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help, patience and support through this journey; without her I would never have

had the strength to succeed. Lastly I wish to thank my parents for being such a

huge support through my life.
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ÖZET

UZAYIN BÖLGEYE DAYALI TEORİLERİ İÇİN TABLO

YAKLAŞIMI

Zafer ÖZDEMİR

Uzayın bölgeye dayalı teorilerini için tablo yaklaşımını incelediğimiz

bu tez beş bölümden oluşmaktadır. Tezin ilk kısmında problemin

tanımı ve uygulanan yöntemler verilmiştir. Tezin ikinci ve üçüncü

kısmında uzayın bölgeye dayalı teorisinin sentaks, semantik ve

aksiyomatik özellikleri tanıtılarak uzayın bölgeye dayalı teorisi için

tablo kuralları verilmiş ve tablo yönteminin temel kavramları olan;

başlangıç tablosu, açık ve kapalı tablo, dal, düğüm kavramları ifade

edilerek tablo kurallarının uygulamaları örneklerle ayrıntılı olarak

açıklanmıştır. Tablo kurallarının sonlanma ve sağlamlık teoremleri ve

kanıtları verilmiştir. Ayrıca tablo kuralları için tamlık teoreminin

kanıtında kullanılan sistematik tablo inşa yöntemi, doğruluk lemması

ve tamlık teoremleri ve ispatıları verilmiştir. Ek olarak, uzayın

bölgeye dayalı teorisinin modellerini genişleterek simetrik, yansımalı

ve geçişmeli olması durumunda tablo kuralları tanımlanarak,

sonlanma, sağlamlık ve tamlık teoremlerinin kanıtında kullanılan

yardımcı teoremler ve bu teoremlerin kanıtları ayrıntılı olarak

verilmiştir. Tezin dördüncü kısmında, bağıntılı mantıkların bir

genişlemesi olan evrensel modalite içeren bağıntılı mantıkların;

sentaks, semantik ve aksiyomatik özellikleri tanıtılarak, tablo

kuralları verilmiş ve uygulamaları örneklerle ayrıntılı olarak

açıklanmıştır. Ardından tablo kurallarının sonlanma ve sağlamlık

teoremleri ve kanıtları verilmiştir. Ayrıca tablo kuralları için

vi



doğruluk lemması ve tamlık teoreminin kanıtları verilmiştir. Beşinci

bölümde, bağıntılı mantıkların farklı bir semantiği olan reel sayı

aralıkları üzerindeki yorumu üzerine çalışılmış ve bu bağlamda;

sentaks, semantik ve aksiyomatik özellikleri tanıtılarak, tablo

kuralları verilmiş ve tablo kurallarının uygulamaları örneklerle

ayrıntılı olarak açıklanmıştır. Ek olarak, tablo kurallarının sonlanma

ve sağlamlık teoremleri kanıtları ile verilmiştir. Ayrıca tablo kuralları

için doğruluk lemması ve tamlık teoreminin kanıtı verilmiştir.

Anahtar Kelimeler: Uzayın bölgeye dayalı teorisi, kontak mantıklar

ve karar verme yöntemleri, hesaplanabilirlik.
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SUMMARY

TABLEAUX APPROACHES FOR REGION BASED THEORIES

OF SPACE

Zafer ÖZDEMİR

In this study, we examined tableaux approaches for region based

theories of space. This thesis consists of five chapters. In the first

chapter is devoted to statement of the problem, review of contents,

methods applied. In Chapter 2 and Chapter 3, we introduce region

based theories of space. In Chapter 2, we introduce historical

background, syntax and semantics, axiomatization of the theory. In

semantics subsection, we present relational semantics and topological

semantics. Following sections continue with applications and

definability result in region based theories of space. In Chapter 3, we

study tableau approaches for region based theories of space, we give

basic definitions about tableau approaches, we prove termination,

soundness and completeness theorems. In last section of Chapter 3,

we give tableaux rules for variants of region based theories of space.

In its subsections, we prove soundness and completeness theorem for

variants. In Chapter 4, we presents generalized contact logics. The

first section of Chapter 4 consists of syntax-semantics, definability

and axiomatizationn. The chapter continue with general tableau

approaches for generalized contact logics. Section 4.4 and 4.3, consist

of soundness-completeness theorems and proofs. In the end of

Chapter 4, we give tableau rules for variants. And then we give

soundness-completeness theorem and proofs. Chapter 6 is devoted to

the study of interval semantics of contact logics and its tableau
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approaches. In particular, we give syntax and semantics. After that

we present tableau rules for contact logics interpreted over intervals.

The last two sections are about soundness and completeness

theorems. We give proofs of these theorems.

Keywords: Region based theories, contact logics, tableaux-based

decision procedures, computability.
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Chapter 1

INTRODUCTION

1.1 Statement of the Problem

We introduce and study the general tableaux approaches for region based theories

of space. In particular, we give sound and complete tableaux-based decision

procedures for contact logics and its variants. Developing such tableaux-based

decision procedures, we obtain new decidability/complexity results.

1.2 Review of Contents

Chapter 1 of this thesis presents the scope of the study as an introduction. Chap-

ter 2 contains some background related to region based theories of space. The

first section of Chapter 2 start with historical background of the theory. Section

2.2 and Section 2.3 deals with syntax, semantics and axiomatization. Section

2.4 is about applications in artificial intelligence and geographical information

systems. Section 2.5 is about some definability results for region based theories

of space.

Chapter 3 is about tableaux approaches for region based theories of space.

First section of Chapter 3 is about basic definitions. Section 3.2 is about sound-

ness and termination theorems. In section 3.3, we present some theorems and

proofs which are related to proof of completeness theorem. In the end of the
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section we present completeness theorem and its proof. Following sections we

extend the theory with symmetric, reflexive, serial and dense models. We prove

soundness and completeness theorems for variants of contact logics.

In Chapter 4, we presents generalized contact logics. The first section of

Chapter 4 consists of syntax-semantics, definability and axiomatization.

In Chapter 4 continue with tableau approaches for generalized contact logics.

Sections 4.6 and 4.7 consist of soundness-completeness theorems and proofs. In

the end of Chapter 4, we give tableau rules for variants, and we give soundness-

completeness theorems and proofs for variants of generalized contact logics.

Chapter 5 is devoted to the study of interval semantics of contact logics and

its tableau approaches. In particular, we give syntax and semantics. After that

we present tableau rules for contact logics interpreted over intervals. The last

two sections are about soundness and completeness theorems. We give proofs of

these theorems.

1.3 Methods Applied

This work uses essentially the methods from the following branches of mathe-

matical logics: region based theories, tableaux-based decision procedures, com-

putability. In particular, we use intensively the following concepts: tableau ap-

proaches, termination of tableau approaches, saturated tableaux, termination

theorem, soundness theorem, truth lemma and completeness theorem . The main

technical tool used in the work is semantic tableau approach.
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Chapter 2

REGION BASED THEORIES

OF SPACES

In this chapter, we set general background about region based theories of space

which also known as contact logic. It is modal logics that has been recently

considered in order to obtain decidable fragments of the region-based theories of

space introduced by De Laguna [19] and Whitehead [64].

2.1 History

The region-based theory of space is an alternative to the point-based theory of

space. The region-based theory of space contains a notion such as region corre-

sponding to the intuitive notion of spatial body and some basic relations between

regions such as the mereological relations of part-of or overlap and the topological

relation of connection (recently called contact relation). This does not mean that

points should be disregarded; they must be defined and one of the main aims of

the theory is to show an equivalence between the pointless and point-based ap-

proaches. Good analogs of regions in the point-based approach are regular closed

(or regular open) sets in some topological spaces. Then two regular closed regions

are in a contact if they have a non-empty intersection and the part-of relation

is identified with the set-theoretical inclusion. Remark that regular sets (open

or closed) form a Boolean algebra; this suggests that is considered region-based
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theories of space as special Boolean algebras with some additional relations, also

called contact algebras. So topology is one of the main sources of (point-based)

models of continuous region-based theories of space. The origin of region-based

theory of space goes back to de Laguna [19] and Whitehead [64]. Early papers

related to this approach include Tarski [58], Leonard and Goodman [33], Grze-

gorczyk [32], Clarke [16]. Gerla give a good survey of the pointless approach

to the theory of space in [31]. Recent results in this field, concentrated on the

correspondence with the classical, point-based approach, are Roeper [52], Mor-

mann [48], Pratt and Schoop [49], Vakarelov et al. [60, 61], Duntsch and Winter

[23], Dimov and Vakarelov [21] (see also the survey by Vakarelov [59]). One of

the significant systems of region-based theory of space is the Region Connection

Calculus (RCC) which is introduced by Randel et al. [50]. An axiomatization of

RCC based on Boolean algebras was given by Stell [50]. In recent years, the RCC

system is in the center of the so called Qualitative Spatial Reasoning (QSR), an

intensive research area in artificial intelligent and information theory. A survey

of the research in QSR was given by Cohn and Hazarika in [17]. In connection

with this some authors pointed out that topological models do not fit well with

some discrete models of space. Galton [29] proposed a model consisting of a set

of elements called cells and a binary relation R between cells called adjacency

relation. The regions in the adjacency spaces are arbitrary sets of cells and two

regions A and B are in a contact if there exists cells x ∈ A and y ∈ B such that

xRy [4]. A pointless approach to such a discrete region-based theory of space was

given by Duntsch and Vakarelov [24] and Li and Ying [47] proposed a discrete

generalization of RCC denoted as GRCC.

2.2 Syntax and Semantics

In this section, we present syntax and semantics for contact logics. We give the

relational semantics which is based on Kripke models and also the topological

semantics which is based on topological spaces. For further details one can consult

on [4], whose terminology is used throughout.

2.2.1 Syntax

Let BV be a countably infinite set of Boolean variables (with members denoted

by p, q, etc). The set of all Boolean terms based on BV (with members denoted

4



by a, b, etc) is defined as follows:

• a := p | 0 | −a | (a ∪ b).

The Boolean constructs 1 and ∩ are defined as usual. The set of all formulas

based on BV (with members denoted by φ, ψ, etc) is defined as follows:

• φ := a ≤ b | C(a, b) | ⊥ | ¬φ | (φ ∨ ψ).

The other Boolean constructs for formulas (>, ∧, etc) are defined as usual. Given

Boolean terms a and b, let a 6≤ b be ¬ a ≤ b, a ≡ b be (a ≤ b ∧ b ≤ a) and a 6≡ b

be ¬ a ≡ b. The intuitive readings of the formula a ≤ b and C(a, b) are: “region

a is part-of region b” and “region a is in contact with region b”. As usual, we will

follow the standard rules for omission of the parentheses. Examples of formulas

are: a 6≡ 0 → C(a, a) (“if a is nonempty then a is in contact with itself”) and

C(a, b)→ C(b, a) (“if a is in contact with b then b is in contact with a”).

2.2.2 Relational Semantics

A frame is a pair F = (W,R) where W is a nonempty set and R ⊆ W × W .

The elements of W are called points and, naturally, regions are sets of points,

i.e. elements of 2W . A model based on F is a 3-tuple M = (W,R, V ) where V :

BV −→ 2W . The function V is the valuation function of the model. It associates

a region ofM to each Boolean variable of the language. It can be extended into

the function V̄ defined as follows on the set of all Boolean terms:

V̄ (p) = V (p),

V̄ (0) = ∅,

V̄ (−a) = W \ V̄ (a),

V̄ (a ∪ b) = V̄ (a) ∪ V̄ (b).

Now, we have everything that is needed to define the satisfiability relation

between a modelM = (W,R, V ) and a formula φ, in symbolsM |= φ, as follows:

M |= a ≤ b iff V̄ (a) ⊆ V̄ (b),

M |= C(a, b) iff there exists x, y ∈ W such that x ∈ V̄ (a), y ∈ V̄ (b) and xRy,

M 6|= ⊥,

M |= ¬φ iff not M |= φ,
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M |= φ ∨ ψ iff M |= φ or M |= ψ.

We shall say that φ is satisfiable in a frame F iffM |= φ for someM based on

F . φ is said to be valid in F iffM |= φ for everyM based on F . Let C be a class

of frames. We shall say that φ is satisfiable in C iffM |= φ for someM based on a

frame in C. φ is said to be valid in C iffM |= φ for everyM based on a frame in C.
Satisfiability and validity with respect to a class of models are similarly defined.

Examples of formulas valid in the class of all models are: C(a, b)→ a 6≡ 0∧b 6≡ 0,

C(a, b ∪ c)↔ C(a, b) ∨ C(a, c) and C(a ∪ b, c)↔ C(a, c) ∨ C(b, c). The formulas

a 6≡ 0 → C(a, a) and C(a, b) → C(b, a) are valid in, respectively, the class of all

reflexive models and the class of all symmetric models.

2.2.3 Topological semantics

Let X be a topological space and let RC(X) be the contact algebra of regular

closed sets of X. We will use RC(X) as a topological semantics for the language

of contact logic in the following way. By a valuation of Boolean variables in

a topological space X we mean any function v which assigns to any Boolean

variable p a regular closed set V (p). Then V is extended to all Boolean terms as

follows:

V̄ (p) = V (p),

V̄ (0) = ∅,

V̄ (−a) = Cl(X \ V̄ (a)),

V̄ (a ∪ b) = V̄ (a) ∪ V̄ (b).

The pair M = (X, V ) is called a (topological) model. Then formulas are

interpreted in such models as follows:

M |= C(a, b) iff V̄ (a) ∩ V̄ (b) = ∅,

M |= a ≤ b iff V̄ (a) ⊆ V̄ (b),

M 6|= ⊥,

M |= ¬φ iff not M |= φ,

M |= φ ∨ ψ iff M |= φ or M |= ψ.

We say that a formula is true in the space X if it is true in all models over X.

6



2.3 Axiomatization

In this section an axiomatic system for contact logic will be given. This will be a

Hilbert-style axiomatic system consisting of a set of axioms and a set of inference

rules.

Axioms for contact logic LCon.

(I). A complete set of axiom schemes for the classical propositional logic (or

all formulas which are tautologies of the classical propositional logic).

(II). A set of axiom schemes for Boolean algebra in terms of the part-of ≤
(a, b, c are arbitrary Boolean terms):

a ≤ a,

(a ≤ b) ∧ (b ≤ c)⇒ (a ≤ c),

(0 ≤ a),

(a ≤ 1),

(c ≤ (a u b))⇔ (c ≤ a) ∧ (c ≤ b),

((a t b) ≤ c)⇔ (a ≤ c) ∧ (b ≤ c),

(a u (b t c)) ≤ (a u b) t (a u c),

(c u a ≤ 0)⇔ (c ≤ −a),

(−− a ≤ a).

(III). A set of axiom schemes for the contact C:

(C1) C(a, b)→ (a 6≡ 0) ∧ (b 6≡ 0),

(C2) C(a, b) ∧ (a ≤ a′) ∧ (b ≤ b′)→ C(a′, b′),

(C3) C(a, (b t c))→ C(a, b) ∨ C(a, c), C((b t c), a)→ C(b, a) ∨ C(c, a).

Rule of inference. Modus ponens:

From φ and φ→ ψ, infer ψ, symbolically:

(MP)
φ, φ→ ψ

ψ

The notion of proof in LCon is the standard one. All provable formulas will be

called theorems of LCon. It can be proved easily that the set of the theorems of

LCon is closed under the rule of substitution: if α(p1, ..., pn) is a theorem of LCon

and p1, ..., pn is a sequence of different Boolean variables then for any boolean

7



terms b1, ..., bn, the formula α(b1, ..., bn) is a theorem of LCon. An equivalent

formulation of the axiomatic system LCon can be obtained as follows: consider the

rule of substitution as a separate rule and instead of considering axiom schemes

for the Boolean part and for the contact C consider for them concrete axioms

in a sense that the terms a, b, c in their formulation are different fixed Boolean

variables.

2.4 Applications In Artificial Intelligence And

Geographical Information Systems

The need for formal languages to express and reason about spatial concepts is

of crucial importance in many areas of artificial intelligence and geographic in-

formation systems. In this respect, the RCC system is in the center of the so

called Qualitative Spatial Reasoning (QSR). Research in QSR is motivated by a

wide range of possible application areas including Geographic Information Sys-

tem (GIS), robotic navigation, high level vision, spatial propositional semantics

of natural languages, engineering design, common-sense reasoning about physical

systems and specifying visual language syntax and semantics. There are numer-

ous other application areas including qualitative document-structure recognition

[63], biology (e.g. [56, 18]) and domains where space is used as a metaphor (e.g.

[44, 51])

2.5 Some Definability Results

The definition of modal definability of a class of frames by a formula is the same

as the definition of global modal definability in ordinary modal logic. Namely, we

say that the class Σ of frames is modally definable by the formula φ if for every

frame F we have: F ∈ Σ iff F |= φ. If the class Σ is defined by a first-order

formula F then we say that F is modally definable by φ or that F is a first-order

equivalent of φ.

The following lemma is a kind of modal definability statement.

Lemma 2.5.1. Let F = (W,R) be a frame and p, q be Boolean variables. Then

the following equivalences are true:

(i) R 6= ∅ iff F |= C(1, 1) (non-emptiness of R),
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(ii) (∀x ∈ W )(∃y ∈ W )(xRy) iff F |= p 6≡ 0⇒ C(p, 1) (right seriality of R),

(iii) (∀y ∈ W )(∃x ∈ W )(xRy) iff F |= p 6≡ 0⇒ C(1, p) (left seriality of R),

(iv) (∀x ∈ W )(∃y ∈ W )(xRy or yRx) iff F |= p 6≡ 0⇒ C(1, p) ∨ C(p, 1) (weak

seriality of R),

(v) (∀x ∈ W )(xRx) iff F |= (p 6≡ 0⇒ C(p, p)) (reflexivity of R),

(vi) (∀x, y ∈ W )(xRy → yRx) iff F |= (C(p, q)⇒ C(q, p)) (symmetry of R),

(vii) (∀x, y ∈ W )(xRy ⇔ x = y) iff F |= (C(p, q)⇔ puq 6≡ 0) (contact coincides

with overlap),

(viii) (∀x, y ∈ W )(xRy) iff F |= p = 0 ∧ q 6≡ 0⇒ C(p, q) (universality of R).

Let us note that the first-order conditions from (i), (iii), (iv) and (viii) are not

modally definable in the ordinary modal language. On the other hand, there are

examples of first-order conditions definable in the ordinary modal logic which are

not modally definable in the present language. Such a condition is for instance

transitivity of R.

The language of contact logics can be seen as a first-order language without

quantifiers. See also [21, 23]. Nevertheless, we call it modal because most con-

cepts, tools and techniques typical of ordinary modal languages can be applied

to it: filtration method, canonical model construction, etc. For instance, with

respect to modal definability, a Sahlqvist-like Correspondence Theorem can be

obtained for contact logics [2]. It happens that some elementary properties that

are definable in the ordinary language of modal logic are not definable in contact

logics and, on the contrary, some second-order properties that are definable in

contact logics are not definable in the ordinary modal language. Concerning the

satisfiability problem, an interesting result for the contact logics is the following

[4]: the satisfiability problem with respect to the class of all Kripke models or

with respect to the class of all reflexive and symmetric Kripke models is NP -

complete. These definability and computability results show that the language of

contact logics can be sometimes more expressive than the corresponding language

of modal logic whereas the satisfiability problem can be, in some cases, easier to

decide.
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Chapter 3

TABLEAUX APPROACHES

FOR REGION BASED

THEORIES OF SPACES

In this chapter we give sound and complete tableaux- based decision procedures

for contact logics and some variants of these logics. Although the language of

contact logics has been based on the connectives of part-of ≤ and contact C,

we will base the tableau rules on the connectives of equality ≡ and contact C.

Seeing that ≡ and ≤ are easily interdefinable (a ≡ b = (a ≤ b ∧ b ≤ a) and

a ≤ b = (a ∪ b) ≡ b), this change in the choice of the primitives is harmless: the

results concerning the decidability and complexity of the problem of deciding the

satisfiability of formulas with respect to such or such class of models will be the

same in a ≤-base language or in an ≡-based one.

3.1 Tableaux Approaches

The language of contact logics is based on two types of expressions: Boolean

terms and formulas. For these reasons, tableau nodes will be labeled by the

following types of expressions:

(i) formulas;
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(ii) expressions of the form x : a;

(iii) expressions the form x4y;

where x, y are symbols and a is a Boolean term. Given a formula φ, its initial

tableau is the labeled tree consisting of exactly one node (called root) labeled

with φ. The tableau rules are given in two parts: Boolean-rules (This page) and

formula-rules (next page).

Union Rule

x : (a ∪ b)

x : a x : b

Intersection Rule

x : −(a ∪ b)

x : −a
x : −b

Negation Rule
x : −− a

x : a

Rules are applied in a standard way by extending branches of constructed trees.

For example, given a current tree t, a branch β in t and a node n in β labeled

with a formula C(a, b), applying the C rule to n consists in successively adding

to the end of β three new nodes respectively labeled with x : a, y : b and x4y
where x, y are new symbols.
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Disjunction Rule
φ ∨ ψ

φ ψ

Conjunction Rule

¬(φ ∨ ψ)

¬φ
¬ψ

Negation Rule

¬¬φ

φ

C Rule

C(a, b)

x : a
y : b
x4y

(x and y are new in the branch)

¬C Rule

x4y
¬C(a, b)

x : −a y : −b
(x and y already occur

in the branch)

≡ Rule
a ≡ b

x : a

x : b

x : −a
x : −b

(x already occurs in the branch)

6≡ Rule
a 6≡ b

x : a

x : −b
x : −a
x : b

(x is new in the branch)

Definition 3.1.1. A branch is said to be closed if and only if one of the following

conditions holds:

(i) it contains a node labeled with x : 0;

(ii) it contains two nodes respectively labeled with x : a, x : −a;

(iii) it contains a node labeled with ⊥.
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Definition 3.1.2. A tableau is closed when all its branches are closed.

Let us consider the contact formula C(a, b)∧¬C(b, a) and show how the rules

apply. The tableau obtained for this formula by applying our rules has two open

branches.

C(a, b) ∧ ¬C(b, a)

C(a, b)

¬C(b, a)

x4y

x : a

y : b

x : −b y : −a

Figure 3.1 Open tableau

Let us consider the contact formula (a∪ b) ≡ 0∧C(a, b) and show how the rules

apply. The tableau obtained for this formula by applying our rules has two closed

branches.
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(a ∪ b) ≡ 0 ∧ C(a, b)

a ∪ b ≡ 0

C(a, b)

x : a

y : b

x4y

x : a ∩ b

x : 0
�

x : −(a ∩ b)

x : −0

x : 1

x : −a
�

Figure 3.2 Closed tableau

In order to prove that the tableaux of satisfiable formulas cannot be closed,

we introduce the concept of interpretability of a branch in a model.

Definition 3.1.3. Let M = (W,R, V ) be a model. Let β be a branch in a

tableau and W ′ be the set of all variables occurring in β. The branch β is said

to be interpretable in M if there exists a function f : W ′ → W such that:

(i) if φ occurs in β, then M |= φ,

(ii) if x4y occurs in β, then f(x)Rf(y),

(iii) if x : a occurs in β, then f(x) ∈ V̄ (a).

These conditions are called compatibility conditions for f .

Definition 3.1.4. Let t be a semantic tableau and M be a model. The semantic

tableau t is said to be interpretable in M if and only if there exist a branch in t

which is interpretable in M .

Obviously, interpretable branches and interpretable tableaux are open.
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3.2 Soundness

In this section, we show the soundness of the tableau rules for contact logics.

Proposition 3.2.1. Let M = (W,R, V ) be a model and φ be a formula. If

M |= φ, then every semantic tableau computed from the initial tableau of φ is

interpretable in M .

Proof. Suppose M |= φ. Since the initial tableau of φ consists of a single node

labeled with φ, therefore the initial tableau of φ is interpretable in M. The fact

that the tableau rules preserve the interpretability property in M follows from

the strict similarity between the relational Kripke semantics of contact logics and

the tableau rules presented at Pages 4 and 6.

Now, rule show the termination of our tableau procedure.

Theorem 3.2.2. Let φ be a contact formula. After a finite number of steps from

the initial tableau of φ, no tableau rules can be applied.

Proof. Let t be a tableau computed from the initial tableau for φ. We have to

show that after a finite number of steps, no rule can be applied. Suppose the

contrary. Thus there exists an infinite sequence t0, t1, . . . of tableaux such that

t0 = t and tn+1, is obtained from tn by applying a rule. Remark that each node

occurring in these tableaux has at most two successors. As a result, from the

sequence t0, t1, . . ., we can extract an infinite branch β. The branch β contains

information of the form: ψ, x4y and x : a, where ψ is a sub-formula or the

negation of a subformula of φ and a is a sub-term or the complement of a subterm

of φ. Note that the symbol x, y, . . . occurring in β have been introduced by two

specific rules: the C rule and the 6≡ rule. Remark also that the application of

these two rules are triggered by the occurrence of atomic formula of the form

C(a, b) and a 6≡ b. These atomic formulas being sub-formulas or negations of

sub-formulas of φ, the above two specific rules will be applied finitely many time

only. This means that, all in all, the infinite sequence t0, t1, . . . does not exist.

3.3 Completeness

In this section, we prove the completeness of the tableau method, i.e. for all valid

formulas φ, after finitely many steps one can obtain a closed tableau from the
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initial tableau of ¬φ. In this respect, the concept of saturation is essential.

Definition 3.3.1. A branch β in some tableau is called saturated, if the following

conditions holds for all nodes n ∈ β:

• if n is labeled with ¬¬φ, then β contains a node labeled with φ,

• if n is labeled with φ ∨ ψ, then β contains a node labeled with φ or ψ,

• if n is labeled with ¬(φ ∨ ψ), then β contains nodes labeled with ¬φ and

¬ψ,

• if n is labeled with C(a, b), then β contains nodes labeled with x4y, x : a

and y : b,

• if n is labeled with ¬C(a, b) and β contains a node labeled with x4y, then

β contains a node labeled with x : −a or y : −b,

• if n is labeled with a ≡ b and β contains the symbol x, then β contains

nodes labeled with x : a and x : b, or β contains nodes labeled with x : −a
and x : −b,

• if n is labeled with a 6≡ b, then for some symbol x either β contains nodes

labeled with x : a and x : −b, or β contains nodes labeled with x : −a and

x : b,

• if n is labeled with x : −− a, then β contains a node labeled with x : a,

• if n is labeled with x : a ∪ b, then β contains a node labeled with x : a or

x : b,

• if n is labeled with x : −(a ∪ b), then β contains nodes labeled with x : −a
and x : −b.

Definition 3.3.2. A tableau is said to be saturated if all its branches are satu-

rated.

Definition 3.3.3. Let t be a saturated tableau and β be a branch in t. A triple

M = (W,R, V ) is called a saturated model for β, if

(i) W is the set of all variables occurring in β,

(ii) R is the binary relation on W defined by xRy iff β contains the information

x4y,
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(iii) V (p) is the set of all x ∈ W such that β contains the information x : p.

The following lemma is crucial for proving the completeness of our method.

Lemma 3.3.4. Let t be a saturated tableau, β be a branch in t and M = (W,R, V )

be a saturated model for β. We have the following:

(i) If β contains x : a, then x ∈ V̄ (a),

(ii) If β contains a contact formula φ, then M |= φ.

Proof. (i) The proof is done by induction on a. The base case follows from the

definition of V . The induction steps are left to reader.

(ii) The proof is by done induction on φ. We only consider the case C(a, b), the

other cases being left to the reader. Suppose β contains contact formula C(a, b).

Since β is saturated, β contains nodes labeled with x4y, x : a and y : b. By item

(i), we have x ∈ V̄ (a) and y ∈ V̄ (b). Since β contains information x4y, then

xRy. Therefore M |= C(a, b).

Now, we are ready to prove the completeness of our method.

Theorem 3.3.5. Let φ be a formula and t a saturated tableau obtained from the

initial tableau of ¬φ by applying the tableau rules. If φ is valid in the class of all

models then t is closed.

Proof. Suppose t is open. Thus, t contains an open branch β. Since t is saturated,

therefore β is saturated too. Let M = (W,R, V ) be the saturated model for β.

By the truth lemma, we have M |= ¬φ, contradicting the validity of φ.

Obviously, the formula a 6≡ 0 is satisfiable iff the Boolean term a is consistent

in Boolean Logic. For this reason, the problem of determining if a given formula

is satisfiable is NP -hard. A careful analysis of the tableau rules immediately

leads us to the conclusion that the depth of a tableau computed from a given

formula φ is linear in the number of symbols in φ. Since tableaux are finitely

branching, for this reason, together with Proposition 3.2.1 and Theorem 3.3.2

(Termination), Theorem 3.3.5 (Completeness) allows us to conclude that the

problem of determining if a given formula is satisfiable in the class of all models

is NP -complete. This complexity result has already been discussed in [4] where

it was obtained by means of a more complicate argument based on the filtration

method.
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3.4 Variants

In this section, we extend our systems with adding new tableau rules which are

Ser (for serial models), Ref (for reflexive models), Ser (for serial models) and

Den (for dense models). We give sound and complete tableaux based decision

procedure for some variants of contact logics.

3.4.1 Symmetric models

A model M = (W,R, V ) is symmetric if for all x, y ∈ W , xRy if and only if yRx.

Let us consider the class of all symmetric models of contact logics. In order to

decide satisfiability with respect to this class, we should add the following rule to

our system:

(Sym)
x4y

y4x
(x and y already occur in the branch)

Obviously, (Sym) preserves the property of interpretability in symmetric mod-

els. Thus, if φ is satisfiable in a symmetric model, then all semantic tableaux

computed from the initial tableau of φ are open. Seeing that there is no need to

apply (Sym) twice to the same pair (x, y), termination of our extended tableau

system easily follows. Thus, after a finite number of steps from an initial tableau,

no rules can be applied. Finally, within the context of our extended system, the

model defined in the previous section is clearly symmetric. The proof of the Truth

Lemma being repeated as such, we therefore obtain the following theorem:

Theorem 3.4.1. Let φ be a formula and t a tableau obtained from the initial

tableau of ¬φ by applying the tableau rules augmented with (Sym). If φ is valid

in the class of all symmetric models then t is closed.

Again, a careful analysis of the tableau rules augmented with (Sym) imme-

diately leads us to the conclusion that the depth of a tableau computed from a

given formula φ is linear in the number of symbols in φ. Consequently, the prob-

lem of determining if a given formula is satisfiable in the class of all symmetric

models is NP -complete.
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3.4.2 Reflexive models

A model M = (W,R, V ) is reflexive if for all x ∈ W , xRx. Let us consider the

class of all reflexive models of contact logics. In order to decide satisfiability with

respect to this class, we should add the following rule to our system:

(Ref)
x4x

(x already occurs in the branch)

The same line of reasoning as the one considered in the case of the class of all

models would easily allow us to obtain the soundness, termination, completeness

of the extended tableau system.

3.4.3 Serial models

A model M = (W,R, V ) is serial if for all x ∈ W , there exist y ∈ W such that

xRy. Let us consider the class of all serial models of contact logics. Apparently,

the seriality property is quite innocent. Nevertheless, the satisfiability problem

for the restriction of contact logic to the class of all serial models seems to be

more difficult than expected. Since we are interested in the class of all serial

models, the following rule is of some importance

(Ser)
x4y

(x already occurs in the branch
and y is new in the branch)

Obviously, the application of (Ser) preserves the property of interpretability in

serial models. The main problem with (Ser) clearly concerns the termination

property. Nevertheless, by means of a strategy, we can obtain a terminating

tableaux-based decision procedure. To define our strategy, we need the following

preliminary definitions.

Definition 3.4.2. Let β be a branch and x be a symbol occurring in β. We say

that x is successor-free, if there is no symbol y such that x4y occurs in β.

Definition 3.4.3. Let β be a branch and term(x, β) be the set of all terms which

is associated with x. x is said to be twin-free, if there is no symbol y occurring

in β, x 6= y, such that term(x, β) = term(y, β) and y has a successor.

Recall from the example presented at Page 13 that the contact formula C(a, b)∧
¬C(b, a) has an open tableau. According to our definition, the symbols x and

y are twin-free in both branches. On the other hand, x is not successor-free: x
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has a successor, namely y, in both branches. Besides, y has no successor in both

branches. Thus, y is a successor-free symbol.

Our strategy is the following:

(i) Apply the formula rules and term rules as much as possible,

(ii) Choose a successor-free and twin-free symbol x already existing in the branch.

Apply the (Ser) rule to x and go to (i) otherwise, go to (iii),

(iii) Halt.

Now, let us show how our strategy will terminate. Remark first that in any

branch β of a tableau constructed from φ’s initial tableau, term(x, β) contains,

for each symbol x occuring in β, only subterms or complements of subterms of

φ. There exists finitely many subterms of φ. Consequently, at some point of

the computation, in each branch β of the constructed tree, each β successor-free

symbol is not β twin-free. Thus, our strategy terminate. Finally, we now prove

the completeness of our strategy.

Definition 3.4.4. Suppose β is an open branch (if there is at least one) in the

tableau obtained by means of our strategy from the initial tableau of φ. Let

M = (W,R, V ) be the structure defined as follows:

• W is the set of all symbols x in β that are not successor-free,

• for all x, y ∈ W , xRy if and only if x4y occurs in β or there is a successor-

free symbol z in β such that term(y, β) = term(z, β) and x4z occurs in β

(we will say that y is a twin of z).

• V (p) is the set of all x ∈ W such that β contains the information x : p.

Obviously, M is serial.

Lemma 3.4.5. Let t be an open tableau obtained with our strategy, β be an open

branch in t and M = (W,R, V ) be the model defined as above. The following

conditions hold: (i) If β contains the expression x : a, then x ∈ V̄ (a); (ii) If β

contains the contact formula ϕ, then M |= ϕ.

Proof. (i) is proved by induction on a. As for (ii), we just consider the case of

formula C(a, b). Suppose β contains C(a, b), we show that M |= C(a, b). Since C

rule is applied, β contains the following expressions: x4y, x : a and y : b. Then,
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x ∈ W . Since x : a occurs in β, therefore by item (i), x ∈ V̄ (a). As for y, there

are two cases to consider:

Case 1: y has a successor. Then, y ∈ W too. Since y : b occurs in β, therefore

by item (i), y ∈ V̄ (b).

Case 2: y has no successor. Hence, y 6∈ W . Let z be a twin of y in β. By

definition of the twin-free property, z has a successor, z ∈ W and xRz. Moreover,

z : b belongs to the branch β. By item (i), z ∈ V̄ (b).

Theorem 3.4.6. Let φ be a formula and t a saturated tableau obtained from the

initial tableau of ¬φ by means of the tableau rules augmented with (Ser). If φ is

valid in the class of all serial models then t is closed.

Proof. Let φ be a formula and t a tableau obtained from the initial tableau of

¬φ by means of the tableau rules augmented with (Ser). If φ is valid in the class

of all serial models then t is closed.

Concerning the computational complexity of deciding the satisfiability of for-

mulas with respect to the class of all serial models, obviously, the number N

of pairwise distinct sets term(·, β) associated to symbols in the branch β of a

tableau computed from φ is exponential in the size of φ. Thus, we immediately

obtain from the tableau approach for the class of all serial models the following

result: the computational complexity of deciding the satisfiability of formulas is

in NEXPTIME. Nevertheless, in a branch β, during a computation, there is

no need, when all formulas of the form C(a, b) and a 6≡ b have been taken into

account, and we know that the number of such formulas is linearly bounded in

the size of φ, to keep in memory all expressions of the form x : a occurring in β.

All we have to do is:

1. when all formulas of the form C(a, b) and a 6≡ b have been taken into

account, each time (Ser) is applied, apply the ¬C and the ≡ rules as much

as possible, then eliminate from the branch the symbol x that has triggered

the execution of (Ser);

2. count the number of times the rule (Ser) have been applied;

3. once this number is greater than N , stop.

This would give us an improved strategy that can be implemented in polynomial

space. Consequently, the computational complexity of deciding the satisfiability

of formulas with respect to the class of all serial models is in PSPACE. This
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complexity result is new; it cannot be easily obtained by means of an argument

based on the filtration method.

3.4.4 Dense models

A modelM = (W,R, V ) is said to be dense if for all x, y ∈ W , if xRy then there

exists z ∈ W such that xRz and zRy. Let us consider the class of all dense mod-

els of contact logics. In order to decide satisfiability with respect to this class, we

should add the following rule to our system:

(Den)
x4y

x4z
z4y

(x and y already occur in the branch
and z is new in the branch)

Obviously, (Den) is sound with respect to dense models, i.e. it preserves the

interpretability property of tableaux. Nevertheless, as in the case of (Ser), it may

lead to infinite computations. Thus, we have to define a strategy that will guar-

antee the soundness, the completeness and the termination of our tableaux-based

system.

Definition 3.4.7. Let β be a branch and the pair (x, y) be a symbol occurring

in β. We will say the pair (x, y) is intermediate-free if x∆y occurs in β and for

all symbols z in β, either x∆z does not occur in β, or z∆y does not occur in β.

Definition 3.4.8. Let β be a branch, x be a symbol occurring in β. let term(x, β) =

{a : x : a occurs in β}. We will say the pair (x, y) of symbols occurring in β

is said to be twin-free if x∆y occurs in β and for all symbols z1, z2, z3 occurring

in β, if term(x, β) = term(z1, β) and term(y, β) = term(z3, β) then either z1∆z2

does not occur in β, or z1∆z3 does not occur in β, or z2∆z3 does not occur in β.

Our strategy is the following:

(i) Apply the formula rules and the term rules as much as possible,

(ii) Choose an intermediate-free twin-free pair (x, y) of symbols occurring in a

branch β; Apply the rule (Den) to (x, y) and go to (i) otherwise go to (iii),

(iii) Halt.

In order to show that our strategy terminate, it suffices to follow an argument

similar to the one developed in the previous section. Let us be more precise.
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Firstly, remark that in any branch β of a tableau constructed from the initial

formula φ and for any x occurring in β, term(x, β) only contains subterms or

negation of subterms from φ. Seeing that there exists finitely many subterms from

φ, at some point of the computation, each intermediate-free pair (x, y) of symbols

occurring in a branch β is not twin-free. Therefore, our strategy terminates.

Secondly, let us prove the soundness and the completeness of our tableau system

extended with (Den) and following the above strategy. Obviously, every tableau

constructed, by following the above strategy, from the initial tableau of a formula

φ satisfiable in a dense model will be open. Conversely, suppose β is an open

branch obtained, by means of our strategy, at the end of the tableau computation

from an initial formula φ. Let W be the set of all x, y, etc occurring in β. As

expected, we define on W the valuation V such that for all Boolean variables p,

V (p) = {x ∈ W : x : p occurs in β}. Now, for the accessibility relation R on

W , it is defined as follows: for all x, y ∈ W , xRy iff x∆y occurs in β. Defining

M = (W,R, V ), as in the cases of the previous classes of models that we have

considered we obtain the following Truth Lemma which proof is similar to the

proof of Theorem 3.3.2.

Lemma 3.4.9. Let t be an open tableau obtained with our strategy, β be an open

branch in t and M = (W,R, V ) be the model defined as above. The following

conditions hold: (i) If x : a occurs in ∆ then x ∈ V̄ (a). (ii) If ψ occurs in β then

M |= ψ.

Since the considered tableau has been computed from the initial tableaux of

φ, the branch β contains the formula φ and, by item (ii) of the above Truth

Lemma, M |= φ. The main drawback is that R might be not dense. Suppose

R is not dense. In order to prove that φ can be satisfied in a dense model, we

have to transform M into a modally equivalent dense model M′. Clearly, the

accessibility relation R can be seen as the set of all pairs (x, y) in W ×W such

that x∆y occurs in β. Since R is not dense, therefore R, as a subset of W ×W , is

nonempty. A pair (x, y) in R is said to be an R-defect if there is no z ∈ W such

that xRz and zRy. By definition of R, seeing that β is a branch in a tableau that

has been constructed by following the strategy described in the previous page,

each R-defect (x, y) can be associated to a triple δ(x, y) = (z1, z2, z3) of elements

of W such that term(x, β) = term(z1, β), term(y, β) = term(z3, β) and z1∆z2,

z1∆z3 and z2∆z3 occur in β. Let R0, R1, . . . be the sequence of binary relation

on W and δ0, δ1, . . . be the sequence of functions defined as follows.

1. Let R0 = R and δ0 = δ. By definition, for each R0-defect (x, y), the triple
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δ0(x, y) = (z1, z2, z3) of elements ofW is such that term(x, β) = term(z1, β),

term(y, β) = term(z3, β) and z1R0z2, z1R0z3 and z2R0z3.

2. Suppose for some i ∈ N we have already defined a binary relation Ri

on W and a function δi associating, for each Ri-defect (x, y), a triple

δi(x, y) = (z1, z2, z3) of elements of W such that term(x, β) = term(z1, β),

term(y, β) = term(z3, β) and z1Riz2, z1Riz3 and z2Riz3.

3. If Ri has no defect, we define Ri+1 = Ri. Otherwise, let (x, y) be an Ri-

defect. Let z1, z2, z3 be elements of W such that δi(x, y) = (z1, z2, z3). We

define Ri+1 = Ri ∪ {(x, z2), (z2, y)}.

For all i ∈ N, let Mi = (W,Ri, V ). Remark that, according to step 3 above,

the only differences betweenMi+1 andMi are the possibly new links (x, z2) and

(z2, y). Since, according to step 3, the elements z1, z2, z3 of W are such that

δi(x, y) = (z1, z2, z3), then term(x, β) = term(z1, β), term(y, β) = term(z3, β),

z1Riz2 and z2Riz3. Thus, for all formula ψ based on Boolean variables occurring

in φ, Mi+1 |= ψ iff Mi |= ψ. Since M |= φ, therefore for all i ∈ N, Mi |= φ.

Since W is finite, there exists i ∈ N such that Ri has no defect. Hence, Ri is a

dense relation on W . Let M′ = (W,Ri, V ). By the above discussion, M′ |= φ.

Hence, φ can be satisfied in a dense model and we obtain the following result.

Theorem 3.4.10. Let φ be a formula and t a tableau obtained from the initial

tableau of ¬φ by applying the tableau rules augmented with (Den) and following

the above strategy. If φ is valid in the class of all dense models then t is closed.

Proof. Let φ be a formula and t be a tableau obtained from the initial tableau

of ¬φ by means of the tableau rules augmented with (Den). If φ is valid in the

class of all dense models then t is closed.

Thus, the problem of the satisfiability of formulas with respect to the class of

all dense models is decidable. Unfortunately, we do not know its exact compu-

tational complexity. Note that this decidability result is new; it does not seem

that it can be easily obtained by means of an argument based on the filtration

method, seeing that the filtration construction does not preserve the elementary

property of density.
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Chapter 4

TABLEAUX APPROACHES

FOR GENERALIZED

CONTACT LOGICS

In this chapter we give syntax, semantics and axiomatization for generalized

contact logics with a restricted form of universal modality which is a family of

modal logics with restricted form of universal modality. The language of these

family of modal logics allows the expression of Boolean combinations of formulas

of the form [U ]φ where φ is a formula of the ordinary language of modal logic.

By means of a tableaux-based approach, we provide decision procedures for their

satisfiability problem.

4.1 Syntax and Semantics

4.1.1 Syntax

Our language Lr(�,∃) is defined using a countable set BV of Boolean variables

(with typical members noted p, q, r, etc). We inductively define the set t(BV ) of

terms (with typical members noted A,B,C, etc) as follows:

A ::= p | 1 | −A | (A ∩B) | �A.
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The other Boolean constructs for terms are defined as usual: 0 for −1, (A∪B)

for −(−A ∩ −B) and (A → B) for −(A ∩ −B). We obtain the term �A as an

abbreviation: �A for −� − A. We inductively define the set f(BV ) of formulas

(with typical members noted φ, ψ, κ, etc) as follows:

φ ::= ∃A | > | ¬φ | (φ ∧ ψ).

The other Boolean constructs for formulas are defined as usual: ⊥ for ¬>,

¬(φ ∨ ψ) for ¬(¬φ ∧ ¬ψ) and (φ → ψ) for ¬(φ ∧ ¬ψ). We obtain the formulas

∀A,A ≤ B and A ≡ B as abbreviations for ¬∃ − A, ¬∃(A ∩ −B) and (¬∃(A ∩
−B) ∧ ¬∃(−A ∩ B)). The notion of sub-term and the notion of sub-formula are

standard. We adopt the standard rules for omission of the parentheses. For all

sets x of terms, let �x be the set of all terms A such that �A ∈ x. For all sets

S of formulas, let ∀S be the set of all terms A such that ∀A ∈ S. If A is a term

then BV (A) will denote the set of all Boolean variables occurring in A whereas if

φ is a formula then BV (φ) will denote the set of all Boolean variables occurring

in φ. For all BV ′ ⊆ BV , t(BV ′) will denote the set of all A ∈ t(BV ) such that

BV (A) ⊂ BV ′ whereas f(BV ′) will denote the set of all φ ∈ f(BV ) such that

BV (φ) ⊆ BV ′.

4.1.2 Semantics

A frame is an ordered pair F = (W,R) where W is a non-empty set of possible

worlds (with typical members noted x, y, z, etc) and R is a binary relation on W .

For all x ∈ W , let R(x) be the set of all y ∈ W such that xRy. A valuation based

on F is a function V assigning to each Boolean variable p a subset V (p) of W . V

induces a function (·)V assigning to each term A a subset (A)V of W such that

- (p)V = V (p),

- (1)V = W ,

- (−A)V = W \ (A)V ,

- (A ∩B)V = (A)V ∩ (B)V ,

- (�A)V = {x : R(x) ⊆ (A)V }.

As a result,

- (0)V = ∅,
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- (A ∪B)V = (A)V ∪ (B)V ,

- (A→ B)V = {x : x ∈ (A)V only if x ∈ (B)V }.

Moreover, (♦A)V = {x : R(x) ∩ (A)V 6= ∅}. A model is an ordered triple

M = (W,R, V ) where F = (W,R) is a frame and V is a valuation based on F .

The satisfiability of a formula φ in M , in symbols M |= φ, is defined as follows:

- M |= ∃A iff (A)V 6= ∅,

- M |= >,

- M |= ¬φ iff M |= φ,

- M |= φ ∧ ψ iff M |= φ and M |= ψ.

As a result,

- M 6|= ⊥,

- M |= φ ∨ ψ iff M |= φ or M |= ψ,

- M |= φ→ ψ iff M |= φ only if M |= ψ.

Moreover, M |= ∀A iff (A)V = W , M |= A ≤ B iff (A)V ⊆ (B)V and

M |= A ≡ B iff (A)V = (B)V . Let F be a frame. A formula φ is said to be valid

in F , in symbols F |= φ, iff for all models M based on F,M |= φ. Let C be a

class of frames. A formula φ is said to be valid in C, in symbols C |= φ, iff for

all frames F in C, F |= φ.

4.2 Definability

Formulas can be used to define classes of frames. For all classes C of frames

and for all formulas φ, let C(C, φ) be the class of all frames F in C such that

F |= φ. A class C ′ of frames is said to be modally definable with respect to

a class C of frames iff there exists a formula φ such that C ′ = C(C, φ). For

instance, with respect to Call, the class of all reflexive frames and the class of all

symmetric frames are modally defined by, respectively, the formulas ∀(�p → p)

and ∀(p→ � � p). Let L(�) be the ordinary language of modal logics.

Proposition 4.2.1. Let C,C be classes of frames. Let A be a term. With respect

to C, the two following conditions are equivalent:
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1. C is modally definable by A (considered as a formula in L(�)),

2. C is modally definable by ∀A (considered as a formula in Lr(�,∃)).

At first sight, the capacity of Lr(�,∃) to modally define classes of frames seem

to be equal to the corresponding capacity of L(�). It is not true: with respect to

Call, there exists classes of frames that are modally definable in Lr(�,∃) but that

are not modally definable in L(�). Witness, the class of all connected frames and

the class of all non-two-colourable frames that are modally defined in Lr(�,∃)
by, respectively, the formulas ∀(p→ �p)→ (∃p→ ∀p) and ∀(p∪�p)→ ∃(p∩�p)
but that are not modally definable in L(�). Let L(�, ∃) be the ordinary language

of modal logics enriched with the universal modality.

Proposition 4.2.2. Let C,C ′ be classes of frames. With respect to C, if C ′ is

modally definable in Lr(�,∃) then C is modally definable in L(�,∃).

Proposition 4.2.3. Let C,C ′ be classes of frames. With respect to C, if C is

modally definable in L(�,∃) then C is modally definable in Lr(�,∃).

Hence, Lr(�, ∃) and L(�, ∃) have the same expressive power. At this point,

an interesting question arises: is there a class of frames that is modally defined

in L(�,∃) in an exponentially more succinct way than it is modally defined in

Lr(�,∃)? We leave open this question. Finally, there is also the problem of de-

ciding the modal definability of a given elementary class of frames. Within the

context of L(�), Chagrova’s Theorem says that this problem is undecidable. See

[10] for details. The proof of Chagrova’s Theorem is based on the undecidabil-

ity of a variant of the halting problem concerning Minsky machines. Within

the context of Lr(�, ∃), it cannot be easily repeated for demonstrating that the

problem of deciding the modal definability of a given elementary class of frames

is undecidable too, as we will do in the following

Proposition 4.2.4. Within the context of Lr(�,∃), the problem of deciding the

modal definability of a given elementary class of frames is undecidable.

4.3 Axiomatization

In our setting, a normal logic is a set of formulas containing the following axioms

and closed under the rule of modus ponens and the rule of uniform substitution:

(TAU) tautologies, (CON) congruence axioms:
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– A ≡ B → −A ≡ −B,

– A ≡ B ∧ C ≡ D → A u C ≡ B uD,

– A ≡ B → �A ≡ �B

(BOO) nondegenerate Boolean algebras axioms:

– (A uB) u C ≡ A ∩ (B u C),

– A uB ≡ B u A,

– A u A ≡ A,

– etc,

(MOD) modal algebras axioms:

– �(A uB) ≡ �A u�B,

– �1 ≡ 1.

Let Lmin be the minimal normal logic.

Lemma 4.3.1. The following formulas are in L:

1. ∀(A⇒ B)→ (∀A⇒ ∀B),

2. ∀(−A⇒ (A⇒ 0)),

3. ∀(0⇒ A),

4. ∀(A ∩B ⇒ A),

5. ∀(A ∩B ⇒ B),

6. ∀(A⇒ (B ⇒ A ∩B)),

7. ∀A→ ∀(B ⇒ A),

8. ∀((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))),

9. ∀(A⇒ (B ⇒ A)),

10. ∀(A⇒ A),
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11. ∀(A⇒ 0)⇒ −A),

12. ∀A→ ∀�A,

13. ∀(�(A⇒ B)⇒ (�A⇒ �B),

14. ∀(�−−A⇒ �A),

15. ¬∀0,

16. ¬∃A→ ∀− A,

17. ∃A→ ¬∀ − A.

We shall say that a set S of formulas is an L-theory iff S contains L and S is

closed under the rule of modus ponens, i.e. for all formulas φ, ψ, if φ → ψ ∈ S
and φ ∈ S then ψ ∈ S. Let us be clear that the set of all L-theories is a partially

ordered set with respect to set inclusion. The least element is L and the greatest

element is the set of all formulas. Let S be an L-theory. The following lemmas

some well-known facts about theories and maximal theories.

Lemma 4.3.2. The following conditions are equivalent:

1. S is the set of all formulas,

2. there exists a formula φ such that φ ∈ S and ¬φ ∈ S,

3. ⊥ ∈ S.

S is said to be consistent iff for all formulas φ, φ ∈ S or ¬φ ∈ S. We shall say

that S is maximal iff for all formulas φ, φ ∈ S or ¬φ ∈ S. Suppose S is maximal

and consistent.

Lemma 4.3.3. The following conditions are equivalent:

1. > ∈ S,

2. ¬φ ∈ S iff φ ∈ S,

3. φ ∧ ψ ∈ S iff φ ∈ S and ψ ∈ S.

A set x of terms is said to be an S-theory iff x contains ∀S and x is closed

under the rule of modus ponens, i.e. for all terms A,B, if A→ B ∈ x and A ∈ x
then B ∈ x. We will use x, y, z, etc, for S-theories. Let us be clear that the set
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of all S-theories is a partially ordered set with respect to set inclusion. The least

element is ∀S (use item 1 of Lemma 4.3.2) and the greatest element is the set of

all terms.

Lemma 4.3.4. Let x be an S-theory. The following conditions are equivalent:

1. x is the set of all terms,

2. there exists a term A such that A ∈ x and −A ∈ x,

3. 0 ∈ x.

An S-theory x is said to be consistent iff for all terms A, A ∈ x or −A ∈ x.

We shall say that an S-theory x is maximal iff for all terms A, A ∈ x or −A ∈ x.

Lemma 4.3.5. Let x be a maximal consistent S-theory.

1. 1 ∈ x,

2. −A ∈ x iff A /∈ x,

3. A ∩B ∈ x iff A ∈ x and B ∈ x.

Let x be an S-theory. For all terms A, let x + A be the set of all terms B

such that A⇒ B ∈ x.

Lemma 4.3.6. Let x be an S-theory. For all terms A, x + A is an S-theory

containing x and A. Moreover, x+ A is consistent iff −A ∈ x.

Lemma 4.3.7. Let x be a consistent S-theory. For all terms A, x+A is consistent

or x+−A is consistent.

Three lemmas support the technique of the canonical model for L: the Lin-

denbaum’s lemma, the diamond lemma and the truth lemma. The next lemma

duplicates the Lindenbaum’s lemma in L(�). There is no change in the proof.

Lemma 4.3.8. Let x be a consistent S-theory. There exists a maximal consistent

S-theory y such that x ⊆ y.

Lemma 4.3.9. Let x be an S-theory. �x is an S-theory.

The next lemma duplicates the diamond lemma in L(�). There is no change

in the proof.
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Lemma 4.3.10. Let x be an S-theory. Let A be a term. If �A ∈ x then there

exists a maximal consistent S-theory y such that �x ⊆ y and A ∈ y.

The canonical model for S is the ordered triple MS = (WS, RS, VS) where

WS is the set of all maximal consistent S-theories, RS is the binary relation on

WS such that xRSy iff �x ⊆ y and VS is the function assigning to each Boolean

variable p the subset VS(p) of WS such that x ∈ VS(p) iff p ∈ x. The pair

FS = (WS, RS) is called the canonical frame for S. Remark that WS is nonempty

(use item 15 of Lemma 1 and Lemma 8). The next lemma duplicates the truth

lemma in modal logic. There is no change in the proof.

Lemma 4.3.11. Let A be a term. Let φ be a formula. For all x ∈ WS,

– x ∈ (A)VS iff A ∈ x,

– MS |= φ iff φ ∈ S.

Proposition 4.3.12. For all formulas φ, if φ is valid in the class of all frames

then φ ∈ Lmin.

Proof. By Lemma 4.3.11.

4.4 Tableaux Approaches

In this section we present the tableau rules for generalized contact logics with a

restricted universal modality. To prove the termination theorem, we present a

strategy for termination of tableau rules. We also prove that some lemmas and

theorems which are related to proofs of soundness and completeness theorems.

In section 6.4, we introduce the tableau rules for variants of generalized contact

logic with a restricted universal modality. We should add the following rules to

our systems: Sym (for symmetric models), Ref (for reflexive models) and Den (for

dense models). We give strategies for termination of tableau rules of the variants

and give proofs of termination, soundness and completeness theorems. First we

star with tableau rules for generalized contact logics.

Tableau rules for formulas:
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Conjunction Rule
φ ∧ ψ

φ
ψ

Disjunction Rule ¬(φ ∧ ψ)

¬φ ¬ψ

Negation Rule ¬¬φ

φ

∃ Rule
∃A

x : A

(x is new in the branch)

¬∃A Rule
¬∃A

(x already exists in the branch)
x : −A

Moreover, the language is based on two types of expressions: terms and for-

mulas. For these reasons, tableau nodes will be labeled by the following types of

expressions:

(i) formulas;

(ii) expressions of the form x : A;

(iii) expressions the form x4y;

where x, y are symbols and A is a Boolean term. Given a formula φ, its initial

tableau is the labeled tree consisting of exactly one node (called root) labelled

with φ.
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Box Rule (y already occurs in the branch)
x : �A
x4y

y : A

Negation Box Rule (y is new in the branch)x : −�A

x4y
y : −A

Intersection Rule x : A ∩B

x : A
x : B

Union Rule x : −(A ∩B)

x : −A x : −B

Negation Rule x : −− A

x : A

The tableau rules are given in two parts: formula-rules (Page 41) and Boolean-

rules (this page). Rules are applied in a standard way by extending branches of

constructed trees. For example, given a current tree t, a branch β in t and a node

n in β labeled with a formula ∃A, applying the ∃ rule to n consists in adding to

the end of β a new node labeled with x : A where x is new symbol.

Definition 4.4.1. A branch is said to be closed if and only if one of the following

conditions holds:

(i) it contains a node labeled with x : 0;

(ii) it contains two nodes respectively labeled with x : A, x : −A;

(iii) it contains a node labeled with ⊥.

A tableau is closed when all its branches are closed. Let us consider the for-

mula ∃−�(A∩B)∧¬∃−�(A∩B) and let us see how the rules apply. (Figure

Open tableau in next page). The tableau obtained for this formula by applying

our rules has two closed branches.
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∃ −�(A ∩B) ∧ ¬∃ −�(A ∩B)

∃ −�(A ∩B)

¬∃ −�(A ∩B)

x : −�(A ∩B)

x : −−�(A ∩B)

x : �(A ∩B)

x4y

y : −(A ∩B)

y : A ∩B

y : −A

y : A

�

y : −B

y : B

�

Figure 4.1 Closed tableau

Let us consider the formula another ∃ − (A ∪B) ∧ ¬∃(A ∪B) and show how

the rules apply. The tableau obtained for this formula by applying our rules has

two open branches.

∃ − (A ∩B) ∧ ¬∃�A

∃ − (A ∩B)

¬∃�A

x : −(A ∩B)

x : −�A

x : −A x : −B

x4y

y : −A

x4y

y : −A

Figure 4.2 Open tableau
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In order to prove that the tableaux of satisfiable formulas cannot be closed,

we introduce the concept of interpretability of a branch in a model.

Definition 4.4.2. Let M = (W,R, V ) be a model. Let β be a branch in a

tableau and W ′ be the set of all variables occurring in β. The branch β is said

to be interpretable in M if there exists a function f : W ′ → W such that:

(i) if φ occurs in β, then M |= φ,

(ii) if x4y occurs in β, then f(x)Rf(y),

(iii) if x : A occurs in β, then f(x) ∈ V̄ (A).

Let t be a tableau and M be a model. The tableau t is said to be interpretable

inM if and only if there exist a branch in t which is interpretable inM . Obviously,

interpretable branches and, then, interpretable tableaux are open.

4.5 Soundness

In this section, we show the soundness of the tableau rules for modal logics with

a restricted universal modality.

Proposition 4.5.1. Let M = (W,R, V ) be a model and φ be a formula. If

M |= φ, then every semantic tableau computed from the initial tableau of φ is

interpretable in M .

Proof. Suppose φ is satisfiable. We want to show that all semantic tableaux

computed from the initial tableau of phi are open. Since φ is satisfiable, there

exists a model M = (W,R, V ) such that M |= φ. Hence, it suffices to prove that

the tableau rules preserve the interpretability property in M .

We only consider here the case of the ∃A rule. Let β be a branch in tableau t

and suppose β is interpretable in M . Assume that β contains a node n labeled

with the formula ∃A and apply the ∃ rule to n with respect to β. Then, one

obtains from t a new tableau t′ by extending β into a new branch β′ obtained

after adding a node n1 to the end of β′ labeled with x′ : A where x′ is new symbol

in the branch β′. Let W1 be the set of symbols occurring in β and W2 be the set

of symbols occurring in β′. Obviously, W2 = W1{x′}. Since β is interpretable in

M, there exists a function f1 : W1 → W satisfying the compatibility conditions

for β with respect to M . In particular, ∃A occurs in β. Consequently, there
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exists x ∈ W such that, x ∈ V (A). Let f2 : W2 → W be the such that f2|W1
= f1

and f2(x
′) = x. We want to show that the function f2 : W ′

2 → W satisfies the

compatibility conditions for β′ with respect to M.

Suppose w : B occurs in β′. We want to show that f2(w) ∈ V (B). There are

two cases:

Case 1: w : B occurs in β, then f1(w) ∈ V (B). We know that f2|W1
= f1, so

f2(w) ∈ V (B).

Case 2: w : B does not occur in β, then w = x′, B = A. So f2(w) = f2(x).

Therefore f2(w) ∈ V (B).

Since, f2 satisfies the compatibility conditions for β′, then the ∃ rule preserve

the interpretibility. The other tableaux rules are left to the reader.

The previous proposition shows that the tableau rules for modal logics with

a restricted universal modality preserves property of interpretability in general

models. As for the termination property, we need to define the following prelim-

inary definitions.

Definition 4.5.2. Let β be a branch of some tableau and x be a symbol in β.

Let (A1, ..., An) be a list of all modal terms A such that x : −�A is in β. We will

say that x is successor-free in β if and only if there exists i ∈ {1, .., n} such that

for all y in β, if x4y is in β then y : −Ai is not β.

Definition 4.5.3. We will say that x is twin-free in β iff for all y in β, if

terms(x, β) = terms(y, β) then for all u1, ..., un in β, if t∆u1 is in β, ..., t∆un

is in β then either u1 : −A1 is not in β, ..., or un : −An is not in β.

The strategy is the following:

(i) Apply all rules (except the −� rule) as much as possible.

(ii) Apply the −� rule to x : −�A in β, when x is successor-free in β and

twin-free in β.

(iii) Halt.

Now, let us show how the termination strategy will terminate. Note that

for any symbol occurring in branches of a tableau constructed from φ’s initial

tableau, term(x; β) contains only sub-terms or complements of sub-terms of φ.

There exists finitely many sub-terms of φ. Consequently, at some point of the
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computation, in each branch of the constructed tree, each successor-free symbol

is not twin-free. Thus, the strategy terminates.

4.6 Completeness

In this section, we prove the completeness of the tableau method, i.e. for all valid

formulas φ, after finitely many steps one can obtain a closed tableau from the

initial tableau of ¬φ.

Definition 4.6.1. Let t be a tableau obtained after applying our strategy as

much as possible. Let β be a branch in t. Suppose β is open. Let M be the

model defined as follows:

(i) W is the set of all non successor-free x in β,

(ii) R is the binary relation on W defined by xRy iff either x4y occurs in β or

there exists a symbol z in β such that z is successor free in β, term(y, β) =

term(z, β) and x4z occurs in β.

(iii) V (p) is the set of all x ∈ W such that β contains the information x : p.

The following lemma is crucial for proving the completeness of our method.

Lemma 4.6.2. Let t be a tableau, β be a branch in t and M = (W,R, V ) be a

model for β. We have the following:

(i) If β contains x : A and x ∈ W , then x ∈ V (A),

(ii) If β contains a formula φ, then M |= φ.

Proof. (i) The proof is done by induction on A. We consider the case −�A
and �A, the other cases being left to the reader. Let us start with −�A. Let

x ∈ W . Thus, x is not successor free with respect to some Boolean term. Suppose
′′x : −�A′′ ∈ β. We want to show that x ∈ V (−�A). Since x is in W , therefore

x is not successor-free. Since x : −�A is in β, therefore, for some y in β, x∆y

is in β and y : −A is in β. Now, we have to consider two cases. In the first

case, y is in W . Since y : −A is in β, therefore by induction hypothesis, we have

that y is in V (−A). Moreover, since x∆y is in β, therefore xRy. Consequently,

x is in V (−�A). In the second case, y is not in W . Thus, y is successor-free.

Hence, according to our strategy, y is not twin-free. Let B1, ..., Bn be a list of the
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terms B such that y : −�B is in β. Since y is not twin-free, therefore for some

t, u1, ...uninβ, term(y, β) = term(t, β), t∆u1 is in β, ..., t∆uN is in β, u1 : −B1 is

in β, ..., un : −Bn is in β. It follows that t is not successor-free and, as a result,

t is in W . Since y : −A is in β and term(y, β) = term(t, β), hence t : −A is in

β and, by induction hypothesis, t is in V (−A). Since t is in W , x∆y is in β, y

is successor-free in β and term(y, β) = term(t, β), therefore xRt. Since t is in

V (−A), therefore x is in V (−�A).

Let us prove the case �A. Let x ∈ W . Thus, x is not successor free. Suppose

x : �A ∈ β. We want to show that x ∈ V (�A). Let y ∈ W such that xRy.

We have to show that y : A is in β. We have to consider two cases. In the

first case, x∆y is in β. Since x : �A is in β, therefore by the Box rule, y : A

is in β. In the second case, let z in β be such that z is successor-free in β,

term(y, β) = term(z, β) and x∆z in β. Since x : �a is in β, therefore by the Box

rule we have that z : A is in β. Since term(y, β) = term(z, β), therefore y : A is

in β.

(ii) The proof is by done induction on φ. We consider the cases ∃A and ∀A,

the other cases being left to the reader. Suppose β contains a formula ∃A. The

rule ∃ is applied, ∃y ∈ β such that x : A occurs in β. By item (i), we have

x ∈ V (A). Therefore M |= ∃A.

Let us now prove the case ∀, Suppose β contains a formula ∀A. When the

rule ∀ is applied, for all x ∈ β, x : A occurs in β. By item (i), we have x ∈ V (A).

Therefore M |= ∀A.

Now, we are ready to prove the completeness of our method.

Theorem 4.6.3. Let φ be a formula and t a tableau obtained from the initial

tableau of ¬φ by applying the tableau rules and our strategy as much as possible.

If φ is valid in the class of all models then t is closed.

Proof. Suppose t is open. Thus, t contains an open branch β. Let M = (W,R, V )

be the model for β. By the truth lemma, we have M |= ¬φ, contradicting the

validity of φ.

4.7 Variants

In this section, we extend our systems with adding new tableau rules which

are Sym (for symmetric models), Ref (for reflexive models) and Den (for dense
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models). We give sound and complete tableaux based decision procedure for some

variants of contact logics.

4.7.1 Symmetric models

A model M = (W,R, V ) is symmetric if for all x, y ∈ W , xRy if and only if

yRx. Let us consider the class of all symmetric models of generalized contact

logics. In order to decide satisfiability with respect to this class, we should add

the following rule to our system:

(Sym)
x4y

y4x
(x and y already occur in the branch)

Obviously, (Sym) preserves the property of interpretability in symmetric mod-

els. Thus, if φ is satisfiable in a symmetric model, then all semantic tableaux

computed from the initial tableau of φ are open. Seeing that there is no need to

apply (Sym) twice to the same pair (x, y), termination of our extended tableau

system easily follows. Thus, after a finite number of steps from an initial tableau,

no rules can be applied. Finally, within the context of our extended system, the

model defined in the previous section is clearly symmetric. The proof of the Truth

Lemma being repeated as such, we therefore obtain the following theorem:

Theorem 4.7.1. Let φ be a formula and t a tableau obtained from the initial

tableau of ¬φ by applying the tableau rules augmented with (Sym). If φ is valid

in the class of all symmetric models then t is closed.

Proof. Let φ be a formula and t a tableau obtained from the initial tableau of ¬φ
by means of the tableau rules augmented with (Sym). If φ is valid in the class of

all symmetric models then t is closed.

Again, a careful analysis of the tableau rules augmented with (Sym) imme-

diately leads us to the conclusion that the depth of a tableau computed from a

given formula φ is linear in the number of symbols in φ. Consequently, the prob-

lem of determining if a given formula is satisfiable in the class of all symmetric

models is NP -complete.

40



4.7.2 Reflexive models

A model M = (W,R, V ) is reflexive if for all x ∈ W , xRx. Let us consider

the class of all reflexive models of generalized contact logics. In order to decide

satisfiability with respect to this class, we should add the following rule to our

system:

(Ref)
x4x

(x already occurs in the branch)

The same line of reasoning as the one considered in the case of the class of all

models would easily allow us to obtain the soundness, termination, completeness

of the extended tableau system.

4.7.3 Dense models

A model M = (W,R, V ) is said to be dense if for all x, y ∈ W , if xRy then

there exists z ∈ W such that xRz and zRy. Let us consider the class of all dense

models of generalized contact logics. In order to decide satisfiability with respect

to this class, we should add the following rule to our system:

(Den)
x4y

x4z
z4y

(x and y already occur in the branch
and z is new in the branch)

Obviously, (Den) is sound with respect to dense models, i.e. it preserves the

interpret ability property of tableaux. Nevertheless, as in the case of (Ser), it

may lead to infinite computations. Thus, we have to define a strategy that will

guarantee the soundness, the completeness and the termination of our tableaux-

based system.

Let β be a branch and the pair (x, y) be a symbol occurring in β. We will say

the pair (x, y) is intermediate-free if x∆y occurs in β and for all symbols z in β,

either x∆z does not occur in β, or z∆y does not occur in β. Let β be a branch,

x be a symbol occurring in β. let term(x, β) = {a : x : a occurs in β}. We will

say the pair (x, y) of symbols occurring in β is said to be twin-free if x∆y occurs

in β and for all symbols z1, z2, z3 occurring in β, if term(x, β) = term(z1, β) and

term(y, β) = term(z3, β) then either z1∆z2 does not occur in β, or z1∆z3 does

not occur in β, or z2∆z3 does not occur in β.

Our strategy is the following:
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(i) Apply the formula rules and the term rules as much as possible,

(ii) Choose an intermediate-free twin-free pair (x, y) of symbols occurring in a

branch β; Apply the rule (Den) to (x, y) and go to (i) otherwise go to (iii),

(iii) Halt.

In order to show that our strategy terminate, it suffices to follow an argument

similar to the one developed in the previous section. Let us be more precise.

Firstly, remark that in any branch β of a tableau constructed from the initial

formula φ and for any x occurring in β, term(x, β) only contains sub-terms or

negation of sub-terms from φ. Seeing that there exists finitely many sub-terms

from φ, at some point of the computation, each intermediate-free pair (x, y)

of symbols occurring in a branch β is not twin-free. Therefore, our strategy

terminates. Secondly, let us prove the soundness and the completeness of our

tableau system extended with (Den) and following the above strategy. Obviously,

every tableau constructed, by following the above strategy, from the initial tableau

of a formula φ satisfiable in a dense model will be open. Conversely, suppose β

is an open branch obtained, by means of our strategy, at the end of the tableau

computation from an initial formula φ. Let W be the set of all x, y, etc occurring

in β. As expected, we define on W the valuation V such that for all Boolean

variables p, V (p) = {x ∈ W : x : p occurs in β}. Now, for the accessibility

relation R on W , it is defined as follows: for all x, y ∈ W , xRy iff x∆y occurs in

β. DefiningM = (W,R, V ), as in the cases of the previous classes of models that

we have considered we obtain the following Truth Lemma which proof is similar

to the proof of Lemma 4.6.2.

Lemma 4.7.2. Let t be a tableau, β be a branch in t and M be a model for β.

We have the following:

(i) If β contains x : A and x ∈ W , then x ∈ V̄ (A).

(ii) If β contains a formula φ, then M |= φ.

Theorem 4.7.3. Let φ be a formula and t a tableau obtained from the initial

tableau of ¬φ by applying the tableau rules augmented with (Den) and following

the above strategy. If φ is valid in the class of all dense models then t is closed.

Proof. Let φ be a formula and t be a tableau obtained from the initial tableau

of ¬φ by means of the tableau rules augmented with (Den). If φ is valid in the

class of all dense models then t is closed.
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Thus, the problem of the satisfiability of formulas with respect to the class of

all dense models is decidable. Unfortunately, we do not know its exact compu-

tational complexity. Note that this decidability result is new; it does not seem

that it can be easily obtained by means of an argument based on the filtration

method, seeing that the filtration construction does not preserve the elementary

property of density.
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Chapter 5

TABLEAUX APPROACHES

FOR CONTACT LOGICS

INTERPRETED OVER

INTERVALS

In this chapter, we focus our attention on tableau methods for contact logics

interpreted over intervals on the reals. We give sound and complete tableaux-

based decision procedures for contact logics.

5.1 Syntax and Semantics

5.1.1 Syntax

Let BV be a countably infinite set of Boolean variables (with members denoted

by p, q, etc). The set of all Boolean terms based on BV (with members denoted

by a, b, etc) is defined as follows:

• a := p | 0 | −a | (a ∪ b).

We obtain the Boolean constructs 1 and a ∩ b as an abbreviation 1 for −0 and
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a ∩ b for −(−a ∪ −b). We will sometimes write p0 for −p and p1 for p.

The set of all formulas based on BV (with members denoted by φ, ψ, etc) is

defined as follows:

• φ := a ≡ b | ⊥ | ¬φ | (φ ∨ ψ).

The other Boolean constructs for formulas (>, ∧, →) are defined as usual.

5.1.2 Semantics

An interpretation is a function associating a finite union f(p) of regular closed

intervals of R to each propositional variable p. A regular closed intervals on R

is a closed interval of the form [x; y] = {z ∈ R : x ≤ z ≤ y} where x < y. An

extension of f to atomic terms, f̄ is defined as follows:

• f̄(p) = f(p),

• f̄(0) = ∅,

• f̄(−a) = Cl(R \ f̄(a)),

• f̄(a ∪ b) = f̄(a) ∪ f̄(b).

Let f be an interpretation. Satisfiability of formulas on f is defined as follows:

• f |= a ≡ b iff f̄(a) = f̄(b),

• f 6|= ⊥

• f |= ¬φ iff f 6|= φ,

• f |= φ ∨ ψ iff f |= φ or f |= ψ.

We shall say that φ is valid iff for all interpretations f , f |= φ.
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Disjunction Rule
φ ∨ ψ

φ ψ

Conjunction Rule

¬(φ ∨ ψ)

¬φ
¬ψ

Negation Rule

¬¬φ

φ

≡ Rule a ≡ b

x : a

x : b

x : −a

x : −b

(x = x0 or x is
old in the branch)

6≡ Rule a 6≡ b

x : a

x : −b
x : −a
x : b

(x is new in the branch)

5.2 Tableau rules

In this section we present the tableau rules for contact logics interpreted over

intervals of R. We will base the tableau rules on the connective of equality ≡.

Definition 5.2.1. Tableau nodes will be labeled by the following types of ex-

pressions:

(i) formulas,

(ii) x ∈ a,

(iii) x /∈ a

where x is a variable, and a is a Boolean term.
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Given a formula φ, its initial tableau is the labeled tree consisting of exactly

one node (called root) labeled with φ.

T Negation Rule x ∈ −a

x /∈ a

F Negation Rule x /∈ −a

x ∈ a

T Union Rule
x ∈ a ∪ b

x ∈ a x ∈ b

F Union Rule x /∈ a ∪ b

x /∈ a

x /∈ b

The tableau rules are given in two parts: formula-rules (Page 48) and Boolean-

rules (this page). Rules are applied in a standard way by extending branches of

constructed trees.

A branch is said to be closed if and only if one of the following conditions

holds:

(i) it contains a node labeled with ⊥;

(ii) it contains a node labeled with x ∈ ∅;

(iii) it contains two nodes respectively labeled with x ∈ a, x /∈ a.

where x is a variable and a is a Boolean term. Given a formula φ, its initial

tableau is the labeled tree consisting of exactly one node (called root) labeled

with φ. A tableau is closed when all its branches are closed. Let us consider the

formula (a ∪ b) 6≡ a ∧ (a ∩ b) ≡ 1 and show how the rules apply. The tableau

obtained for this formula by applying our rules has three closed branches.
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(a ∪ b) 6≡ a ∧ (a ∩ b) ≡ 1

(a ∪ b) 6≡ a

a ∩ b ≡ 1

x ∈ (a ∪ b)

x /∈ a

x /∈ (a ∪ b)

x ∈ a

x ∈ a ∩ b

x ∈ 1

x ∈ a
�

x /∈ a ∩ b

x /∈ 1
�

x /∈ a
�

Figure 5.1 Closed tableau

5.3 Soundness

In this section, we show the soundness of the tableau rules for contact logics.

In order to prove that the tableaux of satisfiable formulas cannot be closed, we

introduce the concept of interpretability of a branch in an interpretation.

Let β be a branch. Let x0, x1, ..., xn be a list of the variables occurring in

β. Note that we will always consider that x0 occurs in β, even if x0 does not

explicitly occurs in β.

Definition 5.3.1. Let f be an interpretation. We say β is interpretable in f , if

there exists x̄0, x̄1, ..., x̄n in R such that the following conditions holds:

• for all labels ”φ” occuring in β, f |= φ,

• for all labels ”xi ∈ a” occuring in β, x̄i ∈ f̄(a),

• for all labels ”xi /∈ a” occuring in β, x̄i /∈ f̄(a).

We say that the variable xi is regularly interpretable, if for all propositional

variables p, x̄i ∈ Int(f(p)) or x̄i /∈ f(p).

Lemma 5.3.2. Let f be an interpretation and xi be a regularly interpreted vari-

able, then for all terms a, x̄i ∈ Intf̄(a) or x̄i /∈ f̄(a).
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Proof. By induction on term a, we only consider the case of a = −b. Suppose

x̄i ∈ Intf̄(b) or x̄i 6∈ f̄(b), we demonstrate that x̄i ∈ Intf̄(−b) or x̄i 6∈ f̄(−b).
By contradiction, suppose x̄i 6∈ Intf̄(−b) and x̄i ∈ f̄(−b). Since x̄i 6∈ Intf̄(−b),
therefore x̄i ∈ R\ Intf̄(−b). Hence, x̄i ∈ Cl(R\ f̄(−b)). Thus, x̄i ∈ Cl(R\Cl(R\
f̄(b))). Consequently, x̄i ∈ Cl(Intf̄(b)). Since f̄(b) is a finite union of regular

closed closed intervals, therefore Cl(Intf̄(b)) = f̄(b). Since x̄i ∈ Cl(Intf̄(b)),

therefore x̄i ∈ f̄(b). Since x̄i ∈ Intf̄(b) or x̄i 6∈ f̄(b), therefore x̄i ∈ Intf̄(b). Since

x̄i ∈ f̄(−b), therefore x̄i ∈ Cl(R \ f̄(b)). Hence, x̄i 6∈ Intf̄(b): a contradiction.

The tuple (x̄0, x̄1, ..., x̄n) is called interpretation of β in f . It is regular for the

variable xi, if xi is regularly interpreted in it.

We say a tableau is interpretable in f , if one of its branches is interpretable

in f .

Lemma 5.3.3. Let φ be a formula. If φ is satisfiable then the initial tableau for

φ is interpretable by an interpretation (x̄0) in some interpretation f . Moreover,

x0 is regularly interpreted in it.

Proof. Let f be an interpretation such that f |= φ. Let p1, ..., pk be the proposi-

tional variables occuring in φ. Let ε1, .., εk ∈ {0, 1} be such that f̄(pε11 ∩ ... ∩ p
εk
k )

is a nonempty finite union of regular closed intervals. Let x̄0 be an element in

the interior of this finite union. Obviously, (x̄0) is a regular interpretation.

Lemma 5.3.4. A closed branch cannot be interpreted.

Proof. Let β be a branch and f be an interpretation. Suppose β is interpretable

in f and x0, x1, ..., xn occurs in β. There exists x̄0, x̄1, ..., x̄n ∈ R which satisfy

compatibility conditions. Since β is closed, β contains β contains ⊥, ”x ∈ 0” or

”x ∈ a” and ”x /∈ a”.

Case 1, β contains ⊥. Therefore f |=⊥, it is a contradiction.

Case 2, β contains ”x ∈ 0”, since β interpretable in f , x̄i ∈ f̄(0) which means

x̄i ∈ ∅. It is a contradiction.

Case 3, β contains ”xi ∈ a” and ”xi /∈ a”. Since β interpretable in M ,

x̄i ∈ f̄(a) and x̄i 6∈ f̄(a). It is a contradiction.

Lemma 5.3.5. If a tableau t is regularly interpretable then all tableaux obtained

from t by applying one of the tableau rules in regularly interpretable.
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Proof. Let x0, ..., xn be a list of the variables occurring in a branch β of t that

is regularly interpretable in an interpretation of f . Let x̄0, ..., x̄n in R be the

associated elements. Suppose t′ is extension of t after applying one of the tableau

rules. We want to show that t′ is regularly interpretable in f .

Let us consider 6≡ rule. Suppose a 6≡ b occurs in t. We want to show that

t′ is regularly interpretable. This rule extend the current branch β in two new

branches β′ and β′′ by adding (for β′), y′ ∈ a” and ”y′ 6∈ b” and adding (for β”)

”y′ 6∈ a” and ”y′ ∈ b”, y′ being a new variable. We have to show that either

the branch β′ can be regularly interpreted or the branch β′′ can be regularly

interpreted. Since the branch β is regularly interpreted, it means that f |= a 6≡ b.

This implies that f̄(a) 6= f̄(b). Since f̄(a) and f̄(b) are finite unions of closed

intervals, this implies that there is a real number r which either belongs to Intf̄(a)

and does not belong to f̄(b), or belongs to Intf̄(b) but does not belong to f̄(a).

The former case corresponds to the branch β′ whereas the latter case corresponds

to the branch β′. In the branch β′, we should extend the interpretation f by the

interpretation f ′ which is like f on W and which is such that f ′(y′) = r. In

the branch β′′, it is the same: we should extend the interpretation f by the

interpretation f ′′ which is like f on W and which is such that f ′′(y′) = r. Then,

clearly, in the former case, f ′ is a regular interpretation of the branch β′ whereas

in the latter case, f ′′ is a regular interpretation of the branch β′′.

Theorem 5.3.6. Let φ be a formula. If φ is satisfiable then all tableaux computed

from the initial tableau for φ are regularly interpretable and, therefore, open.

Proof. By Lemmas 5.3.3 and 5.3.5, since φ is satisfiable, then φ is regularly in-

terpretable in some interpretation f . All tableaux from the initial tableau for φ

are regularly interpretable and also open.

Theorem 5.3.7. Let φ be a formula. After finitely many steps, from the initial

tableau of φ, no tableau rules can be applied.

Proof. Let t be a tableau computed from the initial tableau for φ. We have to

show that after a finite number of steps, no rule can be applied. Suppose the

contrary. Thus there exists an infinite sequence t0, t1, . . . of tableaux such that

t0 = t and tn+1, is obtained from tn by applying a rule. Note that each node

occurring in these tableaux has at most two successors. As a result, from the

sequence t0, t1, . . ., we can extract an infinite branch β. The branch β contains
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information of the form: ψ, x ∈ a and x /∈ a where ψ is a subformula or the

negation of a subformula of φ and a is a subterm or the complement of a subterm

of φ. Note that the variables x0, x1 . . . , xn occurring in β have been introduced

by the 6≡ rule. Note also that the application of this rule are triggered by the

occurrence of atomic formula of the form a 6≡ b. These atomic formulas being

subformulas or negations of subformulas of φ, 6≡ rule will be applied finitely

many time only. This means that, all in all, the infinite sequence t0, t1, . . . does

not exist.

5.4 Completeness

In this section, we prove the completeness of the tableau method, i.e. for all valid

formulas φ, after finitely many steps one can obtain a closed tableau from the

initial tableau of ¬φ. In this respect, the concept of saturation is essential. A

branch β in some tableau is called saturated, if the following conditions holds for

all nodes n ∈ β:

• if n is labeled with ¬¬φ, then β contains a node labeled with φ,

• if n is labeled with φ ∨ ψ, then β contains a node labeled with φ or ψ,

• if n is labeled with ¬(φ ∨ ψ), then β contains nodes labeled with ¬φ and

¬ψ,

• if n is labeled with a ≡ b and β contains the variables x, then β contains

nodes labeled with x ∈ a and x ∈ b, or β contains nodes labeled with

x ∈ −a and x ∈ −b,

• if n is labeled with a 6≡ b, then for some variable x either β contains nodes

labeled with x ∈ a and x ∈ −b, or β contains nodes labeled with x ∈ −a
and x ∈ b,

• if n is labeled with x ∈ −a, then β contains a node labeled with x /∈ a,

• if n is labeled with x /∈ −a, then β contains a node labeled with x ∈ a,

• if n is labeled with x ∈ a ∪ b, then β contains a node labeled with x ∈ a or

x ∈ b,

• if n is labeled with x /∈ a ∪ b, then β contains nodes labeled with x ∈ −a
and x ∈ −b.
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A tableau is said to be saturated if all its branches are saturated.

Let β be a saturated open branch and x0, x1, ..., xn be a list of the variables

occurring in β. Let I0, I1, ..., In be the following finite unions of regular intervals

(where 0 ≤ ε ≤ 1

2
):

· I0 =]−∞, 1− ε] ∪ [1 + ε, 2− ε] ∪ ... ∪ [n− 1 + ε, n− ε] ∪ [n+ ε,+∞[ ,

· I1 = [1− ε, 1 + ε],

. . .

· In = [n− ε, n+ ε].

Let β be a saturated open branch. Let x0, x1, ..., xn be a list of the variables

occurring in β. Let f : p→ f(p) ⊆ R be the function defined as follows:

f(p) = ∪{Ik : 0 ≤ k ≤ n and ”xk in p” occurs in β}.

Remark 5.4.1. For all propositional variables p, f(p) is a finite union of regular

closed intervals.

Remark 5.4.2. Let x̄k = k for each k ∈ N such that k ≤ n. For all k ∈ N,

k ≤ n, and for all propositional variables p, x̄k ∈ Int(f(p)) or x̄k /∈ f(p).

The following lemma is important for proving the completeness of our method.

Lemma 5.4.3. Let t be an open saturated tableau, β be an open branch in t and

f be an interpretation for β defined as above. Let p be a Boolean variable and

x1, x2, ..., xn be variables which occur in β and for all k, n ∈ N, 0 ≤ k ≤ n . The

following conditions are hold:

(i) If xk ∈ a occurs in β, then Ik ⊆ f̄(a).

(ii) If xk /∈ a occurs in β, then Int(lk) ∩ f̄(a) = ∅.

Proof. The proof is done by induction on the Boolean term a. The case ”p”

follows by definition of f(p). Proof by induction on terms.

Let us consider xk ∈ −a occurs in β. We want to show that Ik ⊆ f̄(−a).

Since xk ∈ −a occurs in β,then xk /∈ a occurs in β. By induction hypothesis

Int(Ik) ∩ f̄(a) = ∅. Therefore, Int(Ik) ⊆ (R \ f̄(a)) ⊆ Cl(R \ f̄(a)). By the

definition of f̄ , Int(Ik) ⊆ f̄(−a). Consequently, Ik ⊆ f̄(−a).

Let us consider xk ∈ a ∪ b. We want to show that Ik ⊆ f̄(a ∪ b). Since β

is saturated, xk ∈ a occurs in β or xk ∈ b occurs in β. By induction hypothesis
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Ik ⊆ f̄(a) or Ik ⊆ f̄(b). Therefore, Ik ⊆ f̄(a) ∪ f̄(b). By the definition of f̄ ,

Ii ⊆ f̄(a ∪ b).

Let us consider ”xk /∈ −a” occurs in β. We want to show that Int(Ik) ∩
f̄(−a) = ∅. Obviously, ”xk ∈ a” occurs in β. By induction hypothesis, Ik ⊆ f̄(a).

Therefore Int(Ik) ∩ Cl(R \ f̄(a)) = ∅. So, Int(Ik) ∩ f̄(−a) = ∅.

Let us consider xk /∈ a ∪ b. We want to show that Int(Ik) ∩ f̄(a ∪ b) = ∅.
Since β is saturated, xk /∈ a occurs in β and xk /∈ b occurs in β. By the induction

hypothesis, Int(Ik) ∩ f̄(a) = ∅ and Int(Ik) ∩ f̄(b) = ∅. By the definition of f̄ ,

Int(Ik) ∩ f̄(a ∪ b) = ∅.

This completes the induction.

Theorem 5.4.4. If |= φ, then there is a closed tableau computed from ¬φ.

Proof. By contraposition. Suppose t is a saturated and open tableau computed

from ¬φ and β is an open branch in it. Since t is saturated, therefore β is

saturated too. Let f be the interpretation for φ determined by β. By the truth

lemma, we have f 6|= φ, contradicting the validity of φ.
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CONCLUSION

We have given sound and complete tableaux-based decision procedures for

region based theories of space. Developing such tableaux procedures, we have ob-

tained decidability/complexity results concerning the satisfiability problem with

respect to several classes of models (class of all models, class of all symmetric

models, class of all reflexive models, class of all serial models, class of all dense

models). In Chapter 3 and Chapter 4, the decidability/complexity results con-

cerning the class of all serial models and the class of all dense models are new.

They have been obtained in this thesis by means of the tableau approach. Much

remains to be done. For example, the exact computational complexity of the

problem of the satisfiability of formulas with respect to the class of all dense

models is unknown. As for Chapter 5, we can extend the language with predi-

cates of the form a < b, convex(a), meets(a, b), etc. For instance, a < b is true

in a model if all real numbers in a’s interpretation precede all real numbers in

b’s interpretation, convex(a) is true in a model if a’s interpretation consists of

a regular closed interval, meets(a, b) is true in a model if the intersection of a’s

interpretation with b’s interpretation is a singleton.

We believe that specific tableau approaches for such or such fragment of a

modal languages deserves to be developed.
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[58] Tarski, A.: Les fondements de la géométrie des corps. In: Logic, Semantics,

Metamathematics, Clarendon Press. First Polish Mathematical Congress,

Lwów, 1927. English translation in J. H. Woodger (Ed.) (1956)

[59] Vakarelov, D.: Region-based theory of space: algebras of regions, represen-

tation theory, and logics. In: Mathematical Problems from Applied Logic.

Logics for the XXIst Century. II. Springer (2007) 267–348.

[60] Vakarelov, D., Düntsch, I. & Bennett, B.: A note on proximity spaces and

connection based mereology. In: C. Welty & B. Smith (Eds.), Proceedings of

the 2nd International Conference on Formal Ontology in Information Sys-

tems (FOIS’01), 2001, 139-150.

[61] Vakarelov, D., Düntsch, I. and Bennett, B.: A proximity approach to some

region-based theory of space. In: Journal of Applied Non-Classical Logics, 12

(3-4) (2002), 527-559.

[62] Van Benthem, J.: A note on modal formulas and relational properties. Jour-

nal of Symbolic Logic 40 (1975) 85–88.

[63] Walischewski, H.: Learning regions of interest in post al automation. In Pro-

ceedings of 5th International Conference on Document Analysis and Recog-

nition (ICDAR’99), Bangalore, India, (1999).

[64] Whitehead, A. N.: Process and reality. MacMillan, New York, (1929).

59



[65] Wolter, F., Zakharyaschev, M.: Spatial representation and reasoning in

RCC-8 with Boolean region terms. In: Proceedings of the 14th European

Conference on Artificial Intelligence. IOS Press (2000) 244–248.

60



VITA
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Ph.D. program under the supervision of Prof. Dr. Çiğdem GENCER as his ad-

visor. During his thesis study, he has worked at IRIT (Institut de Recherche en

Informatique de Toulouse) of Universty of Paul Sabatier for 4 months. He worked

during his stay in Toulouse at IRIT under the supervision of Philippe BALBİANİ
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