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Abstract

This thesis investigates the problem of extending a (complete) order over

a set to its power set. We interpret the set under consideration as a set of

alternatives and we conceive orders as individual preferences. The elements

of the power sets are the non-resolute outcomes. To determine how an in-

dividual with a given preference over alternatives is required to rank certain

sets, we need a concept of extension axioms.

In the �rst part, the �nal outcome is determined by an �(external) chooser�

which is a resolute choice function. The individual whose preference is un-

der consideration confronts a set of resolute choice functions which re�ects

the possible behaviors of the chooser. Every such set naturally induces an

extension axiom (i.e., a rule that determines how an individual with a given

preference over alternatives is required to rank certain sets). Our model al-

lows to revisit various extension axioms of the literature. Interestingly, the

Gärdenfors (1976) and Kelly (1977) principles are singled-out as the only two

extension axioms compatible with the non-resolute outcome interpretation.

In the second part, the extension axioms we consider generate orderings

over sets according to their expected utilities induced by some assignment of

utilities over alternatives and probability distributions over sets. The model

we propose gives a general and uni�ed exposition of expected utility consis-

tent extensions while it allows to emphasize various subtleties, the e¤ects of

which seem to be underestimated - particularly in the literature on strategy-

proof social choice correspondences.
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Özet

Bu tezde, kümeler üzerindeki s¬ralamalardan bu kümelerin altkümeleri üz-

erindeki s¬ralamalar¬oluşturma problemini ele al¬yoruz. ·Inceledi¼gimiz kümeleri

seçenekler kümesi olarak, s¬ralamalar¬bireysel tercihler olarak, altkümeleri

de sosyal seçim kurallar¬n¬n kesin olmayan sonuçlar¬olarak de¼gerlendiriyoruz.

Bireysel tercihlerden sosyal seçim kurallar¬n¬n çözülmemi̧s sonuçlar¬aras¬nda

ili̧ski kurabilmek için genişletme aksiyomlar¬�ndan yararlan¬yoruz.
·Ilk bölümde, seçmenlerin seçenekler üzerindeki tercihlerinin sosyal seçim

kurallar¬n¬n kesin olmayan sonuçlar¬n¬ incelemekte nas¬l kullan¬labilece¼gini

araşt¬r¬rken kesin sonucun yetkili bir seçici taraf¬ndan belirlenece¼gi genel bir

model kuruyoruz. Bu model çerçevesinde yetkili seçicinin olas¬tercihlerinin

belirsizli¼gi alt¬nda ortaya ç¬kacak stratejik seçmenlerin toplumsal sonuçlar¬ne

şekilde etkileyece¼gini inceliyoruz. Araşt¬rmam¬z sonucunda, bu alandaki zen-

gin literatür içerisinden Gärdenfors (1976) ve Kelly (1977)�deki geni̧sletme ak-

siyomlar¬n¬n yetkili seçicilerin ne şekilde tercihte bulunacaklar¬n¬n öngörülmesinde

kullan¬labilece¼gi ortaya ç¬kmaktad¬r.
·Ikinci bölümde, kulland¬¼g¬m¬z geni̧sletme aksiyomlar¬ndan, seçeneklere

atanan belirli de¼gerler ve kümeler üzerindeki olas¬l¬k da¼g¬l¬mlar¬yla belirlenen

"beklenen fayda"lar¬na göre s¬ralamalar oluşturuyoruz. Burada önerdi¼gimiz

model, bu alandaki literatüre hem daha genel ve toparlay¬c¬bir bak¬̧s aç¬s¬

sa¼glamakta, hem de nispeten mu¼glak olan k¬s¬mlara netlik kazand¬rmaktad¬r.
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1 Introduction

In this thesis, we consider the problem of extending a (complete) order

over a set to its power set. We interpret the set under consideration as a set

of alternatives and we conceive orders as individual preferences.

It is quite typical that collective decision problems are resolved through

the initial choice of a non-resolute set of outcomes which is followed by the

�nal decision of an �external chooser�. This two-stage structure is sometimes

an explicit part of the social choice rule -hence the external chooser truly

exists.1 But even without an explicit reference to the �external chooser�,

a two-stage structure is implicit in the nature of the social choice problem.

For, the impossibility of making a resolute choice under desirable axioms is

well-known. In fact, as one can see in Moulin (1983), every anonymous and

neutral social choice rule must exhibit non-resoluteness, thus leaving the �nal

choice to an �external chooser�- who does not necessarily exist in �esh and

bone.

This two-stage nature of collective decision problems raises the question

of extending a preference over a set to its power set. This question is typically

answered through an extension axiom which is a rule that determines how

an individual with a given preference over alternatives is required to rank

certain sets. Moreovover, given an extension axiom, we need a condition of

the compatibility of a preference over sets with a preference over alternatives

which is the obedience of the extended order to the requirements of the

extension axiom.2 As Barberà, Bossert and Pattanaik (2004) beautifully

survey, there is a vast literature on extending an order over a set to its

power set. To be sure, this literature contains various interpretations of

a set, such as being a list of mutually incompatible outcomes3 or a list of

1Such social choice rules are analyzed by Barberà and Coelho (2004) who call them
�rules of k names�.

2To be more formal, given an extension axiom �, a complete order R over sets is
compatible with an order � over alternatives if and only if R is a completion of the partial
order �(�) that � assigns to �.

3e.g., Gärdenfors (1976), Barberà (1977), Kelly (1977), Feldman (1979), Duggan and
Schwarz (2000), Barberà, Dutta and Sen (2001), Benoit (2002), Ching and Zhou (2002),
Ozyurt and Sanver (2006).
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mutually compatible outcomes4 or a menu from which the individual whose

preference under consideration makes a choice5 or a collection states6. All

these interpretations have their own axioms. Throughout this thesis our

consideration is limited to an interpretation where a set is conceived as an

initial non-resolute re�nement of outcomes from which a �nal choice will

be made. We propose a model that underlies this conception of a set. As

social choice correspondences are typically social choice rules which give non-

resolute outcomes, the problem we consider is connected to the analysis of

strategy-proof social choice correspondences.7

First part of this thesis is mainly composed of the results of Erdamar

and Sanver(2007). In this paper, we admit a resolute choice function8 to be

an �(external) chooser�who makes the �nal decision from any non-resolute

outcome. Hence a (non-empty) set D of resolute choice functions is the list

of admissible behaviors that choosers may exhibit. In principle, D can be

anything, ranging from a singleton set to the set of all choice functions. In

particular, D may be determined by well-established axioms of choice theory,
such as the weak axiom of reveal preference. After all, any given D induces

an extension axiom in the following natural way: For each possible ordering

� of alternatives, a set X is required to be ranked above a set Y if and only

if the �nal decision made from X is preferred (according to �) to the �nal

decision made from Y , for any chooser belonging to D.
Our model allows to revisit the existing extension axioms of the litera-

ture. Among these, two prevalent ones, namely the Gärdenfors (1976) and

Kelly (1977) principles are singled out. For, every �regular�axiom of choice

theory determines a domain of admissible chosers which induces either the

Gärdenfors (1976) or the Kelly (1977) principle.

4e.g., Barberà, Sonnenschein and Zhou (1991), Ozyurt and Sanver (2007).
5e.g., Kreps (1979), Dutta and Sen (1996), Dekel et al. (2001), Gul and Pesendorfer

(2001).
6e.g., Lainé et al. (1986), Weymark (1997).
7The literature on strategy-proof social choice correspondences contains Fishburn

(1972), Pattanaik (1973), Gärdenfors (1976), Barberà (1977), Kelly (1977), Feldman
(1980), Duggan and Schwarz (2000), Barberà, Dutta and Sen (2001), Benoit (2002), Ching
and Zhou (2002), Ozyurt and Sanver (2006). This list is certainly non-exhaustive. One
can see Taylor (2005) for an excellent account of the literature.

8A resolute choice function assigns to each non-empty set X a single element of X.
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In the second part of this thesis, one can �nd the results of Can, Erdamar

and Sanver(2007). In this paper our focus is on extension axioms that order

sets according to their expected utilities induced by some assignment of util-

ities over alternatives and probability distributions over sets. This approach

leads to what is generally called the expected utility consistent extension of a

preference. Nevertheless, the idea needs to be made more precise by deter-

mining which utility functions and probability distributions are admissible.

Moreover, the order generated by expected utilities is complete or partial also

matters. In fact, completing a generated partial order and directly generating

a complete order may lead to di¤erent admissible orderings. The literature

seems to be missing a uni�ed exposition of these subtleties - a treatment of

which is one of our aims.

We set our framework for the �rst part in Section 3.1 and Section 3.2

and then state our results in Section 3.3 . We also consider, in Section 3.4,

a probabilistic variant of our model where we allow randomizations over D.
However, our �ndings remain essentially unaltered by this variation.

In Section 4.1 we introduce the basic notions for Part II. In this section, we

adjust the de�nitions of an "extension axiom" and a "prior" to set a frame-

work for expected utility consistent extensions of preferences. Throughout

the second part, an extension axiom is a mapping which assigns to an order

over the set of alternatives a strict partial order over the subsets of the alter-

natives. Moreover, we de�ne a "prior" as a vector that collects a probability

distribution over each element of the power set of the alternatives. We de-

vote Section 4.2 to give an account of expected utility consistent extensions

in our uni�ed framework. In Section 4.3 , we note that di¤erent admissible

orderings are obtained when we complete a generated partial order and di-

rectly generate a complete order. In Section 4.4, we discuss the e¤ects of our

�ndings to de�nitions of strategy-proofness. Moreover, we are able to remark

that not all the �nesses of expected utility consistent extensions are incor-

porated into the literature on strategy-proof social choice correspondences.

Section 5 concludes.
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2 Basic Notions

Consider a �nite non-empty set of alternatives A and let A = 2Anf;g. We
let #A � 3 and write � for the set of complete, transitive and antisymmetric
binary relations over A and < for the set of complete and transitive binary
relations over A.9 We write � 2 � and R 2 < for typical orders over A and
A, respectively. We let �� and P stand for the for the strict counterparts of

� 2 � and R 2 <, respectively.10

3 PART I: Choosers as Extension Axioms

3.1 Extension Axioms

An extension axiom is a mapping " which assigns to each � 2 � a transitive
binary relation "(�) over A such that x �� y , fxg "(�) fyg 8x; y 2 A.

We interpret (X; Y ) 2 "(�) as the requirement of ranking the set X at least

as good as the set Y when the ranking of alternatives is �. Note that our

de�nition of an extension axiom, perhaps untypically, does not require the

antisymmetry of "(�). Nevertheless, most of the extension axioms we consider

turn out to induce antisymmetric binary relations.

We de�ne below three principal extension axioms that we consider:

� The extension axiom used by Kelly (1977) in his analysis of strategy-

proof social choice correspondences, is de�ned for each � 2 � as "KELLY (�)

= f(X;Y ) 2 A�AnfXg : x � y 8 x 2 X 8 y 2 Y g. We refer to "KELLY

as the Kelly principle.

� The extension axiom used by Gärdenfors (1976) in his analysis of

strategy-proof social choice correspondences, is de�ned for each � 2 �
9So for any � 2 � and any x; y 2 A, by completeness, we have x � y or y � x. This

implies re�exivity, i.e., x � x 8x 2 A. Note that by antisymmetry, x � y =) not y �
x when x and y are distinct. Finally, transitivity ensures x � y and y � z =) x � z
8x; y; z 2 A.
10So for any � 2 � and any x; y 2 A, we have x �� y whenever x � y holds and y � x

fails. Similarly, for any X;Y 2 A, we have X P Y whenever X R Y holds but Y R X does
not. As � is antisymmetric, when x and y are distinct, we have either x �� y or y �� x.
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as "GF (�) = f(X; Y ) 2 A�AnfXg : (x �� y 8 x 2 XnY 8 y 2 Y ) and
(x �� y 8 x 2 X 8 y 2 Y nX)g. We refer to "GF as the Gärdenfors
principle.

� The extension axiom "SE, to which we refer as the separability prin-
ciple, is de�ned for each � 2 � as "SE = f(X [fxg; X [fyg) : X 2 2A

and x �� y for distinct x; y 2 AnX g.11

The Gärdenfors principle is stronger than the Kelly principle, i.e., "KELLY (�)

 "GF (�) 8� 2 �. On the other hand, the separability principle is logically
independent of both the Kelly and the Gärdenfors principles. Note that all

three extension axioms induce antisymmetric binary relations.

3.2 Choice Functions

A (resolute) choice function is a mapping C : A ! A such that C(X) 2
X; 8X 2 A. We write C for the set of all choice functions and D � C
stands for any non-empty subclass of choice functions. We consider axiomatic

restrictions over C. The de�nitions below are quoted from Aizerman and

Aleskerov (1995):

� A choice function C satis�es the Weak Axiom of Revealed Prefence

(WARP) i¤ C(Y ) 2 X and C(X) 2 Y =) C(X) = C(Y )

8X; Y 2 A.12 We write CWARP for the set of (resolute) choice func-

tions that satisfy WARP.13 It is to be noted that, de�ning at each

11The separability principle, which is a modi�ed version of the monotonicity axiom of
Kannai and Peleg (1984), is used by Roth and Sotomayor (1990) in their manipulation
analysis of many-to-one matching rules.
12For resolute choice functions, the version of WARP we use and the de�nition given by

Aizerman and Aleskerov (1995) are equivalent.
13Note that a variety of conditions which di¤er from WARP over the class of choice

correspondences turn out to be equivalent to WARP over the class of resolute choice
functions. Among these, we have
(i) postulate 4 of Cherno¤ (1954) (called axiom C2 by Arrow (1959), condition alpha by

Sen (1974), upper semi-�delity by Sertel and van der Bellen (1979), heredity by Aizerman
and Aleskerov (1995));
(ii) the independence of irrelevant alternatives condition of Nash (1950) (called postulate

5 � by Cherno¤ (1954), axiom 2 by Sen (1974), outcast by Aizerman and Aleskerov (1995)
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� 2 �, the choice function C� (X) � x 8x 2 X, 8X 2 A, we have

CWARP = fC�g�2�.14

� A choice function C satis�es Concordance i¤ C(X) = C(Y ) =)
C(X) = C(X[Y ) 8X; Y 2 A. We write CCONC for the set of (resolute)
choice functions that satisfy concordance.

� A choice function C satis�es direct Condorcet i¤ x 2 C(X) =) x 2T
y2X

C(fx; yg) 8X 2 A, 8x 2 A. We write CDC for the set of (resolute)

choice functions that satisfy direct Condorcet.

Remark 3.2.1 As one can see in Aizerman and Aleskerov (1995), we have
CWARP  CCONC  CDC  C:

3.3 Inducing Extension Axioms through Choice Func-

tions

Any non-empty D � C induces an extension axiom "D as follows: At each � 2
�; for all distinctX; Y 2 A, we have (X;Y ) 2 "D(�)() C(X) � C(Y ) 8C 2
D. Note that "D(�) is antisymmetric if and only if D satis�es the following

richness condition: Given any distinct X; Y 2 A, there exists C 2 D such
that C(X) 6= C(Y ). The de�nition of "D conjoined with Remark 3.2.1 leads

to the following proposition:

Proposition 3.3.1 "C(�) � "CDC (�) � "CCONC (�) � "CWARP
(�) 8� 2 �.

Although the set inclusions stated by Remark 3.2.1 are proper, those

announced by Proposition 3.3.1 need not be so, as we show soon.

We �rst establish the equivalence between the Kelly principle and the

extension axiom induced by allowing all logically possible choice functions.

and absorbance by Sertel and van der Bellen (1979));
(iii) postulate 6 of Cherno¤ (1954) (called axiom C4 by Arrow (1959) and constancy

by Aizerman and Aleskerov (1995));
(iv) The inverse condorcet condition of Aizerman and Aleskerov (1995).
14What we note follows from many results of the literature, e.g., Theorem 2.10 of Aiz-

erman and Aleskerov (1995).
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Theorem 3.3.1 "C(�) = "KELLY (�) 8� 2 �.

Proof. Take any � 2 �. To see "C(�) � "KELLY (�), pick any (X; Y ) 2 "C(�):
So, C(X) � C(Y ) 8C 2 C. Now, consider a choice function C0 with x � C0(X)
8x 2 X and C0(Y ) � y 8y 2 Y . Clearly, C0 2 C. Thus, C0(X) � C0(Y ) which,
by the choice of C0, implies x � y 8x 2 X, 8y 2 Y , hence establishing (X;Y )
2 "KELLY (�). To see "KELLY (�) � "C(�), pick any (X; Y ) 2 "KELLY (�). Let
xo 2 X be such that x � xo 8x 2 X and y0 2 Y be such that y0 � y 8y 2 Y .
As (X;Y ) 2 "KELLY (�), we have x0 � y0. Now, take any C 2 C. By the choice
of x0 and y0, we have C(X) � x0 and y0 � C(Y ) which implies C(X) � C(Y ),

establishing (X; Y ) 2 "C(�).

Remark 3.3.1 The antisymmetry of "C follows from the antisymmetry of

"KELLY as well as from the richness of C.

Remark 3.3.2 For any D, we have "KELLY (�) � "D(�) 8� 2 �. In other
words, the Kelly principle is the weakest extension axiom that can be con-

ceived in our environment.

We now show that restricting the set of admissible choice functions to

those which satisfy the concordance axiom does not induce an extension

axiom stronger than the Kelly principle.

Theorem 3.3.2 "CCONC (�) = "KELLY (�) 8� 2 �.

Proof. Take any � 2 �. The inclusion "KELLY (�) � "C
CONC

(�) follows

from Remark 3.3.2. To see "C
CONC

(�) � "KELLY (�), pick some (X; Y ) =2
"KELLY (�). So, 9y 2 Y and 9x 2 Xnfyg such that y �� x. First, consider the
�rst case where y =2 X. Pick some � 2 � with y � x � z 8z 2 An fx; yg. Note
that C� 2 CWARP ( CCONC . As y =2 X, we have C� (X) = x and C� (Y ) = y,
thus C� (X) � C� (Y ) fails, establishing (X;Y ) =2 "C

CONC
(�) . Next, consider

the case where x =2 Y . Pick some � 2 � with x � y � z 8z 2 An fx; yg.
Note that C� 2 CCONC . As x =2 Y , we have C� (Y ) = y and C� (X) = x,

thus C� (X) � C� (Y ) fails, establishing (X; Y ) =2 "C
CONC

(�). Finally, consider

the case where y 2 X and x 2 Y . Pick some � 2 � with z � x � y 8z 2

7



An fx; yg. Consider the choice function C de�ned as C(X) = x, C(Y ) = y

and C(Z) = C� (Z) 8Z 2 An fX; Y g. Note that C(X) � C(Y ) fails. So we
complete the proof by showing C 2 CCONC . To see this, take any distinct
S; T 2 A with C (S) = C (T ). Note that S; T 2 fX;Y g cannot hold, by
construction of C. Now, consider the following three exhaustive cases:

Case 1: X 2 fS; Tg, say S = X without loss of generality. So C (T ) = x,

which implies T 2 ffx; yg; fxgg which in turn implies S[T = S, establishing
C (S [ T ) = C (S).
Case 2: Y 2 fS; Tg, say S = Y without loss of generality. So C (T ) = y,

which implies T = fyg, which in turn implies S [ T = S, establishing

C (S [ T ) = C (S).
Case 3: X; Y =2 fS; Tg. Let z = C (S) = C(T ). So z � s 8s 2 S and

z � t 8t 2 T , thus z � u 8u 2 S [ T , implying z = C(S [ T ).
Therefore, C 2 CCONC , hence (X;Y ) =2 "CCONC (�) .

Remark 3.3.3 The antisymmetry of "CCONC follows from the antisymmetry

of "KELLY as well as from the richness of CCONC.

The following result is a corollary to Theorem 3.3.1 and Theorem 3.3.2.

Theorem 3.3.3 Given any D � CCONC we have "D(�) = "KELLY (�) 8� 2
�.

Note that Theorem 3.3.3 covers the particular case where D = CDC . Our
next result shows that by further restricting the set of admissible choice

functions through WARP, we fall into the Gärdenfors principle.15

Theorem 3.3.4 "CWARP
(�) = "GF (�) 8� 2 �.

15Sanver and Zwicker (2007) consider various monotonicity and manipulability prop-
erties of irresolute social choice rules. Among other things, they show that certain
monotonicity conditions turn out to be equivalent, independent of whether the irresolute
social choice rule is re�ned through a total order or preferences over alternatives are ex-
tended over sets through the Gärdenfors principle. In fact, it is the result announced by
Theorem 3.3.4 which underlies this equivalence.

8



Proof. Take any � 2 �. To see "C
WARP

(�) � "GF (�), pick some (X; Y )

=2 "GF (�). So 9y 2 Y , 9x 2 XnY with y �� x or 9y 2 Y nX, 9x 2 X with y

�� x. In the former case, pick some � 2 � with x � y � z 8z 2 An fx; yg,
thus C� (X) = x and C� (Y ) = y, implying the failure of C� (X) � C� (Y )

while C� 2 CWARP , hence establishing (X; Y ) =2 "CWARP
(�). In the latter

case, pick some � 2 � with y � x � z 8z 2 An fx; yg, thus C� (X) = x and
C� (Y ) = y, implying the faliure of C� (X) � C� (Y ) while C� 2 CWARP ,

hence establishing (X; Y ) =2 "CWARP
(�).

To see "GF (�) � "C
WARP

(�), pick any (X;Y ) 2 "GF (�). So we have (x
�� y 8x 2 XnY , 8y 2 Y ) and (x �� y 8x 2 X, 8y 2 Y nX)g. In particu-
lar, C(XnY ) �� C(Y ) 8C 2 C wheneverXnY 6= ; andC(X) �� C(Y nX) 8C 2
C whenever Y nX 6= ;. Note that X and Y are distinct, thus XnY and

Y nX cannot be both empty. Let, without loss of generality, XnY 6= ;.
Take any C 2 CWARP . First, consider the case where C(X) 2 XnY . Since
XnY � X andC 2 CWARP , we haveC(X) = C(XnY ). Thus, C(X) �� C(Y ).
Now, consider the case where C(X) =2 XnY . So C(X) 2 X \ Y . Since

X \ Y � X and C 2 CWARP , we have C(X) = C(X \ Y ). If C(Y ) 2
X \ Y then C(Y ) = C(X \ Y ) follows by C 2 CWARP , establishing

C(X) �� C(Y ). If C(Y ) =2 X \ Y , then C(Y ) 2 Y nX, and we get C(Y ) =
C(Y nX) by C 2 CWARP , implying C(X) �� C(Y ). Thus (X; Y ) 2 "CWARP

(�)

and "GF (�) � "C
WARP

(�).

Remark 3.3.4 The antisymmetry of "CWARP
follows from the antisymmetry

of "GF as well as from the richness of CWARP .

We summarize below our �ndings upto now.

Corollary 3.3.1 "KELLY (�) = "C(�) = "CDC (�) = "CCONC (�)  "CWARP
(�) =

"GF (�) 8� 2 �.

Remark that a rich variety of choice axioms16 single out the Kelly and

Gärdenfors principles. As an interesting observation, the separability princi-

ple has not been induced by any of the choice axioms we considered. In fact,

16see footnote 13
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as we show below, there exists no class of admissible choice functions that

induces the separability principle. Before proving this, we state a lemma.

Lemma 3.3.1 Let D � C ensure "SE � "D(�) 8� 2 �. Given any C 2 D
and any X; Y 2 A with #X = #Y = 2 and #(X \ Y ) = 1, we have

C(X) = X \ Y =) C(Y ) = X \ Y .

Proof. Let D be as in the statement of the lemma. Take any C 2 D. Let
X = fx; yg and Y = fx; zg for some distinct x; y; z 2 A. Take any � 2
� with y �� z �� x. Suppose C (X) = x and C (Y ) = z. So C (X) � C (Y )

fails, hence (X; Y ) =2 "D(�) while (X; Y ) 2 � (�) ; contradicting the choice of
D.

Theorem 3.3.5 @D � C which ensures "SE � "D(�) 8� 2 �.

Proof. Let, for a contradiction, D � C ensure "SE � "D(�) 8� 2 �. Take
any C 2 D and any distinct x; y; z 2 A. Let, without loss of generality,

C(fx; yg) = x. By Lemma 3.3.1, we have C (fx; zg) = x and C(fy; zg) = z.
However, again by Lemma 3.3.1, C (fx; zg) = x implies C(fy; zgg = y, giving
the desired contradiction.

The impossibility announced by Theorem 3.3.5 prevails for any variant of

Kannai and Peleg (1984) monotonicity which is stronger than separability.

We close the section by a remark regarding the strenghts of the extension

axioms that are conceivable in our environment. As noted by Remark 3.3.2,

the Kelly principle is the weakest among all conceivable extension axioms. On

the other hand, although the Gärdenfors principle is the strongest extension

axiom we encountered, we cannot claim it to be the strongest among all

conceivable extension axioms. For, although WARP is a fairly demanding

condition, the set of admissible choice functions can be further reduced. In

fact, at the extreme, D can be assumed to contain only one choice function.
Actually, the strongest conceivable extension axioms will be those which

are induced by singleton sets of admissible choice functions. In fact, any

D = fCg with C 2 C induces a complete and transitive binary relation

10



"D(�) = f(X; Y ) 2 A � A : C(X) � C(Y )g at each � 2 �.17 Nevertheless,
as we note below, it is not possible to speak about �the strongest�extension

axiom.

Proposition 3.3.2 Given any D = fCg and D0 = fC 0g with distinct C;C 0 2
C, both "D(�) � "D0(�) and "D0(�) � "D(�) fail at every � 2 �.

Proof. Take any D = fCg and D0 = fC 0g with distinct C;C 0 2 C. So, there
exists X 2 A such that C(X) 6= C 0(X). Note that #X � 2. Take any � 2 �.
Consider the �rst case where C 0(X) �� C(X). Note that (fC (X)g ; X) 2
"D(�) but (fC (X)g ; X) =2 "D

0
(�). Moreover (X; fC 0 (X)g) 2 "D

0
(�) but

(X; fC 0 (X)g) =2 "D(�). Hence, neither "D(�) � "D
0
(�) nor "D

0
(�) � "D(�)

holds. Now, consider the case where C(X) �� C 0(X). Note that (X; fC (X)g)
2 "D(�) but (X; fC (X)g) =2 "D0(�). Moreover (fC 0 (X)g ; X) 2 "D0(�) but
(fC 0 (X)g ; X) =2 "D(�). Hence, neither "D(�) � "D

0
(�) nor "D

0
(�) � "D(�)

holds.

As a case of particular interest, we have D = fCg for C 2 CWARP . Let

��(X) 2 X denote the best element of X 2 A at � 2 �, i.e., ��(X) � x
8x 2 X. The leximax extension is the extension axiom �+ de�ned for each

� 2 � as �+(�) = f(X;Y ) 2 A � AnfXg : ��(X) � ��(Y )g. Similarly, let
!�(X) 2 X satisfy x � !�(X) 8x 2 X. The leximin extension is the extension
axiom �� de�ned for each � 2 � as ��(�) = f(X; Y ) 2 A� AnfXg : !�(X)
� !�(Y )g.18

Proposition 3.3.3 Given any D and any � 2 �;we have
(i) "D(�) = �+(�) if and only if D = fC�g.
(ii) "D(�) = ��(�) if and only if D = fC�g for � 2 � with x � y () y

� x 8x; y 2 A.

Proof. Take any D and any � 2 �:
17Remark that no D = fCg is rich hence the corresponding complete preorder "D(�) is

not antisymmetric.
18Pattanaik and Peleg (1984), Bossert (1995), Campbell and Kelly (2002), Kaymak and

Sanver (2003), Dogan and Sanver (2007) explore lexicographic extensions under a variety
of de�nitions.

11



We prove (i). To establish the �if�part, let D = fC�g. To see "D(�) �
�+(�), take some (X;Y ) 2 "D(�). So C� (X) � C� (Y ). Moreover, by the
de�nition of C�, we have C� (X) = ��(X) and C� (X) = ��(Y ), thus, ��(X)

� ��(X), showing (X;Y ) 2 �+(�). To see �+(�) � "D(�), pick some (X; Y ) 2
�+(�). So ��(X) � ��(Y ), thus C� (X) � C� (Y ), showing (X; Y ) 2 "D(�). To
establish the �only if�part, assume "D(�) = �+(�) and suppose 9C 2 D with
C 6= C�. So, C(X) 6= C�(X) for some X 2 A. Check that (X; fC�(X)g) 2
�+(�) but (X; fC�(X)g) =2 "D(�), contradicting "D(�) = �+(�).
We prove (ii). To establish the �if�part, let D = fC�g for � 2 � with

x � y () y � x 8x; y 2 A. To see "D(�) � ��(�), take some (X; Y ) 2
"D(�). So C� (X) � C� (Y ). Moreover, by the choice of � , we have C� (X) =

!�(X) and C� (Y ) = !�(Y ), thus !�(X) � !�(Y ), showing (X; Y ) 2 ��(�).
To see ��(�) � "D(�), pick some (X; Y ) 2 ��(�). So !�(X) � !�(Y ),

thus C� (X) � C� (Y ), showing (X; Y ) 2 "D(�). To establish the �only if�
part, assume "D(�) = ��(�) and suppose 9C 2 D with C 6= C� . So, C(X) 6=
C� (X) for someX 2 A. Check that (fC� (X)g; X) 2 ��(�) but (fC� (X)g; X)
=2 "D(�), contradicting "D(�) = ��(�).
So at a given � the leximax ordering �+(�) is induced if and only if D

= fC�g. Similarly, at a given � the leximin ordering ��(�) is induced if and
only if D = fC�g such that � is the opposite ranking of �. As a corollary
which we state below, there exist no D which induces leximax (or leximin)

orderings at every �.

Theorem 3.3.6 There exists no D such that

(i) "D(�) = �+(�) 8� 2 �
or

(ii) "D(�) = ��(�) 8� 2 �.

3.4 A Probabilistic Variant of the Model

We now consider a probabilistic variant of our model by allowing randomiza-

tions over the set of admissible choice functions D. A prior over D is a map-
ping � : D ! (0; 1] such that

P
C2D

�(C) = 1. We write �D for some arbitrary
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(non-empty) set of priors over D. Let U� stand for the set of all (real-valued)
utility functions over A that represent � 2 �.19 Any D and �D induce an

extension axiom "�D as follows: At each � 2 �; for all distinct X; Y 2 A, we
have (X;Y ) 2 "�D(�) ()

P
C2D

�(C)u(C(X)) �
P
C2D

�(C)u(C(Y )) 8u 2 U�,

8� 2 �D.

Theorem 3.4.1 Given any D and �D, we have "D (�) � "�D (�) 8� 2 �.

Proof. Take any � 2 � and any (X;Y ) =2 "�D (�). So there exists u 2 U�
and � 2 �D such that

P
C2D

�(C):u(C(Y )) >
P
C2D

�(C):u(C(X)). Since �(C) >

0 for each C 2 D, the inequality holds only if there exists C 0 2 D with

u (C 0 (Y )) > u (C 0 (X)), hence C 0 (Y ) �� C 0 (X), establishing (X; Y ) =2
"D (�).

Whether the set inclusion announced by Theorem 3.4.1 is proper or not

depends on the richness of the set of admissible priors �D. For example, as

we show below, when �D allows all priors over D, Theorem 3.4.1 holds as an
equality.

Theorem 3.4.2 Take any D and let �D be the set of all priors over D. We
have "D (�) = "�D (�) 8� 2 �.

Proof. Take any � 2 �. The inclusion "D (�) � "�D (�) is already established
by Theorem 3.4.1. To see "�D (�) � "D (�), pick some (X; Y ) 2 "�D . Take

any C 2 D and consider some prior �� 2 �D with �� (C 0) = " 8C 0 2 DnfCg
and �� (C) = 1 � (#D � 1):" where " 2 (0; 1

#D�1). As (X; Y ) 2 "�D (�),

we have (1 � (#D � 1):"):u (C (X)) +
P

C02DnfCg
":u(C 0(X)) � (1 � (#D �

1):"):u (C (Y )) +
P

C02DnfCg
":u(C 0(Y )). Picking " arbitrarily small, we get

u (C(X)) � u (C(Y )), hence C (X) � C (Y ), establishing (X; Y ) 2 "D(�).

Nevertheless, there are restricted choices of �D which render the set in-

clusion of Theorem 3.4.1 proper. To see this, let D = CWARP and �D =
�
�
	

where � (C) = 1
#D 8C 2 D. Take any distinct x, y, z 2 A and any � 2 �

19A utility function u over A represents � 2 � i¤ u(x) � u(y), x � y 8x; y 2 A.
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with x� y� z. Note that (fx; yg ; fx; zg) 2 "�D (�) since u(x)+u(y)
2

� u(x)+u(z)
2

8u 2 U� while (fx; yg ; fx; zg) =2 "D (�).

4 PART II : Expected Utility Consistent Ex-

tensions

4.1 Extension Axioms and Priors Revisited

In this part, by an extension axiom, we mean a mapping � which assigns

to each � 2 � a strict partial order20 �(�) of A such that for all distinct

x; y 2 A we have x � y () fxg �(�) fyg. Given any extension axiom �

and any � 2 �, we write D�(�) = fR 2 < : X �(�) Y ) X P Y for all

distinct X; Y 2 Ag for the set of complete and transitive binary relations
over A which are compatible with �(�). 21

Let 
X be the set of all non-degenerate probability distributions over

X 2 A, i.e., each !X 2 
X is a probability distribution f!X(x)gx2X over X
where !X(x) 2 (0; 1] is interpreted as the (positive) probability that x 2 X
will be chosen from X.22 We call 
 = �

X2A

X the set of priors over A. So,

in this part a prior ! = (!X)X2A 2 
 is a vector which collects a probability
distribution over each element of A. Any given non-empty set � � 
 of

admissible priors over A induces an extension axiom �� which assigns to each

� 2 � a binary relation ��(�) over A as follows: For all distinct X; Y 2 A, we
have X ��(�) Y if and only if

P
x2X

!X(x):u(x) >
P
y2Y

!Y (y):u(y) 8 u 2 U�, 8 !

2 �.23 So D��(�) is the set of orderings which are completions of the partial

order �� that the set of admissible priors � induces. We call D��(�) the

set of orderings over A which are expected utility consistent with � (under

20A strict partial order is a transitive and antisymmetric (but not necessarily complete)
binary relation.
21So every R 2 D�(�) is a completion of the strict partial order �(�) and D�(�) is

non-empty by Spilrajn�s Theorem.
22So we have

P
x2X

!X(x) = 1 for all X 2 A.
23One can immediately check that �� is an extension axiom, i.e., ��(�) is transitive and

antisymmetric, while x � y () fxg ��(�) fyg for all distinct x; y 2 A.
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the set of admissible priors �). Note that for any � 2 � and any R 2 <
we have R 2 D��(�) () 8 X;Y 2 A with X R Y , there exists (u; !)

2 U� � � such that
P
x2X

!X(x):u(x) �
P
y2Y

!Y (y):u(y). One could impose a

stronger expected utility consistency requirement by reversing the order of

the quanti�ers. In other words, one could say that R 2 < is strongly expected
utility consistent with � 2 � (under the set of admissible priors �) i¤ there
exists (u; !) 2 U��� such thatX R Y ()

P
x2X

!X(x):u(x) �
P
y2Y

!Y (y):u(y)

for all X; Y 2 A. We write D�(�) for the set of orderings over A which are

strongly expected utility consistent with � 2 �. In what follows, we say that
a triple (�; u; !) 2 � � U� � � directly generates R 2 < i¤ X R Y ()P
x2X

!X(x):u(x) �
P
y2Y

!Y (y):u(y) for all X; Y 2 A. So D�(�) is the set of

orderings over A which are directly generated by some (�; u; !) 2 ��U���.
Note that D�(�) � D��(�) 8� 2 � follows from the de�nitions. On the other
hand, as we show in Section 4.3, the properness of the set inclusion depends

on the choice of admissible priors �.

4.2 The choice of admissible priors

The precise meaning of the �expected utility consistency� of an extension

depends on the set of admissible priors and the set of admissible utility

functions. Given a preference � 2 � over alternatives, we let any u 2 U� to
be admissible. On the other hand, we allow the set of admissible priors � to

vary. The literature exhibits three choices of �:

4.2.1 General Expected Utility Consistency (GEUC)

Any prior is allowed, i.e., � = 
. As one can also deduce from Theorem 4.4.1

in Taylor (2005), the extension axiom �
 induced by GEUC is equivalent to

the extension axiom introduced by Kelly (1977):

Theorem 4.2.1 �
(�) = �KELLY (�) 8� 2 �.

Proof. Take any � 2 �. To see �KELLY (�) � �
(�), pick some (X;Y )

2 �KELLY (�): Let xo 2 X be such that x � xo 8 x 2 X and y0 2 Y be

15



such that y0 � y 8y 2 Y : As (X; Y ) 2 �KELLY (�) we have x0 � y0. Thus,
for any u 2 U�, any !X 2 
X and any !Y 2 
Y , we have

P
x2X

!x(x):u(x) >

u(x0) > u(y0) >
P
y2Y

!y(y):u(y) . If X \ Y = ?, then u(x0) > u(y0),

implying
P
x2X

!x(x):u(x) >
P
y2Y

!y(y):u(y) . If X \ Y 6= ?, then at least

one of X and Y is not a singleton as otherwise X and Y would coincide.

In case X is not a singleton we have
P
x2X

!x(x):u(x) > u(x0) and in case

Y is not a singleton we have u(y0) >
P
y2Y

!y(y):u(y), both of which impliesP
x2X

!x(x):u(x) >
P
y2Y

!y(y):u(y), showing that (X; Y ) 2 �
(�):

To see �
(�) � �KELLY (�), pick some (X; Y ) =2 �KELLY (�) . So there
exist y0 2 Y and x0 2 X nfy0g with y0 � x0:Now, let x1 2 X be such

that x1 � x 8x 2 X. Take any u 2 U� and any r 2 (0; 1) which satis�es
r:u(x1) + (1� r) :[u(x0)� u(y0)] < 0: So r:u(x1) < (1� r) :[u(y0)� u(x0)].
Let !X(xo) = !Y (yo) = 1� r: So we haveP

x2X
!x(x):u(x) � !X(xo):u(x0) + (1� !X(xo)):u(x1)

= (1� r) :u(x0) + r:u(x1)
< (1� r) :u(x0) + (1� r) :[u(y0)� u(x0)]
= (1� r) :u(y0) = !Y (yo): u(y0)
�
P
y2Y

!y(y):u(y)

which implies (X; Y ) =2 �
(�).

4.2.2 Bayesian Expected Utility Consistency (BEUC)

This is a restriction of GEUC that Barberà, Dutta and Sen (2001) and Ching

and Zhou (2002) use in their analysis of strategy-proof social choice corre-

spondences.24 The set of admissible priors is de�ned as �BEUC = f! 2 
 :
!X(x) =

!A(x)P
y2X

!A(y)
for all X 2 AnfAg and for all x 2 Xg. As one can

also deduce from Lemma 1 of Ching and Zhou (2002), the extension axiom

��
BEUC

induced by BEUC is equivalent to the extension axiom introduced

by Gärdenfors (1976):

24Barberà, Dutta and Sen (2001) call it Conditional Expected Utility Consistency.
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The proof of the equivalence theorem we will state bene�ts from the

following two lemmata.

Lemma 4.2.1 For all � 2 � and all (X; Y ) 2 �GF (�) with X \ Y 6= ; and
XnY 6= ;, we have (X;X \ Y ) 2 ��BEUC (�).

Proof. Take any � 2 � and let (X; Y ) be as in the statement of the lemma.
As (X; Y ) 2 �GF (�), we have x � y 8 x 2 XnY 8 y 2 Y , thus x � y

8 x 2 XnY 8 y 2 X \ Y . Therefore, given any u 2 U� and any ! 2
�BEUC , we have

P
x2XnY

!XnY (x)u(x) >
P

x2X\Y
!X\Y (x)u(x), which implies

1P
x2XnY

!A(x)

P
x2XnY

!A(x)u(x) >
1P

x2X\Y
!A(x)

P
x2X\Y

!A(x)u(x). Multiplying both

sides by

P
x2XnY

!A(x)P
x2X

!A(x)
gives

1P
x2X

!A(x)

P
x2XnY

!A(x)u(x) >

 P
x2XnY

!A(x)P
x2X

!A(x)

!
1P

x2X\Y
!A(x)

P
x2X\Y

!A(x)u(x)

) 1P
x2X

!A(x)

P
x2XnY

!A(x)u(x) >

P
x2X

!A(x)�
P

x2X\Y
!A(x)P

x2X
!A(x)

P
x2X\Y

!A(x)

P
x2X\Y

!A(x)u(x)

) 1P
x2X

!A(x)

 P
x2XnY

!A(x)u(x) +
P

x2X\Y
!A(x)u(x)

!
> 1P

x2X\Y
!A(x)

P
x2X\Y

!A(x)u(x)

) 1P
x2X

!A(x)

P
x2X

!A(x)u(x) >
1P

x2X\Y
!A(x)

P
x2X\Y

!A(x)u(x)

)
P
x2X

!X(x)u(x) >
P

x2X\Y
!X\Y (x)u(x)

) (X;X \ Y ) 2 ��BEUC (�).

Lemma 4.2.2 For all � 2 � and all (X; Y ) 2 �GF (�) with X \ Y 6= ; and
Y nX 6= ; we have (X \ Y; Y ) 2 ��BEUC (�).

Proof. Take any � 2 � and let (X;Y ) be as in the statement of the lemma.
As (X; Y ) 2 �GF (�), we have x � y 8 x 2 X 8 y 2 Y nX, thus x � y 8
x 2 X \ Y 8 y 2 Y nX. Therefore, given any u 2 U� and any ! 2 �BEUC ,
we have

P
x2X\Y

!X\Y (x)u(x) >
P

x2Y nX
!Y nX(x)u(x), which implies

1P
x2X\Y

!A(x)

P
x2X\Y

!A(x)u(x) >
1P

x2Y nX
!A(x)

P
x2Y nX

!A(x)u(x). Multiplying both

sides by

P
x2Y nX

!A(x)P
x2Y

!A(x)
gives
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P
x2Y nX

!A(x)P
x2Y

!A(x)
P

x2X\Y
!A(x)

P
x2X\Y

!A(x)u(x) >
1P

x2Y
!A(x)

P
x2Y nX

!A(x)u(x)

)
P
x2Y

!A(x)�
P

x2X\Y
!A(x)P

x2Y
!A(x)

P
x2X\Y

!A(x)

P
x2X\Y

!A(x)u(x) >
1P

x2Y
!A(x)

P
x2Y nX

!A(x)u(x)

) 1P
x2X\Y

!A(x)

P
x2X\Y

!A(x)u(x) >
1P

x2Y
!A(x)

 P
x2Y nX

!A(x)u(x) +
P

x2X\Y
!A(x)u(x)

!
) 1P

x2X\Y
!A(x)

P
x2X\Y

!A(x)u(x) >
1P

x2Y
!A(x)

P
x2Y

!A(x)u(x)

) (X \ Y; Y ) 2 ��BEUC (�).

Theorem 4.2.2 ��BEUC (�) = �GF (�) 8� 2 �.

Proof. Take any � 2 �. We �rst show �GF (�) � ��
BEUC

(�). Take any

(X; Y ) 2 �GF (�). Consider the following 4 exhaustive cases:
CASE 1: X \ Y 6= ;, XnY 6= ;; Y nX = ;. So Y = (X \ Y ) � X and by

Lemma 3.1, we have (X;X \ Y ) 2 ��BEUC (�), thus (X; Y ) 2 ��BEUC (�).
CASE 2: X \ Y 6= ;, Y nX 6= ;; XnY = ;. So X = (X \ Y ) � Y and by

Lemma 3.2, we have (X \ Y; Y ) 2 ��BEUC (�), thus (X; Y ) 2 ��BEUC (�).
CASE 3: X\Y 6= ;, Y nX 6= ;; XnY 6= ;. The conjunction of Lemma 3.1

and Lemma 3.2 implies (X;X \Y ) 2 ��BEUC (�) and (X \Y; Y ) 2 ��BEUC (�)
while by transitivity we have (X; Y ) 2 ��BEUC (�).
CASE 4: X\Y = ;. As (X; Y ) 2 �GF (�), we have x � y 8x 2 X, 8y 2 Y .

So
P
x2X

!X(x)u(x) >
P
y2Y

!Y (y)u(y) holds for all u 2 U� and all ! 2 �BEUC ,

showing (X; Y ) 2 ��BEUC (�).
We now show ��

BEUC
(�) � �GF (�). Take some (X; Y ) 2 A�AnfXg with

(X; Y ) 62 �GF (�). So at least one of the following two conditions holds:
(i) 9x 2 XnY , 9y 2 Y such that y � x

(ii) 9x 2 X, 9y 2 Y nX such that y � x

First let (i) hold. Let a 2 XnY be such that x � a 8x 2 XnY and

b 2 Y be such that b � y 8y 2 Y . As (i) holds, we have b � a. Now �x
some u 2 U�. Take some � 2 (0; 1) and consider the prior ! 2 �BEUC where
!A(a) = !A(b) =

1� �
2

and !A(x) =
�

#A� 2 8x 2 Anfa; bg. Consider �rst
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the case where b 2 X. We have

P
x2X

!X(x)u(x) =
1P

x2X
!A(x)

 
1��
2
u(a) + 1��

2
u(b) + (#X � 2) �

#A�2
P

x2Xnfa;bg
u(x)

!

and
P
y2Y

!Y (y)u(y) =
1P

y2Y
!A(y)

 
1��
2
u(b) + (#Y � 1) �

#A�2
P

y2Y nfbg
u(y)

!
. So

when � is picked arbitrarily small,
P
x2X

!X(x)u(x) approaches to
u(a)+u(b)

2

while
P
y2Y

!Y (y)u(y) approaches to u(b) and as u(b) > u(a), this allowsP
y2Y

!Y (y)u(y) >
P
x2X

!X(x)u(x), showing that (X; Y ) 62 ��
BEUC

(�). Now

consider the case where b =2 X. We have
X
x2X

!X(x)u(x) =
1P

x2X
!A(x) 

1��
2
u(a) + (#X � 1) �

#A�2
P

x2Xnfa;bg
u(x)

!
and

P
y2Y

!Y (y)u(y) =
1P

y2Y
!A(y)0@1� �

2
u(b) + (#Y � 1) �

#A� 2
X

y2Y nfbg

u(y)

1A : So when � is picked arbitrar-
ily small,

P
x2X

!X(x)u(x) approaches to u(a) while
P
y2Y

!Y (y)u(y) approaches

to u(b) and as u(b) > u(a), this allows
P
y2Y

!Y (y)u(y) >
P
x2X

!X(x)u(x), show-

ing (X; Y ) 62 ��BEUC (�). Now let (ii) hold. Let a 2 X be such that x � a

8x 2 X and b 2 Y nX be such that b � y 8y 2 Y nX. As (ii) holds, we
have b � a. Fixing some u 2 U�, taking some � 2 (0; 1) and considering a
prior ! 2 �BEUC as above, one can obtain

P
y2Y

!Y (y)u(y) >
P
x2X

!X(x)u(x),

showing (X; Y ) 62 ��BEUC (�).

4.2.3 Equal-Probability Expected Utility Consistency (EEUC)

This is a restriction of BEUC (hence of GEUC) that Feldman (1980) and

Barberà, Dutta and Sen (2001) use in their analysis of strategy-proof social

choice correspondences.25 Letting !t be de�ned for each X 2 A as !tX(x) =

25Barberà, Dutta and Sen (2001) call it Conditional Expected Utility Consistency With
Equal Probabilities.
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1
#X

for all x 2 X, we have �EEUC = f!tg. We characterize �EEUC in
terms of an axiom that we call componentwise dominance. We de�ne two

equivalent versions of it.

The Componentwise Dominance Principle 1: For any real number
r, we write dre for the lowest integer no less than r. Let N stand for the

set of natural numbers. Picking any two m;n 2 N , we introduce a mapping
fmn : N �! N de�ned for each i 2 N as fmn(i) = d1+n:(i�1)m

e. Note that
fmn is an increasing function on N . Now take any � 2 � and any distinct
X; Y 2 A. Let, without loss of generality,X = fx1; ::; x#Xg with xi�xi+18i 2
f1; ::;#X � 1g and Y = fy1; ::; y#Y g with yj�yj+18j 2 f1; ::;#Y � 1g. The
componentwise dominance principle 1 is de�ned through the strict partial

order �CD1(�) = f(X;Y ) 2 A�AnfXg : xi� yf#X#Y (i) 8 i 2 f1; ::;#Xgg.26

The Componentwise Dominance Principle 2: Take any � 2 �

and any X = fx1; ::; x#Xg 2 A with xi� xi+1 8i 2 f1; ::;#X � 1g. Given
any t 2 N , we de�ne a t:#X dimensional vector ~X t such that given any

i 2 f1; ::; t:#Xg, we have ~X t
i = xd i

t
e.
27 In other words, we can write ~X t =

(x1; :::; x1; :::; x#X ; ::; x#X) where each x 2 X appears t times while given any

xi; xj 2 X with i < j, xi appears at the left of xj. Take also Y = fy1; ::; y#Y g
2 AnfXg with yi� yi+1 8i 2 f1; ::;#Y � 1g and de�ne ~Y t similarly. The
componentwise dominance principle 2 is de�ned through the strict partial

order �CD2(�) = f(X; Y ) 2 A�AnfXg : ~X#Y
i � ~Y #Xi 8i 2 f1; ::;#X:#Y gg.28

Lemma 4.2.3 For all � 2 �, we have �CD1(�) = �CD2(�):

Proof. Take any � 2 �:To see �CD1(�) � �CD2(�), pick some (X; Y ) 2
�CD1(�). Now take any k 2 f1; ::;#X:#Y g. We have ~X#Y

k = xd k
#Y

e

and ~Y #Xk = yd k
#X

e. As (X;Y ) 2 �CD1(�), we have xd k
#Y

e � yf#X#Y (d k
#Y

e).

Now check that f#X#Y (d t
#Y
e) � d t

#X
e for all t 2 f1; ::;#X:#Y g. As

26The fact that "CD1(�) is a strict partial order may not be visible at the �rst glance
and we discuss the matter at the end of the section.
27As usual, ~Xt

i is the i
th entry of ~Xt.

28The fact that "CD2(�) is a strict partial order may not be visible at the �rst glance
and we discuss the matter at the end of the section.
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a result, yf#X#Y (d k
#Y

e) � yd k
#Y

e, which implies xd k
#Y

e � yd k
#Y

e, showing that

(X;Y ) 2 �CD2(�).
To see �CD2(�) � �CD1(�); pick some (X;Y ) 2 �CD2(�). So ~X#Y

i � ~Y #Xi 8i
2 f1; ::;#X:#Y g. Suppose, for a contradiction, that (X; Y ) =2 �CD1(�).

So there exists i 2 f1; ::;#Xg such that xi � yf#X #Y (i) fails. Thus, if xi
� yj for some yj 2 Y then j � f#X #Y (i) + 1. This, combined with the

fact that ~X#Y
i � ~Y #Xi for each i 2 f1; ::;#X:#Y g, implies (i � 1):#Y �

f#X #Y (i):#X, which in turn implies f#X #Y (i) � (i� 1):#Y#X , contradicting
the de�nition of f#X #Y , hence showing �CD2(�) � �CD1(�).
So, for each � 2 �, we write �CD(�) = �CD1(�) = �CD2(�):

Theorem 4.2.3 �CD(�) = ��EEUC (�) 8� 2 �.

Proof. Take any � 2 �. To see �CD(�) � ��
EEUC

(�), pick some (X; Y ) 2
�CD(�). So ~X#Y

i � ~Y #Xi 8i 2 f1; ::;#X:#Y g. Thus, for any u 2 U�,

we have
]X:]YP
i=1

u( ~X#Y
i ) >

]X:]YP
i=1

u(~Y #Xi ) , the inequality being strict due

to the fact that X and Y are distinct. This inequality can be rewrit-

ten as
]XP
i=1

]Y:u(xi) >
]YP
j=1

]X:u(yi), which implies

]XP
i=1

u(xi)

]X
>

]YP
j=1

u(yj)

]Y
, thus

showing (X; Y ) 2 ��EEUC (�).
To see ��

EEUC
(�) � �CD(�), pick some (X; Y ) =2 �CD(�). So there exists

j 2 f1; : : : ; ]Xg such that xj � yf#X #Y (j) fails, hence u(xj) < u(yf#X #Y (j) )

for any u 2 U�. Now, let X [ Y = Z = fz1; ::; z#Zg with zi� zi+1 8i 2
f1; ::;#Z�1g and take some � > 0 and someM > 0. Let zk 2 Z coincide with
xj. Consider the following u 2 U� de�ned as u(z#Z) = 0, u(zi)� u(zi+1) = �
for all i 2 fk; :::;#Z � 1g, u(zk�1)� u(zk) = M , and u(zi)� u(zi+1) = � for
all i 2 f1; :::; k � 2g. Picking M arbitrarily large and � arbitrarily close to 0,

we have

]YP
j=1

u(yj)

]Y
>

]XP
i=1

u(xi)

]X
, showing that (X;Y ) =2 ��EEUC (�).

We close by noting the straightforwardness of checking that ��
EEUC

(�) is

a strict partial order, thus answering the issue raised by Footnotes 26 and

28.
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4.3 Completing partial orders versus direct generation

of complete orderings

Whether an ordering over sets is obtained by completing a partial order

generated through expected utilities (i.e., expected utility consistency) or is

directly generated with reference to expected utilities (i.e., strong expected

utility consistency) matters. In other words, given a set � of admissible

priors, the extension axiom �� induced by � and a preference � 2 �, the sets
D�(�) and D��(�) need not coincide. In fact, as we note in the beginning of

Part II,D�(�) being a subset ofD��(�) follows from the de�nitions. A formal

statement of this logical relationship is given by the following theorem.

Theorem 4.3.1 Given any set � of admissible priors over A, we haveD�(�) �
D��(�) 8� 2 �.

Proof. Take any set � of admissible priors over A, any � 2 � and any

R� 2 <nD��(�). So there exist distinct X;Y 2 A with Y R� X whileP
x2X

!X(x):u(x) >
P
y2Y

!Y (y):u(y) 8 u 2 U�, 8 ! 2 �. Thus, there exists no

(�; u; !) 2 �� U� � � that directly generates R�, showing R� =2 D�(�).

Whether the set inclusion announced by Theorem 4.3.1 is proper or not

depends on the choice of admissible priors �. To explore this, we de�ne

the strong leximax extension �+(�) 2 < and the strong leximin extension

��(�) 2 < of � 2 �.29 Under the strong leximax extension, sets are ordered
according to their best elements. If these are the same, then the ordering is

made according to the second best elements, etc. The elements according to

which the sets are compared will disagree at some step �except possibly when

one set is a subset of the other, in which case the smaller set is preferred.30

To speak formally, given any � 2 �, the strong leximax extension �+(�) 2 <
is de�ned as follows: Take any distinct X; Y 2 A. First consider the case
29Kaymak and Sanver (2003) show that at each � 2 �, the leximax and leximin exten-

sions determine unique orderings �+(�) and ��(�) over A which are complete, transitive
and antisymmetric.
30This is exactly how words are ordered in a dictionary. For example, given three

alternatives a, b and c, the leximax extension of the ordering a � b � c is fag �+(�) fa; bg
�+(�) fa; b; cg �+(�) fa; cg �+(�) fbg �+(�) fb; cg �+(�) fcg.
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where #X = #Y = k for some k 2 f1; :::;#A � 1g. Let, without loss of
generality, X = fx1; :::; xkg and Y = fy1; :::; ykg such that xj � xj+1 and yj
� yj+1 for all j 2 f1; :::; k � 1g. We have X �+(�) Y if and only if xh �

yh for the smallest h 2 f1; :::; kg such that xh 6= yh. Now consider the case
where#X 6= #Y . Let, without loss of generality, X = fx1; :::; x#Xg and Y =
fy1; :::; y#Y gsuch that xj � xj+1 for all j 2 f1; :::;#X�1gand yj � yj+1 for all
j 2 f1; :::;#Y �1g. We have either xh = yh for all h 2 f1; :::;minf#X;#Y gg
or there exists some h 2 f1; :::;minf#X;#Y gg for which xh 6= yh. For the
�rst case, X �+(�) Y if and only if #X < #Y . For the second case, X

�+(�) Y if and only if xh � yh for the smallest h 2 f1; :::;minf#X;#Y gg
such that xh 6= yh.
The concept of a leximin extension is similarly de�ned while it is based

on ordering two sets according to a lexicographic comparison of their worst

elements. Again the elements according to which the sets are compared

will disagree at some step �except possibly when one set is a subset of the

other, in which case the larger set is preferred.31 So given given any � 2 �,
the strong leximin extension ��(�) 2 < is de�ned as follows: Take any

distinct X;Y 2 A. First consider the case where #X = #Y = k for some

k 2 f1; :::;#A � 1g. Let, without loss of generality, X = fx1; :::; xkg and
Y = fy1; :::; ykg such that xj � xj+1 and yj � yj+1 for all j 2 f1; :::; k � 1g.
We have X ��(�) Y if and only if xh � yh for the greatest h 2 f1; :::; kg
such that xh 6= yh. Now consider the case where #X 6= #Y . Let, without
loss of generality, X = fx1; :::; x#Xg and Y = fy1; :::; y#Y gsuch that xj �
xj+1 for all j 2 f1; :::;#X � 1gand yj � yj+1 for all j 2 f1; :::;#Y � 1g. We
have either xh = yh for all h 2 f1; :::;minf#X;#Y gg or there exists some
h 2 f1; :::;minf#X;#Y gg for which xh 6= yh. For the �rst case, X ��(�) Y

if and only if #X > #Y . For the second case, X ��(�) Y if and only if xh
� yh for the smallest h 2 f1; :::;minf#X;#Y gg such that xh 6= yh.
The �rst application of Theorem 4.3.1 is for GEUC, when 
 is taken as

the set of admissible priors. In this case, Theorem 4.3.1 holds as an equality.

Before establishing this, we state a lemma.

31For example, the leximin extension of the ordering a � b � c is fag ��(�) fa; bg ��(�)
fbg ��(�) fa; cg ��(�) fa; b; cg ��(�) fb; cg ��(�) fcg.
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Lemma 4.3.1 Take any one-to-one and real-valued function u de�ned over
A and any X 2 A with #X > 1. Given any real number r 2 (min

x2X
u(x);

max
x2X

u(x)), there exists wX 2 
X such that
P
x2X

wX(x):u(x) = r.

Proof. Let u, X and r be as in the statement of the lemma. Let x+; x�

2 X be such that x+� x 8x 2 X and x � x� 8x 2 X. We de�ne X+ =

fx 2 X : u(x) � rg and X� = fx 2 X : u(x) < rg. Both X+ and X�

are non-empty, as x+ 2 X+ and x� 2 X�. Take any !X+ 2 
X+ and any

!X� 2 
X�. Let q+ =
P
x2X+

!X+0(x):u(x) and q� =
P
x2X�

!X�(x):u(x). Note

that q� < r < q+. Let � = q+�r
q+�q� 2 (0; 1). Now de�ne the following function

!X over X: For each x 2 X, we have !X(x) = (1��)!X+(x) if x 2 X+ and

!X(x) = �!X�(x) if x 2 X�. It is clear that !X(x) 2 (0; 1) for all x 2 X.
Moreover,

P
x2X

!X(x) = (1��)
P
x2X+

!X+(x)+�
P
x2X�

!X�(x) = (1��)+� =

1:Thus !X 2 
X . Finally,
P
x2X

!X(x):u(x) = (1 � �)
P
x2X+

!X+(x):u(x) +

�
P
x2X�

!X�(x):u(x) = (1��):q+ +�q� which, by the choice of �, equals to
r.

Theorem 4.3.2 D

(�) = D�
(�) 8 � 2 �.

Proof. Take any � 2 �. The inclusion D

(�) � D�
(�) follows from Theo-

rem 4.3.1. We now show D�
(�) � D

(�) or by Theorem 4.2.1 equivalenty

D�KELLY (�) � D

(�). Let A = fa1; :::; amg for some integer m � 2 and as-

sume, without loss of generality, that ai � ai+1 for each i 2 f1; :::;mg. Take
any R 2 D�KELLY (�). Let C1 = fX 2 A : X R Y 8 Y 2 Ag and de�ne
recursively Ci = fX 2 A : X R Y 8 Y 2 A n

i�1
[
j=1
Cjg. So we express R in

terms of a family fC1; :::; Ckg of equivalence classes where k is some integer
that cannot exceed 2m � 1. Note that for all X ;Y 2 A, we have X R Y

if and only if given any X 2 Ci and Y 2 Cj for some i; j 2 f1; :::; kg with
i < j. As R 2 D�KELLY (�), C1 = ffa1gg and Ck = ffamgg. Consider the
function f : f1; :::;mg ! f1; :::; kg where for each i 2 f1; :::;mg we have
faig 2 Cf(i). So f(1) = 1 and f(m) = k. Moreover, as R 2 D�KELLY (�),

for any i; j 2 f1; :::;mg with i < j, we have f(i) < f(j). Now we de�ne

a real valued utility function u over A as u(ai) = k � f(i) + 1 for each
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i 2 f1; :::;mg. We complete the proof by showing the existence of some
f!XgX2A 2 
 such that for each j 2 f1; :::; kg and for each X 2 Cj we haveP
x2X

!X(x):u(x) = k � j + 1, as this ensures that the triple (�; u; f!XgX2A)

directly generates R. So take any j 2 f1; :::; kg and any X 2 Cj. Con-

sider �rst the case where faig 2 Cj for some ai 2 A. If X = faig, thenP
x2X

!X(x):u(x) = u(ai) = k � j + 1. If X and faig are distinct, then, as

R 2 D�KELLY (�), there exist x; y 2 X n faig such that x � ai and ai �
y. So minz2X u(z) < u(ai) < maxz2X u(z) and by Lemma 4.3.1, there exists

!X 2 
X such that
P
x2X

!X(x):u(x) = u(ai) = k�j+1. Now consider the case

where fxg 2 Cj for no x 2 A. Let i 2 f1; :::;mg be such that fadg P X for

all i 2 f1; :::; ig and X P fadg for all d 2 fi+1; :::;mg. As R 2 D�KELLY (�),

there exists x 2 X n faig such that ai � x and there exists y 2 X n fai+1g
such that y � ai+1. Thus, minz2X u(z) � u(ai+1) = k � f(i + 1) + 1 and
maxz2X u(z) � u(ai) = k� f(i) + 1. Moreover, f(i) < j < f(i+ 1) implying
minz2X u(z) < k � j + 1 < maxz2X u(z) which, by Lemma 4.3.1, implies the
existence of !X 2 
X such that

P
x2X

!X(x):u(x) = k � j + 1.

Remark 4.3.1 For each � 2 �, we have �+(�);��(�) 2 D�KELLY (�), hence

by Theorem 4.2.1, �+(�);��(�) 2 D

(�).

The next application of Theorem 4.3.1 is for BEUC and EEUC, which

is a case in point to show that the converse of the inclusion expressed by

Theorem 4.3.1 need not hold.

Theorem 4.3.3 D�BEUC (�)  D��
BEUC

(�) and D�EEUC (�)  D��
EEUC

(�) 8
� 2 �.

Proof. Take any � 2 �. By Theorem 4.3.1, we haveD�BEUC (�) � D��
BEUC

(�)

and D�EEUC (�) � D��
EEUC

(�). To see that both inclusions are strict, we

check that �+(�) 2 D��
BEUC

(�)\ D��
EEUC

(�) while �+(�) =2 D�BEUC (�) [
D�EEUC (�). As D��

EEUC

(�) � D��
BEUC

(�) and D�EEUC (�) � D�BEUC (�),

it su¢ ces to check that �+(�) 2 D��
EEUC

(�) and �+(�) =2 D�BEUC (�).

We recall that by Theorem 3.3 D��
EEUC

(�) = D�CD(�) and leave checking
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�+(�) 2 D�CD(�) as an exercice to the reader. To see �+(�) =2 D�BEUC (�),

suppose there exists a triple (�; u; !) 2 � � U� � 
 that directly generates
�+(�). Take any distinct a; b; c 2 A with a � b � c. Note that by de�nition
of the strong leximax extension, we have fa; b; cg �+(�) fa; cg �+(�) fbg.
Therefore, 1P

x2fa;b;cg
!A(x)

P
x2fa;b;cg

!A(x)u(x) >
1P

x2fa;cg
!A(x)

P
x2fa;cg

!A(x)u(x)

) 1P
x2fa;b;cg

!A(x)

 
!A(b)u(b) +

P
x2fa;cg

!A(x)u(x)

!
> 1P

x2fa;cg
!A(x)

P
x2fa;cg

!A(x)u(x)

) !A(b)u(b)P
x2fa;b;cg

!A(x)
>

 
1P

x2fa;cg
!A(x)

� 1P
x2fa;b;cg

!A(x)

! P
x2fa;cg

!A(x)u(x)

) !A(b)u(b)P
x2fa;b;cg

!A(x)
> !A(b)P

x2fa;cg
!A(x)

P
x2fa;b;cg

!A(x)

P
x2fa;cg

!A(x)u(x)

) u(b) > 1P
x2fa;cg

!A(x)

P
x2fa;cg

!A(x)u(x), contradicting that Y �+(�) Z, thus

that (�; u; !) directly generates �+(�).

As one can see from the proof of Theorem 4.3.3, lexicographic exten-

sions may or may not be expected utility consistent, depending on whether

a partial order is completed or complete orderings are directly generated.

4.4 A Remark on Strategy-Proof Social Choice Corre-

spondences

The �strategy-proofness�of a social choice correspondence depends on how

preferences over alternatives is extended over sets. If this extension is made

through expected utility consistency, then the subtleties discussed in the

previous section a¤ect the de�nition of strategy-proofness.

To argue this formally, let � = (�1; :::; �n) 2 �N stand for a preference

pro�le over A where �i is the preference of i 2 N . A social choice correspon-
dence (SCC) is a mapping f : �N �! A. Consider a set of admissible priors

� inducing the extension axiom ��. We say that a SCC f : �N �! A is

� strategy-proof under � i¤ given any i 2 N and any �; �0 2 �N with �j =
�0j 8 j 2 Nnfig, we have f(�) R f(�0) for all R 2 D�(�i).

� strongly strategy-proof under � i¤ given any i 2 N and any �; �0 2 �N

with �j = �
0
j 8 j 2 Nnfig, we have f(�) R f(�0) for all R 2 D��(�i).
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At a �rst glance, the second de�nition deserves to be quali�ed as �strong�,

because, by Theorem 4.3.1, we have D�(�) � D��(�) for all � 2 �. Never-
theless, the two de�nitions coincide, as the following theorem announces:

Theorem 4.4.1 Take any non-empty � � 
 inducing the extension axiom
��. A SCC f : �N �! A strategy-proof under � if and only if f is strongly

strategy-proof under �.

Proof. Take any non-empty � � 
:The �if� part follows from Theorem

4.3.1. To show the �only if�part, consider a SCC f : �N �! A which fails

to be strongly strategy-proof. So there exist i 2 N and �; �0 2 �N with �j =
�0j 8 j 2 Nnfig such that f(�0) P f(�) for some R 2 D��(�i). Thus (f(�);

f(�0)) =2 ��(�i), implying the existence of some eu 2 U�i and some e! 2 � such
that

P
x2f(�0)

e!f(�0)(x):eu(x) > P
x2f(�)

e!f(�)(x):eu(x). Therefore, letting eR 2 < be
directly generated by (�i; eu; e!), there exist i 2 N and �; �0 2 �N with �j =
�0j 8 j 2 Nnfig such that f(�0) eP f(�) for eR 2 D�(�i), showing that f fails

to be strategy-proof.

Thus, in analyzing the strategy-proofness of SCCs, it does not matter

whether orderings over sets are obtained by completing a partial order gen-

erated through expected utilities or are directly generated with reference to

expected utilities. The literature on strategy-proof SCCs exhibits both de�n-

itions of strategy-proofness. For example, Ching and Zhou (2002) use strong

strategy-proofness while Barberà, Dutta and Sen (2001) adopt the �weaker�

version. We know by Theorem 4.4.1 that this choice, everything else being

equal, does not a¤ect the analysis.32

On the other hand, it would be no surprise that the choice of the set of ad-

missible priors � matters. In fact, it immediately follows from the de�nitions

that expanding � can only strenghten strategy-proofness. As a case in point,

we have Barberà, Dutta and Sen (2001) who consider strategy-proofness un-

der �EEUC and �BEUC . They show that under �EEUC strategy-proof SCCs

32It is worth noting that the analysis of Barberà, Dutta and Sen (2001) is for social
choice rules that map preference pro�les over sets into sets. These being more general
than standard social choice correspondences, their impossibility under �BEUC implies the
impossibility that Ching and Zhou (2002) establish under �BEUC .

27



are either dictatorial or bidictatorial33while �BEUC admits only dictatorial

rules. Hence the fact that �EEUC � �BEUC matters and strategy-proofness
under �BEUC is e¤ectively stronger than it is under �EEUC . On the other

hand, Ozyurt and Sanver (2006) pick �GEUC as the set of admissible pri-

ors and show the equivalence between strategy-proofness and dictatoriality.

Thus expanding �EEUC to �GEUC leaves the de�nition of strategy-proofness

intact.

33A SCC f : �N �! A is dictatorial i¤ 9i 2 N such that f(�) = fargmax �ig 8� 2 �N .
A SCC f : �N �! A is bidictatorial i¤9i; j 2 N such that f(�) = fargmax �i; argmax �jg
8� 2 �N .
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5 Conclusion

As Barberà et al. (2004) eloquently survey, the literature on extending an

order a set to its power set admits a plethora of extension axioms. Neverthe-

less, the appropriateness of an extension axiom depends on how elements of

the power set are interpreted. We propose a model which incorporates the

�non-resolute outcome�interpretation. In the �rst part, we show that among

the plethora of extension axioms of literature, two of them �namely the Gär-
denfors (1976) and Kelly (1977) principles� arise as the appropriate ones.

This observation does not necessarily exclude the use of extension axioms

based on �expected utility consistency�, as these are essentially equivalent

to either the Gärdenfors (1976) or the Kelly (1977) principle, depending on

the precise meaning attributed to �expected utility consistency�.34 On the

other hand, Theorem 3.3.5 sets an obstacle in using the separability principle

when sets are conceived as non-resolute outcomes.35

In the second part, we explore the problem of extending a complete order

over a set to its power set by the assignment of utilities over alternatives and

probability distributions over sets - hence the idea of expected utility con-

sistent extensions. We express three well-known expected utility consistent

extensions of the literature as a function of admissible priors and we charac-

terize them in terms of extension axioms which do not refer to the concept

of expected utility. Moreover, we display that

� assigning utilities and probabilities which end-up ordering sets accord-
ing to their expected utilities

and

� completing the partial order determined by the pairs of sets whose
ordering is independent of the utility and probability assignment

34One can see Can et al. (2007) for a detailed exploration of this matter.
35To be sure, this does not criticize Roth and Sotomayor (1990) who use separability in

their manipulation analysis of many-to-one matching rules, as their environments conceives
sets as lists of mutually compatible outcomes.
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are di¤erent approaches. This di¤erence has an immediate re�ection to the

analysis of strategy-proof social choice correspondences which we also discuss

and clarify. In brief, we present a framework which allows a general and

uni�ed exposition of expected utility consistent extensions while it allows to

emphasize various subtleties, the e¤ects of which seem to be underestimated -

particularly in the literature on strategy-proof social choice correspondences.
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