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Jüri Üyeleri: Prof. Dr. Anatoly G. KUSRAEV

Prof. Dr. Şafak ALPAY
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İstanbul, May 2014 Uğur GÖNÜLLÜ
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ÖZET

KAPLANSKY−HILBERT MODÜLLER ÜZERİNDE DEVRESEL

KOMPAKT OPERATÖRLER

Uğur GÖNÜLLÜ

Tezin ilk kısmında Kaplansky−Hilbert modülleri üzerindeki devresel

kompakt kümeler ve operatörler çalışılmıştır. A. G. Kusraev,

Boole-değerli analiz teknikleri kullanarak, devresel kompakt

operatörlerin genel bir formunu ispatlamıştır. Tezde, bu genel formun

standart kanıtı verilmiştir. Ayrıca, devresel kompakt operatörlerin

bazı karakterizasyonları elde edilmiştir. İkinci kısımda

Kaplansky−Hilbert modülleri üzerindeki sürekli Λ-lineer

operatörlerin Schatten-tipindeki sınıfları çalışılmış ve bunların

dualitelerini araştırılmıştır. Öte yandan, Hilbert−Schmidt sınıflarının

birer Kaplansky−Hilbert modülü olduğu gösterilmiştir. Son kısımda,

Kaplansky−Hilbert modülleri üzerindeki devresel kompakt

operatörlerin global özdeğerleri ve bu özdeğerlerin katlılıkları

tanımlanmış ve incelenmiştir. Kaplansky−Hilbert modülleri

üzerindeki devresel kompakt operatörler için Horn- ve Weyl-tipi

eşitsizlikler ve Lidskĭı iz formülü elde edilmiştir.

Anahtar Kelimeler: Kaplansky−Hilbert modül, devresel kompakt

operatör, Schatten-tipi sınıflar, Lidskĭı iz formülü
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SUMMARY

CYCLICALLY COMPACT OPERATORS ON

KAPLANSKY−HILBERT MODULES

Uğur GÖNÜLLÜ

The first part of the thesis studies cyclically compact sets and

operators on Kaplansky−Hilbert modules. A. G. Kusraev proved a

general form of cyclically compact operators in Kaplansky−Hilbert

modules using techniques of Boolean-valued analysis. We give a

standart proof of this general form. Moreover, we obtain some

characterizations of cyclically compact operators. The second part

studies the Schatten-type classes of continuous Λ-linear operators on

Kaplansky−Hilbert modules and investigates the duality of them.

Furthermore, we show that the Hilbert−Schmidt class is a

Kaplansky−Hilbert module. In the last part we define and study

global eigenvalues of cyclically compact operators on

Kaplansky−Hilbert modules and their multiplicities. We obtain

Horn- and Weyl-type inequalities and Lidskĭı trace formula for

cyclically compact operators in Kaplansky−Hilbert modules.

Keywords: Kaplansky−Hilbert module, cyclically compact operator,

Schatten-type classes, Lidskĭı trace formula
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Chapter 1

Introduction

1.1 State of the Art

The concept of Kaplansky−Hilbert module, or AW ∗-module, arose naturally in

Kaplansky’s study of AW ∗-algebras of Type I. Kaplansky−Hilbert module, which

is an object like a Hilbert space except that the inner product is not scalar-valued

but takes its values in a commutative C∗-algebra Λ which is an order complete

vector lattice, was introduced by I. Kaplansky [15]. Such a C∗-algebra is often

called a Stone algebra or a commutative AW ∗-algebra. I. Kaplansky proved some

deep and elegant results for such structures, thereby showing that they have

many properties similar to those of the Hilbert spaces. A Kaplansky−Hilbert

module X is called λ-homogeneous if X has a basis of cardinality λ. Not every

Kaplansky−Hilbert module has a basis, but we can split it into homogeneous

parts [15, Theorem 1.]. The concept of strict λ-homogeneity was introduced

by A. G. Kusraev and as shown in [20] every Kaplansky−Hilbert module can be

splitted into strictly homogeneous parts . In the same paper, Kusraev established

functional representations of Kaplansky−Hilbert modules and AW ∗-algebras of

type I by spaces of continuous vector-functions and strongly continuous operator-

functions, respectively. In [42], H. Takemoto gave another representation where

each AW ∗-module is representable as a continuous field of Hilbert spaces over a

Stonean space. By using this representation a variant of the polar decomposition

was obtained by H. Takemoto [43], and C. Sunouchi gave another proof [40].

1



C∗-algebras and von Neumann algebras within Boolean-valued models appeared

in the research of G. Takeuti [44, 45]. M. Ozawa started the study ofAW ∗-modules

and algebras by means of Boolean-valued models of set theory [29], in which he

gave a negative solution to the I. Kaplansky problem on the unique decomposition

of a type I AW ∗-algebra into the direct sum of homogeneous bands [33, 34].

The generalization of the concept of Kaplansky−Hilbert module is the Hilbert

C∗-module (inner product takes values in a C∗-algebra) which appeared in the

papers of W. Paschke and M. Rieffel (see [27]).

The von Neumann−Schatten Classes Sp (1 ≤ p < ∞) of linear operators on a

Hilbert space H were introduced by von Neumann and Schatten [38]. It turns out

that each of these classes is a two-sided ideal in B(H), and consists of compact

operators. The space Sp is a Banach space with properties closely analagous to

those of the sequence space `p. The linear spaces Sp(H) and Sq(H) constitute a

dual system with respect to the bilinear form 〈S, T 〉 := tr(ST ) where S ∈ Sp(H),

T ∈ Sq(H) and p is the conjugate index to q. In this sense, Sp(H) can be

identified with Sq(H)′. In cases p = 1 and p = ∞, we have S1(H)′ = B(H) and

K(H)′ = S1(H), respectively. The latter formulas were obtained by Schatten

[36] and Schatten/von Neumann [37]. Though the Banach spaces Sp(H) with

1 ≤ p < ∞ are only semi-classical, they have proved to be quite important.

Their main significance, however, stems from the fact that they are even Banach

ideals over H.

By a continuous Λ-linear operator T from an AW ∗-module X to an AW ∗-module

Y we mean a mapping of X into Y which is not only linear and continuous as

usual, but also a module homomorphism. I. Kaplansky showed that a Λ-linear

operator T is continuous if and only if T has an adjoint T ∗, and that the set

BΛ(X) of all continuous Λ-linear operators in X forms AW ∗-algebra of type I

in [15]. Every continuous Λ-linear operator is dominated and bo-continuos [23].

A continuous Λ-functional on a Kaplansky−Hilbert module X is a continuous

Λ-linear operator from X to Λ. Kaplansky also proved that the Riesz Repre-

sentation Theorem is satisfied on Kaplansky−Hilbert modules [15]. In [49] two

versions of a spectral theorem for continuous Λ-linear operators are obtained T

on the Kaplansky−Hilbert module X.

In 1936, L. V. Kantorovich introduced the concept of lattice-normed space. These

are vector spaces normed by elements of a vector lattice. Every Kaplansky−Hilbert

module is a Banach−Kantorovich space which is a decomposable o-complete

lattice-normed space [23, 7.4.4.].
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Cyclically compact sets and operators in lattice-normed spaces were introduced

by A. G. Kusraev in [18] and [19], respectively, and a preliminary study of this

notions was initiated. Cyclical compactness is the Boolean-valued interpretation

of compactness and it also deserves an independent study. For different aspects

of cyclical compactness, see [21, 25, 26]. In [22] (see also [23]) a general form

of cyclically compact operators in Kaplansky−Hilbert modules, which is similar

to the Schmidt representation of compact operators on Hilbert spaces, as well

as a variant of the Fredholm alternative for cyclically compact operators, were

also given with Boolean-valued techniques. Thus, the natural problem arises to

investigate the class of cyclically compact operators in more details. Recently,

cyclically compact sets and operators in Banach−Kantorovich spaces over a ring

of measurable functions were investigated in [8, 16, 17]. In this vein, the following

problems are of importance.

1.2 Statement of the Problem

Introduce and study the Schatten-type classes of continuous linear operators on

Kaplansky−Hilbert modules. In particular, we obtain a general form of cycli-

cally compact operators in Kaplansky−Hilbert modules, duality results for the

Schatten type classes, and generalized Lidskĭı trace formula.

1.3 Review of Contents

Chapter 1 of this thesis presents the scope of the study as an introduction.

Chapter 2 contains some background related to theory of Boolean algebras,

lattice-normed spaces and AW ∗-algebras needed in the sequel.

Chapter 3 deals with Kaplansky−Hilbert modules and cyclically compact opera-

tors on them. The first section of the Chapter 3 is an introduction to

Kaplansky−Hilbert modules, and the concept of projection basis is defined. Sec-

tion 3.2 is related to cyclically compact sets, and we reprove some characteriza-

tions about cyclically compact sets on C# (Q,H) which were proved for measur-

able bundles in [16]. In section 3.3 we study operators on Kaplansky−Hilbert

modules and define a new notion of global eigenvalue of operators, and prove

the Polar Decomposition for continuous Λ-linear operators. In the last section of

Chapter 3, we prove a general form of cyclically compact operators with standart
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techniques and give some characterizations about cyclically compact operators

on Kaplansky−Hilbert modules and the Rayleigh−Ritz minimax formula. More

precisely, we can state the main results of this chapter as follows:

Theorem 1.3.1. Let T be a cyclically compact operator from X to Y . There exist

sequences (ek)k∈N in X and (fk)k∈N in Y and a sequence (sk(T ))k∈N of positive

elements in Λ such that

(1) 〈ek | el〉 = 〈fk | fl〉 = 0 (k 6= l) and [sk(T )] =
ek=

fk (k ∈ N);

(2) sk+1(T ) ≤ sk(T ) (k ∈ N) and o-limk→∞ sk(T ) = infk∈N sk(T ) = 0;

(3) there exists a projection π∞ in P(Λ) such that π∞sk is a weak order-unity

in π∞Λ for all k ∈ N;

(4) there exists a partition (πk)
∞
k=0 of the projection π⊥∞ such that π0s1 = 0,

πk ≤ [sk], and πksk+1 = 0, k ∈ N;

(5) for each x the following equality is valid:

Tx = π∞bo-
∞∑
k=1

sk(T ) 〈x | ek〉 fk + bo-
∞∑
n=1

πn

n∑
k=1

sk(T ) 〈x | ek〉 fk

= bo-
∑
k∈N

sk(T ) 〈x | ek〉 fk.

Theorem 1.3.2. (The Rayleigh−Ritz minimax formula) Let T be a cyclically

compact operator from X to Y . Then

sn(T ) = inf
{

sup
{Tx :

x≤ 1, x ∈ J⊥
}}

where the infmum is taken over all projection orthonormal subset J of X such

that card(J) < n, and the infmum is achieved.

Theorem 1.3.3. Let T be in BΛ(X) and Θ denote the set of all finite subsets of

the projection basis E . Then the following statements are equivalent:

(i) T is a cyclically compact operator on X;

(ii) for all projection bases E in X, the net
(T (I − PF )

)
F∈Θ

o-converges to

0, where PF :=
∑

e∈F θe,e;

(iii) for all projection bases E in X,
(
supe∈F c

{Te})
F∈Θ

decreases to 0;

(iv) for all projection bases E in X, (supe∈F c {| 〈Te | e〉 |})F∈Θ decreases to 0.
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Chapter 4 is devoted to study the Schatten type class of operators. In particular,

we investigate the Hilbert−Schmidt class, the trace class and classes Sp, and get

duality results for the Schatten-type classes. The main results of this chapter are

as follows:

Theorem 1.3.4. The pair (S2(X, Y ), 〈·, ·〉) is a Kaplansky−Hilbert module over

Λ and the following equality holds:T≤ v2(T ) (T ∈ S2(X, Y ))

where
T is exact dominant of T [23, 4.1.1].

Theorem 1.3.5. If ϕ : S1(Y,X) → K (X, Y )∗ is defined by ϕ(T )(A) = tr(TA)

for all A ∈ K (X, Y ) and T ∈ S1(Y,X), then ϕ satisfies the following properties:

(i) ϕ is a bijective Λ-linear operator from S1(Y,X) to K (X, Y )∗;

(ii) v1(T ) =
ϕ(T )

 (T ∈ S1(Y,X)).

Theorem 1.3.6. If ψ : (BΛ(X, Y ),
·) → (S1(Y,X)∗,

·1) is defined by

ψ(L)(T ) = tr(TL) for all L ∈ BΛ(X, Y ) and T ∈ S1(Y,X). Then ψ satisfies the

following properties:

(i) ψ is a bijective Λ-linear operator from BΛ(X, Y ) to S1(Y,X)∗;

(ii)
L=

ψ(L)
1 (L ∈ BΛ(X, Y )).

Theorem 1.3.7. Let 1 < p, q < ∞ and 1
p

+ 1
q

= 1. If φ : (Sp(X), vp(·)) →
(Sq(X)∗,

·q) is defined by φ(T )(S) = tr(ST ) for all T ∈ Sp(X) and S ∈ Sq(X),

then φ satisfies the following properties:

(i) φ is a bijective Λ-linear operator from Sp(X) to Sq(X)∗;

(ii) vp(T ) =
φ(T )

q (T ∈ Sp(X)).

In Chapter 5, we study global eigenvalues of cyclically compact operators and

their multiplicities. We prove Horn- and Weyl-type inequalities and Lidskĭı trace

formula for cyclically compact operators. More precisely, the main results of this

chapter are as follows:

Theorem 1.3.8. Let T be a cyclically compact operator on X. Then there exists

a sequence (λk)k∈N consisting of global eigenvalues or zeros in Λ with the following

properties:
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(1) |λk| ≤
T, [λk] ≥ [λk+1] (k ∈ N) and o-limλk = 0;

(2) there exists a projection π∞ in Λ such that π∞|λk| is a weak order-unity in

π∞Λ for all k ∈ N;

(3) there exists a partition (πk) of the projection π⊥∞ such that π0λ1 = 0, πk ≤
[λk], and πkλk+m = 0, m, k ∈ N;

(4) πλk+m 6= πλk for every nonzero projection π ≤ π∞+πk and for all m, k ∈ N;

(5) every global eigenvalue λ of T is of the form λ = mixk∈N (pkλk), where

(pk)k∈N is a partition of [λ].

Theorem 1.3.9. Let T be a cyclically compact operator on X and (λk(T ))k∈N be

a global eigenvalue sequence of T with the multiplicity sequence (τ k(T ))k∈N. Then

the following properties hold:

(1) (Weyl-inequality) if (πsk(T ))k∈N is o-summable in Λ for some projection π,

then the following inequality holds

o-
∑
k∈N

πτ k(T )|λk(T )| ≤ o-
∑
k∈N

πsk(T );

(2) (Horn-inequality) Suppose that Tk is a cyclically compact operator on X for

1 ≤ k ≤ K. Then

N∏
i=1

si(TK · · ·T1) ≤
K∏
k=1

N∏
i=1

si(Tk) (N ∈ N).

(3) (Lidskĭı trace formula) if T ∈ S1(X), then the following equality holds

tr(T ) = o-
∑
k∈N

τ k(T )λk(T ).

1.4 Methods Applied

This work uses essentially the methods from the following branches of analysis:

Theory of vector lattices, lattice-normed spaces, Kaplansky−Hilbert modules,

and AW ∗-algebras. In particular, we use intensively the following concepts: or-

der convergence, bo-convergence and bo-summability, the exact dominant of an

operator, spaces with mixed norms, the properties of the vector norm, Λ-valued

inner product and cyclically compactness. The main technical tool used in the

work is the functional representation of Kaplansky−Hilbert modules and bounded

linear operators on them.
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Chapter 2

Preliminaries

In this chapter, we set the general background which will be needed in the sequel.

For further details one can consult on the books [1, 2, 4, 23], whose terminology

is used throughout.

2.1 Boolean Algebras

Let M be a partially ordered set with an order relation ≤ (i.e. with a reflexive,

antisymmetric and transitive relation ≤). A subset A of M is upward-directed

(downward-directed) if, given two elements a, b of A, there is an element c of A

such that a ≤ c and b ≤ c (c ≤ a and c ≤ b). If for x in M a ≤ x holds for all a

in A, we say that x is an upper bound of A. A least element of the set of upper

bounds of A is called a least upper bound or supremum of A and denoted by

supA. Lower bound and infimum are defined similarly. The set of upper bounds

for a subset E of M is denoted by u.b.(E). M is called lattice if each pair of

elements x, y in M has x ∨ y := sup{x, y} and x ∧ y := inf{x, y}. A lattice is

distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

If a lattice L has the least or greatest element then the former is called the zero

of L and the latter, the unity of L. The zero and unity of L are denoted by 0L
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and 1L. If x and x∗ satisfy x ∨ x∗ = 1L and x ∧ x∗ = 0L, then x∗ is called a

complement of x. Elements x, y in L satisfying x∧ y = 0L are said to be disjoint.

If each element in L has at least one complement then we call L a complemented

lattice.

Definition 2.1.1. A Boolean algebra is a distributive complemented lattice with

distinct zero and unity.

A Boolean algebra B is called complete (σ-complete) if every non-empty subset

(countable subset) of B has a supremum and an infimum. We say that a subset A

of a Boolean algebra B is an antichain if all distinct two elements of A is disjoint.

An antichain A in B is a partition of an element b ∈ B (and so a partition of

unity when b is the unity of B) provided that b =
∨
A = supA. A subset E of

B minorizes a subset B0 of B if to each 0 < b ∈ B0 there is an x in E such that

0 < x ≤ b. We will often use the following theorem.

Theorem 2.1.2. [23, 1.1.6.](Exhaustion Principle). Let M be a nonempty subset

of a Boolean algebra B. Assume given a subset E of B that minorizes the band B0

of B generated by M. Then some antichain E0 exists, E0 ⊂ E, such that u.b.(E0)

= u.b.(M) and to each x ∈ E0 there is an element y in M satisfying x ≤ y.

We say that a subset F of a Boolean algebra B is a filter, if x, y ∈ F implies

x ∧ y ∈ F , and if b ∈ B, x ∈ F and b ≥ x imply b ∈ F . A filter other than B is

proper. A maximal element of the inclusion-ordered set of all proper filters on B is

an ultrafilter on B. Let U(B) stand for the set of all ultrafilters on B, and denote

by U(b) the set of ultrafilters containing b. We endow U(B) with the topology

with base {U(b) : b ∈ B}. Clearly, U(x ∧ y) = U(x) ∩ U(y) (x, y ∈ B), i.e.,

{U(b) : b ∈ B} is closed under finite intersections. The topological space U(B)

is often referred to as the Stone space of B and is denoted by S (B). Recall that

a topological space is called extremally (quasiextremally) disconnected or simply

extremal (quasiextremal) if the closure of an arbitrary open set (open Fσ-set) in

it is open or, which is equivalent, the interior of an arbitrary closed set (closed

Gδ-set) is closed.

Theorem 2.1.3. [23, 1.2.4.](Ogasawara Theorem). A Boolean algebra is com-

plete (σ-complete) if and only if its Stone space is extremal (quasiextremal).

In the sequel, by a Boolean algebra of projections in a vector space X we mean

a set B of commuting idempotent linear operators that act in X. Moreover, the
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Boolean operations have the following form:

π ∧ ρ := π ◦ ρ, π ∨ ρ := π + ρ− π ◦ ρ, π∗ = IX − π (π, ρ ∈ B).

and the zero and identity operators in X serve as the zero and unity of the

Boolean algebra B.

2.2 Vector Lattices

A real vector space E is said to be an ordered vector space whenever it is equipped

with an order relation ≤ that is compatible with the algebraic structure of E in

the sense that it satisfies the following two axioms:

(1) If x ≤ y, then x+ z ≤ y + z holds for all x, y, z ∈ E,

(2) If x ≤ y, then λx ≤ λy holds for all x, y ∈ E and 0 ≤ λ ∈ R.

An element x in an ordered vector space E is called positive whenever 0 ≤ x

holds. The set of all positive elements of E is called the positive cone of E and

it will be denoted by E+. A vector lattice (Riesz space) is an ordered vector

space that is also a lattice. A vector lattice is called Dedekind complete or order

complete (in the Russian literature, K-space) whenever every nonempty subset

bounded above has a supremum. Note also we assume that every vector lattice

is Archimedean.

Let u be a positive vector of a vector lattice E. A vector e ∈ E is said to be

a fragment, or a part, or a component of u, or a unit element with respect to u

whenever e ∧ (u− e) = 0. The set of all fragments of u is denoted by C(u).

Theorem 2.2.1. [2, Theorem 3.15.] Let E be a vector lattice and u ∈ E+. Then

C(u) is a Boolean algebra consisting precisely of all extreme points of the convex

set [0, u]. Moreover, in case E is Dedekind complete, C(u) is likewise Dedekind

complete.

The disjoint complement M⊥ of a nonempty set M ⊂ E is defined as

M⊥ := {x ∈ E : for all y ∈M, x ∧ y = 0}.

A nonempty set K ⊂ E satifying K = K⊥⊥ is called a band of E. The set of all

bands of E is denoted by B(E). Every band of the form {x}⊥⊥ with x ∈ E is

10



called principal. It is well known that B(E) is a complete Boolean algebra with

the inclusion-order. The Boolean operation of B(E) take the shape:

L ∧K = L ∩K, L ∨K = (L ∪K)⊥⊥, L∗ = L⊥ (L,K ∈ B(E)).

We say that K ∈ B(E) is a projection band if E = K⊕K⊥. The projection π onto

the band K along the band K⊥ is called a band projection (or order projection).

The set P(E) of all band projections ordered by π ≤ ρ ⇔ π ◦ρ = π is a Boolean

algebra. The Boolean operations of P(E) take the shape

π ∧ ρ = π ◦ ρ, π ∨ ρ = π + ρ− π ◦ ρ, π∗ = IE − π (π, ρ ∈ P(E)).

A vector lattice E is said to have the projection property whenever every band in

E is a projection band.

Let (A,≤) be an upward-directed set. We say that a net (xα)α∈A in a vector

lattice E o-converges to x ∈ E if there is a net eβ ↓ 0 in E and for each β there

is α(β) with |xα − x| ≤ eβ (α ≥ α(β)). We call x the o-limit of the net (xα)α∈A

and write x = o-limxα or xα
(o)→ x. If a net (eβ) in this definition is replaced

by a sequence (λne)n∈N, where e ∈ E+ and (λn)n∈N is a numerical sequence with

limn→∞ λn = 0, then we say that a net (xα)α∈A converges relatively uniformly

or more precisely e-uniformly to x ∈ E. The elements e and x are called the

regulator of convergence and the r-limit of (xα)α∈A, respectively. The notations

x = r-limxα or xα
(r)→ x are also frequent. A net (xα)α∈A is called o-fundamental

(r-fundametal with regulator e) if the net (xα − xβ)(α,β)∈A×A o -converges (re-

spectively, r-converges with regulator e) to zero. A vector lattice is said to be

relatively uniformly complete if every r-fundamental sequence is r-convergent.

A linear subspace J of a vector lattice is called an order ideal or o-ideal (or,

finally, just an ideal) if the inequality |x| ≤ |y| implies x ∈ J for arbitrary x ∈ E
and y ∈ J . If an ideal J possesses the additional property J⊥⊥ = E (or, J⊥ = {0})
then J is referred to as an order-dense ideal of E. The o-ideal generated by the el-

ement 0 ≤ u ∈ E is the set E(u) := ∪∞n=1[−nu, nu] = {x ∈ E : |x| ≤ λu, λ ∈ R}.
If E(u) = E then we say that u is a strong unity or strong order-unity. If

E(u)⊥⊥ = E then we say that u is an order-unity or weak order-unity. A vector

sublattice is a vector subspace E0 ⊂ E such that x∧y, x∨y ∈ E0 for all x, y ∈ E0.

A vector lattice is called disjointly complete (disjointly σ-complete) if every its

order-bounded antichain (countable antichain) has supremum.

A norm ‖ · ‖ on a vector lattice is said to be a lattice norm whenever |x| ≤ |y|
implies ‖x‖ ≤ ‖y‖. A vector lattice equipped with a lattice norm is known as a
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normed vector lattice. If a normed vector lattice is also norm complete, then it is

referred to as a Banach lattice. A Banach lattice E is called an abstract M -space

or AM -space if ‖x∨ y‖ = ‖x‖∨ ‖y‖ (x, y ∈ E+). If the unit ball of an AM -space

E contains a largest element e, then e is a strong order-unity and the unit ball

of E coincides with the symmetric order interval [−e, e]. In this case E is said to

be an AM -space with unit.

Theorem 2.2.2. (Kakutani-Bohnenblust and M. Krein-S. Krein). Let E be an

AM-space. Then there exist a compact Q and a family of triples (tα, sα, λα)α∈A

with tα, sα ∈ Q and 0 ≤ λα < 1 such that E is linearly isometric and order

isomorphic to the closed sublattice

F := {x ∈ C(Q) : (∀α ∈ A) x(tα) = λαx(sα)}.

In particular, every AM-space with unity is linearly isometric and order isomor-

phic to the space of continuous functions C(Q) on some compact space Q.

Theorem 2.2.3. [23, Theorem 1.5.9.] For a compact space Q, the following are

equivalent:

(1) C(Q) is order complete (σ-complete);

(2) C(Q) is disjointly complete (σ-complete);

(3) Q is extremal (quasiextremal);

(4) C(Q) possesses the projection property (principal projection property).

2.3 Lattice-Normed Spaces

Let X be a vector space and E be a real vector lattice. A mapping
· : X → E+

is called a vector (E-valued) norm if it satisfies the following axioms:

(1)
x= 0⇔ x = 0 (x ∈ X);

(2)
λx= |λ|

x (λ ∈ R, x ∈ X);

(3)
x+ y

≤x+
y (x, y ∈ X).

A vector norm is called decomposable or Kantorovich norm if

(4) for all e1, e2 ∈ E+ and x ∈ X, from
x= e1 +e2, it follows that there exists

x1, x2 ∈ X such that x = x1 + x2 and
xk= ek (k = 1, 2).
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In the case when condition (4) is valid only for disjoint e1, e2 ∈ E+, the norm

is said to be disjointly-decomposable or, in short, d-decomposable.

A triple (X,
·, E) is a lattice-normed space if

· is an E-valued norm in

the vector space X. The space E is called the norm lattice of X. If the norm is

decomposable, then the space (X,
·) is called decomposable.

If
x∧y= 0, then we call the elements x, y ∈ X disjoint and write x⊥y.

As in the case of a vector lattice, a set of the form

M⊥ := {x ∈ X : for all y ∈M, x⊥y }

∅ 6= M ⊂ X, is called a band. The symbol B(X) denotes the set of all bands

ordered by inclusion. We say that K ∈ B(X) is a projection band if K ⊕K⊥ =

X. The projection h(π) onto the band K along the band K⊥ is called a band

projection. A lattice-normed space X is said to have the projection property

whenever every band in X is a projection band. For uniformity, we often write

B(X) instead of B(X). Given L ⊂ E and M ⊂ X, we let by definition

h(L) :=
{
x ∈ X :

x∈ L} and
M :=

{x : x ∈M
}
.

It is clear that
h(L)

= L ∩
X.

Theorem 2.3.1. [23, 2.1.2.(1)] Suppose that every band of the vector lattice E0 :=X⊥⊥ contains the norm of some nonzero element. Then B(X) is a complete

Boolean algebra and the mapping L 7→ h(L) is an isomorphism of the Boolean

algebras B(
X⊥⊥) and B(X).

Theorem 2.3.2. [23, 2.1.2.(4)] Suppose that every band of the vector lattice E0 :=X⊥⊥ contains the norm of some nonzero element and X is d-decomposable and

there exist a band projection π onto L ∈ B(E0). Then the projection h(π) onto

the band K := h(L) along the band K⊥ exists and, moreover, π
x=

h(π)x
 for

all x ∈ X.

Theorem 2.3.3. [23, 2.1.3.] Suppose that E0 :=
X⊥⊥ is a vector lattice with the

projection property and the space X is d-decomposable. Then X have the projection

property. Moreover, there exists a complete Boolean algebra B of band projections

in X and an isomorphism h from P(E0) onto B such that b
x =

h(b)x


(b ∈ P(E0), x ∈ X).

We identify the Boolean algebras P(E0) and P(X) := B and write

π
x=

πx (π ∈ P(E0), x ∈ X).
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We say that a net (xα)α∈A bo -converges to an element x ∈ X and write

x = bo-limxα if there exists a net eγ ↓ 0 in E such that for every γ, there

is an α(γ) such that
xα − x ≤ eγ for all α ≥ α(γ). Given an element e ∈

E+, let the following condition be satisfied: for every number ε > 0, there is

an index α(ε) such that
xα − x ≤ εe for all α ≥ α(ε). Then we say that

(xα)α∈A br-converges to x and write x = br-limxα. A net (xα)α∈A is said to

be bo -fundamental (br-fundamental) if the net (xα − xβ)(α,β)∈A×A bo -converges

(br-converges) to zero. A lattice-normed space is called bo-complete (br-complete)

if every bo-fundamental (br-fundamental) net in it bo-converges (br-converges) to

an element of the space.

Take a family (xξ)ξ∈Ξ and associate with the net (yα)α∈A, where A := ℘fin(Ξ)

is the set of all finite subsets of Ξ and yα :=
∑

ξ∈α xξ. If x := bo-lim yα exists then

the family (xξ) is said to be bo-summable and x is its sum. It is conventional to

write x = bo-
∑

ξ∈Ξ xξ in this case.

A set M ⊂ X is called norm-bounded if there exists an e ∈ E+ such thatx≤ e for all x ∈ M . A space X is called disjointly complete or d-complete if

every norm-bounded set in X of pairwise disjoint elements is bo-summable.

Definition 2.3.4. A Banach−Kantorovich space is a decomposable bo-complete

lattice-normed space.

Theorem 2.3.5. [23, 2.2.1.] Let (X,E) be a Banach−Kantorovich space and

E =
X⊥⊥. For every bounded family (xξ)ξ∈Ξ in X and every partition of unity

(πξ)ξ∈Ξ in P(X), the sum x = bo-
∑

ξ∈Ξ πξxξ exists. Moreover, x is a unique

element in X satisfying the relations πξx = πξxξ (ξ ∈ Ξ).

Theorem 2.3.6. [23, 2.2.3.] A decomposable lattice-normed space is bo-complete

if and only if it is disjointly complete and complete with respect to relative uniform

convergence.

Let (X,
·, E) be a lattice-normed space with E a norm lattice of X and E

be a normed lattice. Then we have a norm in X defined by

9x9 :=
∥∥x∥∥ (x ∈ X).

The normed space (X,9·9) is called a space with mixed norm and 9·9 is called

mixed norm in X. From inequality
∣∣x−y∣∣ ≤x− yand monotonicity of the

norm in E, the vector norm
· is a norm continuous. A Banach space with mixed

norm is a pair (X,E) in which E is a Banach lattice and X is a br-complete

lattice-normed space with E-valued norm.
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Theorem 2.3.7. [23, 7.1.2.] Let E be a Banach lattice. Then (X,9·9) is a

Banach space if and only if the lattice-normed space (X,E) is br-complete.

2.4 Normed B-Spaces

Let X be a normed space and B be a Boolean algebra. Suppose that L (X) has

a complete Boolean algebra of norm one projections B which is isomorphic to B.

In this event we will identify the Boolean algebras B and B, writing B ⊂ L (X).

Say that X is a normed B-space if B ⊂ L (X) and for every partition of unity

(bξ)ξ∈Ξ in B the two conditions hold:

(1) If bξx = 0 (ξ ∈ Ξ) for some x ∈ X then x = 0;

(2) If bξx = bξxξ (ξ ∈ Ξ) for x ∈ X and a family (xξ)ξ∈Ξ in X then ‖x‖ ≤
sup{‖bξxξ‖ : ξ ∈ Ξ}.

Conditions (1) and (2) amount to the respective conditions (1
′
) and (2

′
):

(1
′
) To each x ∈ X there corresponds the greatest projection b ∈ B such that

bx = 0;

(2
′
) If x, (xξ), and (bξ) are the same as in (2) then ‖x‖ = sup{‖bξxξ‖ : ξ ∈ Ξ}.

From (2
′
) it follows in particular that∥∥∥∥∥

n∑
k=1

bkx

∥∥∥∥∥ = max
k=1,...,n

‖bkx‖

for x ∈ X and pairwise disjoint projections b1, ..., bn in B.

Given a partition of unity (bξ), we refer to x ∈ X satisfying the condition

bξx = bξxξ (ξ ∈ Ξ) as a mixing of (xξ) by (bξ). If (1) holds then there is a unique

mixing x of (xξ) by (bξ). In these circumstances we naturally call x the mixing

of (xξ) by (bξ). Condition (2) may be paraphrased as follows: the unit ball UX

of X is closed under mixing or is mix-complete.

A normed B-space X is B-cyclic if we may find in X a mixing of each norm-

bounded family by any partition of unity in B. Considering what was said above,

we may assert that X is a B-cyclic normed space if and only if, given a partition

of unity (bξ) ⊂ B and a family (xξ) ⊂ UX , we may find a unique element x ∈ UX
such that bξx = bξxξ for all ξ.

15



2.5 AW ∗-Algebras

We recall some preliminaries concerning complex algebras. Note also that by an

algebra we always mean a unital associative algebra. An involutive algebra or

∗-algebra A is a complex algebra with involution, i.e. a mapping x→ x∗ (x ∈ A)

satisfying the conditions:

(1) x∗∗ = x (x ∈ A);

(2) (x+ y)∗ = x∗ + y∗ (x, y ∈ A);

(3) (λx)∗ = λ̄x∗ (λ ∈ C, x ∈ A);

(4) (xy)∗ = y∗x∗ (x, y ∈ A).

An element x of an involutive algebra A is called hermitian if x∗ = x. The

set of all hermitian elements of A is denoted by ReA. An element x of A is called

normal if x∗x = xx∗. A hermitian element p is a projection whenever p is an

idempotent, i.e. p2 = p. The symbol P(A) stands for the set of all projections

of an involutive algebra A. Two projections p, q ∈ P(A) are called orthogonal if

pq = 0. A projection p is central if px = xp for all x ∈ A. Denote the set of all

central projections by Pc(A).

A scalar λ ∈ C is a spectral value of x, if λ− x is not invertible in A. The set

of all spectral values of x is called the spectrum of x and denoted by Sp(x). An

element x of a ∗-algebra A is called positive if x is hermitian and Sp(x)⊂ R+. If

x is positive, this is denoted by x ≥ 0. The set of all positive elements of A is

denoted by A+.

If (A, ∗) and (B, ∗) are involutive algebras and R : A→ B is a multiplicative

linear operator or a homomorphism, then R is called a ∗-representation or a ∗-
homomorphism of A in B whenever R(x∗) = R(x)∗ for all x ∈ A. If R is also

an isomorphism then R is a ∗-isomorphism of A and B.

A norm ‖ · ‖ on an algebra A is submultiplicative if

‖xy‖ ≤ ‖x‖‖y‖ (x, y ∈ A).

A Banach algebra A is an algebra furnished with a submultiplicative norm making

A into a Banach space. A C∗-algebra is a Banach algebra which is also an

involutive algebra and its involution satisfies the condition

‖xx∗‖ = ‖x‖2 (x ∈ A).
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The spectrum of an element of a Banach algebra is a nonempty compact subset of

C [6, Theorem VII.3.6.]. Let C(Q) denote the C∗-algebra of continuous complex-

valued functions on a topological space Q.

Let A be a commutative Banach algebra and Σ denote the set of all nonzero

homomorhism of A → C. Give Σ the relative weak∗ topology that it has as a

subset of closed unit ball of A′ [6, Proposition VII.8.4.]. Σ with this topology is

called the maximal ideal space of A. By the Banach−Alaoglu theorem, the maxi-

mal ideal space Σ is a compact Hausdorff space. If a ∈ A, then Gelfand transform

of a is the function â : Σ→ C defined by â(h) = h(a). The homomorphism a 7→ â

of A into C(Σ) is called the Gelfand transform of A.

Theorem 2.5.1. [6, Theorem VIII.2.1.] If A is a commutative C∗-algebra with

identity and Σ is its maximal ideal space, then the Gelfand transform γ : A →
C(Σ) is an isometric ∗-isomorphism of A onto C(Σ).

Let B be an arbitrary C∗-algebra with identity and let a be a normal element

of B. So, if A = C∗(a), the C∗-algebra generated by a and unity 1, i.e., C∗(a) is

the closure of {p(a, a∗) : p(z, z̄) is a polynomial in z and z̄}, A is commutative.

Proposition 2.5.2. [6, Proposition VIII.2.3.] If A is a commutative C∗-algebra

with maximal ideal space Σ and a ∈ A such that A = C∗(a), then the map τ :

Σ→ Sp(a) defined by τ(h) = h(a) is a homeomorphism. If p(z, z̄) is a polynomial

in z and z̄ and γ : A→ C(Σ) is the Gelfand transform, then γ(p(a, a∗)) = pτ .

If τ : Σ → Sp(a) is defined as in the preceding proposition, τ ] : C(Sp(a)) →
C(Σ) is defined by τ ](f) = fτ . Note that τ ] is a ∗-isomorphism and an isometry,

because τ is a homeomorphism.

Theorem 2.5.3. (Spectral Theorem). Let x be a normal element of a C∗-algebra

A. There is a unique isometric ∗-representation Rx : C(Sp(x)) → A such that

x = Rx(i), where i is the identity mapping on Sp(x).

The representation Rx : C(Sp(x)) → A is called the continuous functional

calculus (for a normal element x of A). The element Rx(f) with f ∈ C(Sp(x))

is usually denoted by f(x). Note that if p(z, z̄) is a polynomial in z and z̄, then

Rx(p(z, z̄)) = p(x, x∗). In particular, Rx(z
nz̄m) = xn(x∗)m so that Rx(z) = x

and Rx(z̄) = x∗. Also, Rx(1) = 1.

Theorem 2.5.4. [6, Theorem VIII.2.7.](Spectral Mapping Theorem). If A is a

C∗-algebra and x is a normal element of A, then for every f in C(Sp(x)),

Sp(f(x)) = f(Sp(x)).
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Theorem 2.5.5. [6, Theorem VIII.3.6.] If A is a C∗-algebra and x ∈ A, then

the following statements are equivalent.

(1) x ≥ 0;

(2) x = b2 for some b ∈ ReA;

(3) x = a∗a for some a ∈ A;

(4) x = x∗ and ‖t− x‖ ≤ t for all t ≥ ‖x‖;

(5) x = x∗ and ‖t− x‖ ≤ t for some t ≥ ‖x‖.

Form Spectral Theorem and the theorem above, we have for every positive

x ∈ A the square root
√
x is defined, since Sp(x) ⊂ R+, and for each normal

x ∈ A the modulus can be defined as |x| =
√
x∗x. Note that if x, y ∈ A+ and

x ≤ y, then xβ ≤ yβ holds for 0 ≤ β ≤ 1.

Consider an involutive algebra A. Given a nonempty set M ⊂ A,

M⊥ := {y ∈ A : (∀x ∈M)xy = 0}

and call M⊥ the right annihilator of M . Similarly,

⊥M := {y ∈ A : (∀x ∈M)yx = 0}

denotes the left annihilator of M . A Baer ∗-algebra is involutive algebra A such

that for each nonempty M ⊂ A, there is some p in P(A) satisfying M⊥ = pA.

An AW ∗-algebra is a C∗-algebra that is a Baer ∗-algebra.

Theorem 2.5.6. [4, Theorem 7.1.] Let A be a commutative C∗-algebra with

unity and write A = C(T ), T compact. In order that A be an AW ∗-algebra, it is

necessary and sufficient that T be an extremally disconnected.

Note that if A is a commutative C∗-algebra with unity, then A is an AW ∗-

algebra if and only if its maximal ideal space is extremally disconnected. For

more information, we refer to [4, 23].

Let Λ be a commutative AW ∗-algebra. Then ReΛ is a Dedekind complete

vector lattice with strong order-unity 1 and P(Λ) is a complete Boolean algebra.

Denote [λ] = inf {π ∈ P(Λ) : πλ = λ}, the support of λ in Λ. In case Λ = C(Q),

[λ] is the characteristic function of the clopen set cl ({q ∈ Q : λ(q) 6= 0}). Note

that [λ] = sup {|fλ| ∈ P(Λ) : f ∈ Λ} and [λ] is the projection of 1 onto the band

generated by |λ|. By [4, §3, Propostion 3] and the preceding observations we can

deduce the following proposition.
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Proposition 2.5.7. Let Λ be a commutative AW ∗-algebra and λ, δ ∈ Λ. Then

the following properties are holds:

(1) [λ]λ = λ;

(2) λδ = 0 iff [λ] δ = 0;

(3) 0 ≤ λ ≤ δ implies [λ] ≤ [δ];

(4) λ ≥ 0 and λδ ≥ 0 implies [λ] δ ≥ 0.
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Chapter 3

Kaplansky−Hilbert Modules

In this chapter, we introduce and study the notion of a Kaplansky−Hilbert mod-

ule and operators on them. A Kaplansky−Hilbert module is like a Hilbert space

except that the field of complex numbers is replaced by an arbitrary commutative

C∗-algebra which is order complete vector lattice. Kaplansky−Hilbert modules

appeared in the paper [15] of I. Kaplansky. Moreover, we deal with cyclically

compact sets and operators in Kaplansky−Hilbert modules which are introduced

by A.G. Kusraev and recently, they are studied in [8, 16].

3.1 Kaplansky−Hilbert Modules (AW ∗-Modules)

In this section, we will study some facts of Kaplansky−Hilbert modules which can

be found [15, 23]. Recall that a commutative C∗-algebra A with unity is called

Stone algebra if it is a Dedekind complete vector lattice with respect to cone

A+. Other name used for Stone algebras in the literature are commutative AW ∗-

algebras that were proposed by I. Kaplansky [4, 13, 14, 15, 23]. If Σ is the maximal

ideal space of Stone algebra A, then Σ is an extremal compact space with weak∗

topology [4, Theorem 7.1.] and A is isometric ∗-isomorphic to C(Σ) (Theorem

2.5.1), and so C(Σ,R), the algebra of continuous real-valued functions on Σ, is

a Dedekind complete vector lattice (Theorem 2.2.3). Now suppose that E is an

order complete complex AM -space with strong order-unity 1. According to the

M. Krĕın−S. Krĕın−Kakutani Theorem and Theorem 2.2.3 E is linearly isometric
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and order isomorphic to the space of continuous functions C(Q) on some extremal

compact space Q. Therefore, E can be endowed with some multiplication and

involution so that E becomes a commutative C∗-algebra with unity 1, i. e. a

Stone algebra. Observe that an element e ∈ E is a projection if and only if it

is a component of 1. Moreover, the isomorphism E → C(Q) defines a bijection

between the set of components of 1 and the set of characteristic functions of

clopen sets in Q, so that the Boolean algebras C(E) := C(1) which is the set of

all component of 1 coincides with the set of all projections P(E) and is isomorphic

to Clop(Q). Moreover, by [46, Theorem IV.3.7, Corollary IV.8.1., Proposition

V.(a) ] we have C(E) = {π(1) : π band projection on E} and π(x) = xπ(1) holds

for all band projection π and x in E. Given a complete Boolean algebra B there

exists a unique (up to ∗-isomorphism) Stone algebra Λ such that B and P(Λ) are

isomorphic. Each of these algebras will be denoted by S (B). Note that every

Stone algebra is also a f -algebra with unity, and a⊥b means ab = 0 for a, b ∈ Λ.

Let Λ be a Stone algebra and X be a Λ-module. Suppose X equipped with a

Λ-valued inner product, 〈· | ·〉 : X ×X → Λ satisfying the following conditions:

(1) 〈x | x〉 ≥ 0; 〈x | x〉 = 0⇔ x = 0;

(2) 〈x | y〉 = 〈y | x〉∗;

(3) 〈ax | y〉 = a 〈x | y〉;

(4) 〈x+ y | z〉 = 〈x | z〉+ 〈y | z〉,

for all x, y, z in X and a in Λ. As in Hilbert spaces, we can introduce the norms

in X by the formulasx :=
√
〈x | x〉, 9x9 := ‖〈x | x〉‖

1
2 ,

for all x in X. Employing the continuous functional calculus [23, Theorem 7.4.2.]

we may deduce from the properties (2) and (3) that
λx= |λ|

x for all λ in Λ

and x in X. Since
x is regarded as a function on some extremal compact space

Q, it follows that the Cauchy−Bunyakovskĭı−Schwarz inequality

| 〈x | y〉 | ≤
xy

holds. Thus,
· satisfies the triangle inequality, and

· is a Λ-valued norm in X.

On the other hand, on taking norms in the above inequality, we further get the

numerical version of the Cauchy−Bunyakovskĭı−Schwarz inequality

‖〈x | y〉‖ ≤ 9x9 9y9 .
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So, we have that X is a normed space. Moreover, by definitions of
· and 9·9,

9x9 =
∥∥x∥∥

holds for all x in X, since ‖a‖ = ‖(
√
a)2‖ = ‖

√
a‖2

for every positive a in Λ.

Therefore, the normed space (X,9·9) is a space with mixed norm. On the other

hand, it has the following properties:

(1) let x be an arbitrary element in X, and let (eξ)ξ∈Ξ be a partition of unity

in P(Λ) with eξx = 0 for all ξ ∈ Ξ, then x = 0;

(2) if eξx = eξxξ (ξ ∈ Ξ) for x ∈ X, for a family (xξ)ξ∈Ξ in X and a partition

of unity (eξ)ξ∈Ξ in P(Λ), then 9x9 ≤ sup {9eξxξ9 : ξ ∈ Ξ}

since Λ has same properties [13, Lemmas 2.2 and 2.5]. Clearly, it follows from (1)

that the element x of (2) is unique, we shall write x = mixξ∈Ξ (eξxξ). We call X a

C∗-module over Λ if it is complete with respect to the mixed norm 9·9. We call

X a Kaplansky−Hilbert module or an AW ∗-module over Λ if it is a C∗-module

over Λ and has the following additional property:

(3) let (xξ)ξ∈Ξ be a norm-bounded family in X, and let (eξ)ξ∈Ξ be a partition

of unity in P(Λ); then there exists an element x ∈ X such that eξx = eξxξ

for all ξ ∈ Ξ.

Note that x = mixξ∈Ξ (eξxξ) means x = bo-
∑

ξ∈Ξ eξxξ for all norm-bounded family

(xξ)ξ∈Ξ ⊂ X and partition of unity (eξ)ξ∈Ξ in P(Λ). On the other hand, for each

projection e in P(Λ) it can be defined a band projection on Λ such that a 7→ ea.

Thus, L (X) has a complete Boolean algebra of norm-one projection B which is

isomorphic to P(Λ), i. e. X is a normed B-space.

Theorem 3.1.1. [23, Theorem 7.4.4.] Let X be a C∗-module over Λ. Then the

following statements are equivalent:

(i) X is a Kaplansky−Hilbert module over Λ;

(ii) (X,9·9) is a B-cyclic Banach space where B is isomorphic to P(Λ);

(iii) (X,
·) is a Banach−Kantorovich space over Λ.

Note that the inner product is bo-continuous in each variable. In particular,〈
bo-
∑
ξ∈Ξ

eξxξ

∣∣∣∣∣ y
〉

= o-
∑
ξ∈Ξ

〈eξxξ | y〉 .
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for every norm-bounded family (xξ)ξ∈Ξ in X, and partition of unity (eξ)ξ∈Ξ in

P(Λ) [15, Lemma 2].

Let X be a Kaplansky−Hilbert module over Λ. By an Kaplansky−Hilbert

submodule or an AW ∗-submodule X0 we mean X0 is a submodule in the algebric

sense, closed in norm topology and containing all sums of the form bo-
∑

ξ∈Ξ eξxξ,

where (xξ)ξ∈Ξ is a bounded family in X0 and (eξ)ξ∈Ξ is a partition of unity in

P(Λ) [15].

We remark that a Kaplansky−Hilbert submodule is itself a Kaplansky−Hilbert

module over Λ, and the intersection of any number of Kaplansky−Hilbert sub-

modules is again a Kaplansky−Hilbert submodule, and consequently for any sub-

set M there exists the smallest Kaplansky−Hilbert submodule containing M ; it

is called the Kaplansky−Hilbert submodule generated by M . Moreover, a sub-

module X0 ⊂ X is a Kaplansky−Hilbert submodule if and only if it is bo-closed

[23]. The orthogonal complement of M in X is defined as

M⊥ := {x ∈ X : (∀y ∈M) 〈x | y〉 = 0} .

Then the set M⊥ for any subset M of X is a Kaplansky−Hilbert submodule

of X [15, Lemma 6], and if X0 is a Kaplansky−Hilbert submodule of X, then

X = X0⊕X⊥0 [15, Theorem 3]. Hence, Kaplansky−Hilbert submodule generated

by a subset M of X is M⊥⊥. A Kaplansky−Hilbert module over Λ is called

faithful if for every a ∈ Λ the condition (∀x ∈ X) ax = 0 implies that a = 0. In

the sequel we restrict our attention to faithful Kaplansky−Hilbert modules over

Λ.

Clearly the following identity can be verified in Kaplansky−Hilbert modules,

4 〈u | y〉 =
3∑

k=0

ik
〈
u+ ikv | x+ iky

〉
(3.1)

for each x, y, u, v ∈ X, and so the Polarization identity holds:

4 〈x | y〉 =
x+ y

2 −
x− y2 + i

x+ iy
2 − i

x− iy2. (3.2)

Let U be a subset of X and mix (U) denote a set of all x ∈ X such that

there exist (xξ)ξ∈Ξ in U and arbitrary partition of unity (eξ)ξ∈Ξ in P(Λ) with

eξx = eξxξ (ξ ∈ Ξ). The set mix (U) is called the mix-closure of U . We say that

U is mix-closed if U = mix (U). Moreover, mixξ∈Ξ (eξxξ) ∈ mix (U) means that

the sum bo-
∑

ξ∈Ξ eξxξ exists in X. In particular, mixξ∈Ξ (eξxξ) = bo-
∑

ξ∈Ξ eξxξ.

We say that U is mix-complete if, for all partition of unity (eξ)ξ∈Ξ in P(Λ) and
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(xξ)ξ∈Ξ ⊂ U , there is x ∈ U such that x = mixξ∈Ξ (eξxξ). From (2) and (3),

the closed unit ball of X is mix-complete. Clearly, every mix-complete set is

mix-closed. Mix-complete means mix-closed whenever the set is bounded.

Lemma 3.1.2. [47, Lemma 2.3.] Let M be a submodule of X. Then cl (mix (M))

is the Kaplansky−Hilbert submodule generated by M.

Lemma 3.1.3. Let x be a nonzero element of a Kaplansky−Hilbert module X

over Λ. Then the following statements hold:

(i) there are a nonzero µ ∈ P(Λ) and a positive element a ∈ Λ with a
x= µ

and µ = [a] ≤
[x];

(ii) if
x≥ π is satisfied for some nonzero projection π, then there exists a ∈ Λ+

such that πa = a and a
x= π.

Proof. (i) According to [15, Lemma 4.] there exists a nonzero µ ∈ P(Λ) and an

element b ∈ Λ with b
x = µ. Define a := µb, and note that a

x = µ and

a = µa. So, we have [a] ≤ µ. From (1 − [a])a = (1 −
[x])x = 0 we see

that (1 − [a])µ = (1 −
[x])µ = 0. Thus, µ ≤ [a] and µ ≤

[x] hold, and so

µ = [a] ≤
[x]. Moreover, it follows from a

x≥ 0 that a
[x] ≥ 0. Hence,

a = aµ = µa
[x] ≥ 0, and the proof of (i) is finished.

(ii) Let
x≥ π. By (i) for each 0 < µ ≤ π there exists g ∈ Λ+ such that

µ ≥ µ′ := g
x∈ P(Λ)\{0}, and so ‖µ′g‖ ≤ 1 since g

x≥ gµ′. Consider the set

S :=
{

(µ, g) : g ∈ Λ+ and π ≥ µ = g
x∈ P(Λ)

}
.

Thus we have π = sup {µ : (µ, g) ∈ S}. Using Exhaustion Principle [23, 1.1.6.(1)]

we get an antichain (µα)α∈A in P(Λ) and a bounded family (gα)α∈A in Λ such that

π = supα∈A µα where (µα, gα) ∈ S with µαgα = gα. Define a = o-
∑

α∈A µαgα, and

note that πa = a and a
x= π. The proof of the lemma is now complete.

Definition 3.1.4. Let X be a Kaplansky−Hilbert module over Λ. A subset E

of X is said to be orthonormal (projection orthonormal) if

(1) 〈x | y〉 = 0 for all distinct x, y ∈ E ;

(2) 〈x | x〉 = 1 (〈x | x〉 ∈ P(Λ) \ {0}) for every x ∈ E .

An orthonormal (projection orthonormal) set E ⊂ X is a basis (projection basis)

for X provided that
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(3) the condition (∀e ∈ E ) 〈x | e〉 = 0 imply x = 0.

A Kaplansky−Hilbert module is said to be λ-homogeneous if λ is a cardinal

and X has a basis of cardinality λ. A Kaplansky−Hilbert module is called homo-

geneous if it is λ-homogeneous for some cardinal λ. For 0 6= b ∈ P(Λ), denote by

κ(b) the least cardinal γ such that a Kaplansky−Hilbert module bX over bΛ is

γ-homogeneous. If X is homogeneous then κ(b) is defined for all 0 6= b ∈ P(Λ).

It is convenient to assume that κ(0) = 0. We shall say that a Kaplansky−Hilbert

module X is strictly γ-homogeneous if X is homogeneous and γ = κ(b) for all

nonzero b ∈ P(Λ). A Kaplansky−Hilbert module is said to be strictly homoge-

neous if it is strictly λ-homogeneous for some cardinal λ.

Not every Kaplansky−Hilbert module has a basis, but we can split it into

strictly homogeneous parts. Thus, every Kaplansky−Hilbert module has a pro-

jection basis.

Theorem 3.1.5. [23, 7.4.7.(2)] Let X be a Kaplansky−Hilbert module over Λ.

Then there exists a partition of unity (bξ)ξ∈Ξ in P(Λ) such that bξX is a strictly

κ(bξ)-homogeneous Kaplansky−Hilbert module over bξΛ.

Suppose that Q is an extremal compact space. Let C∞ (Q,E) be the set of

cosets of continuous vector-functions u that act from comeager subsets dom(u) ⊂
Q into some normed space E. Recall that a set is called comeager if its comple-

ment is meager. Vector-functions u and v are equivalent if u(t) = v(t) whenever

t ∈ dom(u) ∩ dom(v). The set C∞ (Q,E) is endowed, in a natural way, with

the structure of a module over C∞(Q). Moreover, the continuous extension of

the pointwise norm defines a decomposable vector norm on C∞ (Q,E) with val-

ues in C∞(Q). Indeed, given any z ∈ C∞ (Q,E), there exists a unique function

xz ∈ C∞(Q) such that ‖u(t)‖ = xz(t) (t ∈ dom(u)) for every representative u of

the coset z. Assign
z= xz and

C# (Q,E) :=
{
z ∈ C∞ (Q,E) :

z∈ C(Q)
}
.

If E is a Banach space, then C# (Q,E) is a Banach−Kantorovich space [23,

2.3.3.]. Let H be a Hilbert space and 〈·, ·〉 be the inner product of H. Then

we can introduce some C(Q)-valued inner product in C# (Q,H) as follows: Take

continuous vector-functions u : dom(u) → H and v : dom(v) → H. The func-

tion q 7→ 〈u(q), v(q)〉 (q ∈ dom(u) ∩ dom(v)) is continuous and admits a unique

continuation z ∈ C(Q) to the whole of Q. If x and y are the cosets containing

vector-functions u and v then assign 〈x | y〉 := z. Clearly, 〈· | ·〉 is a C(Q)-valued

inner product and
x=

√〈x | x〉 (x ∈ C# (Q,H)).
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Theorem 3.1.6. [23, 7.4.8.(1)] Suppose that Q is an extremal compact space, and

H is a Hilbert space of dimension λ. The space C# (Q,H) is a λ-homogeneous

Kaplansky−Hilbert module over the algebra Λ := C(Q).

Let E be a nonempty set and denote by `2(E ,Λ) the set of all families (ae)e∈E

of elements of Stone algebra Λ such that o-
∑

e∈E |ae|2 is o-summable in Λ. Define

a Λ-valued inner product in `2(E ,Λ) as

〈u | v〉 := o-
∑
e∈E

uev
∗
e (u, v ∈ `2(E ,Λ)) .

Since |uev∗e | ≤ |ue| |ve|, the following inequality [15, Lemma 8.]∣∣∣∣∣o-∑
e∈E

ueve

∣∣∣∣∣
2

≤ o-
∑
e∈E

|ue|2 o-
∑
e∈E

|ve|2

implies 〈u | v〉 is well-defined.

Theorem 3.1.7. [23, 7.4.8.(2)] For any nonempty set E with λ := |E | the space

`2(E ,Λ) is a λ-homogeneous Kaplansky−Hilbert module over Λ.

Corollary 3.1.8. [23, 7.4.8.(3)] For a Stone algebra Λ and a cardinal number λ

there exists a λ-homogeneous Kaplansky−Hilbert modules over Λ.

Lemma 3.1.9. Let X be a Kaplansky−Hilbert module over Λ and
x∈ P(Λ).

Then x =
xx holds.

Proof. Given
x∈ P(Λ), we deducex−xx=

(1−
x)x

= (1−
x)

x
=
x−xx=

x−x= 0

where 1 is unity of P(Λ). Thus, x =
xx holds.

Lemma 3.1.10. (Bessel’s inequality). Let x be a element of Kaplansky−Hilbert

module X over Λ and {ξα | α ∈ A} be a projection orthonormal subset in X. Then

(| 〈x | ξα〉 |2)α∈A is o-summable and

o-
∑
α∈A

| 〈x | ξα〉 |2 ≤
x2.

Proof. Let F ⊂ A be finite set. By using Lemma 3.1.9,

0 ≤

x−
∑
k∈F

〈x | ξk〉 ξk


2

=
x2 − 2

∑
k∈F

| 〈x | ξk〉 |2 +
∑
k∈F

| 〈x | ξk〉 |2
ξk2

=
x2 − 2

∑
k∈F

| 〈x | ξk〉 |2 +
∑
k∈F

|
〈
x |
ξkξk〉 |2

=
x2 −

∑
k∈F

| 〈x | ξk〉 |2.
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Therefore, we have for all F ⊂ A finite set∑
k∈F

| 〈x | ξk〉 |2 ≤
x2.

As Λ is Dedekind complete, (| 〈x | ξα〉 |2)α∈A is o-summable and

o-
∑
α∈A

| 〈x | ξα〉 |2 = sup

{∑
k∈F

| 〈x | ξk〉 |2 : F ⊂ A is finite

}
≤
x2.

In case of Hilbert C∗-modules a variant of Bessel’s inequality is proved in [7].

The following Lemmas 3.1.11 and 3.1.12 were proved for orthonormal sets in [15,

7.4.9.(1),(2)].

Lemma 3.1.11. Let X0 be the Kaplansky−Hilbert submodule generated by E

which is a projection orthonormal subset in X. If {ae | e ∈ E } is a family in Λ

such that
{
|ae|2

e}
e∈E

is o-summable then there exists an element x0 ∈ X0 with

x0 = bo-
∑
e∈E

aee,
x0

2 = o-
∑
e∈E

|ae|2
e, 〈x0 | e〉 = ae

e (e ∈ E ).

Proof. Let Θ be the set of all finite subsets of E . Given θ ∈ Θ, put

sθ :=
∑
e∈θ

aee, σθ :=
∑
e∈θ

|ae|2
e, σ := o-

∑
e∈E

|ae|2
e, δθ := σ − σθ

Take θ, θ1, θ2 ∈ Θ with θ ⊂ θ1 ∩ θ2 and denote by θ′ and θ14θ2 the complement

of θ and the symmetric difference of θ1 and θ2, respectively. Since the set E is

projection orthonormal, we may write

sθ1 − sθ22 =


∑

e∈θ14θ2

aee


2

=
∑

e∈θ14θ2

|ae|2
e2

=
∑

e∈θ14θ2

|ae|2
e≤ o-

∑
e∈θ′
|ae|2

e= σ − σθ = δθ.

By hypothesis (δθ)θ∈Θ decreases to zero, so that (sθ)θ∈Θ is bo-fundamental. By X

is bo-complete, the bo-limit of (sθ)θ∈Θ exists in X. Denote

x0 := bo- lim
θ∈Θ

sθ := bo-
∑
e∈E

aee.

Now we deduce

〈x0 | e〉 = o-
∑
ζ∈E

aζ 〈ζ | e〉 = ae
e2 = ae

e.
Moreover, we have x0

2 = o-
∑
e∈E

|ae|2
e

since
sθ2 =

∑
e∈θ |ae|2

e.
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Lemma 3.1.12. Let X0 be Kaplansky−Hilbert submodule of X with a projection

basis E . Then E and X0 have the same orthogonal complements in X.

Proof. The Kaplansky−Hilbert submodule generated by E is denoted by Y0 ⊂
X0. Since E ⊂ X0, we have X⊥0 ⊂ E ⊥. Let x ∈ E ⊥ and y ∈ X0. By Bessel’s

inequality, (| 〈y | e〉 |2) is o-summable. By the preceding lemma, there exists x0 ∈
Y0 such that

x0 = bo-
∑
e∈E

〈y | e〉 e, 〈x0 | e〉 = 〈y | e〉
e (e ∈ E ).

Since 〈y | e〉
e= 〈y | e〉, we obtain 〈x0 − y | e〉 = 0 for all e ∈ E , i. e., x0 = y

(or X0 = Y0). Moreover, from

〈x | y〉 =

〈
x

∣∣∣∣∣ bo-∑
e∈E

〈y | e〉 e

〉
= o-

∑
e∈E

〈e | y〉 〈x | e〉 = 0

it follows that X⊥0 and E ⊥ are same Kaplansky−Hilbert submodule.

As an immediate corollary, if X0 is a Kaplansky−Hilbert submodule of X with

a projection basis E then X0 = E ⊥⊥, i. e., X0 is Kaplansky−Hilbert submodule

generated by E and

x = bo-
∑
e∈E

〈x | e〉 e,
x2 = o-

∑
e∈E

| 〈x | e〉 |2

hold for all x ∈ X0 from Lemmas 3.1.11 and 3.1.12. All projection orthonormal

subset is a projection basis for Kaplansky−Hilbert submodule generated by it.

Definition 3.1.13. Let E be a basis for Kaplansky−Hilbert module X over Λ

and x ∈ X. We say that the family x̂ := (x̂e)e∈E in ΛE , given by the identity

x̂e := 〈x | e〉, is the Fourier coefficient family of x with respect to E or the Fourier

transform of x (relative to E ).

Observe that by Bessel’s inequality, the Fourier coefficient family of x is square

o-summable; moreover, the following identities hold

x = bo-
∑
e∈E

x̂ee,
x2 = o-

∑
e∈E

|x̂e|2

from Lemma 3.1.11.

Proposition 3.1.14. (Riesz−Fisher Isomorphism Theorem) [23, 7.4.10.(4)] Let

X be a homogeneous Kaplansky−Hilbert module over Λ with a basis E . The
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Fourier transform F : x 7→ x̂ (relative to E ) is an isometric isomorphism of

X onto `2(E ,Λ). The inverse Fourier transform, the Fourier summation F−1 :

`2(E ,Λ)→ X, acts by the rule F−1(x̂) = bo-
∑

e∈E xee for x̂ = (x̂e)e∈E ∈ `2(E ,Λ).

Moreover, the Fourier transform preserves inner product or, in other words, for

all x, y ∈ X the Parseval identity holds:

〈x | y〉 = o-
∑
e∈E

x̂eŷ
∗
e .

Corollary 3.1.15. Any two λ-homogeneous Kaplansky−Hilbert modules over a

Stone algebra are isomorphic.

Proposition 3.1.16. Let E be a finite subset of X with
e =

f ∈ P(Λ)

(e, f ∈ E ). Suppose that
∑

e∈E fee = 0 implies
fee= 0 where fe ∈ Λ. If E is

a subset of F⊥⊥, where F is a projection orthonormal finite subset of X, then

card(F ) ≥ card(E ).

Proof. Let F = {y1, y2, ..., yk}. The proof is by induction on n = card(E ). For

n = 1. The validity of the statement is obvious. Assume that the result to be true

for some n ∈ N. Let E = {x1, x2, ..., xn, xn+1} ⊂ X such that
xi=

xj∈ P(Λ)

(1 ≤ i, j ≤ n+ 1) and f1x1 + f2x2 + · · ·+ fn+1xn+1 = 0 implies
f1x1

=
f2x2

=

· · · =
fn+1xn+1

= 0 where fi ∈ Λ (1 ≤ i ≤ n + 1). Let E is a subset of F⊥⊥.

Then, xi =
∑k

j=1 〈xi | yj〉 yj holds for each i = 1, ..., n + 1. Thus, it follows from

xn+1 6= 0 that there exists j such that 〈xn+1 | yj〉 6= 0. We can assume j = k. By

Lemma 3.1.3 (i) there is g ∈ Λ such that µ := g 〈xn+1 | yk〉 =
g 〈xn+1 | yk〉 yk

∈
P(Λ) \ {0}. Note that µ = µ

xn+1

 since (1−
xn+1

) 〈xn+1 | yk〉 = 0. We have

the following statement by simple calculations

µxi − g 〈xi | yk〉xn+1 =
k−1∑
j=1

(µ 〈xi | yj〉 − g 〈xi | yk〉 〈xn+1 | yj〉) yj (1 ≤ i ≤ n).

Moreover,
µxi − g 〈xi | yk〉xn+1

2 = µ + |g 〈xi | yk〉|2 ≥ µ are satisfied i =

1, ..., n + 1. By Lemma 3.1.3 (ii) there is gi ∈ Λ+ such that µgi = gi and

µ = gi
µxi − g 〈xi | yk〉xn+1

. Define zi := gi (µxi − g 〈xi | yk〉xn+1), and note

that zi ∈ {y1, y2, ..., yk−1}⊥⊥ and
zi= µ (1 ≤ i ≤ n). Assume that λ1z1 +λ2z2 +

· · ·+ λnzn = 0 holds for some λi ∈ Λ (1 ≤ i ≤ n). Then we have

0 = λ1z1 + λ2z2 + · · ·+ λnzn =
n∑
i=1

λigi (µxi − g 〈xi | yk〉xn+1)

=
n∑
i=1

λigiµxi −

(
n∑
i=1

gλigi 〈xi | yk〉

)
xn+1,
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and so
λizi= 0 since

λigi=
λigiµxi= 0. Therefore, from our induction

hypothesis we get n ≤ k − 1, and so n+ 1 ≤ k.

Corollary 3.1.17. Let E and F be projection orthonormal finite subsets of X.

If π := min
{x : x ∈ E

}
6= 0 and card(F ) < card(E ), then there exists x ∈

E ⊥⊥ ∩F⊥ with
x= π.

Proof. Let E := {x1, x2, ..., xn} and F := {y1, y2, ..., yk}. Assume by way of

contradiction that our claim is false. Then µ
(
E ⊥⊥ ∩F⊥) = {0} holds for

some 0 < µ ≤ π. For 1 ≤ i ≤ n define zi :=
∑

y∈F 〈xi | y〉 y, and note that

pzi 6= 0 are satisfied for all p ∈ P(Λ) with 0 < p ≤ µ. Thus, there exist

gi ∈ Λ and p ∈ P(Λ) such that 0 < p = gi
zi ≤ µ, (1 ≤ i ≤ n). Suppose

that λ1g1z1 + λ2g2z2 + · · · + λngnzn = 0 holds for some λi ∈ Λ (1 ≤ i ≤ n).

Therefore, we have λ1g1x1 + λ2g2x2 + · · · + λngnxn ∈ F⊥. By assumption,

µ (λ1g1x1 + λ2g2x2 + · · ·+ λngnxn) = 0. Since E is projection orthonormal set

we have
µλ1g1x1

 =
µλ2g2x2

 = · · · =
µλngnxn = 0. So, it follows fromµλigixi2 =

µλigizi2 +
µλigi(xi − zi)2 that

λigizi= 0 for 1 ≤ i ≤ n. Thus,

k < n, contradicting Proposition 3.1.16.

Now we recall the notion of C∗-sum, for details see [4]. Let (Aξ)ξ∈Ξ be a family

of (commutative) AW ∗-algebras. If

A :=
⊕∑
ξ∈Ξ

Aξ :=

{
a = (aξ)ξ∈Ξ ∈

∏
ξ∈Ξ

Aξ : sup
ξ∈Ξ
{‖aξ‖} <∞

}

is equipped with the coordinatewise ∗-algebra operations, and the norm ‖a‖ :=

supξ∈Ξ {‖aξ‖}, thenA is an (commutative)AW ∗-algebra and P(A) =
∏

ξ∈Ξ P(Aξ)

and Pc(A) =
∏

ξ∈Ξ Pc(Aξ) ([4, Proposition 10.1]).

The notion of C∗-sum can be given for Kaplansky−Hilbert modules. Let Yξ

be a Kaplansky−Hilbert module over Aξ. Then

Y :=
⊕∑
ξ∈Ξ

Yξ :=

{
x = (xξ)ξ∈Ξ ∈

∏
ξ∈Ξ

Yξ : sup
ξ∈Ξ
{9xξ9} <∞

}

equipped with the coordinatewise module operations over A and the inner product

〈x | y〉 := (〈xξ | yξ〉)ξ∈Ξ, is a Kaplansky−Hilbert module over A. In particular,x=
(xξ)ξ∈Ξ

and 9x9 = supξ∈Ξ {9xξ9} are satisfied for all x = (xξ)ξ∈Ξ in Y .

The following result on functional representation of Kaplansky−Hilbert mod-

ules is one of the main tools of our investigation. We refer for the definition of

γ-stable to [23, 7.4.11.].
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Theorem 3.1.18. [23, Theorem 7.4.12.] To each Kaplansky−Hilbert module X

over Λ there is a family of nonempty extremal compact spaces (Qγ)γ∈Γ with Γ a

set of cardinals, such that Qγ is γ-stable for all γ ∈ Γ and the following unitary

equivalence holds:

X '
⊕∑
γ∈Γ

C# (Qγ, `2(γ)) .

If some family (Pδ)δ∈∆ of extremal compact spaces satisfies the above conditions

then Γ = ∆ and Pγ is homeomorphic with Qγ for all γ ∈ Γ.

The unitary equivalence means that there are an isomorphism

Ψ : X →
⊕∑
γ∈Γ

C# (Qγ, `2(γ)) (3.3)

and a ∗-isomorphism

Φ : Λ→
⊕∑
γ∈Γ

C(Qγ) (3.4)

(also Φ is an isometry [6, VIII.4.8. Teorem]) such that

Φ 〈x | y〉 = 〈Ψ(x) | Ψ(y)〉 (x, y ∈ X).

So, for every x, y ∈ X, a ∈ Λ and π ∈ P(Λ) the following hold:

(i) Ψ(ax) = Φ(a)Ψ(x);

(ii) Φ
x=

Ψ(x)
 and 9x9 = 9Ψ(x)9 = supγ∈Γ {‖(Ψ(x))γ‖}.

From (ii), Φ is the exact dominant
Ψ
 of Ψ. Moreover, it follows from Φ is a

bijective positive operator that Φ is o-continuous, and so Ψ is bo-continuous.

3.2 Cyclically Compact Sets in

Kaplansky−Hilbert Modules

Now we turn our attention to the study of cyclically compact sets in

Kaplansky−Hilbert modules. In this section, X will denote a Kaplansky−Hilbert

module over Λ

Let B be a complete Boolean algebra. Denote by Prtσ(B) the set of sequences

ν : N→ B which are partitions of unity in B. For ν1, ν2 ∈ Prtσ(B), the formula

ν1 � ν2 abbreviates the following assertion:

if m,n ∈ N and ν1(m) ∧ ν2(n) 6= 0B, then m < n.
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Given a mix-complete subset K ⊂ X, a sequence s : N → K, and a partition

ν ∈ Prtσ(B), put sν := mixn∈N (ν(n)s(n)). A cyclic subsequence of s : N → K

is any sequence of the form (sνk)k∈N, where (νk)k∈N ⊂ Prtσ(B) and (∀k ∈ N)

νk � νk+1. A subset C ⊂ X is said to be cyclically compact if C is mix-complete

and every sequence in C has a cyclic subsequence that converges (in norm) to

some element of C. A subset in X is called relatively cyclically compact if it is

contained in a cyclically compact set. Moreover, every cyclically compact set is

bounded in X.

Observe that if for some n ∈ N ν1 � ν2 and ν1(k) = 0 for all k < n, then

ν2(k) = 0 for all k ≤ n. Thus, if (νk)k∈N ⊂ Prtσ(B) and (∀k ∈ N) νk � νk+1,

then νk(i) = 0 for all i < k.

Lemma 3.2.1. Let K be a relatively cyclically compact subset in X. Then

cl (mix (K)) is a cyclically compact subset of X.

Proof. It is enough to show that cl (mix (K)) is mix-complete. To this end,

let (xα)α∈A be a family in cl (mix (K)) and (πα)α∈A be a partition of unity in

P(Λ). Define x := mixα∈A (παxα). For each n ∈ N there is a family (yα)α∈A

in mix (K) such that 9xα − yα9 ≤ 1/n. Since mix (K) is mix-complete, yn :=

mixα∈A (παyα) ∈ mix (K). Using the following inequality

x− yn=

bo-
∑
α∈A

παxα − bo-
∑
α∈A

παyα

 = o-
∑
α∈A

πα
xα − yα≤ 1

n
1

we obtain x ∈ cl (mix (K)), as desired.

The following lemma is a corollary of [23, 2.2.9.(1)]. A set V is called

finitely cyclic if for every n ∈ N, {x1, x2, ..., xn} ⊂ V and a partition of unity

{p1, p2, ..., pn} ⊂ P(Λ),
∑n

i=1 pixi ∈ V .

Lemma 3.2.2. Let V be a finitely cyclic subset of X and x ∈ X. Then there

exists a net (vα)α∈A in V such that the net
(x− vα)α∈A decreases and{x− vα : α ∈ A

}
=
{x− v : v ∈ V

}
.

In particular, o-limα∈A
x− vα= infv∈V

x− v.

Lemma 3.2.3. Let K be a cyclically compact subset of X and x ∈ X. Then

there exists a sequence (wn)n∈N in K that converges (in norm) to some w in K

and satisfies ∣∣x− wn− r∣∣ ≤ 1

n
1 and

x− w= r

where r = inf
{x− k : k ∈ K

}
.
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Proof. By Lemma 3.2.2, we have a net (vα)α∈A in K such that o-lim
x− vα= r.

So, using [23, Theorem 8.1.8.] for each n ∈ N we obtain a partition of unity

(πnα)α∈A in P(Λ) such that

πnα
∣∣x− vα− r∣∣ ≤ 1

n
1

holds for all α ∈ A. Since K is bounded, the net
(x− vα)α∈A is also bounded.

Thus, we have kn ∈ K with ∣∣x− kn− r∣∣ ≤ 1

n
1

where kn = bo-
∑

α∈A π
n
αvα = mixα∈A (πnαvα). SinceK is cyclically compact subset,

there is a cyclic subsequence (kνn)n∈N of (kn)n∈N in K that is norm-convergent to

some w in K. Therefore, if we define wn := kνn then it follows from∣∣x− wn− r∣∣ ≤ 1

n
1

that
x− w= r, as desired.

The following Lemmas 3.2.4 and 3.2.5 and Propositions 3.2.8 and 3.4.7 are

proved in [8, 16] for measurable bundles.

Proposition 3.2.4. Let K be a cyclically compact subset of C# (Q,H). Then for

each q ∈ Q, K(q) is a closed set in H where K(q) := {x(q) : x̃ ∈ K, q ∈ dom(x)}.

Proof. Fix q ∈ Q and let xq be an element of cl (K(q)). So, we have

0 = inf
{
‖xq − k(q)‖ : k̃ ∈ K, q ∈ dom(k)

}
.

By x : t 7→ xq (t ∈ Q) and Lemma 3.2.3, we obtain ṽ ∈ K such that̃x− ṽ= inf
{̃x− k̃ : k̃ ∈ K

}
.

Thus, from
x̃− ṽ(t) ≤

x̃− k̃(t) for every k̃ ∈ K and t ∈ Q we have̃x− ṽ(q) = 0, and so we can assume q ∈ dom(v). Therefore, it follows from̃x− ṽ(q) = ‖xq − v(q)‖ that xq = v(q), i. e., K(q) is a closed set in H.

Lemma 3.2.5. Let K be a relatively cyclically compact subset of C# (Q,H).

Then there exists a comeager set Q0 ⊂ Q such that K(q) is precompact in H for

all q ∈ Q0.

Proof. Fix n in N. According to [23, Theorem 8.5.2.] there exist a countable

partition of unity (πk)k∈N in P(Λ) and a sequence (θk)k∈N of finite subsets θk :=
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{
x̃k,1, x̃k,2, ..., x̃k,l(k)

}
⊂ K such that for every x̃ ∈ K there exists a partition of

unity
{
ρk,1, ρk,2, ..., ρk,l(k)

}
in P(Λ) with∥∥∥∥∥πk
x̃−

l(k)∑
i=1

ρk,ix̃k,i


∥∥∥∥∥ ≤ 1

n
.

Define

Qn :=

(⋃
k∈N

Uk

)⋂⋂
k∈N

l(k)⋂
i=1

dom(xk,i)


where Uk is a clopen set in Q corresponding to the projection πk in P(Λ). So, if

we define a comeager set Q0 :=
⋂
n∈NQn, then it is not difficult to see that Q0 is

a comeager set and for every q in Q0 there is k0 in N with q ∈ Uk0 and

K(q) ⊂
l(k0)⋃
i=1

cl
(
B 1

n
(xk0,i(q))

)
where B 1

n
(xk0,i(q)) is the open ball centered at xk0,i(q) with radius 1

n
. Thus, K(q)

is precompact in H for all q ∈ Q0.

A useful consequence of the preceding results is the following.

Corollary 3.2.6. Let K be a cyclically compact subset of C# (Q,H). Then there

exists a comeager set Q0 ⊂ Q such that K(q) is compact in H for all q ∈ Q0.

The following lemma was proved in [16] for measurable bundles.

Lemma 3.2.7. Let K be a mix-complete subset of X and ε be a positive real

number. Then there exist a subset θ := {xn : n ∈ N} of K and an increasing

sequence (πn)n∈N ⊂ P(Λ) such that the following statements hold:

(i) for every x ∈ K and n ∈ N there exists x′ ∈ mix (θn) such that

πn
x− x′≤ ε1

where θn := {x1, ..., xn};

(ii) π⊥i
xj − xi≥ επ⊥i , (i < j).

Proof. The sequences can be constructed by induction as follows. Given n ∈ N.

Suppose that θn = {x1, x2, ..., xn} ⊂ K and {π1, π2, ..., πn−1} ⊂ P(Λ) with πj−1 ≤
πj and the following statements hold:
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(a) for every x ∈ K and k < n there exists some x′ ∈ mix (θk) such that

πk
x− x′≤ ε1;

(b) π⊥i
xj − xi≥ επ⊥i , (i < j < n).

Now we will deduce the existence of xn+1 ∈ K and πn ∈ P(Λ). If πn−1 = 1, then

take xn+1 := xn and πn := πn−1. Assume that πn−1 6= 1. Consider the set

An :=
{
π ∈ P(Λ) : (∀x ∈ K)(∃x′ ∈ mix (θn))π

x− x′≤ ε1
}
,

then we will prove the following statements hold:

(1) πn :=
∨
An ∈ An

(2) There exists xn+1 ∈ K such that π⊥i
xn+1 − xi

≥ επ⊥i for i ≤ n.

Firstly, we will show that An is a band in P(Λ). For this, by definition of An,

π ∈ An and µ ≤ π implies µ ∈ A1. If π, µ ∈ An, then there exists y1, y2 ∈ mix (θn)

such that

π
x− y1

≤ ε1 and (µ ∧ π⊥)
x− y2

≤ ε1.

If we define

x′ := πy1 + (µ ∧ π⊥)y2 + (π ∨ µ)⊥y1,

then x′ ∈ mix (θn) and (π ∨ µ)
x− x′≤ ε1. So, An is an ideal in P(Λ). Using

the Exhaustion Principle [23, 1.1.6.(1)] there exists an antichain (να)α∈A in An

such that supα∈A να = πn. So, for each α ∈ A we have yα ∈ mix (θn) such that

να
x− yα≤ ε1. Since mix (θn) is mix-complete,

x′ := π⊥n x1 + bo-
∑
α∈A

ναyα

is an element of mix (θn), and so we have

πn
x− x′= πn

bo-∑
α∈A

να(x− yα)
= o-

∑
α∈A

να
x− yα

= sup
α∈A

να
x− yα≤ ε1.

Thus, An is a band in P(Λ), and this proves (1).

For the proof of (2), we define

Cn =
{
π ∈ P(Λ) : (∃x ∈ K)π

x− xi> επ, i = 1, 2, ..., n
}
,
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then clearly, Cn ∪ {0} is an ideal in P(Λ) and
∨
Cn ≤ π⊥n . Since 0 < π ≤ π⊥n

implies π /∈ An, we have xπ ∈ K such that π
xπ − y � ε1 holds for all y ∈

mix (θn). Now we define

Di :=
{
µ ∈ P(Λ) : µ ≤ π and µ

xπ − xi> εµ
}

for i = 1, 2, ..., n. Clearly, Di 6= ∅ and Di ∪ {0} is an ideal in P(Λ). Moreover,

µi
xπ − xi≥ εµi and πµ⊥i

xπ − xi≤ ε1

where µi :=
∨
Di (i = 1, 2, ..., n). If

∧n
i=1 µi = 0, then there exists an antichain

{λi : i = 1, 2, ..., n} such that 0 ≤ λi ≤ µ⊥i and
∨n
i=1 λi =

∨n
i=1 µ

⊥
i = 1. Since

{πλi : i = 1, 2, ..., n} ∪
{
π⊥
}

is a partition of unity,

x′ =
n∑
i=1

πλixi + π⊥x1 ∈ mix (θn) and π
xπ − x′≤ ε1

are satisfied. This is a contradiction, and thus
∧n
i=1 µi 6= 0. So, there exists

µ ∈ ∩ni=1Di such that 0 < µ ≤
∧n
i=1 µi ≤ µi and µ

xπ − xi > εµ holds for

i = 1, 2, ..., n, i. e., µ ∈ Cn. This implies π⊥n =
∨
Cn. Again, by the Exhaustion

Principle, we obtain an antichain (νγ)γ∈Γ ⊂ Cn and (xγ)γ∈Γ ⊂ K such that

π⊥n =
∨
γ∈Γ νγ and νγ

xγ − xi> ενγ hold for i = 1, 2, ..., n. If we define

xn+1 := bo-
∑
γ∈Γ

νγxγ +
n∑
i=2

(πi ∧ π⊥i−1)xi + π1x1,

then xn+1 ∈ K and π⊥i
xn+1 − xi

≥ π⊥i ε holds for i = 1, 2, ..., n, and the proof

of the lemma is finished.

Proposition 3.2.8. Let K be a mix-complete subset of C# (Q,H) and Q0 ⊂ Q

be a comeager subset. If Kq is a compact set in H for q ∈ Q0 and

K ⊂ {x̃ ∈ C# (Q,H) : x(q) ∈ Kq (∀q ∈ dom(x) ∩Q0)} ,

then K is relatively cyclically compact subset of C# (Q,H).

Proof. According to [23, Theorem 8.5.2.], it is enough show that the supremum

of sequence (πn)n∈N, which is constructed in Lemma 3.2.7, equals to the unity 1

of P(Λ). Assume that
∨
n∈N πn 6= 1. Then for all i, j ∈ N the following inequality

ρ
̃xi − x̃j≥ ερ

holds where ρ⊥ :=
∨
n∈N πn. Since Q1 := (

⋂
n∈N dom(xn)) ∩Q0 is a comeager set

in Q, we have some q ∈ Q1 ∩Uρ where Uρ is clopen set in Q corresponding to the

element ρ in P(Λ). Therefore, Kq is not compact in H since ‖xi(q)− xj(q)‖ ≥ ε

(i, j ∈ N). This is a contradiction. Hence, K is relatively cyclically compact.
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As a corollary, we see that the closed unit ball of a Stone algebra is a cyclically

compact set.

3.3 Operators on Kaplansky−Hilbert Modules

Let X, Y be Kaplansky−Hilbert modules over Λ. Let BΛ(X, Y ) denote the set

of all continuous Λ-linear operators from X into Y . For brevity, BΛ(X,X) will

be denoted by BΛ(X). We call a Λ-linear operator T ∗ : Y → X the adjoint of

Λ-linear operator T : X → Y if 〈Tx | y〉 = 〈x | T ∗y〉 for all x and y. I. Kaplansky

showed that a Λ-linear operator T : X → Y is continuous if and only if T has an

adjoint [15, Theorem 6]. Moreover, he also showed that BΛ(X) is an AW ∗-algebra

of type I with center isomorphic to Λ [15, Theorem 7].

Let T in BΛ(X), and A be a subset of X. If T (A) ⊂ A, then T ∗(A⊥) ⊂ A⊥. From

this we observe, if A is a subset of X and T (A) ⊂ A, then Kaplansky−Hilbert

submodule generated by A is T -invariant since A⊥⊥ is the submodule generated

by A.

Proposition 3.3.1. [23, 7.5.7 (1)] Let X and Y be Kaplansky−Hilbert modules

over Λ, and T in BΛ(X, Y ). Then T is dominated and bo-continuous. In addition,

the kernel of T is a Kaplansky−Hilbert submodule of X.

Proposition 3.3.2. Let T be a bijection in BΛ(X, Y ). Then T−1 is an element

of BΛ(Y,X).

Proof. Using the Banach’s Isomorphism Theorem, we have T−1 ∈ L(Y,X) where

L(Y,X) is the set of all continuous linear operator from Y into X. Let x ∈ X,

f ∈ Λ. As T is onto, there are y1, y2 ∈ X such that Ty1 = fx and Ty2 = x. As

T is one to one, we have y1 = fy2. Thus, it follows from

T−1(fx) = T−1Ty1 = y1 = fy2 = f(T−1Ty2) = fT−1x

that T−1 ∈ BΛ(Y,X).

Corollary 3.3.3. Suppose that T ∈ BΛ(X), then T has the same spectrums as

an element of L(X) and as an element of BΛ(X), that is, Sp(T ) := SpL(X)(T ) =

SpBΛ(X)(T ) holds.

Proposition 3.3.4. Let T be a continuous Λ-linear operator on X. If for some

positive a ∈ Λ the following inequality holds

a
Tx≥x (x ∈ X),
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then T (X) is a Kaplansky−Hilbert submodule of X where T (X) denotes the range

of T .

Proof. Clearly, T (X) is submodule of X. Now we must show that T (X) is

bo -closed in X. For this, take a net (Txα)α∈A ⊂ T (X) with bo-limTxα = x

in X. This implies that (Txα)α∈A is bo-fundamental net in X. From a
Tx≥x,

(xα)α∈A is a bo -fundamental net in X. So, there exists y ∈ X such that y =

bo-limxα. By Proposition 3.3.1, Ty = x holds, i. e., T (X) is a Kaplansky−Hilbert

submodule of X.

As in Hilbert space case, the following identities are valid for each continuous

Λ-linear operator T from X to Y and u, v, x, y ∈ X

KerT = (T ∗(Y ))⊥ and cl (mix (T ∗ (Y ))) = (KerT )⊥ .

By identity (3.1), for every x ∈ X, 〈Tx | x〉 = 0 implies T = 0. Since BΛ(X)

is a C∗-algebra, for every positive T in BΛ(X) there is a unique positive T 1/2

in BΛ(X) such that T =
(
T 1/2

)2
. So, for any element T in BΛ(X, Y ), we can

define absolute value of T by |T | := (T ∗T )1/2. Another proof of the following

proposition is given in [28, Proposition 2.1.3].

Proposition 3.3.5. Let T in BΛ(X). Then the following statements are equiv-

alent:

(i) T is a positive element of BΛ(X);

(ii) 〈Tx | x〉 is positive element of Λ for all x ∈ X;

(iii) 〈Tx | x〉 is positive element of Λ for all x ∈ X with
x∈ P(Λ);

(iv) 〈Tx | x〉 is positive element of Λ for all x ∈ X with
x= 1.

Proof. The implications (iii) ⇒ (iv) : and (ii) ⇒ (iii) : are obvious and

(iv)⇒ (iii) : follows from the faithfulness of X.

(i) ⇒ (ii) : Let T be a positive element of BΛ(X). Then there exists A ∈
BΛ(X) such that T = A∗A. This implies that 〈Tx | x〉 =

Ax2 ≥ 0.

(ii) ⇒ (i) : Assume that 〈Tx | x〉 is positive in Λ for all x ∈ X. Using the

identity (3.1), we obtain T = T ∗. Let λ be a negative number. So,(T − λI)x
2 =

Tx2 − 2λ 〈Tx | x〉+ λ2
x2

≥ −2λ 〈Tx | x〉+ λ2
x2 ≥ λ2

x2
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since λ < 0 and 〈Tx | x〉 ≥ 0. This implies that Ker(T − λI) = {0} and (T −
λI)(X) is a Kaplansky−Hilbert submodule of X. Moreover, from Ker(T −λI) =

((T ∗ − λI)(X))⊥ and T = T ∗, we have (T − λI)(X) = X. Hence, it follows from

Proposition 3.3.2 that T − λI is invertible in BΛ(X), i. e., λ /∈ Sp(T ). Therefore,

T is a positive element of BΛ(X).

(iii)⇒ (ii) : Given x in X. Using the Exhaustion Principle and Lemma 3.1.3

(i) there exist a partition (πα)α∈A of
[x] and a family (aα)α∈A in Λ+ such that

aα
x= πα and πα = [aα]. From a2

α 〈Tx, x〉 = 〈T (aαx), aαx〉 ≥ 0 it follows that

πα 〈Tx, x〉 ≥ 0 holds for all α ∈ A. Therefore, 〈Tx, x〉 =
[x] 〈Tx, x〉 ≥ 0 holds,

and the proof is finished.

An element V in BΛ(X, Y ) is said to be a partial isometry if
V x=

x for

x ∈ (KerV )⊥.

Lemma 3.3.6. If V is a partial isometry, V ∗V is a projection on (KerV )⊥.

Proof. For all x ∈ (KerV )⊥ and y ∈ KerV ,

〈V ∗V x | x〉 = 〈V x | V x〉 =
V x2 =

x2 = 〈x | x〉

and

〈V ∗V y | y〉 = 〈V y | V y〉 = 0.

Thus, it follows from 〈V ∗V (x+ y)− x | x+ y〉 = 0 that V ∗V (x + y) = x, i. e.,

V ∗V is a projection on (KerV )⊥.

Now we shall prove the polar decomposition for operators on Kaplansky−Hilbert

module case. A variant of following lemma is proved in [43, Theorem 5.5].

Lemma 3.3.7. (Polar Decomposition) Let T be a continuous Λ-linear operator

from X to Y. Then T has a polar decomposition T = V |T |, where V is a partial

isometry for which

KerV = KerT and V (X) = cl (mix (T (X))) .

Moreover, V ∗T = |T |, and if T = UP , where P ≥ 0 and U is a partial isometry

with KerU = KerP , then P = |T | and U = V .

Proof. If x ∈ X,
|T |x2 = 〈|T |x | |T |x〉 = 〈|T |2x | x〉 = 〈T ∗Tx | x〉 =

〈Tx | Tx〉 =
Tx2. Hence, the map

V : |T |(X)→ T (X), |T |x 7→ Tx,
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is a well-defined surjection and
V x=

x for x ∈ |T | (X). From [47, Lemma

2.4.], V can be extended to a unique map cl (mix (|T |(X))) onto cl (mix (T (X))),

and so
V x =

x holds for all x ∈ cl (mix (|T |(X))). Extend V to all of X

by letting to be 0 on (cl (mix (|T |(X))))⊥ = (|T |(X))⊥ = Ker |T |. Thus, V is a

partial isometry and KerV = Ker |T | = KerT . Now the following equality

〈V ∗Tx | |T |y〉 = 〈Tx | Ty〉 = 〈T ∗Tx | y〉 = 〈|T |x | |T |y〉

implies 〈V ∗Tx | z〉 = 〈|T |x | z〉 for all z ∈ cl (mix (|T |(X))), and therefore for all

z in X. So, we have V ∗T = |T |.

To show uniqueness, note that T ∗T = PU∗UP . By Lemma 3.3.6, E := U∗U

is the projection onto (KerU)⊥ = (KerP )⊥ = cl (mix (P (X))). Thus, T ∗T = P 2,

so that P = |T |. For x ∈ X,

V |T |x = Tx = UPx = U |T |x,

that is, V and U agree on |T |(X), and hence V = U .

By Proposition 3.3.1 and [23, 4.1.2.] all T in BΛ(X, Y ) has the exact dominantT. Since x⊥y means
yx = 0, it follows from

yTx=
T (
yx)

 that T

is band preserving. Thus, from [23, 5.1.8.(1),(2) ]
T is an element of Orth(Λ),

and so
T∈ Λ and by [23, 4.1.8. and 4.1.11.] we haveT= sup

{Tx :
x≤ 1

}
= sup

{Tx :
x= 1

}
.

In particular,
λT= |λ|

Tholds for all λ ∈ Λ.

Proposition 3.3.8. (BΛ(X, Y ),
·,Λ) is a Banach−Kantorovich space and ad-

mits a compatible module structure over Λ. In addition, the mixed norm is equal

to the operator norm in BΛ(X, Y ), i. e.,
∥∥T∥∥ = 9T9 (T ∈ BΛ(X, Y )).

Proof. Clearly, we see that (BΛ(X, Y ),
·,Λ) is a lattice-normed space. SinceλT= |λ|

Tholds for all λ ∈ Λ the norm
· is decomposable. Indeed, assume

that
T= e1 + e2 is satisfied for some e1, e2 ∈ Λ+. Then since 0 ≤ e1 ≤

T
there exists an orthomorpism S on Λ such that S

T = e1 and 0 ≤ S ≤ I

[2, Theorems 2.49]. So, it follows from Orth(Λ) = Λ that there is g in Λ such

that g
T= e1 and 0 ≤ g ≤ 1 [2, Theorems 2.62]. Therefore, e2 =

T− e1 =T−gT= (1−g)
Tand T = gT+(1−g)T , i. e., BΛ(X, Y )) is a decomposable

lattice-normed space. From Proposition 3.3.1 the space of dominated operators

M(X, Y ) which is Banach−Kantorovich space over L∼(Λ) [23, 4.2.6] contains

BΛ(X, Y ). So, assume that (Tα)α∈A bo-converges to T with (Tα)α∈A ⊂ BΛ(X, Y )
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and T ∈ M(X, Y ). Clearly, T is a Λ-linear. Since every positive operator in

L∼(Λ) is norm-continuous [2, Theorem 4.3] T is also norm-continuous. Therefore,

BΛ(X, Y ) is a Banach−Kantorovich space. On the other hand BΛ(X, Y ) admits

a compatible module structure over Λ from [23, 2.1.8.(3)]. Now we will show

that
∥∥T∥∥ = 9T9 (T ∈ BΛ(X, Y )). Obviously

x≤ 1 means 9x9 ≤ 1 for all

x ∈ X. Let
x≤ 1. So, from 9Tx9 =

∥∥Tx∥∥ ≤ ∥∥Tx∥∥ ≤ ∥∥T∥∥ we have∥∥T∥∥ ≥ 9T9. Let 9x9 ≤ 1. Then it follows from
Tx≤ 9Tx 9 1 ≤ 9T 9 1

that
∥∥T∥∥ ≤ 9T9, and the proof is finished.

Definition 3.3.9. Let T be an operator on X. A scalar λ ∈ Λ is said to be

an eigenvalue if there exists nonzero x ∈ X such that Tx = λx. A nonzero

eigenvalue λ is called a global eigenvalue if for any nonzero projection π ∈ Λ with

π ≤ [λ] there exists a nonzero x ∈ πX such that Tx = λx.

Proposition 3.3.10. Let T be a continuous Λ-linear operator on X and λ be a

nonzero scalar. Then the following statements are equivalent:

(i) The scalar λ ∈ Λ is a global eigenvalue of T .

(ii) There is x ∈ X such that Tx = λx and
[x] ≥ [λ].

(iii) There is x ∈ X such that Tx = λx and
x∈ P(Λ) with

x≥ [λ]

Proof. (iii)⇒ (ii) : Obvious.

(ii)⇒ (i) : If there is x ∈ X with Tx = λx and
[x] ≥ [λ], then πx 6= 0 and

T (πx) = λπx hold for all nonzero projection π with π ≤ [λ]. Thus, λ is a global

eigenvalue of T .

(i)⇒ (iii) : Consider the set

C :=
{

(
x, x) :

x∈ P(Λ), 0 <
x≤ [λ] , Tx = λx

}
.

From the definition of global eigenvalue and Lemma 3.1.3 (i), C is a non-empty

set. We claim that [λ] = sup
{x : (

x, x) ∈ C
}

holds. Indeed, assume that

µ := sup
{x : (

x, x) ∈ C
}
6= [λ]. Then using Lemma 3.1.3 (i) there is

x0

∈
P(Λ) with Tx0 = λx0 and 0 <

x0

 ≤ µ⊥ ∧ [λ]. This is a contradiction, and

so [λ] = sup
{x : (

x, x) ∈ C
}

. Using the Exhaustion Principle [23, 1.1.6.(1)]

there exists an antichain (µα)α∈A in P(Λ) such that supα∈A µα = [λ] and for each

α ∈ A there is (
xα, xα) ∈ C with µα ≤

xα. Hence, we get x := bo-
∑

α∈A µαxα

with
x= [λ] and Tx = λx, and the proof is finished.

Corollary 3.3.11. To each global eigenvalue λ of T , |λ| ≤
T.
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Corollary 3.3.12. Let λ, µ ∈ Λ be global eigenvalues of T . If for some x ∈ X,

Tx = λx = µx, then
[x]λ =

[x]µ.

Corollary 3.3.13. Let (λα)α∈A be a bounded family of eigenvalues of T and

(pα)α∈A be a partition of unity. Then mixα∈A (pαλα) is an eigenvalue of T . More-

over, if (λα)α∈A consists of global eigenvalues of T , then mixα∈A (pαλα) is a global

eigenvalue of T .

Proposition 3.3.14. Let T be a positive operator on X. ThenT= sup
{
〈Tx | x〉 :

x= 1
}
.

Proof. Consider the set D :=
{
〈Tx | x〉 :

x= 1
}
. From

Tx≤Tx (x ∈ X)T is an upper bound of D. Clearly,
T≥ 〈Tx | x〉 holds for each

x∈ P(Λ).

Assume that λ is an upper bound of D with λ ≤
T. Since λ ≥ 〈Ty | y〉 holds

for all y ∈ X with
y= 1 we get that λI − T is positive from Proposition 3.3.5.

Thus, if x ∈ X,

〈(λI − T )(Tx) | Tx〉 ≥ 0 and 〈T (λI − T )x | (λI − T )x〉 ≥ 0.

Adding, 〈(λT − T 2)(x) | λx〉 ≥ 0, so that λ2 〈Tx | x〉 ≥ λ 〈T 2x | x〉 = λ
Tx2.

Thus, λ2
T≥ λ

T2, and so we have λ ≥ [λ]
T. Moreover, for every

x= 1

π 〈Tx | x〉 = 0 holds where π := 1 − [λ]. Therefore, πT 1/2x = 0 holds for everyx= 1, hence πTx = 0. This implies π
T= 0, and so

T is the supremum of

D.

Now, we recall important definitions that are used in functional representation

of type I AW ∗-algebras. For details see [23].

Suppose that Q is some extremal compact space, H is a Hilbert space, and

B(H) is the space of bounded linear endomorphisms of H. Denote by C(Q,B(H))

the set of all operator-functions u : dom(u) → B(H), defined on the comeager

sets dom(u) ⊂ Q and continuous in the strong operator topology.

If u ∈ C(Q,B(H)) and h ∈ H, then the vector-function uh : q 7→ u(q)h

(q ∈ dom(u)) is continuous thus determining a unique element ũh ∈ C∞(Q,H)

from the condition uh ∈ ũh. Introduce an equivalence on C(Q,B(H)) by putting

u ∼ v if and only if u and v agree on dom(u) ∩ dom(v). If ũ is a coset of the

operator-function u : dom(u)→ B(H) then ũh := ũh (h ∈ H) by definition.

Denote by SC∞(Q,B(H)) the set of all cosets ũ such that u ∈ C(Q,B(H))

and the set
{̃uh : ‖h‖ ≤ 1

}
is bounded in C∞(Q).
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Since
̃uh agrees with the function q 7→ ‖u(q)h‖ (q ∈ dom(u)) on some

comeager set, the inclusion ũ ∈ SC∞(Q,B(H)) means that the function q 7→
‖u(q)‖ (q ∈ dom(u)) is continuous on a comeager set. Hence, there are an

element
̃u ∈ C∞(Q) and a comeager set Q0 ⊂ Q satisfing

̃u(q) = ‖u(q)‖
(q ∈ Q0). Moreover,

̃u= sup
{̃uh : ‖h‖ ≤ 1

}
, where the supremum is taken

over C∞(Q). Also, SC∞(Q,B(H)) can be equipped with ∗-algebra and a unitary

C∞(Q)-module.

If ũ ∈ SC∞(Q,B(H)) and the element x̃ ∈ C∞(Q,H) is determined by a

continuous vector-function x : dom(x) → H then we may define ũx̃ := ũx ∈
C∞(Q,H), with ux : q 7→ u(q)x(q) (q ∈ dom(u)∩dom(x)); since the last function

is continuous on a comeager set. We also have̃ux≤̃ux (x ∈ C∞(Q,H)).

It follows in particular that̃u= sup
{̃ux : x ∈ C∞(Q,H),

x≤ 1
}
.

Denote the operator x 7→ ũx by Sũ. We now introduce the following normed

∗-algebra,

SC# (Q,B(H)) :=
{
v ∈ SC∞(Q,B(H)) :

v∈ C(Q)
}
,

‖v‖ =
∥∥v∥∥∞ (v ∈ SC# (Q,B(H))).

Theorem 3.3.15. [23, Theorem 7.5.10.] To each operator U ∈ End(C# (Q,H))

there is a unique element u ∈ SC# (Q,B(H)) satisfying U = Su. The mapping

U 7→ u is a ∗-B-isomorphism of End(C# (Q,H)) onto A := SC# (Q,B(H)). In

particular, A is a λ-homogeneous algebra. Moreover, if Q is a λ-stable compact

space then A is a strictly λ-homogeneous AW ∗-algebra, with λ = dim(H).

In preceding theorem, End(C# (Q,H)) denotes BC(Q)(C# (Q,H)).

Observe that if U = Sũ is a positive operator, then u(q) is also positive

operator for all q ∈ dom(u).

Let the family of nonempty extremal compact spaces (Qγ)γ∈Γ with Γ a set

of cardinals satisfy functional representation of X as in Theorem 3.1.18. On the

other hand, there exists an isometrically ∗-isomorphism

P : BA

(
⊕∑
γ∈Γ

C# (Qγ, `2(γ))

)
→

⊕∑
γ∈Γ

End (C# (Qγ, `2(γ))) (3.5)
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satisfying Tx = (Tγxγ)γ∈Γ for all x = (xγ)γ∈Γ and P(T ) = (Tγ)γ∈Γ where A :=∑⊕
γ∈ΓC(Qγ). Using these facts, we obtain an isometrically ∗-isomorphism

R : BΛ(X)→
⊕∑
γ∈Γ

End (C# (Qγ, `2(γ))) (3.6)

with Ψ(Tx) = (P−1R(T ))Ψ(x) hold for all T ∈ BΛ(X) and x ∈ X. So, R(T ) :=

(Tγ)γ∈Γ implies Ψ(Tx) = (Tγxγ)γ∈Γ for T ∈ BΛ(X) and x ∈ X with Ψ(x) :=

(xγ)γ∈Γ.

The following result on functional representation of type I AW ∗-algebras is

one of the main tools of our investigation.

Theorem 3.3.16. [23, Theorem 7.5.12.] To every type I AW ∗-algebra A there

exists a family of nonempty extremal compact spaces (Qγ)γ∈Γ such that the fol-

lowing conditions are met:

(1) Γ is a set of cardinals and Qγ is γ-stable for each γ ∈ Γ;

(2) There is a ∗-B-isomorphism:

A '
⊕∑
γ∈Γ

SC# (Qγ, B(`2(γ))) .

This family is unique up to congruence.

3.4 Cyclically Compact Operators on

Kaplansky−Hilbert Modules

In this section a special class of operators called cyclically compact will be studied.

Some properties of these operators have been investigated in [8, 23]. Our result for

the main object of our interest which is cyclically compact operator is a standart

proof of [23, Theorem 8.5.6.]. An operator T ∈ BΛ(X, Y ) is called cyclically

compact if the image T (C) of any bounded subset C ⊂ X is relatively cyclically

compact in Y . The set of all cyclically compact operators is denoted by K (X, Y ).

Theorem 3.4.1. [23, Theorem 8.5.6.] Let T in K (X, Y ) be a cyclically compact

operator from a Kaplansky−Hilbert module X to a Kaplansky−Hilbert module Y .

There are orthonormal families (ek)k∈N in X, (fk)k∈N in Y , and a family (µk)k∈N

in Λ such that the following hold:
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(1) µk+1 ≤ µk (k ∈ N) and o-limk→∞ µk = 0;

(2) there exists a projection π∞ in Λ such that π∞µk is a weak order-unity in

π∞Λ for all k ∈ N;

(3) there exists a partition (πk)
∞
k=0 of the projection π⊥∞ such that π0µ1 = 0,

πk ≤ [µk], and πkµk+1 = 0, k ∈ N;

(4) the representation

T = π∞bo-
∞∑
k=1

µke
]
k ⊗ fk + bo-

∞∑
n=1

πn

n∑
k=1

µke
]
k ⊗ fk

is valid.

Corollary 3.4.2. Let T in K (X, Y ). Then the following statements hold:

(1) T =
(
π∞ + o-

∑∞
n=0 πn

)(
bo-
∑∞

k=1 µke
]
k ⊗ fk

)
= bo-

∑
k∈N µke

]
k ⊗ fk

(2)
Tx≥ µn

xholds for all x ∈ X0 where X0 is Kaplansky−Hilbert submodule

generated by {e1, e2, ..., en},

(3) T ∗ = π∞bo-
∑∞

k=1 µkf
]
k ⊗ ek + bo-

∑∞
n=1 πn

∑n
k=1 µkf

]
k ⊗ ek,

(4) T ∗T = π∞bo-
∑∞

k=1 µ
2
ke
]
k ⊗ ek + bo-

∑∞
n=1 πn

∑n
k=1 µ

2
ke
]
k ⊗ ek,

(5) |T | = π∞bo-
∑∞

k=1 µke
]
k ⊗ ek + bo-

∑∞
n=1 πn

∑n
k=1 µke

]
k ⊗ ek.

Proposition 3.4.3. Let T be a nonzero positive cyclically compact operator on

X. Then
T is a global eigenvalue of T . In particular, there exists y ∈ X such

that Ty =
Ty and

y= 1.

Proof. Let
x= 1. By Lemma 3.3.14 and

0 ≤
Tx−Tx2 =

Tx2 − 2
T〈Tx | x〉+

T2

≤ 2
T(

T− 〈Tx | x〉),
we obtain inf

{Tx−Tx :
x= 1

}
= 0, and therefore using [23, 2.2.9.(1) and

8.1.8.(3)], it is easy to observe that there exists (xn)n∈N with
xn= 1 such that

for each n ∈ N Txn −Txn≤ 1

n
1.

As T is cyclically compact, there is a cyclic subsequence (Txνn)n∈N of (Txn)n∈N

which is norm-convergent to some w, and since the following inequality is valid:Txνn −Txνn≤ 1

n
1
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for every n, (
Txνn)n∈N is norm-convergent to w and

T=
w. So, we have

Tw =
Tw, i. e.,

T is a global eigenvalue of T . If
[w] 6= 1, then from

Proposition 3.3.10 and
[T]⊥ Tx = 0 (x ∈ X) we can find y with Ty =

Ty
and

y= 1.

According to Theorem 3.3.15 for each operator U ∈ End(C# (Q,H)) there

is a unique element ũ ∈ SC# (Q,B(H)) satisfying Ux̃ = Sũx̃ := ũx̃ := ũx

(x̃ ∈ C# (Q,H)) where ux : q 7→ u(q)x(q) (q ∈ dom(u) ∩ dom(x)). Clearly, if U

is a positive operator, then u(q) is also positive operator for all q ∈ dom(u). The

closed unit balls of X and H will be denoted by X1 and H1, respectively.

Lemma 3.4.4. Let X0 be a Kaplansky−Hilbert submodule of C# (Q,H). Then

X0(q) := {x(q) : x̃ ∈ X0, q ∈ dom(x)} is a closed subspace of H for all q ∈ Q.

In particular, if πX0 is n-homogenouos over πC(Q) for some non zero projection

π, then there is a comeager subset Q0 of Q such that the dimensional of X0(q)

equals to n for all q ∈ Q0 ∩ Aπ where Aπ is clopen set in Q corresponding to the

projection π.

Proof. Clearly, X0(q) is subspace of H. Therefore, we will show that X0(q) is

closed in H. Assume that (x̃n)n∈N ⊂ X0 and (xn(q))n∈N ⊂ X0(q) converges to h

in H. By [15, Theorem 3.], corresponding to the continuous function y : t → h

(t ∈ Q), there exist ỹ1 ∈ X0 and ỹ2 ∈ X⊥0 such that ỹ = ỹ1+ỹ2. Since 〈ỹ2 | x̃n〉 = 0

holds for each n, we have

| 〈h, xn(q)〉 | = | 〈y(q), xn(q)〉 | = | 〈ỹ | x̃n〉 |(q) = | 〈ỹ1 | x̃n〉 |(q)

≤
̃y1

(q)
̃xn(q) =

̃y1

(q) ‖xn(q)‖ ,

and so taking limits with respect to n, we get ‖h‖ ≤
̃y1

(q). Moreover, using the

inequality

‖h‖2 =
̃y2(q) =

̃y1

2(q) +
̃y2

2(q) ≥
̃y1

2(q)

we see that ‖h‖ =
̃y1

(q) and
̃y2

(q) = 0. Thus, we can assume that q ∈
dom(y1) ∩ dom(y2). Then y2(q) = 0 and y1(q) = h, i. e., X0(q) is the closed

subspace of H. Let {πẽ1, πẽ2, ..., πẽn} be a basis for πX0 with ẽi ∈ C# (Q,H).

Since dom(ei) is a comeager in Q,

Q0 :=
n⋂
i=1

dom(ei)

is also comeager in Q. Thus, we obtain {e1(q), e2(q), ..., en(q)} is an orthonormal

set in X0(q) for all q ∈ Q0 ∩ Aπ. Let x(q) be an alement of X0(q) for some

46



q ∈ Q0 ∩ Aπ with x̃ ∈ X0. Thus, it follows from

x(q) =
n∑
i=1

〈x̃ | ẽi〉 (q)ei(q)

that {e1(q), e2(q), ..., en(q)} is the basis of X0(q) for all q ∈ Q0∩Aπ, as desired.

Corollary 3.4.5. Let X0 be a Kaplansky−Hilbert submodule of C# (Q,H) and P

be a projection on C# (Q,H) with range X0. If the unique function corresponding

to P is denoted by ũ ∈ SC# (Q,B(H)), then u(q) is a projection with range X0(q)

for all q ∈ dom(u). In particular, (X0(q))⊥ = X⊥0 (q) (q ∈ dom(u)).

Proof. From Lemma 3.4.4 X0(q) is a closed subspace of H (q ∈ Q). Let q ∈
dom(u) and h ∈ H. Clearly, we see that u(q) is a projection on H and X0(q) ⊂
u(q)(H) holds. Moreover, ũz̃(q) = u(q)h ∈ X0(q) holds for the continuous func-

tion z : t 7→ h (t ∈ Q) since ũz̃ ∈ X0 and q ∈ dom(uz). Therefore, u(q) is

a projection on H with range X0(q) for all q ∈ dom(u). Hence, I − u(q) is a

projection onto X⊥0 (q) (q ∈ dom(u)) since I − ũ is projection onto X⊥0 . So,

(X0(q))⊥ = X⊥0 (q) holds for all q ∈ dom(u).

Proposition 3.4.6. Let T be a positive compact operator on H and (sn(T )) be the

singular number of T . If the set {hi : i = 1, ..., n} which satifies Thi = si(T )hi

and ‖hi‖ = 1, is linearly independent, then sn+1(T ) = ‖TPn‖ where Pn is the

projection with range {h1, ..., hn}⊥.

Proof. From [9, Theorem 15.7.1], we see that sn+1(T ) ≤ ‖TPn‖. Choose l ∈ N
minimal with respect to the property sn−l+1(T ) 6= sn+1(T ). On the other hand

we can write T =
∑

k∈N sk(T ) 〈·, ek〉 ek where (en) is an orthonormal sequence in

H. Let h ∈ H. Since Pnh ∈ {e1, ..., en−l+1}⊥, it follows from

‖TPnh‖2 =
∑
k∈N

sk(T )2| 〈Pnh, ek〉 |2 =
∞∑

k=n−l+2

sk(T )2| 〈Pnh, ek〉 |2

≤ sn−l+2(T )2

∞∑
k=n−l+2

| 〈Pnh, ek〉 |2 ≤ sn−l+2(T )2 ‖ Pnh‖2

≤ sn−l+2(T )2 ‖h‖2

that ‖TPn‖ ≤ sn−l+2(T ) = sn+1(T ). Thus, we have the desired equality.

Proposition 3.4.7. Let U = Sũ be in End (C# (Q,H)). Then the following

statements are equivalent:

(i) U = Sũ is a cyclically compact operator on C# (Q,H);
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(ii) there is a comeager subset Q0 of Q such that u(q) is compact operator on

H for all q ∈ Q0.

Proof. (i) ⇒ (ii) : Let U be a cyclically compact operator on C# (Q,H). Then

K := U(X1) is relatively cyclically compact subset. By Lemma 3.2.5, there exists

a comeager set Q1 ⊂ Q such that K(q) is precompact in H for all q ∈ Q1. Clearly,

u(q)(H1) ⊂ K(q) holds for each q ∈ Q0 := Q1 ∩ dom(u). Thus, u(q) is compact

operator on H for all q ∈ Q0.

(ii)⇒ (i) : Clearly, U(X1) is a mix-complete subset. Moreover,

U(X1) ⊂ {x̃ ∈ C# (Q,H) : (∀q ∈ dom(x) ∩Q0)x(q) ∈ Kq} ,

where Kq := u(q)(H1) for q ∈ Q0. Using Proposition 3.2.8 we obtain U is a

cyclically compact operator on C# (Q,H).

Theorem 3.4.8. Let U = Sũ be a positive cyclically compact operator on C# (Q,H).

There exist a sequence (ẽk)k∈N in C# (Q,H) and a sequence (sk)k∈N in C(Q) such

that the following statements hold:

(1) 〈ẽk | ẽl〉 = 0 (k 6= l), and
̃ek= 1 whenever ẽk 6= 0;

(2) 0 ≤ sk+1 ≤ sk (k ∈ N) and o-lim sk = infk∈N sk = 0;

(3) there exists a projection π∞ in C(1) such that π∞sk is a weak order-unity

in π∞C(Q) for all k ∈ N;

(4) there exists a partition (πk)
∞
k=0 of the projection π⊥∞ such that π0s1 = 0,

πk ≤ [sk], and πksk+1 = 0, k ∈ N;

(5) for each x̃ ∈ C# (Q,H) the following equality is valid

Ux̃ = π∞bo-
∞∑
k=1

sk 〈x̃ | ẽk〉 ẽk + bo-
∞∑
n=1

πn

n∑
k=1

sk 〈x̃ | ẽk〉 ẽk

= bo-
∑
k∈N

sk 〈x̃ | ẽk〉 ẽk.

Proof. If U = 0, we can take ẽn = 0, sn = 0, π0 = 1 and πk = 0 (k ∈ N ∪ {∞}).
Assume that U 6= 0. The proof is by induction. According to Corollary 3.4.5

and Propositions 3.4.3 and 3.4.7, there exists a comeager subset Q1 such that for

every q ∈ Q1 the following statements hold:

(i) u(q) is a positive compact operator on H,
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(ii) there is
̃e1

= 1 such that u(q)e1(q) = s1(q)e1(q), i. e., Uẽ1 = s1ẽ1 where

s1 :=
U,

(iii) there is a projection P1 = Sũ1 with range {ẽ1}⊥ such that u1(q) is a projec-

tion with range {e1(q)}⊥,

(iv)
U(q) = ‖u(q)‖, and so s1(q) = s1,q where (sk,q)k∈N is the singular number

of u(q).

Now if ỹ ∈ {ẽ1}⊥ and z̃ ∈ {ẽ1}⊥⊥, then

〈Uỹ | ẽ1〉 = 〈ỹ | Uẽ1〉 = s1 〈ỹ | ẽ1〉 = 0,

i. e., U leaves {ẽ1}⊥ invariant. Thus,

〈Uz̃ | ỹ〉 = 〈z̃ | Uỹ〉 = 0

implies that U leaves {ẽ1}⊥⊥ invariant, and so P1U = UP1 holds. If UP1 = 0, we

can take ẽn = 0, sn = 0 and πn = 0 (n > 1), π∞ = 0, π0 = [s1]⊥ and π1 = [s1].

Suppose that sk, ẽk, Pk = Sũk and Qk are constructed and UPk 6= 0 for all k < n.

So, since UPn is positive cyclically compact, again using to Corollary 3.4.5 and

Propositions 3.4.3, 3.4.6 and 3.4.7, there exists a comeager subset Qn+1 ⊂ Qn

such that for every q ∈ Qn+1 the following statements hold:

(i) u(q)un(q) is positive compact operator on H,

(ii) there exists ẽn+1 ∈ {ẽ1, ..., ẽn}⊥ such that
̃en+1

= 1 and Uẽn+1 = sn+1ẽn+1

where sn+1 :=
UPn,

(iii) there is a projection Pn+1 = Sũn+1 with range {ẽ1, ..., ẽn+1}⊥ such that

un+1(q) is a projection with range {e1(q), ..., en+1(q)}⊥,

(iv) sn+1(q) =
UPn(q) = ‖u(q)un(q)‖ = sn+1,q.

Clearly, we can see that {ẽ1, ..., ẽn+1}⊥ and {ẽ1, ..., ẽn+1}⊥⊥ are invariant under

U . If UPn+1 = 0 we can take ẽk = 0, sk = 0 and πk = 0 (k > n+ 1), π∞ = 0,

π0 = [s1]⊥ and πi = [si]∧[si+1]⊥ (i = 1, ..., n) and πn+1 = [sn+1]. If for each k ∈ N,

UPk 6= 0, then by induction, we have a sequence (ẽk)k∈N in C# (Q,H), a sequence

(sk)k∈N of positive functions, a sequence (Pk = Sũk) of projections with range

{ẽ1, ..., ẽk}⊥ and a decreasing comeager-set-sequence (Qk). Thus, π∞ =
∧
k∈N [sk],

π0 = [s1]⊥ and πk = [sk] ∧ [sk+1]⊥ (k ∈ N) implies (1), (3) and (4). If we define

Q0 :=
⋂
k∈NQk, then sk(q) ↓ 0 for all q ∈ Q0 implies (2). Moreover, if 〈x̃ | ẽk〉 = 0
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holds for each k, then it follows from
Ux̃=

UPkx̃≤UPk̃x= sk+1

̃x that

Ux̃ = 0. Assume that E , which contains (ẽk)k∈N, is a projection basis. Then for

all x̃ ∈ C# (Q,H)

Ux̃ = U

(
bo-
∑
ẽ∈E

〈x̃ | ẽ〉 ẽ

)
= bo-

∑
ẽ∈E

〈x̃ | ẽ〉Uẽ

= bo-
∑
k∈N

〈x̃ | ẽk〉Uẽk = bo-
∑
k∈N

sk 〈x̃ | ẽk〉 ẽk

implies (5).

Note that the cardinality of ek satisfying
ek= 1 is related with the dimension

of H.

Let the family of nonempty extremal compact spaces (Qγ)γ∈Γ with Γ a set of

cardinals satisfy functional representation of X as in Theorem 3.1.18. Suppose

that (fα)α∈I is a net in
∑⊕

γ∈ΓC(Qγ) with fα = (fα,γ)γ∈Γ. Clearly, we see that the

net (fα)α∈I is decreasing and infα∈I fα = 0 iff the net (fα,γ)α∈I is decreasing and

infα∈I fα,γ = 0 for all γ ∈ Γ. Therefore, if (eα)α∈I is a bounded net in
∑⊕

γ∈Γ C(Qγ)

with eα = (eα,γ)γ∈Γ, then (eα)α∈I o-converges to e = (eγ)γ∈Γ in
∑⊕

γ∈ΓC(Qγ) iff

(eα,γ)α∈I o-converges to eγ in C(Qγ) and supγ∈Γ ‖eγ‖ <∞ for all γ ∈ Γ. Moreover,

[a] = ([aγ])γ∈Γ is satisfied for all a = (aγ)γ∈Γ ∈
∑⊕

γ∈ΓC(Qγ).

Let υ = (υ(k))k∈N be a sequence in
∑⊕

γ∈ΓC(Qγ) with υ(k) = (υγ(k))γ∈Γ.

Then υ = (υ(k))k∈N is a partition of unity in
∏

γ∈Γ C(1γ) iff υγ := (υγ(k))k∈N

is a partition of unity in C(1γ) for all γ ∈ Γ. Moreover, if υ = (υ(k))k∈N and

µ = (µ(k))k∈N are partitions of unity in
∏

γ∈Γ C(1γ), then υ � µ iff υγ � µγ for

all γ ∈ Γ. Given ξ ∈ Γ, denote by hξ := (δγξ1γ)γ∈Γ the element of
∏

γ∈Γ C(1γ)

with 1ξ the ξth place and 0’s elsewhere.

Let Ψ, P and R be as (3.3), (3.5) and (3.6), respectively, Then T is a cyclically

compact operator on X iff P−1R(T ) = ΨTΨ−1 is a cyclically compact operator

on
∑⊕

γ∈ΓC# (Qγ, `2(γ)).

Proposition 3.4.9. Let T be an operator on
∑⊕

γ∈Γ C# (Qγ, `2(γ)) with P(T ) =

(Tγ)γ∈Γ. Then T is a cyclically compact operator on
∑⊕

γ∈ΓC# (Qγ, `2(γ)) iff Tγ

is a cyclically compact operator on C# (Qγ, `2(γ)) for all γ ∈ Γ.

Proof. Suppose that T is a cyclically compact operator on
∑⊕

γ∈ΓC# (Qγ, `2(γ))

and (xk,ξ)k∈N is a bounded sequence in C# (Qξ, `2(ξ)) for some ξ ∈ Γ. If xk is an

element of
∑⊕

γ∈ΓC# (Qγ, `2(γ)) with xk,ξ the ξth place and 0’s elsewhere, it is clear

that 9xk9 = ‖xk,ξ‖ and (xk)k∈N is also bounded in
∑⊕

γ∈ΓC# (Qγ, `2(γ)). As T is
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cyclically compact operator, there is a cyclic subsequence (Txνk)k∈N of (Txk)k∈N

which is norm-convergent to some x. Since hξxk = xk, we have hξxνk = xνk and

hξx = x. Thus, the following equality holds,

9Txνk − x9 = 9hξ(Txνk − x)9 = ‖Tξxνξk,ξ − xξ‖

since xνξk,ξ
= mixn∈N (νk,ξ(n)xξ,n) with νξk := (νk,ξ(n))n∈N, and so we get a cyclic

subsequence (Tξxνξk,ξ
)k∈N of (Tξxk,ξ)k∈N which is norm-convergent to xξ. There-

fore, Tξ is a cyclically compact operator on C# (Qξ, `2(ξ)).

Conversely, assume that Tγ is a cyclically compact on C# (Qγ, `2(γ)) for all

γ ∈ Γ and (xk)k∈N is a bounded sequence in
∑⊕

γ∈ΓC# (Qγ, `2(γ)) with xk =

(xk,γ)γ∈Γ. Since (xk,γ)k∈N is a bounded sequence and Tγ is cyclically compact,

there is a cyclic subsequence (Tγxνk,γ )k∈N of (Tγxk,γ)k∈N which is norm-convergent

to some xγ. Moreover, we can assume

‖Tγxνk,γ − xγ‖ ≤
1

k

for all γ ∈ Γ and k ∈ N. Clearly, we see that x := (xγ)γ∈Γ in
∑⊕

γ∈ΓC# (Qγ, `2(γ))

and

9Txνk − x9 = sup
γ∈Γ
‖Tγxνk,γ − xγ‖ ≤

1

k

since xνk =
(
xνk,γ

)
γ∈Γ

= (mixn∈N (νk,γ(n)xn,γ))γ∈Γ where νn = (νn(k))k∈N and

νn(k) = (νn,γ(k))γ∈Γ. So, T is a cyclically compact operator on
∑⊕

γ∈ΓC# (Qγ, `2(γ)).

Let T be a positive operator on
∑⊕

γ∈ΓC# (Qγ, `2(γ)). This means that Tγ is

a positive operator on C# (Qγ, `2(γ)) for all γ ∈ Γ. If T is a positive cyclically

compact operator on
∑⊕

γ∈ΓC# (Qγ, `2(γ)), then according to Theorem 3.4.8 and

Proposition 3.4.9 we can define sk(T ) := (sk(Tγ))γ∈Γ, ek := (ẽk,γ)γ∈Γ and πk :=

(πk,γ)γ∈Γ (k ∈ N ∪ {0,∞}) where (sk(Tγ))k∈N, (πk,γ) and (ẽk,γ)k∈N satisfy the

representation of cyclically compact operator Tγ as in Theorem 3.4.8. Therefore,

from the functional representation of X we have the following theorem.

Proposition 3.4.10. Let T be a positive cyclically compact operator on X. There

exist a sequence (ek)k∈N in X and a sequence (sk(T ))k∈N of positive elements in

Λ such that

(1) 〈ek | el〉 = 0 (k 6= l) and [sk(T )] ≤
ek∈ P(Λ);

(2) sk+1(T ) ≤ sk(T ) (k ∈ N) and o-lim sk(T ) = infk∈N sk(T ) = 0;
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(3) there exists a projection π∞ in P(Λ) such that π∞sk(T ) is a weak order-

unity in π∞Λ for all k ∈ N;

(4) there exists a partition (πk)
∞
k=0 of the projection π⊥∞ such that π0s1(T ) = 0,

πk ≤ [sk(T )], and πksk+1(T ) = 0, k ∈ N;

(5) for each x the following equality is valid

Tx = π∞bo-
∞∑
k=1

sk(T ) 〈x | ek〉 ek + bo-
∞∑
n=1

πn

n∑
k=1

sk(T ) 〈x | ek〉 ek

= bo-
∑
k∈N

sk(T ) 〈x | ek〉 ek.

Using the Polar Decomposition for T and the preceding theorem, we obtain

Theorem 3.4.1 as follows.

Theorem 3.4.11. Let T be a cyclically compact operator from X to Y . There

exist sequences (ek)k∈N in X and (fk)k∈N in Y and a sequence (sk(T ))k∈N of

positive elements in Λ such that

(1) 〈ek | el〉 = 〈fk | fl〉 = 0 (k 6= l) and [sk(T )] =
ek=

fk (k ∈ N)

(2) sk+1(T ) ≤ sk(T ) (k ∈ N) and o-lim sk(T ) = infk∈N sk(T ) = 0;

(3) there exists a projection π∞ in P(Λ) such that π∞sk(T ) is a weak order-

unity in π∞Λ for all k ∈ N;

(4) there exists a partition (πk)
∞
k=0 of the projection π⊥∞ such that π0s1(T ) = 0,

πk ≤ [sk(T )], and πksk+1(T ) = 0, k ∈ N;

(5) for each x the following equality is valid

Tx = π∞bo-
∞∑
k=1

sk(T ) 〈x | ek〉 fk + bo-
∞∑
n=1

πn

n∑
k=1

sk(T ) 〈x | ek〉 fk

= bo-
∑
k∈N

sk(T ) 〈x | ek〉 fk.

Proof. Using the Polar Decomposition for T we obtain a partial isometry V such

that T = V |T | and |T | = V ∗T . Since |T | is a positive cyclically compact operator

on X, there exist decreasing null sequence (sk(T ))k∈N in Λ and family (ek)k∈N in

X which satisfy the properties of Proposition 3.4.10. Thus, we have

T = V |T | = V

(
bo-
∑
k∈N

sk(T ) 〈· | ek〉 ek

)
= bo-

∑
k∈N

sk(T ) 〈· | ek〉V (ek).
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From sk(T )ek ∈ |T |(X) and [sk(T )]⊥ ek ∈ Ker |T |, we see that
V sk(T )ek

 =sk(T )ek
 = sk(T ) and [sk(T )]⊥ V ek = V [sk(T )]⊥ ek = 0. The former means

[sk(T )]
V ek= [sk(T )], and so this and the latter imply that

V ek= [sk(T )]

(k ∈ N). Since V ∗V is the projection onto (Ker |T |)⊥ = cl (mix (|T |(X))), we get

sn(T ) 〈V en | V em〉 = 〈V ∗V sn(T )en | em〉 = 〈sn(T )en | em〉 = 0 (n 6= m),

and so 〈V en | V em〉 = [sn(T )] 〈V en | V em〉 = 0. Define fk := V ek, and the proof

is finished.

Theorem 3.4.12. (The Rayleigh−Ritz minimax formula) Let T be a cyclically

compact operator from X to Y . Then

sn(T ) = inf
{

sup
{Tx :

x≤ 1, x ∈ J⊥
}}

where the infmum is taken over all projection orthonormal subset J of X such

that card(J) < n, and the infmum is achieved.

Proof. Let αn := inf
{

sup
{Tx :

x≤ 1, x ∈ J⊥
}

: card(J) < n
}

where J is a

projection orthonormal subset of X. If En−1 := {e1, e2, ..., en−1}, then
Tx ≤

sn(T ) are satisfied for each x ∈ E ⊥n−1 with
x≤ 1, and so αn ≤ sn(T ). Suppose

that J is a projection orthonormal subset of X with card(J) < n. If x ∈ E ⊥⊥n ,

then
Tx≥ sn(T )

x. From Corollary 3.1.17, there exists x ∈ E ⊥⊥n ∩ J⊥ withx=
en. Thus,

Tx≥ sn(T )
x= sn(T ), and so αn ≥ sn(T ). Finally, the

infimum is achieved on E ⊥n−1.

Let x ∈ X, y ∈ Y . Define the operator θx,y : X → Y by the formula

θx,y(z) := 〈z | x〉 y (z ∈ X).

An operator of the this form is called an elementary operator [27]. We denote

the Λ-linear span of the set of all elementary operators by E (X, Y ). Clearly,

E (X, Y ) ⊂ BΛ(X, Y ) and the following equalities are satisfied;

(i) (θx,y)
∗ = θy,x ;

(ii) θx,yθv,u = θ〈x|u〉v,y = θv,〈u|x〉y (u ∈ X, v ∈ Y );

(iii) Tθx,y = θx,Ty (T ∈ BΛ(Y, Z));

(iv) θx,yS = θS∗x,y (S ∈ BΛ(Z,X)).

Clearly, S ∈ BΛ(Z,X), T ∈ BΛ(Y, Z) and L ∈ E (X, Y ) implies TL ∈ E (X,Z)

and LS ∈ E (Z, Y ).
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Lemma 3.4.13. Let X and Y be Kaplansky−Hilbert modules over Λ. Then the

following hold:

(i) E (X, Y ) ⊂ K (X, Y ) ;

(ii) µn = 0 holds for n ≥ 2 where (µn)n∈N satisfy representation of θx,y as in

Theorem 3.4.1;

(iii)
θx,y=

xy (x ∈ X, y ∈ Y );

(iv) for each T ∈ K (X, Y ) there exists a sequence (Tk)k∈N in E (X, Y ) which(T − Tk)k∈N decreases to 0.

Proof. To show (i), it suffices to show that θx,y ∈ K (X, Y ) for all x ∈ X and

y ∈ Y . As a corollary of Proposition 3.2.8 the closed unit ball of Λ is cyclically

compact set, so θx,y ∈ K (X, Y ). From (i), θx,y has a representation

θx,y = bo-
∑
n∈N

µn 〈· | en〉 fn

as in Theorem 3.4.1. Since θx,y(en) = µnfn = 〈en | x〉 y (n ∈ N), we have µn =

µn
fn= | 〈en | x〉 |

y and

0 = | 〈µ1f1 | µkfk〉 | = | 〈〈e1 | x〉 y | 〈ek | x〉 y〉 |

= | 〈e1 | x〉 |
y| 〈ek | x〉 |y

= µ1µk.

is satisfied for k 6= 1. Thus, it follows from µ1 ≥ µn that µn = 0 for n ≥ 2. This

implies (ii). Now for any z ∈ X, it follows fromθx,y(z)
=

〈z | x〉 y= | 〈z | x〉 |
y≤xyz

that
θx,y≤xy. This and θx,y(x) =

x2y imply (iii). From Theorem 3.4.1,

for all T ∈ K (X, Y ), we can define Tn ∈ E (X, Y ) as

Tn :=
n∑
k=1

µk 〈· | ek〉 fk

for every n ∈ N. Using the following inequality for each x ∈ XTx− Tn−1x
2 = o-

∑
k∈Nn

µ2
k| 〈x | ek〉 |2 ≤ µ2

n+1o-
∑
k∈Nn

| 〈x | ek〉 |2

≤ µ2
n

x2

where Nn = {k ∈ N : k ≥ n} (n ∈ N), we get
T − Tn−1

 ≤ µn. Thus,(T − Tk)k∈N decreases to 0 from Theorem 3.4.1 (1).

54



Theorem 3.4.14. Let T be in BΛ(X) and Θ denote the set of all finite subsets

of projection basis E . Then the following statements are equivalent.

(i) T is a cyclically compact operator on X;

(ii) for all projection basis E in X, the net
(T (I − PF )

)
F∈Θ

o-converges to 0

where PF :=
∑

e∈F θe,e;

(iii) for all projection basis E in X
(
supe∈F c

{Te})
F∈Θ

decreases to 0;

(iv) for all projection basis E in X (supe∈F c {| 〈Te | e〉 |})F∈Θ decreases to 0.

Proof. (i)⇒ (ii) : Define Tn :=
∑n

k=1 µkθek,fk as in above proof. So, the following

inequality holdsθek,fk(I − PF )x
2 =

〈(I − PF )x | ek〉 fk
2

= 〈〈(I − PF )x | ek〉 fk | 〈(I − PF )x | ek〉 fk〉

=
fk2| 〈(I − PF )x | ek〉 |2 =

fk2| 〈x | (I − PF )ek〉 |2

≤
fk2

x2
(I − PF )ek

2.

for every x ∈ X from which it follows thatθek,fk(I − PF )
≤fk(I − PF )ek

 (k ∈ N).

Thus, since ((I − PF )ek)F∈Θ bo-converges to 0 for each k ∈ N (Lemma 3.1.11),

the same is true for (θek,fk(I − PF ))F∈Θ, hence, for (Tn(I − PF ))F∈Θ. Therefore,

result now follows from
T − Tn (o)−→ 0.

(ii)⇒ (iii) : Let F ∈ Θ and e ∈ E . Then, it follows fromTe≤TPF e+
T (I − PF )

e≤TPF e+
T (I − PF )


that

Te≤T (I − PF )
 (e ∈ F c). This implies (iii).

(iii)⇒ (iv) : The proof follows from | 〈Te | e〉 | ≤
Tee≤Te for all e ∈ E .

(iv) ⇒ (i) : Given a positive integer n and a nonzero projection π ∈ P(Λ),

consider the class Sπ of all projection orthonormal sets in X for which

π| 〈Te | e〉 | ≥ 1

4n
π (e ∈ A)

(we allow the empty set as one possible choice of A). By (iii), πA is a finite

set for each A in Sπ. The inclusion ordered set Sπ clearly obeys the hypotheses

of Kuratowski−Zorn Lemma. Therefore, there is a maximal element A0 ∈ Sπ.
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So, there exists a projection µ ∈ P(Λ) with 0 < µ ≤ π and | 〈Tx | x〉 | ≤ 1
4n
µ

whenever x ∈ µA⊥0 and
x∈ P(Λ); for otherwise this contradicts the maximality

of A0. By the Exhaustion Principle there exist a partition of unity (πα) and the

family of finite projection orthonormal sets (Aα) such that | 〈Tx | x〉 | ≤ 1
4n
πα

whenever x ∈ παA
⊥
α and

x ∈ P(Λ). Therefore, it follows from identity (3.1)

that

| 〈Tu | v〉 | ≤ 1

n
πα

for all u, u ∈ παA
⊥
α ,
u ≤ 1 and

v ≤ 1. By taking u = (I − Pα)x and

v = (I−Pα)y, where Pα is the projection from X to A⊥⊥α , i. e., Pα :=
∑

e∈Aα θe,e ∈
E (X) we deduce that

πα| 〈(I − Pα)T (I − Pα)x | y〉 | ≤ 1

n
πα

whenever x, y ∈ X,
x≤ 1 and

y≤ 1. Thus, πα
(I − Pα)T (I − Pα)

≤ 1
n
πα.

The operator Fα,n := PαT +TPα−PαTPα is in E (X) and
παT − παFα,n≤ 1

n
πα.

Since K (X) is a Banach−Kantorovich space there exists a cyclically compact

operator Fn = bo-
∑

α παFα,n withT − Fn≤ 1

n
1.

Again using K (X) is a Banach−Kantorovich space we obtain (iii) implies (i).

Observe that if T is a positive cyclically compact operator, then T 1/2 is also.

56



Chapter 4

The Schatten Type Classes of

Operators in Kaplansky−Hilbert

Modules

In this chapter, we generalize the Schatten−von Neumann classes of operators on

a Hilbert space which were introduced by von Neumann and Schatten [38]. There

are two particularly important classes, the trace class and the Hilbert−Schmidt

class. We investigate the classes Sp and get duality results for the Schatten-type

classes. Throughout this chapter, the letters X and Y denote Kaplansky−Hilbert

modules over Λ, and orthonormal families (ek)k∈N in X, (fk)k∈N in Y and family

(µk)k∈N in Λ will stand for the representation of the cyclically compact operator

T as given in Theorem 3.4.1.

4.1 The Hilbert−Schmidt Class

In this section, we generalize Hilbert−Schmidt operators on a Hilbert space and

study several properties of Hilbert−Schmidt operators on a Kaplansky−Hilbert

modules. Some equivalent characterizations are given and we show that the

Hilbert−Schmidt class is a Kaplansky−Hilbert module.
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Proposition 4.1.1. Let T be an element of K (X, Y ). The following conditions

are equivalent:

(i) for every projection basis E in X the family
(Te2

)
e∈E

is o-summable;

(ii) for some projection basis E in X the family
(Te2

)
e∈E

is o-summable;

(iii) (µ2
k)k∈N is o-summable.

In particular, if the family
(Te2

)
e∈E

is o-summable in Λ for some projection

basis E of X, then the sum equals to o-
∑

k∈N µ
2
k.

Proof. Let (ξi)i∈I and (ζj)j∈J be projection bases for X and Y , respectively. By

Lemma 3.1.14 we have

o-
∑
i∈I

Tξi2 = o-
∑
i∈I

(
o-
∑
j∈J

| 〈Tξi | ζj〉 |2
)

= o-
∑
i∈I

(
o-
∑
j∈J

| 〈ξi | T ∗ζj〉 |2
)

= o-
∑
j∈J

(
o-
∑
i∈I

| 〈T ∗ζj | ξi〉 |2
)

= o-
∑
j∈J

T ∗ζj2.

Thus, the sum does not depend on the choice of projection basis. Assume that

a projection basis E contains {en : n ∈ N}. So, it follows from Ten = µnfn and

Te = 0 (e ∈ E \ {en : n ∈ N}) that

o-
∑
e∈E

Te2 = o-
∑
k∈N

Ten2 = o-
∑
k∈N

µ2
n.

Therefore, the equivalence of (i), (ii) and (iii) are obtained.

Definition 4.1.2. The Hilbert−Schmidt class S2(X, Y ) consists of cyclically

compact operators T such that (µ2
k)k∈N is o-summable in Λ. Put

v2(T ) :=

(
o-
∑
k∈N

µ2
k

)1/2

.

The operators of the class S2(X, Y ) are called Hilbert−Schmidt operators.

Using the proposition above, E (X, Y ) ⊂ S2(X, Y ) and v2(θx,y) =
xyhold

for all x ∈ X and y ∈ Y . Note that T ∈ S2(X, Y ) implies T ∗ ∈ S2(Y,X).
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Proposition 4.1.3. Let S, T be in S2(X, Y ). Then the family (|〈Se | Te〉|)e∈E is

o-summable for all projection basis E in X. In particular, the sum o-
∑

e∈E 〈Se | Te〉
is same for all projection basis E of X. If we define

〈S, T 〉 := o-
∑
e∈E

〈Se | Te〉 ,

then 〈·, ·〉 is Λ-valued inner product on S2(X, Y ) for which 〈T, T 〉 = v2
2(T ) for all

T ∈ S2(X, Y ).

Proof. Let F be a finite subset of E . From(∑
f∈F

| 〈Sf | Tf〉 |

)2

≤

(∑
f∈F

SfTf)2

≤
∑
f∈F

Sf2
∑
f∈F

Tf2

[15, Lemma 8] (|〈Se | Te〉|)e∈E is o-summable. It follows from the polarization

identity (3.2) and Proposition 4.1.1 that the sum o-
∑

e∈E 〈Se | Te〉 is same for all

projection basis E of X. Clearly, 〈S, T 〉 is Λ-valued inner product on S2(X, Y ).

Theorem 4.1.4. The pair (S2(X, Y ), 〈·, ·〉) is a Kaplansky−Hilbert module over

Λ and the following equality holds:T≤ v2(T ) (T ∈ S2(X, Y ))

where
T is exact dominant of T [23, 4.1.1].

Proof. By Proposition 4.1.1, we see that S2(X, Y ) is a submodule of BΛ(X, Y )

and v2(λT ) = |λ| v2(T ) holds for all λ ∈ Λ. Moreover, (S2(X, Y ), v2(·),Λ) is a

decomposable lattice-normed space. Indeed, from Proposition 4.1.1 it is a lattice-

normed space. We will prove that it is decomposable, and for this we assume that

v2(T ) = a1 + a2 is satisfied for some a1, a2 ∈ Λ+. Then, since 0 ≤ a1 ≤ v2(T )

there exists an orthomorphism L on Λ such that Lv2(T ) = a1 and 0 ≤ L ≤ I [2,

Theorem 2.49]. So, it follows from Orth(Λ) = Λ that there is g in Λ such that

gv2(T ) = a1 and 0 ≤ g ≤ 1 [2, Theorem 2.62]. Therefore, T = gT + (1 − g)T ,

v2(gT ) = a1 and v2((1 − g)T ) = a2, i. e., (S2(X, Y ), v2(·),Λ) is a decomposable

lattice-normed space. On the other hand, by Proposition 4.1.3 S2(X, Y ) has

an Λ-inner product such that v2(T ) = 〈T, T 〉1/2. From [23, 7.4.4.], it suffices to

show that (S2(X, Y ), v2(·),Λ) is bo-complete. Firstly, we will prove the inequalityT ≤ v2(T ) (T ∈ S2(X, Y )). Given x ∈ X, and the representation of T we
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have; Tx2 = o-
∑
n∈N

µ2
n| 〈x | en〉 |2

fn2 = o-
∑
n∈N

µ2
n| 〈x | en〉 |2

≤ o-
∑
n∈N

µ2
n

en2
x2 =

x2o-
∑
n∈N

µ2
n

= v2(T )2
x2

from which the desired inequality follows. Now let (Tα)α∈A be bo-fundamental

net in S2(X, Y ). So, there exists T ∈ K (X, Y ) such that (Tα)α∈A bo-converges

to T in K (X, Y ) since K (X, Y ) is a Banach−Kantorovich space. Without loss

of generality we can assume that there exists h ∈ Λ such that v2(Tα − Tβ) ≤ h

holds for all α, β ∈ A. Let E be a projection basis of X and α ∈ A. Then, we

have ∑
e∈F

(Tα − T )e
2 = o-lim

β∈A

∑
e∈F

(Tα − Tβ)e
2 ≤ sup

β≥α
v2

2(Tα − Tβ) ≤ h2

where F is a finite subset of E , and so Tα − T ∈ S2(X, Y ) and v2(Tα − T ) ≤
supβ≥α v2(Tα − Tβ) ≤ h. Thus, Tα = (Tα − T ) + T implies T ∈ S2(X, Y ).

Moreover, from inf {sup {v2(Tα − Tβ) : β ≥ α} : α ∈ A} = 0, we have (Tα)α∈A

bo-converges to T in S2(X, Y ).

4.2 The Trace Class

In this section, we generalize theory of the trace class operators on a Hilbert

spaces to operators on Kaplansky−Hilbert modules and study several properties

of the trace class operators on Kaplansky−Hilbert modules.

Proposition 4.2.1. Let T be a positive cyclically compact operator in BΛ(X).

The following statements are equivalent:

(i) for every projection basis E in X the family (〈Te | e〉)e∈E is o-summable in

Λ;

(ii) for some projection basis E in X the family (〈Te | e〉)e∈E is o-summable in

Λ;

(iii) (µk)k∈N is o-summable in Λ.

In particular, if the family (〈Te | e〉)e∈E is o-summable for some projection basis

E of X, then the sum equals to o-
∑

k∈N µk.
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Proof. Let T be a positive cyclically compact operator in BΛ(X). Define

S := bo-
∑
k∈N

µ
1/2
k θek,ek ,

and note that T = S2 and S is a positive cyclically compact operator on X.

(i)⇒ (ii) : Obvious.

(ii) ⇒ (iii) : Let E satisfy the properties of (ii). Since 〈Te | e〉 = 〈Se | Se〉 =Se2 holds for every e ∈ E , we obtain S ∈ S2(X). The result follows from

Proposition 4.1.1.

(iii) ⇒ (i) : Let (µk)k∈N be o-summable and E be a projection basis of X.

Then S ∈ S2(X). Again, from Proposition 4.1.1 and 〈Te | e〉 = 〈Se | Se〉 =
Se2

(e ∈ E ) (i) follows.

Assume that E is a projection basis containing {en : n ∈ N}. From 〈Tek | ek〉 =

〈µkek | ek〉 = µk
ek= µk (k ∈ N), we have

o-
∑
e∈E

〈Te | e〉 = o-
∑
k∈N

〈Tek | ek〉 = o-
∑
k∈N

µk.

Proposition 4.2.2. Let T be an element of K (X, Y ). The following conditions

are equivalent:

(i) (µn)n∈N is o-summable in Λ;

(ii) there exist families (xi)i∈I in X and (yi)i∈I in Y such that
(xiyi)i∈I is

o-summable in Λ and

Tx = bo-
∑
i∈I

〈x | xi〉 yi (x ∈ X).

In particular, if there exist projection orthonormal families (xi)i∈I in X, (yi)i∈I

in Y and a posivite elements family (αi)i∈I such that families (αixi)i∈I and (yi)i∈I

satisfy (ii), then o-
∑

k∈N µk = o-
∑

i∈I αi
xiyi.

Proof. (i)⇒ (ii) : Let (µn)n∈N be o-summable in Λ. Then if we take xn := µnen

and yn := fn, then (ii) is satisfied.
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(ii)⇒ (i) : For all k ∈ N we obtain

k∑
n=1

µn =
k∑

n=1

〈Ten | fn〉 =
k∑

n=1

〈
bo-
∑
i∈I

〈en | xi〉 yi

∣∣∣∣∣ fn
〉

=
k∑

n=1

(
o-
∑
i∈I

〈en | xi〉 〈yi | fn〉

)

≤ o-
∑
i∈I

( k∑
n=1

| 〈en | xi〉 |2
)1/2( k∑

n=1

| 〈yn | fi〉 |2
)1/2


≤ o-

∑
i∈I

xiyi.
This implies (i).

Let (xi)i∈I ⊂ X and (yi)i∈I ⊂ Y be projection orthonormal families and a

posivite elements family (αi)i∈I such that families (αixi)i∈I and (yi)i∈I satisfy

(ii). Then as above inequality, we have for all finite subset F of I

∑
i∈F

αi
xiyi=

∑
i∈F

〈Txi | yi〉 =
∑
i∈F

〈
bo-
∑
k∈N

µk 〈xi | ek〉 fk

∣∣∣∣∣ yi
〉

=
∑
i∈F

(
o-
∑
k∈N

µk 〈xi | ek〉 〈fk | yi〉

)

≤ o-
∑
k∈N

µk

(∑
i∈F

| 〈xi | ek〉 || 〈fk | yi〉 |

)

≤ o-
∑
k∈N

µk

(∑
i∈F

| 〈xi | ek〉 |2
)1/2(∑

i∈F

| 〈fk | yi〉 |2
)1/2


≤ o-

∑
k∈N

µk
ekfk= o-

∑
k∈N

µk.

Thus, we obtain o-
∑

k∈N µk = o-
∑

i∈I αi
xiyi.

Definition 4.2.3. The trace class S1(X, Y ) consists of cyclically compact oper-

ators T such that (µk)k∈N is o-summable in Λ. We put

v1(T ) := o-
∑
k∈N

µk.

The operators of class S1(X, Y ) are called trace class operators.

The proposition above yields that have E (X, Y ) ⊂ S1(X, Y ) and the following

which shows that v1(T ) is well-defined.
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Corollary 4.2.4. Let T ∈ S1(X, Y ) and λ ∈ Λ. Then v1(λT ) = |λ| v1(T ) and

v1(T ) = inf

{
o-
∑
i∈I

xiyi∈ Λ : (xi)i∈I ⊂ X, (yi)i∈I ⊂ Y

}

where (xi)i∈I and (yi)i∈I satisfy condition (ii) of Proposition 4.2.2.

Proposition 4.2.5. (S1(X, Y ), v1(·)) is a Banach−Kantorovich space and the

following equality holds,T≤ v1(T ) (T ∈ S1(X, Y ))

where
T is exact dominant of T , [23, 4.1.1].

Proof. By Proposition 4.2.2 and Corollary 4.2.4, S1(X, Y ) is a submodule of

BΛ(X, Y ) and, respectively, (S1(X, Y ), v1(·),Λ) is a lattice-normed space and

v1(λT ) = |λ| v1(T ) for all λ ∈ Λ. Thus, (S1(X, Y ), v1(·),Λ) is a decomposable

lattice-normed space (for decomposablity see the proof of Theorem 4.1.4). Now

we will prove the inequality
T≤ v1(T ) (T ∈ S1(X, Y )). From representation

of T we have for x ∈ X

Tx=

bo-
∑
k∈N

µk 〈x | ek〉 fk

 ≤ o-
∑
k∈N

µk| 〈x | ek〉 |
fk

≤ o-
∑
k∈N

µk
ekxfk=

xo-∑
k∈N

µk

= v1(T )
x

from which the desired inequality follows. Moreover, to show S1(X, Y ) is a

Banach−Kantorovich space, it suffices to show that it is bo-complete. Assume

that (Tα)α∈A is a bo-fundamental net in S1(X, Y ). Then there exists T ∈
K (X, Y ) such that (Tα)α∈A bo-converges to T in K (X, Y ) since K (X, Y ) is

Banach−Kantorovich space. We can assume that there exists g ∈ Λ such that

v1(Tα − Tβ) ≤ g holds for all α, β ∈ A. By Proposition 4.2.2 and Theorem 3.4.1

there exist families (xi)i∈I , (ξn) in X and (yi)i∈I , (ζn) in Y and family (νn) in Λ+

such that

(Tα − Tβ)x = bo-
∑
i∈I

〈x | xi〉 yi and (Tα − T )x = bo-
∑
n∈N

νn 〈x | ξn〉 ζn
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and
(xiyi)i∈I is o-summable. Thus,

k∑
n=1

|〈(Tα − Tβ)ξn | ζn〉| =
k∑

n=1

∣∣∣∣∣o-∑
i∈I

〈ξn | xi〉 〈yi | ζn〉

∣∣∣∣∣
≤ o-

∑
i∈I

( k∑
n=1

| 〈ξn | xi〉 |2
)1/2( k∑

n=1

| 〈yn | ζi〉 |2
)1/2


≤ o-

∑
i∈I

xiyi.
from which

k∑
n=1

|〈(Tα − Tβ)ξn | ζn〉| ≤ v1(Tα − Tβ)

holds for each α, β ∈ A. Fix α ∈ A. Using the inequality

k∑
n=1

νn =
k∑

n=1

〈(Tα − T )ξn | ζn〉 = o-lim
β∈A

k∑
n=1

|〈(Tα − Tβ)ξn | ζn〉|

≤ sup
β≥α

v1(Tα − Tβ) ≤ g

we see T ∈ S1(X, Y ) and v1(Tα − T ) ≤ supβ≥α v1(Tα − Tβ). Therefore (Tα)α∈A

bo-converges to T in S1(X, Y ) since inf {sup {v1(Tα − Tβ) : β ≥ α} : α ∈ A} =

0.

This, together with [23, 2.1.8.(3)], yields the following.

Corollary 4.2.6. S1(X, Y ) admits a compatible module structure over Λ.

Note that (S1(X, Y ),Λ) is a Banach space with mixed norm which is defined

by 9T91 := ‖v1(T )‖ (T ∈ S1(X, Y )).

Lemma 4.2.7. Let T ∈ S1(X). Then the net (|〈Te | e〉|)e∈E is o-summable for

all projection basis E , and the sum o-
∑

e∈E 〈Te | e〉 is the same for all projection

basis E of X.

Proof. There exist positive cyclically compact operator R1 and cyclically compact

operator R2 in S2(X) such that T = R1R2 and 〈Te | e〉 = 〈R2e | R1e〉 hold for

every e ∈ E , namely,

R1 := bo-
∑
k∈N

µ
1/2
k θfk,fk and R2 := bo-

∑
k∈N

µ
1/2
k θek,fk .

The net (|〈Te | e〉|)e∈E is o-summable in Λ by Proposition 4.1.3, and the sum

o-
∑

e∈E 〈Te | e〉 is the same for all projection basis of X.
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We will now utilize the preceding proposition to define a trace for operators

in the trace class.

Definition 4.2.8. For T ∈ S1(X) define the trace of T by

tr(T ) := o-
∑
e∈E

〈Te | e〉

where E is a projection basis of X.

Note that v1(T ) = tr(T ) is satisfied for every positive operator T in S1(X).

Lemma 4.2.9. Let T ∈ S1(X). If Tx = bo-
∑

i∈I 〈x | xi〉 yi where (xi)i∈I and

(yi)i∈I satisfy the condition (ii) of Proposition 4.2.2, then we have

tr(T ) = o-
∑
i∈I

〈yi | xi〉 .

Proof. Let E be a projection basis of X. First, observe that(
o-
∑
e∈E

|〈e | xi〉| |〈yi | e〉|

)2

≤ o-
∑
e∈E

|〈e | xi〉|2 o-
∑
e∈E

|〈yi | e〉|2 ≤
yi2

xi2

for each i ∈ I. Hence we have

tr(T ) = o-
∑
e∈E

〈Te | e〉 = o-
∑
e∈E

(
o-
∑
i∈I

〈e | xi〉 〈yi | e〉

)

= o-
∑
i∈I

(
o-
∑
e∈E

〈e | xi〉 〈yi | e〉

)
= o-

∑
i∈I

〈yi | xi〉

from which the desired result follows.

Lemma 4.2.10. The following statements hold:

(i) tr : S1(X)→ Λ is a dominated, bo-continuous Λ-linear operator and

|tr(T )| ≤ v1(T ) (T ∈ S1(X)).

In particular,
tr
= 1 and tr is 9·91-continuous Λ-linear operator and is

a band preserving operator;

(ii) tr(T ∗) = tr(T )∗ (T ∈ S1(X));

(iii) tr(TL) = tr(LT ) whenever TL, LT ∈ S1(X) (T ∈ K (X) and L ∈ BΛ(X)).

In particular, the following holds

tr(TL) = tr(LT ) = o-
∑
k∈N

µk 〈Lfk | ek〉 ;
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(iv) if T ∈ S1(Y,X) and L ∈ BΛ(X, Y ), then TL ∈ S1(X), LT ∈ S1(Y ) and

|tr(TL)| ≤ v1(T )
L;

(v) S∗T ∈ S1(X) is satisfied for all S, T ∈ S2(X, Y ).

Proof. (i) tr is a Λ-linear operator by Lemma 4.2.9. Moreover, utilising

|tr(T )| =

∣∣∣∣∣o-∑
k∈N

µk 〈fk | ek〉

∣∣∣∣∣ ≤ o-
∑
k∈N

µk = v1(T )

tr is bo-continuous and subdominated [23, 4.1.10.] and hence dominated, by virtue

of [23, 4.1.11.(1)]. Since v1(T ) = tr(T ) is satisfied for every positive operator T

in S1(X) and Orth(Λ) = Λ, we have
tr
= 1, and hence it is a band preserving

operator [23, 5.1.8.(1)].

(ii) Let E be a projection basis of X. The proof follows from Corollary 3.4.2

and the following equality

tr(T ∗) = o-
∑
e∈E

〈T ∗e | e〉 = o-
∑
e∈E

〈e | Te〉 = tr(T )∗.

(iii) We use the representation of T to obtain

LT = bo-
∑
k∈N

µk 〈· | ek〉Lfk and (TL)∗ = L∗T ∗ = bo-
∑
k∈N

µk 〈· | fk〉L∗ek.

This implies that

tr(LT ) = o-
∑
n∈N

µn 〈Lfn | en〉 =

(
o-
∑
n∈N

µn 〈L∗en | fn〉

)∗
= tr((TL)∗)∗ = tr(TL).

(iv) Assume that Tx = bo-
∑

i∈I 〈x | xi〉 yi where (xi)i∈I and (yi)i∈I satisfy the

condition (ii) of Proposition 4.2.2. Then TL = bo-
∑

i∈I θL∗xi,yi holds. Moreover,

since (L∗xi)i∈I and (yi)i∈I satisfy the condition (ii) of Proposition 4.2.2. we have

TL ∈ S1(X). Using Lemma 4.2.9, we obtain

|tr(TL)| =

∣∣∣∣∣o-∑
i∈I

〈yi | L∗xi〉

∣∣∣∣∣ =

∣∣∣∣∣o-∑
i∈I

〈Lyi | xi〉

∣∣∣∣∣
≤ o-

∑
i∈I

Lyixi≤Lo-∑
i∈I

yixi.
The result now follows from Corollary 4.2.4.

(v) The representation of T yields

S∗Tx = bo-
∑
k∈N

µk 〈x | ek〉S∗fk,
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and so for all n ∈ N the following inequality holds

n∑
k=1

µk
ekS∗fk=

n∑
k=1

µk
S∗fk

≤

(
n∑
k=1

µ2
k

)1/2( n∑
k=1

S∗fk2

)1/2

.

That S∗T ∈ S1(X) follows from Propositions 4.1.1 and 4.2.2.

Let
(
X ,
·,Λ) be a Banach−Kantorovich space. From [23, 2.1.8.(3)] X ad-

mits a compatible module structure over Orth(Λ) = Λ. Moreover, every Λ-linear

operator f from X to Λ is band preserving. Indeed, assume that
x⊥y. This

means that
xy= 0. So,

yf(x)
=

yf(x)
=

f(
yx)

= 0 implies f is

band preserving. Therefore, every dominated Λ-linear operator f from X to Λ

is bo-continuous [23, 5.1.8.(1)]

Proposition 4.2.11. Let
(
X ,
·,Λ) be a Banach−Kantorovich space. If f :

X → Λ is a Λ-linear operator, then the following statements are equivalent:

(i) f is dominated;

(ii) f is mixed norm 9·9-continuous.

Proof. (i) ⇒ (ii) : By [23, 5.1.8.(1)] the exact dominant
f is in Orth(Λ) = Λ.

Since
f is norm-continuous (ii) follows from 9fx9 ≤

∥∥fx∥∥.

(ii)⇒ (i) : Let λ ∈ Λ+. For all
x≤ λfx≤ 9fx 9 1 ≤ 9f 9 9x 9 1 ≤ 9f 9 ‖λ‖1

implies that
{fx :

x≤ λ
}

is bounded. Therefore, f is subdominated, and so

it is dominated [23, 4.1.11].

Denote by X ∗ the set of all Λ-linear operator η : X → Λ such that there

exists c ∈ Λ with |η(x)| ≤ c
x (x ∈X ). By the proposition above X ∗ consists

of all 9·9-continuous Λ-linear operators η : X → Λ.

Theorem 4.2.12. If ϕ : S1(Y,X)→ K (X, Y )∗ is defined by ϕ(T )(A) = tr(TA)

for all A ∈ K (X, Y ) and T ∈ S1(Y,X), then ϕ satisfies the following properties:

(i) ϕ is a bijective Λ-linear operator from S1(Y,X) to K (X, Y )∗;

(ii) v1(T ) =
ϕ(T )

 (T ∈ S1(Y,X)).
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Proof. By Lemma 4.2.10 (i) and (iv), ϕ is a well-defined dominated Λ-linear

operator, and
ϕ(T )

≤ v1(T ) for all T ∈ S1(Y,X). Given φ ∈ K (X, Y )∗. From

Theorem 4.1.4 φ|S2(X,Y ) is in S2(X, Y )∗ and there exists a unique S ∈ S2(X, Y )

such that φ|S2(X,Y ) = 〈·, S〉 since S2(X, Y ) is Kaplansky−Hilbert module [23,

7.5.7.(2)]. Thus, for all A ∈ S2(X, Y ), we obtain φ|S2(X,Y )(A) = 〈A, S〉 = tr(S∗A)

since S∗A ∈ S1(X). Let (xk)k∈N, (yk)k∈N, and (λk)k∈N be the representation of S∗

as in Theorem 3.4.1. Define Pm :=
∑m

k=1 θyk,xk (m ∈ N), and note that
Pm≤ 1.

Thus, the following inequality

φ=
φ1 ≥

φPm≥ |φ(Pm)| = |tr(S∗Pm)| =
m∑
k=1

λk

implies that S∗ ∈ S1(Y,X). For all A ∈ K (X, Y ) there is (An)n∈N in E (X, Y ) ⊂
S2(X, Y ) such that

A− An (o)−→ 0. It follows from the bo-continuity of ϕ(S∗)

that ϕ(S∗)(An) = φ(An) implies ϕ(S∗)(A) = φ(A). Thus, ϕ is onto and
ϕ(S∗)

≥
v1(S∗), and the proof is finished.

A variant of the following lemma is proved in [49, Proposition 1.3].

Lemma 4.2.13. If the mapping σ : X ×Y → Λ satisfies the following properties

(i) σ(λx1 +µx2, y) = λσ(x1, y)+µσ(x2, y) for each x1, x2 ∈ X, y ∈ Y and each

λ, µ ∈ Λ;

(ii) σ(x, λy1 + µy2) = λ∗σ(x, y1) + µ∗σ(x, y2) for each x ∈ X, each y1, y2 ∈ Y
and each λ, µ ∈ Λ;

(iii) There exists some λ ∈ Λ+ such that |σ(x, y)| ≤ λ
xyholds for each x ∈ X

and each y ∈ Y ,

then there exists a unique A ∈ BΛ(X, Y ) such that
A≤ λ and σ(x, y) = 〈Ax | y〉

hold for each x ∈ X and each y ∈ Y .

Proof. Given x0 ∈ X, we define Ax0(y) := σ(x0, y)∗. Then Ax0 ∈ BΛ(Y,Λ). This

implies that there exists a unique y0 ∈ Y such that Ax0(y) = 〈y | y0〉 holds for all

y ∈ Y [15, Theorem 5.]. Therefore we can define Ax0 := y0. Thus, we see that

A is Λ-linear operator from X to Y and σ(x, y) = 〈Ax | y〉 is satisfied for every

x ∈ X, y ∈ Y . By the property (iii) we have

| 〈Ax | Ax〉 | =
Ax2 ≤ λ

xAx,
and so

A≤ λ.
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Theorem 4.2.14. If ψ : (BΛ(X, Y ),
·) → (S1(Y,X)∗,

·1) is defined by

ψ(L)(T ) = tr(TL) for all L ∈ BΛ(X, Y ) and T ∈ S1(Y,X). Then ψ satisfies the

following properties:

(i) ψ is a bijective Λ-linear operator from BΛ(X, Y ) to S1(Y,X)∗;

(ii)
L=

ψ(L)
1 (L ∈ BΛ(X, Y )).

Proof. By Lemma 4.2.10 (i) and (iv), ψ is a well-defined, dominated and Λ-linear

operator, and
ψ(L)

1 ≤
Lholds for all L ∈ BΛ(X, Y ). Let τ be in S1(Y,X)∗.

For every x ∈ X and y ∈ Y it follows from θy,x ∈ K (X, Y ) and Proposition 4.2.2

that θy,x ∈ S1(X, Y ). Define σ : X × Y → Λ by σ(x, y) := τ(θy,x), whence

|σ(x, y)| = |τ(θy,x)| ≤
τ1v1(θy,x) ≤

τ1

xy.
Therefore there exists A ∈ BΛ(X, Y ) such that σ(x, y) = 〈Ax | y〉. This implies

ψ(A)(θy,x) = tr(Aθy,x) = tr(θy,Ax) = 〈Ax | y〉 = τ(θy,x)

and Ax2 = 〈Ax | Ax〉 = |τ(θAx,x)| ≤
τ1v1(θAx,x) ≤

τ1

Axx.
Thus,

A≤τ1 and for all T ∈ S1(Y,X) we obtain ψ(A)(T ) = τ(T ), i. e.,

ψ(A) = τ . Therefore
ψ(L)

1 ≥
L holds for all L ∈ BΛ(X, Y ). So, (i) and (ii)

are satisfied.

4.3 Classes Sp

This section is concerned with certain classes Sp (1 ≤ p <∞) of cyclically com-

pact operators on Kaplansky−Hilbert modules. It turns out that each of these

classes becomes a Banach−Kantorovich space when provided with a suitable vec-

tor norm.

Proposition 4.3.1. Let T be a positive cyclically compact operator on X and

1 ≤ p <∞. Then the following are equivalent:

(i) (µpk)k∈N is o-summable in Λ;

(ii) (〈Te | e〉p)e∈E is o-summable in Λ for all projection orthonormal subsets E

of X.
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In this case,(
o-
∑
k∈N

µpk

) 1
p

= max


(
o-
∑
e∈E

〈Te | e〉p
) 1

p

∈ Λ : E ⊂ X


where E is a projection orthonormal subset of X.

Proof. (ii)⇒ (i) : Follows directly from the equality 〈Tek | fk〉 = µk and the fact

that {ek : k ∈ N} is a projection orthonormal subset of X.

(i)⇒ (ii) : Assume that E is a projection orthonormal subset of X. If p = 1,

the proof is finished by Proposition 4.2.1. Assume that 1 < p < ∞ and q is

conjugate index to p. Then we have

〈Te | e〉 =

〈
bo-
∑
n∈N

µn 〈e | en〉 en

∣∣∣∣∣ e
〉

= o-
∑
n∈N

µn| 〈e | en〉 |2

= o-
∑
n∈N

µn| 〈e | en〉 |2/p| 〈e | en〉 |2/q

≤

(
o-
∑
n∈N

(
µn| 〈e | en〉 |2/p

)p)1/p(
o-
∑
n∈N

(
| 〈e | en〉 |2/q

)q)1/q

≤

(
o-
∑
n∈N

µpn| 〈e | en〉 |2
)1/pe2/q ≤

(
o-
∑
n∈N

µpn| 〈e | en〉 |2
)1/p

for all e ∈ E . This implies∑
e∈F

〈Te | e〉p ≤
∑
e∈F

(
o-
∑
n∈N

µpn| 〈e | en〉 |2
)

= o-
∑
n∈N

µpn

(∑
e∈F

| 〈e | en〉 |2
)

≤ o-
∑
n∈N

µpn
en2 = o-

∑
n∈N

µpn,

where F is a finite subset of E . This proves the proposition.

Let T be in K (X, Y ). Using the Polar Decomposition, there exists a partial

isometry UT ∈ BΛ(X, Y ) such that
UT≤ 1, that T = UT |T |, and that |T | = U∗TT

with

|T |x = bo-
∑
k∈N

µk 〈x | ek〉 ek and UTx = bo-
∑
k∈N

〈x | ek〉 fk,

where |T | = (T ∗T )1/2, and therefore |T | ∈ K (X, Y ).

Definition 4.3.2. Let 1 ≤ p <∞. The set of all cyclically compact operators T

such that (µpk)k∈N is o-summable in Λ will be denoted by Sp(X, Y ). We put

vp(T ) :=

(
o-
∑
k∈N

µpk

) 1
p

.
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Observe that the inclusion Sp(X, Y ) ⊂ Sr(X, Y ) holds for 1 ≤ p ≤ r.

Corollary 4.3.3. Let T be in K (X, Y ) and 1 ≤ p <∞. Then the following are

equivalent:

(i) T is in Sp(X, Y );

(ii) UT |T |U∗T is a positive cyclically compact operator in Sp(Y );

(iii) |T | is a positive cyclically compact operator in Sp(X);

(iv) (〈|T | e | e〉p)e∈E is o-summable for all projection orthonormal subsets E of

X.

In this case, vp(T ) = vp(|T |) = vp(UT |T |U∗T ) and

vp(T ) = max


(
o-
∑
e∈E

〈|T | e | e〉p
) 1

p

: E ⊂ X


where E is a projection orthonormal subset of X.

Proof. Clearly, (i), (ii) and (iii) are equivalent. From the preceding proposition

(iii) and (iv) are equivalent.

Every positive operator A in BΛ(X) has a unique positive operator A1/2 in

BΛ(X) such that A =
(
A1/2

)2
. From the Cauchy−Bunyakovskĭı−Schwarz in-

equality and this fact we deduce the Generalized Schwarz’s inequality,

| 〈Ax | y〉 |2 ≤ 〈Ax | x〉 〈Ay | y〉

where x, y ∈ X and A is a positive operator in BΛ(X).

Proposition 4.3.4. Let T be a cyclically compact operator from X to Y and

1 ≤ p <∞. Then the following statements are equivalent:

(i) T is in Sp(X, Y );

(ii) (| 〈Teα | fα〉 |p)α∈A is o-summable for all projection orthonormal subsets

(eα)α∈A and (fα)α∈A in X and Y , respectively.

In this case, for all T ∈ Sp(X, Y ), the following equality holds

vp(T ) = max


(
o-
∑
α∈A

| 〈Teα | fα〉 |p
) 1

p

∈ Λ : (eα)α∈A ⊂ X, (fα)α∈A ⊂ Y


where (eα)α∈A and (fα)α∈A are projection orthonormal subsets of X and Y , re-

spectively.
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Proof. (ii) ⇒ (i) : (i) follows from 〈Tek | fk〉 = µk, and (ek)k∈N and (fk)k∈N

projection orthonormal subsets. The following equality also holds:

vp(T ) =

(
o-
∑
k∈N

µpk

) 1
p

=

(
o-
∑
k∈N

〈Tek | fk〉p
) 1

p

.

(i)⇒ (ii) : Let (eα)α∈A and (fα)α∈A be projection orthonormal subsets of X

and Y , respectively. By Generalized Schwarz’s inequality,

| 〈Teα | fα〉 | = | 〈UT |T | eα | fα〉 | = | 〈|T | eα | U∗Tfα〉 |

≤ | 〈|T | eα | eα〉 |1/2| 〈|T |U∗Tfα | U∗Tfα〉 |1/2

= | 〈|T | eα | eα〉 |1/2| 〈UT |T |U∗Tfα | fα〉 |1/2

holds for all α ∈ A . So, we use Corollary 4.3.3 to obtain∑
α∈F

| 〈Teα | fα〉 |p ≤
∑
α∈F

| 〈|T | eα | eα〉 |p/2| 〈UT |T |U∗Tfα | fα〉 |p/2

≤

(∑
α∈F

(
〈|T | eα | eα〉

p
2

)2
) 1

2
(∑
α∈F

(
〈UT |T |U∗Tfα | fα〉

p
2

)2
) 1

2

=

(∑
α∈F

〈|T | eα | eα〉p
) 1

2
(∑
α∈F

〈UT |T |U∗Tfα | fα〉
p

) 1
2

≤ vp(|T |)
p
2 vp(UT |T |U∗T )

p
2 = vp(T )p

where F is a finite subset of A . Thus, (ii) is satisfied.

Proposition 4.3.5. Let T be in K (X, Y ) and 1 ≤ p ≤ 2. Then T ∈ Sp(X, Y )

if and only if
(Tep)

e∈E
is o-summable for some projection basis E of X. In this

case, for T ∈ Sp(X, Y ), the following equality holds

vp(T ) = min


(
o-
∑
e∈E

Tep) 1
p

∈ Λ : E ⊂ X


where

(Tep)
e∈E

is o-summable for projection basis E .

Proof. There exists a projection basis E containing {ek : k ∈ N}. Thus, Te = 0

and Tek = µkfk hold for all e ∈ E \ {ek : k ∈ N} and k ∈ N, respectively. If

T ∈ Sp(X, Y ), then it follows from
Tek= µk that

(Tep)
e∈E

is o-summable

for the projection basis E of X and we also have the following equality

vp(T ) =

(
o-
∑
e∈E

Tep) 1
p

.
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Conversely, suppose that
(Tep)

e∈E
is o-summable for some projection basis

E of X. Using Hölder’s inequality with conjugate exponents 2/p and 2/(2 − p),
we have

∑
n∈F

µpn =
∑
n∈F

µpn

(
o-
∑
e∈E

| 〈e | en〉 |2
)

= o-
∑
e∈E

(∑
n∈F

µpn| 〈e | en〉 |2
)

= o-
∑
e∈E

(∑
n∈F

µpn| 〈e | en〉 |p| 〈e | en〉 |2−p
)

≤ o-
∑
e∈E

(∑
n∈F

µ2
n| 〈e | en〉 |2

)p/2(∑
n∈F

| 〈e | en〉 |2
)1−p/2


≤ o-

∑
e∈E

Tepe2−p ≤ o-
∑
e∈E

Tep
where F is a finite subset of N. Thus, we have the desired result.

Proposition 4.3.6. Let T be in K (X, Y ) and 2 ≤ p < ∞. Then T is in

Sp(X, Y ) if and only if
(Tep)

e∈E
is o-summable for all projection orthonormal

subset E of X. In this case, for T ∈ Sp(X, Y ), the following equality holds

vp(T ) = max


(
o-
∑
e∈E

Tep) 1
p

∈ Λ : E ⊂ X


where E is a projection orthonormal subset of X.

Proof. (ii) ⇒ (i) : {ek : k ∈ N} is a projection orthonormal set and
Tek= µk

holds for all k ∈ N. This implies (i), and the following equality holds:

vp(T ) =

(
o-
∑
k∈N

Tekp)
1
p

.

(i)⇒ (ii) : Let T be in Sp(X, Y ) and E be a projection orthonormal subsets

of X. Using Hölder’s inequality with conjugate exponents p/2 and p/(p− 2), we
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have

∑
e∈F

Tep =
∑
e∈F

(
o-
∑
n∈N

µ2
n| 〈e | en〉 |2

)p/2

=
∑
e∈F

(
o-
∑
n∈N

µ2
n| 〈e | en〉 |4/p| 〈e | en〉 |2−4/p

)p/2

≤
∑
e∈F

(o-∑
n∈N

µpn| 〈e | en〉 |2
)(

o-
∑
n∈N

| 〈e | en〉 |2
)(p−2)/2


=
∑
e∈F

(
o-
∑
n∈N

µpn| 〈e | en〉 |2
)ep−2 ≤

∑
e∈F

o-
∑
n∈N

µpn| 〈e | en〉 |2

= o-
∑
n∈N

µpn

(∑
e∈F

| 〈e | en〉 |2
)
≤ o-

∑
n∈N

µpn
en2

= o-
∑
n∈N

µpn.

where F is a finite subset of E . Clearly, we obtain the desired result.

Proposition 4.3.7. Let 1 ≤ p <∞. Then the following inequality holds:T≤ vp(T ) (T ∈ Sp(X, Y ))

where
T is the exact dominant of T .

Proof. Let T be in Sp(X, Y ). If 1 ≤ p ≤ 2, then using representation of T and

Hölder’s inequality with q the conjugate index to p, we have
∑
n∈F

µn 〈x | en〉 fn

 ≤
∑
n∈F

µn| 〈x | en〉 |
fn=

∑
n∈F

µn| 〈x | en〉 |1−2/q| 〈x | en〉 |2/q

≤

(∑
n∈F

µpn| 〈x | en〉 |(1−2/q)p

)1/p(∑
n∈F

| 〈x | en〉 |2
)1/q

≤

(∑
n∈F

µpn
x(1−2/q)p

)1/px2/q

=
x1−2/q

(∑
n∈F

µpn

)1/px2/q

≤ vp(T )
x

where F is a finite subset of N and x ∈ X. Therefore,
Tx≤ vp(T )

x is satisfied

for all x ∈ X. If 2 ≤ p, then using Hölder’s inequality with conjugate exponents

74



p/2 and p/(p− 2), we haveTx2 = o-
∑
n∈N

µ2
n| 〈x | en〉 |2 = o-

∑
n∈N

µ2
n| 〈x | en〉 |4/p| 〈x | en〉 |2−4/p

≤

(
o-
∑
n∈N

µpn| 〈x | en〉 |2
)2/p(

o-
∑
n∈N

| 〈x | en〉 |2
)(p−2)/p

≤
x4/p

(
o-
∑
n∈N

µpn

)2/px2(p−2)/p

= vp(T )2
x2.

Finally,
Tx≤ vp(T )

x is satisfied for every x ∈ X with 1 ≤ p < ∞, and soT≤ vp(T ).

Proposition 4.3.8. Let 1 ≤ p <∞. (Sp(X, Y ), vp(·),Λ) is a Banach−Kantorovich

space and the following properties hold:

(i) if T ∈ Sp(X, Y ), then T ∗ ∈ Sp(Y,X) and vp(T ) = vp(T
∗);

(ii) if L ∈ BΛ(Y, Z) and S ∈ BΛ(W,X), then LT ∈ Sp(X,Z) and TS ∈
Sp(W,Y ) hold for all T ∈ Sp(X, Y ). Moreover,

vp(LT ) ≤
Lvp(T ) and vp(TS) ≤

Svp(T ).

Proof. By Proposition 4.3.4 we have (i) and Sp(X, Y ) is a submodule ofBΛ(X, Y ).

Moreover, vp(λT ) = |λ| vp(T ) holds for all T ∈ Sp(X, Y ) and λ ∈ Λ, and so

(Sp(X, Y ), vp(·),Λ) is a decomposable lattice-normed space (see the proof of The-

orem 4.1.4). Let L ∈ BΛ(Y, Z), S ∈ BΛ(W,X) and T ∈ Sp(X, Y ). By (i) and

Propositions 4.3.5 and 4.3.6 we obtain LT ∈ Sp(X,Z), TS ∈ Sp(W,Y ). So, it

follows from
S=

S∗ that

vp(LT ) ≤
Lvp(T ) and vp(TS) ≤

Svp(T ).

Now we will show Sp(X, Y ) is a Banach−Kantorovich space.To this end, let

(Tα)α∈A be bo-fundamental net in Sp(X, Y ). Using Proposition 4.3.7 and K (X, Y )

Banach−Kantorovich space, there exists T ∈ K (X, Y ) such that (Tα)α∈A bo-

converges to T in K (X, Y ). We can assume vp(Tα−Tβ) ≤ g for some g ∈ Λ and

all α, β ∈ A. Fix α ∈ A. Since Tα − T ∈ K (X, Y ) there exist orthonormal fam-

ilies (ξn)n∈N in X and (ζn)n∈N in Y , and family (λn)n∈N verifying representation

of Tα − T as in Theorem 3.4.1. Thus, we use Proposition 4.3.4 to obtain

k∑
n=1

λpn =
k∑

n=1

| 〈(Tα − T )ξn | ζn〉 |p = o-lim
β∈A

k∑
n=1

| 〈(Tα − Tβ)ξn | ζn〉 |p

≤ sup
β≥α

vp(Tα − Tβ)p ≤ gp,
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and so vp(Tα − T ) ≤ supβ≥α vp(Tα − Tβ), i. e., Tα − T ∈ Sp(X, Y ). So, it follows

from T = Tα− (Tα−T ) that T ∈ Sp(X, Y ). On the other hand, the net (Tα)α∈A

bo-converges to T in Sp(X, Y ) since inf {sup {v1(Tα − Tβ) : β ≥ α} : α ∈ A} = 0.

Therefore, Sp(X, Y ) is a Banach−Kantorovich space.

From [24, Lemmas 5.1. and 7.1.] we can compute the mix-norm 9T9p :=

‖vp(T )‖ (T ∈ Sp(X, Y )) for 1 ≤ p <∞ as follows:

9T9p =

∥∥∥∥∥∥
(
o-
∑
k∈N

µpk

) 1
p

∥∥∥∥∥∥ = sup
l∈N

inf
(πk)∈Prtσ

sup
k∈N

(
l∑

n=1

‖πkµn‖p
)1/p

where Prtσ is the set of sequences π : N→ P(Λ) which are partitions of unity in

P(Λ)

Lemma 4.3.9. Let 1 ≤ p < ∞. Then E (X, Y ) ⊂ Sp(X, Y ) and for each

T ∈ Sp(X, Y ) there exists a sequence (Tk)k∈N in E (X, Y ) which (vp(T − Tk))k∈N
o-converges to 0. In particular vp(θx,y) =

xy (x ∈ X, y ∈ Y ).

Proof. By Lemma 3.4.13 (i) θx,y ∈ K (X, Y ) for all x ∈ X and y ∈ Y . Let (eα)α∈A

and (fα)α∈A be projection orthonormal subsets in X and Y , respectively. From

|〈eα | x〉| ≤
eαx≤x and |〈fα | y〉| ≤

y (α ∈ A ), we have∑
α∈F

|〈θx,yeα | fα〉|p=
∑
α∈F

|〈eα | x〉|p |〈y | fα〉|p

≤

(∑
α∈F

|〈eα | x〉|2p
)1/2(∑

α∈F

|〈y | fα〉|2p
)1/2

≤

(∑
α∈F

|〈eα | x〉|2|〈eα | x〉|2p−2

)1/2(∑
α∈F

|〈y | fα〉|2|〈y | fα〉|2p−2

)1/2

≤

(x2p−2
∑
α∈F

|〈eα | x〉|2
)1/2(y2p−2

∑
α∈F

|〈y | fα〉|2
)1/2

≤
(x2p−2

x2
)1/2 (y2p−2

y2
)1/2

=
xpyp

where F is a finite subset of A . From Proposition 4.3.4 we see that θx,y ∈
Sp(X, Y ) and vp(θx,y) ≤

xy. Thus, E (X, Y ) ⊂ Sp(X, Y ) by the preceding

proposition. By Lemma 3.4.13 (iii) and Proposition 4.3.7 we have vp(θx,y) =xy. We will show finally that for each T ∈ Sp(X, Y ) there exists a sequence

(Tk)k∈N in E (X, Y ) which (vp(T − Tk))k∈N o-converges to 0. Using represention

of T we can define Tm in E (X, Y ) by for

Tm :=
m∑
k=1

µkθek,fk
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for m ∈ N. Then

T − Tm = bo-
∑

k∈Nm+1

µkθek,fk

where Nm+1 = {k ∈ N : k ≥ m+ 1} and we obtain vp(T −Tm)p = bo-
∑

k∈Nm+1
µpk.

Thus, (vp(T − Tk))k∈N o-converges to 0.

Lemma 4.3.10. Let 1 < p, q < ∞ and 1
p

+ 1
q

= 1. If S ∈ Sp(X, Y ) and

T ∈ Sq(Y,X), then TS ∈ S1(X) and v1(TS) ≤ vq(T )vp(S).

Proof. We may assume that p ≥ 2 since otherwise q > 2 holds and then the proof

is similar. So, we use Proposition 4.3.6 and

TSx = o-
∑
n∈N

µn 〈x | S∗en〉 fn

to obtain

∑
n∈F

µnfnS∗en≤ (∑
n∈F

µnfnq)
1
q
(∑
n∈F

S∗enp)
1
p

≤

(
o-
∑
n∈N

µqn

) 1
q

vp(S
∗) = vq(T )vp(S)

where F is a finite subset of N. The proof follows immediately from Proposition

4.2.2 and Corollary 4.2.4.

Together with Lemma 4.2.10 (iii), this yields the following corollary.

Corollary 4.3.11. For each T ∈ Sp(X, Y ) and S ∈ Sq(Y,X), tr(TS) = tr(ST ).

Theorem 4.3.12. Let 1 < p, q < ∞ and 1
p

+ 1
q

= 1. If φ : (Sp(X), vp(·)) →
(Sq(X)∗,

·q) is defined by φ(T )(S) = tr(ST ) for all T ∈ Sp(X) and S ∈ Sq(X),

then φ satisfies the following properties:

(i) φ is a bijective Λ-linear operator from Sp(X) to Sq(X)∗;

(ii) vp(T ) =
φ(T )

q (T ∈ Sp(X)).

Proof. By Lemma 4.2.10 (i) and Lemma 4.3.10, φ is a well-defined dominated

Λ-linear operator, and vp(T ) ≥
φ(T )

q is satisfied for all T ∈ Sp(X). Given

η in Sq(X)∗. From Lemma 4.3.9, we have θy,x ∈ Sq(X) for all x, y ∈ X. So,

if σ : X × X → Λ is defined by σ(x, y) := η(θy,x), then by Lemma 4.2.13 there

exists T ∈ BΛ(X) such that σ(x, y) = 〈Tx | y〉 since

|σ(x, y)| = |η(θy,x)| ≤
ηqvq(θy,x) ≤ηqxy.
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Thus, using Lemma 4.2.9 we get

tr(θy,xT ) = tr(θT ∗y,x) = 〈x | T ∗y〉 = 〈Tx | y〉 = η(θy,x).

Since tr is Λ-linear operator, tr(ST ) = η(S) is satisfied for every S ∈ E (X). If

T ∈ K (X), then we must show T ∈ Sp(X). Define

Tn :=
n∑
k=1

µp−1
k θfk,ek ,

and note that Tn ∈ E (X) ⊂ Sq(X) and

vq(Tn) =

(
n∑
k=1

µ
(p−1)q
k

)1/q

=

(
n∑
k=1

µpk

)1/q

.

Therefore, we have

n∑
k=1

µpk = tr(TnT ) = η(Tn) ≤
ηqvq(Tn) =

ηq( n∑
k=1

µpk

)1/q

.

This implies that (
∑n

k=1 µ
p
k)

1/p ≤
ηq, and so we have T ∈ Sp(X) and vp(T ) ≤ηq. Given S ∈ Sq(X). Then there exists a sequence (Sk)k∈N in E (X) which

(vq(S−Sk))k∈N o-converges to 0. Thus, it follows from |tr(ST − SkT )| ≤ v1(ST−
SkT ) ≤ vq(S−Sk)vp(T ) that tr(ST ) = η(S), i. e., φ(T ) = η. This implies (i) and

(ii). To finish the proof we will show that T ∈ K (X). Let E be a projection

basis of X. If F is a finite subset of E , then PF :=
∑

e∈F θe,e is an element of

E (X). So, we form the Λ-linear functional from Sq(X) to Λ

ηF (A) := η(PFAPF ) (A ∈ Sq(X)).

From Proposition 4.3.8 and
PF

≤ 1, we have

|ηF (A)| = |η(PFAPF )| ≤
ηqvq(A),

and so the Λ-linear functional ηF is dominated. It follows from PFTPF ∈ E (X),

and belongs to Sp(X) that

ηF (A) = η(PFAPF ) = tr(PFAPFT ) = tr(APFTPF ) = φ(PFTPF )(A),

i. e., ηF = φ(PFTPF ). From the preceding discussion, we haveηq ≥ηF

q =
φ(PFTPF )

q = vp(PFTPF )
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and using Proposition 4.3.4 the following inequality is satisfiedηpq ≥ vp(PFTPF )p ≥
∑
e∈E

| 〈PFTPFe | e〉 |p

=
∑
e∈F

| 〈PFTe | e〉 |p =
∑
e∈F

| 〈Te | PFe〉 |p

=
∑
e∈F

| 〈Te | e〉 |p.

Therefore, inf {sup {| 〈Te | e〉 | : e ∈ F c} : F ∈ Θ} = 0 holds for every projection

basis E of X where Θ is the set of all finite subsets of E . This and Theorem

3.4.14 completes the proof.
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Chapter 5

Global Eigenvalues of

Cyclically Compact Operators on

Kaplansky−Hilbert Modules

In this chapter, we study the global eigenvalues of cyclically compact operators on

Kaplansky−Hilbert modules and give variants of Weyl- and Horn-type inequal-

ities and Lidskĭı trace formula. Throughout this chapter, X and Y will denote

Kaplansky−Hilbert modules over Λ, and Q and H will denote an extremally

disconnected compact space and a Hilbert space, respectively.

5.1 The Multiplicity of Global Eigenvalues

In this section, we define the multiplicity of global eigenvalues of cyclically com-

pact operators on X which is an element of the universally complete vector lattice

(ReΛ)∞, which in turn is the universal completion of ReΛ. Let λ be an eigenvalue

of T ∈ BΛ(X, Y ). The set Nλ :=
⋃
n∈N Ker (T − λI)n is called the generalized

eigenspace, corresponding to the eigenvalue λ. We start with the following lemma

which gives a relation between the generalized eigenspace Nλ and Ker (T − λI)n

(n ∈ N).

Lemma 5.1.1. Let T be a cyclically compact operator on X and λ be a global
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eigenvalue of T . If π is a projection with 0 < π ≤ [λ], then there exist a projection

µ with 0 < µ ≤ π and n ∈ N such that µKer (T − λI)n = µKer (T − λI)n+1, i. e.,

µNλ = µKer (T − λI)n.

Proof. Firstly, note that for any 0 < ν ≤ [λ] and n ∈ N,

νKer (T − λI)n = νKer (T − λI)n+1

which means that

ν
(

(Ker (T − λI)n)⊥ ∩Ker (T − λI)n+1
)

= {0} .

Assume by way of contradiction that the lemma is false. Given n ∈ N and y ∈
πKer (T − λI)n with

y∈ P(Λ). Then there exists

z ∈ π
(

(Ker (T − λI)n)⊥ ∩Ker (T − λI)n+1
)

with
y=

z. To see this, if Ψ is a set consisting of the pair (µ, x) such that

x ∈ µ
(

(Ker (T − λI)n)⊥ ∩Ker (T − λI)n+1
)
\ {0} ,

0 < µ ≤
y and µ =

x ∈ P(Λ), then it follows from the assumption thaty= sup {µ : (µ, x) ∈ Ψ}. By the Exhaustion Principle, we can deduce z, as

desired. So, a sequence (xn)n∈N can be constructed such that π =
xn and

xn ∈ π
(

(Ker (T − λI)n)⊥ ∩Ker (T − λI)n+1
)
.

Therefore, it follows from

(T − λI)n ((T − λI)xn − λxm − (T − λI)xm) = 0 (m < n)

that (T − λI)xn − λxm − (T − λI)xm ∈ Ker (T − λI)n, and soTxn − Txm2 =
λxn + ((T − λI)xn − λxm − (T − λI)xm)

2

≥
λxn2 +

(T − λI)xn − λxm − (T − λI)xm
2

≥ |λ|2
xn= π|λ|2 6= 0

which contradicts cyclically compactness of T , and the proof is finished.

Let T be a cyclically compact operator on X and λ be a global eigenvalue of

T . Define ρN(λ) := sup
{
π ∈ P(Λ) : πNλ = πKer (T − λI)N , π ≤ [λ]

}
for each

N ∈ N. Using the lemma above, we immediately have the following corollary.

Corollary 5.1.2. Let T be a cyclically compact operator on X and λ be a global

eigenvalue of T . The following conditions are satisfied:

81



(1) ρN(λ) ≤ ρN+1(λ).

(2) ρN(λ)Ker (T − λI)N = ρN(λ)Ker (T − λI)N+1.

(3) ρN(λ)Nλ = ρN(λ)Ker (T − λI)N .

(4) [λ] =
∨
N∈N ρN(λ) = sup{ρN(λ) : N ∈ N}.

(5) ρN(λ)Nλ is a Kaplansky−Hilbert module over ρN(λ)Λ.

According to Theorem 3.1.5, for each N ∈ N, there exists a partition of ρN(λ),

(bξ)ξ∈Ξ in P(Λ) such that bξNλ is a strictly κ(bξ)-homogeneous Kaplansky−Hilbert

module over bξΛ. Since T is cyclically compact, κ(bξ) must be a finite number.

From [23, 7.4.7.(1) Theorem], we can assume that Ξ = N and κ(τλ,N(n)) = n

where τλ,N(n) := bn. So, there is a unique sequence (τλ,l)l∈N in P(Λ)N such that

τλ,l := (τλ,l(n))n∈N is a partition of ρl(λ) and τλ,l(n)Nλ = τλ,l(n)Ker (T − λI)l is

a strictly n-homogeneous Kaplansky−Hilbert module over τλ,l(n)Λ. Moreover,

τλ,l(n) ≤ τλ,l+1(n) and τλ,l(n)∧ τλ,k(m) = 0 are satisfied for all k, l,m, n ∈ N with

n 6= m. So, (τλ(n))n∈N is a partition of [λ] where τλ(n) := sup {τλ,l(n) : l ∈ N}.

Definition 5.1.3. Let λ be a global eigenvalue of T . We call

τλ := o-
∑
n∈N

nτλ(n) = o-
∑
n∈N

n sup
l∈N
{τλ,l(n)} = sup

n,l∈N
{nτλ,l(n)} ∈ (ReΛ)∞

the multiplicity of global eigenvalue λ of T .

5.2 Global Eigenvalues of Cyclically Compact

Operators on C# (Q,H)

In this section, we give some characterizations about the global eigenvalues of

cyclically compact operators on C# (Q,H) and prove that there exists a sequence

consisting of global eigenvalues satisfying the corresponding properties. Through-

out this section, Aλ will denote the clopen set corresponding to the projection [λ]

(λ ∈ Λ).

Proposition 5.2.1. Let U = Sũ be a cyclically compact operator on C# (Q,H)

and a nonzero λ ∈ C(Q). If for some meager A0 of Q, λ(q) is a nonzero eigen-

value of u(q) for all q ∈ Aλ \ A0, then λ is a global eigenvalue of U .
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Proof. Let q be element of Aλ \ A0. Consider the set

Bq :=
{
Ux̃− λx̃ : u(q)x(q) = λ(q)x(q),

̃x= [λ]
}
.

Since λ(q) is an eigenvalue of u(q), Bq is a non-empty finitely cyclic subset. If we

define

r := inf
{Ux̃− λx̃ : Ux̃− λx̃ ∈ Bq

}
,

then it follows from
Ux̃− λx̃(q) = ‖u(q)x(q)− λ(q)x(q)‖ = 0 that r(q) = 0.

Moreover, given q′ ∈ Aλ \A0 with q 6= q′. Then there is x̃ ∈ C# (Q,H) such that

Ux̃ − λx̃ ∈ Bq ∩ Bq′ . Thus, from
Ux̃− λx̃(q′) = 0, we have r(q′) = 0, i. e.,

r = 0. Using [23, 2.2.9.(1) and 8.1.8.(3)], there exists (x̃n)n∈N with
̃xn= [λ]

such that for each n ∈ N Ux̃n − λx̃n≤ 1

n
1.

As U is cyclically compact, there is a cyclic subsequence (Ux̃νn)n∈N of (Ux̃n)n∈N

which is norm-convergent to some ỹ, and since the following is validUx̃νn − λx̃νn≤ 1

n
1

for every n, we have (λx̃νn)n∈N is norm-convergent to ỹ. Therefore, Uỹ = λỹ and̃y= |λ| are satisfied. From Proposition 3.3.10, λ is a global eigenvalue of U .

Lemma 5.2.2. Let U = Sũ be in End (C# (Q,H)) and the function λ be a global

eigenvalue of U . Then there is a meager subset B0 such that λ(q) is a nonzero

eigenvalue of u(q) for all q ∈ Aλ \B0.

Proof. By Proposition 3.3.10 Ux̃ = λx̃ is satisfied for some x̃ ∈ C# (Q,H) with̃x= [λ]. Thus, u(q)x(q) = λ(q)x(q) holds for all q ∈ Q0 := dom(u) ∩ dom(x)

which is comeager. Define Vλ := {q ∈ Q : λ(q) 6= 0}, and so it is open in Q. It

follows from Aλ = cl (Vλ) that Aλ\Vλ is a nowhere dense set in Q. Therefore, λ(q)

is a nonzero eigenvalue of u(q) for all q ∈ Vλ∩Q0 since Aλ =
{
q ∈ Q :

x(q) 6= 0
}

.

Define B0 := Qc
0∪(Aλ \ Vλ) and note that B0 is a meager set and Aλ\B0 = Vλ∩Q0.

This completes the proof of the lemma.

Note that in a topological space K \ int (K) is a nowhere dense set for every

closed set K. We denote by πV the projection corresponding to clopen set V in

Q.

Lemma 5.2.3. Let U = Sũ be a cyclically compact operator on C# (Q,H) and λ

be a global eigenvalue of U . Then there is a meager subset A0 such that

Ker (U − λI)(q) := (Ker (U − λI)) (q) = Ker (u(q)− λ(q)I)

hold for all q ∈ Aλ \ A0.
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Proof. Clearly, q ∈ dom(u) implies Ker (U − λI)(q) ⊂ Ker (u(q) − λ(q)I). As

U is cyclically compact operator, there exists a partition of [λ], (bk)k∈N in P(Λ)

such that bnKer (U−λI) is a strictly n-homogeneous Kaplansky−Hilbert module

over bnC(Q). Fix k ∈ N. Let {ẽi : i = 1, ..., k} be a basis for bkKer (U − λI). By

Lemma 3.4.4, we have a meager set Ak such that {ei(q) : i = 1, ..., k} is a basis of

Ker (U − λI)(q) for all q ∈ Vk \ Ak where Vk is clopen set corresponding to the

projection bk. From the lemma above we obtain a meager subset B0 such that

λ(q) is a nonzero eigenvalue of u(q) for all q ∈ Aλ \ B0. Now we will show that

the set

Ck := {q ∈ Vk \ (Ak ∪B0) : Ker (U − λI)(q) 6= Ker (u(q)− λ(q)I)}

is meager. Note that λ(q) 6= 0 (q ∈ Ck). Define ∆ := Φ ∩ Ck where Φ :=

int(cl(Ck)), and note that Φ = cl(∆), and Ck \Φ = Ck \∆ is a nowhere dense set

in Q. On the other hand, for every q ∈ ∆ there exists hq ∈ Ker (u(q)− λ(q)I) ∩
Ker (U − λI)(q)⊥ with ‖hq‖ = 1. Since u − λI : dom(u) → B(H) is continuous

in the strong operator topology there exists a clopen set Uq,n ⊂ Φ for each n ∈ N
and q ∈ ∆ such that

‖(u(w)− λ(w)I)hq − (u(q)− λ(q)I)hq‖ = ‖u(w)hq − λ(w)hq‖ ≤
1

n

and ∣∣∣〈ẽi | h̃q〉 (w)−
〈
ẽi | h̃q

〉
(q)
∣∣∣ =

∣∣∣〈ẽi | h̃q〉 (w)
∣∣∣ ≤ 1

n
(i = 1, ..., k)

for w ∈ Uq,n ∩ dom(u) where hq : t 7→ hq (t ∈ Q). Thus, it follows from

Uq,n = cl (Uq,n ∩ dom(u)) that

πq,n
Uh̃q − λh̃q≤ 1

n
πq,n and πq,n

∣∣∣〈ẽi | h̃q〉∣∣∣ ≤ 1

n
πq,n (i = 1, ..., k)

where πq,n := πUq,n . From Φ = cl(∆) we get π =
∨
q∈∆ πq,n where π := πΦ.

In view of the Exhaustion Principle, there exists an antichain (µα) such that

π =
∨
µα and for every α there is q ∈ ∆ with µα ≤ πq,n, and denote qα := q. If

we define x̃n = bo-
∑
µαh̃qα where hqα : t 7→ hqα , then we have

̃xn= π and

Ux̃n − λx̃n≤ 1

n
π and π |〈ẽi | x̃n〉| ≤

1

n
π (i = 1, ..., k).

Since U is cyclically compact operator, there is a cyclic subsequence (Ux̃νn)n∈N

of (Ux̃n)n∈N which is norm-convergent to some x̃. So, (λx̃νn)n∈N is also norm-

convergent to x̃. This implies Ux̃ = λx̃ and π
λ=

̃x and π |〈ẽi | x̃〉| = 0 (i =

1, ..., k). Thus, x(q) ∈ Ker (U − λI)(q) ⊂ Ker (u(q)− λ(q)I) and 〈ei(q), x(q)〉 = 0
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(i = 1, ..., k) are satisfied for all q ∈ ∆ ∩ dom(x), and so x(q) = 0. This and

π
λ=

̃x imply λ(q) = 0 for all q ∈ ∆∩dom(x), and so ∆ ⊂ dom(x)c, i. e., ∆ is

meager. Hence, it follows from Ck = (Ck \∆)∪∆ that Ck is meager. Thus, Bk :=

Ak ∪B0 ∪Ck is meager for each k ∈ N. So, Ker (U − λI)(q) = Ker (u(q)− λ(q)I)

holds for all q ∈ Aλ \A0 where A0 =
(
Aλ \

(⋃
k∈N Vk

))
∪
(⋃

k∈NBk

)
is meager, as

desired.

Corollary 5.2.4. Let U = Sũ be a cyclically compact operator on C# (Q,H) and

λ be a global eigenvalue of U . Then there exists a meager set B0 such that for all

q ∈ Aλ \B0 the following statements hold:

(1) λ(q) is a nonzero eigenvalue of compact operator u(q);

(2)
(
Ker (U − λI)k

)
(q) = Ker (u(q)− λ(q)I)k (k ∈ N);

(3) Nλ(q) = Nλ(q) where Nλ(q) is the generalized eigenspace, corresponding to

the eigenvalue λ(q);

(4) τλ(q) = m(λ(q)) where m(λ(q)) is the algebraic multiplicity of λ(q).

Proof. For all q ∈ Q the following equality is satisfied

Nλ(q) =
⋃
n∈N

Ker (U − λI)n(q).

Moreover, for every n ∈ N there exists a cyclically compact operator Un such

that (U − λI)n = Un − λnI where λn is a global eigenvalue of Un. Using this

and Lemma 5.2.3 we obtain a meager subset An such that Ker (U − λI)n(q) =

Ker (u(q)−λ(q)I)n holds for all q ∈ Aλ\An. Define A0 := ∪n∈NAn and we deduce

that A0 is meager and

Nλ(q) =
⋃
n∈N

Ker (u(q)− λ(q)I)n (q ∈ Aλ \ A0) .

This means that

Nλ(q) = Nλ(q) (q ∈ Aλ \ A0) ,

and so dim (Nλ(q)) = dim
(
Nλ(q)

)
= m(λ(q)). On the other hand, from definition

of τλ and Lemma 3.4.4, there exists a meager set C0 such that τλ(q) = dim (Nλ(q))

holds for every q ∈ Aλ \C0. Therefore, if we define B0 := A0∪C0, then the proof

is finished.

Denote by Sp∗(u(q)) := Sp(u(q)) \ {0} the set of nonzero elements of the

spectrum of u(q).

85



Lemma 5.2.5. Let U = Sũ be a cyclically compact operator on C# (Q,H) and

λq ∈ Sp∗(u(q)) for all q ∈ Au ⊂ Q. If Au is not meager in Q, then there

are a global eigenvalue λ of U and a comeager set Q0 that satisfy the following

conditions:

(1) [λ] =
∨
N∈N πN where πN is the projection corresponding to clopen set UN :=

int (cl (AN)) with

AN :=

{
q ∈ Au : |λq| ≥

1

N

}
;

(2) πN |λ| ≥ 1
N
πN (N ∈ N);

(3) if q is in Q0 ∩ AN for some N ∈ N, then |λ(q)| ≥ 1
N

;

(4) λ(q) ∈ Sp∗(u(q)) whenever q ∈ Q0 and λ(q) 6= 0;

(5) q /∈ Au whenever q ∈ Q0 and λ(q) = 0.

Proof. Without loss of generality we may assume that u(q) is compact operator

on H for all q ∈ dom(u) by Proposition 3.4.7. There exists an eigenvector hq of

u(q) corresponding to λq with ‖hq‖ = 1 for all q ∈ Au. Since Au =
⋃
N∈NAN is

not meager, UN0 6= ∅ for some N0, i. e., πN0 6= 0. Since u is continuous in the

strongly operator topology, for every n ∈ N and q ∈ UN ∩ AN we have a clopen

set Uq,n,N ⊂ UN such that

‖u(w)hq − u(q)hq‖ = ‖u(w)hq − λqhq‖ ≤
1

n

for each w ∈ Uq,n,N ∩ dom(u). Moreover, it follows from UN = cl(UN ∩ AN)

that πN =
∨
q∈UN∩AN πq,n,N where πq,n,N := πUq,n,N . In view of the Exhaustion

Principle, there exists an antichain (µα) such that πN =
∨
µα and for every

α there is q ∈ UN ∩ AN with µα ≤ πq,n,N , and denote qα := q. If we define

λNn := o-
∑
λqαµα and xNn = bo-

∑
µαzα where zα : t 7→ hqα (t ∈ Q), thenxNn =

[
λNn
]

= πN and
∣∣λNn ∣∣ ≥ 1

N
πN . Since (λNn )n∈N is a bounded sequence

in C(Q), there exists a cyclical subsequence
(
λNνn
)
n∈N of (λNn )n∈N which is norm-

convergent to some λN , and so |λN | ≥ 1
N
πN and [λN ] = πN are satisfied. On the

other hand, we have UxNn − λNn xNn≤ 1

n
πN ,

and so UxNνn − λNνnxNνn≤ 1

n
πN .
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As U is cyclically compact operator, there is a cyclic subsequence
(
UxNηn

)
n∈N of(

UxNνn
)
n∈N which is norm-convergent to some xN , and since the following is valid

for every n UxNηn − λNηnxNηn≤ 1

n
πN ,(

λNηnx
N
ηn

)
n∈N is norm-convergent to xN . Thus, we have UxN = λNxN and

λN=xN, and so λN is a global eigenvalue of U for N ≥ N0. Define x := π1x1 +

bo-
∑

N∈N(πN+1 − πN)xN+1 and λ := π1λ1 + o-
∑

N∈N(πN+1 − πN)λN+1, and note

that
x= |λ| and [λ] =

∨
N∈N πN and πN |λ| ≥ 1

N
πN and λ is a global eigenvalue

of U since πN0 > 0. This implies (1) and (2). From Proposition 5.2.2, there exists

a meager set A0 such that λ(q) is a nonzero eigenvalue of u(q) for all q ∈ Aλ \A0

where Aλ is the clopen set corresponding to the projection [λ]. If we define

Qc
0 :=

(⋃
N∈N

(AN \ UN)

)
∪ dom(u)c ∪ A0,

then Q0 is a comeager set, and (3), (4) and (5) are satisfied.

Lemma 5.2.6. Let U = Sũ be a cyclically compact operator on C# (Q,H) and

let Σ be a finite subset of C(Q) and the set

Au ⊂ {q ∈ dom(u) : Sp∗(u(q)) \ {σ(q) : σ ∈ Σ} 6= ∅}

be not meager in Q. If λq is in Sp∗(u(q)) \ {σ(q) : σ ∈ Σ} for each q ∈ Au, then

there is a global eigenvalue λ of U and a comeager set Q0 that satisfy the following

conditions:

(1) [λ] =
∨
N∈N πN where πN is the projection corresponding to clopen set UN :=

int (cl (AN)) with

AN := {q ∈ Au : (∀σ ∈ Σ)|σ(q)− λq| ≥ 1/N and |λq| ≥ 1/N} ;

(2) πN |λ| ≥ 1
N
πN and πN |σ − λ| ≥ 1

2N
πN (N ∈ N, σ ∈ Σ);

(3) if q is in AN ∩ Q0, then |λ(q)| ≥ 1
N

and |σ(q) − λ(q)| ≥ 1
2N

hold for each

σ ∈ Σ;

(4) if λ(q) 6= 0 holds for some q ∈ Q0, then λ(q) ∈ Sp∗(u(q)) \ {σ(q) : σ ∈ Σ};

(5) if λ(q) = 0 holds for some q ∈ Q0, then q /∈ Au.
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Proof. The proof is similar to the proof of Lemma 5.2.5. UN0 6= ∅ for some N0

since Au =
⋃
N∈NAN is not meager. Let hq be an eigenvector of u(q) correspond-

ing to λq with ‖hq‖ = 1 for every q ∈ Au. For every N, n ∈ N and q ∈ UN ∩ AN
we can find clopen set Uq,n,N ⊂ UN such that

‖u(w)hq − λqhq‖ ≤
1

n
and |σ(w)− λq| ≥

1

2N
(σ ∈ Σ)

for all w ∈ Uq,n,N ∩dom(u). As in the proof of Lemma 5.2.5, we can find a global

eigenvalue λN of U such that [λN ] = πN and

|λN | ≥
1

N
πN and πN |σ − λN | ≥

1

2N
πN (σ ∈ Σ).

Therefore, if we define

λ := π1λ1 + o-
∑
N∈N

(πN+1 − πN)λN+1,

then [λ] =
∨
N∈N πN and λ is a global eigenvalue of U since πN0 > 0. This implies

(1) and (2). From Proposition 5.2.2, there exists a meager set A0 such that λ(q)

is a nonzero eigenvalue of u(q) for all q ∈ Aλ \ A0. If we define

Qc
0 :=

(⋃
N∈N

(AN \ UN)

)
∪ dom(u)c ∪

(
Aλ \

⋃
N∈N

UN

)
∪ A0,

then Q0 is a comeager set, and (3), (4) and (5) are satisfied.

Proposition 5.2.7. Let U = Sũ be a cyclically compact operator on C# (Q,H).

Then there exist a sequence (λn)n∈N and a comeager set Q0 that satisfy the fol-

lowing conditions:

(1) Sp∗(u(q)) = {λn(q) : λn(q) 6= 0 (n ∈ N)} (q ∈ Q0);

(2) λn+1 = 0 whenever λn = 0;

(3) [λk] ≥ [λk+1] (k ∈ N);

(4) λn(q) 6= λk(q) whenever λn(q) 6= 0 or λk(q) 6= 0 for n 6= k (q ∈ Q0).

Proof. Without loss of generality we may assume that u(q) is a compact operator

on H (q ∈ dom(u)). We shall construct by induction a sequence (λn) consisting

of global eigenvalues or zeros, and a decreasing comeager set sequence (Qn) such

that:

(i) For q ∈ Qn, λn(q) ∈ Sp∗(u(q))\{λi(q) : i = 1, ..., n− 1} whenever λn(q) 6= 0.
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(ii) For q ∈ Qn, Sp∗(u(q)) \ {λi(q) : i = 1, ..., n− 1} = ∅ whenever λn(q) = 0.

(iii) Sp∗(u(q)) = {λn(q) : λn(q) 6= 0 (n ∈ N)} is satisfied for all q ∈ Q0 :=
⋂
Qn.

For n = 1. If

Au1 := {q ∈ dom(u) : Sp∗(u(q)) 6= ∅}

is meager, then we take λn := 0 andQn := Q\Au1 = {q ∈ dom(u) : Sp∗(u(q)) = ∅}
for every n. If not, we can choose a family (λq)q∈Au1

so that λq ∈ Sp∗(u(q)) and

|λq| is the maximum element of |Sp∗(u(q))| for all q ∈ Au1 . Thus, from Lemma

5.2.5 we get a global eigenvalue λ1 and there exists comeager set Q1 such that

(i) and (ii) are satisfied. Now suppose that the elements λn and Qn are already

constructed as above. If the set

Aun+1 := {q ∈ Qn : Sp∗(u(q)) \ {λi(q) : i = 1, ..., n} 6= ∅}

is meager, then we take λk+1 := 0 and

Qk+1 := {q ∈ Qk : Sp∗(u(q)) \ {λi(q) : i = 1, ..., k} = ∅} = Qn ∩
(
Aun+1

)c
for every k ≥ n. If not, we can choose a family (λq)q∈Aun+1

so that λq ∈ Sp∗(u(q))

and |λq| is the maximum element of |Sp∗(u(q)) \ {λi(q) : i = 1, ..., n} | for all q ∈
Aun+1 . Thus, it follows from Lemma 5.2.6 that we get a global eigenvalue λn+1

and there exists comeager set Qn+1 ⊂ Qn such that (i) and (ii) are satisfied.

From (i), {λn(q) : λn(q) 6= 0 (n ∈ N)} ⊂ Sp∗(u(q)) holds for every n. Assume

Sp∗(u(q)) 6= {λn(q) : λn(q) 6= 0 (n ∈ N)} for some q ∈ Q0. Thus, there exists

µq ∈ Sp∗(u(q)) \ {λn(q) : λn(q) 6= 0 (n ∈ N)} such that |µq| is the maximum of

|Sp∗(u(q)) \ {λn(q) : λn(q) 6= 0 (n ∈ N)} |. Moreover, there is N ∈ N such that

|µq| ≥
1

N
and |λn(q)− µq| ≥

1

N
(n ∈ N).

Thus, there exists K ∈ N such that q ∈ Auk and |µq| is the maximum of

|Sp∗(u(q)) \ {λn(q) : n = 1, ..., k − 1} | for k ≥ K. It follows from Lemma 5.2.6

(3) that

|λk(q)| ≥
1

N
(K ≤ k)

which contradicts λk(q) converging to zero, and so (iii) holds. Clearly, (i), (ii)

and (iii) complete the proof of the proposition.

It is well known that if (λα)α∈A is a net in C(Q), then infα∈A λα = 0 in C(Q)

iff there exists some comeager set Q0 in Q such that infα∈A λα(q) = 0 in R for all

q ∈ Q0. Thus, if fα
(o)→ 0 in C(Q), then fα(q) → 0 holds on some comeager set.
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Conversely, if (fn)n∈N is a bounded sequence in C(Q) and fn(q) → 0 is satisfied

on a comeager set, then (fn)n∈N o-converges to 0. Note that
U(q) = ‖u(q)‖

holds on a comeager subset of Q for each U = Sũ in End (C# (Q,H)).

In what follows, the phrase “consisting of global eigenvalues or zeros,” refers

to the fact that λk is a global eigenvalue whenever λk 6= 0.

Theorem 5.2.8. Let U = Sũ be a cyclically compact operator on C# (Q,H).

Then there exists a sequence (λk)k∈N consisting of global eigenvalues or zeros in

C(Q) with the following properties:

(1) |λk| ≤
U, [λk] ≥ [λk+1] (k ∈ N) and o-limλk = 0;

(2) there exists a projection π∞ in C(Q) such that π∞|λk| is a weak order-unity

in π∞C(Q) for all k ∈ N;

(3) there exists a partition (πk)k∈N of the projection π⊥∞ such that π0λ1 = 0,

πk ≤ [λk], and πkλk+m = 0, m, k ∈ N;

(4) πλk+m 6= πλk for every nonzero projection π ≤ π∞+πk and for all m, k ∈ N;

(5) every global eigenvalue λ of U is of the form λ = mixk∈N (pkλk), where

(pk)k∈N is a partition of [λ].

Proof. By Proposition 5.2.7, we have a sequence (λk)k∈N consisting global eigen-

values or zeros. Define π∞ :=
∧
k∈N [λk] and π0 := [λ1]⊥ and πk := [λk] ∧ [λk+1]⊥

(k ∈ N), and so (2), (3) and (4) hold. Since Sp∗(u(q)) = {λn(q) : λn(q) 6= 0} and

|λn(q)| ≤ ‖u(q)‖ hold on a comeager set we have |λn| ≤
Uand limk→∞ λk(q) = 0

on a comeager set, and so we obtain o-limλk = 0, i. e., (1) holds. Let λ be a

global eigenvalue of U . From Lemma 5.2.2 and Proposition 5.2.7, there exists

some meager set A0 such that Aλ \ A0 =
⋃
k∈NAk where

Ak := {q ∈ Aλ \ A0 : λ(q) = λk(q)} (k ∈ N).

Since Ak \ int (cl (Ak)) is nowhere dense, [λ] =
∨
k∈N µk and µkλ = µkλk where µk

denotes the projection corresponding clopen set int (cl (Ak)). Thus, there exists a

partition (pk)k∈N of [λ] such that λ = mixk∈N (pkλk), and the proof is finished.

Let (λk)k∈N be as above theorem. Note that the statements of the Proposition

5.2.7 is satisfied by (λk)k∈N.

Let the family of nonempty extremal compact spaces (Qγ)γ∈Γ with Γ a set of

cardinals satisfy functional representation of X as in Theorem 3.1.18. Let T be
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a cyclically compact operator on
∑⊕

γ∈ΓC# (Qγ, `2(γ)). From Theorem 3.4.9, Tγ

is a cyclically compact operator on C# (Qγ, `2(γ)) for all γ ∈ Γ where P(T ) =

(Tγ)γ∈Γ. So, we have a sequence (λk(Tγ))k∈N satisfing the statements of the

Theorem 5.2.8 for each γ ∈ Γ. Define λk(T ) := (λk(Tγ))γ∈Γ, and note that λk(T )

is a global eigenvalue of T or zero for each k ∈ N. On the other hand, given a

global eigenvalue λ = (λγ)γ∈Γ of T , the function λγ is a global eigenvalue of Tγ

whenever λγ 6= 0. Let pk = (pk,γ)γ∈Γ be a projection for each k ∈ N. Then a

partition (pk)k∈N of [λ] means that (pk,γ)k∈N is a partition of [λγ] for every γ ∈ Γ

since [λ] = ([λγ])γ∈Γ. Using the representation of Kaplansky−Hilbert modules

we can also generalize the theorem above as following.

Theorem 5.2.9. Let T be a cyclically compact operator on X. Then there exists

a sequence (λk)k∈N consisting of global eigenvalues or zeros in Λ with the following

properties:

(1) |λk| ≤
T, [λk] ≥ [λk+1] (k ∈ N) and o-limλk = 0;

(2) there exists a projection π∞ in Λ such that π∞|λk| is a weak order-unity in

π∞Λ for all k ∈ N;

(3) there exists a partition (πk) of the projection π⊥∞ such that π0λ1 = 0, πk ≤
[λk], and πkλk+m = 0, m, k ∈ N;

(4) πλk+m 6= πλk for every nonzero projection π ≤ π∞+πk and for all m, k ∈ N;

(5) every global eigenvalue λ of T is of the form λ = mixk∈N (pkλk), where

(pk)k∈N is a partition of [λ].

Let (λk)k∈N be as above theorem. If λk 6= 0, then by definition of (ρl(λk))l∈N

and (τλk,l(n))n∈N there exists a unique sequence τk,l(n) := τλk,l(n) ∧ ρ⊥l−1(λk)

such that (τk,l(n))l,n∈N is a partition of [λk] for every k ∈ N, and τk,l(n) 6= 0

implies τk,l(n)λk is a global eigenvalue of T of multiplicity n, i. e., τk,l(n)Nλk =

τk,l(n)Ker (T − λkI)l is n-homogenuous. If λk = 0, take τk,l(n) := 0 and τλk := 0

for all k, l, n ∈ N.

Definition 5.2.10. The sequence (λk(T ))k∈N, where λk(T ) := λk is given by the

above theorem, is called a global eigenvalue sequence of T with the multiplicity

sequence (τ k(T ))k∈N where τ k(T ) := τλk .
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5.3 Weyl and Horn Inequalities and Lidskĭı Trace

Formula

In this section, we give a variant of Weyl- and Horn-type inequalities and Lid-

skĭı trace formula for cyclically compact operator on X. Throughout this sec-

tion, sequences (ẽk)k∈N and (f̃k)k∈N in C# (Q,H) and positive functions sequence

(sk(U))k∈N in C(Q) will satisfy the statements of Proposition 3.4.11 for cyclically

compact operator U on C# (Q,H).

Lemma 5.3.1. Let U = Sũ be a cyclically compact operator on C# (Q,H). The

following statements are satisfied on a comeager subset of Q:

(1) the numbers sk(U)(q) are the singular numbers of compact operator u(q)

and

u(q)h =
∞∑
k=1

sk(U)(q) 〈h, ek(q)〉 fk(q);

(2) tr(U)(q) = tr(u(q)) and v1(U)(q) = v1(u(q)) whenever U ∈ S1 (C# (Q,H)).

Proof. We may assume that u(q) is compact operator on H (q ∈ dom(u)) by

Proposition 3.4.7. Let x̃ ∈ C# (Q,H) and n ∈ N. Since (sk(U))k∈N is a decreasing

sequence we have the following inequalityUx̃−
n−1∑
k=1

sk(U) 〈x̃ | ẽk〉 f̃k


2

=

bo-
∑
k∈Nn

sk(U) 〈x̃ | ẽk〉 f̃k


2

=

〈
bo-
∑
k∈Nn

sk(U) 〈x̃ | ẽk〉f̃k

∣∣∣∣∣ bo-∑
k∈Nn

sk(U) 〈x̃ | ẽk〉f̃k

〉
= o-

∑
k∈Nn

sk(U)2 |〈x̃ | ẽk〉|2
f̃k

≤ sn(U)2

(
o-
∑
k∈Nn

|〈x̃ | ẽk〉|2
)

≤ sn(U)2
x2

where Nn := {k ∈ N : k ≥ n}. From infk∈N sk(U) = 0, there is a comeager set Q1

in Q with infk∈N sk(U)(q) = 0 for all q ∈ Q1. Define

Q0 := Q1 ∩ dom(u) ∩

(⋂
k∈N

dom(ek)

)
∩

(⋂
k∈N

dom(fk)

)
,

and note that Q0 is a comeager set in Q. Moreover, {ek(q) : k ∈ N} \ {0} and

{fk(q) : k ∈ N} \ {0} are orthonormal sets in H for all q ∈ Q0. Given h ∈ H.
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Define the function z : t 7→ h (t ∈ Q), and note that
̃z(t) = ‖h‖ (t ∈ Q) and

dom(z) = Q. Therefore, for each q ∈ Q0 the following inequality holds∥∥∥∥∥u(q)h−
n∑
k=1

sk(U)(q) 〈h, ek(q)〉 fk(q)

∥∥∥∥∥ =

Uz̃ −
n∑
k=1

sk(U) 〈z̃ | ẽk〉 f̃k

(q)

≤ sn+1(U)(q)
̃z(q) = sn+1(U)(q) ‖h‖ .

Thus, we deduce that for each q ∈ Q0

u(q)h =
∞∑
k=1

sk(U)(q) 〈h, ek(q)〉 fk(q),

and so the numbers sk(U)(q) are the singular numbers of the compact operator

u(q) by the Rayleigh−Ritz minimax formula [9, Theorem 15.7.1]. Now assume

that U ∈ S1 (C# (Q,H)). Using Proposition 4.2.2 we obtain that (sk(U))k∈N is

o-summable in C(Q) and v1(U) = o-
∑

k∈N sk(U). Moreover, by Lemma 4.2.9 we

have

tr(U) = o-
∑
k∈N

sk(U)
〈
f̃k | ẽk

〉
.

Thus, there is a comeager set Q2 ⊂ Q0 such that for all q ∈ Q2

tr(U)(q) =
∑
k∈N

sk(U)(q) 〈fk(q), ek(q)〉 and v1(U)(q) =
∑
k∈N

sk(U)(q).

So, u(q) ∈ S1 (H). Again, by Proposition 4.2.2 and Lemma 4.2.9 tr(U)(q) =

tr(u(q)) and v1(U)(q) = v1(u(q)) hold on comeager set Q2. This completes the

proof of the lemma.

Theorem 5.3.2. Let U = Sũ be a cyclically compact operator on C# (Q,H) and

(λk(U))k∈N be a global eigenvalue sequence of U with the multiplicity sequence

(τ k(U))k∈N. The following statements hold:

(1) (Weyl-inequality) if (πsk(U))k∈N is o-summable in C(Q) for some projection

π, then the following inequality holds

o-
∑
k∈N

πτ k(U)|λk(U)| ≤ o-
∑
k∈N

πsk(U);

(2) (Horn-inequality) Suppose that Uk = Sũk is a cyclically compact operator

on C# (Q,H) for 1 ≤ k ≤ K. Then

N∏
i=1

si(UK · · ·U1) ≤
K∏
k=1

N∏
i=1

si(Uk) (N ∈ N).
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(3) (Lidskĭı trace formula) if U = Sũ ∈ S1 (C# (Q,H)), then the following

equality holds

tr(U) = o-
∑
k∈N

τ k(U)λk(U).

Proof. Let (λk(U))k∈N be a global eigenvalue sequence of U with the multiplicity

sequence (τ k(U))k∈N. From Corollary 5.2.4, Proposition 5.2.7 and Lemma 5.3.1

there exists a comeager set Q0 such that for each q ∈ Q0, the following statements

hold:

(i) the numbers sk(U)(q) are the singular numbers of compact operator u(q)

and

u(q)h =
∞∑
k=1

sk(U)(q) 〈h, ek(q)〉 fk(q);

(ii) tr(U)(q) = tr(u(q)) and v1(U)(q) = v1(u(q)) if U ∈ S1 (C# (Q,H));

(iii) Sp∗(u(q)) = {λn(U)(q) : λn(U)(q) 6= 0};

(iv) λn(U)(q) 6= λm(U)(q) if λn(U)(q) 6= 0 or λm(U)(q) 6= 0 for n 6= m;

(v) if λk(U)(q) 6= 0, then τ k(U)(q) = m(λk(U)(q)) ∈ N where m(λk(U)(q)) is

the algebraic multiplicity of λk(U)(q).

Moreover, sk(U)(q) 6= 0 implies that ‖ek(q)‖ = ‖fk(q)‖ = 1.

(1) Let (πsk(U))k∈N be o-summable for some projection π. Using (i), (iii),

(iv), (v) and Weyl’s inequality for compact operator u(q) we get that

∞∑
k=1

τ k(U)(q)|λk(U)(q)| =
∞∑
k=1

m(λk(U)(q))|λk(U)(q)| ≤
∞∑
k=1

sk(U)(q)

holds on a comeager set Q0. This implies

o-
∑
k∈N

πτ k(U)|λk(U)| ≤ o-
∑
k∈N

πsk(U)

since
∑∞

k=1 π(q)sk(U)(q) is finite for each q ∈ Q.

(2) UK · · ·U1 = SũK · · ·Sũ1 = SũK ···ũ1 and (uK · · ·u1)(q) = uK(q) · · ·u1(q) are

satisfied. So, using (i) there exits a comeager set Q0 such that for each q ∈ Q0

the numbers sk(UK · · ·U1)(q) and sk(Uk)(q) are the singular numbers of compact

operators uK(q) · · ·u1(q) and uk(q) (1 ≤ k ≤ K), respectively. Therefore, from

Horn’s inequality for compact operators uk(q) with 1 ≤ k ≤ K we get that

N∏
i=1

si(UK · · ·U1)(q) ≤
K∏
k=1

N∏
i=1

si(Uk)(q)
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holds for all q ∈ Q0. Thus, we have the desired inequality.

(3) Let U = Sũ ∈ S1 (C# (Q,H)). Then (sk(U))k∈N is o-summable in C(Q)

and v1(U) = o-
∑

k∈N sk(U). Using (i), (ii), (iii), (iv), (v) and Lidskĭı trace formula

for compact operator u(q) we obtain that

tr(U)(q) = tr(u(q)) =
∞∑
k=1

τ k(U)(q)λk(U)(q)

is absolutely convergent on the comeager set Q0, and so

tr(U)(q) = tr(u(q)) =
∑
k∈N

τ k(U)(q)λk(U)(q)

holds on Q0. From (1) we see that (τ k(U)λk(U))k∈N is o-summable in C(Q), and

so we have

tr(U) = o-
∑
k∈N

τ k(U)λk(U),

as desired.

Let (Aξ)ξ∈Ξ be a family of commutative AW ∗-algebras and let (xk)k∈N be a

sequence in A :=
∑⊕

ξ∈Ξ Aξ with xk := (xk,ξ)ξ∈Ξ and (
∑

k∈α xk)α∈I be a bounded

family with I = Pfin(N). Then (xk)k∈N is o-summable in A if and only if

(xk,ξ)k∈N is o-summable in Aξ for every ξ ∈ Ξ. In particular, o-
∑

k∈N xk =(
o-
∑

k∈N xk,ξ
)
ξ∈Ξ

. Therefore, we have the following lemma.

Lemma 5.3.3. Let T be a cyclically compact operator on X :=
∑⊕

γ∈ΓC# (Qγ, `2(γ))

and 1 ≤ p <∞. Then T is in Sp(X) if and only if Tγ is in Sp (C# (Qγ, `2(γ)))

for all γ ∈ Γ and supγ∈Γ ‖υp(Tγ)‖ <∞ where P(T ) = (Tγ)γ∈Γ. In particular, if

T ∈ S1 (C# (Qγ, `2(γ))), then tr(T ) = (tr(Tγ))γ∈Γ.

Proof. Suppose that T in Sp(X). Let (ek)k∈N, (fk)k∈N, and (sk(T ))k∈N satisfy

the condition of Proposition 3.4.11 for T . Then vp(T )p = o-
∑

k∈N sk(T )p. If

ek = (ek(γ))γ∈Γ, fk = (fk(γ))γ∈Γ and sk(T ) = (sk(T )(γ))γ∈Γ, then (ek(γ))k∈N,

(fk(γ))k∈N, and (sk(T )(γ))k∈N satisfy the condition of Proposition 3.4.11 for Tγ.

Therefore, vp(T )(γ)p = o-
∑

k∈N sk(T )(γ)p = vp(Tγ)
p, i. e., Tγ in Sp (C# (Qγ, `2(γ))).

Conversely, assume that Tγ is in Sp (C# (Qγ, `2(γ))) for each γ ∈ Γ and

supγ∈Γ ‖υp(Tγ)‖ < ∞. Let (ek(γ))k∈N, (fk(γ))k∈N, and (sk(Tγ))k∈N satisfy the

condition of Proposition 3.4.11 for Tγ. Then vp(Tγ)
p = o-

∑
k∈N sk(Tγ)

p. Denote

by ek := (ek(γ))γ∈Γ, fk = (fk(γ))γ∈Γ and sk(T ) = (sk(Tγ))γ∈Γ. Thus, (ek)k∈N,

(fk)k∈N, and (sk(T ))k∈N satisfy the condition of Proposition 3.4.11 for T . Since

supγ∈Γ ‖υp(Tγ)‖ <∞ we have T in Sp(X).
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Let T ∈ S1 (C# (Qγ, `2(γ))) and E be a projection orthonormal subset of X.

Thus, Eγ \ {0} is a projection orthonormal subset of C# (Qγ, `2(γ)) where

Eγ := {eγ : e = (eγ)γ∈Γ ∈ E }

for each γ ∈ Γ. The proof follows immediately from 〈Te | e〉 = (〈Tγeγ | eγ〉)γ∈Γ

(e = (eγ)γ∈Γ ∈ E ).

Note that if T = (Tγ)γ∈Γ and L = (Lγ)γ∈Γ are operators on X, then TL =

(TγLγ)γ∈Γ.

Let the family of nonempty extremal compact spaces (Qγ)γ∈Γ with Γ a set of

cardinals satisfy functional representation of X as in Theorem 3.1.18. Given a

cyclically compact operator T on
∑⊕

γ∈ΓC# (Qγ, `2(γ)). By Theorem 3.4.9, this

means that Tγ is a cyclically compact operator on C# (Qγ, `2(γ)) for all γ ∈ Γ

where P(T ) = (Tγ)γ∈Γ. Assume that Yγ ⊂ C# (Qγ, `2(γ)) is a Kaplansky−Hilbert

submodule over C(Qγ). Denote

⊕∑
γ∈Γ

Yγ := {x = (xγ)γ∈Γ ∈ X : (∀γ ∈ Γ) xγ ∈ Yγ} .

Then Y :=
∑⊕

γ∈Γ Yγ is n-homogenuous over πΛ with projection π = (πγ)γ∈Γ if

and only if Yγ is n-homogenuous over πγC(Qγ) for each γ ∈ Γ. Let (λk(T ))k∈N

be a global eigenvalue sequence of T with the multiplicity sequence (τ k(T ))k∈N.

Then for each γ ∈ Γ, (λk(Tγ))k∈N is also a global eigenvalue sequence of Tγ where

λk(T ) = (λk(Tγ))γ∈Γ. Let (τ k(Tγ))k∈N be the multiplicity sequence corresponding

to global eigenvalue sequence (λk(Tγ))k∈N. Moreover, the following holds

πKer (T − λk(T )I)l =
⊕∑
γ∈Γ

πγKer (Tγ − λk(Tγ)I)l

for each π = (πγ)γ∈Γ ∈ P(Λ) and k, l ∈ N. Thus, ρl(λk(T )) = (ρl(λk(Tγ)))γ∈Γ

and τλk(T ),l(n) =
(
τλk(Tγ),l(n)

)
γ∈Γ

are satisfied for all k, l, n ∈ N, and so we have

τλk(T ),l(n)τ k(T ) =
(
τλk(Tγ),l(n)τ k(Tγ)

)
γ∈Γ

since τλk(T ),l(n)τ k(T ) = nτλk(T ),l(n) and

τλk(Tγ),l(n)τ k(Tγ) = nτλk(Tγ),l(n). Using the representation of Kaplansky−Hilbert

modules we can also generalize the theorem above as follows.

Theorem 5.3.4. Let T be a cyclically compact operator on X and (λk(T ))k∈N be

a global eigenvalue sequence of T with the multiplicity sequence (τ k(T ))k∈N. Then

the following properties hold:
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(1) (Weyl-inequality) if (πsk(T ))k∈N is o-summable in Λ for some projection π,

then the following inequality holds

o-
∑
k∈N

πτ k(T )|λk(T )| ≤ o-
∑
k∈N

πsk(T );

(2) (Horn-inequality) Suppose that Tk is a cyclically compact operator on X for

1 ≤ k ≤ K. Then

N∏
i=1

si(TK · · ·T1) ≤
K∏
k=1

N∏
i=1

si(Tk) (N ∈ N).

(3) (Lidskĭı trace formula) if T ∈ S1(X), then the following equality holds

tr(T ) = o-
∑
k∈N

τ k(T )λk(T ).

Proof. Let (πsk(T ))k∈N be o-summable sequence in Λ for the projection π. Then

πτ k(T )λk(T ) ∈ Λ (k ∈ N). Indeed, τλk(T ),l(n)πτ k(T )|λk(T )| ≤ o-
∑

k∈N πsk(T )

holds for each k, n ∈ N from Theorem 5.3.2 and τλk(T ),l(n)τ k(T )|λk(T )| =(
τλk(Tγ),l(n)τ k(Tγ)|λk(Tγ)|

)
γ∈Γ

. Since Λ is B-cyclic we have πτ k(T )λk(T ) ∈ Λ.

Thus, the proof of the theorem is immediately from Theorem 5.3.2 and the pre-

ceding lemma.
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