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ABSTRACT

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS

Numerical methods are used to find an approximation solution to problems in practice of

science and engineering are often either diffucult or imppossible to solve analytically. In this

study, we deal to find numerical solutions of some kinds of partial differential

equations(PDE). PDE are used to formulate, and thus aid the solution of, problems involving

functions of severable variables; such as the propagation of sound or heat, electrostatics,

electrodynamics, fluid flow, and elasticity. Seemingly, distinct physical phenomena may have

identical mathematical formulations, and thus be governed by the same underlying dynamic.

Here, we develop numerical hybrid methods to solve PDE. The first method based on non-

poylnomial cubic splines in the space direction and finite difference in the time direction. We

have seen by using spline functions additional smoothness can be achieved. In the second

method we use finite elements methods with Galerkin method instead of splines in the space

direction but ıt gives a heavy calculation and not beter results. Several numerical techniques 

have been proposed fort he numerical solution of PDE. These tecniques are compared giving

by numerical examples, and all numerical results are illustrated using MATLAB 7.0.

KEYWORDS: Partial differential equations, Numeric methods, Collection methods, Non-

polynomial cubic splines, Finite element methods, Galerkin methods.



ÖZET

KISMİ TÜREVLİ DİFERANSİYEL 
DENKLEMLERİN SAYISAL 

ÇÖZÜMLERİ 

Numerik metodlar fizik ve mühendislik uygulamalarında ortaya çıkan ve çözümü çok zor veya 
mümkün olmayan problemler için  yaklaşım çözümleri üretmek için kullanılır. Bu çalışmada,  
biz parçalı diferansiyel denklemlere sayısal çözümler bulunmasına odaklandık. Kısmi türevli 
diferansiyel denklemler(PDE)  birkaç bilinmeyen değişkene bağlı fonksiyonlar içeren 
problemleri formülize etmekte ve tabii ki çözümlerinde kullanılmaktadır. PDE,  Isı dağılımı, 
elektrostatik, elektrodinamik, akışkan dinamiği gibi farklı fizik problemlerinde karşımıza 
çıkarlar. 
Bu çalışmada, PDE'i çözmek için sayısal hibrid metodlar gelişdirdik. İlk metot, uzay 
boyutunda polinom olmayan kübik splineların, zaman boyutunda ise sonlu farkların 
kullanılması üzerine inşa edilmiştir. İkinci metotda ise uzay boyutunda splineların yerine sonlu 
elamanlar Galerkin metoduyla birlikte kullanılmıştır. Sonuç olarak splineların daha yakınsak 
bir sonuç verdiği, buna karşılık sonlu fark metodunun hem daha ağır hesaplamalar gerektirdiği 
hem de daha iyi olmayan sonuçlar verdiği görülmüşdür. Farklı metotlar bizim metodumuzla 
sayısal örnekler verilerek kıyaslanmıştır. Sayısal çözümlerin hepsi MATLAB 7.0 kullanılarak 
hesaplanmışdır. 

ANAHTAR KELİMELER VE SÖZCÜKLER: Parçalı diferansiyel denklemler, Sayısal 
Metodlar, Kolakasyon metodları, polinom olmayan splinelar, Sonlu Elemanlar, Galerkin 
metod.
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Chapter 2

Partial Differential Equations

2.1 Preliminaries

A partial differential equation (PDE) describes a relation between an unknown func-

tion and its partial derivatives. PDEs appear frequently in all areas of physics and

engineering. Moreover, in recent years we have seen a dramatic increase in the use of

PDEs in areas such as biology, chemistry, computer sciences (particularly in relation

to image processing and graphics) and in economics (finance). In fact, in each area

where there is an interaction between a number of independent variables, we attempt

to define functions in these variables and to model a variety of processes by construct-

ing equations for these functions. When the value of the unknown function(s) at a

certain point depends only on what happens in the vicinity of this point, we shall,

in general, obtain a PDE. The general form of a PDE for a function u(x1, x2, ..., xn)

is F (x1, x2, ..., xn, u, ux1, ux2, ..., ux11, ...) =0, where x1, x2, ..., xn are the independent

variables, u is the unknown function, and uxi denotes the partial derivative du/dxi.

The equation is, in general, supplemented by additional conditions such as initial

conditions (as we have often seen in the theory of ordinary differential equations

(ODEs)) or boundary conditions.

The analysis of PDEs has many facets. The classical approach that dominated the

nineteenth century was to develop methods for finding explicit solutions. Because of

the immense importance of PDEs in the different branches of physics, every mathe-

matical development that enabled a solution of a new class of PDEs was accompanied

by significant progress in physics. Thus, the method of characteristics invented by

Hamilton led to major advances in optics and in analytical mechanics. The Fourier
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method enabled the solution of heat transfer and wave propagation, and Greens

methodwas instrumental in the development of the theory of electromagnetism. The

most dramatic progress in PDEs has been achieved in the last 50 years with the

introduction of numerical methods that allow the use of computers to solve PDEs of

virtually every kind, in general geometries and under arbitrary external conditions (at

least in theory; in practice there are still a large number of hurdles to be overcome).

2.2 Classification

We can say that PDEs are often classified into different types. In fact, there exist

several classifications. Some of them will be describedin this section.

The first classification is according to the order of the equation. The order is defined

to be the order of the highest derivative in the equation. If the highest derivative is

of order k, then the equation is said to be of order k. Thus, for example, the equation

utt − uxx = f(x, t) is called a second-order equation, while ut + uxxxx = 0 is called a

fourth-order equation.

Another classification is into two groups: linear versus nonlinear equations. An equa-

tion is called linear if in (1.1), F is a linear function of the unknown function u and

its derivatives. Thus, for example, the equation x3ux+ e
yuy + sin(x

2+ y2)u = x4 is a

linear equation, while u2x + u2y = 1 is a nonlinear equation. The nonlinear equations

are often further classified into subclasses according to the type of the nonlinearity.

Generally speaking, the nonlinearity is more pronounced when it appears in a higher

derivative. For example, the following two equations are both nonlinear:

uxx + uyy = u2 (1.2))

uxx + uyy = |∇u|2u. (1.3)
Here |∇u| denotes the norm of the gradient of u. While (1.3) is nonlinear, it is still

linear as a function of the highest-order derivative. Such a nonlinearity is called quasi-

linear. On the other hand in (1.2) the nonlinearity is only in the unknown function.

Such equations are often called semilinear.

Here we have to mention that there is a classification of the family of second-order

linear equations for functions in two independent variables into three distinct types:

hyperbolic (e.g., the wave equation), parabolic (e.g., the heat equation), and elliptic

equations (e.g., the Laplace equation). It turns out that solutions of equations of the
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same type share many exclusive qualitative properties.Also by a certain change of

variables any equation of a particular type can be transformed into a canonical form

which is associated with its type. An equation that has the form

L[u] = auxx + buxy + cuyy + dux + euy + fu = g, (1.4)

where a, b, . . . , f, g are given functions of x, y, and u(x, y) is the unknown

function. We assume that the coefficients a, b, c do not vanish simultaneously.The

operator L0[u] = auxx + buxy + cuyy that consists of the second-(highest-)order terms

of the operator L is called the principal part of L. It turns out that many fundamental

properties of the solutions of (1.4) are determined by its principal part, and, more

precisely, by the sign of the discriminant δ(L) := b2−4ac of the equation. We classify

the equation according to the sign of δ(L).Equation (1.4) is said to be hyperbolic at

a point (x, y) if δ(L)(x, y) > 0,it is said to be parabolic at (x, y) if δ(L)(x, y) = 0,

and it is said to be elliptic at (x, y) if δ(L)(x, y) < 0.

Finally, a single PDE with just one unknown function is called a scalar equation.

In contrast, a set of m equations with l unknown functions is called a system of m

equations.

2.3 Associated conditions

PDEs have in general infinitely many solutions. In order to obtain a unique solution

one must supplement the equation with additional conditions. What kind of condi-

tions should be supplied? It turns out that the answer depends on the type of PDE

under consideration. In this section we briefly review the common conditions.

Let us consider the convection equation Ct + ∇⃗ • (Cu⃗) = 0 in one spatial dimension

as a prototype for equations of first order. The unknown function C(x, t) is a sur-

face defined over the (x, t) plane. It is natural to formulate a problem in which one

supplies the concentration at a given time t0, and then to deduce from the equation

the concentration at later times. Namely, we solve the problem consisting of the

convection equation with the condition C(x, t0) = C0(x). This problem is called an

initial value problem. Geometrically speaking, condition determines a curve through

which the solution surface must pass. We can generalize this condition by imposing

a curve Γ that must lie on the solution surface, so that the projection of Γ on the (x,
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t) plane is not necessarily the x axis. The last example involve PDEs with just a first

derivative with respect to t. In analogy with the theory of initial value problems for

ODEs, we expect that equations that involve second derivatives with respect to t will

require two initial conditions. Therefore it is natural to supply two initial conditions,

one for the initial location , and one for its initial velocity:

u(x, 0) = u0(x), ut(x, 0) = u1(x).

Another type of constraint for PDEs that appears in many applications is called

boundary conditions. As the name indicates, these are conditions on the behavior of

the solution (or its derivative) at the boundary of the domain under consideration.

As an example, consider the heat equation with a spatial domain Ω:

ut = k(uxx + uyy + uzz) (x, y, z) ∈ Ω, t > 0. (1.45)

We shall assume in general that Ω is bounded. It turns out that in order to obtain

a unique solution, one should provide (in addition to initial conditions) information

on the behavior of u on the boundary ∂Ω. Excluding rare exceptions, we encounter

in applications three kinds of boundary conditions. The first kind, where the values

of the temperature on the boundary are supplied, i.e.

u(x, y, z, t) = f(x, y, z, t) (x, y, z) ∈ Ω, t > 0, (1.46)

is called a Dirichlet condition in honor of the German mathematician Johann Leje-

une Dirichlet (1805.1859). For example, this condition is used when the boundary

temperature is given through measurements, or when the temperature distribution is

examined under a variety of external heat conditions. Alternatively one can supply

the normal derivative of the temperature on the boundary; namely, we impose

∂nu(x, y, z, t) = f(x, y, z, t) (x, y, z) ∈ Ω, t > 0, (1.46)

This condition is called a Neumann condition after the German mathematician Carl

Neumann (1832.1925). We have seen that the normal derivative ∂nu describes the

flux through the boundary. For example, an insulating boundary is modeled by con-

dition (1.47) with f = 0.

A third kind of boundary condition involves a relation between the boundary values

of u and its normal derivative: α(x, y, z) + ∂nu(x, y, z, t) + u(x, y, z, t) = f(x, y, z, t)

(x, y, z) ∈ Ω, t > 0, (1.46)

Such a condition is called a condition of the third kind. Sometimes it is also called

the Robin condition.

Although the three types of boundary conditions defined above are by far the most

common conditions seen in applications, there are exceptions. For example, we can
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supply the values of u at some parts of the boundary, and the values of its normal

derivative at the rest of the boundary. This is called a mixed boundary condition.

Another possibility is to generalize the condition of the third kind and replace the nor-

mal derivative by a (smoothly dependent) directional derivative of u in any direction

that is not tangent to the boundary. This is called an oblique boundary condition.

Also, one can provide a nonlocal boundary condition. For example, one can provide

a boundary condition relating the heat flux at each point on the boundary to the

integral of the temperature over the whole boundary.
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Chapter 3

Collocation

3.1 Introduction

Let X be a linear subspace of L2[D],the space of square integrable functions on D,

where D is some subset of the real line E1 or of the real plane E2.And, Let L be a

linear operator whose domain is X and whose range is also in X. Let {Φ1,Φ2,...,ΦN

be a linearly independent subset of X, and let XN = span {Φ1,Φ2, ...,ΦN} be an

N-dimensional subspace of X. Suppose we are given the linear equation:

Lx = y, (3.1)

where y is given function from X. Approximating the solution x(t) of (3.1) by the

method of collocation consists of finding a function xN(t) = a1Φ1(t) + a2ϕ2(t) + ...+

anϕN(t) in XN solving the N ×N system of linear equations

LxN(ti) =
N∑
j=1

ajLϕj(ti) = y(ti), 1 ≤ i ≤ N, (3.2)

where t1, t2, ...tN are N distinct points of D at which all the terms of (2) are defined.

The function xN(t), if it exists, is said to collocate y(t) at the points t1, t2, ...tN . Any

function f(t) so obtained is referred to as an approximate solution obtained by the

method of collocation.

In the following sections, we use method of collocation with non-polynomial cubic

splines and with b-splines.
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3.2 Non-polynomial Cubic Splines

Consider the polynomial interpolation, that is using approximations based on the idea

of finding a polynomial which agrees with, or interpolates, the data and using this

polynomial in place of the original function to estimate its values at other points.

The use of local polynomials clearly improved the performance but at he expense

of smoothness in the approximating function. However, additional smoothness can

be achived with local polynomial interpolation by using spline functions in which

different low-degree polynomials are used on each interval [xi, xi+1] together with the

imposition of smoothness conditions to ensure that the overall interpolating function

has high a degree of continuity as possible at each of the nodes, xi.

Definition 3.2.1. Let x0 < x1 < ... < xN be an increasing sequence of nodes. The

function s is a spline function of degree k if:

(a) s is a polynomial of degree no more than k on each of the subintervals [xi, xi+1].

(b) s, s
′,...,sk−1

are all continous on the interval [xi, xi+1].

By far the most commonly used splines for interpolation purposes are the cubic

splines, and it is on these that we will concentrate our attention. The cubic spline

functions have the form span {1, x, x2, x3 . In the present section, we apply non-

polynomial cubic spline functions that have a polynomial and trigonometric parts to

develop numerical methods for obtaining smooth approximations to the solution of

partial differential equations. The spline functions we propose in this section have

the form span , x, coskx, sinkx where k is the frequency of the trginometric part of

the spline functions which will be used to raise the accuracy of the method.

We turn now to the specific problem of obtaining a nonpolynomial cubic spline func-

tion which interpolates the fuction f at x0, x1, ..., xN .

Let u(x) be a function defined on [a, b]. We divide the interval [a, b] into n equal

subintervals using the grid points

xi = a+ ih, i = 0, 1, 2, ..., n,

with

x0 = a, xn = b, h = (b− a)/n
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where n is an arbitrary positive integer.

Let u(x) be the exact solution and ui be an approximation to u(xi) obtained by the

non-polynomial cubic Si(x) passing through the points (xi, ui) and (xi+1, ui+1), we

do not only require that Si(x) satisfies interpolatory conditions at xi and xi+1, but

also the continuity of first derivative at the common nodes (xi, ui) are fulfilled. We

write Si(x) in the form:

Si(x) = ai + bi(x− xi) + cisinτ(x− xi) + dicosτ(x− xi), i = 0, 1, ..., n− 1 (3.3)

where ai, bi, ci and di are constants and τ is a free parameter.

A non-polynomial function S(x) of class C2[a, b] interpolates u(x) at the grid

points xi, i = 0, 1, 2, ..., n, depends on a parameter τ , and reduces to ordinary cubic

spline S(x) in [a, b] as τ → 0.

To derive expression for the coefficients of Eq. (3.3) in term of ui, ui+1,Mi and

Mi+1, we first define:

Si(xi) = ui, Si(xi+1) = ui+1, S
′′
(xi) =Mi, S

′′
(xi+1) =Mi+1. (3.4)

From algebraic manipulation, we get the following expression:

ai = ui +
Mi

τ 2
,

bi =
ui+1 − ui

h
+
Mi+1 −Mi

τθ
,

ci =
Micosθ −Mi+1

τ 2sinθ
,

di = −Mi

τ 2
,

where θ=τh and i = 0, 1, 2, ..., n− 1.

Using the continuity of the first derivative at (xi, ui), that is S
′
i−1(xi) = S

′
i(xi) we

obtain the following relations for i=1, ..., n− 1.

aMi+1 + bMi + aMi−1 = (1/h2)(ui+1 − 2ui + ui−1) (3.5)

where a = (−1/θ2 + 1/θ sin θ), b = (1/θ2 − cos θ/θ sin θ) and θ = τh. The method is

fourth-order convergent if b = 5/12 and a = 1/12 [9].

We next develop approximations for some examples:
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Example 3.2.2. Firstly we consider the second-order linear hyperbolic equation:

utt(x, t) + 2αut(x, t) + β2u(x, t) = uxx(x, t) + f(x, t), x ∈ (a, b), t > 0 (3.6)

with initial conditions

u(x, 0) = Φ(x), ut(x, 0) = Ψ(x)

and boundary conditions

u(a, t) = g1(t), u(b, 0) = g2(t)

where α and β are constants.

The equation above represents a damped wave equation and a telegraph equation,

the existence and approximations of the solutions investigated, see[1].

In recent years, many research has been done in developing and implementing

modern high resolutions methods for the numerical solution of the second-order linear

hyperbolic equation(1), see[1−3]. Mohanty and Jain[4−5] and Mohanty[6] developed

three-level implicit schemes for linear hyperbolic equations. Recently, Gao and Chi[7]

proposed two semi-discretion methods to solve the one-space dimensional linear hy-

perbolic equation(1). Also, Huan-Wen Liu and Li-Bin Liu solved[8] linear hyperbolic

equation. In this paper, we propose a non-polynomial cubic spline difference scheme

to solve the linear hyperbolic equation(1). For every xi, i = 1, 2, ..., n − 1, by using

the Taylor expansion in the time direction, we have the following difference schemes

u(xi, tj) =
u(xi, tj+1) + 2u(xi, t) + u(xi, tj−1)

4
+O(k2), (3.7)

uxx(xi, tj) =
uxx(xi, tj+1) + uxx(xi, tj−1)

2
+O(k2), (3.8)

ut(xi, tj) =
u(xi, tj+1)− u(xi, tj−1)

2k
+O(k2), (3.9)

utt(xi, tj) =
u(xi, tj+1)− 2u(xi, tj) + u(xi, tj−1)

k2
+O(k2). (3.10)
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The given eq. (1) can be discretized as

u(xi, tj+1)− 2u(xi, tj) + u(xi, tj−1)

k2

+2α
u(xi, tj+1)− u(xi, tj−1)

2k

+β2u(xi, tj+1) + 2u(xi, t) + u(xi, tj−1)

4

=
uxx(xi, tj+1) + uxx(xi, tj−1)

2
+ f(xi, tj) +O(k2). (3.11)

i = 1, 2, ..., n− 1, j = 1, 2, ...

We can rewrite (3.5) in a new form :

(1 +
1

12
δ2x)M(xi, tj) =

1

h2
δ2xu(xi, tj), i = 1, ..., n− 1 (3.12)

where

δxM(xi, tj) = M(xi+ 1
2
, tj)−M(xi− 1

2
, tj),

δ2xM(xi, tj) = δx(δxM(xi, tj)) =M(xi+1, tj)− 2M(xi, tj) +M(xi−1, tj)

for i = 1, ..., n− 1. Putting (3.8) and (3.12),it follows that;

(1 +
1

12
δ2x)[uxx(xi, tj+1) + uxx(xi, tj−1)] = (1 +

1

12
δ2x)[M(xi, tj+1) +M(xi, tj−1) +O(h4)]

=
1

h2
δ2x[u(xi, tj+1) + u(xi, tj−1)] +O(h4) (3.13)

Applying the operator (1+ 1
12
δ2x) to two sides of Eq. (3.11) and using Eq. (3.13),then

it is obtained as follows

1

k2
(1 +

1

12
δ2x)u(xi, tj) +

α

k
(1 +

1

12
δ2x)δtu(xi, tj)

+
β2

4
(1 +

1

12
δ2x)[u(xi, tj+1 + 2u(xi, tj) + u(xi, tj−1)]

− 1

2h2
δ2x[u(xi, tj+1)u(xi, tj−1)]

= (1 +
1

12
δ2x)f(xi, tj) +O(k2 + h4)i = 1(1)n− 1, j = 1, 2, ... (3.14)

The proposed scheme (3.14) is an implicit three level scheme. To start any computa-

tion, it is necessary to know the value of u(x, t) at the nodal points of the first time

level, that is, at t = k. Following [12],a taylor series expansion at t=k may be written

as

u(x, k) = u(x, 0) + kut(x, 0) +
k2

2
utt(x, 0) +

k3

6
uttt(x, 0) +O(k4). (3.15)
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Using the initial values, from (1) we can calculate

utt(x, 0) = ϕxx(x, 0) + f(x, 0)− 2αut(x, 0)− β2u(x, 0), (3.16)

uttt(x, 0) = ψxx(x, 0) + ft(x, 0)− 2tt(x, 0)− β2ut(x, 0). (3.17)

We can obtain the numerical solution of u by using initial values in(3.16) and (3.17)

for t = k.

Now let us consider a specific equation:

utt(x, t) + 4ut(x, t) + 2u(x, t) = uxx(x, t), x ∈ (a, b), t > 0 (3.18)

with initial conditions

u(x, 0) = sinx, ut(x, 0) = −sinx

and boundary conditions

u(0, t) = 0, u(π, 0) = 0.

The exact solution of the above problem is u(x, t) = e−tsinx. The problem is solved by

using the scheme(3.14) in this paper. The absolute errors given by the scheme (16) in

[7], by the scheme (23) in [8] and by present scheme (13) are listed in Tables 3.1-3.4,

respectively. It can be seen from tables, whenh = π
300

and k = 0.1, the accuracy of

solutions obtained by using the scheme (16) in [7] is much better than those by using

the present scheme(13). The reason is that the error orders of the scheme (16) in

[7] is approximately O(k5) as the step length h is quite small. When k decreases to

k = 0.1 and k = 0.01, respectively ,since k is now quite small in comparison with h,

the errors of numerical solutions mainly come from the approximation in space direc-

tion,therefore the absolute errors by using the present scheme(13) is much better than

those by using the scheme (16) in [7]. Finally, we have to mention that the absolute

errors of scheme (23) in [8] are similar to those by using the present scheme(3.14)

where scheme (23) in [8] using quartic spline functions, we use non-polynomial spline

functions.
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Table 3.1: Absolute errors of the scheme(16) in[7], the scheme (23) in [8] and the

present scheme(3.14) (h = π
300
, k = 0.1).

t x = π
30

x = 8π
30

x = 15π
30

x = 22π
30

x = 29π
30

[7] 1.0 0.0105e-05 0.0747e-05 0.1005e-05 0.0747e-05 0.0105e-05

[8] 1.0 0.0379e-03 0.2969e-03 0.4033e-03 0.3026e-03 0.0463e-03

[Thepresents.] 1.0 0.0429e-03 0.3056e-03 0.4112e-03 0.3056e-03 0.0429e-03

[7] 2.0 0.1015e-06 0.7215e-06 0.9709e-06 0.7215e-06 0.1015e-06

[8] 2.0 0.0389e-03 0.3039e-03 0.4128e-03 0.3096e-03 0.0475e-03

[Thepresents.] 2.0 0.0435e-03 0.3092e-03 0.4161e-03 0.3092e-03 0.0435e-03

Table 3.2: Absolute errors of the scheme(16) in[7], the scheme (23) in [8] and the

present scheme(3.14) (h = π
30
, k = 0.1).

t x = π
30

x = 8π
30

x = 15π
30

x = 22π
30

x = 29π
30

[7] 1.0 0.0904e-04 0.6479e-04 0.8928e-04 0.7069e-04 0.0904e-04

[8] 1.0 0.0321e-03 0.6995e-03 0.2033e-03 0.6995e-03 0.0412e-03

[Thepresents.] 1.0 0.0298e-03 0.3055e-03 0.4111e-03 0.3055e-03 0.0429e-03

[7] 2.0 0.0884e-04 0.6337e-04 0.8731e-04 0.6913e-04 0.0884e-04

[8] 2.0 0.0532e-03 0.5065e-03 0.3128e-03 0.5065e-03 0.0331e-03

[Thepresents.] 2.0 0.0349e-03 0.3092e-03 0.4161e-03 0.3092e-03 0.0865e-03

Table 3.3: Absolute errors of the scheme(16) in[7], the scheme (23) in [8] and the

present scheme(3.14) (h = π
30
, k = 0.01).

t x = π
10

x = 3π
10

x = 5π
10

x = 7π
10

x = 9π
10

[7] 1.0 0.2947e-04 0.7717e-04 0.9539e-04 0.7717e-04 0.2947e-04

[8] 1.0 0.0886e-05 0.3170e-05 0.4242e-05 0.3170e-05 0.0886e-05

The present s. 1.0 0.1320e-05 0.3456e-04 0.4272e-05 0.3456e-05 0.1320e-05

[7] 2.0 0.2883e-04 0.7548e-04 0.9330e-04 0.7548e-04 0.2883e-04

[8] 2.0 0.0871e-05 0.3114e-05 0.4167e-05 0.3114e-05 0.0871e-05

The present s. 2.0 0.1295e-05 0.3116e-05 0.4193e-05 0.3392e-05 0.1295e-05
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Table 3.4: Absolute errors of the scheme(16) in[7], the scheme (23) in [8] and present

scheme(3.14),(h = π
30
, k = 0.001).

t x = π
10

x = 3π
10

x = 5π
10

x = 7π
10

x = 9π
10

[7] 1.0 0.2947e-04 0.7717e-04 0.9539e-04 0.7717e-04 0.2947e-04

[8] 1.0 0.1839e-08 0.6574e-08 0.8799e-08 0.6574e-08 0.1839e-08

The present s. 1.0 0.1096e-08 0.7134e-08 0.8819e-08 0.7134e-08 0.1096e-08

[7] 2.0 0.28834e-04 0.75489e-04 0.93309e-04 0.75489e-04 0.28834e-04

[8] 2.0 0.1799e-08 0.6433e-08 0.8609e-08 0.6433e-08 0.1799e-08

The present s. 2.0 0.1992e-08 0.7029e-08 0.8398e-08 0.7029e-08 0.1992e-08

Example 3.2.3. Secondly we consider the generalized Fisher’s equation:

ut(x, t) = uxx(x, t) + αu(x, t)(1− uβ(x, t)) a < x < b, t > 0 (3.19)

with initial condition

u(x, 0) = Φ(x),

and boundary conditions

u(a, t) = g1(t), u(b, t) = g2(t)

where α and β are constants.

The classic and simplest case of the nonlinear reaction-diffusion equation is when

β=1. It was suggested by Fisher as a deterministic version of a stochastic model for

the spatial spread of a favored gene in a population [1].

ut(x, t) = uxx(x, t) + αu(x, t)(1− u(x, t)) a < x < b, t > 0 (3.20)

This equation is referred to as the Fisher equation, the discovery, investigation and

analysis of traveling waves in chemical reactions was first presented by Luther [2]. In

the last century, the Fisher’s equation has became the basis for a variety of models for

spatial spread, for example, in logistic population growth models [3, 4], flame propa-

gation [5, 6], neurophysiology [7], autocatalytic chemical reactions [8− 10], branching
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Brownian motion processes [11], gene-culture waves of advance [12], the spread of

early farming in Europe [13, 14], and nuclear reactor theory [15]. It is incorporated

as an important constituent of nonscalar models describing excitable media, e.g., the

Belousov-Zhabotinsky reaction [16]. In chemical media, the function u(x, t) is the

concentration of the reactant and the positive constant α represents the rate of the

chemical reaction. In media of other natures, u might be temperature or electric

potential.

The mathematical properties of equation (1) have been studied extensively and

there have been numerous discussions in the literature. The most remarkable sum-

maries have been provided by Brazhnik and Tyson [17]. One of the first numerical

solutions was presented in literature with a pseudo-spectral approach. Implicit and

explicit finite differences algorithms have been reported by different authors such as

Parekh and Puri and Twizell et al. A Galerkin finite element method was used by

Tang and Weber whereas Carey and Shen [18] employed a least-squares finite element

method. A collocation approach based on Whittakers sinc interpolation function [19]

was also considered in [20]. Our solution based on non-polynomial spline method. In

this paper, we propose a spline difference scheme to solve eq. (2).

Let the region R = (a, b)× (0,∞], be discretized by a set of points Rh,k which are the

vertices of a grid points (xi, tj), where xi = ih, i = 0, 1, 2, ..., n, nh = 1, and tj = jk,

j = 0, 1, 2, 3. Here h and k are mesh size in the space and time directions respectively.

We develop an approximation for eq.(2) in which the time derivative is replaced by

a finite difference approximation and the space derivative by the non-polynomial cubic

spline function approximation. We need the following finite difference approximation

for the time derivative of u. Let:

ūt(xi, tj) =
u(xi,tj+1)−u(xi,tj−1)

2k
= ut(xi, tj) +O(k2). (7)

At the grid point (i, j), the proposed differential equation (2) may be discretized

by:

ūt(xi, tj) = ūxx(xi, tj) + αu(xi, tj)(1− u(xi, tj)). (8)

By using (7) in equation (8) we obtain
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u(xi,tj+1)−u(xi,tj−1)

2k
=M(xi, tj)− αu(xi, tj)(1− u(xi, tj)), (9)

where M(xi, tj) = S
′′
(xi) is the second spline derivative at (xi, tj). From (9) we have

M(xi, tj) =
u(xi,tj+1)−u(xi,tj−1)

2k
− αu(xi, tj)(1− u(xi, tj)), (10)

then we have

M(xi+1, tj) =
u(xi+1,tj+1)−u(xi+1,tj−1)

2k
− αu(xi+1, tj)(1− u(xi+1, tj)), (11)

and

M(xi−1, tj) =
u(xi−1,tj+1)−u(xi−1,tj−1)

2k
− αu(xi−1, tj)(1− u(xi−1, tj)), (12)

substituting (10), (11) and (12) into (6), after simplifying we obtain:

λu(xi+1, tj+1) + µu(xi, tj+1) + λu(xi−1, tj+1)

+aα(u(xi+1, tj+1))
2 + 2b(u(xi, tj+1))

2 + aα(u(xi−1, tj+1))
2

a
k
u(xi+1, tj−1)− 2b

k
u(xi, tj−1)− a

k
u(xi−1, tj−1) = 0 (13)

where λ = a
k
− aα− 1

h2 , µ = 2b
k
− 2bα + 2

h2 and a is parameter.

4.The similar scheme with using Taylor expansion

Expanding (13) in Taylor series in terms of u(xi, tj) and its derivatives, we can

obtain another scheme(17). To do this, for simplicity, let (xi, tj) denote the grid

points given by xi = a + ih ,i = 0, 1, ..., n, and tj = jk, j = 0, 1, 2, ...For every xi,

i = 1, 2, ..., n − 1, by using the Taylor expansion in the time direction, we have the

following difference schemes

u(xi, tj) =
u(xi,tj+1)+2u(xi,tj)+u(xi,tj−1)

4
+O(k2) (14)
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uxx(xi, tj) =
uxx(xi,tj+1)+uxx(xi,tj−1)

2
+O(k2) (15)

ut(xi, tj) =
u(xi,tj+1)−u(xi,tj−1)

2k
+O(k2) (16)

By using (14), (15) and (16),the given equation (2) can be discretized as

u(xi,tj+1)−u(xi,tj−1)

2k
− αu(xi,tj+1)+2u(xi,tj)+u(xi,tj−1)

4
(1− u(xi,tj+1)+2u(xi,tj)+u(xi,tj−1)

4
)

= uxx(xi,tj+1)+uxx(xi,tj−1)

2
i = 1, ..., n− 1, j = 1, 2, ... (17)

So, (6) equality can be rewritten in a new form as follow :

(1 + 1
12
δ2x)M(xi, tj) =

1
h2 δ

2
xu(xi, tj), i = 1, ..., n− 1 (18)

where

δxM(xi, tj) =M(xi+ 1
2
, tj)−M(xi− 1

2
, tj),

δ2xM(xi, tj) = δx(δxM(xi, tj)) =M(xi+1, tj)− 2M(xi, tj) +M(xi−1, tj),

for i = 1, ..., n− 1. Using (14) and (18), we have;

(1 + 1
12δ

2
x)[uxx(xi, tj+1) + uxx(xi, tj−1)] = (1 + 1

12δ
2
x)[M(xi, tj+1) +M(xi, tj−1) +O(h4)]

= 1
h2 δ

2
x[u(xi, tj+1) + u(xi, tj−1)] +O(h4). (19)

If we apply the operator (1 + 1
12
δ2x) to two sides of (17) and use (19), we have

1
2k (1 +

1
12δ

2
x)[u(xi, tj+1)− u(xi, tj−1)]− α

4 (1 +
1
12δ

2
x)[u(xi, tj+1) + 2u(xi, tj) + u(xi, tj−1)]

+ α
16 (1 +

1
12δ

2
x)[u(xi, tj+1) + 2u(xi, tj) + u(xi, tj−1)]

2 − 1
2h2 δ

2
x[u(xi, tj+1) + u(xi, tj−1)] = 0

i = 1, 2, ..., n− 1, j = 1, 2, ... (20)

The proposed scheme (20) is an implicit three level scheme. To start any computa-

tion, it is necessary to know the value of u(x, t) at the nodal points of the first time
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level, that is, at t = k. Following [22], a taylor series expansion at t=k may be written

as

u(x, k) = u(x, 0) + kut(x, 0) +
k2

2
utt(x, 0) +

k3

6
uttt(x, 0) +O(k4) (21)

Using the initial values, from (1) we can calculate

utt(x, 0) = ϕxx(x, 0) + f(x, 0)− 2αut(x, 0)− β2u(x, 0), (22)

uttt(x, 0) = ψxx(x, 0) + ft(x, 0)− 2αutt(x, 0)− β2ut(x, 0), (23)

Thus using initial value and (22), from (23), we may obtain the numerical solution

of u at t = k.

5. Numerical example

In this section, we test our scheme on an example. All computations are done by

using MATLAB 7.0.

We consider the numerical results obtained by apllying the schemes dicussed above

to the following Fisher‘s equation

ut(x, t) = uxx(x, t) + 6u(x, t)(1− u(x, t)), 0 < x < 1, t > 0

with initial condition

u(x, 0) = 1
(1+ex)2

,

and boundary conditions

u(0, t) = 1
(1+e−5t)2

, u(1, t) = 1
(1+e1−5t)2

18



The exact solution of the above problem is u(x, t) = 1
(1+ex−5t)2

. The problem is

solved by using the schemes (13) and (20) in this paper.The maximum absolute errors

given by scheme (13) are listed in Table 1 and given by scheme (20) are listed in

Table 2.The results prove that the second method with using Taylor expansion is more

accurate than the first method in this paper.Also, numerical results given by scheme

(13) and given by scheme (20) are shown in Fig. 1 and Fig. 2, respectively.

Example 3.2.4. Hyperbolic partial differential equations play a very important role

modern applied mathematics due to their deep physical background. Hyperbolic dif-

ferential equation subject to an integral conservation condition in one space dimen-

siona,feature in the mathematical modelling of many phenomena. Recently, much

attention has been paid in the literature to the development, analsis and implemen-

tation of accurate methods.In this paper we will consider a non-classic hyperbolic

equation [1]:

We consider the following problem of this family of equations:

∂u
∂t

= γ ∂2u
∂x2 , (x, t) ∈ (0, 1)× (0, T ] (1.1)

with initial condition

u(x, 0) = f(x), 0 ≤ x ≤ 1, (1.2)

and boundary conditions

u(0,t)=g(t), 0≤ t ≤ T, (1.3)∫ x
0 u(x, t)dx = m(t), 0 < x ≤ T, (1.4)

where g and m are known functions.

u
′′
+ a1(x)u

′
+ a2(x)u+ a3(x)v

′
+ a4(x)v = f1(x),

v
′′
+ b1(x)v

′
+ b2(x)v + b3(x)u

′
+ b4(x)u = f2(x) ,
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(1)

with the following boundary conditions

u(0) = u(1) = 0, v(0) = v(1) = 0 (2)

where ai(x), bi(x), f1(x) and f2(x) are given functions for i = 1, 2, 3, 4.

The analytical solutions of eqs. (1) and (2) have been studied by a number of

authors [Lu, Abbas, Sami]. In [Lu] the variational iteration method is applied for

the solutions with the assumption that the solutions are unique. In [Sami] the homo-

topy analysis method (HAM) is applied for the solutions and a new modification of

HAM is proposed. The comparasion between the modified HAM and standard HAM

is also presented in [Sami]. Recently He’s homotopy perturbation method (HPM) is

applied to the problems (1) and (2) in [Abbas]. Their method consists of reducing

the solutions to a system of integral equations and using the HPM for this system.

In a recent work [Caglar1], we have discussed the numerical solutions of the linear

system of the second-order BVPs using the third-degree B-splines. It has been shown

that the B-spline method is workable and cable of solve the the linear system of the

second-order BVPs.

On the other hand, the non-polynomial spline method is also very useful and ef-

fective tool and used for a large variety of problems by several authors, e.g. [is-

lam,ras1,ras2,ras3]. Islam et al. [islam] considered the non-polynomial spline method

for the solution of a system of second-order BVPs. Recently, Rashidinia et al. [ras1]

introduced the non-polynomial spline method for the second-order hyperbolic equa-

tions with mixed boundary conditions. More recently, Rashidinia et al. [ras2, ras3]

have also showed that this method can be successfully implemented to the numerical

solution of non-linear singular BVPs. They used the quesilinearization technique to

reduce the given non-linear problem to a sequence of linear problems.

In the present work, we present a numerical solution of Eq. (1) with boundary

conditions (2) by using the non-polynomial spline method. Two linear test problems
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are considered for the numerical illustration of the method and numerical results are

illustrated using MATLAB 6.5. We have showed that the proposed method is a full

computational method and a powerful tool for solving the linear system of the second-

order BVPs.

Example 3.2.5. Parabolic partial differential equations play a very important role

modern applied mathematics due to their deep physical background. Parabolic differ-

ential equation with non-local boundary conditions in one, two or three space dimen-

tions,feature in the mathematical modelling of many phenomena. Recently, much at-

tention has been paid in the literature to the development, analsis and implementation

of accurate methods.In this paper we will consider a non-classic parabolic equation [1]:

∂u
∂t

= γ ∂2u
∂x2 , (x, t) ∈ (0, 1)× (0, T ] (1.1)

with initial condition

u(x, 0) = f(x), 0 ≤ x ≤ 1, (1.2)

and boundary conditions

u(0,t)=g(t), 0≤ t ≤ T, (1.3)∫ x
0 u(x, t)dx = m(t), 0 < x ≤ T, (1.4)

where g and m are known functions.

As another type of non-local boundary value problem consider
∂u
∂t

= γ ∂2u
∂x2 + q(x, t), (x, t) ∈ (0, 1)× (0, T ], (1.5)

with initial condition (1.2) and boundary condition

u(1, t) = g(t), 0 < t ≤ T, (1.6)

and non-local condition

∫ b(x)
0 u(x, t)dx = m(t), 0 ≤ x ≤ T, 0 < b(t) < 1. (1.7)
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There are many papers that deal with integral conditions giving the specification

of mass, e.g. Dehghan [1-3], Cannon and Matheson [4], Cannon and van der Hoek

[5]. Dehgan and Tatari [1] solved this problem using the radical basis functions for

discretization of space and finite difference methods for discretization of time. Also

Caglar considered third degree B-spline functions to solve one-dimentional heat equa-

tion [6]. In Ref. [7] a new method is proposed in the reproducing kernel space and

the solution is given by the form of series. In the paper by Martin-Vaquero [10],

Crandall’s formulas is used to solve second-order parabolic equation subject to non-

local conditions. The author of [11] applied new finite difference schemes to solve

one-dimensional parabolic equation with boundary integral conditions.

A more extensive list of references as well as a survey on progress made on this

class of problems may be found in Dehghan [2]

The organization of this paper as follows:In section 2, 3 and 4, we investigate two

different non-polynomial cubic spline methods. In section 5, we give two different

examples of parabolic partial differential equations with non-local conditions. A con-

clusion is given in Section 6. Finally some references are presented at the end.

Let the region R = (0, 1) × (0, T ], be discretized by a set of points Rh,k which

are the vertices of a grid points (xi, ti), where xi = ih, i = 0, 1, 2, ..., n,nh = 1, and

tj = jk, j = 0, 1, 2, 3. Here h and k are mesh size in the space and time directions

respectively.

We develop an approximation for eq.(1.1) in which the time derivative is replaced by

a finite difference approximation and the space derivative by the non-polynomial cubic

spline function approximation. We need the following finite difference approximation

for the time derivative of u. Let:

ut(xi, tj) =
u(xi, tj+1)− u(xi, tj−1)

2k
= ut(xi, tj) +O(k2) (7)

At the grid point (i,j), the proposed differential equation (1.1) may be discretized

by:
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ut(xi, tj) = γuxx(xi, tj) (8)

By using (7) in equation (8) we obtain

u(xi, tj+1)− u(xi, tj−1)

2kγ
=M(xi, tj) (9)

where M(xi, tj) = S ′′(xi) is the second spline derivative at (xi, tj). From (9) we

have

M(xi+1, tj) =
u(xi+1, tj+1)− u(xi+1, tj−1)

2kγ
, (10)

and

M(xi−1, tj) =
u(xi−1, tj+1)− u(xi−1, tj−1)

2kγ
, (11)

substituting (9),(10) and (11) into (6), after simplifying we obtain:

α(u(xi+1,tj+1)−u(xi+1,tj−1)

2kγ
) + 2β(u(xi,tj+1)−u(xi,tj−1)

2kγ
) + α(u(xi−1,tj+1)−u(xi−1,tj−1)

2kγ
)

− 1
h2 (u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)) = 0

4. The similiar scheme with using Taylor expansion

For every xi, i = 1(1)(n− 1), by using the Taylor expansion in the time direction,

we have the following difference schemes

uxx(xi, tj) =
uxx(xi,tj+1)+uxx(xi,tj−1)

2
+O(k2)

ut(xi, tj) =
u(xi,tj+1)−u(xi,tj−1)

2k
+O(k2)

 (12)
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The given eq. (1.1) may be discretized as

u(xi,tj+1)−u(xi,tj−1)

2k
= γ uxx(xi,tj+1)+uxx(xi,tj−1)

2
+O(k2), (13)

i = 1, 2, ..., n− 1, j = 1, 2, ...

So, (6) equality can be rewritten in a new form as follow:

(1 +
1

12
δ2x)M(xi, tj) =

1

h2
δ2xu(xi, tj), i = 1, ..., n− 1 (14)

where

δxM(xi, tj) =M(xi+ 1
2
, tj)−M(xi− 1

2
, tj),

δ2xM(xi, tj) =δx(δxM(xi, tj)) =M(xi+1, tj)− 2M(xi, tj) +M(xi−1, tj),

For i = 1, ..., n− 1. Using (12) and (14), we have;

(1 + 1
12
δ2x)[uxx(xi, tj+1) + uxx(xi, tj−1)] = (1 + 1

12
δ2x)[Sxx(xi, tj+1) + Sxx(xi, tj−1) +

O(h4)] = (1 + 1
12
δ2x)[Sxx(xi, tj+1) + Sxx(xi, tj−1)] +O(h4)

= 1
h2 δ

2
x[S(xi, tj+1) + S(xi, tj−1)] +O(h4)

= 1
h2 δ

2
x[u(xi, tj+1) + u(xi, tj−1)] +O(h4). (15)

Applying the operator (1 + 1
12
δ2x) to two sides of Eq. (13) and using Eq. (15), we

have

u(xi+1, tj+1)(
1

24k
− γ

2h2 ) + u(xi, tj+1)(
1
2k

− 1
12k

+ γ
h2 ) + u(xi−1, tj+1)(

1
24k

− γ
2h2 ) =

u(xi+1, tj−1)(
1

24k
+ γ

2h2 ) + u(xi, tj−1)(
1
2k

− 1
12k

− γ
h2 ) + u(xi−1, tj−1)(

1
24k

+ γ
2h2 )

i = 1(1)(n− 1), j = 1, 2, ... (16)

The proposed scheme (16) is an implicit three level scheme. To start any compu-

tation, it is necessary to know the value of u(x, t) at the nodal points of the first time
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level, that is, at t = k. From Taylor series expansion at t = k may be written as

u(x, k) = u(x, 0) + kut(x, 0) +
k2

2
utt(x, 0) +O(k3) (17)

Using the initial values, from (1.1) we can calculate

ut(x, 0) = γuxx(x, 0) (18)

.

Thus using initial value and (18), from (17), we may obtain the numerical solution

of u at t = k.

We need two more equations. The two end conditions can be derivated as follows

u0 = 0 (19)

h

3
(u0 + 4u1 + 2u2 + 4u3 + ...+ 4un−1 + un) = m(t) (20)

The method is described in matrix form for Eqs.(16),(19),(20):

A =



1 0 0 0 ... 0 0 0

( 1
24k

− γ
2h2 ) ( 5

12k
+ γ

h2 ) ( 1
24k

− γ
2h2 ) 0 ... 0 0

0 ( 1
24k

− γ
2h2 ) ( 5

12k
+ γ

h2 ) ( 1
24k

− γ
2h2 ) 0 ... 0

. . . . ... . . .

. . . . ... . . .

. . . . ... . . .

0 0 0 0 ... ( 1
24k

− γ
2h2 ) ( 5

12k
+ γ

h2 ) ( 1
24k

− γ
2h2 )

1 4 2 4 ... 2 4 1



, (45)
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B=



0

-f(x1)(
1

24k
+ γ

2h2 )− f(x2)(
5

12k
− γ

h2 )− f(x3)(
1

24k
+ γ

2h2 )

-f(x2)(
1

24k
+ γ

2h2 )− f(x3)(
5

12k
− γ

h2 )− f(x4)(
1

24k
+ γ

2h2 )

.

.

.

-f(xn−2)(
1

24k
+ γ

2h2 )− f(xn−1)(
5

12k
− γ

h2 )− f(xn)(
1

24k
+ γ

2h2 )
3
h
m(t)



, (43)

Finally we find out the approximation solution as

U = [u0, u1, ..., un]
′

AU = B

4. Test Examples

In this section, to illustrate our methods we have solved the boundary value problem

for the one-dimentional heat equation with nonlocal initial condition. All computa-

tions are done by using MATLAB 6.5.

Example 1.

We first consider the following equations

f(x) = cos(Π
2
x), 0 < x < 1,

g(t) = exp(−Π2

4
t), 0 < t < 1,

m(t) = 2
Π
exp(−Π2

4
t), 0 < t < 1

 (50)

with the exact solution of the above problem is

u(x, t) = exp(−Π2

4
t)cos(Π

2
x)

Example 3.2.6. We consider a non-linear system of second-order BVPs of the form

[1,2,3,5,6]:
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u
′′
+ a1(x)u

′
+ a2(x)u+ a3(x)v

′
+ a4(x)v +H1(x, u, v) = f1(x),

v
′′
+ b1(x)v

′
+ b2(x)v + b3(x)u

′
+ b4(x)u+H2(x, u, v) = f2(x),

 (1)

with the following boundary conditions

u(0) = u(1) = 0, v(0) = v(1) = 0 (2)

where 0 < x < 1, H1, H2 are nonlinear functions of u and v, ai(x), bi(x), f1(x), and

f2(x), are given functions, and ai(x), bi(x) are continuous, i = 1, 2, 3, 4.

The existence and approximations of the solutions to non-linear systems of second-

order BVPs have investigated by many authors[1-6]. In [1] the sinc-collocation method

is presented for solving second-order systems. Their method consists of reducing the

solution of Eq.(1) to a set of algebric equations by expanding u(x) and v(x) as sinc

functions with unknown coefficients. New method is presented to solve Eq.(1) used

in the form of series in the reproducing kernel space in [2]. The variation iteration

method is applied for the solution with the assumption that the solutions are unique

in [3]. He’s homotopy perturbation method (HPM) is proposed for the solution of

systems in [5]. A new modification of the homotopy analysis method (HAM) is pre-

sented for solving systems of second-order BVPs in [6].

The section of this paper are organized as follows: In the next section we describe

the basic formulation of the spline function required for our subsequent development.

In section 3 the method are used to analysis to solution of problem (1) and (2). In

section 4 some numerical result, that are illustrated using MATLAB 6.5, are given to

clarify the method. Section 5 ends this paper with a brief conclusion. Note that we

have computed the numerical results by MATLAB 6.5.

To illustrate the application of the Spline method developed in the previous section

we consider the non-linear system of second-order BVP that is given in Eq. (1). At

the grid point (xi, ui), the proposed non-linear system of second-order BVP in Eq.

(1) may be discretized by
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u
′′
+ a1(xi)u

′
+ a2(xi)u+ a3(xi)v

′
+ a4(xi)v +H1(x, u, v) = f1(xi),

v
′′
+ b1(xi)v

′
+ b2(xi)v + b3(xi)u

′
+ b4(xi)u+H2(x, u, v) = f2(xi).

 (7)

Substituting Mi = u
′′
and Ni = v

′′
in equation system (5):

Mi + a1(xi)u
′
i + a2(xi)ui + a3(xi)v

′
i + a4(xi)vi +H1(xi, ui, vi) = f1(xi),

Ni + b1(xi)v
′
i + b2(xi)vi + b3(xi)u

′
i + b4(xi)ui +H2(xi, ui, vi) = f2(xi).

 (8)

Solving Eq. (8) for Mi and Ni, we get

Mi = −a1(xi)u
′
i − a2(xi)ui − a3(xi)v

′
i − a4(xi)vi −H1(xi, ui, vi) + f1(xi)

Ni = −b1(xi)v
′
i − b2(xi)vi − b3(xi)u

′
i − b4(xi)ui −H2(xi, ui, vi) + f2(xi)

 (9)

The following approximations for the first-order derivative of u and v in Eq. (9)

can be used

u
′
i
∼= ui+1−ui−1

2h
,

u
′
i+1

∼= 3ui+1−4ui+ui−1

2h
,

u
′
i−1

∼= −ui+1+4ui−3ui−1

2h
,

v
′
i
∼= vi+1−ui−1

2h
,

v
′
i+1

∼= 3vi+1−4vi+vi−1

2h
,

v
′
i−1

∼= −vi+1+4vi−3vi−1

2h
.


(10)

So Eq. (9) becomes

Mi = −a1(xi)ui+1−ui−1

2h
− a2(xi)ui − a3(xi)

vi+1−vi−1

2h

−a4(xi)vi −H1(xi, ui, vi) + f1(xi)

 (11a)

Mi+1 = −a1(xi+1)
3ui+1−4ui+ui−1

2h
− a2(xi+1)ui − a3(xi+1)

3vi+1−4vi+vi−1

2h

−a4(xi+1)vi −H1(xi+1, ui+1, vi+1) + f1(xi+1)

 (11b)
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Mi−1 = −a1(xi−1)
−ui+1+4ui−3ui−1

2h
− a2(xi−1)ui − a3(xi−1)

−vi+1+4vi−3vi−1

2h

−a4(xi−1)vi −H1(xi−1, ui−1, vi−1) + f1(xi−1)

 (11c)

and

Ni = −b1(xi)vi+1−vi−1

2h
− b2(xi)vi − b3(xi)

ui+1−ui−1

2h

−b4(xi)ui −H2(xi, ui, vi) + f2(xi)

 (12a)

Ni+1 = −b1(xi+1)
3vi+1−4vi+vi−1

2h
− b2(xi+1)vi − b3(xi+1)

3ui+1−4ui+ui−1
2h

−b4(xi+1)ui −H2(xi+1, ui+1, vi+1) + f2(xi+1)

 (12b)

Ni−1 = −b1(xi−1)
−vi+1+4vi−3vi−1

2h
− b2(xi−1)vi − b3(xi−1)

−ui+1+4ui−3ui−1

2h

−b4(xi−1)ui −H2(xi−1, ui−1, vi−1) + f2(xi−1)

 (12c)

Substituting Eqs. (11a-11c)-(12a-12c) in Eqs. (6a) and (6b) respectively, we

find the following 2(n − 1) linear algebraic equations in the 2(n + 1) unknowns for

i = 0, 1, ..., n.

[αa1(xi−1)
2h

− 2βa1(xi)
2h

− 3αa1(xi+1)
2h

− αa2(xi+1)− 1
h2 ]ui+1

+[−4αa1(xi−1)
2h

− 2βa2(xi) +
4αa1(xi+1)

2h
+ 2

h2 ]ui

+[3αa1(xi−1)
2h

− αa2(xi−1) +
2βa1(xi)

2h
− αa1(xi+1)

2h
− 1

h2 ]ui−1

+[αa3(xi−1)
2h

− 2βa3(xi)
2h

− 3αa3(xi+1)
2h

− αa4(xi+1)]vi+1

+[−4αa3(xi−1)
2h

− 2βa4(xi) +
4αa3(xi+1)

2h
]vi

+[3αa3(xi−1)
2h

− αa4(xi−1) +
2βa3(xi)

2h
− αa3(xi+1)

2h
]vi−1

−αH1(xi−1, ui−1, vi−1)− 2βH1(xi, ui, vi)− αH1(xi+1, ui+1, vi+1) =

−αf1(xi−1)− 2βf1(xi)− αf1(xi+1)



(13)

and
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[αb1(xi−1)
2h

− 2βb1(xi)
2h

− 3αb1(xi+1)
2h

− αb2(xi+1)− 1
h2 ]vi+1

+[−4αb1(xi−1)
2h

− 2βb2(xi) +
4αb1(xi+1)

2h
+ 2

h2 ]vi

+[3αb1(xi−1)
2h

− αb2(xi−1) +
2βb1(xi)

2h
− αb1(xi+1)

2h
− 1

h2 ]vi−1

+[αb3(xi−1)
2h

− 2βb3(xi)
2h

− 3αb3(xi+1)
2h

− αb4(xi+1)]ui+1

+[−4αb3(xi−1)
2h

− 2βb4(xi) +
4αb3(xi+1)

2h
]ui

+[3αb3(xi−1)
2h

− αb4(xi−1) +
2βb3(xi)

2h
− αb3(xi+1)

2h
]ui−1

−αH2(xi−1, ui−1, vi−1)− 2βH2(xi, ui, vi)− αH2(xi+1, ui+1, vi+1) =

−αf2(xi−1)− 2βf2(xi)− αf2(xi+1)



(14)

We need four more equations. The four end conditions can be derivated as follows:

u0 = 0, un = 0, v0 = 0, vn = 0
}

(15)

This leads to the system

X1i =
αa1(xi−1)

2h
− 2βa1(xi)

2h
− 3αa1(xi+1)

2h
− αa2(xi+1)− 1

h2 (16)

Y1i =
−4αa1(xi−1)

2h
− 2βa2(xi) +

4αa1(xi+1)
2h

+ 2
h2 (17)

Z1i =
3αa1(xi−1)

2h
− αa2(xi−1) +

2βa1(xi)
2h

− αa1(xi+1)
2h

− 1
h2 (18)

X2i =
αa3(xi−1)

2h
− 2βa3(xi)

2h
− 3αa3(xi+1)

2h
− αa4(xi+1) (19)

Y2i =
−4αa3(xi−1)

2h
− 2βa4(xi) +

4αa3(xi+1)
2h

(20)

Z2i =
3αa3(xi−1)

2h
− αa4(xi−1) +

2βa3(xi)
2h

− αa3(xi+1)
2h

(21)

gi =
a1(xi)
2h

, hi = a2(xi) , ki =
a3(xi)
2h

, li = a4(xi) (22)

X1i = αgi−1 − 2βgi − 3αgi+1 − αhi+1 − 1
h2 (23)

Y1i = −4αgi−1 + 4αgi+1 − 2βhi +
2
h2 (24)
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Z1i = 3αgi−1 + 2βgi − αgi+1 − αhi−1 − 1
h2 (25)

X2i = αki−1 − 2βki − 3αki+1 − αli+1 (26)

Y2i = −4αki−1 + 4αki+1 − 2βli (27)

Z2i = 3αki−1 + 2βki − αki+1 − αli−1 (28)

X3i =
αb3(xi−1)

2h
− 2βb3(xi)

2h
− 3αb3(xi+1)

2h
− αb4(xi+1) (29)

Y3i =
−4αb3(xi−1)

2h
− 2βb4(xi) +

4αb3(xi+1)
2h

(30)

Z3i =
3αb3(xi−1)

2h
− αb4(xi−1) +

2βb3(xi)
2h

− αb3(xi+1)
2h

(31)

X4i =
αb1(xi−1)

2h
− 2βb1(xi)

2h
− 3αb1(xi+1)

2h
− αb2(xi+1)− 1

h2 (32)

Y4i =
−4αb1(xi−1)

2h
− 2βb2(xi) +

4αb1(xi+1)
2h

+ 2
h2 (33)

Z4i =
3αb1(xi−1)

2h
− αb2(xi−1) +

2βb1(xi)
2h

− αb1(xi+1)
2h

− 1
h2 (34)

mi =
b1(xi)
2h

, pi = b2(xi), ri =
b3(xi)
2h

, si = b4(xi) (35)

X3i = αri−1 − 2βri − 3αri+1 − αsi+1 (36)

Y3i = −4αri−1 + 4αri+1 − 2βsi (37)

Z3i = 3αri−1 + 2βri − αri+1 − αsi−1 (38)

X4i = αmi−1 − 2βmi − 3αmi+1 − αpi+1 − 1
h2 (39)

Y4i = −4αmi−1 + 4αmi+1 − 2βpi +
2
h2 (40)

Z4i = 3αmi−1 + 2βmi − αmi+1 − αpi−1 − 1
h2 (41)
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The method is described in matrix form in the following way for Eqs. (16)-(41):

A =


A1 | A2

− − −
A3 | A4

 , (42)

B=



0

-αf1(x0)− 2βf1(x1)− αf1(x2)

-αf1(x1)− 2βf1(x2)− αf1(x3)

.

.

.

-αf1(xn−2)− 2βf1(xn−1)− αf1(xn)

0

0

-αf2(x0)− 2βf2(x1)− αf2(x2)

-αf2(x1)− 2βf2(x2)− αf2(x3)

.

.

.

-αf2(xn−2)− 2βf2(xn−1)− αf2(xn)

0



, (43)
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H =



0

-αH1(x0, u0, v0)− 2βH1(x1, u1, v1)− αH1(x2, u2, v2)

-αH1(x1, u1, v1)− 2βH1(x2, u2, v2)− αH1(x3, u3, v3)

.

.

.

-αH1(xn−2, un−2, vn−2)− 2βH1(xn−1, un−1, vn−1)− αH1(xn, un, vn)

0

0

-αH2(x0, u0, v0)− 2βH2(x1, u1, v1)− αH2(x2, u2, v2)

-αH2(x1, u1, v1)− 2βH2(x2, u2, v2)− αH2(x3, u3, v3)

.

.

.

-αH2(xn−2, un−2, vn−2)− 2βH2(xn−1, un−1, vn−1)− αH2(xn, un, vn)

0



, (44)

U = [u0, u1, ..., un, v0, v1, ..., vn]
′
. (44)

Here the four submatrices A1, A2, A3 and A4 are defined as

A1 =



1 0 0 0 ... 0 0

X11 Y11 Z11 0 ... 0 0

0 X12 Y12 Z12 0 ... 0

. . . . . . .

. . . . . . .

. . . . . . .

0 ... 0 0 X1(n−2) Y1(n−2) Z1(n−2)

. . . . 0 0 1



, (45)
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A2 =



0 0 0 0 ... 0 0

X21 Y21 Z21 0 ... 0 0

0 X22 Y22 Z22 0 ... 0

. . . . . . .

. . . . . . .

. . . . . . .

0 ... 0 0 X2(n−2) Y2(n−2) Z2(n−2)

. . . . 0 0 0



, (46)

A3 =



0 0 0 0 ... 0 0

X31 Y31 Z31 0 ... 0 0

0 X32 Y32 Z32 0 ... 0

. . . . . . .

. . . . . . .

. . . . . . .

0 ... 0 0 X3(n−2) Y3(n−2) Z3(n−2)

. . . . 0 0 0



, (47)

A4 =



1 0 0 0 ... 0 0

X41 Y41 Z41 0 ... 0 0

0 X42 Y42 Z42 0 ... 0

. . . . . . .

. . . . . . .

. . . . . . .

0 ... 0 0 X4(n−2) Y4(n−2) Z4(n−2)

. . . . 0 0 1



. (48)

Finally the approximate solution is obtained by solving the nonlinear system using

Levenberg-Marquardt optimization method [7] and Matlab 6.5.

AU +H = B. (49)

4. Numerical examples

34



In this section, to illustrate our methods we have solved two non-linear system of

second-order BVP . All computations are done by using MATLAB 6.5.

Example 1.

Consider the following equations

u
′′
(x)− xv

′
(x) + u(x) = f1(x)

v
′′
(x) + xu

′
(x) + u(x)v(x) = f2(x)

 (50)

subject to the boundary conditions

u(0) = u(1) = 0, v(0) = v(1) = 0, (51)

where 0 < x < 1, f1(x) = x3 − 2x2 + 6x and f2(x) = x2 − x.

The exact solutions of u(x) and v(x) are given as x3 − x and x2 − x respectively.

The observed maximum absolute errors of u(x) and v(x) for n = 21 (nodal points)

are given in Table 1. The numerical results of u(x) and v(x) are also illustrated in

Figures 1 and 2.

3.3 B-splines

B-spline method is so named because of use of splines as basis function. In this

section, we will focus on B-spline basis and their definitions. Secondly, we will

look the results of this method on diffusion equation and compare them with other

methods. Let Ωnbeapartitionof [a,b]⊂ ℜ. A B-spline of order k is a spline from

Sk(Ωn)withminimalsupportandthepartitionofunityholding.Toexplainthis, letusdefinedBi,j(x)wherei

∈ Z is a B-spline of degree k, the left end of which support is equal to xi, andthenwehavethefollowingproperties :
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,1. Supp(Bk,i) = [xi, xi+k+1]

2.Bk,i(x) ≥ 0,∀xℜ
3.

∑∞
i=−∞Bk,i(x) = 1,∀xℜ

A detailed description of B-spline functions generated by subdivision can be found

in [13]. Consider equally-spaced knots of a partition π : a = x0 < x1 < ... < xn = b

on [a,b]. Let S3[π] be the space of continuously-differentiable, piecewise, third-degree

polynomials on π. That is, S3[π] is the space of third-degree splines on π. Consider

the B-splines basis in S3[π]. The third-degree B-splines are defined as

B0(x) =
1

6h3



x3 0 ≤ x < h

−3x3 + 12hx2 − 12h2x+ 4h3 h ≤ x < 2h

3x3 − 24hx2 + 60h2x− 44h3 2h ≤ x < 3h

−x3 + 12hx2 − 48h2x+ 64h3 3h ≤ x < 4h

(5)

Bi−1(x) = B0(x− (i− 1)h), i = 2, 3, ...,

To solve singularly perturbed convection-dominated diffusion equation, Bi ,

B′
i and B

′′
i evaluated at the nodal points are needed. Their coefficients are summa-

rized in Table 1.

Table 3.1: Values of Bi, B
′
i and B

′′
i

xi xi+1 xi+2 xi+3 xi+4

Bi 0 1/6 4/6 1/6 0

B′
i 0 -3/6h 0/6h 3/6h 0

B′′
i 0 6/6h2 -12/6h2 6/6h2 0

36



Chapter 4

Finite Element Method

4.1 Introduction

In this chapter we construct so-called finite element approximations to solutions to

partial differential equations. The term “finite element method” has come to be as-

sociated with using piecewise polynomials in one, two, and three dimensions together

with so-called Rayleigh-Ritz metod and its more general counterpart, the Galerkin

method, to approximate solutions to operator equations.In this chapter we concen-

trate on Galerkin method with splines.

4.2 Galerkin Method

Galerkin was born in 1871 in Russia. He bagan doing research in engineering while

he was in prison in 1906 − 19007 for his participation in the anti-tsarist revolutionary

movement. His method was introduced in a paper on elasticity published in 1925.

Galerkin’s method for solving a general differential equation is based on seeking an

approximation solution, which is

1. Easy to differentiate and integrate

2. Spanned by a set of nearly orthogonal basis functions in a finite-dimensional space.

Example 4.2.1. Let u(t) be the solution to the ordinary differential equation given

buy u′(t)−λu(t) = 0, and let U(t) be the approximation solution spanned by the basis

functions 1, , t, t2. Thus
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U(t) = A · 1 +B · t+ C · t2andU ′(t) = B + 2C · t.
Inserting U(t) and U’(t) in the differential equation, we get

B + 2C · t− λ(A · 1 +B · t+ C · t2) = 0, and thus

−λCt2 + (2C − λB)t+B − λA = 0.

This is a simple algebraic equation, however we need three different equations to

calculate A, B, C.

The Galerkin method using the Galerkin orthogonality property of the approximate

solution U(t) avoids this complexity.

Definition 4.2.2. A usual scalar product for two real valued functions u(x) and v(x)

is defined by

< u, v >=
∫ T
0 u(x)v(x)dx,

Definition 4.2.3. u(x) and v(x) are orthogonal if ¡u,v¿ = 0.

Definition 4.2.4. A norm associated with this scalar product is defined by

∥u∥ =
√
< u, u > = (

∫ T
0 |u(x)|2dx) 1

2

Let U(t) be an approximation of the real solution u′(t) = u(t) (1) of a differential

equation then

u′(t)− ·u(t) = 0 and

U ′(t)− ·U(t) ̸= 0

Definition 4.2.5. If U(t) is an approximation of u(t), then

R(U(t)) = U ′(t)− λ · U(t)
is called the residual error of U(t).

Let vn be an orthogonal basis function, multiply the equation (1) by v(t) and

integrate∫ T
0 U ′(t)v(t) = λ · ∫ T

0 U(t) · v(t)dt, then∫ T
0 (U ′(t)v(t)− λU(t) · v(t))dt = 0

So, now the problem is to find an approximate solution U(t) in the subspace.
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Chapter 5

Conclusion

5.1 compare
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