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Abstract

INTEGRAL OF KRIVINE EXTENSIONS AND

ORTHOGONALITY AND HERMITIAN PROJECTIONS ON

COMPLEX BANACH LATTICES

TÜRER, Mehmet Selçuk

Ph.D., Department of Mathematics and Computer Science

Supervisor: Prof. Dr. Mert ÇAĞLAR

August 2016, 43 pages

The present work consists of two main parts. In the first part, Krivine extensions of

positively homogeneous functions are considered, and it is shown that the Bochner

integral of the Krivine extension of a positively homogeneous function coincides with

the Krivine extension of its integral.

In the second part, order and hermitian projections on complex Banach lattices

are taken into consideration. Introducing the propery (d), it is shown that both types

of projections coincide for complex Banach lattices having property (d). Examples

of Banach lattices satisfying property (d) are provided and, as a by-product of this,

a direct solution to Dales’ problem for such Banach lattices is given.

Keywords: Banach lattice, orthogonality, hermitian projections.
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Özet

KRIVINE GENİŞLEMELERİNİN İNTEGRALLERİ VE

KOMPLEKS BANACH ÖRGÜLERİ ÜZERİNDE

ORTOGONALLİK VE HERMİTSEL PROJEKSİYONLAR

TÜRER, Mehmet Selçuk

Doktora, Matematik-Bilgisayar Bölümü

Tez Danışmanı: Prof. Dr. Mert ÇAĞLAR

Ağustos 2016, 43 sayfa

Eldeki bu çalışma iki kısımdan oluşmaktadır. Birinci kısımda, pozitif sayılar için

homojen fonksiyonların Krivine genişlemeleri ele alınmıştır ve pozitif sayılar için ho-

mojen bir fonksiyonun Krivine genişlemesinin Bochner integrali ile bu fonksiyonun

integralinin Krivine genişlemesinin aynı olduğu gösterilmiştir.

İkinci kısımda, kompleks Banach örgüleri üzerinde sıra ve hermitsel izdüşümler

ele alınmıştır. (d) özelliği tanımlanarak, bu özelliği haiz kompleks Banach örgüleri

üzerinde sıra ve hermitsel izdüşümlerin aynı olduğu gösterilmiştir. Bu özelliği haiz

Banach örgüleri örneklendirilmiş ve bir uygulama olarak, bu Banach örgüleri için

Dales’in problemine direkt bir çözüm verilmiştir.

Anahtar Kelimeler: Banach örgüsü, ortogonallik, hermitsel izdüşümler.
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Özet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Ordered vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Ideals, bands, and sublattices of concrete vector lattices . . . . . . . . 11

2.3 Complex Banach lattices . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Krivine extensions and orthogonality . . . . . . . . . . . . . . . . 18

3.1 C(K) representations and Krivine’s extension . . . . . . . . . . . . . 18

3.2 Bochner integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Orthogonality in normed vector spaces . . . . . . . . . . . . . . . . . 22

3.4 Numerical range and hermitian operators on Banach spaces . . . . . . 24

viii



4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Integral of Krivine extensions . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Orthogonality and Hermitian projections on complex Banach lattices 32

references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



chapter 1

Introduction

A natural and fundamental structural problem in Banach lattices is the one stated by

Dales in [10], which asks to whether a direct sum decomposition E ⊕ F of a Banach

lattice X satisfying the norm equality

||x+ y|| = || |x| ∨ |y| ||, (1.1)

for each x ∈ E and each y ∈ F , is a band decomposition, i.e., |x| ∧ |y| = 0.

The importance of this problem is that an affirmative answer to the problem would

simplify the extensive and deep theory of multi-normed spaces introduced by Dales

and Polyakov in [10]. As pointed out in [10], the question has a negative answer for

real Banach lattices. On the contrary, for complex Banach lattices an affirmative

answer has been given by Kalton in [14]. Kalton solved this structural problem

making heavy use of hermitian projections. He first showed that for a projection P ,

induced by the decomposition E⊕F of a complex Banach lattice X, if E⊕F satisfies

(1.1), then P is an hermitian projection. After that, by using the commutative

properties of central operators, (see [1]), and the machinery of Krivine calculus, he

showed that P is an order projection. For each ε > 0, he proved the inequality

α + β ≤ (1 + ε)(α ∨ β) +
5

ε
(ψ(α, β)− α ∨ β), α, β ≥ 0,

where

ψ(α, β) =

∫ 2π

0

|α + eiθβ| dθ
2π
, α, β ∈ C,

and extended this inequality to X, by using Krivine calculus.

This thesis deals with two main problems originated from the above mentioned

facts and it consists of three parts. In Chapter 2, we introduce the fundamental

theory of ordered vector spaces and give all the necessary definitions and the results

that will be used throughout the thesis. We illustrate the concrete vector lattices, the

1



families of sequence spaces, and function spaces within the context of Banach lattices.

To distinguish between real and complex ones, properties of complex Banach lattices

are explained in detail in this part as well.

Chapter 3 is devoted to Krivine extension and orthogonality in Banach spaces.

We start this chapter by mentioning C(K)-representations of vector lattices. Then,

as an application of such representations, we introduce the Krivine extension of a

positively homogeneous and continuous function. We consider integrals of such func-

tions that are necessarily in the form of of Bochner integrals. Moreover, orthogonality

in the sense of Birkhoff-James in normed vector spaces is recovered and for an oper-

ator T defined on a complex Banach space the numerical range of T and hermitian

operators on Banach spaces are examined.

The main results of the present thesis are given in Chapter 4, which consists

of two sections. In the first section, we deal with Krivine extension of a positively

homogeneous function. We show that the Bochner integral of the Krivine extension of

a positively homogeneous function coincides with the Krivine extension of its integral.

The second section of Chapter 4 deals with the relation between order projections

and hermitian projections on a complex Banach lattice. We know that each order

projection is an hermitian projection, but the converse implication need not be true.

We define a structural property, property (d), on complex Banach lattices and show

that each hermitian projection is an order projection on a complex Banach lattice

satisfying property (d). We give examples of complex Banach lattices satisfying

property (d), and on the contrary, we show that L1[0, 1]C does not satisfy property

(d). We also show that each reflexive complex Banach lattice satisfies the property

(d). As an application, we give a direct solution to Dales’s problem for complex

Banach lattices satisfying property (d).

2



chapter 2

preliminaries

This chapter covers basic definitions, fundamental conclusions and concrete examples

of vector lattices. In the first section, we give basic definitions, and well known facts

without proofs. The second section deals with concrete examples of vector lattices

and the structure of its ideals and bands. Finally in the third section, we focus on

complex Banach lattices. For more details and the proofs of well known facts, we

refer to [1], [3], [4], [17], [18], and [19].

2.1 Ordered vector spaces

Basic definitions

An ordered vector space is a real vector space X equipped with an order

relation which is compatible with the algebraic structure of X.

We say that x ∈ X is positive if x ≥ 0 holds. The set of all positive vectors of

X is called the positive cone of X and denoted by X+. Thus,

X+ = {x ∈ X | x ≥ 0}.

We say that the positive cone X+ is generated if X = X+ −X+. One can observe

that the positive cone satisfies the following:

(1) X+ +X+ ⊆ X+.

(2) λX+ ⊆ X+ for each λ ∈ R+.

(3) X+ ∩ (−X+) = {0}.

These observations allow us to extend the definition of the positive cone. In

vector space X, any subset C satisfying the properties (1)-(3) can be named as a

3



cone. Moreover, if C is a cone of X, then the relation x ≥ y if x− y ∈ C defines an

order relation on X and makes X an ordered vector space. Note that the positive

cone of X with respect to these order relation is precisely C.

For an ordered vector space X and for each x, y ∈ X, if the set {x, y} has supre-

mum and infimum in X, then X is called Riesz space or a vector lattice. We

denote

x ∨ y := sup{x, y} and x ∧ y := inf{x, y}.

Let x ∈ X. We define the positive part, the negative part, and the absolute

value of x,

x+ := x ∨ 0 x− := (−x) ∨ 0 |x| := x ∨ (−x),

respectively.

It easy to see that x = x+ − x−, |x| = x+ + x− and x+ ∧ x− = 0.

The operations that maps x ∈ X to x+, x−, |x|, x ∨ y and x ∧ y for a fixed y ∈ X
is called lattice operations of X.

Let Y be a vector subspace of X. It is clear from the above expressions that if Y

is closed under a lattice operation, then it is closed under all the lattice operations.

In this case, Y is said to be a sublattice of X. One can observe that Y is a vector

lattice with the order inherited from X. On the other hand, X can contain a vector

subspace Z, which is a vector lattice with its own order. In this case, Z is called a

lattice subspace of X. Note that every sublattice of X is a lattice subspace but

the converse needs not be true.

A norm on a vector lattice X is said to be lattice norm if |x| ≤ |y| implies

||x|| ≤ ||y|| for each x, y ∈ X. A normed lattice is a vector lattice which is also a

normed space equipped with a lattice norm. If, in addition, the norm is complete,

then it is called a Banach lattice. We know that lattice operations in a normed

lattice are continuous.

If x, y ∈ X with x ≤ y, then the set [x, y], defined by

[x, y] : {z ∈ X | x ≤ z ≤ y},

is called an order interval.
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A subset A of a vector lattice X is called bounded above if there exists y ∈ X
such that x ≤ y for each x ∈ A. Boundedness from below is defined in a very similar

way. A subset A of X is said to be order bounded if it is bounded both from below

and above. Note that the interval [x, y] is order bounded for each x, y ∈ X with

x ≤ y. It is clear that A is order bounded if and only if it is included in an order

interval.

A subset A of an ordered vector space is called directed upwards if for each

pair a, b of the elements of A there exists some c ∈ A such that a ≤ c and b ≤ c.

Directed downward set is defined analogously. A set is said to be directed if it is

directed both upward and downward. A net {xα} in a vector lattice X is a function

defined from some directed set to X. For α, β ∈ A, if α ≤ β implies xα ≤ xβ, then

the net {xα} is called increasing and denoted by xα ↑. The notation xα ↑ x stands

for xα ↑ and sup{xα} = x. The notations xα ↓ and xα ↓ x are anologous.

A net {xα} in a vector lattice X is said to be order convergent to an element

of x ∈ X and denoted by xα
o−→ x, if there exists another net {yα}, with the same

indices, such that |xα − x| ≤ yα ↓ 0. The element x is said to be order limit of the

net {xα}. It is well known that each net in a vector lattice has at most one order

limit. A subset A of X is said to be order closed if it includes all of its order limit

points, i.e., if {xα} ⊆ A and xα
o−→ x, then x ∈ A. The σ-order closed subsets are

defined analogously.

A vector lattice X is said to be Archimedean if the set {nx} is unbounded

above in X for each x ∈ X+, or equivalently 1
n
x ↓ 0 holds for each x ∈ X+. It

is well-kwon that every normed lattices are Archimedean. We will be fine to study

with Archimedean vector lattices. Throughout this thesis all vector lattices will be

regarded as Archimedean, unless otherwise stated.

A vector lattice X is said to be Dedekind complete if every nonempty bounded

above subset of X has a supremum. It turns out that a vector lattice is Dedekind

complete if and only if the inequality 0 ≤ xα ↑≤ x implies the existence of sup{xα}.

A subset A of a vector lattice X is said to be order dense if for every 0 < x ∈ X
there exists a ∈ A such that 0 < a ≤ x.

In a vector lattice X, the elements x and y are called disjoint if |x| ∧ |y| = 0 and

denoted by x ⊥ y. Note that disjointness is a symmetric relation by definition. If

5



x, y ∈ X, then we have by [4, Theorem 1.7]∣∣|x+ y| − |x− y|
∣∣ = 2

(
|x+ y| ∨ |x− y|

)
−
(
|x+ y|+ |x− y|

)
= 2
(
|x|+ |y|

)
− 2
(
|x| ∨ |y|

)
= 2
(
|x| ∧ |y|

)
.

So that, x and y are disjoint if and only if |x+y| = |x−y| if and only if |x+y| = |x|+|y|.
Two subsets A and B of a vector lattice are called disjoint if a and b are disjoint for

each a ∈ A and each b ∈ B, and denoted by A ⊥ B.

For a non-empty subset A of a vector lattice X, the set

Ad := {x ∈ X | x ⊥ y for each y ∈ A},

is called the disjoint complement of A.

A subset A of a vector lattice X is called solid if |x| ≤ |y| and y ∈ A imply

x ∈ A. If A is both vector subspace of X and solid, then it is called an ideal. An

order closed ideal is said to be a band.

For each subset A of a vector lattice X, there exists a smallest ideal EA containing

A, and it is called the the ideal generated by A. One can observe that, the set

E = {x ∈ X | there exists x1, . . . .xn ∈ A and λ ≥ 0 such that |x| ≤ λ
n∑
i=1

|xi|},

is an ideal containing A and included by any ideal that contains A. Hence, it is the

ideal generated by A. In particular, if A is a singleton {a}, then the ideal generated

by A = {a} is called a principal ideal, and denoted by Ea. It should be clear that

Ea = {x ∈ X | there exists λ ≥ 0 such that |x| ≤ λ|a|}.

For a subset A of a vector lattice X, the smallest band containing A is called the

band generated by A and denoted by BA. In particular, if A is a singleton {a}, then

the band generated by A = {a} is called a principal band, and denoted by Ba.

An element 0 < u ∈ X is said to be order unit if Eu = X, or equivalently for

every x ∈ X there exists some λ ∈ R such that |x| ≤ λu.

A band B in a vector lattice X is called projectoion band if B⊕Bd = X. Each

projection band B defines a natural projection PB on X with range B and kernel Bd.

6



Indeed, each x ∈ X could be written as x = x1 + x2 where x1 ∈ B and x2 ∈ Bd. If

we define PB(x) = x1, then it should be clear that RangePB = B and KerPB = Bd.

Any projection of this kind is called an order projection (or a band projection).

An element u in a vector lattice is said to be a projection element if the principle

band Bu is a projection band.

A vector lattice X is said to have the projection property if each band B ⊆ X

is a projection band. If each principle band B ⊆ X, then X is said to have the

principle projection property.

A linear map between two vector spaces is called an operator. A positive

operator is an operator T : X → Y between two ordered spaces that maps positive

elements of X to positive elements of Y , i.e., Tx ≥ 0 for each x ≥ 0, or equivalently

T (X+) ⊆ Y +. If T is a positive operator, then x ≤ y implies Tx ≤ Ty for x, y ∈ X.

For vector lattices X and Y , the vector space of all operators from X to Y will

be denoted by L(X, Y ). It should be clear that it is an ordered vector space under

the ordering S ≤ T if Sx ≤ Tx holds for each x ∈ X+.

For an operator T : X → Y between two vector lattices if the supremum T ∨(−T )

exists in L(X, Y ), then it is called the modulus of T , and denoted by |T |. If this is

the case, then

|Tx| ≤ |T |(|x|)

holds for each x ∈ X.

An operator T : X → Y is called order bounded if it maps order bounded

subsets of X to order bounded subsets of Y . The vector space of all order bounded

operators from X to Y is denoted by Lb(X, Y ). For brevity, L(X,X) and Lb(X,X)

will be denoted by L(X) and Lb(X), respectively.

The ordered vector space Lb(X,R) is called the order dual of X, and will be

denoted by X∼.

For a non-empty subset A of a vector lattice X, the annihilator of A is defined

by

A◦ = {T ∈ Lb(X, Y ) | Ta = 0 for each a ∈ A}.

Similarly, for a non-empty subset E of Lb(X, Y ) the inverse annihilator of E

7



is defined by
◦E = {x ∈ X | Tx = 0 for each T ∈ E}.

An operator P : X → Y between two vector lattices is said to be:

(1) band preserving if P (B) ⊆ B for each band B ⊆ X.

(2) an orthomorphism if |x| ∧ |y| = 0 implies |Px| ∧ |y| = 0.

(3) a lattice homomorphism if x ∧ y = 0 implies Px ∧ Py = 0.

(4) a lattice isomorphism if P is a one-to-one lattice homomorphism.

Fundamental conclusions

We now give some useful identities and some conclusions without proofs which we

use in this thesis. For the proofs of the identities and the conclusions we refer to [1],

[3], [4], [17], [18], and [19].

The following result is not directly used in this thesis, but it is a corner stone of

the theory of vector lattices.

Theorem 2.1 (The Riesz Decomposition Property). Let x be any element of a vector

lattice X, and let

|x| ≤ |y1 + y2 + . . .+ yn|

for some y1, y2, . . . , yn ∈ X. Then there exists x1, x2, . . . , xn ∈ X such that

x = x1 + x2 + . . .+ xn and that |xi| ≤ |yi| for each i = 1, . . . , n.

In particular, if x is positive vector, then the elements xi can be chosen to be

positive.

In the main part of this thesis, we deal with disjointness properties of elements of

a vector lattice, which can be found in the following.

Theorem 2.2 (Disjointness Properties). Let x, y and z be elements of a vector lattice

and let α, β ∈ R. Then we have

(1) If x ⊥ y and x ⊥ z, then x ⊥ (αy + βz).

8



(2) x ⊥ y if and only if |x+ y| = |x− y|.

(3) If x ⊥ y, then

|x+ y| = |x− y| = |x|+ |y| =
∣∣|x| − |y|∣∣ = |x| ∨ |y|.

We now focus on the subsets of a vector lattice. The following are about disjoint

complements, ideals, bands, and projection bands of a vector lattice.

Lemma 2.3. An ideal E of a vector lattice X is a band if and only if 0 ≤ xα ↑ x
and {xα} ⊆ X imply x ∈ A.

Theorem 2.4. If E is an ideal of a vector lattice X, then;

(1) E is order dense in X if and only if Ad = {0}.

(2) E ⊕ Ed is order dense in X.

(3) E is order dense in Edd.

Theorem 2.5. In a vector lattice X the band generated by a non-empty subset A

is precisely Add. Moreover, a subset A of X is band if and only if A = Add.

Theorem 2.6. Let E and F be two ideals in a vector lattice X such that X = E⊕F .

Then E and F are both bands satisfying E = F d and F = Ed

Theorem 2.7. Let X be vector lattice. Then;

(1) a band B of X is a projection band if and only if for each x ∈ X the set

{y ∈ B | 0 ≤ y ≤ x}

has a supremum in X. In this case we have

PB(x) = sup{y ∈ B | 0 ≤ y ≤ x}.

(2) a principal band Ba of X is a projection band if and only if for each x ∈ X the

set

{y ∈ Ba | 0 ≤ y ≤ x}

has a supremum in X. In this case we have

Pa(x) = sup{y ∈ B | 0 ≤ y ≤ x}.

9



Theorem 2.8 (F. Riesz). Each band in a Dedekind complete vector lattice is a

projection band.

Theorem 2.9. Let T : X → X be an operator on a vector lattice. Then the following

are equivalent.

(1) T is an order projection.

(2) T is a projection and 0 ≤ T ≤ I.

(3) T and I − T have disjoint ranges.

We close this section with results that will be used in the main part of this thesis.

Theorem 2.10. Each reflexive Banach lattice is Dedekind complete.

Lemma 2.11. Let X and Y be vector lattices with Y Dedekind complete.

(1) If A is an ideal of X, then A◦ is a band of Lb(X, Y ).

(2) If E is an ideal of Lb(X, Y ), then ◦E is an ideal of X.

10



2.2 Ideals, bands, and sublattices of concrete vec-

tor lattices

In this section, we give some examples of concrete vector lattices. We discuss the ex-

amples of vector lattices in two main parts. First, we mention about sequence spaces

and characterize sublattices of such spaces. Then, we give examples of fundamental

function spaces and characterize ideals and bands of such spaces.

Sequence spaces

Example 2.12. Let Rn = {x = (x1, . . . , xn) | xi ∈ R for i = 1, . . . , n} for some

n ≥ 1. We define a partial order on Rn by ordering vectors coordinatewise, i.e.,

x ≤ y if and only if xi ≤ yi for each 1 ≤ i ≤ n. This order makes Rn a Dedekind

complete and Archimedean vector lattice. But this order is not the unique order that

makes Rn a vector lattice. We can define an order on R2 by x ≤ y if and only if

x1 < y1 or x1 = y1 and x2 ≤ y2. This order is called lexicographic order. For

n > 2 the lexicographic order can be defined analogously. With lexicographic order

the vector space Rn becomes a non-Archimedean vector lattice.

One can assume that Rn is an n-dimensional sequence space. We may also put

coordinatewise ordering on infinite dimensional sequence spaces.

Example 2.13. Let RN = {(xn) | {xn} ⊆ R}. Then it is a Dedekind complete and

Archimedean vector lattice with coordinatewise ordering.

Example 2.14. Let co = {(xn) | {xn} ⊆ R and lim
n→∞

xn = 0}. If we put coordinate-

wise ordering on the vector space c0, then it becomes an Archimedean vector lattice

but it is not Dedekind complete. Moreover, it is a Banach lattice under the norm

||x|| = supn |xn|.

Example 2.15. Let `p = {(xn) | {xn} ⊆ R and
∞∑
n=1

|xn|p <∞}, for some 1 ≤ p <∞.

The vector space `p is a Dedekind complete and Archimedean vector lattice with

coordinatewise ordering. Under the norm ||x|| =
( ∞∑
n=1

|xn|p
) 1

p , it is a Banach lattice

as well.
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One can observe that if X is a sequence space and if x = (xn), y = (yn) ∈ X, then

x ∨ y = (xn ∨ yn), x ∧ y = (xn ∧ yn), x+ = (x+
n ), and |x| = (|xn|).

The following result characterizes the sublattices of some sequence spaces.

Theorem 2.16. Suppose that X = RN, or X = c0, or X = `p for 1 ≤ p <∞. Then

every closed sublattice of X is of the form a subspace that is generated by a (finite

or infinite) disjoint positive sequence {x(n)} ⊆ X.

Example 2.17. Let `∞ = {(xn) | sup
n
xn <∞}. If we put coordinatewise ordering on

the vector space `∞, then it becomes a Dedekind complete and Archimedean vector

lattice. Moreover, under the norm ||x||∞ = supn |xn|, it is a Banach lattice.

Function spaces

Example 2.18. Let Ω be any non-empty set and let RΩ = {f | f : Ω → R}. The

order relation defined by f ≤ g if and only if f(t) ≤ g(t) for each t ∈ Ω is called

pointwise ordering, and makes RΩ a vector lattice. It should be clear that

(f ∨g)(t) = f(t)∨g(t) (f ∧g)(t) = f(t)∧g(t), f+(t) = (f(t))+ and |f |(t) = |f(t)|,

for each f, g ∈ RΩ.

Example 2.19. Let (Ω,F , µ) be a measure space and let

L0(µ) = {f : Ω→ R | f is measurable}.

This space is a vector lattice under the pointwise ordering. Now, for 1 ≤ p < ∞,
let Lp(µ) denote the linear subspace of L0(µ) such that

∫
|f |p is finite. It should be

clear that Lp(µ) is a vector lattice under the pointwise ordering. Moreover, under

the norm ||f || =
( ∫
|f |pdµ

) 1
p , it is a Banach lattice. Similarly, the subspace L∞(µ)

of L0(µ) consisting essentially bounded functions is a Banach lattice under the norm

||f ||∞ = ess supt∈Ω |f(t)|.

Theorem 2.20. Let X = Lp(Ω,F , µ) for some 1 ≤ p < ∞ and a finite measure µ.

Then the closed sublettices of X containing the constant function 1 are of the form

Lp(Ω,G, µ), where G is a sub-σ-algebra of F .

12



For a measurable subset A of Ω, suppose that FA = {b ∈ F | B ⊆ A} and that

µA is the measure obtained by restricting µ to FA. The bands of Lp(Ω,F , µ) are

characterized as follows:

Theorem 2.21. Let X = Lp(Ω,F , µ) where µ is a σ-finite measure and 1 ≤ p <∞.

Then the closed ideals and bands of X are of the form Lp(Ω,FA, µA) for some A ∈ F .

Note that each band in Lp(µ) is a projection band since Lp(µ) is Dedekind com-

plete.

Example 2.22. Let Ω be a topological Hausdorff space. Then the space of all

continuous functions defined from Ω to R, i.e,

C(Ω) = {f : Ω→ R | f is continuous},

is an Archimedean vector lattice under the pointwise ordering. If, in addition, Ω is

compact, then it is a Banach lattice under the so called sup-norm ||f || = sup
t∈Ω
|f(t)|.

Remark 2.23. In the literature the letter K is used in general instead of Ω, when the

underlying topological space is compact Hausdorff space. Throughout this thesis, the

term C(K)-spaces will stand for spaces of continuos functions on a compact Hausdorff

space K.

On the other hand, C(K)-spaces are not Dedekind complete in general. Recall

that a topological space is Stonean if the closure of every open subset is open. See

the following:

Theorem 2.24. Let K be a compact Hausdorff space. Then, C(K) is Dedekind

complete if and only if K is Stonean.

Theorem 2.25. Every closed sublattice of a C(K)-space containing constant func-

tion 1 is a C(K)-space again.

For a subset A of K the set IA stands for the set of functions that vanishes on A,

i.e.,

IA = {f ∈ C(K) | f vanishes on A}.

Theorem 2.26. A subset A in C(K) is a band if and only if A = IU for some open

set U in K.
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Recall that a band in C(K) needs not to be a projection band, unlessK is Stonean.

See the following:

Theorem 2.27. The only projection bands in C[0, 1] are {0} and C[0, 1].

14



2.3 Complex Banach lattices

This section deals with complex vector lattices, especially complex Banach lattices.

Recall that a complex Banach lattice is noting but the complexification of a real

Banach lattice. We start with a real Banach lattice, and do complexification to

obtain a complex Banach lattice. For more details and proofs, we refer to [1] and

[18].

Let X be a real vector lattice. Then the complex vector space

XC = X ⊕ iX = {x+ iy | x, y ∈ X},

is called the complexification of X, and its vector space operations are defined by

(x1 + iy1) + (x2 + iy2) = x1 + x2 + i(y1 + y2) and

(α + iβ)(x+ iy) = αx− βy + i(βx+ αy).

Note that X sits in XC, since X = X + i{0}.

For an element z ∈ XC, the modulus of z is defined by the formula

|z| = sup
θ∈R

[x cos θ + y sin θ] =
√
x2 + y2.

(See the definition of
√
x2 + y2 in Chapter 3.1.)

If X is also a normed lattice, then we can extend the norm of X to a norm on XC

by

||z||C = || |z| || = ||
√
x2 + y2||,

for each z = x+ iy ∈ XC. It should be clear that ||x|| = ||x+ i0|| for each x ∈ X and

that |z1| ≤ |z2| implies ||z1|| ≤ ||z2|| for each z1, z2 ∈ XC. Moreover, if z = x + iy,

then
1

2

(
||x||+ ||y||

)
≤ ||z||C ≤ ||x||+ ||y||.

This observations give rise for the following definition.

Definition 2.28. Any complex Banach space of the form XC = X ⊕ iX, where X is

a real Banach lattice, is called a complex Banach lattice.

We give now some useful identities and inequalities which are true in a complex

Banach lattice.
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Theorem 2.29. Let XC be a complex Banach lattice.

(1) If z1, z2 ∈ XC satisfy |z1| ⊥ |z2, then

|z1 − z2| = |z1 + z2| = |z1|+ |z2| =
∣∣|z1| − |z2|

∣∣ = sup{|z1|, |z2|}.

(2) If z = x+ iy and z′ = |x|+ i|y| then |z| = |z′|.

(3) If z1 = x1+iy1 and z2 = x2+iy2 with |x1| ≤ |x2| and |y1| ≤ |y2|, then |z1| ≤ |z2|.

Let A be a subset of a complex Banach lattice XC. Then the set A ∩X is called

real part of A and denoted by AR.

Now, we can take a look of the structure of ideals in a complex vector lattice.

Theorem 2.30. Let E be an ideal in XC. Then ER is an ideal in X, and E =

ER ⊕ iER. Conversely, if F is an ideal in X, then F ⊕ iF is an ideal in XC, and

(F ⊕ iF )R = F .

Bands in complex vector lattices are defined via bands in real vector lattices. An

ideal E is said to be band in XC if ER is a band in X. A band B is said to be a

projection band in XC if BR is a projection band in X.

For a non-empty subset A of a complex vector lattice XC, the disjoint complement

Ad of A is defined similarly as in the real case by

Ad = {z ∈ XC | |z| ⊥ |a| for each a ∈ A}.

Unlike the real case, Ad is a band in XC for each A ⊆ XC.

An operator T : X → Y between two real vector lattices can be extended to an

operator TC : XC → YC via the formula

TC(x+ iy) = Tx+ iTy.

Lemma 2.31. If T : X → Y is a bounded operator, then TC : XC → YC is also

bounded and satisfies ||T || = ||TC||.

On the other hand, each operator in L(XC, YC) can be identified with an operator

T = T + iS ∈ L(X, Y )⊕ iL(X, Y ), where the action of the operator T + iS on XC is

(T + iS)(x+ iy) = (Tx− Sy) + i(Sx− Ty).
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For a linear functional f : XC → C on a complex vector lattice XC, there exist a

unique linear functional g : XR → R such that

f(x) = g(x)− ig(ix)

holds for each x ∈ XC, and ||f || = ||g||. This functional is called the real part of f ,

and denoted by Ref . Thus, we have the following:

Theorem 2.32. If XC is a complex vector lattice, then (XC)∗ = (X∗)C.
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chapter 3

Krivine extensions and

orthogonality

3.1 C(K) representations and Krivine’s extension

In this section, we will outline C(K) representations of the ideals of a vector lattice,

and as an application of such representations we will give Krivine’s extension of a

positively homogeneous function. For detailed information about Krivine’s calculus

we refer to [16, p. 40-42].

Let X be a vector lattice. For each a ∈ X+ the formula

||x||a = inf{λ ≥ 0 | |x| ≤ λa},

defines a norm on Ea, i.e., the ideal generated by a ∈ X+. If the normed space

(Ea, || · ||a) is complete for every a ∈ X+, then X is said to be uniformly complete.

It is known that every σ-order complete space and every Banach lattice is uniformly

complete.

Suppose that X is a Banach lattice and that u ∈ X+ is an order unit, i.e., Eu = X,

or equivalently for every x ∈ X, there exists λ such that |x| ≤ λu. Then || · ||u is a

lattice norm on X. Moreover, it is equivalent to the original norm of X.

Theorem 3.1. Let X be a uniformly complete vector lattice. Then for every a ∈ X+,

the space (Ea, || · ||a) is lattice isometric to a C(K)-space, with a corresponding the

constant function 1 on K.

The above theorem has many applications. We now present one of these applica-

tions.
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A function f : Rn → R is called positively homogeneous if

f(λt1, . . . , λtn) = λf(t1, . . . , tn),

for each (t1, . . . , tn) ∈ Rn and each λ ≥ 0. The set of all positively homogeneous and

continuous functions of n variables is denoted by Hn. It should be clear that Hn is

a vector lattice under pointwise operations. Moreover, Hn is a normed vector lattice

under the norm

||f ||Hn = sup{f(t1, . . . , tn) | |t1| ∨ . . . ∨ |tn| = 1}.

Now let X be a uniformly complete vector lattice and let x1, x2 ∈ X. It should

be clear that the function f : R2 → R defined by

f(t1, t2) =
√
t21 + t22

is positively homogeneous and continuous on R2. By using C(K) representation, we

can give a meaning to the expression f(x1, x2) =
√
x2

1 + x2
2. Indeed, put a = |x1|∨|x2|

and note that x1, x2 ∈ Ea. We know that Ea is lattice isometric to a C(K) space

for a compact Hausdorff K. Thus we can see the elements x1, x2 of X as continuous

functions x1(t), x2(t) with |xi(t)| ≤ 1 on K. Now define

f(x1, x2)(t) = f(x1(t), x2(t)) =
√
x2

1(t) + x2
2(t),

for each t ∈ K. It is obvious that f(x1, x2)(t) is a continuous function on K. Thus

we can uniquely extend the function f(t1, t2) =
√
t21 + t22, which is defined on R2, to

a function f(x1, x2) =
√
x2

1 + x2
2 defined on X2.

The above technic can be applied for every positively homogeneous and continuous

functions defined on real or complex numbers.

Theorem 3.2. Let X be a uniformly complete vector lattice and let x1, . . . , xn ∈ X.

If a = |x1| ∨ . . .∨ |xn|, then there exist a unique lattice homomorphism L : Hn → Ea

such that Lf = f(x1, . . . , xn) for each f ∈ Hn.

For a vector lattice X, the function f(x1, . . . , xn) : Xn → X is called the Krivine

extension of the positively homogeneous function f(t1, . . . , tn) : Rn → R.

By Krivine extension, the vector expressions, such as
(∑n

k=1 |xk|p
)1/p

, can be well

defined for any positive real p, and any elements x1, x2, . . . , xn of a uniformly complete

vector lattice.
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3.2 Bochner integral

This section is devoted to cover the definition of Bohner integral. We also give some

basic conclusions without proofs. For more details and proofs, we refer to [9].

Throughout this section (Ω,F) will be a measurable space, andX will be a Banach

space.

The σ-algebra of Borel subsets of X, i.e., the σ-algebra generated by the open

subsets of X, will be denoted by B(X). A function f : Ω → X is said to be Borel

measurable if it is (F ,B(X))-measurable, i.e., the inverse image of each element

of B(X) is an element of F . We call that f is strongly measurable if it has a

separable range and Borel measurable. The function f is said to be simple if it

takes only finitely many values. It should be clear that a simple function is Borel

measurable if and only if it is strongly measurable.

Proposition 3.3. If f : Ω → X is Borel measurable then the function x 7→ ||f(x)||
is F -measurable.

Proposition 3.4. The pointwise limits of Borel measurable (strongly measurable)

functions are Borel measurable (strongly measurable).

Proposition 3.5. If f : Ω→ X is strongly measurable then there exists a sequence

{fn} of strongly measurable simple functions such that f is the pointwise limit of fn

and that ||fn(x)|| ≤ ||f(x)|| holds for each x ∈ Ω

The immediate consequence of the above propositions is that a function f is

strongly measurable if and only if it is pointwise limit of a sequence of strongly (or

Borel) measurable functions. On the other hand, one can conclude from the above

propositions that the set of all strongly measurable functions forms a vector space.

Now we are able to define the integral of the function which takes its values in a

Banach space. After this point (Ω,F , µ) will be a measure space.

A function f : Ω → X is said to be Bochner integrable if it is strongly mea-

surable and the function x 7→ ||f(x)|| is integrable. Its integral is defined as follows:

First suppose that f is a simple and Bochner integrable function. Let x1, . . . , xn

be the values of f and let Xi = f−1({xi}) for i = 1, . . . , n. Then one can conclude that
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µ(Xi) is finite, since the function x 7→ ||f(x)|| is integrable. So that the expression∑n
i=1 xiµ(Xi) is well-defined. We define the integral of f to be this sum and denote

by
∫
fdµ. Thus ∫

fdµ =
n∑
i=1

xiµ(Xi).

It should be clear that ||
∫
fdµ|| ≤

∫
||f ||dµ.

Now suppose that f, g are simple and Bochner integrable functions and that a, b

are scalars. It is easy to see that af + bg is also simple and Bochner integrable

function, and ∫
af + bgdµ = a

∫
fdµ+ b

∫
gdµ.

Finally, suppose that f is an arbitrary Bochner integrable function. We can pick a

sequence {fn} of simple and Bochner integrable functions such that f(x) = lim
n→∞

fn(x)

hold for each x ∈ Ω and such that the function x 7→ supn ||fn(x)|| is integrable. Then

the Bochner integral of f is defined to be the limit of the sequence
∫
fndµ. Thus,∫

fdµ = lim
n→∞

∫
fndµ.

Of course, the integral is independent from the choice of the sequence {fn}.

We now give some basic properties of the Bochner integral.

Proposition 3.6. If f is Bochner integrable then ||
∫
fdµ|| ≤

∫
||f ||dµ.

Proposition 3.7. If f and g are integrable and a, b are scalars then af + bg is also

Bocher integrable and ∫
af + bgdµ = a

∫
fdµ+ b

∫
gdµ.
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3.3 Orthogonality in normed vector spaces

This section will cover the notion of orthogonality in normed vector spaces. In fact,

there are different concepts of orthogonality in normed vector spaces in the literature.

We will agree with G. Birkhoff and R. J. James, and for detailed information we refer

to [6] and [13].

Throughout this section X will stand for a normed vector space.

An element x of X is said to be orthogonal to an element y if ||x|| ≤ ||x + ky||
holds for each scalar k, and denoted by x ⊥J y. An element x is said to be orthogonal

to a subset A if x ⊥J a holds for each a ∈ A. It is clear that if an inner product defined

on X, then x ⊥J y if and only if < x, y >= 0. Thus, the definition of orthogonality

in a normed vector spaces is an extension of the notion of inner product space sense

orthogonality.

This definition is an anology of a well-known fact : If two lines intersects at a

point p, then they are orthogonal if and only if for any point x0 6= p of the first line,

the distance between x0 and p is less than or equal to the distance between x0 and q,

where q is an arbitrary point of the second line. Since this definition comes in a very

natural way, it has many advantages, e.g., it can be related to other concepts, such as

hyperplanes, strict convexity, weak compactness, and especially linear functionals. In

this thesis, we mainly use the relation between orthogonality and linear functionals.

Recall that a proper subspace H of X is an hyperplane if it is not properly

contained in a proper subspace M of X. If H is an hyperplane then x + H is called

a flat for each x ∈ X − {0}.

We now give some basic observations on orthogonality.

(1) If an element of X is orthogonal to itself then it should be zero.

(2) Orthogonality is homogeneous but is neither symmetric nor additive.

(3) For any elements, x, y ∈ X there exists a scalar a such that x ⊥J ax+ y.

(4) If a sequence {yn} converges to y and x ⊥J yn holds for each n, then x ⊥J y.

(5) For any x ∈ X the set Hx; = {y ∈ X | x ⊥J} is closed.
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Theorem 3.8. If x ∈ X is orthogonal to a subset A of X, then there exists a linear

functional f such that f(x) = ||f || · ||x|| and f(a) = 0 holds for each a ∈ A, and there

exists a hyperplane H such that x ⊥J H with A ⊆ H.

From the above theorem, we can observe the following:

Corollary 3.9. Any element of a normed vector space is orthogonal to some hyper-

plane.

Corollary 3.10. For x, y ∈ X, x ⊥J ax + y if and only if there exists a linear

functional f such that |f(x)| = ||f || · ||x|| and a = − f(y)
f(x)

. In particular, if x ⊥J ax+y,

then |a| ≤ ||y||
||x|| .

As we said before, orthogonality is not symmetric, i.e., x ⊥J y does not imply

y ⊥J x, in general. Thus the above corollary does not guarantee the existence of a

scalar b such that bx+ y ⊥j x.

Theorem 3.11. For any elements, x, y ∈ X there exists a scalar a such that ax+y ⊥J
x. Moreover, if ax + y ⊥J x and bx + y ⊥J x, then cx + y ⊥J x for each scalar c

between a and b.
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3.4 Numerical range and hermitian operators on

Banach spaces

In this section, we recall the definition of the numerical range and hermitian operators

in Banach spaces. We will also outline the characterizations of hermitian operators

that we will use. For details, we refer to [7].

Recall that for an operator T : X → X on a Hilbert space X, the numerical range

W (T ) is defined by

W (T ) = {< Tx, x > | ||x|| = 1}.

The definition of the numerical range is introduced by Toeplitz in 1918, and it becomes

an important tool in Hilbert spaces. However, in this section we do not deal with

Hilbert spaces. One can see details in [12].

Now, let X be a complex Banach space and let X∗ be the dual of X. The unit

sphere of X is the set

S(X) = {x ∈ X | ||x|| = 1}.

The 2-tuple (x, x∗) is called a primary state if both (x, x∗) ∈ S(X) × S(X∗) and

x∗(x) = 1 hold. The set of all primary states on X will be denoted by Π(X).

For an operator T : X → X on a complex Banach space X, the numerical range

V (T ) of T is defined by

V (T ) = {x∗(Tx) | (x, x∗) ∈ Π(X)}.

Note that if X is an Hilbert space, then (x, x∗) is a primary state if and only if

x∗ =< x′, · > where x′ ∈ S(X). Thus the numerical range V (T ) of an operator T is

nothing but the classical numerical range W (T ) defined in terms of the inner product

of X. Furthermore, if X is a Banach space with a smooth unit ball (see [8]), then

V (T ) also coincides W (T ).

Now we are able to give the definition of an hermitian operator on a complex

Banach space.

For a complex Banach space X, an operator T on X is said to be an hermitian

operator if its numerical range V (T ) is real, i.e., V (T ) ⊆ R.
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Recall that an operator P is called projection if P 2 = P . A projection P on X is

said to be an hermitian projection if it is an hermitian operator. A decomposition

E ⊕ F of X is said to be hermitian decomposition if the induced projection

P : X → E is an hermitian projection.

For an operator T on a complex Banach space X, the exponential function is

defined by

exp(T ) =
∞∑
n=0

T n

n!
.

There is a characterization of hermitian operators in terms of the exponential

function as follows:

Lemma 3.12. Let X be a complex Banach space. An operator T on X is an

hermitian operator if and only if exp(iθT ) is an isometry for each θ ∈ R.

Corollary 3.13. Let E ⊕ F be a direct sum decomposition of a complex Banach

space X. Then, E ⊕ F is an hermitian decomposition if and only if

||x+ y|| = ||x+ eiθy||

for each x ∈ E, each y ∈ F , and each θ ∈ R.
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chapter 4

Main results

4.1 Integral of Krivine extensions

Let f : K → K be a positively homogeneous function, where K is the scalar field,

i.e., R or C, and suppose that X is a (complex) Banach lattice. We know that f

can be uniquely extended to X. We will denote the Krivine extension of f by f̃ . If

f is integrable with respect to a parameter θ, then integral of f is also a positively

homogeneous function, thus it can be extended to X as well. On the other hand, we

may also calculate the Bochner integral of f̃ . At this point, it is natural to ask that

if the Krivine extension of the integral of f coincides with the Bochner integral of f̃ .

In this section, we will give an answer to this question for a special case. We

first prove that if a positively homogeneous function is continuous with respect to a

parameter θ, then the Krivine extension of integral of the function f and the Bochner

integral of f̃ are coincide.

Theorem 4.1. Let f(s1, . . . , sn, θ) : Rn × [0, 1] → R be a continuous function of

parameters s1, . . . , sn ∈ R and θ ∈ [0, 1] such that for each θ ∈ [0, 1] the function

fθ(s1, . . . , sn) := f(s1, . . . , sn, θ) is positively homegenuous. Define F (s1, . . . , sn) =∫ 1

0
fθ(s1, . . . , sn)dθ. Then for each Banach lattice X, the Krivine extension F̃ of F is

the Bochner integral of the Krivine extension f̃ of f ,i.e.,

F̃ (x1, x2, . . . , xn) =

∫ 1

0

f̃(x1, x2, . . . , xn, θ)dθ.

Proof. By induction, it suffices to prove the lemma for the function f(s, t, θ) : R2 ×
[0, 1] → R. Let H2 be the set of all continuous positively homogenuous functions of

two variables. For h ∈ H2 we define

||h||H2 = sup
S2
∞

|h| = sup{|h(s, t)|
∣∣ |s| ∨ |t| = 1}.
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For a Banach lattice X, let h̃ : X2 → X be the Krivine extension of h. Then

||h̃(x, y)|| ≤ ||h||H2 .
∣∣∣∣|x| ∨ |y|∣∣∣∣,

(see, [16]). For each n, s and t, let f (n)(s, t, θ) be the standard “left end-point step-

function approximation” of f(s, t, θ), that is, f (n)(s, t, θ) = f(s, t, k
n
) whenever θ ∈

[ k
n
, k
n+1

] as k = 0, 1, . . . , n − 1. Put f
(n)
θ (s, t) = f (n)(s, t, θ); clearly, for θ ∈ [ k

n
, k
n+1

],

we have f
(n)
θ = f

(n)
k
n

. In particular, f
(n)
θ is positively homogenuous. Fix ε > 0. Since

S2
∞ × [0, 1] is compact, f is uniformly continuous there. Hence, there exist n such

that for each (s, t) ∈ S2
∞ and all θ ∈ [ k

n
, k
n+1

] we have |f(s, t, θ) − f(s, t, k
n
)| < ε. It

follows that for each (s, t) ∈ S2
∞ and all θ ∈ [0, 1], we have

|fθ(s, t)− f (n)
θ (s, t)| = |f(s, t, θ)− f (n)(s, t, θ)| < ε,

so that ||f (n)
θ − fθ||H2 < ε for each θ ∈ [0, 1]. Fix x, y ∈ X. We may assume without

loss of generality that
∣∣∣∣|x| ∨ |y|∣∣∣∣ = 1. For each θ ∈ [0, 1], let f̃θ and f̃

(n)
θ be the

Krivine extensions of fθ and f
(n)
θ . By properties of Bochner integral , we have∣∣∣∣∣∣ ∫ 1

0

f̃
(n)
θ (x, y)dθ −

∫ 1

0

f̃θ(x, y)dθ
∣∣∣∣∣∣ ≤ ∫ 1

0

||f̃ (n)
θ (x, y)− f̃θ(x, y)||dθ

≤
∫ 1

0

||f (n)
θ − fθ||H2 .

∣∣∣∣|x| ∨ |y|∣∣∣∣dθ < ε.

For s, t ∈ R, define

F (n)(s, t) =

∫ 1

0

f(s, t, θ)dθ =
1

n

n−1∑
k=1

f(s, t,
k

n
) =

1

n

n−1∑
k=1

f k
n
(s, t).

It follows that F (n) is positively homogenuous. For each s, t ∈ S∞, we have

|F (s, t)− F (n)(s, t)| ≤
∫ 1

0

∣∣f(s, t, θ)− f (n)(s, t, θ)
∣∣dθ < ε,

so that ||F (n) − F ||H2 < ε. It follows that
∣∣∣∣F̃ (n)(x, y) − F̃ (x, y)

∣∣∣∣ < ε. For each θ ∈
[ k
n
, k
n+1

], it follows from f
(n)
θ = f

(n)
k
n

in H2 that f̃
(n)
θ = f̃

(n)
k
n

. In particular f̃
(n)
θ (x, y) =

f̃
(n)
k
n

(x, y). This means that the function θ ∈ [0, 1] → f̃
(n)
θ (x, y) is a simple function

and its Bochner integral∫ 1

0

f̃
(n)
θ (x, y)dθ =

1

n

n−1∑
k=1

f̃ k
n
(x, y) = F̃ (n)(x, y).
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The last inequality follows from the definition of F (n). Combining the inequalities,

we get ∣∣∣∣∣∣F̃ (x, y)−
∫ 1

0

f̃θ(x, y)dθ
∣∣∣∣∣∣ < 2ε.

Next step will be to give an affirmative answer for integrable functions. To this

end, we first do an approximation.

Lemma 4.2. Let f(s1, s2, . . . , sn, θ) : [0, 2π]n × [0, 1] → R be an integrable function

of parameter θ ∈ [0, 1] and continuous function of parameters s1, s2, . . . , sn ∈ [0, 2π]

uniformly on θ. Then for each ε > 0 there exists a function

g(s1, s2, . . . , sn, θ) : [0, 2π]n × [0, 1]→ R,

which is continuous of parameters s1, s2, . . . , sn ∈ [0, 2π] and θ ∈ [0, 1] such that

||f(s1, s2, . . . , sn, .)− g(s1, s2, . . . , sn, .)||1 < ε.

Proof. Let f(s, θ) be a real-valued function which is integrable of parameter θ ∈ [0, 1],

and continuous of parameter s ∈ [0, 2π] uniformly on θ, i.e., for each ε > 0 there exist

δ > 0 such that for each θ ∈ [0, 1] we have |f(s1, θ)−f(s2, θ)| < ε whenever |s1−s2| <
δ. Fix ε > 0. Since f(s, .) ∈ L1[0, 1] for each s ∈ [0, 2π], there exist g(s, .) ∈ C[0, 1]

such that ||f(s, .) − g(s, .)||1 < ε. Now, let δ > 0 such that |f(s1, θ) − f(s2, θ)| < ε

whenever |s1 − s2| < δ, for each θ ∈ [0, 1]. Pick n ∈ N such that 1
n
< δ, put sk = k 2π

n

for k = 0, 1, . . . , n. Note that, for each s ∈ [0, 2π] there exist λ ∈ [0, 1] such that

s = λsk + (1− λ)sk+1 for some k = 0, 1, . . . , n− 1. Define

fn(s, θ) := λg(sk, θ) + (1− λ)g(sk+1, θ)

if s = λsk+(1−λ)sk+1. Then fn(s, θ) is a continuous function of parameters s and θ.

Let s ∈ [0, 2π]. Since sk ≤ s ≤ sk+1 for some k = 0, 1, . . . , n− 1, we have |s− sk| < δ.

So that |f(s, θ)− f(sk, θ)| < ε for each θ ∈ [0, 1]. Therefore

||f(s, .)− f(sk, .)||1 < ε.

On the other hand ||f(sk, .) − fn(sk, .)||1 < ε since fn(sk, .) = g(sk, .). Also by the

linearity of fn, for each θ ∈ [0, 1], we have

|fn(sk, θ)− fn(s, θ)| ≤ |fn(sk, θ)− fn(sk+1, θ)|,
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so that

||fn(sk, .)− fn(s, .)||1 ≤ ||fn(sk, .)− fn(sk+1, .)||1 = ||g(sk, .)− g(sk+1, .)||1
≤ ||g(sk, .)− f(sk, .)||1 + ||f(sk, .)− f(sk+1, .)||1
+ ||f(sk+1, .)− g(sk+1, .)||1 < 3ε.

Thus

||fn(sk, .)− fn(s, .)||1 < 3ε,

therefore,

||f(s, .)−fn(s, .)||1 ≤ ||f(s, .)−f(sk, .)||1+||f(sk, .)−fn(sk, .)||1+||fn(sk, .)−fn(s, .)||1 < 5ε.

Now let f(s, t, θ) be a Real-valued function which is integrable of parameter θ ∈ [0, 1],

and continuous of parameters s, t ∈ [0, 2π] uniformly on θ. Fix ε > 0. Since the

function f(s, t, θ) is continuous of parameters s, t ∈ [0, 2π] uniformly on θ ∈ [0, 1],

there exists δ > 0 such that for each θ ∈ [0, 1], we have

|f(s1, t1, θ)− f(s2, t2, θ)| < ε,

whenever max{|s1 − s2|, |t1 − t2|} < δ. Now, pick n ∈ N such that 1
n
< δ and

put tk = 2πk
n

for k = 0, 1, . . . , n. We know from the previous case that for each

k = 0, 1, . . . , n there exists a function fkn(s, tk, θ) which is continuous of parameters

s ∈ [0, 2π] and θ ∈ [0, 1] such that ||f(s, tk, .)− fkn(s, tk, .)||1 < ε. We also know that,

for each t ∈ [0, 2π] there exists λ ∈ [0, 1] such that t = λtk + (1 − λ)tk+1 for some

k = 0, 1, . . . , n− 1. Define

fn(s, t, θ) := λfkn(s, tk, θ) + (1− λ)fk+1
n (s, tk+1, θ)

if t = λtk + (1 − λ)tk+1. Then fn(s, t, θ) is a continuous function of parameters s, t

and θ. Let s, t ∈ [0, 2π]. Since tk ≤ t ≤ tk+1 for some k = 0, 1, . . . , n − 1 we have

|t− tk| < δ. So that |f(s, t, θ)− f(s, tk, θ)| < ε for each θ ∈ [0, 1]. Therefore

||f(s, t, .)− f(s, tk, .)||1 < ε.

On the other hand,

||fn(s, tk, .)− fn(s, tk+1, .)||1 ≤ ||fn(s, tk, .)− f(s, tk, .)||1 + ||f(s, tk, .)− f(s, tk+1, .)||1
+ ||f(s, tk+1, .)− fn(s, tk+1, .)||1 < 3ε,

29



so that

||fn(s, tk, .)− fn(s, t, .)||1 ≤ ||fn(s, tk, .)− λfn(s, tk, .)− (1− λ)fn(s, tk+1, .)||1
= (1− λ)||fn(s, tk, .)− fn(s, tk+1, .)||1 < 3(1− λ)ε.

Therefore

||f(s, t, .)− fn(s, t, .)||1 ≤ ||f(s, t, .)− f(s, tk, .)||1 + ||f(s, tk, .)− fn(s, tk, .)||1
+ ||fn(s, tk, .)− fn(s, t, .)||1 < (2 + 3(1− λ))ε.

The conclusion follows by induction.

We know that positively homogeneous and continuous functions on Rn can be

characterized as continuous functions on the unit sphere of Rn, which we will denote

by Sn−1. We use this fact to extend our approximation.

Lemma 4.3. Let f(s1, s2, . . . , sn, θ) : Rn × [0, 1] → R be an integrable function of

parameter θ ∈ [0, 1] and positively homegenuous and continuous function of pa-

rameters s1, s2, . . . , sn ∈ R uniformly on θ. Then for each ε > 0 there exists

a function g(s1, s2, . . . , sn, θ) : Rn × [0, 1] → R which is continuous of parame-

ters s1, s2, . . . , sn ∈ R and θ ∈ [0, 1] and positively homogenuous of parameters

s1, s2, . . . , sn ∈ R such that ||f(s1, s2, . . . , sn, .)− g(s1, s2, . . . , sn, .)||1 < ε.

Proof. Let f0 denote the restiriction of f on Sn−1×[0, 1]. Since f is an integrable func-

tion of parameter θ ∈ [0, 1] and positively homegenuous and continuous function of

parameters s1, s2, . . . , sn ∈ R uniformly on θ, we have that f0 is an integrable function

of parameter θ ∈ [0, 1] and continuous function of parameters s1, s2, . . . , sn−1 ∈ [0, 2π]

uniformly on θ. By Lemma 4.2, we know that for each ε > 0 there exists a function

g0(s1, s2, . . . , sn−1, θ) which is continuous of parameters s1, s2, . . . , sn ∈ [0, 2π] and

θ ∈ [0, 1] such that ||f0(s1, s2, . . . , sn−1, .) − g0(s1, s2, . . . , sn−1, .)||1 < ε. Since pos-

itively homegenuous functions are chracterized by the continuous functions on the

unit sphere, we have that there exist a function g(s1, s2, . . . , sn, θ) : Rn × [0, 1] → R
which uniquely extends g0, and satisfies the desired properties.

We now ready to give an affirmative answer for an integrable function.
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Theorem 4.4. Let f(s1, s2, . . . , sn, θ) : Rn × [0, 1]→ R be an integrable function of

parameter θ ∈ [0, 1] and positively homegenuous and continuous function of param-

eters s1, s2, . . . , sn ∈ R uniformly on θ and let

F (s1, s2, . . . , sn) =

∫ 1

0

f(s1, s2, . . . , sn, θ)dθ.

Then for each Banach lattice X, the Krivine extension F̃ of F is the Bochner integral

of the Krivine extension f̃ of f ,i.e.,

F̃ (x1, x2, . . . , xn) =

∫ 1

0

f̃(x1, x2, . . . , xn, θ)dθ.

Proof. Let X be a Banach lattice. By the previous lemma, for each ε > 0 we can

pick a function g(s1, s2, . . . , sn, θ) : Rn × [0, 1] → R which is continuous of param-

eters s1, s2, . . . , sn ∈ R and θ ∈ [0, 1] and positively homogenuous of parameters

s1, s2, . . . , sn ∈ R such that ||f(s1, s2, . . . , sn, .) − g(s1, s2, . . . , sn, .)||1 < ε. Define

G(s1, s2, . . . , sn) :=
∫ 1

0
g(s1, s2, . . . , sn, θ)dθ. Then we have

|F −G| =
∣∣ ∫ 1

0

fdθ −
∫ 1

0

gdθ
∣∣ ≤ ∫ 1

0

|f − g|dθ = ||f − g||1 < ε.

Now, let “ .̃ ” stands for the Krivine extension of “ . ” to the Banach lattice X. So

by Krivine extension we have

||F̃ − G̃|| = ||
∫ 1

0

f̃(x1, x2, . . . , xn, θ)dθ −
∫ 1

0

g̃(x1, x2, . . . , xn, θ)dθ|| < ε.

We also know from Lemma 4.1 that

G̃(x1, x2, . . . , xn) =

∫ 1

0

g̃(x1, x2, . . . , xn, θ)dθ,

where the right handside of the equality understood as a Bochner integral. Therefore

||F (x1, x2, . . . , xn)−
∫ 1

0

f̃(x1, x2, . . . , xn, θ)dθ||

≤ ||F̃ − G̃||+ ||G̃−
∫ 1

0

f̃(x1, x2, . . . , xn, θ)dθ||

= ||F̃ − G̃||+ ||
∫ 1

0

g̃(x1, x2, . . . , xn, θ)dθ −
∫ 1

0

f̃(x1, x2, . . . , xn, θ)dθ|| < 2ε.
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4.2 Orthogonality and Hermitian projections on

complex Banach lattices

Hermitian projections on complex Banach lattices

Suppose that X is a complex Banach space. A bounded linear operator T : X →
X is said to be hermitian if the numerical range of T is real, e.i., V (T ) ⊆ R. A

projection P on X is an hermitian projection if it is an hermitian operator. A

direct sum decomposition E⊕F of X is an hermitian decomposition if the induced

projection P : X → E is an hermitian projection.

We know that a decomposition E ⊕ F of X is hermitian if and only if

||x+ eiθy|| = ||x+ y||, x ∈ E, y ∈ F, θ ∈ R.

Now, letX be a complex Banach lattice and let P : X → X be an order projection.

Then E = Range P is a band in X and X = E ⊕ Ed is a band decomposition of X.

Note that for every x ∈ E, and every y ∈ Ed, we have

|x+ y| = |x|+ |y| = |x| ∨ |y|+ |x| ∧ |y| = |x| ∨ |y|,

thus ||x+ y|| = || |x| ∨ |y| ||. We deduce from this equality that

||x+ eiθy|| = || |x| ∨ |eiθy| || = || |x| ∨ |y| || = ||x+ y||,

for each θ ∈ R. Thus, P : X → E is an hermitian projection. With this in hand,

it is natural to ask if every hermitian projection is an order projection on a complex

Banach lattice. As pointed out in [14], this is not the case generally. Indeed, let

X = `2
2, and E = {(α, α) : α ∈ C} and F = {(β,−β) : β ∈ C}, so that X = E⊕F .

Let P : X → E be the projection on E. For x = (α, α) ∈ E and y = (β,−β) ∈ F ,

we have

||x+ eiθy||2 = 2(|α|2 + |β|2) = ||x+ y||2, θ ∈ [0, 2π),

and so P is an hermitian projection. However it is not an order projection.

Orthogonality in Banach Spaces

In [13], James introduced the notion of orthogonality in normed vector spaces. In

a normed vector space X, an element x is said to be orthogonal to an element y if
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and only if ||x|| ≤ ||x + αy|| for scalars α, or equivalently there exists a functional

f ∈ X∗ such that |f(x)| = ||x|| and f(y) = 0. This definition extends the notion of

orthogonality in Hilbert spaces to normed linear spaces.

We know that an operator T on a Hilbert space H is hermitian if and only if

〈x, y〉 = 0 for x ∈ Range T, y ∈ Ker T . Thus, orthogonality is coherent with

hermitian projections in Hilbert spaces. It is natural to ask that if this coherence

stands in Banach spaces.

Lemma 4.5. Let X be a complex Banach space. If P is an hermitian projection on

X, then,

||x|| ≤ ||x+ αy||,

for each x ∈ Range P , each y ∈ Ker P , and each α ∈ C.

Proof. Let x ∈ Range P, y ∈ Ker P . Then there exists x∗ ∈ X∗ such that ||x∗|| = 1

and x∗(x) = ||x||, By the Hahn-Banach Theorem. For every α ∈ C, one has

||x|| = x∗(x) = x∗P (x) = x∗P (x+ αy) ≤ ||x∗P || ||x+ αy||.

On the other hand, ||x∗P || ≤ ||x∗|| ||P || = 1 and

1 =
x∗(x)

||x||
= x∗P (

x

||x||
),

thus ||x∗P || = 1. Hence,

||x|| ≤ ||x+ αy|| α ∈ C.

The converse of the Lemma 4.5 is not true in general, in that, there are some

non-hermitian projections satisfying ‖x‖ ≤ ‖x+ αy‖, where x is in the range, y is in

the kernel and α is a scalar.

Example 4.6. Let X = (`∞)C, and let (ei) be the standard basis of X. Put f2 =

e1 + e2 and observe that (e1, f2, e3, . . .) is also a basis of X. Now, define

P : X → X, P (x = z1e1 + z2f2 + x3e3 + . . .) = z2f2 = (z2, z2, 0, 0, . . .).
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Then P is a projection on X with Ran P = {(z, z, 0, 0, . . .) ∈ `∞ | z ∈ C} and Ker

P = {(z1, 0, z3, z4, . . .) ∈ `∞ | zi ∈ C}. Now let x = (z, z, 0, 0, . . .) ∈ Ran P and let

y = (z1, 0, z3, z4, . . .) ∈ Ker P . For each α ∈ C, we have

‖x‖ = ‖(z, z, 0, 0, . . .)‖ = |z| ≤ sup{|z + αz1|, |z|, |αz3|, . . .} = ‖x+ αy‖.

But P is not hermitian since for x = (1, 1, 0, 0, . . .) ∈ Ran P , and y = (1, 0, 0, 0, . . .) ∈
Ker P ,

‖x+ y‖ = 2 6=
√

2 = |1 + eiπ| = ‖x+ eiπy‖.

Now, let X be a (complex) Banach lattice. We will now check the relation between

the orthogonality and the lattice structure of X. We start by checking if one of the

notions orthogonality and disjointness implies the other one for arbitrary elements x

and y of X.

Lemma 4.7. Let X be a complex Banach lattice and let x, y ∈ X with |x| ∧ |y| = 0.

Then for each α ∈ C, we have

||x|| ≤ ||x+ αy||.

Proof. Let |x| ∧ |y| = 0. Then, |x| ∧ |αy| = 0 for each α ∈ C. Thus

|x+ αy| = |x|+ |αy| ≥ |x|,

hence ||x|| ≤ ||x+ αy||.

In general, orthogonality does not imply disjointness.

Example 4.8. Let X = (c0)C, and let x = (1, 1, 0, 0, . . .), y = (1, 0, 0, . . .). Then for

each α ∈ C, we have

||x+ αy|| = ||(1 + α, 1, 0, 0, . . .)|| = max{|1 + α|, 1} ≥ 1 = ||x||.

However, x ∧ y 6= 0.

It is natural to ask under which conditions orthogonality implies disjointness. This

is first discussed in [20, Theorem 1].

Theorem 4.9. Let X be a smooth Banach lattice. Then the following are equivalent:
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(i) X is strictly monotone;

(ii) For x, y ∈ X+, if ||x|| ≤ ||x+ αy|| then x ∧ y = 0.

On the other hand, the relation between orthogonality and disjointness can also

be analyzed by comparing complemented subspaces of X. Let X = E⊕F be a direct

sum decomposition. By Lemma 4.7, we know that if E⊕F is a band decomposition,

then it is an orthogonal decomposition as well. But it is not trivial to see if the

converse implication holds. We introduce the following definition.

Definition 4.10. A direct sum decomposition E⊕F of a complex Banach lattice X

is said to satisfy property (d) if

||x|| ≤ ||x+ αy|| implies |x| ∧ |y| = 0, x ∈ E, y ∈ F, α ∈ C.

A complex Banach lattice X is said to satisfy property (d) if every direct sum

decomposition E ⊕ F of X satisfies the property (d).

Example 4.11. Let X be one of the spaces (`p)C, 1 ≤ p < ∞, or (c0)C, then X

satisfies the property (d). Indeed, by Pe lczyński’s theorem, we know that every

infinite-dimensional complemented subspace of X is isomorphic to X. Thus, if X =

E ⊕F , then it is a band decomposition. For more details, we refer to [8, Chapter 5].

The above example shows that if X is one of the spaces (`p)C, 1 ≤ p <∞ or (c0)C,

then every direct decomposition of X is orthogonal.

We have shown by Example 4.8 that if x, y ∈ (c0)C, then the orthogonality of

the elements x and y does not imply the disjointness in general. But, thanks to

Pe lczyński’s theorem, direct sum decompositions of (c0)C are disjoint.

Example 4.12. Let X = (`2
2)C and let E = {(α, α) | α ∈ C}, F = {(β,−β) | β ∈ C}.

Then X = E ⊕ F and for x = (α, α) ∈ E, y = (β,−β) ∈ F , we have

‖x+ θy‖2 = 2|α|2 + 2|θ|2|β|2 ≥ 2|α|2 = ‖x‖, θ ∈ C,

but |x| ∧ |y| 6= 0. Hence, `2
2 does not satisfy property (d).

Remark 4.13. Note that (`2
2)C is smooth and strictly monotone but does not satisfy

property (d). Also note that the complemented subspace F which is given in the

previous example, does not contain any positive element of (`2
2)C.

35



Theorem 4.14. Every infinite-dimensional reflexive complex Banach lattice satisfies

property (d).

Proof. Let X be a reflexive complex Banach lattice and let X = E ⊕ F be a direct

sum decomposition of X with

||x|| ≤ ||x+ αy||,

for each x ∈ E, each y ∈ F and each α ∈ C. This is equivalent to, by [13, Theorem

2.1], the fact that for each x ∈ E there exists x∗ ∈ X ′ such that x∗(x) = 1 and

x∗(y) = 0 for each y ∈ F . Define

E ′ = {x∗ ∈ X ′ | ∃x ∈ E such that x∗(x) = 1 and x∗(y) = 0 ∀y ∈ F}.

We claim that E ′ is an ideal in X ′ = X∼, where X∼ is the order dual of X.

Indeed, if a∗, b∗ ∈ E ′, then by Hahn-Banach Theorem there exists x′′ ∈ X ′′ such that

(αa∗ + βb∗)(x′′) = 1 for each scalars α, β. But x′′ ∈ X, since X is reflexive. Put

x′′ = x+ y where x ∈ E, y ∈ F . Then,

1 = (αa∗ + βb∗)(x′′) = (αa∗ + βb∗)(x+ y) = (αa∗ + βb∗)(x).

Hence αx∗ + βy∗ ∈ E ′. On the other hand if |a∗| ≤ |b∗| with b∗ ∈ E ′, then, by

Hahn-Banach Theorem again, there exists a, b ∈ X such that a∗(a) = 1 = b∗(b). Put

a = xa + ya, b = xb + yb where xa, xb ∈ E, ya, yb ∈ F . Then b∗(yb) = b∗(ya) = 0 since

b∗ ∈ E ′. So, a∗(ya) = 0 since |a∗| ≤ |b∗|. Therefore,

1 = a∗(a) = a∗(xa + ya) = a∗(xa),

thus a∗ ∈ E ′.

Now let ◦E ′ be the inverse annihilator of E ′, i.e.,

◦E ′ = {a ∈ X | x∗(a) = 0 ∀x∗ ∈ E ′}.

Then F = ◦E ′. Indeed, if y ∈ F , then x∗(y) = 0 for each x∗ ∈ E ′. Thus y ∈ ◦E ′.

Conversely, if a ∈ ◦E ′ with a = xa + ya where xa ∈ E and ya ∈ F , then there exists

x∗a ∈ E ′ such that x∗a(xa) = ||xa||. On the other hand, x∗a(a) = 0 and x∗a(ya) = 0 since

a, ya ∈ ◦E ′. So,

||xa|| = x∗a(xa) = x∗a(xa + ya) = x∗a(a) = 0,
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thus xa = 0 and therefore a ∈ F .

Since E ′ is an ideal of X ′, its inverse annihilator F is an ideal of X, which means

E ⊕ F is a band decomposition of X.

Lemma 4.15. The complex Banach lattice L1[0, 1]C does not satisfy property (d).

Proof. Let E = {f ∈ L1[0, 1]C | f = c for some c ∈ C}. It is easy to observe that E

is a complemented subspace of L1[0, 1]C and its complement is

F = {g ∈ L1[0, 1]C |
∫
g = 0}.

Indeed, if (hn)∞n=0 is the Haar system and P is the projection on h0, then E =Range

P and F =Ker P .

On the other hand, for each f ∈ E, each g ∈ F , and each α ∈ C, we have

||f || =
∫
|f | ≤

∫
|f + αg| = ||f + αg||.

Thus L1[0, 1]C = E ⊕ F is an orthogonal decomposition, but clearly it is not a band

decomposition.
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Applications

In [10], Dales asked if a direct sum decomposition E ⊕ F of a complex Banach

lattice X, satisfying

||x+ y|| = || |x| ∨ |y| || (4.1)

for x ∈ E, y ∈ F is a band decomposition. For real Banach lattices, he gave a

counter example: Let X = `2
1 and let {e1, e2} be the canonical basis of X. Let

E = span{e1 + e2} and F = span{e1 − e2}. Then, for each a, b ∈ R, we have

||a(e1+e2)+b(e1−e2)|| = |a+b|+|a−b| = max(2|a|, 2|b|) = || |a||e1+e2|∨|b||e1−e2| ||.

Thus, (3.1) holds, but E ⊕ F is not a band decomposition.

In [14], Kalton solved the problem for complex Banach lattices. He proved, by

heavily using hermitian projections, that in a complex Banach lattice X, every direct

sum decomposition E ⊕ F of X satisfiying (4.1) is a band decomposition of X.

For complex Banach lattices satisfying the property (d), we will give a direct

solution to Dales’s problem. First, we characterize hermitian projections.

Theorem 4.16. Let X be a complex Banach lattice, and let P be an hermitian

projection on X. Then, P is an order projection if and only if the decomposition

X = Range P ⊕Ker P satisfies property (d).

Proof. Let x ∈ Range P, y ∈ Ker P . Since P is an hermitian projection, by Lemma

4.5, we have ‖x‖ ≤ ‖x+ αy‖ for α ∈ C.

Now, if P is an order projection on X, then X = Range P ⊕ Ker P is a band

decomposition of X, i.e., |x|∧ |y| = 0. Hence Range P ⊕Ker P satisfies property (d).

Conversely, if Range P ⊕ Ker P satisfies property (d), then |x| ∧ |y| = 0 since

‖x‖ ≤ ‖x+ αy‖ for α ∈ C. Thus, P is an order projection.

Corollary 4.17. Let X be a complex Banach lattice. If X satisfies property (d),

then every hermitian projection on X is an order projection on X.

Proof. If P : X → X is an hermitian projection then, the decomposition RanP ⊕
KerP satisfies property (d) since X does. Hence P is an order projection by Theorem

4.16.
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Now we are able to give a direct solution to Dales’s problem for complex Banach

lattices satisfying property (d).

Corollary 4.18. Let X be a complex Banach lattice with property (d), and let E⊕F
be a direct sum decomposition of X. If ||x+y|| = || |x|∨ |y| || for each x ∈ E, y ∈ F ,

then E ⊕ F is a band decomposition.

Proof. Let P be the induced projection on E. Then for each α ∈ C with |α| = 1,

||x+ y|| = || |x| ∨ |y| || = || |x| ∨ |αy| || = ||x+ αy||.

Thus P is an hermitian projection. Hence P is a band projection since X satisfies

the property (d). So that E ⊕ F is a band decomposition.

We do not know if CC[0, 1] satisfies property (d), but we know about the bands

in CC[0, 1]. It is well-known that the only projection bands on the Banach lattice

CC[0, 1] are {0} and CC[0, 1]. So, we have the following:

Lemma 4.19. CC[0, 1] admits no non-trivial hermitian projections.

Proof. Let P be an hermitian projection on CC[0, 1], and let x be an element of

CC[0, 1] such that ||x|| = 1, and that x(t) = 1 for some t ∈ [0, 1]. One can observe

that if x∗ = δt, where δt is the Kronecker delta, then (x, x∗) is a primary state, i.e.,

||x|| = 1 = ||x∗|| and x∗(x) = 1. Hence, x∗(Px) = P ∗x∗(x) is real. We claim that this

forces P ∗x∗ to be a multiple of x∗. By way of contradiction, suppose that there exists

an open interval (a, b) such that t /∈ [a, b] and that P ∗x∗ is not zero on (a, b). Now

pick some x0 ∈ CC[0, 1] with x0(t) = 1, x0(a) = 0 = x0(b), ||x0|| = 1, and µ(x0) 6= 0,

where µ is the restriction of the measure P ∗x∗ on (a, b). Now put x1 = αx0 and

observe that (x1, x
∗) is a primary state and P ∗x∗(x1) is not real for a suitable α ∈ C

with |α| = 1.

This implies that, P is a multiplication operator since P ∗x∗ is a multiple of x∗.

Thus, P is a band projection.

Corollary 4.20. Let CC[0, 1] = E ⊕ F be a direct sum decomposition with

||x+ y|| = || |x| ∨ |y| ||

for each x ∈ E, y ∈ F . Then either E or F is CC[0, 1].
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Proof. Let P be the induced projection on E. Then it is easy to see that P is an

hermitian projection. So, by Lemma 4.19, either E or F is CC[0, 1].
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