo 3.1'de verilen bağıntıyı geliştirmiştir.

q _c (Mpa)	$\mathbf{M} = 1 / \mathbf{m}_{v} = \boldsymbol{\alpha} \cdot \mathbf{q}_{c}$	
$q_{c} < 0.7$	$3 < \alpha < 8$	
$0.7 < q_c < 2.0$	$2 < \alpha < 5$	
$q_c > 2.0$	1 < α <2.5	Düşük plastisiteli Kil (CL)
$q_c > 2.0$	$3 < \alpha < 6$	
$q_c < 2.0$	1 < α <3	Düşük plastisiteli Silt (ML)
$q_c\ < 2.0$	$2 < \alpha < 6$	Yüksek plastik silt ve killer (MH,CH)
q _c < 1.2	$2 < \alpha < 8$	Organik siltler (OL)
$q_c < 1.2$		
50 < w < 100	$1.5 < \alpha < 4$	
100 < w < 200	$1 < \alpha < 1.5$	
	$0.4 < \alpha$	
w >200	<1.0	Turba ve organik killer (Pt,OH)

Tablo 3.1 : Killi zeminler için zorlanma modülünün tayini (Sanglerat, 1972)

Senneset ve diğerleri (1988) siltli zeminler için zorlama modülü ile düzeltilmiş koni uç direnci arasında doğrusal bir bağıntı elde etmişlerdir.

$$q_t < 2.5 \text{ MPa}$$
 ise $M = 2 \cdot q_t$ (3.4)

2.5 <
$$q_t$$
 < 5 MPa ise $M = 4 \cdot q_t - 5$ (3.5)

Zorlanma modülü ve koni uç direnci arasındaki ilişki Şekil.3.7'de gösterilmektedir.

Şekil 3.7 : Zorlanma Modülü (M) - Düzeltilmiş koni uç direnci (q_t) (Senneset vd 1988)

Senneset ve diğerleri (1988) aşırı konsolide durumlar için zorlanma modülünü net koni direnci ile doğrusal bir enterpolasyonla ilişkilendirmişlerdir.

$$M_{p} = \alpha_{p} \cdot q_{n} = \alpha_{p} \cdot (q_{t} - \sigma_{v0})$$
(3.6)

Burada α_p 5 ile 15 arasında değişir. σ_{v0} toplam eşdeğer örtü yükü, q_t düzeltilmiş koni uç direncidir.

Senneset ve diğerleri (1988) normal konsolide durum için de aşağıdaki bağıntıyı önermişlerdir:

$$M_n = \alpha_n \cdot q_n = \alpha_n \cdot (q_t - \sigma_{v0}) \tag{3.7}$$

Burada bir çok kil için $\alpha_n=6\pm 2\text{'dir.}$

Senneset ve diğ. (1988) Glava killeri için, sıkışma eğrisinin aşırı konsolide kesimi için zorlanma modülünün Şekil 3.8a'da gösterildiği gibi $10q_n \pm 5q_n$ olmasına karşın normal yüklenmiş kesimde Şekil 3.8.b'de görüleceği gibi 8 q_n üst limiti dolayında olacağını ve CPT verilerinin kullanımı ile killerde sıkışma modüllerinin sağlıklı tahmin edilebileceğini bildirmişlerdir.

Şekil 3.8 : Zorlanma modülünün değişimi (Senneset vd. 1989)

Kulhawy ve Mayne (1990) zorlanma modülü (M) ve net koni uç direnci ($q_t - \sigma_{v0}$) arasındaki ilişki üzerinde yaptıkları çalışmalar sonucu farklı zemin türleri için aşağıdaki ilişkiyi önermişlerdir:

$$M = 8.25 \cdot (q_t - \sigma_{v0}) \tag{3.8}$$

Bazı durumlarda bu ilişkiler iyi sonuçlar verse de, yerel deneyimler farklı zemin tiplerinde uç direnci ile zorlanma modülü arasındaki korelasyonun daha da geliştirilmesi için önem taşımaktadır. Şekil 3.9 zorlanma modülü ile net koni direnci arasında genel bir ilişki sunmaktadır.

Şekil 3.9 : Zorlanma modülü ile net koni direnci arasındaki ilişki (Kulhawy ve Mayne, 1990)

Senneset ve diğ. (1988) ($\sigma'_{v0} + \Delta \sigma'_{v}$) gerilme aralığında, ortalama zorlanma modülünün hesaplanması için aşağıdaki ilişkiyi önermişlerdir:

$$M_{av} = M \sqrt{\frac{\sigma'_{v0} + 0.5\Delta\sigma'_{v}}{\sigma'_{v0}}}$$
(3.9)
3.1.4.2 Rijitlik indisi (I_r)

Killer için drenajsız rijitlik indisi kayma modülü (G)'nin kayma direnci (S_u) 'ya oranıdır. Farklı yollardan elde edilebilir:

- Üç eksenli deneyde gerilme şekil değiştirme eğrisi (Şekil 3.10)
- Presiyometre deneyi
- Ampirik korelasyonlar

Drenajsız koşullarda yapılan üç eksenli deneyde rijitlik indisi aşağıdaki şekilde hesaplanabilir:

$$I_{r} = \frac{E}{2(1+\nu)S_{u}} = \frac{G}{S_{u}}$$
(3.10)

Burada;

- E : Eşdeğer Young Modülü $[2G(1+\nu)]$
- G : Kayma Modülü
- v: Poisson Oranı (drenajsız durumda v = 0.5)
- S_u : Drenajsız Kayma Direnci

Şekilde $\sigma - \varepsilon$ diyagramı yerine kesme kutusunda gösterildiği gibi $\tau - \gamma$ eksenlerinde verilmiştir. Bu durumda $\nu = 0.5$ alınırsa eksenler $\tau = \sigma/2$ ve $\gamma = \varepsilon/2$ olarak düzenlenebilir. Aynı şekilde kayma modülü de G= E/3 olacaktır(Önalp ve diğ., 2007).

Şekil 3.10 : Rijitlik indisinin tayini (Önalp ve diğ., 2007)

Anizotrop konsolidasyonlu üç eksenli sıkışma deney verisine dayanan bir bağıntı Şekil 3.11 de gösterildiği gibi I_r 'yi OCR ve I_p terimleriyle birlikte irdeleyerek vermektedir(Keaveny ve Mitchell,1986).

Şekil 3.11 : Rijitlik indisinin OCR ve Ip'den tayini (Keaveny ve Mitchell, 1986)

Programlamada kullanım açısından yaklaşık ampirik bağıntı:

$$I_{r} \approx \frac{\exp\left[\frac{137 - PI}{23}\right]}{\left[1 + \ln\left\{1 + \frac{(OCR - 1)^{3.2}}{26}\right\}\right]^{0.8}}$$
(3.11)

Bazı araştırmacılar da rijitlik indisinin CPTU verilerinden doğrudan tayini için aşağıdaki formülün kullanılmasını önermişlerdir. (Mayne,2001):

$$I_{r} = \exp\left[\left(\frac{1.5}{M} + 2.925\right)\left(\frac{q_{t} - \sigma_{v_{0}}}{q_{t} - u_{2}}\right) - 2.925\right]$$
(3.12)

3.1.4.3 Akım ve konsolidasyon özellikleri

Zeminin akım ve konsolidasyon karakteristikleri, genellikle konsolidasyon katsayısı (c) ve hidrolik iletkenlik veya permeabilite (k) bakımından tarif edilir. Bunlar birbirine bağlı bir formülle ifade edilir:

$$c = k \frac{M}{\rho_w}$$
(3.13)

Burada M; problem modeli ilgili zorlanma modülü

Ancak, c ve k geoteknik mühendisliğinde ölçümü zor olan parametreler arasındadır. Zeminin anizotropisinden dolayı hem c hem de k düşey (c_v,k_v) ve yatay (c_h,k_h) yönde farklı değerlere sahiptirler. İlgili tasarım değerleri drenaj ve yükleme yönüne bağlıdır(Lunne ve diğ., 1997, 74-75).

a) Konsolidasyon katsayısı

Konsolidasyon parametrelerinin oranına, piyezokoni deneyinde ilerlemenin durdurulmasıyla, sönümlenmenin ölçümü veya boşluk suyu basınçlarının zamana göre azalmasının izlenmesiyle değer biçilebilir. Şekil 3.12a'da yumuşak kil için logaritmik zaman ölçeğinde çizilmiş tipik sönümleme eğrisi gösterilmektedir. Sonuçlar filtrenin yerine göre değişiklik göstermektedir.

Şekil 3.12a'daki sonuçlar normalleştirilerek Şekil 3.12b'de yeniden çizilmiştir.

Şekil 3.12 : Bothkennar deney alanından sönümleme deneyi sonuçları (Lunne ve diğ., 1997, 76)

Son 10-15 yıl içinde teorik ve yarı ampirik çözümler, boşluk suyu basıncı sönümleme verilerinden konsolidasyon katsayısını elde etmek için geliştirilmiştir.

Torstensson(1975,1977) boşluk genleşmesi teorisine dayanarak bir model geliştirmiştir. Başlangıç boşluk suyu basıncı küresel veya silindirik boşluk genişlemesi teorisi ve elasto-plastik zemin modeli kabulüne göre hesaplanmıştır. Torstensson daha sonra boşluk suyu basıncı sönümlemesini hesaplamak için lineer birleştirilmemiş (*uncoupled*) tek boyutlu konsolidasyon teorisini kullanmıştır ve konsolidasyon katsayısının %50 sönümde aşağıdaki formülle değerlendirilmesi gerektiğini söylemektedir.

$$c = \frac{T_{50}}{t_{50}} r_0^2 \tag{3.14}$$

T₅₀ : teorik çözümlerden bulunan zaman faktörü

 t_{50} : %50 sönümlenme için geçen zaman

 r_0 : penetrometre yarıçapı(silindirik model) veya küresel model için eşdeğer penetrometre yarıçapı

Uygun model seçimi gözenekli (poroz) elemanın konumuna bağlıdır. Filtre elemanı konik ucun herhangi bir yerinde ise küresel çözümler çok daha uygun olacaktır. Eğer filtre silindirik gövde üzerinde ve koninin uzağında yer alıyorsa, silindirik çözümler uygun olacaktır.

Levadoux ve Baligh (1986), rijitlik indisi $I_r=500$ ile normal konsolide Boston Mavi Kilinin başlangıç boşluk suyu basıncı dağılımını tahmin etmek için deformasyon izi metodunu kullanmışlardır. Sonlu eleman metodu sonraki birleştirilmiş ve bağımsız lineer izotrop konsolidasyon analizleri için kullanılmıştır.

Levadoux ve Baligh (1986)'in çalışmasının bazı önemli sonuçları vardır:

- Basit birleştirilmemiş çözümler sönümlenme sürecinin uygun doğru tahmin edilmesini sağlamaktadır.
- Sönümlenmenin %50'den az olduğu durumlar için konsolidasyon ağırlıklı olarak yeniden sıkışma modunda sürmektedir.

- Sondanın çevresindeki fazla boşluk suyu basıncının başlangıçtaki dağılımının sönümleme süreci üzerinde önemli bir etkisi vardır.
- Sönümlenme çoğunlukla yatay yöndedir.

Houlsby ve Teh (1988) birim deformasyon izi metodu ve büyük deformasyonlu sonlu eleman analizini birleştirerek CPTU'da aşırı boşluk suyu basınçlarının başlangıç dağılımını hesaplamak için bir başka yöntem geliştirmişlerdir. Bu metot Von Mises'in ideal elastik- tam plastik yaklaşımını kullanmaktadır. Terzaghi-Rendulic ayrık(*uncoupled*) konsolidasyon teorisini kullanan sonlu farklar metodu ise aşırı boşluk suyu basıncı dağılımının analizi için kullanılmıştır. Zeminin rijitliğinin etkisini hesaba katarak Houlsby ve Teh (1988) değiştirilmiş zaman faktörünü (T*) Tablo 3.2'de verildiği gibi açıklamışlardır.

Varaalidaana Viindaai			Filtrenin Yeri	
Konsondasyon Yuzdesi	u ₁	u ₂	Koni tabanından 5 çap yukarıda	Koni tabanından 10 çap yukarıda
20	0.014	0.038	0.294	0.378
30	0.032	0.078	0.503	0.662
40	0.063	0.142	0.756	0.995
50	0.118	0.245	1.110	1.458
60	0.226	0.439	1.650	2.139
70	0.463	0.804	2.430	3.283
80	1.040	1.600	4.100	5.240

Tablo 3.2 : Değiştirilmiş zaman faktörü (T*)(Houlsby ve Teh, 1988)

$$T^* = \frac{(c_h \cdot t)}{(r^2 \cdot \sqrt{I_r})}$$
(3.15)

ch: koni eksenine dik yöndeki konsolidasyon katsayısı, genellikle yatay

r: koninin yarıçapı, genellikle 35.7 mm

Ir: rijitlik indisi, G/Su

G : kayma modülü

S_u : drenajsız kayma direnci

Yukarıdaki çözümler elasto-plastik zemin modellerine dayanmaktadır ve bu nedenle rijitlik indisi normalleştirilmiş eşdeğer elastik rijitliği ifade etmektedir.

Şekil 3.13 Houlsby ve Teh (1988) tarafından türetilmiş T* değerlerini göstermekte ve koni ucu ve hemen arkasında normalize edilmiş sönümlenme eğrileri Torstensson(1977)'ın değerleri ile karşılaştırılmaktadır.

Zaman faktörü T*

Şekil 3.13 : Teorik çözümle normalleştirilmiş sönümleme eğrileri (Teh ve Houlsby, 1991)

Robertson ve diğerleri (1992b) konsolidasyon katsayısını tahmin etmek için laboratuvar deneylerinden ve arazi gözlemlerinden elde edilen referans değerleri ile Houlsby ve Teh (1988)'in çözümlerini kullanarak piyezokoni deneyinden elden edilen sönümleme verilerini gözden geçirmişlerdir. Bunun sonucunda Houlsby ve Teh (1988)'in çözümlerinin c_h için kabul edilebilir değerler sağladığı görülmektedir.

Sonuçlar farklı filtre yerlerinden elde edilen boşluk suyu basıncı verileri için değerlendirilmiştir ve en az saçılımlı dağılım koninin hemen üzerinde(u₂) elde

edilmiştir. Robertson ve diğerleri tarafından sunulan bazı sonuçlar Şekil 3.14'de gösterilmiştir.

Şekil 3.14 : Ortalama laboratuvar c_h değerleri ve CPTU sonuçları (Robertson vd. , 1992b)

Powell ve Quatermann'ın(1997) yumuşak killerde farklı filtre konumlarına göre normalleştirilmiş sönümleme eğrileri biçim olarak Teh ve Houlsby'in kilerine oldukça yakındır. Ancak, konumları göreceli olarak farklıdır. Teh ve Houlsby yaklaşımı kullanılarak çıkartılan c_h değerleri filtre yeri u_1 ve u_2 için birbirlerine çok yakındır, ancak u_3 için diğerlerinde düşük çıkmaktadır.

Şekil 3.15 : c_h'ın t₅₀'den tayini (Robertson vd.,1992b)

Boşluk suyu basıncı sönümlemesi karekök zaman ölçeğinde çizilirse, lineer kısmın eğimi m Şekil 3.15'de gösterildiği gibidir. Böylece, c_h aşağıdaki eşitlik ile değerlendirilebilir. m'nin değerleri Tablo 3.3'de verilmiştir.

$$c_h = \left(\frac{m}{M}\right)^2 \cdot \sqrt{I_r} \cdot r^2 \tag{3.16}$$

Burada,M: verilen sonda geometrisi ve filtrenin yeri için teorik eğrinin eğim karşılığı m: başlangıçta ölçülen lineer sönümlenme eğrisinin eğimi (karekök zaman)

Tablo 3.3 : $\sqrt{zaman ciziminde sönümlenme eğrilerinin eğimi (M),(Teh,1987)$

Filtre Yeri →	u ₁	u ₂	Koniden 5 çap yukarıda u ₃
Sönümleme eğrisinin eğimi (m)	1,63	1,15	0.62

Kısa sönümleme deneyi için ve/veya başlangıç fazla boşluk suyu basıncının(u_{wi}) belirsiz olduğu yerlerde karekök zaman metodunun kullanılması yararlı olmaktadır.

Konsolidasyon katsayısını tahmin etmek için tavsiye edilen işlem, koni arkasına (u_2) takılan piyezometreden elde edilen sönümlenme verilerinin kullanılmasıdır. Bununla birlikte, her ne kadar verileri u_2 filtresine göre daha az tutarlı olsa da diğer filtre yerleri (u_1,u_3) de kullanılabilir.

Değerin ölçüm ve hesaplamasında önerilen yol aşağıdaki gibidir:

- log-zaman veya karekök zamanda arttırılmış ölçekte sönümlemenin ilk kısımlarının (%10'dan daha az sönüm) çizimi yapılır ve başlangıç boşluk suyu basıncı(u_{wi}) tayin edilir.
- Arazideki yer altı su seviyesinden u_{w0} belirlenir.
- Normalize edilmiş fazla boşluk suyu basıncı

$$U_{w} = \frac{(u_{wt} - u_{w0})}{(u_{wi} - u_{w0})}$$

karekök veya log-zaman ölçeğinde çizilir.

- t₅₀ %50 sönüme göre belirlenir
- c_h'ı tahmin etmek için Şekil 3.15'deki eğriler ve t₅₀ kullanılır. Kabul edilebilir doğrulukta veri yoksa, Şekil 3.15'deki aralığın arasındaki ortalama rijitlik indisi(I_r) kullanılır.
- t₅₀'nin belirlenmesi için yapılan sönümleme yeterince sürmemişse eğim, Şekil 3.15'deki karekök zaman ölçeği kullanılarak çizilecek olan grafikten sönümleme eğrisinin başlangıç kısmındaki doğrusal bölümden belirlenir ve c_h tahmin edilir(Lunne ve diğ., 1997, 80)

Deneyimler, bu prosedüre göre bulunan c_h 'ın değerinin gerçeğin ± yarısı kadar bir değerde bulunmasının mümkün olduğunu göstermektedir. Düşey konsolidasyon katsayısının kaba tahmini ise Çizelge 3.4'de verilen düşey ve yatay yöndeki geçirimlilik oranı kullanılarak sağlanabilir.

$$c_{v} = k_{v} \frac{M}{\rho_{w}}$$
(3.17)

$$c_h = k_h \frac{M}{\rho_w} \tag{3.18}$$

b) Hidrolik iletkenlik

Balig ve Levadoux (1980) yatay konsolidasyon katsayısının aşağıdaki ifade ile tahmin edilmesini önermişlerdir ;

$$k_h = \frac{\rho_w}{2.3\sigma'_{v0}} RR.c_h \tag{3.19}$$

Burada RR (*compression ratio in overconsolidated range:c_r*) : aşırı konsolide aralıktaki sıkışma oranıdır ve değerleri $0.5 \times 10^{-2} < RR < 2 \times 10^{-2}$ arasında değişir.

Zeminin anizotrop özelliğinden dolayı yatay hidrolik iletkenlik (k_h) düşey hidrolik iletkenliğe (k_v) göre daha büyüktür. Bu nedenle, çoğunlukla yatay konsolidasyon katsayısı düşey konsolidasyon katsayısından daha büyüktür ($c_h > c_v$). Koni çevresinde konsolidasyonu c_h 'ın yönettiği belirtilmiştir. Zemin izotrop varsayılırsa (burada; $m_h=m_v$) aşağıdaki denklem kullanılır:

$$c_v = c_h \frac{k_v}{k_h} \tag{3.20}$$

Numune boyutu etkisi, numune örselenmesi ve numunelerde bulunan fisür ve çatlaklar sebebiyle zeminin arazi anizotropisini laboratuvarda belirlemek oldukça zordur. Bu sebeple c_v 'nin belirlenmesi için k_v/k_h değerleri Çizelge 3.4'den de alınabilir.

Çizelge 3.4 : Killerin hidrolik iletkenlik oranı (k_h / k_v) (Jamiolkowski vd.,1985)

Kilin Doğası	k_h / k_v
Tabakalanma yok	1 - 1.5
Hafif tabakalanma,arada sırada devamsız mercekler ve yüksek	
geçirimli malzeme tabakaları içeren çökel killer	2 - 4
Tabakalı killer ile gömülü ve çok veya az sürekli geçirimli tabakalar içeren diğer birikintiler	3 - 15

Robertson ve diğ.(1992a) Şekil 3.16'da gösterildiği gibi sönümleme verileri ile laboratuvarda elde edilen k_h değerleri arasındaki ilişkiyi özetlemişlerdir. Bu şekil c_h 'ın t_{50} 'den tayini için de kullanılabilir.

Şekil 3.16 : 10 cm²'lik piyezokonide k_h'ın bulunması (Robertson vd.,1992a)

Zeminlerin hidrolik iletkenliği ayrıca Çizelge 3.5'de gösterildiği gibi zemin CPTU'daki davranışı tiplerinden tahmin edilebilir.

Çizelge 3.5 : Robertson vd. 1986 ve 1990 CPT zemin davranışı tiplerinden hidrolik iletkenlik tahmini

Bölge	Zemin Davaranış Tipi (Robertson ve diğ. 1986)	k(m/sn)	Bölge	Zemin Davaranış Tipi (Robertson,1990)	k(m/sn)
1	Hassas ve ince daneli	3x10 ⁻⁹ -3x10 ⁻⁸	1	Hassas ve ince daneli	3x10 ⁻⁹ -3x10 ⁻⁸
2	Organik zemin	$1 \times 10^{-8} - 1 \times 10^{-6}$	2	Organik zemin	$1 \times 10^{-8} - 1 \times 10^{-6}$
3	Kil	$1 \times 10^{-10} - 1 \times 10^{-9}$	3	Kil	$1 \times 10^{-10} - 1 \times 10^{-9}$
4	Siltli kil-kil	1x10 ⁻⁹ -1x10 ⁻⁸	4	Siltli karışımlar	3x10 ⁻⁹ -1x10 ⁻⁸
5	Killi silt- siltli kil	$1 \times 10^{-8} - 1 \times 10^{-7}$	5	Kum karışımları	$1 \times 10^{-7} - 1 \times 10^{-6}$
6	Kumlu silt-killi silt	$1 \times 10^{-7} - 1 \times 10^{-6}$	6	Kumlar	$1 \times 10^{-5} - 1 \times 10^{-3}$
7	Siltli kum- kumlu silt	$1 \times 10^{-5} - 1 \times 10^{-6}$	7	Çakıllı kum-kum	1x10 ⁻³ -1
8	Kum-siltli kum	$1 \times 10^{-5} - 1 \times 10^{-4}$	8	*Çok katı kum- killi kum	$1 \times 10^{-8} - 1 \times 10^{-6}$
9	Kum	$1 \times 10^{-4} - 1 \times 10^{-3}$	9	*Çok katı ince daneli	$1 \times 10^{-9} - 1 \times 10^{-7}$
10	Çakıllı kum-kum	$1 \times 10^{-3} - 1$			
11	*Çok katı ince daneli	$1 \times 10^{-9} - 1 \times 10^{-7}$			
12	*Çok sıkı kum-killi kum	$1 \times 10^{-6} - 1 \times 10^{-5}$			

Şekil 3.17 Tip 2 piyezokoni için (u_2) t_{50} okuması ile geçirimliliği değerlendirmek için kullanılır. Ortalama ilişki aşağıdaki şekildedir (Parez ve Fauriel,1988) :

$$k = \frac{1}{\left(251t_{50}\right)^{1.25}} \left(cm/s\right) \tag{3.21}$$

Şekil 3.17 : Tek düze tipte sönümlenme eğrisinde t₅₀ değerinden k'nın tayini (Parez ve Fauriel,1988)

4. SÖNÜMLENME EĞRİLERİ

4.1 Eğrilerin Modellenmesi

Arazi CPTU sönümleme eğrilerinin modellenmesi konusunda Elsworth ve diğ. (2006) bir boşluk genleşmesi modeli önermiştir. Bu modelde boşluk suyu basınçlarının artışı izotrop ve deviatörik gerilmelerin etkisinde drenajsız kayma direnci C_u , kayma modülü G ve Skempton A parametresi ile tanımlanmaktadır.

Şekil 4.1 : Boşluk geometrisi modeli (Elsworth ve diğ.,2006)

Burada a boşluğun yarıçapı, σ_0 toplam gerilme, u_{w0} başlangıç boşluk suyu basıncı ve σ_r r uzaklıktaki radyal gerilmeyi göstermektedir.

Şekil 4.1'de penetrasyon sonucu mavi bölgede drenajsız yenilen zeminde boşluk suyu basıncı artışı aşağıdaki denklemle ifade edilmektedir.

$$\delta u_{w} = u_{w} - u_{w0} = \frac{4}{3} \zeta \left[\left(1 + \ln \frac{G}{\zeta} \right) - \frac{3}{2} \left(1 - Af \right) + 3\ln \frac{a}{r} \right]$$
(4.1)

r=a yarıçapındaki boşluğun etrafında $d = a(\frac{G}{\zeta})^{1/3}$ şeklinde tanımlanmakta elastik bölge ($a < r < a(\frac{G}{\zeta})^{1/3}$) içinde sıfır alınmaktadır. Penetrasyonun durmasını izleyerek problem sönümleme evresine geçmekte ve bir "difüzyon" problemine dönüştüğünden denklem

$$\kappa \left[\frac{\partial^2 u_w}{\partial r^2} + \frac{2 \partial u_w}{r \partial r} \right] = \frac{\partial u_w}{\partial t}$$
(4.2)

biçiminde belirmektedir.

Hidrolik sönümleme katsayısı κ yaklaşık olarak konsolidasyon katsayısı c_v ' ye eşittir. Sönümleme denklemini

$$\frac{\partial^2 U_D}{\partial r_D^2} + \frac{2\partial U_D}{r_D \partial r_D} = \frac{\partial U_D}{\partial t_D}$$
(4.3)

olarak yazalım. Bu denklemde D alt indisi boyutsuz anlamına gelmektedir.

Burada;

$$U_{\rm D} = (u_{\rm w} - u_{\rm w0})/C_{\rm u} \tag{4.4}$$

$$t_{\rm D} = \kappa t / a^2 \tag{4.5}$$

biçiminde verilmekte olup ;

Sınır koşulları ise $r_D = 1$ 'de $\delta U_D / \delta r_D = 0$ ve

 $r_D = \infty' da$ $U_D = 0$ şeklindedir.

Genişleme yüzeyinde (r₀=1) sönümlenme yanıtı (U_D;t_D) benzersiz bir şekilde kesme modülünün dirence oranı $\left[\frac{G}{\zeta}\right]$ olan iki parametre ve Skempton boşluk basıncı parametresi (A_f) için gösterilebilir.

Sönümleme yanıtı, $\begin{bmatrix} G \\ \zeta \end{bmatrix}$ 'nın üç temsili büyüklüğü için $\begin{bmatrix} G \\ \zeta \end{bmatrix} = 2,20ve200 \end{bmatrix}$ ve -1<A_f<+1 aralığı için Şekil 4.2. 'de gösterilmiştir.

Şekil 4.2 : Fazla boşluk suyu basıncı dağılımlarının $a)G_{C_u} = 2,b)G_{C_u} = 20,c)G_{C_u} = 200$ değeri için A_f ile değişimi (Elsworth ve diğ., 2006)

Elde edilen eğri tipleri arazide yapılan CPT deneyi sonucu elde edilen eğrilerle doğrudan karşılaştırılabilir. Arazi verileri ile eşleştirmede log-zaman grafiğine karşı log-basıncın mutlak büyük köklerini karşılaştırmak uygun olmaktadır. Bunlar Şekil 4.2'de gösterilenlerin sadece yeniden çizilmiş halleridir. Burada negatif basınçlar mutlak değerleri ile gösterilmektedir(Elsworth ve diğ., 2006).

Şekil 4.3 : Fazla boşluk suyu basıncı dağılımlarının mutlak değerlerinin $a) \frac{G}{C_u} = 2, b) \frac{G}{C_u} = 20, c) \frac{G}{C_u} = 200$ değerleri için A_f ile değişimi

(Elsworth ve diğ., 2006)

(4.1) Denklemin çözümü COMSOL Multiphysics yazılımı ile yapılabilmektedir.

4.2 COMSOL Programının Tanıtılması

4.2.1 Modelleme

Modellemeye başlamadan önce yapılması istenen, modelleme için en uygun olan menünün program açılış aşamasında belirlenmesidir. Üzerinde çalışılmış olan örnek CPT çözümünde kullanılması uygun menü "heat transfer_conduction" ve "space dimension" olarak da "axial symmetry(2D)" 'dir.

👽 Model Navigator		
New Model Library User	r Models Open Settings	
Space dimension:	2D V 1D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D	Heat Transfer Weight Transfer Weight Transfer through conduction with heat flux, convective, and temperature boundary conditions. Suitable for modeling of heat transfer in solids. Transient and steady-state analysis in 1D, 2D planar and axial symmetry, and 3D.
Dependent variables:	Т	
Application mode name:	ht	
Element:	Lagrange - Quadratic 🛛 👻	Multiphysics
		OK Cancel Help

Modelleme aşamasında öncelikle, zemini modellemek için "draw" menüsünden "specify objects" kısmından "rectangle" seçilir.

🥡 (COMSC	DL Multi	physic	s - Geor	m1/He	at Trai	nsfer	r by Cond	uction ((ht) : [l
File	Edit	Options	Draw	Physics	Mesh	Solve	Post	processing	Multiphy	sics He
	൙	1 😂 🖹		Draw Ob	jects		Þ	<u>- 1- 2-</u>	- 🛥 🖌	a 🗩
Mod	ol Troo	- 11-		Specify C	bjects		•	🗆 Rec	tangle	
1		_		Ohiect Pr	ronertie	s		🗌 Squ	are	-
	E:[5	×		Geometri	c Prope	rties		🗢 Ellip	se	
⊡[v	untitled]	ta	Create C	omposit	e Obiect		🔿 Circ	:le	
6	∃ Geom	i1 aat Trancf		Solit Obie	ect	,		• Poir	nt	
	··· [16	sau transi	. Se	Delete In	terior B	oundarie		🖍 Line	e	
				Fillet/Cba	mfer					
			',	Tangent				ŀ		
			~	Coerce T						
				Modify	°					
				Hodily				-		
				Work-Pla	ne Setti	ngs				
				Embed						
				Extrude.						
				Revolve.						
				Create P	airs					
				Use Asse	mbly					
			M	Draw Mo	de			_		
			•	1 Geom1	(2D)					
								_		

Rectang	e		×
Size Width: Height:	20 40	Rotation ar	ngle (degrees)
Position Base: r: z:	Corner 💌 0 -20	Style: Solid Name: R1	~
	OK Cance	Apply	Help

Boyutlar ve pozisyon belirlenip girildikten sonra "OK" tuşuna basılır.

Daha sonra koni ucunun zemine gireceği boşluk belirlenir. "Draw" menüsü kullanılarak "specify objects" 'den "circle" seçilir.

Değerler ve yeri belirlendikten sonra "OK" tuşuna basılır.

Size			Rota	tion angle	•
Radius:	1		a:	0	(degrees)
Positio	n				
Base:	Center	~	Style:	Solid	~
r:	0		Name:	C1	
	0				

Zemin profili ve koni ucunun gireceği boşluk "rectangle" ve "circle" olarak ayrı ayrı modellenir.

Daha sonra "rectangle" olarak modellenen zemin profili ve "circle" olarak modellenen CPT ucunun zemine girdiği kısım birlikte seçilerek blok haline getirilir. Bunun için de "draw" menüsündeki "coerce to solid" kullanılır.

10	COMS	OL M	ultij	physic	s - Geor	n1/He	at Trai	nsfer	by	Con	duct	ion	(ht
File	Edit	Opti	ons	Draw	Physics	Mesh	Solve	Post	proce	essin	g Mu	ıltipl	nysic
D	🛩 🕻		E		Draw Ob	jects		►		_1	<u> </u>	≧	(3)
Mod	Model Tree				Specify C)bjects		•					
		H at ' m1 Heat ' ⊕ Bo xpre	型 □ □ □ □ ○ ・ ヽ 1. % 出 畳 中 ∪ 11 1. % 8 8 8		Draw Obj Specify C Object PY Geometri Create C Split Obje Delete In Fillet/Cha Tangent. Coerce T Modify Work-Pla Embed Create P Use Assee Draw Mo 1 Geom1	ects objects operties composit ect iterior Bi mafer o ne Setti airs mbly de (2D)	s rties oundarie	• • • • • • • • • • • • • • • • • • •			olid urve oint		

Blok haline getirilen modelin üzerine tıklanır ve "object properties" penceresi açılır.

co1 .

Object Properties				×
Points Curves				
Curve selection:		Curve properties		
1	<u>^</u>	r	z	weight
2		1)		
4	≡	2:		
5		3;		
6		4:		
7	~			
Delete				Preview
Name: CO1			OK Cancel	Apply Help

Modelde gerekli olmayan eğriler ve çizgiler silindikten sonra, model istenilen biçime getirilmiş olur.

4.2.2 Çözümlemede kullanılacak denklemlerin tanımlanması

"Options" menüsü kullanılarak "expressions" 'dan "scalar expressions" seçilir.

🕡 (OMSC	DL Multi	physic	s - Geor	m1/He	at Trai	nsfer by	y Cond	ductio	n (ht) : [l	Jnti	tled]		
File	Edit	Options	Draw	Physics	Mesh	Solve	Postpro	cessing	Multip	physics	s He	lp				
D I	i 🔁 🖕	A:	xes/Gric	d Settings.			ک ا	' = ₿ =	= ≅		€	P	Γ.	🏓 🔍	•	ည် သို့
Mod	el Tree	i∏k U	pdate S	ymbols												
L.	F:[F	G	onstant	s									1	-		1
🖃 [u	intitled	E>	xpressio	ns		•	Glob	al Expre	ssions							
6	Geor	Ιr	ntegratio	on Couplin	g Variab	les 🕨 🕨	Scala	ar Expre	ssions							
	i- Hi	E	xtrusion	Coupling	Variable	s 🕨	Subo	lomain B	Expressi	ons						
		Pr	rojectior	n Coupling	Variable	es 🕨	Bour	idary E>	ressio	ns						
		Ic	dentity (Conditions		•	Point	Expres	sions							
		Bo	oundary	Distance	Variable	s	Inter	ior Mes	h Bound	lary Ex	xpres:	sions				
		Fu	unctions	5										_		
		М	laterials,	/Coefficier	nts Libra	ry										
		Vi	isualizati	ion/Select	ion Setti	ngs										
		Vi	iew Geoi	metries												
		Zo	oom			•										
		Su	uppress			•										
		La	abels			•										
		Pr	referenc	ces												
			م. ۲		U											
			2		-10											

Yarıçap, kayma modülü (G), drenajsız kayma direnci (c_u veya S_u), boşluk suyu basıncı parametresi(A_f), plastik bölgenin dış çapı ve boşluk suyu basıncı tanımlanır.

Name	Expression	Unit	Description	
radius	(r^2+z^2)^0.5	0	Radius	
Gmod	10		Shear modulus	
zeta	1		Strength	
af	-0.5		Skempton coefficient	
rmax	1*(Gmod/zeta)^0.33333		Outer radius of plastic zone	
pressure	(4*zeta/3)*((1+log(Gmod/ze	ed []	Pore pressure	
	(4*zeta/3)*((1+log(Gm	od/zeta))-3,	/2*(1-af)+3*log(1/radius))	

"Physics" menüsü kullanılarak "properties" butonu tıklanır. Açılan "application mode properties" penceresinde "anaysis type" kısmı "transient" (zamana bağımlı/geçici) hale getirilir.

👀 COMSOL M	lultiphys	ics - Geo	m1/He	at Trai	nsfer	by Cond	lu
File Edit Opt	ions Drav	w Physics	Mesh	Solve	Postpi	rocessing	ſ
File Edit Opt		W Physics Bour Point Scale Prop Equa Glob Peric Iden Mode	Mesh lomain Se idary Set : Settings ar Variabl erties al Equation dic Cond tity Pairs el Setting ction Mod	Solve ettings : es :em itions is le	Postpi F8 F7 F5	rocessing 육 _	יייייי
		5	- .				

ŀ	Application Mode Properties 🛛 🛛 🔀					
	Properties					
	Default element type:	Lagrange - Quadratic	~			
	Analysis type:	Transient	~			
	Weak constraints:	Off	~			
	Constraint type:	Ideal	~			
	ОК	Cancel Help	5			

"Physics" menüsünden "subdomain settings" 'e girilir.

Zemini modellemek için kullanılan menü ısı transfer menüsü olduğu için ısı transferi ile ilgili olan parametreler 1 ve 0 olarak tanımlanır.

temperature			
Physics Init Elemer	t Color		
Thermal properties a	and heat sources/sinks		
Library material:	·	Load	
Quantity	Value/Expression	Unit	Description
δ _{ts}	1	1	Time-scaling coefficient
💿 k (isotropic)	1	W/(m·K)	Thermal conductivity
🔿 k (anisotropic)	400 0 0 400	W/(m⋅K)	Thermal conductivity
ρ	1	kg/m ³	Density
C _p	1	J/(kg⋅K)	Heat capacity at constant pressure
Q	0	W/m ³	Heat source
	temperature Physics Init Elemer Thermal properties a Library material: Quantity δts (sotropic) k (anisotropic) P C Q Q	Physics Init Element Color Thermal properties and heat sources/sinks Library material: Quantity Value/Expression δts 1 k (siotropic) k (anisotropic) 400 0 0 400 ρ 1 Cp Q 0 	Vertice Value/Expression Unit δts 1 1 • k (isotropic) 1 W/(m·K) • k (anisotropic) 400 0 0 400 W/(m·K) • k (anisotropic) 1 k/gm³ • Cp 1 J/(kg·K) • Q 0 W/m³

Aynı menüde "subdomains" seçili iken "init" menüsüne geçildiğinde başlangıç değeri CPT modelindeki parametrelere göre tanımlanır.

Subdomain Settings - Hea	at Transfer by Conduction (ht)	×
Equation $\delta_{ts} \rho C_{\rho} \partial T / \partial t - \nabla \cdot (k \nabla T) = Q_{\rho}$	T= temperature	
Subdomains Groups Subdomain selection	Physics Init Element Color Initial value T(t ₀) (radius <rmax)*pressure+(radius>=r K Temperature (radius<rmax)*pressure+(radius>=rmax)*0</rmax)*pressure+(radius></rmax)*pressure+(radius>	
	OK Cancel Apply	Help

"Physics" menüsünden "boundary settings" 'e geçilir.

Zemin profilinin kırmızı ile seçili olan kısmı "thermal insulation" (ısı yalıtımı), mavi ile seçili olan kısmı ise "temperature" (sıcaklık) olarak tanımlanır.

Boundaries Groups	Coefficients Color/Sty	/le		
Boundary selection	Boundary sources and	d constraints		
1	Boundary condition:	Thermal insulation 💌	•	
3	Quantity	Value/Expression	Unit	Description
4	9 ₀	0	W/m ²	Inward heat flux
5	h	0	W/(m ² ·K)	Heat transfer coefficient
7	T _{inf}	0	к	External temperature
Ľ	Const	0	W/(m ² ·K ⁴)	Problem-dependent constant
Group:	Tamb	0	к	Ambient temperature
Select by group	Т _о	0	К	Temperature
Interior boundaries				
			Capce	
	1			
	1		N	
	, k			
	×			
	×			
	×			

4.2.3 Çözümleme

Modelleme yapılıp denklemler tanımlandıktan sonra "solve" menüsünden "solver parameters" butonuna basılır ve gerekli ayarlamalar şekillerde gösterildiği gibi yapılır.

🐠 COMSOL Mul	tiphysics - Geom1.	/Heat Transf	er by Cond	uction (h	it) : [Uni	titl
File Edit Option:	s Draw Physics Me	esh Solve Po	stprocessing	Multiphysi	cs Help	
🗅 🚅 🔚 🎒 🗍	ዩ: 🔏 🖻 💼 ᠺ	s = Solv	ve Problem		ા 🗩 🔎) 📕
Model Tree		Res	start			-
		[Upd	date Model			
<u>•• ±:[:::</u>]	🖻 🗖	Get	: Initial Value			'
🖃 [untitled]						
🖻 Geom1		30 ≕ (Solv	ver Parameter	's ⊢11		
Heat Tran	ster	⊐ \$ Solv	ver Manager	•		
		Viet	w Log			
		20 -				
	🖂 🔳 📃					
Solver Parameters						
Analysis:	General Time Steppin	- Adversed				_
Transient	deneral Time Sceppin	y Auvanceu				
Auto select solver	Time stepping					
Solver:	Times: Delative tolerance:		0:1:100			
Stationary	Absolute tolerance:		0.0010			
Time dependent Figenvalue	Allow complex n	umbers				
Parametric						
Stationary segregated	Linear system solver	·				1
Parametric segregated	Linear system solver	: Direct (UMFPA)	CK)	~		
	Preconditioner:			*		
~						
Adaptive mesh refinement						
				Set	tings	
	Matrix symmetry:	Nonsymmetric		~		

ОК

ſ

Apply

Help

Cancel

Solver Parameters					
Analysis:	General Time Stepping Advanced	E)			
Transient 💌	- Consul				
✓ Auto select solver	Times to store in output:	Time ste	ens from solver		
Solver:		Time see	p3 110111 3014 61		
Stationary	Time steps taken by solver:	Free			
Time dependent Eigenvalue	Use stop condition				
Stationary segregated					
Parametric segregated	Manual tuning of step size —				
	Initial time step:	0.0010			
	Maximum time step:	1.0			
~	Advanced				
Adaptive mesh refinement	Maximum BDF order:		5		
	Minimum BDF order:		1		
	Singular mass matrix:		Maybe	~	
	Consistent initialization of DAE sy	stems:	Backward Euler	~	
	Error estimation strategy:		Include algebraic	· •	
	0		Cancel	Apply	Help

Tüm bu ayarlamalar yapıldıktan sonra "solve" butonuna basılarak çözümleme yapılır.

🐠 Progress - Solve Problem					×
		Starting solver			
[]
Progress Convergence Plot Lo	g				
Description	Progress	Convergence	Parameter	Value	
Close automatically					Cancel

Çözümleme yapıldıktan sonra model aşağıdaki biçimleri alır.

"Postprocessing" menüsü kullanılarak "cross-section plot parameters" 'a girilir.

👽 COMSOL Multiphysics - Geom1/Heat Transfer by Conduction (ht) : [Untitled]									
File Edit Options Dr	aw Physics	Mesh	Solve	Postprocessing	Multiphysics	Help			
D 🖻 🖬 🎒 🗄	አ 🖻 💼		$\triangle \&$	🦃 Plot Parar	meters		F12	4	
Model Tree		[k .]		Cross-Sec	ction Plot Para	meters		<u> </u>	
		F	-	Domain P	lot Parameters				
E: [E :]	~	ŀ	<	Global Va	riables Plot			_	
□ [untitled] □ Geom1				Subdomai	in Integration.				
🗄 Heat Transfer	5113	20		Boundary	Integration				
 Expressions 	*	30		Point Eva	luation				
				Geometri	c Properties				
				Probe Plo	t Parameters				
		20		Data Disp	olay		•		
				Quick Plot	ts		•		
				闷 Postproce	essing Mode				
		10							

"Cross-Section Plot Parameters" penceresi açıldıktan sonra "title/axis" butununa basılarak gerekli değiştirmeler yapılır.

Cross-Section Plot Parameters
General Line/Extrusion Point
Plot type
O Line/Extrusion plot O Point plot
Solutions to use Solution at angle (phase):
Title/Axis Settings
Title: Auto Axis settings for line and point plots First axis label: Auto Auto Auto Auto Auto Auto Auto Auto
Plot in: New figure
Display cross-section in main axes Color
Title/Axis
OK Cancel Apply Help

Aynı menüde "point" butonuna basılarak r koordinatı 1.01 olarak değiştirilir ve "apply" butonuna basılarak grafiksel çözüm elde edilir.

Cross-Section Plot Par	ameters		×
General Line/Extrusion	Point		
 Point plot 			
y-axis data			
Predefined quantities:	Temperature		~
Expression:	Т		
Unit:	К		▼
Coordinates			
r: 1.01			
z: 0			
x-axis data			
 Auto 			
O Expression			
Line Settings			
ОК	Cancel	Apply	Help

5. ARAZİDE GERÇEKLEŞTİRİLEN SÖNÜMLENME DENEYLERİNİN ANALİZİ

5.1 Arazi CPTU Sönümlenme Eğrilerinin COMSOL Programı ile Analizi

"Sıvılaşma Potansiyelinin Belirlenmesinde Koni Penetrasyon Deneyi Sönümlenme Yönteminin Uygulanması" adlı 104M387 No'lu TÜBİTAK Projesinde sönümlenme eğrisi tipleri aşağıdaki Şekil 5.1'de verilmiştir.

Şekil 5.1 : Log t – (1-U) eksenlerine göre CPT arazi sönümleme eğrileri tipleri (Önalp ve diğ., 2007)

Bulgular Log t- U eksenlerine göre yapıldığında, eğri tipi sayısının 3'e düştüğü görülmektedir(Şekil 5.4). Tip 2 eğrileri Log t – U eksenine göre yeniden çizildiğinde kabarma olarak adlandırılan kısmın sadece 2-3 okumada gerçekleştiği ve çok küçük değerler olduğu gözlemlenmiş olup Tip 1 ile hemen hemen aynı eğriyi verdiği

görülmüştür(Şekil 5.2). Tip 6 eğrisi için boşluk suyu basıncı verileri log t – U eksenlerine göre çizildiği zaman kabarma belirgin olarak gözlenmekte ancak zemin sınıflarının Tip 4 eğrisiyle birebir uyuşması ve eğrilerin birbirine çok benzemesi sebebiyle aynı eğri tipi adı altında incelenebileceği düşünülmüştür(Şekil 5.3). Çalışmalar u_2 sondasında yapıldığından sadece u_1 sondasında karşılaşılmış olan Tip 5 incelenememiştir.

Şekil 5.2 : Tip 1 ve Tip 2 eğrilerinin karşılaştırılması

Şekil 5.3 : Tip 4 ve Tip 6 eğrilerinin karşılaştırması

Bu benzerlikler neticesinde Eğri Tipleri üç çeşit olarak aşağıdaki şekilde incelenmiştir:

Şekil 5.4 : u2 sondasında gözlemlenen yeni eğri tipleri

5.1.1 Tip 1 eğrisi

İNCELENEN TİP 1 EĞRİ LİSTESİ						
YER	DERİNLİK	EĞRİ TİPİ	ZEMİN SINIFI	% ince		
CDTYA12	5,330	TİP 1	ML, Silt (Nonplastik)	82		
CDTYG29	6,000	TİP 1	ML	95		
CDTYH14	3,085	TİP 1	MI	92		
CTTK17	7,905	TİP 1	MI, Orta Plastisiteli Silt ve Az Kum	76		
CDTIS28	9,540	TİP 1	SM	41		
CDTHA26	7,550	TİP 1	SM	44		
CTOR15	6,430	TİP 1	SM, Siltli Kum	16		
CDTYG33	5,650	TİP 1	SM	49		
CDTYC35	7,500	TİP 1	SW-SM	12		

Tip 1 Sönümlenme Eğrisinin çoğunlukla siltli ve kumlu zeminlerde meydana geldiği Tablo 5.1'den görülmektedir. Bu eğriler Şekil 5.5'de gösterilmektedir.

Şekil 5.5 : Zemin sınıflarına göre Tip 1 eğrileri

ML siltlerde COMSOL Multiphysics ile yapılan analiz sonucunda Elsworth'un boşluk genişlemesi modeli ile Tip 1 eğrisinin temsil edilebileceği görülmektedir. MI siltlerde yapılan Tip 1 analizinde de aynı şekilde bir uyum olduğu gözlemlenmektedir. Ancak zemin sınıfı SM olan siltli kumlara bakıldığında ise sadece eğrinin başlangıcında uyum sağladığı görülmektedir. Bu durum iri daneli zeminlerde boşluk suyu basıncı sönümlenmesinin ince daneli zeminlere göre çok daha hızlı gerçekleşmesinden kaynaklanabilmektedir. İnce dane yüzdesi arttıkça uyumun daha fazla olduğu görülmektedir. Örneğin ince dane yüzdesi %16 olan CTOR15_6.43 m analizindeki uyumsuzluk göze çarpmaktadır. Zemin sınıfı SW-SM olan arazi sönümlenme sonuçlarının COMSOL Multiphsics ile yapılan analizde uygun sonuç vermediği görülmektedir. Bunun sebebi iri daneli zeminlerde boşluk suyu basıncının hızlı bir şekilde sönümlenmesinden dolayı ölçümde net sonuç alınamamasıdır. Genel uyuma bakılarak Tip 1 sönümlenme eğrisinin Elsworth'ün boşluk genişlemesi modeli ile temsil edilebileceği görülmektedir. Tip 1 eğrileri ayrıntılı olarak Ek-A'da verilmektedir.

5.1.2 Tip 2 Eğrisi

İNCELENEN TİP 2 EĞRİ LİSTESİ				
YER	DERİNLİK	EĞRİ TİPİ	ZEMİN SINIFI	
CDTHO37	10,000	TİP 2	CH, Yağlı Kil	
CTTK17	3,680	TİP 2	CH, Yağlı Kil	
CDTYH14	9,120	TİP 2	СН	
CDTDL39	5,000	TİP 2	MH	
CDTCM45	5,770	TİP2	SM	
CDTPA32	10,440	TİP 2	CL	

 Tablo 5.2 : Tip 2 sönümlenme eğrileri listesi

Tip 2 Sönümlenme Eğrisi Tablo 5.2'da görüldüğü gibi çoğunlukla killi zeminlerde karşımıza çıkmaktadır. Ancak nadiren de olsa siltli ve kumlu zeminlerde de görülebilmektedir. Bu eğriler Şekil 5.6'da gösterilmektedir.

Şekil 5.6 : Zemin sınıflarına göre Tip 2 Eğrileri

COMSOL Multiphysics yazılımı ile yapılan analizler sonucunda killi (CH,CL) ve siltli zeminlerde (MH) özellikle negatif basınçlarda önemli ölçüde uyum sağlandığı görülmektedir. Bu nedenle Elsworth'ün boşluk genleşmesi modeli ile Tip 2 sönümlenme eğrilerinin temsil edilebilmesi mümkün gözükmektedir. Negatif sonuçların mutlak değerleri alınarak COMSOL yazılımında modellenmesi uygun olduğundan arazi sönümlenme eğrileri de negatif değerlerin mutlak değerleri alınarak yeniden çizilip karşılaştırılmıştır. Ancak, sınıfı SM olan siltli kumlarda uyumsuzluk çok açık bir şekilde belirdiğinden boşluk genişlemesi modelinin Tip 2 sönümlenme eğrisinde SM zeminler için uygun olmadığı sonucuna varılmıştır. Tip 2 eğrileri ayrıntılı olarak Ek-B'de verilmektedir.

5.1.3 Tip 3 Eğrisi

Tablo 5.3'de görüldüğü gibi Tip 3 Sönümlenme eğrileri sadece siltlerde karşımıza çıkmaktadır. Bu eğriler Şekil 5.7'de gösterilmektedir

İNCELENEN TİP 3 EĞRİ LİSTESİ					
YER	DERİNLİK	EĞRİ TİPİ	ZEMİN SINIFI		
CDTYA12	6,570	TİP 3	MI, Orta Plastisiteli Silt		
CTTK17	5,580	TİP 3	ML, Düşük Plastisiteli Silt		
CDTHO37	13,000	TİP3	ML		
CDTOZ42	8,500	TİP 3	ML		
CDTYH14	6,020	TİP 3	ML		
CDTYG06	4,980	TİP 3	ML, Silt (Nonplastik)		

Şekil 5.7 : Zemin sınıflarına göre Tip 3 eğrileri

Tip 3 sönümlenme eğrileri COMSOL Multiphysics yazılımı ile analiz edildiğinde, özellikle orta plastisiteli siltlerde (MI) neredeyse tam bir uyum gözlenmiştir. Düşük plastisiteli siltlerde(ML) ise Tip 2 de olduğu gibi çoğunlukla eğrinin döndüğü negatif boşluk suyu basıncı okumaları alınmaya başlandığında uyum görülmektedir. Ancak bazı örneklerde tam bir uyuma rastlandığı görülmüştür. Eğrinin başlangıcı çoğu kez COMSOL yazılımının sonucuyla üst üste gelmese de biçim itibariyle benzerlik bulunmaktadır. Bu sebeple, Elsworth'ün boşluk genişlemesi modeli ile Tip 3 sönümlenme eğrileri temsil edilebilmiştir. Tip 3 eğrileri ayrıntılı olarak Ek-C'de verilmektedir.

6. BULGULARIN TARTIŞILMASI

İnce daneli zeminlerde boşluk suyu basıncı sönümlenmesi kumlara oranla yavaştır. Ancak, siltte sönümlenme deney başlangıcında hızla gerçekleştiğinden sönümlenmenin erken aşamalarında sık aralıklarla veri toplanması gerekir.

Aşırı konsolide killerde yapılan sönümlenme deneylerinde Δu_w 'de başlangıçta zamanla bir artış görülmekte, bir doruk değere ulaşmakta ve zamana bağlı olarak u_w düşüş göstermektedir. Diğer deyişle, aşırı konsolide killerde kabarma sönümlenmesi gerçekleşmektedir(Tip 2 eğrisi). Bu sebeple boşluk suyu basınçlarında negatif okumalar alınabilir.

Piyezokoni deneyinden elde edilen konsolidasyon katsayısının güvenilir hesaplanabilmesi için t=0 zamanda başlangıç boşluk suyu basıncının (u_{wi}) belirlenmesi gerekmektedir. Bunun için de boşluk suyu basıncı kaydının sık aralıklarla alınması gerekir.

Sönümlenme yatay yönde gerçekleşmektedir. CPTU sönümlenme deneyi ile yatay konsolidasyon katsayısını (c_h) belirlemek mümkündür. Düşey konsolidasyon katsayısı ise buna bağlı olarak formülden belirlenir.

Konsolidasyon katsayısının (c) en küçük hata ile belirlenmesi için u₂'den elde edilen sönümlenme verilerinin kullanılması uygundur.

Zeminin anizotropisinden dolayı yatay hidrolik iletkenlik (k_h) düşey hidrolik iletkenliğe (k_v) göre daha büyüktür. Buna bağlı olarak çoğunlukla yatay konsolidasyon katsayısı (c_h) düşey konsolidasyon katsayısından (c_v) daha büyüktür.

Sönümlenme eğrileri sayısal olarak modellenmiştir. Bu modellemede boşluk suyu basınçlarının izotrop ve deviatörik gerilmelerin etkisinde artışı, drenajsız kayma direnci C_u , kayma modülü G ve Skempton boşluk suyu parametresi A_f'nin kullanımı ile tanımlanmaktadır.

Sayısal çözüm Comsol Multiphysics yazılımının kullanımı ile değişen C_u, G ve A_f değerleri için yapılmıştır. Tip 1 eğrisi için $G/C_u = 25$ ve $0 \le A_f \le 1$ aralığındaki pozitif değerler ile analiz yapılmıştır. Tip 2 için; negatif boşluk suyu basınçlarından dolayı A_f'nin negatif değerleri (-1 $\le A_f < 0$) ve $G/C_u = 25$ değerleri ile analiz yapılmıştır. Tip 3 için de Tip 2'nin analizinde kullanılan değerler kullanılmıştır.

Tip 1 eğrisi ile temsil edilen düşük ve orta plastisiteli siltlerde (ML-MI) Comsol Multiphysics yazılımı ile yapılan analiz sonucu programın verdiği eğriler ile sönümlenme deneyi sonucu elde edilmiş eğriler arasında bir uyum olduğu gözlenmiştir. Bunun sonucunda ML-MI siltlerde Elsworth'ün boşluk genleşmesi modeli ile Tip 1 eğrisinin temsil edilebileceği görülmüştür. Ancak Tip 1 eğrisi ile temsil edilen kumlu zeminlerde (SM) yapılan analiz sonucunda bir uyum gözlenmemiştir.

Tip 2 eğrisi incelendiğinde, özellikle bu eğri tipinin ağırlıklı olarak CH killerin davranışını yansıttığı görülmektedir. İncelenen diğer zemin sınıfları da dahil olmak üzere özellikle negatif boşluk suyu basıncı okumaları alınmaya başladıktan sonra bilgisayarda yapılan analiz ile arazi sönümlenme eğrileri arasında bir uyum gözlenmekte, buna bağlı olarak da Tip 2 eğrisinin Elsworth'ün boşluk genleşmesi modeli ile temsil edilebileceği görülmektedir.

Tip 3 eğrisinin ağırlıklı olarak düşük plastisiteli siltleri (ML) temsil ettiği açık olarak saptanmıştır. Bu tip eğride de Tip 2'de olduğu gibi eğri üzerinde negatif basınçlara geçildikten sonra uyum sağlanmaktadır. Ancak, az sayıda örnekte karşılaşılsa da tam uyum gösteren sonuçlar da vardır. Bu sebeple, Elsworth'ün boşluk genleşmesi modeli ile Tip 3 eğrisi temsil edilebileceği görüşüne varılmıştır.

Tip 3 eğrileri Comsol Multiphysics yazılımı ile analiz edildiğinde MI orta plastisiteli siltte tam bir uyum gözlenmiştir. Ancak genel bir sonuca varabilmek için elimizde bu zemin sınıfında (MI) yeterli veri bulunmamaktadır. MI zemin sınıfında arazi sönümlenme deneyi (CPTU) yapılarak yeni analiz yapılması önerilmektedir.

İncelemeler silte yönelik olduğundan orta ve düşük plastisiteli killerde (CI, CL) elde çok az veri bulunduğu görülmüştür. Bu sebeple bu tip zeminlerin hangi eğri tipiyle temsil edildiği bilinememektedir. Bu zemin sınıflarında da arazi sönümlenme deneyi (CPTU) yapılması ve sayısal analizle değerlendirilmesi önerilmektedir.

7. SONUÇ VE ÖNERİLER

Bu tez kapsamında yapılmış olan arazi ölçümleri ve bunların değerlendirmesi sonucunda aşağıdaki görüşler oluşmuştur.

- 1. CPTU deneyinden elde edilen verilerin kullanımı ile killerin sıkışma modülleri hatasız bir şekilde hesaplanabilir.
- Kısa süren sönümlenme deneyleri için başlangıç fazla boşluk suyu basıncının (u_{wi}) belirsiz olduğu yerlerde konsolidasyon katsayısının (c) hesaplanmasında karekök-zaman metodunun kullanılması daha uygun bir yol olacağı düşünülmektedir.
- Elde edilen verilerin değerlendirilmesi sonucu farklı zeminlerde üç farklı tip sönümlenme eğrisi belirlenmiştir.
- u₂ filtresi ile sönümlenme deneyi gerçekleştirildiğinde düşük plastisiteli siltler (ML), siltli kumlar (SM) ve orta plastisiteli siltler (MI) yüksek olasılıkla Tip 1 eğri tipini, yüksek plastisiteli killer (CH) Tip 2 eğri tipini ve düşük plastisiteli siltler (ML) ağırlıklı olarak Tip 3 sönümlenme eğrisini vermektedir.
- Bu çalışmanın sonucunda koni penetrasyonunda (CPT) sönümleme yöntemi ile zeminlerin sınıfı, geçirimlilik ve konsolidasyon katsayılarının yeterli doğrulukta tahmin edilebileceği görülmüştür.
- 6. Genellikle aluviyal birikimler gösteren deprem bölgelerinde zemin yenilmesi ve sıvılaşma olasılığı bulunan kumlar ve siltlerde tanıma ise sıvılaşabilir bu zemin tiplerinin çok farklı geçirimlilik özellikleri olması nedeniyle başarı ile yapılamamaktadır. Bu çalışma, sıvılaşabilirliğin siltli ortamlarda sönümleme ile sıvılaşma teşhisi yapılabileceği yönünde bilgi sağlamıştır.
- 7. Bundan sonraki aşamada sönümlenme eğrilerinin Adapazarı kriteri ile karşılaştırılarak uygulanabilir bir yöntem geliştirilmesi önerilmektedir.

KAYNAKÇA

Baligh, M.M. and Levadoux, J.N., 1980. Pore pressure dissipation after cone penetration, *Massachusetts Institute of Technology, Department of Civil Engineering*, Cambridge, Mass., Report R80-11

Bol, E., 2003. Adapazarı zeminlerinin geoteknik özellikleri, *Doktora Tezi*, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Adapazarı, Türkiye.

Bol, E., Arel, E. ve Önalp, A., 2007. Yerel zemin koşullarının deprem hasarlarına etkisi-Adapazarı örneği, *Altıncı Ulusal Deprem Mühendisliği Konferansı*, İstanbul, 16-20 Ekim, s.1-12

Broms, B.B. and Flodin, N., 1988. History of soil penetration testing, *Proceedings* of the International Symposium on Penetration Testing, ISOPT-1, Orlando, 1, Balkema Pub, Rotterdam, 157-220.

Burns, S.E. and Mayne, P.W., 1998. Monotonic and dilatory pore pressure decay during piezocone tests in clay, *Can Geotech. J.*, **35**, 1063-1073.

Elsworth, D., Lee, D.S., Hryciw, R. and Shin, S., 2006. Pore pressure response following undrained uCPT sounding in a dilating soil, *American Society of Engineers* (*ASCE*), 1485-1495.

Houlsby, G.T. and Teh, C.I., 1988. Analysis of the piezocone in clay, *Proceedings* of the International Symposium on Penetration Testing, ISOPT-1, Orlando, 2, Balkema Pub, Rotterdam, 777-83

Jamiolkowski, M., Ladd, C.C., Germaine, J.T. and Lancellotta, R., 1985. New developments in field and laboratory testing of soils, *State-of-the art report*, *Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering*, San Francisco, 1, 57-153, Balkema Pub., Rotterdam.

Janbu, N., 1963. Soil compressibility as determined by oedometer and triaxial tests, *Proceeding of the European Conference on Soil Mechanic and Foundation Engineering*, Wiesbaden, 1, 19-25.

Janbu, N. and Senneset, K., 1974. Effective stres interpretation of in situ static penetration tests, *Proceedings of the European Symposium on Penetration Testing*, ESOPT, Stockholm, 2.2, 181-93.

Keaveny, J.M. and Mitchell, J.K., 1986. Strength of fine grained soils using the piezocone, *American Society of Engineers(ASCE)*, Blacksburg, 668-85

Kulhawy, F.H. and Mayne, P.H., 1990. Manual on estimating soil properties for foundation design, *Electric Power Research Institute*, EPRI

Larsson, R., 1995. Use of a thin slot as filter in piezocone tests, *Proceedings of the International Symposium on Cone Penetration Testing*, CPT'95, Linköping, Sweeden, 2, 35-40.

Levadoux, J.N. and Baligh, M.M., 1986. Consolidation after undrained piezocone penetration, *Journal of Geotechnical Engineering*, *American Society of Engineers(ASCE)*, **112(7)**, 707-26

Lunne, T., Robertson, P.K. and Powell, J.J.M., 1997. Cone Penetration Testing in Geotechnical Practice, E&FN Spon, London, pp. 4-7, 71-81, 220.

Mayne, P.W., 2001. Stress-strain-strength-flow parameters from enhanced in-situ tests, *Proceedings, International Conference on In-Situ Measurement of Soil*

Properties & Case Histories [In-Situ 2001] Georgia Institute of Technology, Atlanta, Georgia USA, May 21-24, 27-48.

Önalp, A., Arel, E., Bol, E., Özocak, A. ve Sert, S., 2007. Sıvılaşma potansiyelinin belirlenmesinde koni penetrasyon deneyi sönümlenme yönteminin uygulanması, *Tübitak Projesi*, Proje No: 104M387, Sakarya, Türkiye, s.17-100.

Önalp, A., Özocak, A. ve Sert, S., 2006. Zemin incelemelerine çağdaş yaklaşım : Koni penetrasyon deneyi, *GAP V. Mühendislik Kongresi Bildiriler Kitabı*, Şanlıurfa, 26-28 Nisan, s.1-8.

Önalp, A. ve Sert, S., 2006. Geoteknik Bilgisi III Bina Temelleri, Birsen Yayınevi, İstanbul, s.70-74.

Parez and Fauriel, 1988. Le piezocone ameliorations apportees a la reconnaissance de sols, *Revue Francaise de Geotech*, **44**, 13-27.

Powell, J.J.M. and Quaterman, R.S.T., 1997. A study of piezocone dissipation tests in soft clays for consolidation properties, In preparation

Robertson P.K., 1990. Soil classification using the cone penetration test. *Canadian Geotechnical Journal*, **27**(1), 151-8

Robertson P.K., Campanella, R.G., Gillespie, D.G. and Greig, J., 1986. Use of piozometer cone data, *American Society of Engineers(ASCE)*, Blacksburg, 1263-80.

Robertson P.K., Sully, J.P., Woeller, D.J., Lunne, T., Powell, J.J.M. and Gillespie, D.G., 1992a. Estimating coefficient of consolidation from piezocone tests, *Canadian Geotechnical. Journal.*, **29**(4), 539-557.

Robertson P.K., Woeller, D.J. and Finn, W.D.L., 1992b. Seismic cone penetration test for evaluating liquefaction potential under cyclic loading, *Canadian Geotechnical. Journal*, **29(4)**, 686-695.

Sanglerat, G., 1972. The penetrometer and soil exploration, Elsevier, Amsterdam, 464.

Schmertmann, J.H., 1974. Penetration pore pressure effects on quasi-static cone bearing,q_c, *Proceedings of the European Symposium on Penetration Testing*, ESOPT, Stockholm, 2.2, 345-51.

Senneset, K., Sandven, R., Lunne, T., By, T. and Amundsen, T., 1988. Piezocone tests in silty soils, *Proceedings of the International Symposium on Penetration Testing*, ISOPT-1, Orlando, 2, Balkema Pub, Rotterdam, 955-966.

Senneset, K., Sandven, R. and Janbu, N., 1989. The evaluation of soil parameters from piezocone tests, *Transportation Research Record*, No. 1235, 24-37.

Sully, J.P., 1991. Measurement of in situ lateral stress during full-displacement penetration tests, *Ph.D. thesis*, University of British Columbia, Vancouver.

Sully, J.P., Campenella, R.G. and Robertson, P.K., 1988. Overconsolidation ratio of clays from penetration pore water pressures, *Journal of Geotechnical Engineering, American Society of Engineers(ASCE)*, **114(2)**, 209-215.

Teh, C.I., 1987. An analytical study of the cone penetration test, *D.Phil. thesis*, Oxford University.

Teh, C.I. and Houlsby, G.T., 1991. An analytical study of the cone penetration test in clay, *Geotechnique*, **41(1)**, 17-34.

Torstensson, B.A., 1975. Pore pressure sounding instrument, *Proceeding of the ASCE Specialty Conference on In Situ Measurement of Soil Properties, American Society of Engineers(ASCE)*, Raleigh, North Carolina, **2**, 48-54.

Torstensson, B.A., 1977. The pore pressure probe, *Nordiske Geotekniske Mote*, Oslo, Norway, **34**, 1–15.

EKLER

EK A. : Tip 1 Eğrileri

Şekil A.1 : Tip 1 eğrileri ML zemin sınıfı

a)

Şekil A.2 : Tip 1 eğrileri MI zemin sınıfı

Şekil A.3 : Tip 1 eğrileri SM zemin sınıfı

Şekil A.4 : Tip 1 eğrisi SW-SM zemin sınıfı

EK B : Tip 2 Eğrileri

a)

Şekil B.1 : Tip 2 eğrileri CH zemin sınıfı

Şekil B.2 : Tip 2 eğrisi MH zemin sınıfı

Şekil B.3 : Tip 2 eğrisi SM zemin sınıfı

Şekil B.4 : Tip 2 eğrisi CL zemin sınıfı

EK C : Tip 3 Eğrileri

b)

a)

Şekil C.1 : Tip 3 eğrileri ML zemin sınıfı

Şekil C.2 : Tip 3 eğrisi MI zemin sınıfı

e)

ÖZGEÇMİŞ

Ad Soyad: Yeşim YEKTE

Doğum Yeri ve Tarihi: Kadıköy / 26.10.1984

Adres: Bağlarbaşı Mah. Kavala Cad. Serin Sok. No:1 Darıca / KOCAELİ

Lisans Üniversite: SAKARYA ÜNİVERSİTESİ

Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yapılan Çalışmalar:

11/2006-10/2007		: SAKARYA ÜNİV İSTANBUL KÜLTÜR ÜNİV. İnşaat Mühendisliği Bölümü GEOTEKNİK ABD		
		TÜBİTAK Projesi 104M387		
		'Sıvılaşma Potansiyelinin Belirlenmesinde Koni Penetrasyon		
		Deneyi (CPT) Sönümlenme Yönteminin Uygulanması'		
		Proje Yürütücüsü : Prof. Dr. Akın ÖNALP		
		Araştırmacı Öğrenci (Tam zamanlı)		
10/2007-07/2008	:	SAKARYA ÜNİV İSTANBUL KÜLTÜR ÜNİV.		
		İnşaat Mühendisliği Bölümü GEOTEKNİK ABD		
		TÜBİTAK Projesi 106M042		
		'İnce Daneli Zeminlerin Sismik Koşullarda Yenilmesinin		
		Adapazarı Kriterleri ile Tanısında Dinamik Deneylerin Etkisi'		

Proje Yürütücüsü : Prof. Dr. Akın ÖNALP **Araştırmacı Öğrenci** (Tam zamanlı) This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.