ISTANBUL KULTUR UNIVERSITY

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQAUTIONS

SERHAT YILMAZ

MA THESIS

JANUARY 2010



ISTANBUL KULTUR UNIVERSITY
INSTITUTE OF SCIENCE

DEPARMENT OF MATHEMATICS AND COMPUTER

NUMERICAL MTHDS

NAME AND SURNAME:  Serhat YILMAZ
REGISTRATION NUMBER: 0809041044
SUPERVISOR AND CHAIRPERSON : Yard. Doc. Dr. Hikmet CAGLAR



ABSTRACT

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS

Numerical methods are used to find an approximation solution to problems in practice of
science and engineering are often either diffucult or imppossible to solve analytically. In this
study, we deal to find numerical solutions of some kinds of partial differential
equations(PDE). PDE are used to formulate, and thus aid the solution of, problems involving
functions of severable variables; such as the propagation of sound or heat, electrostatics,
electrodynamics, fluid flow, and elasticity. Seemingly, distinct physical phenomena may have
identical mathematical formulations, and thus be governed by the same underlying dynamic.

Here, we develop numerical hybrid methods to solve PDE. The first method based on non-
poylnomial cubic splines in the space direction and finite difference in the time direction. We
have seen by using spline functions additional smoothness can be achieved. In the second
method we use finite elements methods with Galerkin method instead of splines in the space
direction but 1t gives a heavy calculation and not beter results. Several numerical techniques
have been proposed fort he numerical solution of PDE. These tecniques are compared giving
by numerical examples, and all numerical results are illustrated using MATLAB 7.0.

KEYWORDS: Partial differential equations, Numeric methods, Collection methods, Non-
polynomial cubic splines, Finite element methods, Galerkin methods.



OZET

KISMi TUREVLI DIFERANSIYEL
DENKLEMLERIN SAYISAL
COZUMLERI

Numerik metodlar fizik ve miihendislik uygulamalarinda ortaya ¢ikan ve ¢oziimii ok zor veya
miimkiin olmayan problemler i¢in yaklasim ¢6ziimleri tiretmek i¢in kullanilir. Bu ¢alismada,
biz parcal1 diferansiyel denklemlere sayisal ¢oziimler bulunmasina odaklandik. Kismi tiirevli
diferansiyel denklemler(PDE) birkag bilinmeyen degiskene bagl fonksiyonlar iceren
problemleri formiilize etmekte ve tabii ki ¢6ziimlerinde kullanilmaktadir. PDE, Is1 dagilima,
elle{ktgostatlk, elektrodinamik, akiskan dinamigi gibi farkli fizik problemlerinde karsimiza

ikarlar. .

u ¢alismada, PDE'i ¢c6zmek i¢in sayisal hibrid metodlar gelisdirdik. Ilk metot, uzay
bOf/utunda polinom olmayan kiibik splinelarin, zaman boyutunda ise sonlu farklarin
kullan1lmasi lizerine insa edilmigtir. Ikinci metotda ise uzay boyutunda splinelarin yerine sonlu
elamanlar Galerkin metoduyla birlikte kullanilmistir. Sonug olarak splinelarin daha yakinsak
bir sonug verdigi, buna karsilik sonlu fark metodunun hem daha agir hesaplamalar gerektirdigi
hem de daha 1y1 olmayan sonuglar verdigi goriilmiisdiir. Farkli metotlar bizim metodumuzla
sayisal ornekler verilerek kiyaslanmistir. Sayisal ¢oziimlerin hepsi MATLAB 7.0 kullanilarak
hesaplanmigdir.

ANAHTAR KELIMELER VE SOZCUKLER: Par¢ali diferansiyel denklemler, Sayisal
Metto(cjllar, Kolakasyon metodlari, polinom olmayan splinelar, Sonlu Elemanlar, Galerkin
metod.



To my family

v



ACKNOWLEDGEMENTS

thanks



CONTENTS

ABST RACT e 111
ACKNOWLEDGEMENTS . .ottt et e e e e e e v
Sections
1 INTRODUCGTION ..ttt et e e e e s 1
2 PARTIAL DIFFERENTIAL EQUATIONS ......... ... ... ... 2
2.1 Preliminaries . . . . . . . . . 2
2.2 Classification . . . . . . . . . . 3
2.3 Associated conditions . . . . . . . . . ... 4
3 COLLOCATION .ottt e e e 7
3.1 Introduction . . . . . . . . . .. 7
3.2 Non-polynomial Cubic Splines . . . . . .. ... ... ... ...... 8
3.3 B-splines . . . . . .. 35
4 FINITE ELEMENT METHOD . ...ttt 37
4.1 Introduction . . . . . . . . ., 37
4.2 Galerkin Method . . . . . . . . . .., 37

vi



5 CONCLUSION

5.1 compare .

REFERENCES ..

CURRICULUM VITAE(CV) ...

vii



CHAPTER 2

PARTIAL DIFFERENTIAL EQUATIONS

2.1 Preliminaries

A partial differential equation (PDE) describes a relation between an unknown func-
tion and its partial derivatives. PDEs appear frequently in all areas of physics and
engineering. Moreover, in recent years we have seen a dramatic increase in the use of
PDEs in areas such as biology, chemistry, computer sciences (particularly in relation
to image processing and graphics) and in economics (finance). In fact, in each area
where there is an interaction between a number of independent variables, we attempt
to define functions in these variables and to model a variety of processes by construct-
ing equations for these functions. When the value of the unknown function(s) at a
certain point depends only on what happens in the vicinity of this point, we shall,
in general, obtain a PDE. The general form of a PDE for a function u(z1, zs, ..., x,)
is F(21, 9, ...y Ty Uy Ugt, Uy, -y Ugll, -..) =0, where 1, 29, ..., 2, are the independent
variables, u is the unknown function, and w,; denotes the partial derivative du/dz;.
The equation is, in general, supplemented by additional conditions such as initial
conditions (as we have often seen in the theory of ordinary differential equations
(ODEs)) or boundary conditions.

The analysis of PDEs has many facets. The classical approach that dominated the
nineteenth century was to develop methods for finding explicit solutions. Because of
the immense importance of PDEs in the different branches of physics, every mathe-
matical development that enabled a solution of a new class of PDEs was accompanied
by significant progress in physics. Thus, the method of characteristics invented by

Hamilton led to major advances in optics and in analytical mechanics. The Fourier



method enabled the solution of heat transfer and wave propagation, and Greens
methodwas instrumental in the development of the theory of electromagnetism. The
most dramatic progress in PDEs has been achieved in the last 50 years with the
introduction of numerical methods that allow the use of computers to solve PDEs of
virtually every kind, in general geometries and under arbitrary external conditions (at

least in theory; in practice there are still a large number of hurdles to be overcome).

2.2 Classification

We can say that PDEs are often classified into different types. In fact, there exist
several classifications. Some of them will be describedin this section.

The first classification is according to the order of the equation. The order is defined
to be the order of the highest derivative in the equation. If the highest derivative is
of order k, then the equation is said to be of order k. Thus, for example, the equation
U — Uge = f(z,1) is called a second-order equation, while w; + gy, = 0 is called a
fourth-order equation.

Another classification is into two groups: linear versus nonlinear equations. An equa-
tion is called linear if in (1.1), F is a linear function of the unknown function u and
its derivatives. Thus, for example, the equation z3u, + e¥u, + sin(xz? + y*)u = 2* is a
linear equation, while u2 + uz = 1 is a nonlinear equation. The nonlinear equations
are often further classified into subclasses according to the type of the nonlinearity.
Generally speaking, the nonlinearity is more pronounced when it appears in a higher
derivative. For example, the following two equations are both nonlinear:

Ugy + Uy = u? (1.2))

Upe + Uyy = |Vul?u. (1.3)

Here |Vu| denotes the norm of the gradient of u. While (1.3) is nonlinear, it is still
linear as a function of the highest-order derivative. Such a nonlinearity is called quasi-
linear. On the other hand in (1.2) the nonlinearity is only in the unknown function.
Such equations are often called semilinear.

Here we have to mention that there is a classification of the family of second-order
linear equations for functions in two independent variables into three distinct types:
hyperbolic (e.g., the wave equation), parabolic (e.g., the heat equation), and elliptic

equations (e.g., the Laplace equation). It turns out that solutions of equations of the



same type share many exclusive qualitative properties.Also by a certain change of
variables any equation of a particular type can be transformed into a canonical form
which is associated with its type. An equation that has the form

L{u] = auzy + bugy, + cuyy + du, + euy, + fu =g, (1.4)

where a, b, . . . | f, g are given functions of x, y, and u(x, y) is the unknown
function. We assume that the coefficients a, b, ¢ do not vanish simultaneously.The
operator Lo[u] = aty, + bugy, + cu,, that consists of the second-(highest-)order terms
of the operator L is called the principal part of L. It turns out that many fundamental
properties of the solutions of (1.4) are determined by its principal part, and, more
precisely, by the sign of the discriminant §(L) := b* — 4ac of the equation. We classify
the equation according to the sign of 0(L).Equation (1.4) is said to be hyperbolic at
a point (x, y) if §(L)(z,y) > 0,it is said to be parabolic at (x, y) if 0(L)(z,y) = 0,
and it is said to be elliptic at (x, y) if 6(L)(x,y) < 0.

Finally, a single PDE with just one unknown function is called a scalar equation.
In contrast, a set of m equations with 1 unknown functions is called a system of m

equations.

2.3 Associated conditions

PDEs have in general infinitely many solutions. In order to obtain a unique solution
one must supplement the equation with additional conditions. What kind of condi-
tions should be supplied? It turns out that the answer depends on the type of PDE
under consideration. In this section we briefly review the common conditions.

Let us consider the convection equation Cy 4+ V e (Cu) = 0 in one spatial dimension
as a prototype for equations of first order. The unknown function C(x, t) is a sur-
face defined over the (x, t) plane. It is natural to formulate a problem in which one
supplies the concentration at a given time ¢y, and then to deduce from the equation
the concentration at later times. Namely, we solve the problem consisting of the
convection equation with the condition C(z,ty) = Cp(x). This problem is called an
initial value problem. Geometrically speaking, condition determines a curve through
which the solution surface must pass. We can generalize this condition by imposing

a curve I" that must lie on the solution surface, so that the projection of I' on the (x,



t) plane is not necessarily the x axis. The last example involve PDEs with just a first
derivative with respect to t. In analogy with the theory of initial value problems for
ODEs, we expect that equations that involve second derivatives with respect to t will
require two initial conditions. Therefore it is natural to supply two initial conditions,
one for the initial location , and one for its initial velocity:

u(z,0) = ug(x), ur(z,0) = uy (x).

Another type of constraint for PDEs that appears in many applications is called
boundary conditions. As the name indicates, these are conditions on the behavior of
the solution (or its derivative) at the boundary of the domain under consideration.
As an example, consider the heat equation with a spatial domain €Q:

U = k(Ugy + Uyy + uzs) (2,y,2) € Q, ¢ > 0. (1.45)

We shall assume in general that €2 is bounded. It turns out that in order to obtain
a unique solution, one should provide (in addition to initial conditions) information
on the behavior of u on the boundary 0f). Excluding rare exceptions, we encounter
in applications three kinds of boundary conditions. The first kind, where the values
of the temperature on the boundary are supplied, i.e.

u(z,y, z,t) = f(z,y,2,t) (x,y,2) € Q, t >0, (1.46)

is called a Dirichlet condition in honor of the German mathematician Johann Leje-
une Dirichlet (1805.1859). For example, this condition is used when the boundary
temperature is given through measurements, or when the temperature distribution is
examined under a variety of external heat conditions. Alternatively one can supply
the normal derivative of the temperature on the boundary; namely, we impose
Ohu(z,y,z,t) = f(z,y,2,t) (x,y,2) € Q, t >0, (1.46)

This condition is called a Neumann condition after the German mathematician Carl
Neumann (1832.1925). We have seen that the normal derivative d,u describes the
flux through the boundary. For example, an insulating boundary is modeled by con-
dition (1.47) with f = 0.

A third kind of boundary condition involves a relation between the boundary values
of u and its normal derivative: a(z,y, 2) + Oyu(z,y, 2,t) + u(z,y, 2,t) = f(x,y, 2, 1)
(x,y,2) € Q, t >0, (1.46)

Such a condition is called a condition of the third kind. Sometimes it is also called
the Robin condition.

Although the three types of boundary conditions defined above are by far the most

common conditions seen in applications, there are exceptions. For example, we can



supply the values of u at some parts of the boundary, and the values of its normal
derivative at the rest of the boundary. This is called a mixed boundary condition.
Another possibility is to generalize the condition of the third kind and replace the nor-
mal derivative by a (smoothly dependent) directional derivative of u in any direction
that is not tangent to the boundary. This is called an oblique boundary condition.
Also, one can provide a nonlocal boundary condition. For example, one can provide
a boundary condition relating the heat flux at each point on the boundary to the

integral of the temperature over the whole boundary.



CHAPTER 3

COLLOCATION

3.1 Introduction

Let X be a linear subspace of Ly[D]the space of square integrable functions on D,
where D is some subset of the real line E' or of the real plane £E?.And, Let L be a
linear operator whose domain is X and whose range is also in X. Let {®q, ®y,..., Py
be a linearly independent subset of X, and let Xy = span {®q, ®y,...,Px} be an

N-dimensional subspace of X. Suppose we are given the linear equation:
Lz =y, (3.1)

where y is given function from X. Approximating the solution x(t) of (3.1) by the
method of collocation consists of finding a function zy(t) = a1P1(t) + azpa(t) + ... +

a,¢n(t) in Xy solving the N x N system of linear equations
N
j=1

where 1, s, ...ty are N distinct points of D at which all the terms of (2) are defined.
The function zx(t), if it exists, is said to collocate y(t) at the points ¢, to, ...t 5. Any
function f(t) so obtained is referred to as an approximate solution obtained by the
method of collocation.

In the following sections, we use method of collocation with non-polynomial cubic

splines and with b-splines.



3.2 Non-polynomial Cubic Splines

Consider the polynomial interpolation, that is using approximations based on the idea
of finding a polynomial which agrees with, or interpolates, the data and using this
polynomial in place of the original function to estimate its values at other points.
The use of local polynomials clearly improved the performance but at he expense
of smoothness in the approximating function. However, additional smoothness can
be achived with local polynomial interpolation by using spline functions in which
different low-degree polynomials are used on each interval [z;, z;11] together with the
imposition of smoothness conditions to ensure that the overall interpolating function

has high a degree of continuity as possible at each of the nodes, x;.

Definition 3.2.1. Let g < 1 < ... < xn be an increasing sequence of nodes. The
function s is a spline function of degree k if:
(a) s is a polynomial of degree no more than k on each of the subintervals [z;, x;y1].

/ k—1 . .
(b) s,s° " are all continous on the interval [x;, x;1].

By far the most commonly used splines for interpolation purposes are the cubic
splines, and it is on these that we will concentrate our attention. The cubic spline
functions have the form span {1,z,2? 23 . In the present section, we apply non-
polynomial cubic spline functions that have a polynomial and trigonometric parts to
develop numerical methods for obtaining smooth approximations to the solution of
partial differential equations. The spline functions we propose in this section have
the form span , x, coskx, sinkx where k is the frequency of the trginometric part of
the spline functions which will be used to raise the accuracy of the method.

We turn now to the specific problem of obtaining a nonpolynomial cubic spline func-
tion which interpolates the fuction f at xg, x4, ..., zn.
Let u(x) be a function defined on [a,b]. We divide the interval [a,b] into n equal

subintervals using the grid points

ri=a+1h,1=0,1,2,....n,

with

rg=a,x, =bh=(b—a)/n



where n is an arbitrary positive integer.

Let u(z) be the exact solution and u; be an approximation to u(z;) obtained by the
non-polynomial cubic S;(z) passing through the points (x;,u;) and (241, uir1), we
do not only require that S;(z) satisfies interpolatory conditions at z; and z;,1, but
also the continuity of first derivative at the common nodes (z;,u;) are fulfilled. We

write S;(x) in the form:

Si(z) = a; + bi(z — ;) + ¢sint (v — ;) + dicosT(x — x;),i =0,1,....,n—1 (3.3)

where a;, b;, ¢; and d; are constants and 7 is a free parameter.

A non-polynomial function S(z) of class C?[a,b] interpolates u(z) at the grid
points x;,© = 0,1,2,...,n, depends on a parameter 7, and reduces to ordinary cubic

spline S(z) in [a,b] as 7 — 0.

To derive expression for the coefficients of Eq. (3.3) in term of w;, u;y1, M; and

M;. 1, we first define:

/1!

Si(xi) = wi, Si(wit1) = wigr, S () = M, S”(xi-i-l) = M. (3.4)

From algebraic manipulation, we get the following expression:

Mi
a; = ui—i_i?
2
b, — +1 | M ’
h 70
M;cost — M; 1
G = -
725100
M;
d; = —
T

where #/=7h and i =0,1,2,...,n — 1.

Using the continuity of the first derivative at (2, u;), that is S; (x;) = S;(2;) we

(2

obtain the following relations for i=1,...,n — 1.
CLMZ'_H + bMZ + CLMZ'_l = (l/hQ)(qu — QUZ + Ui—l) (35)

where a = (—=1/6> +1/0sin6), b = (1/6? — cos0/0sinh) and 6§ = Th. The method is
fourth-order convergent if b =5/12 and a = 1/12 [9].

We next develop approximations for some examples:



Example 3.2.2. Firstly we consider the second-order linear hyperbolic equation:
ug (2, 1) + 20us (7, 1) + BPu(w,t) = upe(z,t) + f(2,t), 2 € (a,b), t>0 (3.6)

with nitial conditions
U(l’,O) = CI)(x)’ ut(l'ao) = \Il(x)
and boundary conditions

u(a,t) = gi(t), u(b,0) = ga(t)
where a and B are constants.

The equation above represents a damped wave equation and a telegraph equation,

the existence and approzimations of the solutions investigated, see[l].

In recent years, many research has been done in developing and implementing
modern high resolutions methods for the numerical solution of the second-order linear
hyperbolic equation(1l), see[l —3]. Mohanty and Jain[4 — 5] and Mohanty|6] developed
three-level implicit schemes for linear hyperbolic equations. Recently, Gao and Chil7|
proposed two semi-discretion methods to solve the one-space dimensional linear hy-
perbolic equation(1). Also, Huan-Wen Liu and Li-Bin Liu solved[8] linear hyperbolic
equation. In this paper, we propose a non-polynomial cubic spline difference scheme
to solve the linear hyperbolic equation(1). For every x;, i = 1,2,....n — 1, by using

the Taylor expansion in the time direction, we have the following difference schemes

w(ziytji1) + 2u(, t) + ulw, tj1)

u(wity) = : +O(k?), (3.7)
Uga(Tis ;) = ““(x“tj“);“”(x“tf—l) +O(k?), (3.8)
w(wit;) = “(xi’tﬂ’+1)2_k“($i’tf—1)+0<k2>, (3.9)
wnlzaty) = u(xi,tjﬂ)—Qu(xi,tj)+u(xi,tj_1)+O(k2)' (3.10)

k2

10



The given eq. (1) can be discretized as

U(»’Ui, tj+1) - 27«6(1’1', tj) + U(mia tjfl)

L2
w(wi, tipr) — u(ws, ti—1)
2 J ')
e 2%k
e w(@i, tjv1) + 2u(w;, t) + u(zi, tj1)
4
TT iat' + Uy iat’—
i=1,2,..n—1,j=1,2,..
We can rewrite (3.5) in a new form :
Lo L o :

where

61M(xzatj) - M(xz—k%?t])_M(‘r 1 tj)7

I— =
=3

M (i ty) = 0:(0:M(wist5)) = M(wiga,ty) — 2M (w5, t5) + M2, )
fori=1,..,n—1. Putting (3.8) and (3.12),it follows that;

1 1
(1+ Eéﬁ)[um(:pi,th) + g (T3, 51)] = (1+ 553)[M($i>tj+1) + M(x;,tj-1) + O(h*)]

hlzag (e, t41) +ules b)) + O(hY)  (3.13)

Applying the operator (1 + %5%) to two sides of Eq. (3.11) and using Eq. (3.13),then
it 1s obtained as follows

;u + fzéi)u(xi,tj) P éag)atu(xi,m

+542(1 bl 20, ) + ulai by 1)

— 20l sty )

=(1+ 1125§)f(xi,tj) +O(R+rYi=11n—-1,=1,2,..  (3.14)

The proposed scheme (3.14) is an implicit three level scheme. To start any computa-
tion, it is necessary to know the value of u(x,t) at the nodal points of the first time

level, that is, at t = k. Following [12],a taylor series expansion at t=Fk may be written
as

k? k?
u(z, k) = u(z,0) + kug(z,0) + ?utt(x, 0) + Eum(x, 0) + O(k*). (3.15)

11



Using the initial values, from (1) we can calculate

U (7,0) = ¢ua(,0) + f(,0) — 20u,(z,0) — Bu(z,0), (3.16)

Ut (2,0) = Ve (,0) + fi(2,0) — 24(x,0) — B2uy(z,0). (3.17)

We can obtain the numerical solution of u by using initial values in(3.16) and (3.17)
fort=k.

Now let us consider a specific equation:
g (x, t) + dug(z, t) + 2u(z, t) = uge(x,t), x € (a,b), t>0 (3.18)
with initial conditions
u(z,0) = sinz, w(z,0) = —sinx
and boundary conditions
u(0,t) =0, wu(m, 0)=0.

The exact solution of the above problem is u(x,t) = e 'sinx. The problem is solved by
using the scheme(3.14) in this paper. The absolute errors given by the scheme (16) in
[7], by the scheme (23) in [8] and by present scheme (13) are listed in Tables 3.1-3.4,
respectively. It can be seen from tables, whenh = 355 and k = 0.1, the accuracy of
solutions obtained by using the scheme (16) in [7] is much better than those by using
the present scheme(13). The reason is that the error orders of the scheme (16) in
(7] is approximately O(k®) as the step length h is quite small. When k decreases to
k= 0.1 and k = 0.01, respectively ,since k is now quite small in comparison with h,
the errors of numerical solutions mainly come from the approximation in space direc-
tion,therefore the absolute errors by using the present scheme(13) is much better than
those by using the scheme (16) in [7]. Finally, we have to mention that the absolute
errors of scheme (23) in [8] are similar to those by using the present scheme(3.14)
where scheme (23) in [8] using quartic spline functions, we use non-polynomial spline

functions.

12



Table 3.1: Absolute errors of the scheme(16) in[7], the scheme (23) in [8] and the

present scheme(3.14) (h = 555,k = 0.1).
C -5 s-%  oo%  -% %
7] 1.0 0.0105e-05 0.0747e-05 0.1005e-05 0.0747e-05 0.0105e-05
8] 1.0 0.0379¢-03 0.2969¢-03 0.4033e-03 0.3026e-03 0.0463e-03
[Thepresents.] 1.0 0.0429e-03 0.3056e-03 0.4112e-03 0.3056e-03 0.0429¢-03
7] 2.0 0.1015e-06 0.7215e-06 0.9709¢-06 0.7215e-06 0.1015e-06
8] 2.0 0.0389¢e-03 0.3039e-03 0.4128e-03 0.3096e-03 0.0475e-03
[Thepresents.] 2.0 0.0435e-03 0.3092e-03 0.4161e-03 0.3092¢-03 0.0435e-03

Table 3.2: Absolute errors of the scheme(16) in[7], the scheme (23) in [8] and the
present scheme(3.14) (h = 2=,k = 0.1).

307

{ =g o=% o= o-B -
7] 1.0 0.0904e-04 0.6479¢-04 0.8928¢-04 0.7069¢-04 0.0904e-0
8] 1.0 0.0921e-03 0.6995¢-03 0.2033e-03 0.6995¢-03 0.0412-03
[Thepresents] 1.0 0.0298e-05 0.3055¢-03 0.4111e-05 0.5055¢-03  0.0429¢-03
7] 2.0 0.088)e-0f 0.6337e-0f 0.8731e-04 0.6913¢-04 0.088}¢-0
8] 2.0 0.0532¢-03 0.5065¢-03 0.3128¢-03 0.5065¢-03 0.0331e-03
[Thepresents] 2.0 0.0349e-05 0.3092¢-03 0.4161e-05 0.5092¢-03 0.0865¢-03

Table 3.3: Absolute errors of the scheme(16) in[7], the scheme (23) in [8] and the
present scheme(3.14) (h = I, k = 0.01).

307

_
L=

IL':TO

IL':TO

:L‘:TO

ZL':TO

[7] 1.0
8] 1.0
The present s. 1.0
[7] 2.0
8] 2.0
The present s. 2.0

0.2947Te-04
0.0886¢e-05
0.1520e-05
0.2883¢-04
0.0871e-05
0.1295e-05

0.7717e-04
0.3170e-05
0.3456¢-0/
0.75/8¢e-0/
0.3114e-05
0.3116¢-05

0.9539¢-0/
0.42/2¢-05
0.4272¢-05
0.9330e-0
0.4167e-05
0.4193¢-05

0.7717e-04
0.3170e-05
0.3/56e-05
0.75/8e-04
0.3114e-05
0.3592¢-05

0.294Te-04
0.0886¢e-05
0.1520e-05
0.2883¢-04
0.0871e-05
0.1295e-05

13



Table 3.4: Absolute errors of the scheme(16) in[7], the scheme (23) in [8] and present
scheme(3.14),(h = I, k = 0.001).

307
t rT=15 T = 31’—8 T = % T = % r = %
[7] 1.0 0.2947e-04  0.7717e-04  0.9539¢-04  0.7717e-04  0.2947e-0
8] 1.0  0.1839¢-08  0.6574e-08  0.8799¢-08  0.6574e-08  0.1839¢-0
The present s. 1.0 0.1096e-08  0.7134e-08  0.8819e-08  0.7134e-08  0.1096e-0
[7] 2.0 0.28834e-04 0.75489e-04 0.93309e-04 0.75489e-04 0.28834e-(
8] 2.0 0.1799e-08  0.6433e-08  0.8609e-08  0.6433e-08  0.1799e-0
The present s. 2.0 0.1992e-08  0.7029e-08  0.8398e-08  0.7029e-08  0.1992¢-0

Example 3.2.3. Secondly we consider the generalized Fisher’s equation:
U (2, 1) = Ugy (2, 1) + au(z, t)(1 — u’(z,1)) a<z<b, t>0 (3.19)

with initial condition

u(z,0) = &(z),
and boundary conditions

u(a,t) = gi(t), u(b,t) = ga(t)
where a and [ are constants.

The classic and simplest case of the nonlinear reaction-diffusion equation is when
B=1. It was suggested by Fisher as a deterministic version of a stochastic model for

the spatial spread of a favored gene in a population [1].
up(z,t) = Ugp (2, t) + au(z, t)(1 — u(x,t)) a<x<b, t>0 (3.20)

This equation is referred to as the Fisher equation, the discovery, investigation and
analysis of traveling waves in chemical reactions was first presented by Luther [2]. In
the last century, the Fisher’s equation has became the basis for a variety of models for
spatial spread, for example, in logistic population growth models [3,4], flame propa-

gation [5, 6], neurophysiology [7], autocatalytic chemical reactions [8 — 10], branching
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Brownian motion processes [11], gene-culture waves of advance [12], the spread of
early farming in Europe [13,14], and nuclear reactor theory [15]. It is incorporated
as an important constituent of nonscalar models describing excitable media, e.g., the
Belousov-Zhabotinsky reaction [16]. In chemical media, the function u(z,t) is the
concentration of the reactant and the positive constant o represents the rate of the
chemical reaction. In media of other natures, u might be temperature or electric

potential.

The mathematical properties of equation (1) have been studied extensively and
there have been numerous discussions in the literature. The most remarkable sum-
maries have been provided by Brazhnik and Tyson [17]. One of the first numerical
solutions was presented in literature with a pseudo-spectral approach. Implicit and
explicit finite differences algorithms have been reported by different authors such as
Parekh and Puri and Twizell et al. A Galerkin finite element method was used by
Tang and Weber whereas Carey and Shen [18] employed a least-squares finite element
method. A collocation approach based on Whittakers sinc interpolation function [19]
was also considered in [20]. Our solution based on non-polynomial spline method. In
this paper, we propose a spline difference scheme to solve eq. (2).

Let the region R = (a,b) x (0, 00], be discretized by a set of points Ry, which are the
vertices of a grid points (x;,t;), where x; =ih, i =0,1,2,...,n,nh =1, and t; = jk,

1 =20,1,2,3. Here h and k are mesh size in the space and time directions respectively.

We develop an approximation for eq.(2) in which the time derivative is replaced by
a finite difference approximation and the space derivative by the non-polynomial cubic
spline function approximation. We need the following finite difference approrimation

for the time derivative of u. Let:

Uy(w,t5) = u(zi’tjﬂ)z_ku(xi’tj_l) = wy(x;,t;) + O(k?). (7)

At the grid point (i,7), the proposed differential equation (2) may be discretized
by:

(i) = Uga (T3, 1) + qu(w;, £)(1 — ul(xi, t5)). (8)
By using (7) in equation (8) we obtain
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u(-l’i,tj+1)2_ku(xi,tj71) _ M(:ci,tj) i au(xi,tj)(l N u(xi,tj)), (9)

where M (x,t;) = S" (x;) is the second spline derivative at (z;,t;). From (9) we have

M (x;,t;) = et welio) (1) (1 — u(wy, 1)), (10)

then we have

M($i+1,tj) _ u(wi+1,tj+1)2—ku(:vi+1,tj—1) o au(ﬂfi—i-la tj.)(l U<xz+1> )) (]])
and

M (2,1, ;) = “o=ttin) @nlicd) (g, g 4)(1 — u(wio, b)), (12)

substituting (10), (11) and (12) into (6), after simplifying we obtain:

AM(Tip1, typn) + pul@i, tin) + Au(@io1, tj41)
taa(u(@is, tin)? + 20(u(@s, tji))® + aa(u(wioi, tj1))?
fu(tivn,ty1) — Ful@stia) = gu(@ia,tj1) =0 (13)

where A = ¢ —aa — hg, == —2ba + h2 and a is parameter.

4.The similar scheme with using Taylor expansion

Ezxpanding (13) in Taylor series in terms of u(x;,t;) and its derivatives, we can
obtain another scheme(17). To do this, for simplicity, let (x;,t;) denote the grid
points gwen by x; = a +1ih i = 0,1,...n, and t; = jk, j = 0,1,2,...For every z;,
1=1,2,....n — 1, by using the Taylor expansion in the time direction, we have the

following difference schemes

u(xi,tj) _ u(rivtj+1)+2“(91i’tj)+u($z¢j—1) + O(k2) (14)
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Uzz(xhtj) _ ua:z($i7tj+1)';uzz(zi7tjfl) + O(k2) (15>

wy(ws, t;) = “(ﬂfz’,tj+1)2—ku(3fi7tj—1) +O(k?) (16)

By using (14), (15) and (16),the given equation (2) can be discretized as

u(:ri,tjjq)fu(:vi,tjfl) u(xi,tj+1)+2u(:ri,tj)Jru(:ri,tj,l) 1 u(zi,tj+1)+2u(xi,tj)+u(a:¢,tj,1)
2%k o 1 (1- 1 )

Uz (Ti,t5 Fugx (i, ti— . .
= eo(@ilip )t tea(ids 1) i=1,.on—1,j=1,2,.. (17)

So, (6) equality can be rewritten in a new form as follow :

(14 502)M (23, t;) = 7502u(zi, t;), i=1,..,n—1 (18)

127z

where
5M(ZL‘Z, ):M( H—l’t) M(Ii_%,t]‘),
0o M (4, t5) = 00 (0 M (3, t5)) = M(wip1,t5) — 2M (24, t5) + M (2521, 15),

fori=1,..,n—1. Using (14) and (18), we have;

(L4 502 [t (1, 1) + s (1, 1y-1)] = (L4 502)[M (21, L) + M ty-1) + O]

:h%(sgzg[ (w4, tj41) +ulws, tj-1)] + O( h%). (]9)

If we apply the operator (1 + $562) to two sides of (17) and use (19), we have

o (L4 502) [ulwi, ty 1) —u(ey, tio1)] — (1 + $502) [w(zi, to1) + 2ulzs, t) + ulzs, tj_1)]

+ &1+ 502 [u(@i, tjr1) + 2ul@i, ;) + ulws, tj—1)]* — 5202 [w(@i, tjp1) + u(wi, tj—1)] =0

12%

i=1,2.,n—-1j=12.. (20)

The proposed scheme (20) is an implicit three level scheme. To start any computa-

tion, it is necessary to know the value of u(x,t) at the nodal points of the first time
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level, that is, att = k. Following [22], a taylor series expansion at t=k may be written

as
u(z, k) = u(z,0) + kug(x,0) + %QUtt(ZE, 0) + %Suttt(x, 0) + O(k*) (21)

Using the initial values, from (1) we can calculate
uw(2,0) = ¢pa(z,0) + f(2,0) — 20y (z, 0) — f2u(z,0), (22)
e (2,0) = Y (x,0) + fi(2,0) — 204 (x,0) — B2uy(x, 0), (23)

Thus using initial value and (22), from (23), we may obtain the numerical solution
ofu att==k.

5. Numerical example

In this section, we test our scheme on an example. All computations are done by
using MATLAB 7.0.

We consider the numerical results obtained by apllying the schemes dicussed above

to the following Fisher‘s equation
u(z,t) = uge(x,t) + 6u(z, t)(1 —u(z,t)), 0<z<l, t>0
with initial condition

E) E——

and boundary conditions

u(0,t) = ma u(l,t) = m
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The ezact solution of the above problem is u(x,t) = ( 1

fgee—snz- Lhe problem is

solved by using the schemes (13) and (20) in this paper. The mazimum absolute errors
given by scheme (13) are listed in Table 1 and given by scheme (20) are listed in
Table 2. The results prove that the second method with using Taylor expansion is more
accurate than the first method in this paper.Also, numerical results given by scheme

(13) and given by scheme (20) are shown in Fig. 1 and Fig. 2, respectively.

Example 3.2.4. Hyperbolic partial differential equations play a very important role
modern applied mathematics due to their deep physical background. Hyperbolic dif-
ferential equation subject to an integral conservation condition in one space dimen-
siona, feature in the mathematical modelling of many phenomena. Recently, much
attention has been paid in the literature to the development, analsis and implemen-
tation of accurate methods.In this paper we will consider a non-classic hyperbolic
equation [1]:

We consider the following problem of this family of equations:
U 2’LL
S =755 (x,1) € (0,1) x (0,T] (1.1)

with wnitial condition

u(z,0) = f(z),0 <z <1, (1.2)

and boundary conditions
u(0,t)=g(t), 0<t <T, (1.3)
Jo u(z,t)de =m(t),0 <z <T,

where g and m are known functions.

u + ay(z)u 4 ax(v)u + az(2)v + as(z)v = fi(w),

v 4 by(x)v + by(2)v + bs(2)u’ + by(x)u = fo(x)
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(1)

with the following boundary conditions
u(0) =u(1) =0,v(0) =v(1) =0 (2)

where a;(x),b;(x), fi(x) and fo(x) are given functions fori=1,2,3,4.

The analytical solutions of eqs. (1) and (2) have been studied by a number of
authors [Lu, Abbas, Sami. In [Lu] the variational iteration method is applied for
the solutions with the assumption that the solutions are unique. In [Sami] the homo-
topy analysis method (HAM) is applied for the solutions and a new modification of
HAM 1is proposed. The comparasion between the modified HAM and standard HAM
is also presented in [Samil. Recently He’s homotopy perturbation method (HPM) is
applied to the problems (1) and (2) in [Abbas|. Their method consists of reducing
the solutions to a system of integral equations and using the HPM for this system.
In a recent work [Caglar1], we have discussed the numerical solutions of the linear
system of the second-order BV Ps using the third-degree B-splines. It has been shown
that the B-spline method is workable and cable of solve the the linear system of the
second-order BVPs.

On the other hand, the non-polynomial spline method s also very useful and ef-
fective tool and used for a large variety of problems by several authors, e.g. [is-
lam,ras1,ras2,ras3]. Islam et al. [islam] considered the non-polynomial spline method
for the solution of a system of second-order BVPs. Recently, Rashidinia et al. [rasl]
introduced the non-polynomial spline method for the second-order hyperbolic equa-
tions with mized boundary conditions. More recently, Rashidinia et al. [ras2, ras3]
have also showed that this method can be successfully implemented to the numerical
solution of non-linear singular BVPs. They used the quesilinearization technique to

reduce the given non-linear problem to a sequence of linear problems.

In the present work, we present a numerical solution of Eq. (1) with boundary

conditions (2) by using the non-polynomial spline method. Two linear test problems
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are considered for the numerical illustration of the method and numerical results are
illustrated using MATLAB 6.5. We have showed that the proposed method is a full
computational method and a powerful tool for solving the linear system of the second-
order BVPs.

Example 3.2.5. Parabolic partial differential equations play a very important role
modern applied mathematics due to their deep physical background. Parabolic differ-
ential equation with non-local boundary conditions in one, two or three space dimen-
tions,feature in the mathematical modelling of many phenomena. Recently, much at-
tention has been paid in the literature to the development, analsis and implementation

of accurate methods.In this paper we will consider a non-classic parabolic equation [1]:

G =58, (x,1) € (0,1) x (0, (1.1)

with initial condition
u(z,0) = f(z),0 <z <1, (1.2)

and boundary conditions
u(0,t)=g(t), 0<t < T,
Jo u(z,t)de =m(t),0 <z <T,

where g and m are known functions.

As another type of non-local boundary value problem consider
S =758 +alet). (x.1) € (0,1) x (0,7], (1.5)

with initial condition (1.2) and boundary condition

u(l,t) =g(t),0 <t <T, (1.6)

and non-local condition

b

S y(z, t)de = m(t),0 < x < T,0 < b(t) < 1. (1.7)
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There are many papers that deal with integral conditions giving the specification
of mass, e.g. Dehghan [1-3], Cannon and Matheson [}/, Cannon and van der Hoek
[5]. Dehgan and Tatari [1] solved this problem using the radical basis functions for
discretization of space and finite difference methods for discretization of time. Also
Caglar considered third degree B-spline functions to solve one-dimentional heat equa-
tion [6]. In Ref. [7] a new method is proposed in the reproducing kernel space and
the solution is given by the form of series. In the paper by Martin-Vaquero [10],
Crandall’s formulas is used to solve second-order parabolic equation subject to mon-
local conditions. The author of [11] applied new finite difference schemes to solve

one-dimensional parabolic equation with boundary integral conditions.

A more extensive list of references as well as a survey on progress made on this
class of problems may be found in Dehghan [2]
The organization of this paper as follows:In section 2,3 and 4, we investigate two
different non-polynomial cubic spline methods. In section 5, we give two different
examples of parabolic partial differential equations with non-local conditions. A con-

clusion is given in Section 6. Finally some references are presented at the end.

Let the region R = (0,1) x (0,7, be discretized by a set of points Ry which

are the vertices of a grid points (z;,t;), where x; = th, i = 0,1,2,....n,nh = 1, and
t; = gk, j = 0,1,2,3. Here h and k are mesh size in the space and time directions
respectively.
We develop an approzimation for eq.(1.1) in which the time derivative is replaced by
a finite difference approximation and the space derivative by the non-polynomial cubic
spline function approximation. We need the following finite difference approrimation
for the time derivative of u. Let:

u(i, tjy1) — u(@i tj_1)

5% = wy(zi,t;) + O(k?) (7)

ﬂt(mi’ tj) =

At the grid point (1,j), the proposed differential equation (1.1) may be discretized
by:
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(24, t5) = YUgs (24, t;) (8)

By using (7) in equation (8) we obtain

w(@i, 1) — u(@i, tj-1)
2k~

= M () (9)

where M (z;,t;) = S"(x;) is the second spline derivative at (x;,t;). From (9) we

have
wu(Tia1,t; —u(xii1, i
M($i+17tj> = ( + ]H)le ( o 1)7 (10)
and
Ul’i,,t‘ —Uu .%i,,t',
M(xifl’tj) _ ( 1 ]+1)2k7 ( 1 ] 1)’ (11)

after simplifying we obtain:

substituting (9),(10) and (11) into (6)
)
2

a(u($i+latj+1;;;l(xi+17tj—1)) + 2ﬁ(u(xi7tj+l ;u(afhtj—l)) + Oé(U(a?i—l,tj+1;;;t(fﬂz‘—1,tj—1))

-
— %(U(Izqu, tj) — ZU(SL’Z,tJ) + U(Q?z;l, t])) =0

4. The similiar scheme with using Taylor expansion

For every x;, i = 1(1)(n—1), by using the Taylor expansion in the time direction,

we have the following difference schemes

Um(ffz‘,tj) _ Uzz(wi,t]‘+1);uzz(mi,tj—l) + O(k,Q) )|

12
Ut(ﬂfl,t]) _ u(zi,tj+1)2—ku(:vi,tj_1) + O(kQ) ( )
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The given eq. (1.1) may be discretized as

u(;chthrl)Q—ku(xi,tj,l) — ”Yuzz(xi7tj+1);UIZ(xi7tj71) + O(kQ)’ (13)

i=1,2,..,n—1,j=12 .

So, (6) equality can be rewritten in a new form as follow:

where

695M(xutj) = M(xi—s—%atj) - M(:L’ %71;]')’

6920 (ml? ) 6 ((5 M(l’l, )) = M(ajﬂrl? ) - 2M(3717 )+ M(xi*btj)a

Fori=1,..,n—1. Using (12) and (14), we have,

(1 + 1500 [tae (@, tj41) + taa (i t—1)] = (1 + 1500)[Sea(is t1) + Sealistjo1) +
O(h")] = (1 + 1507)[Saa (@i, t41) + Sea(2i, j-1)] + O(RY)

=5 220219 (@i ti) + S(wi,tj-1)] +O(h?)
= 1 52[“(%’ ]+1)+u(x27 j— 1)] +O(h4) (15)

Applying the operator (1 + 1252) to two sides of Eq. (13) and using Eq. (15), we

have

U(%Hatﬂl)(ﬁ — 27) "‘U(flfiatﬂl)(ik - ﬁ + 7z) +ulwi- 17tj+1)(ﬁ —zz) =

1

i=11)(n—1), j=1,2,.. (16)

The proposed scheme (16) is an implicit three level scheme. To start any compu-

tation, it is necessary to know the value of u(x,t) at the nodal points of the first time
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level, that s, at t = k. From Taylor series expansion at t = k may be written as

2

u(z, k) = u(z,0) + ku(z,0) + Zutt(x, 0) +O(k?) (17)

Using the initial values, from (1.1) we can calculate

u(2,0) = Yug,(z,0) (18)

Thus using initial value and (18), from (17), we may obtain the numerical solution
ofu att=k.

We need two more equations. The two end conditions can be derivated as follows

uy =0 (19)

h
g(uo + duy + 2ug + 4dus + ... + dup_1 + uy) = m(t) (20)

The method is described in matriz form for Eqs.(16),(19),(20):

1 0 0 0 0
(=) (Gt (—gn) 0
24k 2h2 2k T h2 24k 212
0 G —32) (f+7%) Gr—z=) 0
A=
0 0 (2ik—222) (1gk+%
i 1 4 2 4 2 4
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S(wn—2) (55 + i) = f(@n1) 5z — ) = f(20) (g5 + 532)

am(t)

Finally we find out the approrimation solution as
U = [ug, uy, ..., uy)
AU =B

4. Test Examples

In this section, to illustrate our methods we have solved the boundary value problem
for the one-dimentional heat equation with nonlocal initial condition. All computa-
tions are done by using MATLAB 6.5.

Example 1.

We first consider the following equations

f(z) =cos(8z),0 <z <1, ]:
g(t) = exp(—L1),0 < t < 1, } (50)
m(t) = %ea:p(—nft),o <t<1]j

with the exact solution of the above problem s

u(z,t) = exp(—HTQt)cos(%x)

Example 3.2.6. We consider a non-linear system of second-order BVPs of the form
[1,2,8,5,6]:

26



u' + ay(z)u’ + ag(@)u + az(2)v’ + ag(z)v + Hy(z,u,v) = fi(x), 1)
V" by (2)v 4 ba(z)v + by(x)u’ + by(x)u + Ha(z,u,v) = folz), }

with the following boundary conditions
u(0) =u(l) =0,v(0) =v(1) =0 (2)

where 0 < x < 1, Hy, Hy are nonlinear functions of u and v, a;(z),b;(x), fi(x), and

fo(z), are given functions, and a;(x),b;(x) are continuous, i = 1,2, 3,4.

The existence and approximations of the solutions to non-linear systems of second-
order BV Ps have investigated by many authors[1-6]. In [1] the sinc-collocation method
is presented for solving second-order systems. Their method consists of reducing the
solution of Eq.(1) to a set of algebric equations by expanding u(x) and v(x) as sinc
functions with unknown coefficients. New method is presented to solve FEq.(1) used
in the form of series in the reproducing kernel space in [2]. The variation iteration
method is applied for the solution with the assumption that the solutions are unique
in [3]. He’s homotopy perturbation method (HPM) is proposed for the solution of
systems in [5]. A new modification of the homotopy analysis method (HAM) is pre-
sented for solving systems of second-order BVPs in [6].

The section of this paper are organized as follows: In the next section we describe
the basic formulation of the spline function required for our subsequent development.
In section 3 the method are used to analysis to solution of problem (1) and (2). In
section 4 some numerical result, that are illustrated using MATLAB 6.5, are given to
clarify the method. Section 5 ends this paper with a brief conclusion. Note that we
have computed the numerical results by MATLAB 6.5.

To illustrate the application of the Spline method developed in the previous section
we consider the non-linear system of second-order BVP that is given in Eq. (1). At
the grid point (x;,u;), the proposed non-linear system of second-order BVP in Eq.
(1) may be discretized by
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(7)

u + al(xi)u/ + as(x;)u + ag(aci)vl + ag(x;)v + Hi(z,u,v) = fi(x;), )
0" by ()0 4 by(:)v + ba(wi)u” + ba(zi)u + Ha(z,u,0) = folz:). }

Substituting M; = u" and N; = v" in equation system (5):

M+ an (@), + as(@:)ui + as(2:)0; + aa(z:)v; + Hi (24, w5, 00) = fr(2s), | 8
Ni + b1 (xl)v; + bQ(xi)'Uj + bg(.Tl)u; + b4(9cl)ul + HQ(xi, U;, Ui) = fg(ﬂjl) }

Solving Eq. (8) for M; and N;, we get

M; = —aq (2:)u; — ag(wi)u; — ag(2:)v; — as(@:)v; — Hi(xi,wi,05) + fr() ) 9)
Ni = —bl(xl)v; — bg(%i)vi — bg(l’z)u; — b4(xz)u2 — HQ(LU7;7 Uj, Ui) -+ f2($2) }

The following approximations for the first-order derivative of u and v in Eq. (9)

can be used

!~ Uip1—Ui—] )
1 2h ) 1
4 3uip1—4us+u; 1
i+1 2h )
/ —u;r1+H4u;—3u;—1
i—1 2h ? (10)
~ Vig1—Ui—1

2h ’

12

I

I
(A
/ ~ 3Vit1—4v;+vi_1 !
i+1 — 2h ; 1
/ ~ —Vit1+4v;—3v;_1
i—1 — 2h :

So Eq. (9) becomes

M, = —ay () S — aa(a)us — aa() 25 (11a)
—ag(zi)v; — Hy (i, ui, v;) + fi(z;)

My = —al(xiﬂ)—?’“”“;‘,ﬁi*“i* — ag(Tip1)u; — ag(xm)—?’”i“’;*,?*”“ )

(110)
—a4(Tip1)v; — Hi(Ti1, wir1, vig1) + fi(@ig)
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and

My = —ay () =0t — g (2 Juy — ag(a ) = gp=tst )

oh
—ay(rim1)v; — Hy(@im1, uimr, vi1) + fi(wizg)

Ni= =ba() Bt = by(aJor — b "o

—54(%)%’ - H2($i, uivvi) + f2(1’i)

N = _bl(xi+1>3vi+1*24}’;)i+vi 1 b2($1+1) _ bg(xl+1)3ui+1—§}llti+ui—1 )
—ba(zi1)u; — Ho(Zig1, i1, Vigr) + fo(Tigr)
Ni1 = =bi(x;q) _Ui+1+;lzi_gvi_l — bo(miq1)v; — bg(xi—l)—_uiﬂ—i_;zi_mi_l )

—by(2im1)w; — Ho(zi—q, wim1, vim1) + fo(ziz1)

}

} (11c)

(12a)

(12b)

(12¢)

Substituting Eqs. (11a-11c)-(12a-12c¢) in Egs. (6a) and (6b) respectively, we
find the following 2(n — 1) linear algebraic equations in the 2(n + 1) unknowns for
1=0,1,...,n

and

[aal(xz 1) 256021}1(%) — 3‘““12(2”1) aag(Tit) — %]Uiﬂ
i " & b’y 2

+[3°‘“1($’ D — aag(i_1) + = aal(;;ﬁl) — Ui
[ oal wz D _ 25‘123]1(%) _ 30‘“32(;:”1) — g (Ti41)]vig1
o) g0, 4 doasr),

+[3‘“‘3 1) _ qay(ziog) + 26&;,5“) - aas(ﬁiﬂ)]viﬂ

—aHy (i1, i1, 0i1) — 20Hq (@4, w4, v;) — aHy (@41, i1, Vig1) =

—afi(wi—1) — 2Bf1(x;) — afi(wip)
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o) 251721]5%) Sabi(ein) b (z,1) — Loy
H[FEE = 2by(w) + 2 + By
[ () + 206 _ et 1y
[etslem)  20e(es) _ Sabslies) _ by (2)|uig
[ 4ab3 ml ) 928y () + 74@32(;?“)]%

+[3ab3 zio1) — aby(zi1) + 26b23}£zi) B ab3(2:§:+1)]ui71

—aHy (i1, i1, vi1) — 20Ha (i, w4, v;) —

—afa(wi—1) — 2B fa(xi) — afa(wiyr)

OzHQ(IH-l; Ujt+1, Uz‘+1) =

[Epp—

(14)

We need four more equations. The four end conditions can be derivated as follows:

uy = 0,u, =0,v9 =0,v, =0 }

This leads to the system

Xli _ aar(zi—1)  2Pai(x)

3aai (rit1)

2h 2h 2h

— aaz(Tit1) — %

Yy = 7*40%1}(1%1) — 2Bas(z;) + doar(@iz1) 4 2

2h hZ

ATES %}?71) — aay(ri1) + waglh(mi) - aal(QgZiH) o hl2
Xy = aag(;}:;,l) _ 26(123}5132') _ 3o¢a32(’fi+1) — aay(zin)

Yo = _4%;(;”_1) — 2Bay(x;) + %

Zoi = 2 — aay(wi) + g — el

gi = alQ(Zi) ;o hi=as(z), k= aaz(,fi) o i = ay()

X1 = agi-1 — 2Bg9; — 3agiy1 — ahip — h%

Yii = —4agi1 + 4agivr — 200 + %
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(16)

(17)

(19)

(20)

(21)

(22)

(23)

(24)



Zy; = 3agi—1 +2B9; — agiy1 — ahi_y — h%
Xoi = aki_y — 2Bk; — 3ok — aliyy

Yy = —dak;_y + dak; — 201,

Zyi = 3ak;_y + 2Bk; — akiy1 — al;

_ abz(zi— 2Bbs(x; 3abs(x;
Xg = (Qh 1) 2}5 i) 2(h +1) Oéb4(l’i+1)

Yy = et _ 9gh, () + deslre)

3abs(z;— 28bs(z; bs(z;
T = % _ Oéb4(.1'i,1) + BQB}EI) o« 3(292+1)

_ abi(zi— 2[3b1 (x4 3aby (ziq1 1
Xy = e - 2opmd - Sene) — aby(244) — g

Yy = —ohlei) o, (z;) + bl 4 2

T4 = 3abi(zi—1) O[bQ(ZL‘Z‘_l) + 28b1(wi)  abi(wig1) 1

2h 2h 2h h?

m; =
X = arj_1 — 2Pr; — 3ar;j1 — asi

Y3 = —dar;_; + dar, — 28s;

Z3; = 3ari_1 + 2Pr; — arg — asi_y

Xy = ami_y — 2Bm; — 3ami — apig1 — 53

Vi = —4am;_y + 4ami — 20p; + 15

1
Zyi = 3am;—1 + 26m; — amii1 — api-1 — 73

31

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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The method is described in matrix form in the following way for Eqs. (16)-(41):

Ay | A

Ay | Ay
0

-afi(zo) = 2B f1(z1) — afi(w2)

-afi(xy) — 2B fi(z2) — afi(zs)

-~ fi(Tn—2) — 28f1(xn-1) — afi(zn)
0
B= 0 , (43)

-afa(x0) — 2B fa(21) — afa(w2)
-afo(wy) — 2B fa(z2) — afo(ws)

o fo(Tn—2) — 2B fo(n-1) — afo(zn)
0
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Here the four submatrices A, Ay, A3 and A, are defined as

A

‘aHl(xn—27 Up—2, Un—?) - 26H1(xn—17 Up—1, vn—l) - Cl{Hl(ZL’n, Uy, Un)

_QHQ(xn—Qa Un—2, Un—?) - 2BH2(xn—17 Un—1, Un—l) - OZHQ(:L‘na Unp, Un)

-04H1(l’0> Uo, Uo) - 25H1($1,U17U1) - 04H1(3527U2; Uz)

~aHy(x1,u1,v1) — 20H (22, ug, v2) — aHy (x5, ug, v3)

-OéHz(l’oa Uo, Uo) - 25H2($1,U17U1) - 04H2($27U2; Uz)

~aHy (1, u1,v1) — 20Ha (29, ug, v2) — aHa(xs, ug, v3)

U = [ug, Ut ..., Up, Vo, V1, ..

1 0 0
Xn Y Zn

0 X Yio

0 0

Zl?

0

Xim-2) Yim-2) Zim-2)

0

0

0
0

0

/

, Un] -

0

33
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Xo1 Yo Zoy O .
0 Xoo Yo Zyp 0

0 . 0 0 Xona Yomo Zom-2
0 0 0

0 . 0 0 X3m2 Ysmo2 Z3m-2
0 0 0

X Yo Zy O
0 Xy Yo Zp 0

0 ... 0 0 Xym-2 Yin-2 Zim-2
0 0 1

Finally the approximate solution is obtained by solving the nonlinear system using

Levenberg-Marquardt optimization method [7] and Matlab 6.5.
AU+ H = B. (49)
4. Numerical examples
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In this section, to illustrate our methods we have solved two non-linear system of
second-order BVP . All computations are done by using MATLAB 6.5.

Example 1.

Consider the following equations

d'(#) = w0’ (2) +ule) = filz)
v (x) + zu' (x) + u(z)v(z) = folz) }

subject to the boundary conditions

where 0 < z < 1, f1(z) = 2° — 22? 4+ 62 and fo(z) = 2% — .

The exact solutions of u(z) and v(z) are given as x®> — z and x* — x respectively.
The observed maximum absolute errors of u(x) and v(z) for n = 21 (nodal points)
are given in Table 1. The numerical results of u(x) and v(z) are also illustrated in

Figures 1 and 2.

3.3 B-splines

B-spline method is so named because of use of splines as basis function. In this
section, we will focus on B-spline basis and their definitions. Secondly, we will
look the results of this method on diffusion equation and compare them with other
methods. Let Q,beapartitionof]a,b]C R. A B-spline of order k is a spline from
Sk (Qy,)withminimal supportandthepartitiono funityholding. T oexplainthis, letusde fined B; j(x )t
€ Z is a B-spline of degree k, the left end of which support is equal to x;, andthenwehavethe f ollow:
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1. Supp(By,i) = (@i, Tigrt]

2.Byi(z) > 0,VaR

3.2 Bri(x) =1,VzR

A detailed description of B-spline functions generated by subdivision can be found
n [13]. Consider equally-spaced knots of a partition 7 :a =2y < 21 < ... <z, = b
on [a,b]. Let S3[r] be the space of continuously-differentiable, piecewise, third-degree
polynomials on 7. That is, S3[n] is the space of third-degree splines on 7. Consider

the B-splines basis in Ss[n]. The third-degree B-splines are defined as

x3 0<z<h

—3a3 + 12ha? — 12h%z + 4R h <z < 2h 5)
33 — 24hx? 4 60h%x — 44h®  2h < x < 3h

—2% + 12ha? — 48h%x + 64h® 3h < x < 4h

Bo(ft) = 6%

e N

Bi_1(z) = Bo(z — (i — 1)h), 1 =2,3, ...,

To solve singularly perturbed convection-dominated diffusion equation, B; ,

B!l and B! evaluated at the nodal points are needed. Their coefficients are summa-

rized in Table 1.

Table 3.1: Values of B;, B} and B/
Xi | Xit+1 Xi42 Xi+3 | Xit+a
B, ol 16 | 46 | 1/6 | 0
B! | 0|-3/6h| 0/6h | 3/6h | O

B! | 0 |6/6h%|-12/6h2 | 6/6h2 | 0

(2
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CHAPTER 4

FINITE ELEMENT METHOD

4.1 Introduction

In this chapter we construct so-called finite element approximations to solutions to
partial differential equations. The term “finite element method” has come to be as-
sociated with using piecewise polynomials in one, two, and three dimensions together
with so-called Rayleigh-Ritz metod and its more general counterpart, the Galerkin
method, to approximate solutions to operator equations.In this chapter we concen-

trate on Galerkin method with splines.

4.2 Galerkin Method

Galerkin was born in 1871 in Russia. He bagan doing research in engineering while
he was in prison in 1906 — 19007 for his participation in the anti-tsarist revolutionary
movement. His method was introduced in a paper on elasticity published in 1925.
Galerkin’s method for solving a general differential equation is based on seeking an
approximation solution, which is

1. Easy to differentiate and integrate

2. Spanned by a set of nearly orthogonal basis functions in a finite-dimensional space.

Example 4.2.1. Let u(t) be the solution to the ordinary differential equation given
buy u'(t) — Au(t) = 0, and let U(t) be the approximation solution spanned by the basis
functions 1,,t,t%. Thus
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Ut)=A-1+B-t+C-t*andU'(t) = B+ 2C - t.
Inserting U(t) and U’(t) in the differential equation, we get
B+2C -t—XNA-1+B-t+C-t*)=0, and thus

—ACt? + (2C — AB)t + B — MA = 0.

This is a simple algebraic equation, however we need three different equations to
calculate A, B, C.
The Galerkin method using the Galerkin orthogonality property of the approximate

solution U(t) avoids this complexity.

Definition 4.2.2. A usual scalar product for two real valued functions u(z) and v(z)
s defined by
<u,v>= [ u(x)v(r)dr,

Definition 4.2.3. u(z) and v(z) are orthogonal if ju,vs = 0.

Definition 4.2.4. A norm associated with this scalar product is defined by

lull = < uus = (fy u(x)Pdr)?

Let U(t) be an approximation of the real solution «/(t) = u(t) (1) of a differential
equation then
W' (t) — -u(t) = 0 and
Ut)—-U(t)#0

Definition 4.2.5. If U(t) is an approzimation of u(t), then

RU@) =U'(t) = A-U(t)
is called the residual error of U(t).

Let v™ be an orthogonal basis function, multiply the equation (1) by v(t) and
integrate
[FU'twt) =X [{U®t)-v(t)dt, then
Jo (U'(®)v(t) = AU(t) - v(t))dt = 0

So, now the problem is to find an approximate solution U(t) in the subspace.
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CHAPTER b

CONCLUSION

5.1 compare
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