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OZET

KAPLANSKY —HILBERT MODULLER UZERINDE DEVRESEL
KOMPAKT OPERATORLER

Ugur GONULLU

Tezin ilk kisminda Kaplansky—Hilbert modiilleri iizerindeki devresel
kompakt kiimeler ve operatorler caligsilmigtir. A. G. Kusraev,
Boole-degerli analiz teknikleri kullanarak, devresel kompakt
operatorlerin genel bir formunu ispatlamistir. Tezde, bu genel formun
standart kanit1 verilmistir. Ayrica, devresel kompakt operatorlerin
baz1 karakterizasyonlar1 elde edilmistir. Ikinci kisimda
Kaplansky—Hilbert modiilleri iizerindeki siirekli A-lineer
operatorlerin Schatten-tipindeki siiflar: calisilmis ve bunlarin
dualitelerini arastirilmistir. Ote yandan, Hilbert—Schmidt simflarinin
birer Kaplansky—Hilbert modiilii oldugu gosterilmistir. Son kisimda,
Kaplansky—Hilbert modiilleri iizerindeki devresel kompakt
operatorlerin global ozdegerleri ve bu 6zdegerlerin katliliklar:
tanimlanmig ve incelenmigtir. Kaplansky—Hilbert modiilleri
uizerindeki devresel kompakt operatorler icin Horn- ve Weyl-tipi

esitsizlikler ve Lidskii iz formiilii elde edilmistir.

Anahtar Kelimeler: Kaplansky—Hilbert modiil, devresel kompakt

operator, Schatten-tipi simiflar, Lidskii iz formiilii
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SUMMARY

CYCLICALLY COMPACT OPERATORS ON
KAPLANSKY-HILBERT MODULES

Ugur GONULLU

The first part of the thesis studies cyclically compact sets and
operators on Kaplansky—Hilbert modules. A. G. Kusraev proved a
general form of cyclically compact operators in Kaplansky—Hilbert
modules using techniques of Boolean-valued analysis. We give a
standart proof of this general form. Moreover, we obtain some
characterizations of cyclically compact operators. The second part
studies the Schatten-type classes of continuous A-linear operators on
Kaplansky—Hilbert modules and investigates the duality of them.
Furthermore, we show that the Hilbert—Schmidt class is a
Kaplansky—Hilbert module. In the last part we define and study
global eigenvalues of cyclically compact operators on
Kaplansky—Hilbert modules and their multiplicities. We obtain
Horn- and Weyl-type inequalities and Lidskii trace formula for

cyclically compact operators in Kaplansky—Hilbert modules.

Keywords: Kaplansky—Hilbert module, cyclically compact operator,

Schatten-type classes, Lidskil trace formula
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Chapter 1

Introduction

1.1 State of the Art

The concept of Kaplansky—Hilbert module, or AW*-module, arose naturally in
Kaplansky’s study of AW *-algebras of Type 1. Kaplansky—Hilbert module, which
is an object like a Hilbert space except that the inner product is not scalar-valued
but takes its values in a commutative C*-algebra A which is an order complete
vector lattice, was introduced by I. Kaplansky [15]. Such a C*-algebra is often
called a Stone algebra or a commutative AW *-algebra. I. Kaplansky proved some
deep and elegant results for such structures, thereby showing that they have
many properties similar to those of the Hilbert spaces. A Kaplansky—Hilbert
module X is called A\-homogeneous if X has a basis of cardinality A. Not every
Kaplansky—Hilbert module has a basis, but we can split it into homogeneous
parts [15, Theorem 1.]. The concept of strict A-homogeneity was introduced
by A. G. Kusraev and as shown in [20] every Kaplansky—Hilbert module can be
splitted into strictly homogeneous parts . In the same paper, Kusraev established
functional representations of Kaplansky—Hilbert modules and AW *-algebras of
type I by spaces of continuous vector-functions and strongly continuous operator-
functions, respectively. In [42], H. Takemoto gave another representation where
each AW*-module is representable as a continuous field of Hilbert spaces over a
Stonean space. By using this representation a variant of the polar decomposition

was obtained by H. Takemoto [43], and C. Sunouchi gave another proof [40].



C*-algebras and von Neumann algebras within Boolean-valued models appeared
in the research of G. Takeuti [44, 45]. M. Ozawa started the study of AW*-modules
and algebras by means of Boolean-valued models of set theory [29], in which he
gave a negative solution to the I. Kaplansky problem on the unique decomposition

of a type I AW*-algebra into the direct sum of homogeneous bands [33, 34].

The generalization of the concept of Kaplansky—Hilbert module is the Hilbert
C*-module (inner product takes values in a C*-algebra) which appeared in the
papers of W. Paschke and M. Rieffel (see [27]).

The von Neumann—Schatten Classes S, (1 < p < oo) of linear operators on a
Hilbert space H were introduced by von Neumann and Schatten [38]. It turns out
that each of these classes is a two-sided ideal in B(H), and consists of compact
operators. The space .S, is a Banach space with properties closely analagous to
those of the sequence space £,. The linear spaces S,(H) and S,(H) constitute a
dual system with respect to the bilinear form (S, T") := tr(ST) where S € S,(H),
T € S,(H) and p is the conjugate index to ¢. In this sense, S,(H) can be
identified with S,(H)". In cases p = 1 and p = oo, we have S;(H) = B(H) and
K(H) = Si(H), respectively. The latter formulas were obtained by Schatten
[36] and Schatten/von Neumann [37]. Though the Banach spaces S,(H) with
1 < p < oo are only semi-classical, they have proved to be quite important.
Their main significance, however, stems from the fact that they are even Banach

ideals over H.

By a continuous A-linear operator T" from an AW*-module X to an AW *-module
Y we mean a mapping of X into Y which is not only linear and continuous as
usual, but also a module homomorphism. I. Kaplansky showed that a A-linear
operator T is continuous if and only if 7" has an adjoint 7™, and that the set
Bx(X) of all continuous A-linear operators in X forms AW*-algebra of type I
in [15]. Every continuous A-linear operator is dominated and bo-continuos [23].
A continuous A-functional on a Kaplansky—Hilbert module X is a continuous
A-linear operator from X to A. Kaplansky also proved that the Riesz Repre-
sentation Theorem is satisfied on Kaplansky—Hilbert modules [15]. In [49] two
versions of a spectral theorem for continuous A-linear operators are obtained T’
on the Kaplansky—Hilbert module X.

In 1936, L. V. Kantorovich introduced the concept of lattice-normed space. These
are vector spaces normed by elements of a vector lattice. Every Kaplansky—Hilbert
module is a Banach—Kantorovich space which is a decomposable o-complete

lattice-normed space [23, 7.4.4.].



Cyclically compact sets and operators in lattice-normed spaces were introduced
by A. G. Kusraev in [18] and [19], respectively, and a preliminary study of this
notions was initiated. Cyclical compactness is the Boolean-valued interpretation
of compactness and it also deserves an independent study. For different aspects
of cyclical compactness, see [21, 25, 26]. In [22] (see also [23]) a general form
of cyclically compact operators in Kaplansky—Hilbert modules, which is similar
to the Schmidt representation of compact operators on Hilbert spaces, as well
as a variant of the Fredholm alternative for cyclically compact operators, were
also given with Boolean-valued techniques. Thus, the natural problem arises to
investigate the class of cyclically compact operators in more details. Recently,
cyclically compact sets and operators in Banach—Kantorovich spaces over a ring
of measurable functions were investigated in [8, 16, 17]. In this vein, the following

problems are of importance.

1.2 Statement of the Problem

Introduce and study the Schatten-type classes of continuous linear operators on
Kaplansky—Hilbert modules. In particular, we obtain a general form of cycli-
cally compact operators in Kaplansky—Hilbert modules, duality results for the

Schatten type classes, and generalized Lidskii trace formula.

1.3 Review of Contents

Chapter 1 of this thesis presents the scope of the study as an introduction.

Chapter 2 contains some background related to theory of Boolean algebras,

lattice-normed spaces and AW ™*-algebras needed in the sequel.

Chapter 3 deals with Kaplansky—Hilbert modules and cyclically compact opera-
tors on them. The first section of the Chapter 3 is an introduction to
Kaplansky—Hilbert modules, and the concept of projection basis is defined. Sec-
tion 3.2 is related to cyclically compact sets, and we reprove some characteriza-
tions about cyclically compact sets on C (@), H) which were proved for measur-
able bundles in [16]. In section 3.3 we study operators on Kaplansky—Hilbert
modules and define a new notion of global eigenvalue of operators, and prove
the Polar Decomposition for continuous A-linear operators. In the last section of

Chapter 3, we prove a general form of cyclically compact operators with standart



techniques and give some characterizations about cyclically compact operators
on Kaplansky—Hilbert modules and the Rayleigh—Ritz minimax formula. More

precisely, we can state the main results of this chapter as follows:

Theorem 1.3.1. Let T be a cyclically compact operator from X toY . There exist

sequences (ep)gen in X and (fr)ren in Y and a sequence (si(T))ken of positive

elements in A such that

(1) {ex [ er) = (fi | fiy =0 (k #1) and [sy(T)] = |ex] = | /] (k € N);
(2) Sk+1(T) S Sk(T) (k’ € D\l) and o—limk_mo Sk(T) = infkew $k<T) = 0,’

(3) there exists a projection T in P(A) such that TSk is a weak order-unity
n Teo\ for all k € N;

(4) there exists a partition (m)p—, of the projection m= such that ms; = 0,

e < [Sk], and TkSk4+1 = 0, ke [N,’

(5) for each x the following equality is valid:

Tz = Woobo—z sp(T) (x| ex) fx + bo—z T Z sp(T) (x| ex) fr
k=1 n=1 k=1

= bo-z sp(T) (x| ex) fx-

Theorem 1.3.2. (The Rayleigh—Ritz minimax formula) Let T be a cyclically
compact operator from X toY. Then

$p(T) = inf {sup {|Tz| : |¢] <1,z € J"}}

where the infmum is taken over all projection orthonormal subset J of X such

that card(J) < n, and the infmum is achieved.

Theorem 1.3.3. Let T be in By(X) and © denote the set of all finite subsets of

the projection basis &. Then the following statements are equivalent:

(i) T is a cyclically compact operator on X ;

(ii) for all projection bases & in X, the net (IT(I — PF)I)F
0, where Pp =) plece:

co 0-converges to

(iii) for all projection bases & in X, (Supech { |Te| }>Fe@ decreases to 0;

(iv) for all projection bases & in X, (sup.cpe {|(Te | €)|})pee decreases to 0.



Chapter 4 is devoted to study the Schatten type class of operators. In particular,
we investigate the Hilbert—Schmidt class, the trace class and classes .7, and get
duality results for the Schatten-type classes. The main results of this chapter are

as follows:

Theorem 1.3.4. The pair (“(X,Y), (-,-)) is a Kaplansky— Hilbert module over
A and the following equality holds:

|7| <w(T) (T e AX,)Y))
where |T| is ezact dominant of T [23, 4.1.1].

Theorem 1.3.5. If o : A (Y, X) — H(X,Y)* is defined by o(T)(A) = tr(TA)
forallAe #(X,Y) and T € A (Y, X), then p satisfies the following properties:

(1) ¢ is a bijective A-linear operator from (Y, X) to A (X,Y)*;
(ii) vi(T) = |p(T)] (T € A(Y, X)).

Theorem 1.3.6. If ¢ : (BA(X,Y),|-|) = (A, X)*, |- |1) is defined by
Y(L)(T) =tr(TL) for all L € BA(X,Y) and T € A (Y, X). Then 1 satisfies the

following properties:

(i) v is a biective A-linear operator from Bx(X,Y) to A (Y, X)*;
(ii) |Z] = [¢(D)]1 (L € Ba(X,Y)).

Theorem 1.3.7. Let 1 < p,q < oo and % —I—% =1 If ¢ : (S(X),v()) —
(LX), o) is defined by ¢(T)(S) = tx(ST) for allT € .7,(X) and S € .Z,(X),
then ¢ satisfies the following properties:

(i) ¢ is a bijective A-linear operator from 7,(X) to S, (X)*;
(ii) v(T) = [&(T)], (T € (X)),

In Chapter 5, we study global eigenvalues of cyclically compact operators and
their multiplicities. We prove Horn- and Weyl-type inequalities and Lidskil trace
formula for cyclically compact operators. More precisely, the main results of this

chapter are as follows:

Theorem 1.3.8. Let T be a cyclically compact operator on X . Then there exists
a sequence (Ai)yop consisting of global eigenvalues or zeros in A with the following

properties:



(1) el < T W] = Aera] (B € N) and o-lim Ay, = 0;

(2) there exists a projection ms, in A such that moo| | is a weak order-unity in

Too\ for all k € N;

(3) there exists a partition (my) of the projection 7= such that moh; = 0, 7 <
[)\k]; and 7Tk>\k+m =0, m, ke D\l;

(4) TApym # T for every nonzero projection m < oo +mg and for allm, k € N;

(5) every global eigenvalue \ of T is of the form A = mixgey (prAx), where

(Pr)gen 5 @ partition of [A].

Theorem 1.3.9. Let T' be a cyclically compact operator on X and (Ap(T)),cp be
a global eigenvalue sequence of T with the multiplicity sequence (Tk(T))ren- Then

the following properties hold:

(1) (Weyl-inequality) if (msx(T)) e 15 0-summable in A for some projection m,

then the following inequality holds

O—Z 1TE(T) | M\ (T)] < O—Z 7sk(T);
keEN keN
(2) (Horn-inequality) Suppose that Ty is a cyclically compact operator on X for
1< k< K. Then

siTi--T) < [[]]s:(T) (NeN).

i=1 k=1 i=1

(3) (Lidskii trace formula) if T € .1(X), then the following equality holds

tr(T) = 0-Y _ 7u(T)Ai(T).

1.4 Methods Applied

This work uses essentially the methods from the following branches of analysis:
Theory of vector lattices, lattice-normed spaces, Kaplansky—Hilbert modules,
and AW*-algebras. In particular, we use intensively the following concepts: or-
der convergence, bo-convergence and bo-summability, the exact dominant of an
operator, spaces with mixed norms, the properties of the vector norm, A-valued
inner product and cyclically compactness. The main technical tool used in the
work is the functional representation of Kaplansky—Hilbert modules and bounded

linear operators on them.



1.5 Publications and Reports

The following papers are comprised of the results obtained in the present thesis:
e “Schatten-type classes of operators in Kaplansky—Hilbert modules,” in
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J., forthcoming.
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submitted.

Besides, parts of the thesis were delivered in the following seminars and symposia:

e Joint Seminar on Analysis in Southern Mathematical Institute of the Rus-

sian Academy of Sciences, Vladikavkaz, Russia (June 2011).

e International Conference of Young Scientists: “Mathematical Analysis and

Mathematical Modelling,” Fijagdon, Vladikavkaz, Russia (July 25-30, 2011).

e Joint Seminar on Analysis in Southern Mathematical Institute of the Rus-

sian Academy of Sciences, Vladikavkaz, Russia (September 2013).



Chapter 2
Preliminaries

In this chapter, we set the general background which will be needed in the sequel.
For further details one can consult on the books [1, 2, 4, 23], whose terminology

is used throughout.

2.1 Boolean Algebras

Let M be a partially ordered set with an order relation < (i.e. with a reflexive,
antisymmetric and transitive relation <). A subset A of M is upward-directed
(downward-directed) if, given two elements a,b of A, there is an element ¢ of A
such that a < cand b < ¢ (¢ <a and ¢ <b). If for z in M a < z holds for all a
in A, we say that x is an upper bound of A. A least element of the set of upper
bounds of A is called a least upper bound or supremum of A and denoted by
sup A. Lower bound and infimum are defined similarly. The set of upper bounds
for a subset E of M is denoted by u.b.(E). M is called lattice if each pair of
elements x,y in M has z Vy := sup{z,y} and = Ay := inf{z,y}. A lattice is

distributive it
zA(yVz)=(@Ay)V(eAz)andzV (yAz)=(xVy AzVz2).

If a lattice L has the least or greatest element then the former is called the zero

of L and the latter, the unity of L. The zero and unity of L are denoted by 0



and 1. If x and x* satisfy x V 2* = 1 and x A * = 0p, then x* is called a
complement of x. Elements x,y in L satisfying x Ay = 0, are said to be disjoint.
If each element in L has at least one complement then we call L a complemented

lattice.

Definition 2.1.1. A Boolean algebra is a distributive complemented lattice with

distinct zero and unity.

A Boolean algebra B is called complete (o-complete) if every non-empty subset
(countable subset) of B has a supremum and an infimum. We say that a subset A
of a Boolean algebra B is an antichain if all distinct two elements of A is disjoint.
An antichain A in B is a partition of an element b € B (and so a partition of
unity when b is the unity of B) provided that b = \/ A = sup A. A subset E of
B minorizes a subset By of B if to each 0 < b € By there is an x in E such that
0 < x <b. We will often use the following theorem.

Theorem 2.1.2. [23, 1.1.6.](Exhaustion Principle). Let M be a nonempty subset
of a Boolean algebra B. Assume given a subset E of B that minorizes the band By
of B generated by M. Then some antichain Ey exists, Ey C E, such that u.b.(Ey)
= u.b.(M) and to each x € Ey there is an element y in M satisfying x < y.

We say that a subset F' of a Boolean algebra B is a filter, if x,y € F' implies
xANy € F,andifbe B, x € F and b > x imply b € F. A filter other than B is
proper. A maximal element of the inclusion-ordered set of all proper filters on B is
an ultrafilter on B. Let U(B) stand for the set of all ultrafilters on B, and denote
by U(b) the set of ultrafilters containing b. We endow U(B) with the topology
with base {U(b) : b € B}. Clearly, U(x ANy) = U(z) N U(y) (z,y € B), ie.,
{U(b) : b€ B} is closed under finite intersections. The topological space U(B)
is often referred to as the Stone space of B and is denoted by . (B). Recall that
a topological space is called extremally (quasiextremally) disconnected or simply
extremal (quasiextremal) if the closure of an arbitrary open set (open F,-set) in
it is open or, which is equivalent, the interior of an arbitrary closed set (closed
Gs-set) is closed.

Theorem 2.1.3. [23, 1.2.4.](Ogasawara Theorem). A Boolean algebra is com-

plete (o-complete) if and only if its Stone space is extremal (quasiextremal).

In the sequel, by a Boolean algebra of projections in a vector space X we mean

a set # of commuting idempotent linear operators that act in X. Moreover, the



Boolean operations have the following form:
TAp:=monp, TVp:=m+p—mwop, Tt =Ix—m (m,p € B).

and the zero and identity operators in X serve as the zero and unity of the

Boolean algebra 4.

2.2 Vector Lattices

A real vector space E is said to be an ordered vector space whenever it is equipped
with an order relation < that is compatible with the algebraic structure of F in

the sense that it satisfies the following two axioms:

(1) If z <y, then z + z < y + z holds for all z,y,z € E,

(2) If z <y, then Az < Ay holds for all z,y € E and 0 < A € R.

An element x in an ordered vector space E is called positive whenever 0 < x
holds. The set of all positive elements of E is called the positive cone of E and
it will be denoted by E.. A wvector lattice (Riesz space) is an ordered vector
space that is also a lattice. A vector lattice is called Dedekind complete or order
complete (in the Russian literature, K-space) whenever every nonempty subset
bounded above has a supremum. Note also we assume that every vector lattice

is Archimedean.

Let u be a positive vector of a vector lattice E/. A vector e € E is said to be
a fragment, or a part, or a component of wu, or a unit element with respect to u

whenever e A (u — e) = 0. The set of all fragments of u is denoted by €(u).

Theorem 2.2.1. [2, Theorem 3.15.] Let E be a vector lattice and uw € E.. Then
&(u) is a Boolean algebra consisting precisely of all extreme points of the convex
set [0,u]. Moreover, in case E is Dedekind complete, €(u) is likewise Dedekind

complete.
The disjoint complement M~ of a nonempty set M C E is defined as
M+ ={ze€E: forallye M, z Ay = 0}.
A nonempty set K C E satifying K = K+ is called a band of E. The set of all

bands of E is denoted by B(F). Every band of the form {z}* with x € E is

10



called principal. It is well known that B(FE) is a complete Boolean algebra with
the inclusion-order. The Boolean operation of B(FE) take the shape:

LANK=LNK, LVK=(LUK)*  L*=L* (L ,K¢cB(E).

We say that K € B(E) is a projection band if E = K®K*. The projection 7 onto
the band K along the band K= is called a band projection (or order projection).
The set PB(F) of all band projections ordered by m < p < mwop = 7 is a Boolean
algebra. The Boolean operations of B(FE) take the shape

TAp=mop, TVp=m+p—mop, mt=Ig—m (m,p € P(E)).

A vector lattice F is said to have the projection property whenever every band in

FE' is a projection band.

Let (A, <) be an upward-directed set. We say that a net (z,)aca in a vector
lattice E/ o-converges to x € E' if there is a net eg | 0 in F and for each 8 there
is a(f) with |z, — 2| < ep (o > a(B)). We call x the o-limit of the net (x4)aca
and write z = o-limz, or z, (i; x. If a net (eg) in this definition is replaced
by a sequence (A, €)nen, where e € E, and (A, ),en is a numerical sequence with
lim, .o A, = 0, then we say that a net (z,)aeca converges relatively uniformly
or more precisely e-uniformly to x € E. The elements e and x are called the
requlator of convergence and the r-limit of (x4)aca, respectively. The notations
r = r-limz, or z, (ig x are also frequent. A net (x4)qca is called o-fundamental
(r-fundametal with regulator e) if the net (x4 — 7)(,8)caxa 0-converges (re-
spectively, r-converges with regulator e) to zero. A vector lattice is said to be

relatively uniformly complete if every r-fundamental sequence is r-convergent.

A linear subspace J of a vector lattice is called an order ideal or o-ideal (or,
finally, just an ideal) if the inequality |z| < |y| implies = € J for arbitrary = € E
and y € J. If an ideal .J possesses the additional property J*+ = E (or, J* = {0})
then J is referred to as an order-dense ideal of E. The o-ideal generated by the el-
ement 0 < wu € F is the set F(u) := UX  [—nu,nu] = {x € E: |z| < Au, X € R}.
If F(u) = E then we say that u is a strong unity or strong order-unity. If
E(u)*t = E then we say that u is an order-unity or weak order-unity. A vector
sublattice is a vector subspace Ey C E such that z Ay, xVy € Ey for all x,y € Ej.
A vector lattice is called disjointly complete (disjointly o-complete) if every its

order-bounded antichain (countable antichain) has supremum.

A norm || - || on a vector lattice is said to be a lattice norm whenever |z| < |y|

implies ||z|| < ||ly||. A vector lattice equipped with a lattice norm is known as a
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normed vector lattice. If a normed vector lattice is also norm complete, then it is
referred to as a Banach lattice. A Banach lattice E is called an abstract M-space
or AM-space if ||z Vy| = ||z]| V|ly|| (z,y € E}). If the unit ball of an AM-space
E contains a largest element e, then e is a strong order-unity and the unit ball
of E coincides with the symmetric order interval [—e, e]. In this case F is said to

be an AM-space with unit.

Theorem 2.2.2. (Kakutani-Bohnenblust and M. Krein-S. Krein). Let E be an
AM-space. Then there ezist a compact QQ and a family of triples (tu, Sa, Aa)aca
with ty,8q € Q and 0 < A\, < 1 such that E is linearly isometric and order

1somorphic to the closed sublattice
F={zeC(Q): Vae A) z(ty) = Nax(sa)}

In particular, every AM-space with unity is linearly isometric and order isomor-

phic to the space of continuous functions C(Q) on some compact space Q.

Theorem 2.2.3. [23, Theorem 1.5.9.] For a compact space Q, the following are

equivalent:
(1) C(Q) is order complete (o-complete);
(2) C(Q) is disjointly complete (o-complete);
(3) Q is extremal (quasiextremal);

(4) C(Q) possesses the projection property (principal projection property).

2.3 Lattice-Normed Spaces

Let X be a vector space and E be a real vector lattice. A mapping || X = F,

is called a vector (E-valued) norm if it satisfies the following axioms:
(1) |¢] =0&2=0(z € X);
(2) I/\xl = |} |x| (ANeR,z € X);
3) |z +y| < |=] + |y] (z,y € X).

A vector norm is called decomposable or Kantorovich norm if

(4) for all e,e5 € Ey and x € X, from |:U| = €1 + e9, it follows that there exists
1,29 € X such that x = x1 + 29 and |a:k| =e, (k=1,2).

12



In the case when condition (4) is valid only for disjoint e, e5 € E, the norm

is said to be disjointly-decomposable or, in short, d-decomposable.

A triple (X, | . |,E) is a lattice-normed space if | . | is an E-valued norm in
the vector space X. The space F is called the norm lattice of X. If the norm is

decomposable, then the space (X, ||) is called decomposable.

It |x| A |y| = 0, then we call the elements x,y € X disjoint and write x_Ly.

As in the case of a vector lattice, a set of the form
M+ ={reX: forallyec M, zly}

@ # M C X, is called a band. The symbol #(X) denotes the set of all bands
ordered by inclusion. We say that K € %(X) is a projection band if K & K+ =
X. The projection h(r) onto the band K along the band K= is called a band
projection. A lattice-normed space X is said to have the projection property

whenever every band in X is a projection band. For uniformity, we often write
B(X) instead of A(X). Given L C F and M C X, we let by definition

MLy ={xeX: |z| €L} and |M|:={|z]|: v M}.
It is clear that |h(L)| = LN |X].

Theorem 2.3.1. [23, 2.1.2.(1)] Suppose that every band of the vector lattice Ey :=
|X|LL contains the norm of some nonzero element. Then B(X) is a complete

Boolean algebra and the mapping L — h(L) is an isomorphism of the Boolean
algebras B(|X|*+) and B(X).

Theorem 2.3.2. [23, 2.1.2.(4)] Suppose that every band of the vector lattice Ey :=

|X| L+ contains the norm of some nonzero element and X is d-decomposable and
there exist a band projection ™ onto L € B(Ey). Then the projection h(m) onto
the band K := h(L) along the band K= exists and, moreover, m|z| = |h(m)z| for
allz € X.

Theorem 2.3.3. [23, 2.1.3.] Suppose that Ey := |X|LL is a vector lattice with the
projection property and the space X is d-decomposable. Then X have the projection
property. Moreover, there exists a complete Boolean algebra % of band projections
in X and an isomorphism h from PB(Ey) onto & such that b|z| = |h(b)z|
(b € P(Ey), z € X).

We identify the Boolean algebras PB(Ep) and Z(X) = £ and write
|| = |rz| (7 € B(Ey), = € X).
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We say that a net (z4)aca bo-converges to an element x € X and write
x = bo-limz, if there exists a net e, | 0 in E such that for every 7, there
is an a(y) such that |z, —z| < e, for all @ > a(y). Given an element e €
E., let the following condition be satisfied: for every number ¢ > 0, there is
an index «a(€) such that |xa — xl < ee for all @ > a(e). Then we say that
(Za)aca br-converges to x and write z = br-limz,. A net (z,)aeca is said to
be bo-fundamental (br-fundamental) if the net (v, — 25)(,g)caxa bo-converges
(br-converges) to zero. A lattice-normed space is called bo-complete (br-complete)
if every bo-fundamental (br-fundamental) net in it bo-converges (br-converges) to

an element of the space.

Take a family (x¢)¢ez and associate with the net (yq)aca, where A := @y, (2)
is the set of all finite subsets of = and y,, := dea ze. If 1= bo-limy, exists then
the family (z¢) is said to be bo-summable and x is its sum. It is conventional to

write = bo-) .= ¢ in this case.

A set M C X is called norm-bounded if there exists an e € E, such that
|x| < eforall x € M. A space X is called disjointly complete or d-complete if

every norm-bounded set in X of pairwise disjoint elements is bo-summable.

Definition 2.3.4. A Banach— Kantorovich space is a decomposable bo-complete

lattice-normed space.

Theorem 2.3.5. [23, 2.2.1.] Let (X, E) be a Banach—Kantorovich space and
E = |X|LL. For every bounded family (z¢)ecz in X and every partition of unity
(me)eez in P(X), the sum x = bo-) .= Texe exists. Moreover, x is a unique

element in X satisfying the relations mex = mexe (€ € 2).

Theorem 2.3.6. [23, 2.2.3.] A decomposable lattice-normed space is bo-complete
if and only if it is disjointly complete and complete with respect to relative uniform

convergence.

Let (X, || , E) be a lattice-normed space with £ a norm lattice of X and E

be a normed lattice. Then we have a norm in X defined by

il = [[l=][]  (z€X).
The normed space (X, |[|]||) is called a space with mized norm and |||-||| is called
mized norm in X. From inequality ‘ |x| — |y| | < |z — yl and monotonicity of the

norm in £, the vector norm || is a norm continuous. A Banach space with mized
norm is a pair (X, E) in which F is a Banach lattice and X is a br-complete

lattice-normed space with E-valued norm.
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Theorem 2.3.7. [23, 7.1.2.] Let E be a Banach lattice. Then (X, |||-|]]) is a

Banach space if and only if the lattice-normed space (X, E) is br-complete.

2.4 Normed B-Spaces

Let X be a normed space and B be a Boolean algebra. Suppose that Z(X) has
a complete Boolean algebra of norm one projections % which is isomorphic to B.
In this event we will identify the Boolean algebras & and B, writing B C .Z(X).
Say that X is a normed B-space if B C Z(X) and for every partition of unity
(be)eez in B the two conditions hold:

(1) If bex =0 (¢ € =) for some x € X then x = 0;

(2) If bex = bexe (€ € E) for x € X and a family (z¢)eez in X then [|z]| <
sup{|[bgze|| - € € Z}.

Conditions (1) and (2) amount to the respective conditions (1') and (2):

(1) To each € X there corresponds the greatest projection b € B such that
bx = 0;

(2') If @, (w¢), and (be) are the same as in (2) then |z|| = sup{||beze| : € € =}

From (2') it follows in particular that

e

for x € X and pairwise disjoint projections by, ..., b, in B.

Given a partition of unity (b¢), we refer to x € X satisfying the condition
bex = bewe (€ € Z) as a mizing of (x¢) by (be). If (1) holds then there is a unique
mixing x of (z¢) by (be). In these circumstances we naturally call x the mizing
of (x¢) by (be). Condition (2) may be paraphrased as follows: the unit ball Uy

of X is closed under mixing or is miz-complete.

A normed B-space X is B-cyclic if we may find in X a mixing of each norm-
bounded family by any partition of unity in B. Considering what was said above,
we may assert that X is a B-cyclic normed space if and only if, given a partition
of unity (b¢) C B and a family (x¢) C Ux, we may find a unique element x € Ux
such that bex = bewe for all €.
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2.5 AW?*-Algebras

We recall some preliminaries concerning complex algebras. Note also that by an
algebra we always mean a unital associative algebra. An involutive algebra or
x-algebra A is a complex algebra with involution, i.e. a mapping z — z* (z € A)

satisfying the conditions:

(1) 2 =2z (x € A);
2) (x+y) =a"+y (v,y € A);
(3) (A\x)*=Xz* (A€ C, z € A);

(4) (zy)* = y*z* (z,y € A).

An element x of an involutive algebra A is called hermitian if x* = x. The
set of all hermitian elements of A is denoted by ReA. An element x of A is called
normal if x*x = xx*. A hermitian element p is a projection whenever p is an
idempotent, i.e. p> = p. The symbol (A) stands for the set of all projections
of an involutive algebra A. Two projections p,q € P(A) are called orthogonal if
pq = 0. A projection p is central if pxr = xp for all z € A. Denote the set of all
central projections by B.(A).

A scalar \ € C is a spectral value of x, if A — x is not invertible in A. The set
of all spectral values of x is called the spectrum of x and denoted by Sp(z). An
element z of a x-algebra A is called positive if « is hermitian and Sp(z)C Ry. If
x is positive, this is denoted by x > 0. The set of all positive elements of A is
denoted by A,.

If (A, ) and (B, %) are involutive algebras and &% : A — B is a multiplicative
linear operator or a homomorphism, then % is called a x-representation or a *-
homomorphism of A in B whenever Z(z*) = Z(x)* for all v € A. If Z is also

an isomorphism then & is a x-isomorphism of A and B.
A norm || - || on an algebra A is submultiplicative if
lzyll < ll=llllyll (2,9 € A).

A Banach algebra A is an algebra furnished with a submultiplicative norm making
A into a Banach space. A C*-algebra is a Banach algebra which is also an

involutive algebra and its involution satisfies the condition

lz2*[l = llz[* (= € A).
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The spectrum of an element of a Banach algebra is a nonempty compact subset of
C [6, Theorem VII.3.6.]. Let C(Q) denote the C*-algebra of continuous complex-

valued functions on a topological space Q).

Let A be a commutative Banach algebra and ¥ denote the set of all nonzero
homomorhism of A — C. Give X the relative weak* topology that it has as a
subset of closed unit ball of A’ [6, Proposition VII.8.4.]. ¥ with this topology is
called the maximal ideal space of A. By the Banach— Alaoglu theorem, the maxi-
mal ideal space ¥ is a compact Hausdorff space. If a € A, then Gelfand transform
of a is the function @ : ¥ — C defined by a(h) = h(a). The homomorphism a — a
of A into C'(X) is called the Gelfand transform of A.

Theorem 2.5.1. [6, Theorem VIIL.2.1.] If A is a commutative C*-algebra with
identity and X is its maximal ideal space, then the Gelfand transform ~v : A —

C(X) is an isometric x-isomorphism of A onto C(X).

Let B be an arbitrary C*-algebra with identity and let a be a normal element
of B. So, if A = C*(a), the C*-algebra generated by a and unity 1, i.e., C*(a) is

the closure of {p(a,a*) : p(z,z) is a polynomial in z and z}, A is commutative.

Proposition 2.5.2. [6, Proposition VIII.2.3.] If A is a commutative C*-algebra
with mazimal ideal space 2 and a € A such that A = C*(a), then the map T :
Y. — Sp(a) defined by T(h) = h(a) is a homeomorphism. If p(z, Z) is a polynomial
inzand Z and v : A — C(X) is the Gelfand transform, then ~(p(a,a*)) = pr.

If 7: ¥ — Sp(a) is defined as in the preceding proposition, 7¢ : C'(Sp(a)) —
C(X) is defined by 7%(f) = f7. Note that 7% is a *-isomorphism and an isometry,

because 7 is a homeomorphism.

Theorem 2.5.3. (Spectral Theorem). Let x be a normal element of a C*-algebra
A. There is a unique isometric x-representation X, : C(Sp(z)) — A such that

x = %, (i), where i is the identity mapping on Sp(x).

The representation %, : C(Sp(x)) — A is called the continuous functional
calculus (for a normal element = of A). The element Z,(f) with f € C(Sp(x))
is usually denoted by f(x). Note that if p(z, Z) is a polynomial in z and Zz, then
KH(p(z,2)) = p(x,z*). In particular, Z,(2"2") = a™(z*)™ so that Z,(z) = «
and Z.(Z) = x*. Also, %Z,(1) = 1.

Theorem 2.5.4. [6, Theorem VIII.2.7.](Spectral Mapping Theorem). If A is a
C*-algebra and x is a normal element of A, then for every f in C(Sp(z)),

Sp(f(x)) = f(Sp(x)).
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Theorem 2.5.5. [6, Theorem VIIL.3.6.] If A is a C*-algebra and x € A, then

the following statements are equivalent.
(1) z>0;
(2) x =1* for some b € ReA;
(3) = =a*a for some a € A;
(4) x =z and ||t — x| <t for allt > ||x||;

(5) z=2xa* and ||t — z|| <t for some t > ||x]|.

Form Spectral Theorem and the theorem above, we have for every positive
x € A the square root \/z is defined, since Sp(z) C R, and for each normal
r € A the modulus can be defined as |z| = v/z*z. Note that if 2,y € A, and
x <y, then 2% < 4% holds for 0 < 8 < 1.

Consider an involutive algebra A. Given a nonempty set M C A,
M* ={ycA:(Vx € M)xy =0}
and call M~ the right annihilator of M. Similarly,
M :={yc A: (Vr € M)yx = 0}

denotes the left annihilator of M. A Baer x-algebra is involutive algebra A such
that for each nonempty M C A, there is some p in PB(A) satisfying M+ = pA.
An AW*-algebra is a C*-algebra that is a Baer x-algebra.

Theorem 2.5.6. [4, Theorem 7.1.] Let A be a commutative C*-algebra with
unity and write A = C(T), T compact. In order that A be an AW*-algebra, it is

necessary and sufficient that T be an extremally disconnected.

Note that if A is a commutative C*-algebra with unity, then A is an AW™*-
algebra if and only if its maximal ideal space is extremally disconnected. For

more information, we refer to [4, 23].

Let A be a commutative AW*-algebra. Then ReA is a Dedekind complete
vector lattice with strong order-unity 1 and 3(A) is a complete Boolean algebra.
Denote [A] = inf {m € P(A) : 7A = A}, the support of X in A. In case A = C(Q),
[A] is the characteristic function of the clopen set cl ({g € @ : A(¢) # 0}). Note
that [\] = sup {|fA] € B(A) : f € A} and [A] is the projection of 1 onto the band
generated by |\|. By [4, §3, Propostion 3] and the preceding observations we can

deduce the following proposition.
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Proposition 2.5.7. Let A be a commutative AW*-algebra and \,6 € A. Then

the following properties are holds:

(2) A6 =0 iff [\]d = 0;
(3) 0 < X <6 implies [A] < [0];

(4) A >0 and Ao > 0 implies [A] 6 > 0.
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Chapter 3

Kaplansky—Hilbert Modules

In this chapter, we introduce and study the notion of a Kaplansky—Hilbert mod-
ule and operators on them. A Kaplansky—Hilbert module is like a Hilbert space
except that the field of complex numbers is replaced by an arbitrary commutative
C*-algebra which is order complete vector lattice. Kaplansky—Hilbert modules
appeared in the paper [15] of I. Kaplansky. Moreover, we deal with cyclically
compact sets and operators in Kaplansky—Hilbert modules which are introduced
by A.G. Kusraev and recently, they are studied in [8, 16].

3.1 Kaplansky—Hilbert Modules (AW *=Modules)

In this section, we will study some facts of Kaplansky—Hilbert modules which can
be found [15, 23]. Recall that a commutative C*-algebra A with unity is called
Stone algebra if it is a Dedekind complete vector lattice with respect to cone
Ay . Other name used for Stone algebras in the literature are commutative AW *-
algebras that were proposed by 1. Kaplansky [4, 13, 14, 15, 23]. If ¥ is the maximal
ideal space of Stone algebra A, then ¥ is an extremal compact space with weak*
topology [4, Theorem 7.1.] and A is isometric *-isomorphic to C'(X) (Theorem
2.5.1), and so C(X,R), the algebra of continuous real-valued functions on ¥, is
a Dedekind complete vector lattice (Theorem 2.2.3). Now suppose that £ is an
order complete complex AM-space with strong order-unity 1. According to the

M. Krein—S. Krein—Kakutani Theorem and Theorem 2.2.3 E is linearly isometric
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and order isomorphic to the space of continuous functions C'(Q)) on some extremal
compact space (). Therefore, F can be endowed with some multiplication and
involution so that E becomes a commutative C*-algebra with unity 1, i. e. a
Stone algebra. Observe that an element e € E is a projection if and only if it
is a component of 1. Moreover, the isomorphism E — C(Q) defines a bijection
between the set of components of 1 and the set of characteristic functions of
clopen sets in @, so that the Boolean algebras €(FE) := €(1) which is the set of
all component of 1 coincides with the set of all projections (FE) and is isomorphic
to Clop(Q). Moreover, by [46, Theorem IV.3.7, Corollary IV.8.1., Proposition
V.(a) | we have €(E) = {n(1) : 7 band projection on E} and 7(z) = 7w (1) holds
for all band projection 7 and z in E. Given a complete Boolean algebra B there
exists a unique (up to #-isomorphism) Stone algebra A such that B and B(A) are
isomorphic. Each of these algebras will be denoted by .#(B). Note that every

Stone algebra is also a f-algebra with unity, and a_Lb means ab = 0 for a,b € A.

Let A be a Stone algebra and X be a A-module. Suppose X equipped with a
A-valued inner product, (- | -) : X x X — A satisfying the following conditions:

(1) (z]z) 20; (x| z) =02 =0;
(2) (@ly)=(yl=)%

(3) (ax |y) =alx]y);

4) (z+yl2)=(z|2)+(y]2)

for all z,y,z in X and a in A. As in Hilbert spaces, we can introduce the norms

in X by the formulas

o] =V Ta), el =z | =),

for all z in X. Employing the continuous functional calculus [23, Theorem 7.4.2.]
we may deduce from the properties (2) and (3) that |Az| = |[A[|z] for all A in A
and x in X. Since le is regarded as a function on some extremal compact space

Q, it follows that the Cauchy—Bunyakovskii—Schwarz inequality

(@ [y | < =] Jy]

holds. Thus, || satisfies the triangle inequality, and || is a A-valued norm in X.
On the other hand, on taking norms in the above inequality, we further get the

numerical version of the Cauchy—Bunyakovskii—Schwarz inequality

Iz Tl < Myl
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So, we have that X is a normed space. Moreover, by definitions of || and |||,

= [

holds for all z in X, since ||a|| = [[(va)?|| = ||v/al|’ for every positive a in A.
Therefore, the normed space (X, |||-]||) is a space with mixed norm. On the other

hand, it has the following properties:

(1) let = be an arbitrary element in X, and let (e¢)ecz be a partition of unity
in P(A) with egz = 0 for all £ € =, then z = 0;

(2) if ecx = ecxe (€ € E) for x € X, for a family (z¢)eez in X and a partition
of unity (eg¢)ecz in P(A), then |||z[]| < sup {|||leczel]| - € € =}

since A has same properties [13, Lemmas 2.2 and 2.5]. Clearly, it follows from (1)
that the element x of (2) is unique, we shall write © = mixecs (ecxe). We call X a
C*-module over A if it is complete with respect to the mixed norm |||-|||. We call
X a Kaplansky— Hilbert module or an AW™*-module over A if it is a C*-module
over A and has the following additional property:

(3) let (x¢)eez be a norm-bounded family in X, and let (eg)¢ez be a partition
of unity in PB(A); then there exists an element x € X such that ecz = egx;
for all £ € =.

Note that r = mixges (eg¢) means z = bo-) .z ez for all norm-bounded family
(¢)eez C X and partition of unity (eg)eez in PB(A). On the other hand, for each
projection e in P(A) it can be defined a band projection on A such that a — ea.
Thus, Z(X) has a complete Boolean algebra of norm-one projection B which is

isomorphic to PB(A), i. e. X is a normed B-space.

Theorem 3.1.1. [23, Theorem 7.4.4.] Let X be a C*-module over A. Then the

following statements are equivalent:

(i) X is a Kaplansky— Hilbert module over A;
(i) (X, |IID is @ B-cyclic Banach space where B is isomorphic to PB(A);

(iii) (X, |-|) is a Banach—Kantorovich space over A.

Note that the inner product is bo-continuous in each variable. In particular,

<bO-Z €ele y> =0-> (eewe | ).

ez €es
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for every norm-bounded family (z¢)eez in X, and partition of unity (eg)eez in
PB(A) [15, Lemma 2].

Let X be a Kaplansky—Hilbert module over A. By an Kaplansky— Hilbert
submodule or an AW*-submodule X, we mean X, is a submodule in the algebric
sense, closed in norm topology and containing all sums of the form bO'deE Cele,
where (2¢)eez is a bounded family in Xy and (e¢)eez is a partition of unity in
P(A) [15]

We remark that a Kaplansky—Hilbert submodule is itself a Kaplansky—Hilbert
module over A, and the intersection of any number of Kaplansky—Hilbert sub-
modules is again a Kaplansky—Hilbert submodule, and consequently for any sub-
set M there exists the smallest Kaplansky—Hilbert submodule containing M it
is called the Kaplansky—Hilbert submodule generated by M. Moreover, a sub-
module Xy C X is a Kaplansky—Hilbert submodule if and only if it is bo-closed
[23]. The orthogonal complement of M in X is defined as

M+ ={reX : (Ve M) (v|y)=0}.

Then the set M+ for any subset M of X is a Kaplansky—Hilbert submodule
of X [15, Lemma 6], and if X, is a Kaplansky—Hilbert submodule of X, then
X = Xo® Xy [15, Theorem 3]. Hence, Kaplansky—Hilbert submodule generated
by a subset M of X is M**+. A Kaplansky—Hilbert module over A is called
faithful if for every a € A the condition (Vx € X) ax = 0 implies that a = 0. In
the sequel we restrict our attention to faithful Kaplansky—Hilbert modules over
A.

Clearly the following identity can be verified in Kaplansky—Hilbert modules,

3
4<u|y):Zz’k<u+ikv|x+iky> (3.1)
k=0
for each z,y,u,v € X, and so the Polarization identity holds:
4{(x |y) = |x+y|2 — |x — yl2 +z’|x+iy|2 — zl:p - z'yIQ. (3.2)

Let U be a subset of X and mix (U) denote a set of all z € X such that

there exist (2¢)..z in U and arbitrary partition of unity (e¢)..z in P(A) with

€z
ecx = egwe (£ € ). The set mix (U) is called the miz-closure of U. We say that
U is miz-closed if U = mix (U). Moreover, mixeez (e¢z¢) € mix (U) means that
the sum bo-> . = ecre exists in X. In particular, mixeez (eg¢) = bo-) .z €ce.

We say that U is miz-complete if, for all partition of unity (e¢),.z in P(A) and
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(¥¢)eez C U, there is v € U such that x = mixees (egz¢). From (2) and (3),
the closed unit ball of X is mix-complete. Clearly, every mix-complete set is

mix-closed. Mix-complete means mix-closed whenever the set is bounded.

Lemma 3.1.2. [47, Lemma 2.3.] Let M be a submodule of X. Then cl (mix (M))
15 the Kaplansky— Hilbert submodule generated by M.

Lemma 3.1.3. Let z be a nonzero element of a Kaplansky— Hilbert module X

over A. Then the following statements hold:

(i) there are a nonzero p € P(A) and a positive element a € A with a|z| = p
and p = [a] < [|z|];

(ii) of M > m is satisfied for some nonzero projection m, then there exists a € A

such that ma = a and a|:c| = .

Proof. (i) According to [15, Lemma 4.] there exists a nonzero p € P(A) and an
element b € A with b|x| = u. Define a := pb, and note that a|x| = p and
a = pa. So, we have [a] < p. From (1 — [a])a = (1 = [|z|])|=z] = 0 we see
that (1 — [a])p = (1 — [|z]])w = 0. Thus, 1 < [a] and p < [|]] hold, and so
1= [a] < [|z]]. Moreover, it follows from a|z| > 0 that a[|z]|] > 0. Hence,
a=ap = pa[|z]] >0, and the proof of (i) is finished.

(ii) Let |z| > 7. By (i) for each 0 < p < 7 there exists g € Ay such that
p> = gla| € B(A)\ {0}, and so ||/g| < 1 since glz| > gp'. Consider the set

S:={(m.g):ge Ay and 7> p=glz| € B(A)}.

Thus we have 7 = sup {p : (i, g) € S}. Using Exhaustion Principle [23, 1.1.6.(1)]
we get an antichain (fi4)aca in P(A) and a bounded family (g, )aca in A such that

T = SUPye g Ha Where (fta, go) € S With tiaga = ga. Define a = 0-3° . 4 taga, and

note that ma = a and a |a:| = 7. The proof of the lemma is now complete. O

Definition 3.1.4. Let X be a Kaplansky—Hilbert module over A. A subset &

of X is said to be orthonormal (projection orthonormal) if

(1) (x| y) =0 for all distinct z,y € &;

(2) (x| z) =1 (x| x) € P(A)\ {0}) for every x € &.

An orthonormal (projection orthonormal) set & C X is a basis (projection basis)
for X provided that
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(3) the condition (Ve € &) (x| e) =0 imply = = 0.

A Kaplansky—Hilbert module is said to be A-homogeneous if X is a cardinal
and X has a basis of cardinality A. A Kaplansky—Hilbert module is called homo-
geneous if it is A-homogeneous for some cardinal X\. For 0 # b € P(A), denote by
#(b) the least cardinal v such that a Kaplansky—Hilbert module bX over bA is
v-homogeneous. If X is homogeneous then s(b) is defined for all 0 # b € P(A).
It is convenient to assume that s¢(0) = 0. We shall say that a Kaplansky—Hilbert
module X is strictly v-homogeneous if X is homogeneous and v = »(b) for all
nonzero b € P(A). A Kaplansky—Hilbert module is said to be strictly homoge-

neous if it is strictly A-homogeneous for some cardinal A.

Not every Kaplansky—Hilbert module has a basis, but we can split it into
strictly homogeneous parts. Thus, every Kaplansky—Hilbert module has a pro-

jection basis.

Theorem 3.1.5. [23, 7.4.7.(2)] Let X be a Kaplansky— Hilbert module over A.
Then there ezists a partition of unity (be)ecz in P(A) such that be X is a strictly
2(be)-homogeneous Kaplansky— Hilbert module over beA.

Suppose that @) is an extremal compact space. Let Cy (@, E') be the set of
cosets of continuous vector-functions u that act from comeager subsets dom(u) C
() into some normed space F. Recall that a set is called comeager if its comple-
ment is meager. Vector-functions v and v are equivalent if u(t) = v(¢) whenever
t € dom(u) Ndom(v). The set Cy (@, F) is endowed, in a natural way, with
the structure of a module over C(Q). Moreover, the continuous extension of
the pointwise norm defines a decomposable vector norm on Cy, (@, E) with val-
ues in C(Q). Indeed, given any z € C, (Q, F), there exists a unique function
z, € Co(Q) such that ||u(t)|| = z.(t) (t € dom(u)) for every representative u of

the coset z. Assign |z| =z, and

Cy (QE):={2€Cu(QE): || €C(@Q)}.

If £ is a Banach space, then Cy (@, E) is a Banach—Kantorovich space [23,
2.3.3.]. Let H be a Hilbert space and (-,-) be the inner product of H. Then
we can introduce some C(Q)-valued inner product in Cy (Q, H) as follows: Take
continuous vector-functions u : dom(u) — H and v : dom(v) — H. The func-
tion ¢ — (u(q),v(q)) (¢ € dom(u) N dom(v)) is continuous and admits a unique
continuation z € C(Q) to the whole of (). If z and y are the cosets containing

vector-functions v and v then assign (z | y) := z. Clearly, (- | -) is a C(Q)-valued

inner product and |z| = |\/(z | )| (z € Cx (Q, H)).
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Theorem 3.1.6. [23, 7.4.8.(1)] Suppose that Q) is an extremal compact space, and
H is a Hilbert space of dimension X\. The space Cy (Q, H) is a A\-homogeneous
Kaplansky— Hilbert module over the algebra A := C(Q).

Let & be a nonempty set and denote by l5(&, A) the set of all families (a)ees
of elements of Stone algebra A such that 0-)_ . |a|? is o-summable in A. Define
a A-valued inner product in /(& A) as

(ul|wv):= O—Z UV (u,v € lo(&,N)).
ecs

Since |uvi| < |ue||vel, the following inequality [15, Lemma 8]

2
O—Z UeVe| < O—Z |ue|? O—Z |ve|?

e€es ecé e€eé

implies (u | v) is well-defined.
Theorem 3.1.7. [23, 7.4.8.(2)] For any nonempty set & with \ := |&| the space
05(&,N) is a A\-homogeneous Kaplansky— Hilbert module over A.

Corollary 3.1.8. [23, 7.4.8.(3)] For a Stone algebra A and a cardinal number A

there exists a A-homogeneous Kaplansky— Hilbert modules over A.

Lemma 3.1.9. Let X be a Kaplansky— Hilbert module over A and |z| € B(A).
Then x = |x|x holds.

Proof. Given |z| € B(A), we deduce

|z = felz] = 1 = |2])a] = (@ = |2])]2]
— Jol — Jel el = Je] — el =0
where 1 is unity of (A). Thus, z = |z|z holds. O

Lemma 3.1.10. (Bessel’s inequality). Let = be a element of Kaplansky— Hilbert
module X over A and {&, | « € A} be a projection orthonormal subset in X. Then

(| {x | £&2) |P)aca is o-summable and

oy [{w|&)* < 2]

a€A

Proof. Let F' C A be finite set. By using Lemma 3.1.9,

= 2|2 =2 1@ | &) P+ | &) P&

0< [2=) (z]&)&
keF keF keF
= |]® =2 1@ &) P+ D 1| 6] &) P
keF keF
= |2]* =Y (@ &) I*
keF
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Therefore, we have for all ' C A finite set
Dol [P < |«
keF

As A is Dedekind complete, (| (x | &) |*)aca iS o-summable and

0> | (x| &) |2:sup{2|<x|§k> 2 F C Ais finite } < |=|* O
acA keF

In case of Hilbert C*-modules a variant of Bessel’s inequality is proved in [7].
The following Lemmas 3.1.11 and 3.1.12 were proved for orthonormal sets in [15,
7.4.9.(1),(2)].

Lemma 3.1.11. Let X, be the Kaplansky— Hilbert submodule generated by &
which is a projection orthonormal subset in X. If {a. | e € &} is a family in A
such that {\ae\Q |e| }eeg is o-summable then there exists an element o € X with

Ty = bo-z ace, |zo|® = O—Z lac|*|e], (zo|e) =acle] (e€&).

eed eEes

Proof. Let © be the set of all finite subsets of &. Given 6 € O, put
Sp 1= Zaee, 0p 1= Z jac|*|e], o= O—Z lac|*|e], 66 =0 — 00
ech ech ecs&
Take 6,0;,05 € © with 6 C 6; N6, and denote by 6’ and #;/Afy the complement
of # and the symmetric difference of 8; and 65, respectively. Since the set & is

projection orthonormal, we may write
2

|$91 — 392|2 = Z ae| = Z \oze|2|e|2
€01 A0y e N0y
= Z |ac)*|e] < O—Z|(le|2|€| =0 — 09 = 0.
e€t1 Aby ec’

By hypothesis (dg)geco decreases to zero, so that (sg)peco is bo-fundamental. By X
is bo-complete, the bo-limit of (sg)geco exists in X. Denote
o := bo- élerg Sp = bo—z Qe€.
ecs&
Now we deduce
(xg | €) = O—ZCLC (C|e)= aelel2 = aelel.
ces

Moreover, we have

|x0|2 — O—Z |a|? |€|

ecs

since |so]? = .o lacl*|e]- O
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Lemma 3.1.12. Let X, be Kaplansky— Hilbert submodule of X with a projection

basis &. Then & and Xo have the same orthogonal complements in X.

Proof. The Kaplansky—Hilbert submodule generated by & is denoted by Y, C
Xp. Since & C Xg, we have X5 C &+ Let # € & and y € Xy. By Bessel’s
inequality, (| (y | €) |*) is o-summable. By the preceding lemma, there exists xy €
Y, such that

to=bo-y (yleye, (zole)={(yle)]e] (ce€&)

ecs

Since (y | e) |e] = (y | €), we obtain (zg—y|e) =0foralle € & i e, z9=y

(or Xy =Yp). Moreover, from

<x|y>=<x bo-2<y|e>e>=o-z<e|y><x|e>=o

ecs ecs
it follows that X and &+ are same Kaplansky—Hilbert submodule. O]

As an immediate corollary, if Xj is a Kaplansky—Hilbert submodule of X with
a projection basis & then X, = &+, i. e., X, is Kaplansky—Hilbert submodule
generated by & and

x:bo—z<x|e>e, |$|2=0-Z|<$|6>|2
ecs ecs

hold for all z € X from Lemmas 3.1.11 and 3.1.12. All projection orthonormal

subset is a projection basis for Kaplansky—Hilbert submodule generated by it.

Definition 3.1.13. Let & be a basis for Kaplansky—Hilbert module X over A
and # € X. We say that the family Z := (Z.).cs in A?, given by the identity
Te := (x| ), is the Fourier coefficient family of x with respect to & or the Fourier

transform of x (relative to &).

Observe that by Bessel’s inequality, the Fourier coefficient family of = is square

o-summable; moreover, the following identities hold

T = bo—z Tee, le2 = O—Z |Z.|?

ecs eed

from Lemma 3.1.11.

Proposition 3.1.14. (Riesz—Fisher Isomorphism Theorem) [23, 7.4.10.(4)] Let
X be a homogeneous Kaplansky— Hilbert module over A with a basis &. The
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Fourier transform % : x w— T (relative to &) is an isometric isomorphism of
X onto €3(&,\). The inverse Fourier transform, the Fourier summation F ' :
lo(&,N) = X, acts by the rule F~H(T) = bo-Y . o Tee for T = (Te)ees € 2(E, N).

Moreover, the Fourier transform preserves inner product or, in other words, for

e€eé

all z,y € X the Parseval identity holds:

<l‘ | y> = O‘Z i'\e@\:'
e€ed

Corollary 3.1.15. Any two \-homogeneous Kaplansky— Hilbert modules over a

Stone algebra are isomorphic.

Proposition 3.1.16. Let & be a finite subset of X with |e| = |f| € P(A)
(e, f € &). Suppose that Y ., fee = 0 implies |fee| = 0 where fo € A. If & is
a subset of F*+L, where F is a projection orthonormal finite subset of X, then
card(.#) > card(&).

Proof. Let # = {y1,9s,...,yx}- The proof is by induction on n = card(&’). For
n = 1. The validity of the statement is obvious. Assume that the result to be true
for some n € N. Let & = {z1, 29, ..., 2y, 11} C X such that |xz| = |x]| € PB(A)
(1<i,j<n+1)and fix;+ foras+-- 4 fur12nr1 = 0 implies |f1x1| = |f2x2| =
cee = |fn+1xn+1| =0 where f; € A (1 <i<n+1). Let & is a subset of F++.
Then, x; = Z?:l (x; | yj) y; holds for each i = 1,...,n + 1. Thus, it follows from
Tny1 # 0 that there exists j such that (x,11 | y;) # 0. We can assume j = k. By
Lemma 3.1.3 (i) there is g € A such that p:= g (Tns1 | ye) = |9 (@nt1 | ya) wi| €
PB(A) \ {0}. Note that = pt|pi1| since (1 — |zpi1]) (Tns1 | ys) = 0. We have
the following statement by simple calculations
k-1
1 — g (i | Y) Tng1 = Z (ki [ y) — g @i | y) (@ L y3)) y; (L <i<n).
j=1
Moreover, |pz; — g(@; | yr) Tna |* = 1+ |g (i | y)|© > p are satisfied i =
1,..,n + 1. By Lemma 3.1.3 (ii) there is g; € A, such that pug; = ¢; and
o= gil/wi — g {(z; | yr) £L‘n+1|. Define z; := g; (ux; — g (x; | Yx) Tny1), and note
that z; € {y1,y2, .., yk,l}LL and |zz| =pn (1 <i<n). Assume that Az + Aozo +
-+ Apzp, = 0 holds for some \; € A (1 <i <n). Then we have

0=Mz+Xzo+ -+ Az = Z Nigi (g — g (@ | Y) Tni1)
i=1
= Z NiGi b — (Z gAigi <931 | yk>) Tnt1,
i=1 i=1
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and so |)\Zzll = 0 since |)\igi| = |)\igiuaci| = 0. Therefore, from our induction

hypothesis we get n <k —1, and son+ 1 < k. O

Corollary 3.1.17. Let & and % be projection orthonormal finite subsets of X.
Ifm:=min{|z| :2 € &} # 0 and card(F) < card(&), then there exists x €

EHN.ZF+ with le =T.

Proof. Let & := {x1,x9,...,x,} and F := {y1,9s,...,yx}. Assume by way of
contradiction that our claim is false. Then p (é" tng L) = {0} holds for
some 0 < u < 7. For 1 < i < n define z := Zyey (z; | y)y, and note that
pz; # 0 are satisfied for all p € PB(A) with 0 < p < pu. Thus, there exist
g; € A and p € P(A) such that 0 < p = gi|zi| < u, (1 <i < n). Suppose
that A\1g121 + Aagaza + -+ + Angnzn = 0 holds for some \; € A (1 < i < n).
Therefore, we have A\ giz1 + XogoZo + -+ + Mgn®n, € F+. By assumption,
1 (Mg1z1 + Aegoa + -+ + A\pgnxy) = 0. Since & is projection orthonormal set
we have |u)\lglx1| = |,u)\2g21;2| = ... = |/Mngnacn| = 0. So, it follows from
|u)\igixi|2 = I,u)\igizi|2 + |u)\igi(xi — zz)l2 that I)\ig,-zil =0 for 1 <i <n. Thus,
k < n, contradicting Proposition 3.1.16. ]

Now we recall the notion of C*-sum, for details see [4]. Let (A¢)eez be a family
of (commutative) AW *-algebras. If

A= ZAs = {a = (ag)eez € | [ Ae - Sup{llasH} < OO}

£eE £eE
is equipped with the coordinatewise *-algebra operations, and the norm |[la|| :=
supgez {lagl|}, then A is an (commutative) AW*-algebra and P(A) = [z P(A¢)
and Pe(A) = [[ee=Pe(Ae) ([4, Proposition 10.1]).
The notion of C*-sum can be given for Kaplansky—Hilbert modules. Let Y
be a Kaplansky—Hilbert module over A;. Then

Y = ng {x—xue~eﬂxz iup{mxgm}mo}

§eE

equipped with the coordinatewise module operations over A and the inner product
(z [y) == ({z¢ | Ye))¢cz» is a Kaplansky—Hilbert module over A. In particular,
|2] = (|:1:5|)£€E and [||z]|| = supgez {[[|z¢|l|} are satisfied for all # = (2¢)ee= in Y.

The following result on functional representation of Kaplansky—Hilbert mod-
ules is one of the main tools of our investigation. We refer for the definition of
v-stable to [23, 7.4.11.].
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Theorem 3.1.18. [23, Theorem 7.4.12.] To each Kaplansky— Hilbert module X
over A there is a family of nonempty extremal compact spaces (Q)rer with I' a
set of cardinals, such that Q) is y-stable for all v € I' and the following unitary
equivalence holds:

X304 Q. 0a(7)).

vyel
If some family (Ps)sea of extremal compact spaces satisfies the above conditions
then I' = A and P, is homeomorphic with Q) for all v € T.

The unitary equivalence means that there are an isomorphism

b
VX =) Oy (@ ta()) (3.3)
vyel
and a x-isomorphism
S5
oA CQ) (3.4)
~yel’

(also @ is an isometry [6, VIII.4.8. Teorem]|) such that
O (x]y) = V() [Y(y) (2,y€X).
So, for every z,y € X, a € A and m € P(A) the following hold:
(i) W(az) = &(a)¥(r);
(ii) @]z = [W(z)| and [|lz[l] = ¥ (@)l = sup,er {I1(¥(2)), ]}

From (ii), ® is the exact dominant |¥| of ¥. Moreover, it follows from @ is a

bijective positive operator that ® is o-continuous, and so ¥ is bo-continuous.

3.2 Cyclically Compact Sets in
Kaplansky—Hilbert Modules

Now we turn our attention to the study of cyclically compact sets in
Kaplansky—Hilbert modules. In this section, X will denote a Kaplansky—Hilbert

module over A

Let B be a complete Boolean algebra. Denote by Prt,(B) the set of sequences
v : N — B which are partitions of unity in B. For vy, 1, € Prt,(B), the formula

v; < vy abbreviates the following assertion:

if m,n € N and v1(m) A ve(n) # 0p, then m < n.
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Given a mix-complete subset K C X, a sequence s : N — K, and a partition
v € Prt,(B), put s, := mix,en (¥(n)s(n)). A cyclic subsequence of s : N — K
is any sequence of the form (s,, )ren, where (vg)rew C Prt,(B) and (Vk € N)
Vg < Vpr1. A subset C' C X is said to be cyclically compact if C' is mix-complete
and every sequence in C' has a cyclic subsequence that converges (in norm) to
some element of C'. A subset in X is called relatively cyclically compact if it is

contained in a cyclically compact set. Moreover, every cyclically compact set is
bounded in X.

Observe that if for some n € N vy < vy and v4(k) = 0 for all £ < n, then
vo(k) = 0 for all & < n. Thus, if (vg)gen C Prt,(B) and (Vk € N) v < Vg1,
then (i) = 0 for all i < k.

Lemma 3.2.1. Let K be a relatively cyclically compact subset in X. Then
cl (mix (K)) is a cyclically compact subset of X.

Proof. 1t is enough to show that cl(mix (K)) is mix-complete. To this end,

let (74),c4 be a family in cl (mix (K)) and (7,),.4 be a partition of unity in

a€cA

PB(A). Define z := mixqea (Ta2s). For each n € N there is a family (ya),c4
in mix (K) such that |||zo — yal]| < 1/n. Since mix (K) is mix-complete, y,, :=

MiXpea (TalYa) € mix (K). Using the following inequality

1
|:c — ynl = bo—z ToLo — bo—z TolYa | = O—Z e, |:1:a — ya| < ﬁl

a€cA acA aEA

we obtain z € cl (mix (K)), as desired. O

The following lemma is a corollary of [23, 2.2.9.(1)]. A set V is called
finitely cyclic if for every n € N, {z1,xs,...,2,} C V and a partition of unity

{p17p27 Jpn} C Y’B<A>7 Z?:lplxz eV.

Lemma 3.2.2. Let V' be a finitely cyclic subset of X and x € X. Then there

exists a net (Vy)aca in V such that the net (la: — val)aeA decreases and

{lx—val :ozEA}:{lx—vl IUEV}.
In particular, o-limye A |x — va| = inf,cy |x — 1}| )
Lemma 3.2.3. Let K be a cyclically compact subset of X and x € X. Then
there ezists a sequence (wy)nen n K that converges (in norm) to some w in K

and satisfies

Hx—wnl—r‘glland Ix—wl =r
n

wherer:inf{lx—kl :kEK}.
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Proof. By Lemma 3.2.2; we have a net (v4)aea in K such that o-lim |£L‘ — val =r.
So, using [23, Theorem 8.1.8.] for each n € N we obtain a partition of unity
(7) gea in P(A) such that

w2 lr vl —r < 1

holds for all &« € A. Since K is bounded, the net (|x — val )ae 1 is also bounded.
Thus, we have k, € K with

1
H:L‘—k:nl—r‘gﬁl

where k, = 00-) .4 Tavq = MiXaea (Th0,). Since K is cyclically compact subset,
there is a cyclic subsequence (k,,, Jnen Of (kp)nen in K that is norm-convergent to

some w in K. Therefore, if we define w,, := k,,, then it follows from
1
||z —wa| =r[ < -1
n
that |a: — wl = r, as desired. O

The following Lemmas 3.2.4 and 3.2.5 and Propositions 3.2.8 and 3.4.7 are

proved in [8, 16] for measurable bundles.

Proposition 3.2.4. Let K be a cyclically compact subset of Cx (Q, H). Then for
each q € Q, K(q) is a closed set in H where K(q) :={z(q) : T € K,q € dom(x)}.

Proof. Fix ¢ € () and let z, be an element of cl (K(g)). So, we have
0= inf{qu k()| kFeK,qe dom(k)} .
By z:t+— 2, (t € Q) and Lemma 3.2.3, we obtain v € K such that
|7~ 9] =it { |7 -] : ke K}

Thus, from |z —7o|t) < |5—E|(t) for every k € K and t € Q we have
|2 —?](9) = 0, and so we can assume ¢ € dom(v). Therefore, it follows from
|7 — 9)(¢) = ||lzq — v(q)]|| that z, = v(q), i. e., K(g) is a closed set in H. O

Lemma 3.2.5. Let K be a relatively cyclically compact subset of Cy (Q, H).
Then there ezists a comeager set Qg C Q) such that K(q) is precompact in H for

all qc Qo.

Proof. Fix n in N. According to [23, Theorem 8.5.2.] there exist a countable

partition of unity (7 )ren in P(A) and a sequence (6 )ren of finite subsets 6y, :=
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{fm, T2,y 5k,z(k)} C K such that for every ¥ € K there exists a partition of
unity {pe1, Pk2, s Prace) b in P(A) with

L(k)

xr — E Pkl i
i=1

Tk <

S|

Define
1K)
Q= <U Uk> ﬂ ﬂ ﬂdom(mkyi)
keN keN i=1
where Uy is a clopen set in @) corresponding to the projection 7 in B(A). So, if
we define a comeager set Qo := (),,cpy @n, then it is not difficult to see that Q) is
a comeager set and for every ¢ in () there is ky in N with ¢ € Uy, and

I(ko)
K(q) C U cl (B

=1

(JTkoz(Q)))

1
n

where Bi (x,,(q)) is the open ball centered at xy, ;(¢) with radius L. Thus, K (q)
is precompact in H for all ¢ € Q). n

A useful consequence of the preceding results is the following.

Corollary 3.2.6. Let K be a cyclically compact subset of Cy (Q), H). Then there
exists a comeager set QQy C Q such that K(q) is compact in H for all ¢ € Q.

The following lemma was proved in [16] for measurable bundles.

Lemma 3.2.7. Let K be a mix-complete subset of X and ¢ be a positive real
number. Then there exist a subset 0 := {x,:n € N} of K and an increasing

sequence () nen C P(A) such that the following statements hold:

(i) for every x € K and n € N there exists 2’ € mix (6,,) such that
T, |a: - m'l <el
where 0, := {x1,..., 2. };
(il) 7 |o; — @ > e, (i < j).

Proof. The sequences can be constructed by induction as follows. Given n € N.
Suppose that 6, = {1, 29, ...,x,} C K and {m, o, ..., mp1} C P(A) with 7,1 <

7; and the following statements hold:

34



(a) for every x € K and k < n there exists some 2/ € mix () such that

7rk|x—x’| <el;

(b) 7 |zj — @] = enmi, (i <j<n).

Now we will deduce the existence of x,,.; € K and 7, € P(A). If m,_1 = 1, then

take x, 11 := =, and 7, := m,_1. Assume that m, 1 # 1. Consider the set
A, = {r € P(A): (Vz € K)(32' € mix (,)) 7|z — 2’| <el},

then we will prove the following statements hold:

(1) m, =V A, € 4,

(2) There exists z,41 € K such that 7} |z, — z;| > enj for i < n.

Firstly, we will show that A, is a band in P(A). For this, by definition of A,
m € A, and p < wimplies p € Ay. If m, u € A,,, then there exists y, yo € mix (6,,)
such that
7r|x = y1| <el and (uA 7TL) |£L’ = y2| < el.
If we define
o=y + (AT )y + (7 V )y,

then 2’ € mix (,) and (7 V p) |z — 2’| <el. So, 4, is an ideal in P(A). Using
the Exhaustion Principle [23, 1.1.6.(1)] there exists an antichain (V4)aca in A,

such that sup,c 4 Vo = m,. So, for each a € A we have y, € mix (6,) such that

Ve Ix — yal < 1. Since mix (#,) is mix-complete,
g =mrr + bo—z Vala
acA

is an element of mix (#,), and so we have

T, |x — x’l =, |b0—z Vo — ya)l = O—Z Uy Ix — yal

acA a€A

= Sup v, Ix — yal <el.
acA

Thus, A, is a band in B(A), and this proves (1).

For the proof of (2), we define

C, = {7T ePA): (Fx e K)Wlx—xil > em, i = 1,2,...,n},
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then clearly, C,, U {0} is an ideal in B(A) and \/C, < 7. Since 0 < 7 < 7+
implies m ¢ A,,, we have z, € K such that 7r|:c7r — y| ﬁ el holds for all y €

mix (6,,). Now we define
D;:={peP(A): p <7 and ,ul:zc7r - xll > ep}
for i =1,2,...,n. Clearly, D; # @ and D; U {0} is an ideal in 3(A). Moreover,
,uz-lx7T — le > ep;  and 7T,uz-L Ix7r — x,l <el

where p; :==\/D; (i = 1,2,...,n). If A, pt; = 0, then there exists an antichain
{Ni:i=1,2,...,n} such that 0 < \; < pi and ;' ;N = /i, u = 1. Since
{rX\i:i=1,2,..,n}U{r'} is a partition of unity,

= ZW)\ixi + 7'z €mix (0,) and 7|z, — 2| <el
i=1
are satisfied. This is a contradiction, and thus A, u; # 0. So, there exists
p € Ny D; such that 0 < p < A, p; < p; and ;L|31:7T —wil > e holds for
i=1,2,..,n, i e, u € C,. This implies 7+ = \/ C,. Again, by the Exhaustion
Principle, we obtain an antichain (v,),er C C, and (z,),er C K such that
L

T, = vwer v, and V7|1‘7 - xll > ev, hold for i = 1,2, ...,n. If we define

n

Tpyl = bo—z Uy Xy + Z(?Tz AT )z + T,
vyer =2

then 7,1, € K and 7} |$n+1 — [L’ll > mrie holds for i = 1,2,...,n, and the proof

of the lemma is finished. O

Proposition 3.2.8. Let K be a miz-complete subset of Cy (Q,H) and Qy C Q

be a comeager subset. If K, is a compact set in H for ¢ € Qo and
Kc{reCy(Q,H): x2(q) € K,(Vq € dom(z)NQy)},

then K is relatively cyclically compact subset of Cy (Q, H).

Proof. According to [23, Theorem 8.5.2.], it is enough show that the supremum
of sequence (7, )nen, which is constructed in Lemma 3.2.7, equals to the unity 1
of P(A). Assume that \/, ., 7, # 1. Then for all 7, j € N the following inequality

|z — 7] > ep

holds where p* :=\/, o Tn. Since Q; := ([,,c dom(z,,)) N Qo is a comeager set
in @, we have some ¢ € Q1 NU, where U, is clopen set in () corresponding to the
element p in P(A). Therefore, K, is not compact in H since [|z;(¢) — z;(q)|| > ¢
(7,7 € N). This is a contradiction. Hence, K is relatively cyclically compact. [
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As a corollary, we see that the closed unit ball of a Stone algebra is a cyclically

compact set.

3.3 Operators on Kaplansky—Hilbert Modules

Let X, Y be Kaplansky—Hilbert modules over A. Let BA(X,Y’) denote the set
of all continuous A-linear operators from X into Y. For brevity, By (X, X) will
be denoted by By(X). We call a A-linear operator 7% : Y — X the adjoint of
A-linear operator T': X — Y if (Tx | y) = (x | T*y) for all x and y. I. Kaplansky
showed that a A-linear operator T": X — Y is continuous if and only if 7" has an
adjoint [15, Theorem 6]. Moreover, he also showed that Ba(X) is an AW*-algebra
of type I with center isomorphic to A [15, Theorem 7].

Let T in B5(X), and A be a subset of X. If T(A) C A, then T*(A+) C A*+. From
this we observe, if A is a subset of X and T'(A) C A, then Kaplansky—Hilbert
submodule generated by A is T-invariant since A+ is the submodule generated
by A.

Proposition 3.3.1. [23, 7.5.7 (1)] Let X and Y be Kaplansky— Hilbert modules
over A, and T in By(X,Y"). Then T is dominated and bo-continuous. In addition,
the kernel of T is a Kaplansky— Hilbert submodule of X .

Proposition 3.3.2. Let T be a bijection in By(X,Y). Then T~ is an element
of Ba(Y, X).

Proof. Using the Banach’s Isomorphism Theorem, we have T—! € L(Y, X) where
L(Y, X) is the set of all continuous linear operator from Y into X. Let x € X,
f € A. As T is onto, there are y;,y, € X such that Ty; = fr and Ty, = x. As

T is one to one, we have y; = fyo. Thus, it follows from
T fe) =T "'"Tyr =1 = fyo = f(T ' Typ) = fT '
that 77! € BA(Y, X). O

Corollary 3.3.3. Suppose that T € By(X), then T has the same spectrums as
an element of L(X) and as an element of BA(X), that is, Sp(T') := Spyx)(T) =
Spg, (x) (1) holds.

Proposition 3.3.4. Let T be a continuous A-linear operator on X. If for some

positive a € A the following inequality holds

a|Tz| > |=] (z€X),
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then T'(X) is a Kaplansky— Hilbert submodule of X where T'(X) denotes the range
of T.

Proof. Clearly, T'(X) is submodule of X. Now we must show that 7'(X) is
bo-closed in X. For this, take a net (Tz4)aca C T'(X) with bo-limTx, = z
in X. This implies that (Tz,)aea is bo-fundamental net in X. From a |Tx| > |x| ,
(Ta)aca 18 a bo-fundamental net in X. So, there exists y € X such that y =
bo-lim z,,. By Proposition 3.3.1, Ty = x holds, i. e., T'(X) is a Kaplansky—Hilbert
submodule of X. O

As in Hilbert space case, the following identities are valid for each continuous

A-linear operator T from X to Y and w,v,z,y € X
Ker T = (T*(Y))" and cl (mix (T* (Y))) = (Ker T)" .

By identity (3.1), for every x € X, (T'x | z) = 0 implies 7" = 0. Since By(X)
is a C*-algebra, for every positive 7' in B,(X) there is a unique positive 7"/2
in By(X) such that T = (Tl/g)z. So, for any element 7" in By(X,Y), we can
define absolute value of T by |T| := (T*T)"?. Another proof of the following

proposition is given in [28, Proposition 2.1.3].
Proposition 3.3.5. Let T in Bx(X). Then the following statements are equiv-
alent:
(i) T is a positive element of By(X);
(il) (Tx | z) is positive element of A for all x € X;
(ili) (Tz | z) is positive element of A for all x € X with |z| € P(A);
(iv) (Tx | x) is positive element of A for all z € X with |z| = 1.

Proof. The implications (iii) = (iv) : and (ii) = (iii) : are obvious and
(iv) = (iii) : follows from the faithfulness of X.

(i) = (ii) : Let T be a positive element of B,(X). Then there exists A €
Ba(X) such that T = A*A. This implies that (T'z | z) = |Az|? > 0.

(ii) = (i) : Assume that (T'z | ) is positive in A for all x € X. Using the
identity (3.1), we obtain 7'= T™*. Let A be a negative number. So,

(T = AD)z|? = |Tz|* — 2A (T2 | z) + N |2|?
> 22X (T | ) + X |z|* > N ||
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since A < 0 and (T'z | ) > 0. This implies that Ker(7'— A\I) = {0} and (7" —
AI)(X) is a Kaplansky—Hilbert submodule of X. Moreover, from Ker(T — \I) =
((T* = M\)(X))" and T = T*, we have (T — A\I)(X) = X. Hence, it follows from
Proposition 3.3.2 that T'— A is invertible in By (X), i. e., A ¢ Sp(7T). Therefore,
T is a positive element of By (X).

(iii) = (ii) : Given z in X. Using the Exhaustion Principle and Lemma 3.1.3

(i) there exist a partition (m4),c4 of [|2|] and a family (a4),., in At such that

to || = ™o and 7 = [aa]. From a2 (T'x,z) = (T(aqx), aqx) > 0 it follows that
o (T, x) > 0 holds for all @ € A. Therefore, (T'x,z) = [|z]|] (Tz,z) > 0 holds,
and the proof is finished. n

An element V in B, (X,Y) is said to be a partial isometry if |Vz| = |z] for
e (Ker V)"

Lemma 3.3.6. If V is a partial isometry, V*V is a projection on (Ker V)L.
Proof. For all z € (Ker V)" and y € Ker V,
(VVa|z)=Va|Vz)=|Vz|* = |z|* = (z ] 2)

and

(VVyly) = Vy|Vy) =0
Thus, it follows from (V*V(x +y) — 2z | x +y) = 0 that V*V(z +y) = =, i. e.,
V*V is a projection on (Ker V)" O

Now we shall prove the polar decomposition for operators on Kaplansky—Hilbert

module case. A variant of following lemma is proved in [43, Theorem 5.5].

Lemma 3.3.7. (Polar Decomposition) Let T be a continuous A-linear operator
from X to Y. Then T has a polar decomposition T = V|T|, where V' is a partial

isometry for which
KerV =KerT and V(X)=cl(mix (7T(X))).

Moreover, V*T = |T|, and if T = UP, where P > 0 and U is a partial isometry
with Ker U = Ker P, then P = |T| and U = V.

Proof. If z € X, ||T|z]|? = (|T|z||T|z) = (|TPz|z) = (I"Tz|z) =
(Tz | Tz) = |Tz|* Hence, the map

ViT|(X) - T(X), Tz — T,
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is a well-defined surjection and |Vz| = |z| for z € |T|(X). From [47, Lemma
2.4.], V can be extended to a unique map cl (mix (|7°|(X))) onto cl (mix (7'(X))),
and so |Vz| = |#| holds for all z € ¢l (mix (|T](X))). Extend V to all of X
by letting to be 0 on (cl (mix (|T(X))))" = (|T)(X))" = Ker|T|. Thus, V is a
partial isometry and Ker V' = Ker |T'| = KerT'. Now the following equality

(VT | [Tly) = (Tw | Ty) = (T"Tx | y) = (|T]x [ |Ty)

implies (V*Tz | z) = (|T|x | z) for all z € ¢l (mix (|T|(X))), and therefore for all
z in X. So, we have V*T = |T|.

To show uniqueness, note that T*T = PU*UP. By Lemma 3.3.6, £ := U*U
is the projection onto (Ker U)" = (Ker P)" = cl (mix (P(X))). Thus, T*T = P2,
so that P = |T'|. For z € X,

V|T|x =Tz =UPz =U|T|x,
that is, V and U agree on |T'|(X), and hence V = U. O

By Proposition 3.3.1 and [23, 4.1.2.] all T"in Bx(X,Y’) has the exact dominant
|T|. Since x Ly means |y|x = 0, it follows from |y| |T:17| = |T(|y|x)| that T
is band preserving. Thus, from [23, 5.1.8.(1),(2) ] |T] is an element of Orth(A),
and so |T| € A and by [23, 4.1.8. and 4.1.11.] we have

|T| :sup{lTxl : |x| < 1} :sup{ITxI ; |x| :1}.
In particular, |)\T| = |} |T| holds for all A € A.

Proposition 3.3.8. (B, (X,Y), |~|,A) is a Banach— Kantorovich space and ad-
mits a compatible module structure over A. In addition, the mized norm is equal
to the operator norm in By(X,Y), i. e, |[|T]|| = IIT|l (T € Ba(X,Y)).

Proof. Clearly, we see that (By(X,Y), |~|,A) is a lattice-normed space. Since
|/\T| = |} |T| holds for all A € A the norm || is decomposable. Indeed, assume
that |T| = e1 + ey is satisfied for some ey,e5 € A,. Then since 0 < e; < |T|
there exists an orthomorpism S on A such that S |T | =eand 0 < S5 < T
[2, Theorems 2.49]. So, it follows from Orth(A) = A that there is ¢ in A such
that ngI =e; and 0 < g <1 [2, Theorems 2.62]. Therefore, e; = |T| —e =
[ -9l = (1—g)[[] and T = g7+ (1—g)T, i. e., B\(X,Y")) is a decomposable
lattice-normed space. From Proposition 3.3.1 the space of dominated operators
M(X,Y) which is Banach—Kantorovich space over L~(A) [23, 4.2.6] contains
Ba(X,Y). So, assume that (T}, )aea bo-converges to T' with (T,)aca C Ba(X,Y)
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and T € M(X,Y). Clearly, T is a A-linear. Since every positive operator in
L~(A) is norm-continuous [2, Theorem 4.3] T is also norm-continuous. Therefore,
BA(X,Y) is a Banach—Kantorovich space. On the other hand B, (X,Y’) admits

a compatible module structure over A from [23, 2.1.8.(3)]. Now we will show

that H |7 H = ||IT||| (T € BA(X,Y)). Obviously |z| < 1 means [||z]| < 1 for all
v € X. Let || < 1. So, from ||Tz|| = |[|T=]||| < |[|T||=]]] < |[|T]]| we have
Tl = IT]I. Let [lz]|| < 1. Then it follows from |Tz| < [Tz || 1< ||T ||| 1
that |[|7]|| < IT|ll, and the proof is finished. O

Definition 3.3.9. Let T be an operator on X. A scalar A € A is said to be
an eigenvalue if there exists nonzero x € X such that Tx = Ax. A nonzero
eigenvalue \ is called a global eigenvalue if for any nonzero projection m € A with

m < [A] there exists a nonzero x € 7.X such that Tz = Az.

Proposition 3.3.10. Let T be a continuous A-linear operator on X and X be a

nonzero scalar. Then the following statements are equivalent:

(i) The scalar X € A is a global eigenvalue of T
(ii) There is x € X such that Tz = Az and [|z]] > [A].

(ili) There is x € X such that Tx = Az and |z| € B(A) with |z| > [A]

Proof. (iii) = (ii) : Obvious.
(i) = (i) : If there is « € X with Tz = Az and [|z]|] > [A], then 7z # 0 and
T(mx) = Amzx hold for all nonzero projection 7 with = < [A]. Thus, A is a global

eigenvalue of T'.

(i) = (iii) : Consider the set
C:={(|z].2) : |2] e BA), 0< |z| <N, Tz = Az}

From the definition of global eigenvalue and Lemma 3.1.3 (i), C' is a non-empty
set. We claim that [A\] = sup {|z| : (|z| ) € C} holds. Indeed, assume that
p:=sup{|z| : (|z|,z) € C} # [A]. Then using Lemma 3.1.3 (i) there is |zo| €
PB(A) with Twg = Azg and 0 < |zo| < p* A [A]. This is a contradiction, and
so [\] =sup {|z] : (|z|,z) € C}. Using the Exhaustion Principle [23, 1.1.6.(1)]
there exists an antichain (jtq)aea in P(A) such that sup,e4 pta = [A] and for each
o € A there is (lzal,xa) e C with p, < |xa| Hence, we get © := b0-) 4 HaTa
with |z| = [A] and Tz = Az, and the proof is finished. O

Corollary 3.3.11. To each global eigenvalue A of T, |\ < |T|
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Corollary 3.3.12. Let A\, € A be global eigenvalues of T. If for some v € X,
Ty = \v = px, then Hx” A= Hcc” L.

Corollary 3.3.13. Let (Ay)aca be a bounded family of eigenvalues of T and
(Pa)aca be a partition of unity. Then mixaea (Paa) s an eigenvalue of T. More-
over, if (Aa)aca consists of global eigenvalues of T, then miXyea (Pada) s a global

eigenvalue of T

Proposition 3.3.14. Let T be a positive operator on X. Then
|7| = sup {(Tz | z) : |z| =1}.

Proof. Consider the set D := {(Tz | z) : |z] =1} . From [Tz| < |T] |+] (= € X)
|7] is an upper bound of D. Clearly, |T'| > (T | z) holds for each |z| € B(A).
Assume that A is an upper bound of D with A < |T'|. Since A > (Ty | y) holds
for all y € X with Iyl =1 we get that A\ — T is positive from Proposition 3.3.5.

Thus, if x € X,
(M —=T)(Tx) | Tz) > 0and (I'(A\ —T)x | (M —T)z) > 0.

Adding, (AT —T%)(z) | Az) > 0, so that \*(Tz | z) > M(T?z | z) = M| Tz|?.
Thus, A*|T| > M|T|?, and so we have A > [A] [T']|. Moreover, for every |z| =1
7 (Tx | ) = 0 holds where m := 1 — [A]. Therefore, 7T"/2z = 0 holds for every
|x| =1, hence 7Tz = 0. This implies 7r|T| =0, and so ITI is the supremum of
D. O

Now, we recall important definitions that are used in functional representation
of type I AW*-algebras. For details see [23].

Suppose that () is some extremal compact space, H is a Hilbert space, and
B(H) is the space of bounded linear endomorphisms of H. Denote by €(Q, B(H))
the set of all operator-functions w : dom(u) — B(H), defined on the comeager

sets dom(u) C @ and continuous in the strong operator topology.

If u e &Q,B(H)) and h € H, then the vector-function uh : ¢ — u(q)h
(¢ € dom(u)) is continuous thus determining a unique element uh € Coo(Q, H)
from the condition uh € uh. Introduce an equivalence on ¢(Q, B(H)) by putting
u ~ v if and only if u and v agree on dom(u) Ndom(v). If u is a coset of the

operator-function u : dom(u) — B(H) then uh := uh (h € H) by definition.

Denote by SC(Q, B(H)) the set of all cosets u such that u € €(Q, B(H))
and the set {|ah| : [|h]| < 1} is bounded in Coo(Q).
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Since |uh| agrees with the function ¢ — |[u(q)h|| (¢ € dom(u)) on some
comeager set, the inclusion u € SC(Q, B(H)) means that the function ¢ —
|lu(q)|l (¢ € dom(u)) is continuous on a comeager set. Hence, there are an
element |u| € Co(Q) and a comeager set Qo C Q satisfing |u](q) = [lu(q)]|
(¢ € Qo). Moreover, |i| = sup {|ah| : ||h]| <1}, where the supremum is taken
over Co (Q). Also, SC(Q, B(H)) can be equipped with *-algebra and a unitary
Coo(@)-module.

If w e SC(Q,B(H)) and the element 7 € C,(Q, H) is determined by a

continuous vector-function z : dom(x) — H then we may define uz = ur €
Coo(Q, H), with ux : ¢ = u(q)z(q) (¢ € dom(u)Ndom(x)); since the last function

is continuous on a comeager set. We also have
|aa] < [al |«| (v € Cx(@.H)).
Tt follows in particular that
|| = sup { Jiiz| = € Coo(Q. H), |2] <1}

Denote the operator x +— uz by Sz. We now introduce the following normed

x-algebra,
SCy(Q,B(H)) = {v e SC(Q,B(H)): |v]| € C(Q)},

ol ={[lolll, (v € SCy(Q, B(H))).

Theorem 3.3.15. [23, Theorem 7.5.10.] To each operator U € End(Cy4 (Q, H))
there is a unique element v € SCy (Q, B(H)) satisfying U = S,. The mapping
U — u is a x-B-isomorphism of End(Cx (Q, H)) onto A := SC4 (Q,B(H)). In
particular, A is a A\-homogeneous algebra. Moreover, if Q) is a \-stable compact

space then A is a strictly \-homogeneous AW*-algebra, with A = dim(H ).

In preceding theorem, End(Cy (@, H)) denotes Beg)(Cyx (Q, H)).

Observe that if U = Sy is a positive operator, then u(q) is also positive

operator for all ¢ € dom(u).

Let the family of nonempty extremal compact spaces (@) er with I' a set
of cardinals satisfy functional representation of X as in Theorem 3.1.18. On the

other hand, there exists an isometrically x-isomorphism

P Ba (Z Cy (Qmﬁz(v))> =Y End (Cy (Qy, £2(7))) (3.5)

yerl’ yel
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satistying Tz = (T, @) er for all z = (z,),er and P (T') = (1), o where A :=

?er C(Q,). Using these facts, we obtain an isometrically *-isomorphism

@
Z : BA(X) = Y _End (Cy (Qy, (7)) (3.6)

~vel
with U(Tx) = (2 1% (T))¥(z) hold for all T € By(X) and z € X. So, Z(T) :=
(T))er implies W(Tx) = (T )yer for T € By(X) and z € X with ¥(z) :=
(@5 )yer-

The following result on functional representation of type I AW *-algebras is

one of the main tools of our investigation.

Theorem 3.3.16. [23, Theorem 7.5.12.] To every type I AW*-algebra A there
exists a family of nonempty extremal compact spaces (Q-)er such that the fol-

lowing conditions are met:

(1) T is a set of cardinals and Q) is y-stable for each v € I';

(2) There is a x-B-isomorphism:

b
A= 804 (@, B(ta(7))).

vyel

This family is unique up to congruence.

3.4 Cyclically Compact Operators on
Kaplansky—Hilbert Modules

In this section a special class of operators called cyclically compact will be studied.
Some properties of these operators have been investigated in [8, 23]. Our result for
the main object of our interest which is cyclically compact operator is a standart
proof of [23, Theorem 8.5.6.]. An operator T' € Bx(X,Y) is called cyclically
compact if the image T (C) of any bounded subset C' C X is relatively cyclically
compact in Y. The set of all cyclically compact operators is denoted by £ (X,Y).

Theorem 3.4.1. [23, Theorem 8.5.6.] Let T in #(X,Y) be a cyclically compact
operator from a Kaplansky— Hilbert module X to a Kaplansky— Hilbert module Y .

There are orthonormal families (ex)ken 1 X, (fr)ken inY, and a family (pg)ken
in A such that the following hold:
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(1) prs1 < p (k€ N) and o-limy_y00 pt = 0;

(2) there exists a projection T in A such that T py is a weak order-unity in

Too\ for all k € N;

(3) there exists a partition (m,)32, of the projection w% such that mop, = 0,

e < k), and mpppy =0, kK € N;

(4) the representation
T = woobo—z ukei ® fr + bo—z T Z ,ukei ® fx
k=1 n=1 k=1

18 valid.

Corollary 3.4.2. Let T in # (X,Y). Then the following statements hold:

(1) T= (7700 + O'Zzo:() 7Tn> <b0-ZZ°:1 /Lkei ® flc) = bO’ZkeN /Lkei ® fi

(2) [Ta] > pn ] holds for all x € Xy where Xy is Kaplansky— Hilbert submodule

generated by {e1,eq, ..., e},
(3) T" = maobo-3 202, Mkflg ® ey + b0 07 T Y p Nkflg @ e,
(4) T*T = maobo-Y 200, pi3eh @ ex + bo-300 w0, SO0, pidel @ ey,
(5) |T| = ocbo-3 252, pkcy @ 5+ bo-D 0"y T Doy fix€h, ® .

Proposition 3.4.3. Let T' be a nonzero positive cyclically compact operator on
X. Then |T| 1s a global eigenvalue of T'. In particular, there exists y € X such
that Ty = |T|y and |y| =1.

Proof. Let |x| = 1. By Lemma 3.3.14 and

0< |Tx — |T|2)? = |T2)? = 2|T| (T2 | z) + |T|*
<2|T|(|T| — (Tz | z)),

we obtain inf { [Tz — |T|z| : |#] = 1} =0, and therefore using 23, 2.2.9.(1) and
8.1.8.(3)], it is easy to observe that there exists (2,)nen With |z,| = 1 such that
for each n € N

1
|Txn — |T|:L‘n| < ﬁl'

As T is cyclically compact, there is a cyclic subsequence (Tx,, )nen Of (T2 )nen

which is norm-convergent to some w, and since the following inequality is valid:

1
|T1:l,n — |T|SL’l,n| < 51
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for every n, (|T|$un)new is norm-convergent to w and |T| = |w| So, we have
Tw = |T|w, i. e, |T| is a global eigenvalue of T'. If “w” # 1, then from
Proposition 3.3.10 and “T”lTx =0 (z € X) we can find y with Ty = |T|y
and |y| =1. O

According to Theorem 3.3.15 for each operator U € End(Cy (Q, H)) there
is a unique element u € SC4 (Q, B(H)) satisfying Uz = Sz = ur = ux
(x € Cx (Q, H)) where ux : ¢ — u(q)z(q) (¢ € dom(u) N dom(z)). Clearly, if U
is a positive operator, then u(q) is also positive operator for all ¢ € dom(u). The

closed unit balls of X and H will be denoted by X* and H!, respectively.

Lemma 3.4.4. Let X, be a Kaplansky—Hilbert submodule of Cy (Q, H). Then
Xo(q) := {z(q) : T € Xo, ¢ € dom(z)} is a closed subspace of H for all ¢ € Q.
In particular, if 71Xy is n-homogenouos over mC(Q) for some non zero projection
7, then there is a comeager subset Qy of @ such that the dimensional of Xo(q)
equals to n for all ¢ € Qo N A, where A, is clopen set in Q) corresponding to the

projection .

Proof. Clearly, Xy(q) is subspace of H. Therefore, we will show that Xy(q) is
closed in H. Assume that (Z,)nen C Xo and (2,(q))nen C Xo(g) converges to h
in H. By [15, Theorem 3.|, corresponding to the continuous function y : t — h
(t € Q), there exist 7, € Xg and o € X" such that § = 7, +%5. Since (g | Z,,) = 0

holds for each n, we have

| (hy2n(@)) | = | (W(@); 2n(@)) | = [ (Y | Z0) [(q) = | (U1 | Z0) [(q)
< |n] (@ 7] (@) = |72| (@) [|zn ()],

and so taking limits with respect to n, we get ||k < 71| (¢). Moreover, using the
inequality

1817 = 19]%(a) = |3 ]*(@) + |3 *(0) > |7:]* ()
we see that ||hl| = |71|(g) and |72]|(¢) = 0. Thus, we can assume that ¢ €
dom(y;) N dom(ys). Then y5(q) = 0 and y1(q) = h, i. e., Xo(q) is the closed
subspace of H. Let {mey, mes,...,me,} be a basis for 7.X, with €; € Cy (Q, H).

Since dom(e;) is a comeager in @,

Qo := ﬂ dom(e;)
i=1

is also comeager in ). Thus, we obtain {e1(q), e2(q), ..., en(q)} is an orthonormal

set in Xo(q) for all ¢ € Qo N Ar. Let x(¢) be an alement of Xy(g) for some
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q € QoN A, with T € Xy. Thus, it follows from

n

2(q) = > (F]&) (9)ei(q)

i=1

that {e1(q),e2(q), ..., n(q)} is the basis of X((q) for all ¢ € QyNA,, as desired. [

Corollary 3.4.5. Let X, be a Kaplansky— Hilbert submodule of Cy (Q, H) and P
be a projection on Cy (Q, H) with range Xo. If the unique function corresponding
to P is denoted by u € SCyx (Q, B(H)), then u(q) is a projection with range Xo(q)
for all ¢ € dom(w). In particular, (Xo(q))" = X&(q) (¢ € dom(u)).

Proof. From Lemma 3.4.4 X(q) is a closed subspace of H (¢ € Q). Let ¢ €
dom(u) and h € H. Clearly, we see that u(q) is a projection on H and Xy(q) C
u(q)(H) holds. Moreover, uz(q) = u(q)h € Xo(g) holds for the continuous func-
tion z : t — h (t € Q) since uz € Xy and ¢ € dom(uz). Therefore, u(q) is
a projection on H with range Xy(¢q) for all ¢ € dom(u). Hence, I — u(q) is a
projection onto X3 (¢) (¢ € dom(u)) since I — @ is projection onto Xz . So,
(Xo(q))" = X (g) holds for all ¢ € dom(u). O

Proposition 3.4.6. Let T be a positive compact operator on H and (s,(T)) be the
singular number of T. If the set {h; : i =1,...,n} which satifies Th; = s;(T)h;
and ||hi|]| = 1, is linearly independent, then s,1(T) = ||TP,|| where P, is the
projection with range {hq, ..., hn}L.

Proof. From [9, Theorem 15.7.1], we see that s,+1(7") < ||T'F,||. Choose Il € N
minimal with respect to the property s,,_;+1(7) # sp41(T). On the other hand
we can write T' = 3, sx(T') (-, ex) ex where (e,) is an orthonormal sequence in

H. Let h € H. Since P,h € {eq, ..., en,lH}L, it follows from

(e}

ITPRI* =) si(T? (Paher) P = Y si(T)’[{Pahoer) |

keN k=n—I1+2
o)

<sueaTP S [(Paben) P < suea(TR || Pl
k=n—I142

< Snis2(T)? 1]
that ||TFP,|| < sp—i42(T) = $p41(T"). Thus, we have the desired equality. O

Proposition 3.4.7. Let U = S; be in End (Cy (Q, H)). Then the following

statements are equivalent:
(i) U = Sz is a cyclically compact operator on Cy (Q, H);
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(ii) there is a comeager subset Qy of Q such that u(q) is compact operator on
H for all ¢ € Q.

Proof. (i) = (ii) : Let U be a cyclically compact operator on Cy (@, H). Then
K := U(X?") is relatively cyclically compact subset. By Lemma 3.2.5, there exists
a comeager set Q1 C @ such that K(q) is precompact in H for all ¢ € ;. Clearly,
u(q)(H") C K(q) holds for each ¢ € Qo := Q; N dom(u). Thus, u(q) is compact
operator on H for all ¢ € Q.

(i) = (i) : Clearly, U(X") is a mix-complete subset. Moreover,
U(X") c {7 € Cu(Q,H): (Vg € dom(z) N Qo) z(q) € K,},

where K, := u(q)(H') for ¢ € Qo. Using Proposition 3.2.8 we obtain U is a
cyclically compact operator on Cy (Q, H). O

Theorem 3.4.8. Let U = S be a positive cyclically compact operator on Cy (Q, H).
There exist a sequence (€x)ken in Cyu (Q, H) and a sequence (si)ken in C(Q) such

that the following statements hold:

(1) (ex | @) =0 (k#1), and |ex] = 1 whenever ¢, # 0;
(2) 0< Sk+1 < Sk (k} S D\l) and o-lim s;, = il’lfkew s =0;

(3) there exists a projection Ty in €(1) such that TooSk is a weak order-unity
in T C(Q) for all k € N;

1

~ such that mys; = 0,

(4) there exists a partition (), of the projection m

T < [Sk], and TkSk4+1 = 0, ke N,‘

(5) for each T € Cyu (Q, H) the following equality is valid

UT = mobo-Y  sp (T | &) & +b0-> 7m0 Y sk (T | ) e
k=1 n=1 k=1
= bO—Z Sk <5 ‘ €k> gk
keN

Proof. 1If U = 0, we can take €, =0, s, =0, mp =1 and 7, = 0 (k € NU {o0}).
Assume that U # 0. The proof is by induction. According to Corollary 3.4.5
and Propositions 3.4.3 and 3.4.7, there exists a comeager subset (); such that for

every q € ()1 the following statements hold:

(i) u(q) is a positive compact operator on H,

48



(i) there is |é1] = 1 such that u(q)ei(q) = s1(q)ei(q), i. e., Ue; = s1€; where
S = |U|,

(iii) there is a projection P, = Sy, with range {&;}" such that u,(q) is a projec-

tion with range {el(q)}L,

(iv) |U](q) = [lu(q)]|, and so s1(q) = s1,, where (siq)ren is the singular number

of u(q).
Now if § € {¢;}" and Z € {&;}"", then
(Uyle)=(y|Ue)=s(y|e1)=0,
i. e., U leaves {&,}" invariant. Thus,

{Uz]y)={z|Uy) =0

implies that U leaves {’él}LL invariant, and so P,U = UP; holds. If UP, = 0, we
can take &, = 0, s, = 0 and 7, = 0 (n > 1), oo = 0, my = [51]" and m; = [s1].
Suppose that si, €;, P, = Sz, and @)y, are constructed and U P, # 0 for all & < n.
So, since UP, is positive cyclically compact, again using to Corollary 3.4.5 and
Propositions 3.4.3, 3.4.6 and 3.4.7, there exists a comeager subset Q),,.1 C Q,
such that for every q € Q,,11 the following statements hold:

(i) u(q)un(q) is positive compact operator on H,

(i) there exists €,41 € {ey, ...,'én}L such that |€n+1| =1land Ue,11 = Spi1€ni1

where s,11 1= |UPn|,

(iii) there is a projection P, = Sg,,., with range {81, ..., 841} such that

un+1(q) is a projection with range {ei(q), ..., enﬂ(q)}L,

(iv) sns1(a) = |UP:|(0) = llu(@)un(@)]| = sn414-

Clearly, we can see that {ej, ...,E,Hl}l and {ej, ...,é}LH}LL are invariant under
U. IfUP,41 =0 we can take e, = 0, sy = 0and 7, = 0 (k >n+ 1), 1o = 0,
mo = [s1]" and m; = [si]A[sia]t (i =1,...,n) and My = [sny1]. If for each k € N,
U Py, # 0, then by induction, we have a sequence (€ )ren in Cx (Q, H), a sequence
(sk)ren of positive functions, a sequence (P, = Sy, ) of projections with range
{€1, ..., " and a decreasing comeager-set-sequence (Qz). Thus, e, = Nsen [5k]5
To = [s1]" and mp = [sx] A [sea]” (k € N) implies (1), (3) and (4). If we define
Qo = (\gen @k, then si(q) 1 0 for all ¢ € Qo implies (2). Moreover, if (z | ;) =0
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holds for each k, then it follows from |U§| = |UPk5E| < |UPk| |§| = Sg41 |35| that
Uz = 0. Assume that &, which contains (€x)ren, is a projection basis. Then for
allz € Cy (Q, H)

U%zU(bo—Z(”f!é}’é) =bo-y (T|e)Ue

ees ees
=00-Y (T | &) Ue, =bo-» s (T |r)er
keN keN
implies (5). O

Note that the cardinality of ej satisfying Iekl = 1 is related with the dimension
of H.

Let the family of nonempty extremal compact spaces (Q),er with I' a set of
cardinals satisfy functional representation of X as in Theorem 3.1.18. Suppose
that (fa)aer is a net in Z?el“ C(Q~) with fo = (fa)yer. Clearly, we see that the
net (fo)aer is decreasing and inf,e; fo, = 0 iff the net (f,)aer is decreasing and
inf,es fo, = 0 for all y € I'. Therefore, if (e,)qer is a bounded net in Zi}er C(Q~)
with e, = (€q)~er, then (eq)aer 0-converges to e = (e) er in Zfer C(Q,) iff
(€asy)acr 0-converges to e, in C(Q),) and sup,r ||e,|| < oo for all v € I". Moreover,

la] = ([GW])'yGF is satisfied for all a = (aA,),YeF € Zieep C(Q).

Let v = (v(k))rew be a sequence in Z?er C(Q,) with v(k) = (vy(k))~er.
Then v = (v(k))ren is a partition of unity in [ o €(1,) iff 07 := (v (k))ren
is a partition of unity in €(1,) for all v € I Moreover, if v = (v(k))ren and
= (pu(k))ren are partitions of unity in [[ . €(1,), then v < p iff 7 < p? for
all y € I'. Given £ € I, denote by he := (d4¢15) er the element of [] . €(1,)
with 1, the {th place and 0’s elsewhere.

vel

Let U, & and Z be as (3.3), (3.5) and (3.6), respectively, Then T is a cyclically
compact operator on X iff 2712 (T) = UT¥~! is a cyclically compact operator

on 320 Oy (Qy, La(7)).

Proposition 3.4.9. Let T be an operator on > o . Cyu (Q, lo(7)) with 2(T) =

vyel

(T))yer. Then T is a cyclically compact operator on Z?el‘ Cyu (Qy, l2(7)) iff T,

is a cyclically compact operator on Cy (Q~, (7)) for all v € T.

Proof. Suppose that T is a cyclically compact operator on Z?er Cy (Qy, (7))
and (¢ )ken is a bounded sequence in Cy (Qg, €2(§)) for some & € T'. If x, is an
element of E?@F Cyu (Q, l2(y)) with zy ¢ the {th place and 0’s elsewhere, it is clear
that |||zx||| = ||zkel| and (2 )ren is also bounded in Zfel“ Cu (Qy,02(7)). As T is
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cyclically compact operator, there is a cyclic subsequence (T'z,, )ren of (Txk)ken

which is norm-convergent to some x. Since hexy = xj, we have hex,, = z,, and

k

hex = x. Thus, the following equality holds,
T zy, — 2| = lhe(Tay, — o)l = [[Tex,e o — ¢l

since ¢ o = MiXpen (Uke(n)zen) with v == (V.e(n))nen, and so we get a cyclic
subsequence (T¢w e Jren of (Texye)ken which is norm-convergent to z¢. There-
k?

fore, T¢ is a cyclically compact operator on Cy (Q¢, £2(€)).

Conversely, assume that 7, is a cyclically compact on Cy (Q., f2(7y)) for all
v €D and (xp)gen is a bounded sequence in Z?er Cy (@, l2(y)) with z), =
(%k)yer. Since (zy)ken is @ bounded sequence and 77, is cyclically compact,
there is a cyclic subsequence (T, )ren of (T2} )ren Which is norm-convergent

to some Ly MOI’GOVGI", we can assume

| =

”Tvxvm — x| <

for all v € I" and k € N. Clearly, we see that x := (x,)er in E?el‘ Cyu (Q4,02(7))

and

1
Tz, — 2|l = sup | T2y, , —2,[l < &
~el
since x,, = <xl’m)7er = (mixpen (Vi () Zny)),cp where vy, = (n(k))ren and

Un(k) = (Vn(k))er. So, T is a cyclically compact operator on Z?el“ Cy (@, l2(7)).
O]

Let T be a positive operator on Z?el“ Cy (Q,02(y)). This means that 7 is
a positive operator on Cy (Q.,l2(7)) for all v € I'. If T is a positive cyclically
compact operator on Z?el“ Cyu (@, ¢2(7)), then according to Theorem 3.4.8 and
Proposition 3.4.9 we can define s (7T") := (sx(1%)) er, €x = (€kq)yer and my =
(Tkny)ver (B € NU{0,00}) where (s5(T5))ken, (k) and (€g)ren satisfy the
representation of cyclically compact operator T, as in Theorem 3.4.8. Therefore,

from the functional representation of X we have the following theorem.

Proposition 3.4.10. Let T be a positive cyclically compact operator on X. There
exist a sequence (ex)ren in X and a sequence (sk(T))ren of positive elements in

A such that

(1) {ex [ er) =0 (k #1) and [sp(T)] < [ex] € P(A);

(2) Sk+1(T) < Sk(T) (/’C € D\‘) and o-lim Sk(T) = infkew Sk(T) =0
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(3) there exists a projection T in P(A) such that Teosp(T') is a weak order-

unity in Too A for all k € N;

(4) there exists a partition (mg)pe, of the projection m such that mos1(T) = 0,
T < [Sk<T>], and 7Tk8k+1(T> =0, k e D\l,‘

(5) for each x the following equality is valid

Ty = Woobo-z sk(T) (z | ex) ex, + bo- ZﬂnZsk (x| ex) e

k=1

= bo—z se(T) (x| ex) ex.

keN

Using the Polar Decomposition for 7" and the preceding theorem, we obtain

Theorem 3.4.1 as follows.

Theorem 3.4.11. Let T be a cyclically compact operator from X to Y. There
exist sequences (ex)ken 1 X and (fi)ken Y and a sequence ($p(T))ren of

positive elements in A such that

(1) {ex [ er) = (fi | fiy =0 (k #1) and [sy(T)] = |ex] = | /] (k € N)
(2) $k+1(T) S Sk(T) (k’ € D\l) and o-lim Sk(T) = il’lfkew Sk(T) = O,’

(3) there exists a projection o in P(A) such that Toosp(T') is a weak order-

unity in T\ for all k € N;

(4) there exists a partition (mg),, of the projection 7% such that mos1(T) = 0,
T < [Sk(T)], and 7Tk8k+1(T) =0, ke D\l,’

(5) for each x the following equality is valid

TfE:WoobOZ k(1) (z | ex) fk+b027rn23k V(x| ex) fr
k=1 k=1
:bO-ZSk(T) (x| ex) fr.

Proof. Using the Polar Decomposition for T we obtain a partial isometry V' such
that 7= V|T| and |T'| = V*T'. Since |T| is a positive cyclically compact operator
on X, there exist decreasing null sequence (sx(7))ren in A and family (ex)gen in

X which satisfy the properties of Proposition 3.4.10. Thus, we have

T=V|T|=V (bo—z sk(T) (- | ex) ) = bo—z sk(T) (- | ex) Ver).

kEN keN
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From s;x(T)e, € |T|(X) and [s,(T)]" ex € Ker|T|, we see that |Vse(T)er| =
|sk(T)ex| = si(T) and [se(T)]" Ver = V[si(T)]"ex = 0. The former means
[se(T)] |Vex| = [sk(T)], and so this and the latter imply that |Ve,| = [sx(T)]
(k € N). Since V*V is the projection onto (Ker |T])" = ¢l (mix (|T](X))), we get

sn(T) (Ven | Ven) = (V Vs, (Ten | em) = (sn(T)en | em) =0 (n #m),

and so (Ve, | Vey) = [s,(T)] (Ve, | Ven) = 0. Define fi := Veg, and the proof
is finished. O

Theorem 3.4.12. (The Rayleigh—Ritz minimax formula) Let T be a cyclically

compact operator from X toY. Then
s$p(T) = inf {sup {|Tz| : |¢] <1,z € J"}}

where the infmum is taken over all projection orthonormal subset J of X such

that card(J) < n, and the infmum is achieved.

Proof. Let oy, := inf {sup {|Tz| : |z| <1,z € J*} : card(J) < n} where J is a
projection orthonormal subset of X. If &, := {e1,€ea,...,€,-1}, then |Ta:| <
s,(T) are satisfied for each z € &;-, with |z| < 1, and so a,, < s,(T). Suppose
that J is a projection orthonormal subset of X with card(J) < n. If x € &,
then |Tz| > s,(T)|z|. From Corollary 3.1.17, there exists z € &~ N J* with
|z| = |ex]|. Thus, |Tz| > s.(T)|z| = s,(T), and so a,, > s,(T). Finally, the

infimum is achieved on & . O

Let x € X, y € Y. Define the operator 0, , : X — Y by the formula
0uyl(2)i= (2 |2}y (z €X).

An operator of the this form is called an elementary operator [27]. We denote
the A-linear span of the set of all elementary operators by &(X,Y’). Clearly,
E(X,Y) C By(X,Y) and the following equalities are satisfied;

(1) (0oy)” = by ;

(i1) b2y = Oty = Ov,ulayy (v € X, v €Y);
(i) T0,, = O,y (T € BA(Y, Z));
(iv) 02,5 = Bseny (S € Br(Z, X)).

Clearly, S € By(Z,X), T € By(Y,Z)and L € &(X,Y) implies TL € &(X, Z)
and LS € £(Z,Y).
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Lemma 3.4.13. Let X and Y be Kaplansky— Hilbert modules over A. Then the
following hold:

i) £X,)Y)Cc 2 (X,)Y) ;

(i) pn = 0 holds for n > 2 where (p,)nen satisfy representation of 0., as in
Theorem 3.4.1;

(i) 6.] = |o]|o] (= € X € V);

(iv) for each T € H# (X,Y) there exists a sequence (Tg)ren n &(X,Y) which
(IT — Tkl )keN decreases to 0.

Proof. To show (i), it suffices to show that 6,, € J#(X,Y) for all z € X and
y € Y. As a corollary of Proposition 3.2.8 the closed unit ball of A is cyclically
compact set, so 8,, € #(X,Y). From (7), 6., has a representation

Ouy =b0-Y i (- | €0) fa
nen

as in Theorem 3.4.1. Since 0, ,(e,) = pinfn = (en | )y (n € N), we have p, =
pin| fu] = {en [ 2) [|y] and

= [ (fo | pnfe) | =1 {{ex [ 2)y [ (ex [ ) y) |

= e | @) [|y]l (ex | 2) [ [y]

= K1fk-
is satisfied for k # 1. Thus, it follows from puy > p, that p, = 0 for n > 2. This
implies (ii). Now for any z € X, it follows from

|90 ()] = 1z [ )yl = 1(= 1) [|y] < Jo] |l |4]

that |0, < |z||y|. This and 6, ,(z) = |2|?y imply (iii). From Theorem 3.4.1,
for all T € # (X,Y), we can define Tn € &(X,Y) as

Toi=Y - | er) fi
k=1

for every n € N. Using the following inequality for each x € X

72— Tsal? =0 il (e | en) 2 < p2er0- 3 (o] )|

kEN, kENy,
<,un|x|2

where N, = {k€N : k > n} (n € N), we get |T—T,-1] < p,. Thus,
(|7 - T’fl)keN decreases to 0 from Theorem 3.4.1 (1). O

o4



Theorem 3.4.14. Let T be in BA(X) and © denote the set of all finite subsets

of projection basis &. Then the following statements are equivalent.

(i) T is a cyclically compact operator on X ;

(ii) for all projection basis & in X, the net (|T(I — Pp)|)
where Pp =" _p0ce;

ree 0-converges to 0

ecF

(iii) for all projection basis & in X (supeepc { ITel })FGG decreases to 0;

(iv) for all projection basis & in X (sup.cpe {|(Te | e)|})peq decreases to 0.

Proof. (i) = (ii) : Define T;, := Y, _, pxbe, s, as in above proof. So, the following
inequality holds

|96k,fk<[ - PF)ilﬁ'l2 = | (I — Pp)x | ey fkl

(I = Pp)a [ er) fr | (I = Pr)x | ex) fi)

| |2| —7 PF)x|ek |2 |fk|2’ ]—PF)€k> |2
|7el* [ *1(T = Pr)e] .

IN

for every x € X from which it follows that
|96k:fk(I_PF)| < |fk||(I_PF>ek| (kED\I).

Thus, since ((I — Pp)e) pee bo-converges to 0 for each k € N (Lemma 3.1.11),

the same is true for (0,5, (I — Pr)) peo, hence, for (T,,(I — Pr))pcq- Therefore,

result now follows from |T - T, nl ﬂ) 0.

(ii) = (iii) : Let I € © and e € &. Then, it follows from
|Te| < |TPre| + |T(I — Pp)| |e] < |TPre| + |T(I — Pr)|

that |Te| < |T(I — Pp)| (e € F¢). This implies (iii).
(iii) = (iv) : The proof follows from | (Te | €) | < [T'¢] |e] < [T'¢] for alle € &.
(iv) = (i) : Given a positive integer n and a nonzero projection m € P(A),

consider the class S, of all projection orthonormal sets in X for which

1
T > — A
w{Tele)| 2 o (c€A)

(we allow the empty set as one possible choice of A). By (iii), 7A is a finite
set for each A in S;. The inclusion ordered set S clearly obeys the hypotheses

of Kuratowski—Zorn Lemma. Therefore, there is a maximal element Ay € S;.
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So, there exists a projection p € P(A) with 0 < p < 7 and [(Tx | z)| < +-p

whenever x € pAg and |cc| € PB(A); for otherwise this contradicts the maximality

of Ag. By the Exhaustion Principle there exist a partition of unity (m,) and the

1
4an

whenever z € 1,A4% and |z| € P(A). Therefore, it follows from identity (3.1)
that

family of finite projection orthonormal sets (A,) such that | (Tx | z)| < -7,

1
T < -7,
(T )| < o

for all u,u € m,AL, Iul < 1 and |v| < 1. By taking u = (I — P,)r and
v = (I—P,)y, where P, is the projection from X to A2+ i.e., P, := 5" O €
&(X) we deduce that

eEAa

Rl (1 = P)T(T = Pz | )| <

whenever x,y € X, |ZL‘| <1 and |y| < 1. Thus, 7ra|(l— P)T(I — Pa)l < ix,.

- n

The operator F,,, := P,T7+TP,— P, TP, is in &(X) and |7raT — ﬂaanl < %WQ.
Since (X)) is a Banach—Kantorovich space there exists a cyclically compact

operator F,, = bo-Y__ moF,, with
1
|7 - F,| <-1.
n
Again using 7 (X)) is a Banach—Kantorovich space we obtain (iii) implies (i). O

Observe that if T is a positive cyclically compact operator, then 7%/ is also.
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Chapter 4

The Schatten Type Classes of
Operators in Kaplansky—Hilbert
Modules

In this chapter, we generalize the Schatten—von Neumann classes of operators on
a Hilbert space which were introduced by von Neumann and Schatten [38]. There
are two particularly important classes, the trace class and the Hilbert—Schmidt
class. We investigate the classes ./, and get duality results for the Schatten-type
classes. Throughout this chapter, the letters X and Y denote Kaplansky—Hilbert
modules over A, and orthonormal families (eg)ken in X, (fi)ren in Y and family
(g )rew in A will stand for the representation of the cyclically compact operator

T as given in Theorem 3.4.1.

4.1 The Hilbert—Schmidt Class

In this section, we generalize Hilbert—Schmidt operators on a Hilbert space and
study several properties of Hilbert—Schmidt operators on a Kaplansky—Hilbert
modules. Some equivalent characterizations are given and we show that the

Hilbert—Schmidt class is a Kaplansky—Hilbert module.
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Proposition 4.1.1. Let T be an element of # (X,Y). The following conditions

are equivalent:

(i) for every projection basis & in X the family (|Te|2)6€£, s o-summable;
(ii) for some projection basis & in X the family (ITelz)eeg s o-summable;

(iii) (u2)pen 18 o-summable.

In particular, if the famaly (lTelz)eeg’ is o-summable in A for some projection

basis & of X, then the sum equals to 0-) -, .

Proof. Let (& )ier and ((;);es be projection bases for X and Y, respectively. By

Lemma 3.1.14 we have

O—Z|T§i|2 = O-Z (0‘2 (T& | ¢5) |2>

icl iel jed
=0y <OZ | (& 1 T7¢) |2>

icl JjeJ
_ oZ; <0§; (TG | &) |2)

_ O_JZJ ¢

Thus, the sum does not depend on the choice of projection basis. Assume that
a projection basis & contains {e, : n € N}. So, it follows from Te, = u,f, and
Te=0 (e € &\ {e,:n e N}) that

O—Z |Te|2 = O'Z |Ten|2 = O—Z .
cee keN keN
Therefore, the equivalence of (i), (ii) and (iii) are obtained. O

Definition 4.1.2. The Hilbert—Schmidt class #(X,Y) consists of cyclically

compact operators T' such that (u?)gen is o-summable in A. Put

1/2
vo(T) := (0—2 ,ui) .

keN

The operators of the class % (X,Y") are called Hilbert—Schmidt operators.

Using the proposition above, &(X,Y) C #(X,Y) and v2(6,,) = |z| |y| hold
for all z € X and y € Y. Note that 7' € .%(X,Y) implies T* € %(Y, X).
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Proposition 4.1.3. Let S, T be in #(X,Y). Then the family (|(Se | Te)|), cp is
o-summable for all projection basis & in X. In particular, the sum o-) .. (Se | Te)

is same for all projection basis & of X. If we define

(S, T) = O—Z (Se | Te),
e€d
then (-,-) is A-valued inner product on #5(X,Y) for which (T, T) = v3(T) for all
T e A(X,)Y).

Proof. Let F' be a finite subset of &. From

<Z|<Sf | Tf>|)2 < <Z|Sf| ITf|>2 < ISP 1A

feF feF feF feF

[15, Lemma 8] (|[(Se | Te)|),s is o-summable. It follows from the polarization
identity (3.2) and Proposition 4.1.1 that the sum o-) .
projection basis & of X. Clearly, (S,T) is A-valued inner product on .%(X,Y).

O

(Se | Te) is same for all

Theorem 4.1.4. The pair (4 (X,Y),(-,-)) is a Kaplansky— Hilbert module over
A and the following equality holds:

|7| <w(T) (T € AX,Y))
where |T| is exact dominant of T' [23, 4.1.1].

Proof. By Proposition 4.1.1, we see that #(X,Y) is a submodule of By(X,Y)
and vo(AT) = |A|v2(T) holds for all A € A. Moreover, (% (X,Y),v2(+), A) is a
decomposable lattice-normed space. Indeed, from Proposition 4.1.1 it is a lattice-
normed space. We will prove that it is decomposable, and for this we assume that
vo(T) = ay + ay is satisfied for some a;,ay € A;. Then, since 0 < a1 < vy(7T)
there exists an orthomorphism L on A such that Lvs(T) =a; and 0 < L < T [2,
Theorem 2.49]. So, it follows from Orth(A) = A that there is ¢ in A such that
gua(T) = a; and 0 < g < 1 [2, Theorem 2.62]. Therefore, T' = g7 + (1 — ¢)T,
v2(gT) = a; and va((1 — ¢)T) = as, i. e, (F(X,Y),v9(+), A) is a decomposable
lattice-normed space. On the other hand, by Proposition 4.1.3 #(X,Y’) has
an A-inner product such that vy(T) = (T, T)"/*. From [23, 7.4.4], it suffices to
show that (.#(X,Y),va(+), A) is bo-complete. Firstly, we will prove the inequality
|| < va(T) (T € HA(X,Y)). Given z € X, and the representation of T we
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have;

1722 = 0>~ 2l (x| ea) P fu]* = 0D pi2] (| en) [

neN neN
<o Y 2lel? ol = Jel?oY u2
neN neN
= vy(T)? ||

from which the desired inequality follows. Now let (7,)aeca be bo-fundamental
net in (X, Y). So, there exists T' € #(X,Y) such that (7,)aeca bo-converges
to T in # (X,Y) since £ (X,Y’) is a Banach—Kantorovich space. Without loss
of generality we can assume that there exists h € A such that vo(T, — T3) < h
holds for all a, 5 € A. Let & be a projection basis of X and o« € A. Then, we

have
Ta—T 2 _ —1'f§ Ta—T 2< 2Ta T <h2
eezFl( )el 7 ,BIGA eeFl( B)el Zggvz( B>

where F' is a finite subset of &, and so T, — T € #(X,Y) and vy(T, — T') <
SUPgsq V2(To — 1) < h. Thus, T, = (T, — T) + T implies T € #(X,Y).
Moreover, from inf {sup{va(T, —1p) : > a}: a € A} = 0, we have (T,)aca
bo-converges to 1" in .%(X,Y). O

4.2 The Trace Class

In this section, we generalize theory of the trace class operators on a Hilbert
spaces to operators on Kaplansky—Hilbert modules and study several properties

of the trace class operators on Kaplansky—Hilbert modules.

Proposition 4.2.1. Let T' be a positive cyclically compact operator in By(X).

The following statements are equivalent:

(i) for every projection basis & in X the family ({(T'e | e)) ., is o-summable in

A;

(ii) for some projection basis & in X the family ((Te | €)).cp is 0-summable in
A;

(iil) (pk)ren s o-summable in A.

In particular, if the family ((Te | e)).cp is o-summable for some projection basis
& of X, then the sum equals to 0-) ;o\ -
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Proof. Let T be a positive cyclically compact operator in By(X). Define

12
S = bO—Z:u/ €k,ek?

kEN
and note that 7' = S? and S is a positive cyclically compact operator on X.
(i) = (ii) : Obvious.

(ii) = (iii) : Let & satisfy the properties of (ii). Since (Te | e) = (Se | Se) =
| Se]? holds for every e € &, we obtain S € .#3(X). The result follows from
Proposition 4.1.1.

(i) = (i) : Let (ux)ren be o-summable and & be a projection basis of X.
Then S € .%3(X). Again, from Proposition 4.1.1 and (Te | e) = (Se | Se) = [5¢*
(e € &) (i) follows.

Assume that & is a projection basis containing {e,, : n € N}. From (Te; | e) =

(peer | ex) = Mk|€k| = (k € N), we have
O—Z (Te|e) = O—Z (Tey | ex) Z,uk O
eces keN keN

Proposition 4.2.2. Let T be an element of # (X,Y). The following conditions

are equivalent:

(1) (fn)nen s o-summable in A;

(i) there exist families (x;)ier in X and (y;)ier in'Y such that (la:ll |yi|)ie[ is

o-summable in A and

Tz = bo—z (x|x)y (xeX).

el

In particular, if there exist projection orthonormal families (z;)icr i X, (Yi)ier
in'Y and a posivite elements family (o );er such that families (c;z;)icr and (Y;)icr
satisfy (ii), then 0-3 ey b = 0-3 ey o | [yl

Proof. (i) = (ii) : Let (tn)nen be o-summable in A. Then if we take z,, 1= ppe,
and y,, == f,, then (ii) is satisfied.
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(ii) = (i) : For all k € N we obtain

S =S Ten | 1) = 3 <bo-z enl )3

n=1 n=1 el

= Z (o-z (en | i) (i | fn>>

)
iel

5 /2 , 4 1/2
<oy <Z|<€n|xi>|2> <Z|<yn!fi>|2>

el n=1

< O-Z |$z| |y2| :

iel
This implies (i).

Let (z;)icr € X and (y;)ier C Y be projection orthonormal families and a
posivite elements family («;);e; such that families (a;z;);er and (y;)ier satisfy

(ii). Then as above inequality, we have for all finite subset F' of [

Zailxz‘l Iyzl = Z (T'z; [ ys) = Z <bO-Z pu (@i | €x) i yi>

i€F i€F i€F keEN
= (0-2 pu (i | ex) (fr | yi)>
i€F kEN
<o (Z | (i | ew) [| (i | 9a) |>
keN i€F
1/2 1/2
<o (Z o | en) |2> (Z il ) |2)
keN i€F icF
< O-Z ,Uklekl |fk| = O-Z -
kEN keN
Thus, we obtain 0-) , . ik = 0-)_,c; |xl| |yl| O

Definition 4.2.3. The trace class % (X,Y) consists of cyclically compact oper-

ators T such that (px)gen is o-summable in A. We put

v (T) = O—Z -

keN

The operators of class .7 (X,Y) are called trace class operators.

The proposition above yields that have &(X,Y) C .1 (X, Y) and the following
which shows that v (7T) is well-defined.
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Corollary 4.2.4. Let T € A (X,Y) and A € A. Then vi(A\T) = |\ v1(T) and

v (T) = inf {O—leil |y,| €N (2i)ier CX, (Yi)ier C Y}

i€l
where (x;)icr and (Y;)ier satisfy condition (ii) of Proposition 4.2.2.

Proposition 4.2.5. (% (X,Y),v1(+)) s a Banach— Kantorovich space and the
following equality holds,

7| <v(T) (T e AKXY))
where |T| is exact dominant of T, [23, 4.1.1].

Proof. By Proposition 4.2.2 and Corollary 4.2.4, .%(X,Y) is a submodule of
Ba(X,Y) and, respectively, (#(X,Y),v1(:),A) is a lattice-normed space and
vi(AT) = |A v (T) for all A € A. Thus, (V1(X,Y),v1(-),A) is a decomposable
lattice-normed space (for decomposablity see the proof of Theorem 4.1.4). Now
we will prove the inequality |7| < vi(T) (T € #(X,Y)). From representation
of T we have for r € X

72| = [ 00->" g [ ew) fi | < o> el G ex) [l
keN keN
<o el el |l = Jel -3
EEN keN
:Ul(T)IC(,’l

from which the desired inequality follows. Moreover, to show .7 (X,Y) is a
Banach—Kantorovich space, it suffices to show that it is bo-complete. Assume
that (T,)aca is a bo-fundamental net in .#(X,Y). Then there exists T €
H(X,Y) such that (T,)aeca bo-converges to T' in # (X,Y) since # (X,Y) is
Banach—Kantorovich space. We can assume that there exists g € A such that
v1(T, — T3) < g holds for all o, 8 € A. By Proposition 4.2.2 and Theorem 3.4.1
there exist families (z;)icr, (&) in X and (v;)ier, (¢,) in Y and family (v,) in A,
such that

(To, — Tp)x = bo—z (x| z;)y; and (T, — T)x = bo—z Un (x| &) Ca

el neN
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and (la:zl |yi|)ie1 is o-summable. Thus,

k k
Z (T — Tﬁ)gn | G| = Z O'Z (& | ) (i | Cn)
n=1 n=1 el ) s ) s
<oy (Z [0 | 22 \2> (Z [ | G 12)
el n=1 n=1
< O-le‘il |yz|
el
from which

k

D (T = Tp)én | Gl < 0a(To = Tp)

n=1

holds for each a, f € A. Fix a € A. Using the inequality

k k k

Z Vp = Z <(Ta - T)fn ‘ Cn> = O‘}}éﬂ; |<<Ta - Tﬁ)fn ’ Cn>|

n:l n=1

<supwv(T, —T5) <y

Bza

we see T' € A (X,Y) and vy (T, — T') < supgs, v1(Ta — Tp). Therefore (Ty)aea
bo-converges to T in .7 (X,Y) since inf {sup{vi (T, = T3) : B> a}: a € A} =
0. O]

This, together with [23, 2.1.8.(3)], yields the following.

Corollary 4.2.6. .7 (X,Y) admits a compatible module structure over A.

Note that (1 (X,Y),A) is a Banach space with mixed norm which is defined
by [Tl = [lor (D (T € Z (X, Y)).

Lemma 4.2.7. Let T € #1(X). Then the net (|(Te | e)|).cp is o-summable for
all projection basis &, and the sum o-y
basis & of X.

cce (Te | €) is the same for all projection

Proof. There exist positive cyclically compact operator R and cyclically compact
operator Ry in .#(X) such that 7' = R1 Ry and (Te | ¢) = (Rqe | Rye) hold for

every e € &, namely,

i b 5, i By b0 Y

keN keN

The net (|(Te | e)|),cs is o-summable in A by Proposition 4.1.3, and the sum
0-Y .cr (Te | €) is the same for all projection basis of X. O
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We will now utilize the preceding proposition to define a trace for operators

in the trace class.

Definition 4.2.8. For T' € .| (X) define the trace of T by

tr(7T') := O—Z (Te | e)

eed

where & is a projection basis of X.

Note that v,(T") = tr(7T') is satisfied for every positive operator 7" in . (X).

Lemma 4.2.9. Let T € S(X). If Tx = bo-)_,.; (x| x;) yi where (x;)icr and
(y:)ier satisfy the condition (ii) of Proposition 4.2.2, then we have

t(T) = 03 (i | 2,).

iel
Proof. Let & be a projection basis of X. First, observe that

(0-2 (e [ @)l [y | e>!> <oy Welalo-Y Iyl ) < |ui]*|ai]?

eces eces e€ed&

for each 7 € I. Hence we have

t(T) =03 (Te | ) = o) (o-z (e ) (o | e>>

ecd ecs el
oy (o-z o122 | e>) N
i€l ecé icl
from which the desired result follows. OJ

Lemma 4.2.10. The following statements hold:

(i) tr: A(X) = A is a dominated, bo-continuous A-linear operator and
1tr(T)] < n(T) (T € A(X)).

In particular, |tr| =1 and tr is |||-|||:-continuous A-linear operator and is

a band preserving operator;
(ii) tr(T*) = to(T)* (T € A (X));

(iii) tr(TL) = tr(LT) whenever TL, LT € A (X) (T € # (X) and L € By(X)).
In particular, the following holds

tr(TL) = tr(LT) = 0-> _ i (Lfx | ex);

keN
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(iv) if T € A(Y,X) and L € BA(X,Y), then TL € A (X), LT € A(Y) and
tr(TL)| <o (T)|L];

(v) S*T € A1 (X) is satisfied for all S,T € S (X,Y).
Proof. (i) tr is a A-linear operator by Lemma 4.2.9. Moreover, utilising

[tr(T)| = |o-> e {fr | ex)

keN

<oy e =vi(T)

keN

tr is bo-continuous and subdominated [23, 4.1.10.] and hence dominated, by virtue
of [23, 4.1.11.(1)]. Since v1(T") = tr(T") is satisfied for every positive operator T
in .71 (X) and Orth(A) = A, we have |tr| = 1, and hence it is a band preserving
operator [23, 5.1.8.(1)].

(ii) Let & be a projection basis of X. The proof follows from Corollary 3.4.2
and the following equality

tr(T*) = O—Z (T*e | e) = O—Z (e | Te) = tr(T)".

e€ed e€eé

(iii) We use the representation of 7' to obtain
LT =bo-> (- | ex) Lfy and (TL)* = L*T* = bo-Y iy, (- | f) L*ex.
keN keN

This implies that

o (LT) = 0= pin (Lfu | €n) = (OZ pin (Len | fn>>

neN neN

= tr((TL)*)* = t(TL).

(iv) Assume that T'x = bo-) ., (x| ;) y; where (2;);cr and (y;)ics satisfy the
condition (ii) of Proposition 4.2.2. Then T'L = bo-) ,_; 01+4,,, holds. Moreover,
since (L*x;);er and (y;)ies satisfy the condition (ii) of Proposition 4.2.2. we have
TL € . (X). Using Lemma 4.2.9, we obtain

tr(TL)| = O‘Z (yi | Lz;)| = O‘Z (Lyi | i)
icl icl

<o Ll el < 12l ol
icl el

The result now follows from Corollary 4.2.4.

(v) The representation of T" yields

S*Tx = bo—z wr (x| ex) S™ fr,

keN
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and so for all n € N the following inequality holds

> el [l =D ]S 4
k=1 k=1
n 1/2 n
(CON
k=1

k=1

1/2
S*fk|2) .

That S*T" € (X)) follows from Propositions 4.1.1 and 4.2.2. O

Let (2, |-|,A) be a Banach—Kantorovich space. From [23, 2.1.8.(3)] 2™ ad-
mits a compatible module structure over Orth(A) = A. Moreover, every A-linear

operator f from 2 to A is band preserving. Indeed, assume that |x| 1 |y| This
means that le |y| = 0. So, |y| |f(x)| = ||y|f(x)| = |f(|y|x)| = 0 implies f is

band preserving. Therefore, every dominated A-linear operator f from 2 to A
is bo-continuous [23, 5.1.8.(1)]

Proposition 4.2.11. Let (3{, I-l,A) be a Banach— Kantorovich space. If f :

2 — A is a A-linear operator, then the following statements are equivalent:

(i) f is dominated;

(ii) f is mized norm |||-|||-continuous.

Proof. (i) = (ii) : By [23, 5.1.8.(1)] the exact dominant |f| is in Orth(A) = A.

Since |f| is norm-continuous (i) follows from ||| fz[|| < ||| ] |=]]|-
(ii)) = (i) : Let A € A,. For all |SC| <\
|£2| < WAz P < LAl 12 < J1F A

implies that {l fxl : |x| < A} is bounded. Therefore, f is subdominated, and so
it is dominated [23, 4.1.11]. O

Denote by 2™ the set of all A-linear operator n : 2 — A such that there
exists ¢ € A with |n(z)| < c|z| (z € 27). By the proposition above 2™ consists

of all ||||||-continuous A-linear operators n : 2~ — A.

Theorem 4.2.12. If p : A (Y, X) — H(X,Y)* is defined by o(T)(A) = tr(T'A)
forallAe #(X,Y) and T € A (Y, X), then ¢ satisfies the following properties:

(i) ¢ is a bijective A-linear operator from (Y, X) to A (X,Y)*;

(ii) v (T) = |g0(T)| (T € AY,X)).
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Proof. By Lemma 4.2.10 (i) and (iv), ¢ is a well-defined dominated A-linear
operator, and [o(T)| < v(T) for all T € .#(Y, X). Given ¢ € #(X,Y)*. From
Theorem 4.1.4 ¢, (x,y) is in (X, Y)* and there exists a unique S € #(X,Y)
such that ¢ »xy) = (-,5) since #(X,Y) is Kaplansky—Hilbert module [23,
7.5.7.(2)]. Thus, forall A € #(X,Y), we obtain ¢|»,x,v)(A4) = (A, S) = tr(S*A)
since S*A € A (X). Let ()ren, (Uk)ken, and (Ag)gen be the representation of S*
as in Theorem 3.4.1. Define Py, := >/, 6y, 5, (m € N), and note that |P,]| < 1.
Thus, the following inequality

m

6] = [¢]1 > o] [Pl = 16(Pu)| = [tr(S"Pr)| = Y M

k=1
implies that S* € A (Y, X). For all A € # (X,Y) there is (A,)nen in £(X,Y) C
#(X,Y) such that |A— A,| L9 0. Tt follows from the bo-continuity of p(S*)
that ¢(5*)(A4,) = ¢(A,) implies ¢(5*)(A) = ¢(A). Thus, ¢ is onto and p(5*)| >
v1(S*), and the proof is finished. O

A variant of the following lemma is proved in [49, Proposition 1.3].
Lemma 4.2.13. If the mapping o : X XY — A satisfies the following properties
(1) o(Azy+pxe,y) = Ao(x1,y) +po(xe,y) for each 1,29 € X, y € Y and each
A€ A

(ii) oz, Ay1 + py2) = Ao(x,31) + po(x,y2) for each x € X, each y1,y2 € Y
and each A\, u € A;

(iii) There exists some X € Ay such that |o(z,y)| < X|p| || holds for each x € X
and each y € Y,

then there exists a unique A € Bxy(X,Y) such that |A| < X and o(z,y) = (Az | y)
hold for each x € X and eachy € Y.

Proof. Given zy € X, we define A,,(y) := o(xg,y)*. Then A,, € Bo(Y,A). This
implies that there exists a unique yo € Y such that A,,(y) = (v | yo) holds for all
y € Y [15, Theorem 5.]. Therefore we can define Az := yo. Thus, we see that
A is A-linear operator from X to Y and o(x,y) = (Az | y) is satisfied for every
x € X,y €Y. By the property (iii) we have

| (Az | Az) | = |Az|? < A|a| |Az],

and so IAI < A. O
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Theorem 4.2.14. If ¢ : (BA(X,Y),|-|) = (LAY X)", |- |1) is defined by
Y(L)(T) =tr(TL) for all L € BA(X,Y) and T € A (Y, ) Then 1 satisfies the
following properties:

(i) v is a bijective A-linear operator from By(X,Y) to A (Y, X)*;

(ii) |L] = [¢(L)]1 (L € Ba(X,Y)).
Proof. By Lemma 4.2.10 (i) and (iv), ¢ is a well-defined, dominated and A-linear
operator, and |¢)(L)|1 < |L| holds for all L € By(X,Y). Let 7 be in .7 (Y, X)*.

For every x € X and y € Y it follows from 6, , € % (X,Y’) and Proposition 4.2.2
that 0, , € A (X,Y). Define 0 : X xY — A by o(z,y) := 7(0,,), whence

o (2, y)| = [7(0,.0)] < |7|101(0y0) < |7]1 |2] |w]-

Therefore there exists A € By(X,Y) such that o(z,y) = (Az | y). This implies

V(A)(Oy,2) = tr(Aby ) = tr(0y,4,) = (Az | y) = 7(0y2)
and
|A:1:|2 (Az | Az) = |T7(0az)| < | |1'01 (Oazz) < | | |Aw| |x|

Thus, |A| < |7|1 and for all T € .7 (Y, X) we obtain ¢(A)(T ) = 7(7), i. e.,
¥(A) = 7. Therefore |¢(L)|1 > |L| holds for all L € B,(X,Y). So, (i) and (ii)
are satisfied. O

4.3 Classes .7,

This section is concerned with certain classes ., (1 < p < 00) of cyclically com-
pact operators on Kaplansky—Hilbert modules. It turns out that each of these
classes becomes a Banach—Kantorovich space when provided with a suitable vec-

tor norm.

Proposition 4.3.1. Let T' be a positive cyclically compact operator on X and

1 < p < oo. Then the following are equivalent:

(1) (U4)en s 0-summable in A;

(ii) ((Te|e)’).cp is 0-summable in A for all projection orthonormal subsets &

of X.
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In this case,

<O—Zu§)p:max (O—Z<T€|€>p>p eN:ECX

keN e€s

where & is a projection orthonormal subset of X.

Proof. (ii) = (i) : Follows directly from the equality (T'ey | fx) = ux and the fact
that {ex : k € N} is a projection orthonormal subset of X.

(i) = (ii) : Assume that & is a projection orthonormal subset of X. If p = 1,
the proof is finished by Proposition 4.2.1. Assume that 1 < p < oo and ¢ is

conjugate index to p. Then we have

(Te|e) = <b0—z i (e | en) en

neN

=0 il (e [ en) 7] {e | €a) P17

neN

1/p 1/q
< (O-Z (1t (e | €n) |2/p)p) (O'Z (I{e ] en) |2/q)q>

neN neN

1/p 1/p
< (o-zuz|<e|en>|2) |2/q<< Sl e en) | )

neN neN

> = oY mllelen) P

neN

for all e € &. This implies

ZTe|ep<Z<o—Zun (e ] en) ] >_O-ZMH<Z\6\% )

ecF ecF neN neN ecF
<oy pblen|? =0-) ub,
neN neN
where F'is a finite subset of &. This proves the proposition. O

Let T be in £ (X,Y). Using the Polar Decomposition, there exists a partial
isometry Uy € Bx(X,Y) such that [/s] <1, that T = Uz |T|, and that |T| =
with

|T|z = bo—z wr (x| e) ex and Uz = bo—z (x| ex) fr,

keN keN
where |T'| = (T*T)"?, and therefore |T| € #(X,Y).

Definition 4.3.2. Let 1 < p < co. The set of all cyclically compact operators T’
such that (u})ren is o-summable in A will be denoted by .7,(X,Y). We put

(x4
keN
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Observe that the inclusion .7,(X,Y) C .Z.(X,Y) holds for 1 <p <r.

Corollary 4.3.3. Let T be in # (X,Y) and 1 < p < co. Then the following are

equivalent:

(i) T isin S(X,Y);

(ii) Ur|T|U;s is a positive cyclically compact operator in #p(Y);
(iii) |T'| is a positive cyclically compact operator in 7,(X);

(iv) ({IT|e | e)")ece is o-summable for all projection orthonormal subsets & of
X.

In this case, v,(T) = v,(|T'|) = vp,(Ur |T| U;) and

v,(T) = max <O_Z (IT|e | e>p> Cecx

ecs&

where & is a projection orthonormal subset of X .

Proof. Clearly, (i), (ii) and (iii) are equivalent. From the preceding proposition

(iii) and (iv) are equivalent. O

Every positive operator A in B,(X) has a unique positive operator A'/? in
Ba(X) such that A = (AY 2)2. From the Cauchy—Bunyakovskii—Schwarz in-

equality and this fact we deduce the Generalized Schwarz’s inequality,
[(Az [ y) |* < (Az | z) (Ay | y)
where z,y € X and A is a positive operator in B (X).

Proposition 4.3.4. Let T be a cyclically compact operator from X to'Y and

1 < p < oo. Then the following statements are equivalent:
(i) T is in SH(X,Y);

(i) (|(Tea | fa) IP)pey is o-summable for all projection orthonormal subsets

(a)aca and (fo)aca in X and Y, respectively.

In this case, for all T € /,(X,Y), the following equality holds

v,(T) = max (o-z | (Teq | fao) ]p) ' €AN:(ea)acoy CX, (fa)acwr CY

acd

where (€q)acw and (fo)aca are projection orthonormal subsets of X and Y, re-

spectively.
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Proof. (ii) = (i) : (i) follows from (Tey | fx) = t, and (ex)ren and (fx)ren

projection orthonormal subsets. The following equality also holds:
v, (T) = <O_Z ug) — (O—Z (Tey, | fk>”> .
keEN keN

(i) = (ii) : Let (én)acer and (fa)ace be projection orthonormal subsets of X

and Y, respectively. By Generalized Schwarz’s inequality,

[(Tea | fa)

[ (Ur[Tlea | fa) | = [ ([T]ea | Urfa) |
< [{|Tlea | ea) [T Uz fa | Urfa) |
(1Tl ea | ea) 1?1 {Ur |T1 Uz fa | fa) '

holds for all & € 7. So, we use Corollary 4.3.3 to obtain

Y NTeal fa) P <Y 1Tl ea | ea) P2 {Ur [T Ui fa | fa) P2

aEF aEF

< (Z (Tl ea ea>5)2> 5 (Z (wr 71U £ fa>§>2>2

aEF aEF

= (Z (IT e | ea>”> (Z (Ur [T Uz fa | fa>p)

aESF aEF
P
2

< 0p(IT1)20,(Ur [T| U7)% = v, (T)

where . is a finite subset of /. Thus, (ii) is satisfied. O
Proposition 4.3.5. Let T be in % (X,Y) and 1 <p <2. Then T € #,(X,Y)

if and only if (lTeIp) pce 15 O-summable for some projection basis & of X. In this
case, for T' € SH(X,Y), the following equality holds

v,(T) = min (0-Z|Te|p> eN:&CX

eES

where (|Te|p)e€éa is o-summable for projection basis & .

Proof. There exists a projection basis & containing {ey, : kK € N}. Thus, Te = 0
and Tep = ppfr hold for all e € & \ {ex : £ € N} and k& € N, respectively. If
T € #,(X,Y), then it follows from |Tej| = p that (lTelp)eeg, is o-summable
for the projection basis & of X and we also have the following equality

v,(T) = (0—Z|Te|p) ! :

eces
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Conversely, suppose that (lT elp)ee ¢ 1s o-summable for some projection basis

& of X. Using Holder’s inequality with conjugate exponents 2/p and 2/(2 — p),

we have
S =S (o-z el e I2) oy (z e o) |2)
ner ner ecs ecé \neF
=0y (Z W0l e L en) ] (e | en) |)
ec& \neF
p/2 1-p/2
" (z 21 (e e 12) (z el e \2)
ecé ner nel
< 0—Z|Te|p |e|2_p < O—ZITelp
ecé ecé
where F' is a finite subset of N. Thus, we have the desired result. n

Proposition 4.3.6. Let T be in # (X,Y) and 2 < p < oco. Then T is in
ZH(X,Y) if and only if (ITelp)eeg 1s o-summable for all projection orthonormal
subset & of X. In this case, for T € S(X,Y), the following equality holds

1

p

v,(T) = max (0—Z|Te|p) eN:&CX
ecs

where & is a projection orthonormal subset of X.

Proof. (ii) = (i) : {ex : k € N} is a projection orthonormal set and |Tex| = ju
holds for all £ € N. This implies (i), and the following equality holds:

v(T) = <O—Z|Tek|p> ' :

keN

(i) = (ii) : Let T be in .7,(X,Y") and & be a projection orthonormal subsets
of X. Using Hélder’s inequality with conjugate exponents p/2 and p/(p — 2), we
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have

p/2
Sl = (X o)
ecF ecF neN
p/2
= < -yl 6|6>|4/”|<€|€>|“/p>
eEF neN
(r—2)/2
< (OZ pnl e | en) !2> (02 [ (e [ en) |2>
e€F neN neN
SN (5 SETAPSATIEED ofo AT
e€F neN ee# mneN
o3 (S ) <o Xl
neN e€F neN
oY
neN
where .# is a finite subset of &. Clearly, we obtain the desired result. O

Proposition 4.3.7. Let 1 < p < oo. Then the following inequality holds:
7| <o) (TeH(X,Y)
where |T| 1s the exact dominant of T.

Proof. Let T be in .7,(X,Y). If 1 < p < 2, then using representation of 7" and

Holder’s inequality with ¢ the conjugate index to p, we have

D (| en) fn

neF

<Dl @ L en) |l =D pal G en) 727 (2 | ) [P

neF ner

1/p 1/q
< (Zuﬁl (z | en) \(1_2/‘”) <Z|<$ | en) |2>
ner ner
1/p
< (Z 74 |$| (1—2/q)p> |x|2/q

nekF
1/p
_ |x|1—2/q (Z Nﬁ) Ix|2/q
neF
< v,(T) |ZE|

where F'is a finite subset of N and x € X. Therefore, ITxl < v,(T) |x| is satisfied
for all x € X. If 2 < p, then using Hoélder’s inequality with conjugate exponents
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p/2 and p/(p — 2), we have

|T2|® = 0-) il (@ [ en) [P = 0-)_pidl (& | ea) [VP] (& | en) P47

neN neN

2/p (»—2)/p
< (o—Z e F) (o—Z (] ) |2)

neN neN

2/p
< |z|*” (OZ uﬁ) || 2277

neN
= v, (T)?|z]?.
Finally, |Tz| < v,(T)|x| is satisfied for every x € X with 1 < p < oo, and so
|7| < v, (T). O
Proposition 4.3.8. Let1 < p < 0o. (S,(X,Y),v,(+), A) is a Banach— Kantorovich
space and the following properties hold:

(i) if T € SH(X,)Y), then T* € 7, (Y, X) and v,(T) = v,(T™);

(ii) if L € Ba(Y,Z) and S € By(W,X), then LT € ,(X,Z) and TS €
(W, Y) hold for all T € .7,(X,Y). Moreover,

vp(LT) < |L]vp(T)  and  v,(TS) < |S|vp(T).

Proof. By Proposition 4.3.4 we have (i) and .7,(X, YY) is a submodule of By (X,Y').
Moreover, v,(AT) = |A|v,(T) holds for all T € .#,(X,Y) and A € A, and so
(Zp(X,Y),v,(+), A) is a decomposable lattice-normed space (see the proof of The-
orem 4.1.4). Let L € BA(Y,Z), S € By(W,X) and T € .%,(X,Y). By (i) and
Propositions 4.3.5 and 4.3.6 we obtain LT € .7,(X,Z), T'S € .7,(W,Y). So, it
follows from |S| = |S*| that

vp(LT) < |L]v,(T)  and  v,(T'S) < |S]v,(T).

Now we will show .7,(X,Y) is a Banach—Kantorovich space.To this end, let
(Th)aea be bo-fundamental net in .%,(X,Y"). Using Proposition 4.3.7 and .# (X, Y')
Banach—Kantorovich space, there exists T € #(X,Y) such that (T,)aca bo-
converges to T in £ (X,Y’). We can assume v,(T,, —T3) < g for some g € A and
all o, € A. Fix a € A. Since T,, — T € (X, Y) there exist orthonormal fam-
ilies (&n)nen in X and (¢ )new in Y, and family (A,)nen verifying representation

of T, — T as in Theorem 3.4.1. Thus, we use Proposition 4.3.4 to obtain

k k k
Z An = Z (T = T)6n | Gu) I = O‘EGI%Z | {(To = T)&n | Ga) 7
n=1 n=1 n=1

S SUPQ%(IL _'7b>pj§ gp’
Bza
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and s0 vy(T, —T) < supgs, vp(Ta — 1), i. €., To — T € 7H(X,Y). So, it follows
from T'=1T, — (T, —T) that T € .7,(X,Y). On the other hand, the net (T4,)aca
bo-converges to T' in .7,(X,Y") since inf {sup {v1 (T, = T3) : B> a}: a € A} =0.
Therefore, .7,(X,Y) is a Banach—Kantorovich space. O

From [24, Lemmas 5.1. and 7.1.] we can compute the mix-norm |||, :=
v, (T)]| (T € Z(X,Y)) for 1 < p < oo as follows:

: 1/p
I, = <O-ZMZ> =sup _inf SUP<ZHM/~%HP>

)EPrt
kel leN (mi)€PTts keN

where Prt, is the set of sequences 7 : N — P(A) which are partitions of unity in
B(A)

Lemma 4.3.9. Let 1 < p < oo. Then &(X,Y) C SH(X,Y) and for each
T € %, (X,Y) there exists a sequence (Tk)kew in &(X,Y) which (v,(T — Ty))
o-converges to 0. In particular v,(6,,,) | | |y| reX,yeyY).

keN

Proof. By Lemma 3.4.13 (i) 6, € #(X,Y ) forallz € X andy € Y. Let (e4)acw
and (fa)acw be projection orthonormal subsets in X and Y, respectively. From
[(ea | )| < ea] |2] < |#] and [(fa | ¥)| < |y] (o € &), we have

D Hbayea | fdlP= > llea | )" 1y | fa)l”

ack acl
1/2 1/2
<D leal $>!2p> <Z|<y | fa>\2”>
ack acF
1/2 1/2
< Z\ea!xllea\x2p2)> <Z!y\fa\!<y\fa>\2p2>
ack s ackF s
< (Wi 197) (W S )
ack a€eF

< (™ )" (Lol [l

= eI lyl”
where F' is a finite subset of /. From Proposition 4.3.4 we see that 6,, €
Z»(X,Y) and v,(6,,) < |z||y|. Thus, &(X,Y) C .%,(X,Y) by the preceding
proposition. By Lemma 3.4.13 (iii) and Proposition 4.3.7 we have v,(0,,) =
|| [y|- We will show finally that for each T' € .,(X,Y’) there exists a sequence
(Tk)ken in &(X,Y) which (v,(T — Tj)),., o-converges to 0. Using represention
of T we can define T, in &(X,Y") by for

m

T = Z Mkeek,fk

k=1
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for m € N. Then
T — Tm = bo- Z ,ukﬁ%fk

kJED\lm+1
where N1 = {k € Nk >m + 1} and we obtain v, (T —T,)7 = bo- 0y | Hy-
Thus, (v,(T" — T}))ken o0-converges to 0. O

Lemma 4.3.10. Let 1 < p,q < oo and % —I—% =1 IfS e 7(X)Y) and
T e s(Y,X), then TS € A (X) and v1(T'S) < vy (T)v,(95).

Proof. We may assume that p > 2 since otherwise ¢ > 2 holds and then the proof

is similar. So, we use Proposition 4.3.6 and

TSy = O—Z Hn, <$ ‘ S*€n> fn

neN

to obtain

S lusllsal < (Shosl) (Sisal)

neF ner neFr
< (0‘2 M%) Up(5™) = v (T)vp(S)
neN

where F'is a finite subset of N. The proof follows immediately from Proposition
4.2.2 and Corollary 4.2.4. O]

Together with Lemma 4.2.10 (iii), this yields the following corollary.
Corollary 4.3.11. ForeachT € /,(X,Y) and S € LY, X), tr(TS) = tr(ST).

Theorem 4.3.12. Let 1 < p,q < oo and % +% =1. If ¢ : (Fp(X),v(-)) =
(LX), o) is defined by ¢(T)(S) = tx(ST) for all T € .7,(X) and S € Z,(X),
then ¢ satisfies the following properties:

(i) ¢ is a bijective A-linear operator from 7,(X) to L, (X)*;
(ii) vp(T) = [&(T)], (T € (X)),

Proof. By Lemma 4.2.10 (i) and Lemma 4.3.10, ¢ is a well-defined dominated
A-linear operator, and v,(T) > |¢(T)|, is satisfied for all T € .%,(X). Given
n in 7, (X)*. From Lemma 4.3.9, we have 0, , € .7,(X) for all z,y € X. So,
if 0 : X x X — A is defined by o(z,y) := n(,.), then by Lemma 4.2.13 there
exists T' € Ba(X) such that o(x,y) = (T'z | y) since

o (2, 9)] = [n(0ya)| < || qva(Oy) < |1l q 2] |9l
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Thus, using Lemma 4.2.9 we get
tr(0y o T) = tr(0r-y0) = (2 [ T"y) = (Tx [ y) = n(0y.)-

Since tr is A-linear operator, tr(ST) = n(S) is satisfied for every S € &(X). If
T € #(X), then we must show T' € .,(X). Define

n
—1
T, = Zﬂi 9fk75k7
k=1

and note that 7, € &(X) C .7, (X) and

n 1/q n 1/q
-1
vo(Th) = <§ s )q> = (E uﬁ) :
k=1 k=1

Therefore, we have

n n 1/q
ZNZ = tr(T,T) = n(T,) < Inlqvq(Tn) = |77|q (Z NZ) .
k=1 k=1

This implies that (D°,_, ui)l/p < |n|4, and so we have T' € .%,(X) and v,(T) <
|n]s Given S € 7, (X). Then there exists a sequence (Si)gen in &(X) which
(v4(S —Sk))ken o-converges to 0. Thus, it follows from |tr(ST — SpT)| < vy (ST —
SiT) < vy(S — Sk)vp(T) that tr(ST) = n(S), i. e., ¢(T) = n. This implies (i) and
(ii). To finish the proof we will show that 7' € J#(X). Let & be a projection
basis of X. If .7 is a finite subset of &, then Pz := > __,
&(X). So, we form the A-linear functional from .7, (X) to A

0c . is an element of

nz(A):=n(PzAPz) (A€ (X))
From Proposition 4.3.8 and |Pg;| <1, we have
n7(A)| = [n(PzAPz)| < |n|qvq(A),

and so the A-linear functional 74 is dominated. It follows from PzT Pgz € &(X),
and belongs to .7,(X) that

ny(A) = n(PyAPy) = tl"(szAPyT) = tl"(APyTPy) = gb(PgTsz)(A),
i. e., nz = ¢(PzT Pz). From the preceding discussion, we have

|77|q > |77-»?|q = |¢(P97TP<3Z)IQ = vy(P#TPy)
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and using Proposition 4.3.4 the following inequality is satisfied

|72 > v,(P#TPz)" > > [ (PzTPge|e)|’

eES
— S UPsTe| &) = S (Te | Pre) |
eESF eEF
=> [(Te|e) .
e€EF

Therefore, inf {sup {| (Te|e)|: e € F¢} : F € ©} =0 holds for every projection
basis & of X where O is the set of all finite subsets of &. This and Theorem
3.4.14 completes the proof. O
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Chapter 5

Global Eigenvalues of
Cyclically Compact Operators on
Kaplansky—Hilbert Modules

In this chapter, we study the global eigenvalues of cyclically compact operators on
Kaplansky—Hilbert modules and give variants of Weyl- and Horn-type inequal-
ities and Lidskii trace formula. Throughout this chapter, X and Y will denote
Kaplansky—Hilbert modules over A, and ) and H will denote an extremally

disconnected compact space and a Hilbert space, respectively.

5.1 The Multiplicity of Global Eigenvalues

In this section, we define the multiplicity of global eigenvalues of cyclically com-
pact operators on X which is an element of the universally complete vector lattice
(ReA)*, which in turn is the universal completion of ReA. Let A be an eigenvalue
of T' € By(X,Y). The set Ny := |, o Ker (I' = AI)™ is called the generalized
eigenspace, corresponding to the eigenvalue A. We start with the following lemma
which gives a relation between the generalized eigenspace Ny and Ker (7" — \I)"
(n € N).

Lemma 5.1.1. Let T be a cyclically compact operator on X and A be a global
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eigenvalue of T'. If 7 is a projection with 0 < m < [\, then there exist a projection
pwith0 < p <7 andn € N such that pKer (T — XI)™ = pKer (T — XI)"™, i. e.,
uNy = pKer (T — \I)™.
Proof. Firstly, note that for any 0 < v < [A] and n € N,
vKer (T — M\I)" = vKer (T — \I)"*!
which means that
v ((Ker (T — AD)")* N Ker (T — M)”“) = {0}.

Assume by way of contradiction that the lemma is false. Given n € N and y €
mKer (T — M)™ with |y| € B(A). Then there exists

ven <(Ker (T — \)")" N Ker (T — )J)”“)
with |y| = |z| To see this, if ¥ is a set consisting of the pair (u, x) such that
=y ((Ker (T — AI)™* N Ker (T — A])"“) \ {0},

0<pu< Iyl and pu = le € P(A), then it follows from the assumption that
|y| = sup{p: (1,z) € ¥}. By the Exhaustion Principle, we can deduce z, as

desired. So, a sequence (x,)nen can be constructed such that = = |xn| and
Tn € ((Ker (T — \I)™* N Ker (T — )J)"“) .
Therefore, it follows from
(T =AD" (T — AN)zp — Az, — (T = AD)zxp,) =0 (M < n)
that (T'— M)z, — Az, — (T — M)z, € Ker (T'— AI)", and so

|7z, — Txw|? = |Aow + (T = M@y — Az, — (T — M)y ?
> |Azo|? + (T = M)y, — A2y — (T — A)zyp|?
> A || = 7N # 0

which contradicts cyclically compactness of T, and the proof is finished. O

Let T be a cyclically compact operator on X and A be a global eigenvalue of
T. Define py(X) := sup {m € P(A) : 7N, = 7Ker (T — )™, m < [A]} for each

N € N. Using the lemma above, we immediately have the following corollary.

Corollary 5.1.2. Let T be a cyclically compact operator on X and A be a global

eigenvalue of T'. The following conditions are satisfied:
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(1) pn(A) < pvaa(A).
(2) py(M)Ker (T — AN = py(N)Ker (T — X)VFL
(3) pn(A)Ny = pn(M)Ker (T — M)V,

(4) A= Vyenwpn(A) = sup{pn(A) : N € N},

(5) pn(AN)Ny is a Kaplansky— Hilbert module over py(A)A.

According to Theorem 3.1.5, for each N € N, there exists a partition of px (),
(be)eez in P(A) such that be Ny is a strictly »(be)-homogeneous Kaplansky—Hilbert
module over bgA. Since T is cyclically compact, s(be) must be a finite number.
From [23, 7.4.7.(1) Theorem], we can assume that = = N and s(7\ y(n)) = n
where 7y y(n) := by,. So, there is a unique sequence (7x;),o,, in P(A)" such that
T = (Tai(n)),,ep 18 @ partition of py(X) and 7, (n) Ny = 7y (n)Ker (T — X! is
a strictly n-homogeneous Kaplansky—Hilbert module over 7y,;(n)A. Moreover,
Tai(n) < Tagga1(n) and 7y (n) ATy k(m) = 0 are satisfied for all k, [, m,n € N with

n # m. So, (Ta(n)), oy is a partition of [A] where 75(n) :=sup {7\;(n) : | € N}.

Definition 5.1.3. Let A be a global eigenvalue of T'. We call

Ty = O—Z nta(n) = O—Znsllelnlj {mu(n)} = sup {nm\;(n)} € (ReA)™

neN n,leN

the multiplicity of global eigenvalue A of T'.

5.2 Global Eigenvalues of Cyclically Compact
Operators on Cy (Q, H)

In this section, we give some characterizations about the global eigenvalues of
cyclically compact operators on Cx (@, H) and prove that there exists a sequence
consisting of global eigenvalues satisfying the corresponding properties. Through-

out this section, A, will denote the clopen set corresponding to the projection [A]
(A e ).

Proposition 5.2.1. Let U = Sz be a cyclically compact operator on Cy (Q, H)
and a nonzero A € C(Q). If for some meager Ay of Q, \(q) is a nonzero eigen-

value of u(q) for all g € Ax\ Ao, then X is a global eigenvalue of U.
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Proof. Let q be element of Ay \ Ap. Consider the set

By = {UZ = A% : u(q)x(q) = Mq)z(q), |Z] = [N}

Since A(g) is an eigenvalue of u(q), B, is a non-empty finitely cyclic subset. If we
define
ri=inf {|UZ — AZ| : UZT — \T € B,},
then it follows from |UZ — AZ|(q) = [[u(q)z(q) — Mq)z(g)|| = 0 that r(g) = 0.
Moreover, given ¢’ € Ay \ Ag with ¢ # ¢'. Then there is ¥ € Cy (Q, H) such that
UZ — AT € B,N By. Thus, from |UZ — AZ|(¢') = 0, we have r(¢) = 0, i. e.,
r = 0. Using [23, 2.2.9.(1) and 8.1.8.(3)], there exists (Z,)nen with |Z,| = [A]
such that for each n € N
|UF, A < 1
As U is cyclically compact, there is a cyclic subsequence (UZ,, )nen of (UZy)nen

which is norm-convergent to some y, and since the following is valid

U7, — i, | < 1
n

for every n, we have (AZ,, )nen is norm-convergent to y. Therefore, Uy = Ay and

|§| = || are satisfied. From Proposition 3.3.10, A is a global eigenvalue of U. [J
Lemma 5.2.2. Let U = Sy be in End (Cy (Q, H)) and the function X be a global

eigenvalue of U. Then there is a meager subset By such that A(q) is a nonzero

eigenvalue of u(q) for all ¢ € Ay \ By.

Proof. By Proposition 3.3.10 Uz = A7 is satisfied for some 7 € Cy (Q, H) with
|Z| = [Al. Thus, u(q)z(q) = A(g)z(g) holds for all ¢ € Qo := dom(u) N dom(z)
which is comeager. Define V) := {q € @ : A\(¢) # 0}, and so it is open in Q. It
follows from Ay = ¢l (V,) that A,\V, is a nowhere dense set in ). Therefore, A(q)
is a nonzero eigenvalue of u(q) for all ¢ € V,NQq since Ay = {q €qQ: Ia:l (q) # 0}.
Define By := Q§U(A, \ V) and note that By is a meager set and A\ By = VANQy.
This completes the proof of the lemma. O

Note that in a topological space K \ int (K) is a nowhere dense set for every

closed set K. We denote by 7y the projection corresponding to clopen set V' in
Q.
Lemma 5.2.3. Let U = Sy be a cyclically compact operator on Cy (Q, H) and A

be a global eigenvalue of U. Then there is a meager subset Ay such that
Ker (U — AI)(g) := (Ker (U — AI)) (q) = Ker (u(q) — A(@)1)

hold for all ¢ € Ay \ Ap.
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Proof. Clearly, ¢ € dom(u) implies Ker (U — A)(q) C Ker (u(q) — Mq)I). As
U is cyclically compact operator, there exists a partition of [A], (bg)ken in P(A)
such that b,Ker (U — AI) is a strictly n-homogeneous Kaplansky —Hilbert module
over b,C(Q). Fix k € N. Let {e; : ¢ =1, ..., k} be a basis for byKer (U — A\I). By
Lemma 3.4.4, we have a meager set Ay such that {e;(q) : i = 1,..., k} is a basis of
Ker (U — M\I)(q) for all ¢ € V}, \ Ay where V} is clopen set corresponding to the
projection bg. From the lemma above we obtain a meager subset By such that
A(q) is a nonzero eigenvalue of u(q) for all ¢ € Ay \ By. Now we will show that
the set

Cy :={q€ Vi \ (AxUDBy) : Ker (U — A\I)(q) # Ker (u(q) — MNq)I)}

is meager. Note that A(¢) # 0 (¢ € Ck). Define A := & N C), where & :=
int(cl(Cy)), and note that ® = cl(A), and C \ ® = Cx \ A is a nowhere dense set
in ). On the other hand, for every ¢ € A there exists h, € Ker (u(q) — A(¢)I) N
Ker (U — M )(¢q)* with ||hy|| = 1. Since uw — AI : dom(u) — B(H) is continuous
in the strong operator topology there exists a clopen set U, ,, C ® for each n € N
and g € A such that

[(w(w) = Aw)hg = (ulg) = M) hgll = [[u(w)hy — A(w)h|| < %

and

Elh)y@|<t (=18

(& V) (w) = (& | T (0)] =

for w € U,, N dom(u) where h, : t — h, (t € Q). Thus, it follows from
Ugn = cl (U, Ndom(u)) that

~ ~ 1 1
Tan |[Uhg — Ahg| < —Tan and 7, < —Tan (i=1,..,k)

(@1

where my, = my,,. From & = cl(A) we get 7 =/

e Tan where 7 = 7.
In view of the Exhaustion Principle, there exists an antichain (u,) such that
m = \/ lo and for every « there is ¢ € A with u, < 7,,, and denote ¢, := ¢. If

we define z,, = bo-) uaﬁqa where hg, :t > hy,, then we have |Z,| = 7 and

- - 1 o~ 1 ,
Uz, — Az, < o and 7|(¢; | T,)| < o (1=1,...k).
Since U is cyclically compact operator, there is a cyclic subsequence (UZ,, )nen
of (UZy)nen which is norm-convergent to some z. So, (AZ,, )nen is also norm-
convergent to Z. This implies UZ = AZ and 7|\| = |Z| and 7 |(¢; | Z)| =0 (i =
1,...,k). Thus, z(q) € Ker (U — AI)(q) C Ker (u(q) — A(q)I) and (e;(q),z(q)) =0
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(1 = 1,...,k) are satisfied for all ¢ € A N dom(z), and so z(¢q) = 0. This and
7|\ = |z] imply A(g) =0 for all ¢ € Andom(z), and so A C dom(z)*, i. e., A is
meager. Hence, it follows from Cj, = (C), \ A)UA that Cy is meager. Thus, By :=
Ay U By U Y is meager for each k € N. So, Ker (U — A\I)(q) = Ker (u(q) — \(¢)I)
holds for all ¢ € Ay \ Ag where Ay = (A,\ \ (Ukew Vk)) U (UkeN Bk) is meager, as
desired. O]

Corollary 5.2.4. Let U = Sy be a cyclically compact operator on Cy (Q, H) and
A be a global ergenvalue of U. Then there exists a meager set By such that for all
q € A\ \ By the following statements hold:

(1) A(q) is a nonzero eigenvalue of compact operator u(q);
(2) (Ker (U = AI)*) (q) = Ker (u(q) — M@)1)* (k € N);

(3) Ni(q) = Ny(q where Ny is the generalized eigenspace, corresponding to
the eigenvalue A(q);

(4) Ta(q) = m(A\(q)) where m(A(q)) is the algebraic multiplicity of \(q).

Proof. For all ¢ € @ the following equality is satisfied
Nx(g) = | Ker (U = AD)"(q).
neN

Moreover, for every n € N there exists a cyclically compact operator U, such
that (U — A\I)" = U, — A\"I where \" is a global eigenvalue of U,. Using this
and Lemma 5.2.3 we obtain a meager subset A, such that Ker (U — AI)"(q) =
Ker (u(q)—A(g)I)™ holds for all ¢ € A\\ A,,. Define Ay := U,enA,, and we deduce

that Ay is meager and
Na(g) = | Ker (u(g) = Ma)D)" (g€ Ax\ Ap).

This means that
Ni(g) = Ny (g € Ax\ Ao),

and so dim (Ny(g)) = dim (Ny(g)) = m(A(g)). On the other hand, from definition
of 7\ and Lemma 3.4.4, there exists a meager set Cj such that 7(q) = dim (Nx(¢))
holds for every ¢ € Ay \ Cy. Therefore, if we define By := Ay U Cp, then the proof
is finished. O

Denote by Sp*(u(q)) := Sp(u(q)) \ {0} the set of nonzero elements of the

spectrum of u(q).
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Lemma 5.2.5. Let U = S; be a cyclically compact operator on Cy (Q, H) and
Ay € Sp*(u(q)) for all ¢ € A, C Q. If A, is not meager in Q, then there
are a global eigenvalue X\ of U and a comeager set )y that satisfy the following

conditions:

(1) [A] = Vyen T~ where my is the projection corresponding to clopen set Uy :=
int (cl (Ay)) with

1
AN::{quu:‘)\q’ZN};
(2) 7TN|>\| > %ﬂ']\[ (N € D\I),

(3) if q is in Qo N Ay for some N € N, then [\(q)| > +;

(4) Aq) € Sp™(u(q)) whenever q € Qo and \(q) # 0;

(5) q ¢ A, whenever q € Qo and \(q) = 0.

Proof. Without loss of generality we may assume that u(q) is compact operator
on H for all ¢ € dom(u) by Proposition 3.4.7. There exists an eigenvector h, of
u(q) corresponding to A, with [|h,]| = 1 for all ¢ € A,. Since A, = Uyepn AN is
not meager, Uy, # @ for some Ny, i. e., my, # 0. Since u is continuous in the
strongly operator topology, for every n € N and ¢ € Uy N Ay we have a clopen
set Uynn C Uy such that

1
lu(w)hg = w(@)hq|| = llu(w)hg = Aghqll < —

for each w € U,, vy N dom(u). Moreover, it follows from Uy = cl(Uy N An)
that ™ = \/

Principle, there exists an antichain (u,) such that 7y = \/ p, and for every

TqnN Where m,, Ny = Ty In view of the Exhaustion

qeUNNAN q,n,N"*

a there is ¢ € Uy N Ay with po < 7y, n, and denote ¢, := ¢. If we define
MV = 03 AN tta and @) = 00->" p1azq where z, : t — hy, (t € Q), then
|2)] = [AY] = 7n and [AY| > &7n. Since (AY),en is a bounded sequence
in C(Q), there exists a cyclical subsequence (A)) _ of (AY)nen which is norm-
convergent to some Ay, and so [Ay| > %WN and [\y| = my are satisfied. On the
other hand, we have

Uz — AVa] < %WN,

and so

|UxN — )\Na:Nl < %ﬂ'N.

Un Un™"VUn
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As U is cyclically compact operator, there is a cyclic subsequence (U xf;i )new of

(U x,]j\i )n <y Which is norm-convergent to some z, and since the following is valid

for every n
1
N N _N
|Ux7ln - )\Unx"?nl S Eﬂ-]\”

()\fxlxé\i)neN is norm-convergent to xy. Thus, we have Uzy = Ayxy and |)\N| =
|a:N|, and so Ay is a global eigenvalue of U for N > Ny. Define x := mx; +

bo-Y  nen (Mgt — Tn)Tn41 and A = A + 0-) nep (T4 — Tv) An41, and note
that |z] = |A] and [A] = \/yo v and my|A| > 47y and A is a global eigenvalue
of U since my, > 0. This implies (1) and (2). From Proposition 5.2.2, there exists
a meager set Ag such that A(q) is a nonzero eigenvalue of u(q) for all ¢ € Ay \ Ao

where A, is the clopen set corresponding to the projection [A]. If we define

Qp = ( U (An\ UN)) U dom(u) U Ay,

NeN

then Qo is a comeager set, and (3), (4) and (5) are satisfied. O

Lemma 5.2.6. Let U = Sy be a cyclically compact operator on Cyu (Q, H) and
let 2 be a finite subset of C(Q) and the set

A, C {q € dom(u) : $p*(u(q)) \ {o(q) : o € £} # 2}

be not meager in Q. If A, is in Sp™(u(q)) \ {o(q) : 0 € £} for each q € A,, then
there is a global eigenvalue X of U and a comeager set Qy that satisfy the following

conditions:

(1) [A] = V yen T~ where my is the projection corresponding to clopen set Uy :=
int (cl (Ay)) with

Ay :={g € Ay: (Yo € X)lo(g) = Al = 1/N and [A[ > 1/N};

(2) 7n|A > 2N and Ty|o — A > s (N € N,o € 5);

(3) if ¢ is in Ay N Qo, then |X(q)] > + and |o(q) — A(q)| > 5 hold for each
<D

(4) if M(q) # 0 holds for some q € Qq, then A(q) € Sp*(u(q)) \ {o(q) : 0 € £};

(5) if AM(q) = 0 holds for some q € Qq, then q ¢ A,.
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Proof. The proof is similar to the proof of Lemma 5.2.5. Uy, # @ for some N
since A, = Jyep An is not meager. Let by be an eigenvector of u(g) correspond-
ing to A\, with ||| = 1 for every ¢ € A,. For every N,n € N and ¢ € Uy N Ax

we can find clopen set U, ,, y C Uy such that

1 1
li(w)hy = bl < — and [o(w) =\, = o (0 € %)

for all w € Uy, v Ndom(u). As in the proof of Lemma 5.2.5, we can find a global

eigenvalue Ay of U such that [Ay] = mx and

1 1
‘)\N’ > NT('N and 7TN‘O' — )\N‘ > ﬁﬂ.N (U € E)

Therefore, if we define

A= T A+ O—Z(WN-H - WN)/\N—&-ly

NeN

then [A\] = \/ v v and A is a global eigenvalue of U since 7y, > 0. This implies
(1) and (2). From Proposition 5.2.2, there exists a meager set Ay such that A(q)

is a nonzero eigenvalue of u(q) for all g € Ay \ Ag. If we define

Q5 = (U (AN \ UN)) U dom(u)° U <AA\ U UN> U Ao,

NeN NeN

then Qo is a comeager set, and (3), (4) and (5) are satisfied. O

Proposition 5.2.7. Let U = Sy be a cyclically compact operator on Cy (Q, H).
Then there exist a sequence (A,), oy @nd a comeager set Qo that satisfy the fol-

lowing conditions:

(1) Sp*(u(q)) = {Au(q) : Aulg) # 0 (n € N)} (g € Qo);
(2) Apt1 = 0 whenever A\, = 0;
(3) [M] = [Mega] (k€ N);

(4) Au(q) # Me(q) whenever A\n,(q) # 0 or M\e(q) # 0 forn # k (g € Qo).

Proof. Without loss of generality we may assume that u(q) is a compact operator
on H (q € dom(u)). We shall construct by induction a sequence (\,) consisting
of global eigenvalues or zeros, and a decreasing comeager set sequence (Q,,) such
that:

(i) Forq € Qn, M\u(q) € Sp™(u(q))\{Ni(q) : it =1,...,n — 1} whenever \,(q) # 0.
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(ii) For g € @y, Sp™(u(q)) \ {Ni(q) :i=1,...,n — 1} = & whenever \,(q) = 0.
(iii) Sp™(u(q)) = { (@) : An(q) # 0 (n € N)} is satisfied for all ¢ € Qo := [ Qn-

Forn=1.1f

Ay, += {g € dom(u) : Sp*(u(q)) # 2}
is meager, then we take A, := 0 and Q,, := Q\A,, = {¢ € dom(u) : Sp*(u(q)) = &}
gy, 5° that A\, € Sp*(u(q)) and

|Ag| is the maximum element of |Sp*(u(g))| for all ¢ € A,,. Thus, from Lemma

for every n. If not, we can choose a family (\,)

5.2.5 we get a global eigenvalue A\; and there exists comeager set (); such that
(i) and (ii) are satisfied. Now suppose that the elements A, and @, are already

constructed as above. If the set

Aoy = {0 € Qu: S0 (@) \ M) i = 1,.m} £ 27)

is meager, then we take Ay, := 0 and

Qrr = 1{q € Qi :Sp™(u(g) \ {\i(@) i =1, ... k} = @} = Qu N (Au,,)

for every k£ > n. If not, we can choose a family (A,) so that A\, € Sp*(u(q))

and |\,| is the maximum element of [Sp*(u(q)) \ {Ni(q) :i=1,...,n}| for all g €

q€Au, 14

Ay,.i- Thus, it follows from Lemma 5.2.6 that we get a global eigenvalue A4
and there exists comeager set Q11 C @, such that (i) and (ii) are satisfied.
From (i), {M(q) : Au(q) #0 (n € N)} C Sp*(u(q)) holds for every n. Assume
Sp*(u(q)) # {Au(q) : Mu(q) #0 (n € N)} for some ¢ € Qp. Thus, there exists
iy € Sp*(u(q)) \ {An(q) : Mu(q) # 0 (n € N)} such that |p,| is the maximum of
ISp™(u(q)) \ {Au(q) : Mu(q) # 0 (n € N)}|. Moreover, there is N € N such that

1 1
il > 1 and (@) = gl > 5 (€ N),

Thus, there exists K € N such that ¢ € A,, and |u,| is the maximum of
ISp*(u(q)) \ {\u(q) :n=1,....,k—1}]| for k > K. It follows from Lemma 5.2.6
(3) that

1

— (K <k

= (K <h)
which contradicts A\z(¢) converging to zero, and so (iii) holds. Clearly, (i), (ii)

[Ar(q)] >

and (iii) complete the proof of the proposition. ]

It is well known that if (Ay)aeca is a net in C(Q), then inf,es Ay = 0 in C(Q)
iff there exists some comeager set @y in @) such that inf,c4 Ao(¢) = 0 in R for all
q € Q. Thus, if f, “ 0 in C(Q), then f,(q) — 0 holds on some comeager set.
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Conversely, if (f,)nen is @ bounded sequence in C(Q) and f,(q) — 0 is satisfied
on a comeager set, then (f,),c, o-converges to 0. Note that |U|(q) = [lu(q)|
holds on a comeager subset of @) for each U = 53 in End (Cx (Q, H)).

In what follows, the phrase “consisting of global eigenvalues or zeros,” refers

to the fact that A\ is a global eigenvalue whenever A\, # 0.

Theorem 5.2.8. Let U = Sy be a cyclically compact operator on Cy (Q, H).
Then there exists a sequence (Ap) ey consisting of global eigenvalues or zeros in
C(Q) with the following properties:

(2) there exists a projection Ty in C(Q) such that || is a weak order-unity
in T C(Q) for all k € N;

3) there exists a partition (my of the projection L such that oA = 0,
keN o0

T < P\k}; and 7Tk>\k+m =0, m,k c D\l,’
(4) TAprm F# T for every nonzero projection 1 < Too+mg and for allm,k € N;

(5) every global eigenvalue \ of U is of the form A = mixgeyn (prAx), where

(Pr)pen 5 @ partition of [A].

Proof. By Proposition 5.2.7, we have a sequence (A;),, consisting global eigen-
values or zeros. Define 7o := A, [Me] and 7 := M) and mp o= [Ae] A [Nega]
(k € N), and so (2), (3) and (4) hold. Since Sp*(u(q)) = {\u(q) : A\n(q) # 0} and
IAn(q)] < [lu(g)]| hold on a comeager set we have |A,| < |U] and limg_,o0 Ax(g) = 0
on a comeager set, and so we obtain o-lim Ay = 0, i. e., (1) holds. Let A be a
global eigenvalue of U. From Lemma 5.2.2 and Proposition 5.2.7, there exists

some meager set Ay such that Ay \ Ay = [, Ar where

Ap:={qg€ A\ \ Ao : Mq) = M(q)} (keN).

Since Ay \int (cl (Ax)) is nowhere dense, [A] = \/, ot and g\ = pp Ay, where g,
denotes the projection corresponding clopen set int (cl (Ax)). Thus, there exists a

partition (pg),c, of [A] such that A = mix;e (prAx), and the proof is finished. [

Let (Ak) ey be as above theorem. Note that the statements of the Proposition
5.2.7 is satisfied by (Ag),cp-

Let the family of nonempty extremal compact spaces (Q+),er with I" a set of

cardinals satisfy functional representation of X as in Theorem 3.1.18. Let T" be
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a cyclically compact operator on Zfel“ Cyu (Q4,¢2(7)). From Theorem 3.4.9, T,
is a cyclically compact operator on Cyx (Q.,l2(7)) for all v € I' where Z(T) =
(Ty)yer. So, we have a sequence (A\i(T%)),, satisfing the statements of the
Theorem 5.2.8 for each v € I'. Define Ay (T) := (Ae(T}))er, and note that \x(T)
is a global eigenvalue of T' or zero for each kK € N. On the other hand, given a
global eigenvalue A = (\,),er of T', the function A, is a global eigenvalue of T,

whenever A\, # 0. Let py, = (pr) be a projection for each kK € N. Then a

vel
partition (pg),e, of [A\] means that (p,), ., is a partition of [A,] for every v € T’
since [\] = ([Ay])

we can also generalize the theorem above as following.

Ser- Using the representation of Kaplansky—Hilbert modules

Theorem 5.2.9. Let T be a cyclically compact operator on X . Then there exists
a sequence (\i,)yop consisting of global eigenvalues or zeros in A with the following

properties:

(1) el < T W] = Aesa] (B € N) and o-lim Ay, = 0;

(2) there exists a projection T in A such that me| k| is a weak order-unity in

T\ for all k € N;

(3) there exists a partition (my,) of the projection 7= such that moh; = 0, 7 <

[)\kz]; and 7Tk)\l~c+m =0, m, ke D\l,’
(4) TAprm # T for every nonzero projection m < T +m and for allm, k € N;

(5) every global eigenvalue A of T is of the form A = mixgey (prAr), where

(Pk)gen @8 @ partition of [A].

Let (Ag),en be as above theorem. If A, # 0, then by definition of (p;(Ax))ien
and (75,4(n)), o, there exists a unique sequence 7y(n) = 7x(n) A pity(Ar)
such that (741(n)), ey is a partition of [A] for every k € N, and 75,(n) # 0
implies 7 ;(n)A; is a global eigenvalue of T of multiplicity n, i. e., 74;(n)N), =
Tea(n)Ker (T — A\ I)! is n-homogenuous. If A, = 0, take 73;(n) := 0 and 7, :==0
for all k,1,n € N.

Definition 5.2.10. The sequence (A\y(7)),.cy, Where A\ (T') := Ay, is given by the
above theorem, is called a global eigenvalue sequence of T with the multiplicity

sequence (Tg(T'))ren where T (T) := T,
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5.3 Weyl and Horn Inequalities and Lidskii Trace

Formula

In this section, we give a variant of Weyl- and Horn-type inequalities and Lid-
skii trace formula for cyclically compact operator on X. Throughout this sec-
tion, sequences (€y)ren and (ﬁ)kew in Cy (Q, H) and positive functions sequence
(sk(U))ken in C(Q) will satisfy the statements of Proposition 3.4.11 for cyclically
compact operator U on Cy (Q, H).

Lemma 5.3.1. Let U = S; be a cyclically compact operator on Cy (Q, H). The

following statements are satisfied on a comeager subset of Q:

(1) the numbers sx(U)(q) are the singular numbers of compact operator u(q)

and
o0

u(@)h = sk(U)(q) (h, exlq)) fr(a);

k=1

(2) tr(U)(q) = tr(u(q)) and v1(U)(q) = vi(u(q)) whenever U € A (Cx (Q, H)).

Proof. We may assume that u(q) is compact operator on H (¢ € dom(u)) by
Proposition 3.4.7. Let 7 € Cx (Q, H) and n € N. Since (s;x(U))ren is a decreasing
sequence we have the following inequality

2 2

n—1
Uz =) s(U) (T | ey fk
k=1

bo- > si(U) (¥ | &) fi

keEN,

- <60-Z si(U) (7 | &) fi

kENy,

=0 s(UP (T | @)l | il

kENy

< su(U)* <OZ (7 | 5k>!2>

< 5, (U)?|]?

bo- Y si(U) (7 | 5k>ﬁ>

kENy,

where N,, := {k € N : k > n}. From infycy sx(U) = 0, there is a comeager set (4
in @ with infzey sx(U)(q) = 0 for all ¢ € Q1. Define

Qo := Q1N dom(u <ﬂ dom (e, > N (ﬂ dom(fk)> ,

keN keN

and note that Qo is a comeager set in ). Moreover, {ex(q) : k € N} \ {0} and
{fr(q) : k € N} \ {0} are orthonormal sets in H for all ¢ € QQy. Given h € H.
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Define the function z : t = h (t € Q), and note that |Z](¢) = ||h| (t € Q) and
dom(z) = Q. Therefore, for each ¢ € Qg the following inequality holds

n

u(@h =Y se(U)(a) (b, ex(a)) fila)

Uz—Zsk Zl e fr | (@)

k=1
< spp1(U | | = sp41(U)(q) ||| -
Thus, we deduce that for each g € Qg
u(g)h = sk(U)(q) (h, exlq)) fr(a),
k=1

and so the numbers s,(U)(q) are the singular numbers of the compact operator
u(q) by the Rayleigh—Ritz minimax formula [9, Theorem 15.7.1]. Now assume
that U € &1 (Cy (Q, H)). Using Proposition 4.2.2 we obtain that (s;(U)),c is
o-summable in C(Q) and vy (U) = 0-), o 5x(U). Moreover, by Lemma 4.2.9 we

have
tr(U) = 03 s (U) <}; | €k> .

keN

Thus, there is a comeager set Qo C @)y such that for all ¢ € Q-

tr(U)(q) = Y sk(U)(@) (frla):en(a)) and o1 (U)(a) = Y si(U)(9)

keN keN

So, u(q) € S (H). Again, by Proposition 4.2.2 and Lemma 4.2.9 tr(U)(q) =
tr(u(q)) and v (U)(q) = vi(u(g)) hold on comeager set (). This completes the

proof of the lemma. O

Theorem 5.3.2. Let U = S be a cyclically compact operator on Cy (Q, H) and
(Ae(U))yen e a global eigenvalue sequence of U with the multiplicity sequence
(Tk(U))gen- The following statements hold:

(1) (Weyl-inequality) if (msx(U)),cy 15 0-summable in C(Q) for some projection
7, then the following inequality holds

Zm-k NA(U)] < O-Z wsp(U)

keN kEN

(2) (Horn-inequality) Suppose that U, = Sg, is a cyclically compact operator
on Cu(Q,H) for1 <k < K. Then

[[s5:Ux---h) < HHSZ(Uk) (N e N)



(3) (Lidskil trace formula) if U = Sz € % (Cx (Q, H)), then the following

equality holds
tr(U) = O—Z?k(U))\k(U)
keN
Proof. Let (Ax(U)),en be a global eigenvalue sequence of U with the multiplicity
sequence (T(U))gen. From Corollary 5.2.4, Proposition 5.2.7 and Lemma 5.3.1
there exists a comeager set ()y such that for each ¢ € @), the following statements

hold:

(i) the numbers s,(U)(q) are the singular numbers of compact operator u(q)

and
o0

u(@)h =Y sk(U)(q) (h, exlq)) fula);

k=1

(i) tr(U)(q) = tr(u(q)) and v (U)(q) = vi(ulq)) if U € 71 (C4 (Q, H));
(iif) Sp™(u(q)) = {Au(U)(q) : Mn(U)(q) # O};
(iv) Au(U)(q) # An(U)(q) if Mu(U)(q) # 0 or An(U)(q) # 0 for n # m;

(v) i M(U)(g) # 0, then 7(U)(q) = m(M(U)(@)) € N where m(A(U)(q)) is
the algebraic multiplicity of A\x(U)(q).

Moreover, s, (U)(q) # 0 implies that ||ex(q)|| = || fx(q)|| =

(1) Let (75x(U))en be o-summable for some projection 7. Using (i), (iii),

(iv), (v) and Weyl’s inequality for compact operator u(q) we get that

k=1
holds on a comeager set ()y. This implies
0y 77U M(U)| < 0 7si(U)
keN keN
since Y-, m(q)sk(U)(q) is finite for each ¢ € Q.

(2) Uk -+ U = Sag -+ Say = S and (ug - u1)(q) = ux(q) - - - ui(q) are
satisfied. So, using (i) there exits a comeager set )y such that for each g € Qg
the numbers s (Uk - - - Uy)(q) and si(Uy)(q) are the singular numbers of compact
operators ug(q)---ui(q) and ux(q) (1 < k < K), respectively. Therefore, from
Horn’s inequality for compact operators ug(q) with 1 < k < K we get that

Hsi(UK' SHH Uk

=1
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holds for all ¢ € (Qg. Thus, we have the desired inequality.

(3) Let U = S5 € A1 (Cx (Q, H)). Then (s,(U)),ey is o-summable in C(Q)
and vy (U) = 0-) o Sk(U). Using (i), (ii), (iii), (iv), (v) and Lidskii trace formula

for compact operator u(q) we obtain that

tr(U)(q) = tr(u(q)) = > 7x(U) (@) \e(U)(q)
k=1
is absolutely convergent on the comeager set )y, and so

tr(U)(q) = tr(u(a) = Y T(U)(@)M(U)(9)

keN
holds on ). From (1) we see that (7;.(U)Ax(U)),ey is o-summable in C(Q), and
so we have

tr(U) = 03 7r(U)\e(U),

keN

as desired. O

Let (Ag)eez be a family of commutative AW *-algebras and let (z)ren be a
= and (3., Tk)aer be a bounded

g€
family with I = Z;,(N). Then (zy)gen is o-summable in A if and only if

sequence in A := Z?ea Ae with zy, 1= (2p)

(Tr,e)ren is o-summable in A for every £ € Z. In particular, o-), 2 =

(-2 ke The) cez- Therefore, we have the following lemma.

Lemma 5.3.3. Let T be a cyclically compact operator on X = Z?el“ Cy (@4, 02(7))
and 1 <p < oo. Then T is in %,(X) if and only if T, is in .7, (Cy (@, l2(7)))
for ally € T and sup, 1 [|v,(T5)|| < 0o where P(T) = (T,),er- In particular, if

T € A (Cy Qs 2(7), then tr(T) = (ix(T;))

yel'”

Proof. Suppose that T in .7,(X). Let (ex)ren, (fi)rew, and (sx(T))ren satisfy
the condition of Proposition 3.4.11 for T". Then v,(T)? = o0-_, o sx(T)P. If
ek = (ex())ers fo = (fe(¥))yer and s,(T) = (sx(T)(7))yer, then (er(y))ken,
(f(¥))ken, and (sx(T)(7))ken satisfy the condition of Proposition 3.4.11 for T.,.
Therefore, v,(T)(7)? = 0-) e SE(T) (V)P = vp(T5)P, 1. e., Ty in 7, (Cu (Q4, £2(77)))-

Conversely, assume that 7, is in .7, (Cyx (Q4,¢2(7))) for each v €I and
SUP,er [vp(Ty) || < oo. Let (ex(7))ren, (fu(7))ren, and (si(Ty))ren satisfy the
condition of Proposition 3.4.11 for T,. Then v,(T})? = 0-)_, . sx(T5)?. Denote
by er = (ex(V))ers fr = (fs(V)rer and si(T) = (sk(T5))rer- Thus, (ex)ren,
(fi)ken, and (sg(T"))ken satisfy the condition of Proposition 3.4.11 for T'. Since
sup,cr ||vp(75)]| < oo we have T' in .7, (X).
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Let T € 7 (Cx (@, l2(7))) and & be a projection orthonormal subset of X.
Thus, &, \ {0} is a projection orthonormal subset of Cy (@, ¢2(7)) where

&y i={ey e = (ey)rer € &}

for each v € I'. The proof follows immediately from (T'e | e) = ((Tyey | €y))yer
(€ = (&y)yer € &). O

Note that if T = (7)) er and L = (L,)er are operators on X, then T'L =
(T’YL’Y)’YGF'

Let the family of nonempty extremal compact spaces (Q),er with I' a set of
cardinals satisfy functional representation of X as in Theorem 3.1.18. Given a
cyclically compact operator 7" on ZA/EF Cy (@4, ¢2(7)). By Theorem 3.4.9, this
means that T, is a cyclically compact operator on Cy (Q,l2(y)) for all y € I’
where Z(T') = (T},)yer. Assume that Y, C Cx (Q-, l2(7)) is a Kaplansky—Hilbert
submodule over C(Q.,). Denote

g
ZY7 ={r=(2y)yer e X:(Vyel')z, €Y,}.

yel’

Then Y := 7€p Y, is n-homogenuous over mA with projection m = (7, ) er if
and only if Y, is n-homogenuous over 7,C(Q,) for each v € I Let (Ax(T)),.cy
be a global eigenvalue sequence of T' with the multiplicity sequence (75 (7T))ren-
Then for each v € ', (Ar(T%)),.cp is also a global eigenvalue sequence of T, where
Ae(T) = (Ae(T4)) e Let (T(T,))ren be the multiplicity sequence corresponding

to global eigenvalue sequence (Ar(T)),c,- Moreover, the following holds

mKer (T — \(T ZMKer Me(T) 1!
yel’
for each m = (7)) er € iB(A) and k, 1 € N. Thus, pi(Ae(T)) = ((Ae(T5))),er
and T/\k(T)yl(n) = (T,\k (Ty) )wer are satisfied for all k,l,n € N, and so we have
T ()T(T) = (Tan)d(TR(T,)) o since T ), (n)74(T) = 7, () (n) and
Tae(m) 1 (M)TR(Ty) = nTa (r,y(n). Using the representation of Kaplansky—Hilbert

modules we can also generalize the theorem above as follows.

Theorem 5.3.4. Let T' be a cyclically compact operator on X and (Mg (T)),cp e
a global eigenvalue sequence of T with the multiplicity sequence (Tx(T))ren- Then

the following properties hold:
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(1) (Weyl-inequality) if (w54 (1)) 15 0-summable in A for some projection m,

then the following inequality holds

0-3 " 7T M(T)| < 0-Y_ wsi(T);

keN keN

(2) (Horn-inequality) Suppose that Ty is a cyclically compact operator on X for
1<k<K. Then

Hsi(TK~-T1) < HH&(T,@) (N € N).

(3) (Lidskii trace formula) if T' € . (X), then the following equality holds

tr(T) = 0-Y _ 7u(T)Ai(T).

Proof. Let (ms(T)),en be o-summable sequence in A for the projection 7. Then
mT(T)\(T) € A (ke N). Indeed, 7y, (1) (n)7Tk(T)|Ae(T)| < 0-3 e 75K(T)
holds for each k,n € N from Theorem 5.3.2 and 7y, () (n)7k(T)|M\e(T)| =
(TAk(Tw):l(n)?k(TV)‘)\k(T'Y)l)'ygl" Since A is B-cyclic we have 77, (T)\e(T) € A.
Thus, the proof of the theorem is immediately from Theorem 5.3.2 and the pre-

ceding lemma. O
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