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Abstract

This thesis investigates the problem of extending a (complete) order over
a set to its power set. We interpret the set under consideration as a set of
alternatives and we conceive orders as individual preferences. The elements
of the power sets are the non-resolute outcomes. To determine how an in-
dividual with a given preference over alternatives is required to rank certain
sets, we need a concept of extension axioms.

In the first part, the final outcome is determined by an “(external) chooser”
which is a resolute choice function. The individual whose preference is un-
der consideration confronts a set of resolute choice functions which reflects
the possible behaviors of the chooser. Every such set naturally induces an
extension axiom (i.e., a rule that determines how an individual with a given
preference over alternatives is required to rank certain sets). Our model al-
lows to revisit various extension axioms of the literature. Interestingly, the
Gérdenfors (1976) and Kelly (1977) principles are singled-out as the only two
extension axioms compatible with the non-resolute outcome interpretation.

In the second part, the extension axioms we consider generate orderings
over sets according to their expected utilities induced by some assignment of
utilities over alternatives and probability distributions over sets. The model
we propose gives a general and unified exposition of expected utility consis-
tent extensions while it allows to emphasize various subtleties, the effects of
which seem to be underestimated - particularly in the literature on strategy-

proof social choice correspondences.
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Ozet

Bu tezde, kiimeler tizerindeki siralamalardan bu kiimelerin altkiimeleri {iz-
erindeki siralamalari olugturma problemini ele aliyoruz. Inceledigimiz kiimeleri
secenekler kiimesi olarak, siralamalar1 bireysel tercihler olarak, altkiimeleri
de sosyal se¢cim kurallarinin kesin olmayan sonuclari olarak degerlendiriyoruz.
Bireysel tercihlerden sosyal secim kurallarinin ¢oziilmemis sonuglar: arasinda
iligki kurabilmek icin genisletme aksiyomlari’ndan yararlaniyoruz.

Ik boliimde, se¢cmenlerin secenekler iizerindeki tercihlerinin sosyal secim
kurallarinin kesin olmayan sonuglarini incelemekte nasil kullanilabilecegini
aragtirirken kesin sonucun yetkili bir secici tarafindan belirlenecegi genel bir
model kuruyoruz. Bu model cercevesinde yetkili secicinin olasi tercihlerinin
belirsizligi altinda ortaya ¢ikacak stratejik segmenlerin toplumsal sonuclari ne
sekilde etkileyecegini inceliyoruz. Arastirmamiz sonucunda, bu alandaki zen-
gin literatiir igerisinden Gérdenfors (1976) ve Kelly (1977)’deki genigletme ak-
siyomlarinin yetkili secicilerin ne sekilde tercihte bulunacaklarinin 6ngoriilmesinde
kullanilabilecegi ortaya cikmaktadir.

Ikinci boliimde, kullandigimiz genisletme aksiyomlarindan, seceneklere
atanan belirli degerler ve kiimeler tizerindeki olasilik dagilimlariyla belirlenen
"beklenen fayda'"larina gore siralamalar olugturuyoruz. Burada onerdigimiz
model, bu alandaki literatiire hem daha genel ve toparlayici bir bakis agist

saglamakta, hem de nispeten muglak olan kisimlara netlik kazandirmaktadir.
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1 Introduction

In this thesis, we consider the problem of extending a (complete) order
over a set to its power set. We interpret the set under consideration as a set
of alternatives and we conceive orders as individual preferences.

It is quite typical that collective decision problems are resolved through
the initial choice of a non-resolute set of outcomes which is followed by the
final decision of an “external chooser”. This two-stage structure is sometimes
an explicit part of the social choice rule -hence the external chooser truly
exists.! But even without an explicit reference to the “external chooser”,
a two-stage structure is implicit in the nature of the social choice problem.
For, the impossibility of making a resolute choice under desirable axioms is
well-known. In fact, as one can see in Moulin (1983), every anonymous and
neutral social choice rule must exhibit non-resoluteness, thus leaving the final
choice to an “external chooser” - who does not necessarily exist in flesh and
bone.

This two-stage nature of collective decision problems raises the question
of extending a preference over a set to its power set. This question is typically
answered through an extension axiom which is a rule that determines how
an individual with a given preference over alternatives is required to rank
certain sets. Moreovover, given an extension axiom, we need a condition of
the compatibility of a preference over sets with a preference over alternatives
which is the obedience of the extended order to the requirements of the
extension axiom.? As Barbera, Bossert and Pattanaik (2004) beautifully
survey, there is a vast literature on extending an order over a set to its
power set. To be sure, this literature contains various interpretations of
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a set, such as being a list of mutually incompatible outcomes® or a list of

!Such social choice rules are analyzed by Barbera and Coelho (2004) who call them
“rules of k names”.

2To be more formal, given an extension axiom , a complete order R over sets is
compatible with an order p over alternatives if and only if R is a completion of the partial
order 7(p) that = assigns to p.

3e.g., Girdenfors (1976), Barbera (1977), Kelly (1977), Feldman (1979), Duggan and
Schwarz (2000), Barbera, Dutta and Sen (2001), Benoit (2002), Ching and Zhou (2002),
Ozyurt and Sanver (2006).



mutually compatible outcomes* or a menu from which the individual whose
preference under consideration makes a choice® or a collection states®. All
these interpretations have their own axioms. Throughout this thesis our
consideration is limited to an interpretation where a set is conceived as an
initial non-resolute refinement of outcomes from which a final choice will
be made. We propose a model that underlies this conception of a set. As
social choice correspondences are typically social choice rules which give non-
resolute outcomes, the problem we consider is connected to the analysis of
strategy-proof social choice correspondences.”

First part of this thesis is mainly composed of the results of Erdamar
and Sanver(2007). In this paper, we admit a resolute choice function® to be
an “(external) chooser” who makes the final decision from any non-resolute
outcome. Hence a (non-empty) set D of resolute choice functions is the list
of admissible behaviors that choosers may exhibit. In principle, D can be
anything, ranging from a singleton set to the set of all choice functions. In
particular, D may be determined by well-established axioms of choice theory,
such as the weak axiom of reveal preference. After all, any given D induces
an extension axiom in the following natural way: For each possible ordering
p of alternatives, a set X is required to be ranked above a set Y if and only
if the final decision made from X is preferred (according to p) to the final
decision made from Y, for any chooser belonging to D.

Our model allows to revisit the existing extension axioms of the litera-
ture. Among these, two prevalent ones, namely the Gérdenfors (1976) and
Kelly (1977) principles are singled out. For, every “regular” axiom of choice
theory determines a domain of admissible chosers which induces either the
Girdenfors (1976) or the Kelly (1977) principle.

4e.g., Barbera, Sonnenschein and Zhou (1991), Ozyurt and Sanver (2007).

Pe.g., Kreps (1979), Dutta and Sen (1996), Dekel et al. (2001), Gul and Pesendorfer
(2001).

be.g., Lainé et al. (1986), Weymark (1997).

"The literature on strategy-proof social choice correspondences contains Fishburn
(1972), Pattanaik (1973), Gérdenfors (1976), Barbera (1977), Kelly (1977), Feldman
(1980), Duggan and Schwarz (2000), Barbera, Dutta and Sen (2001), Benoit (2002), Ching
and Zhou (2002), Ozyurt and Sanver (2006). This list is certainly non-exhaustive. One
can see Taylor (2005) for an excellent account of the literature.

8 A resolute choice function assigns to each non-empty set X a single element of X.



In the second part of this thesis, one can find the results of Can, Erdamar
and Sanver(2007). In this paper our focus is on extension axioms that order
sets according to their expected utilities induced by some assignment of util-
ities over alternatives and probability distributions over sets. This approach
leads to what is generally called the expected utility consistent extension of a
preference. Nevertheless, the idea needs to be made more precise by deter-
mining which utility functions and probability distributions are admissible.
Moreover, the order generated by expected utilities is complete or partial also
matters. In fact, completing a generated partial order and directly generating
a complete order may lead to different admissible orderings. The literature
seems to be missing a unified exposition of these subtleties - a treatment of
which is one of our aims.

We set our framework for the first part in Section 3.1 and Section 3.2
and then state our results in Section 3.3 . We also consider, in Section 3.4,
a probabilistic variant of our model where we allow randomizations over D.
However, our findings remain essentially unaltered by this variation.

In Section 4.1 we introduce the basic notions for Part II. In this section, we
adjust the definitions of an "extension axiom” and a "prior” to set a frame-
work for expected utility consistent extensions of preferences. Throughout
the second part, an extension axiom is a mapping which assigns to an order
over the set of alternatives a strict partial order over the subsets of the alter-
natives. Moreover, we define a "prior" as a vector that collects a probability
distribution over each element of the power set of the alternatives. We de-
vote Section 4.2 to give an account of expected utility consistent extensions
in our unified framework. In Section 4.3 , we note that different admissible
orderings are obtained when we complete a generated partial order and di-
rectly generate a complete order. In Section 4.4, we discuss the effects of our
findings to definitions of strategy-proofness. Moreover, we are able to remark
that not all the finesses of expected utility consistent extensions are incor-
porated into the literature on strategy-proof social choice correspondences.

Section 5 concludes.



2 Basic Notions

Consider a finite non-empty set of alternatives A and let A = 24\{0}. We
let #A > 3 and write II for the set of complete, transitive and antisymmetric
binary relations over A and R for the set of complete and transitive binary
relations over A.° We write p € II and R € R for typical orders over A and
A, respectively. We let p* and P stand for the for the strict counterparts of
p €Il and R € R, respectively.!?

3 PART I: Choosers as Extension Axioms

3.1 Extension Axioms

An extension axiom is a mapping € which assigns to each p € II a transitive
binary relation £(p) over A such that = p* v < {z} e(p) {y} Vz,y € A.
We interpret (X,Y) € £(p) as the requirement of ranking the set X at least
as good as the set Y when the ranking of alternatives is p. Note that our
definition of an extension axiom, perhaps untypically, does not require the
antisymmetry of £(p). Nevertheless, most of the extension axioms we consider
turn out to induce antisymmetric binary relations.
We define below three principal extension axioms that we consider:

e The extension axiom used by Kelly (1977) in his analysis of strategy-

KELLY ()0)

proof social choice correspondences, is defined for each p € [T as e
={(X)Y) e AxA\{X}:zpyVaz e XVye Y} Werefer to eXELLY

as the Kelly principle.

e The extension axiom used by Gérdenfors (1976) in his analysis of

strategy-proof social choice correspondences, is defined for each p € II

980 for any p € II and any x,y € A, by completeness, we have = p y or y p x. This
implies reflexivity, i.e., x p © Vz € A. Note that by antisymmetry, x p y = not y p
x when x and y are distinct. Finally, transitivity ensures x p y and y p 2 = x p 2
Va,y,z € A.

1080 for any p € I and any z,y € A, we have = p* y whenever 2 p y holds and y p z
fails. Similarly, for any X,Y € A, we have X P Y whenever X RY holds but Y R X does
not. As p is antisymmetric, when x and y are distinct, we have either x p* y or y p* x.



as e (p) = {(X,Y) e Ax A\{X}: (xp*y Vo e X\Y VycY)and
(xpryVaeeXVyeVY\X)} We refer to e as the Géirdenfors

principle.

e The extension axiom %%, to which we refer as the separability prin-
ciple, is defined for each p € Il as e%F = {(X U {2}, X U{y}): X € 24
and z p* y for distinct z,y € A\X }.1

The Girdenfors principle is stronger than the Kelly principle, i.e., e X LY (

G €9F(p) Vp € II. On the other hand, the separability principle is logically
independent of both the Kelly and the Gérdenfors principles. Note that all

three extension axioms induce antisymmetric binary relations.

3.2 Choice Functions

A (resolute) choice function is a mapping C' : A — A such that C'(X) €
X, VX € A. We write C for the set of all choice functions and D C C
stands for any non-empty subclass of choice functions. We consider axiomatic

restrictions over C. The definitions below are quoted from Aizerman and
Aleskerov (1995):

e A choice function C' satisfies the Weak Axiom of Revealed Prefence
(WARP) it C(Y) € X and C(X) e Y = C(X) = C®)
VXY € A2 We write CVAEP for the set of (resolute) choice func-
tions that satisfy WARP.!?® It is to be noted that, defining at each

1The separability principle, which is a modified version of the monotonicity axiom of
Kannai and Peleg (1984), is used by Roth and Sotomayor (1990) in their manipulation
analysis of many-to-one matching rules.

12For resolute choice functions, the version of WARP we use and the definition given by
Aizerman and Aleskerov (1995) are equivalent.

13Note that a variety of conditions which differ from WARP over the class of choice
correspondences turn out to be equivalent to WARP over the class of resolute choice
functions. Among these, we have

(2) postulate 4 of Chernoff (1954) (called aziom C2 by Arrow (1959), condition alpha by
Sen (1974), upper semi-fidelity by Sertel and van der Bellen (1979), heredity by Aizerman
and Aleskerov (1995));

(47) the independence of irrelevant alternatives condition of Nash (1950) (called postulate
5* by Chernoff (1954), aziom 2 by Sen (1974), outcast by Aizerman and Aleskerov (1995)

p)



7 € 11, the choice function C.(X) 7 z Vo € X, VX € A, we have
CWARP _ {C } - 14
Tlrell”

e A choice function C satisfies Concordance iff C(X) = C(Y) =
C(X)=C(XUY)VX,Y € A. We write C°ONC for the set of (resolute)

choice functions that satisfy concordance.

e A choice function C satisfies direct Condorcet iff v € C(X) = =z €
N CHz,y}) VX € A, Vo € A. We write CP¢ for the set of (resolute)

yeX
choice functions that satisfy direct Condorcet.

Remark 3.2.1 As one can see in Aizerman and Aleskerov (1995), we have

CWARP g CCONC g CDC g C

3.3 Inducing Extension Axioms through Choice Func-

tions

Any non-empty D C C induces an extension axiom £? as follows: At each p €
I1, for all distinct X,Y € A, we have (X,Y) € eP(p) <= C(X) pC(Y)VC €
D. Note that £P(p) is antisymmetric if and only if D satisfies the following
richness condition: Given any distinct X,Y € A, there exists C € D such
that C'(X) # C(Y). The definition of €” conjoined with Remark 3.2.1 leads

to the following proposition:
Proposition 3.3.1 £¢(p) C €7 (p) € €77 (p) € " (p) Vp € 1L

Although the set inclusions stated by Remark 3.2.1 are proper, those
announced by Proposition 3.3.1 need not be so, as we show soon.
We first establish the equivalence between the Kelly principle and the

extension axiom induced by allowing all logically possible choice functions.

and absorbance by Sertel and van der Bellen (1979));

(#it) postulate 6 of Chernoff (1954) (called aziom C4 by Arrow (1959) and constancy
by Aizerman and Aleskerov (1995));

(iv) The inverse condorcet condition of Aizerman and Aleskerov (1995).

4What we note follows from many results of the literature, e.g., Theorem 2.10 of Aiz-
erman and Aleskerov (1995).



Theorem 3.3.1 £¢(p) = eXFLLY (p) Vp € T1.

Proof. Take any p € II. To see ¢(p) C eXFLLY (), pick any (X,Y) € €(p).
So, C'(X) p C(Y) VYC € C. Now, consider a choice function Cy with z p Cy(X)
Ve € X and Co(Y) pyVy € Y. Clearly, Cy € C. Thus, Co(X) p Co(Y) which,
by the choice of Cy, implies = p y Vo € X, Vy € Y, hence establishing (X,Y)
€ eKELLY (). To see eXFLLY (p) C (p), pick any (X,Y) € eXFLLY (). Let
2, € X besuchthat z pz, Vr € X and yo € Y besuch that yo py Vy € Y.
As (X,Y) € eBBLLY () we have zg p yo. Now, take any C' € C. By the choice
of o and o, we have C(X) p ¢ and yo p C(Y') which implies C(X) p C(Y),
establishing (X,Y) € €€(p). =

Remark 3.3.1 The antisymmetry of ¢ follows from the antisymmetry of

eRELLY g5 well as from the richness of C.

Remark 3.3.2 For any D, we have eXFLEY (p) C eP(p) Vp € 1. In other
words, the Kelly principle is the weakest extension axiom that can be con-

cetved in our environment.

We now show that restricting the set of admissible choice functions to
those which satisfy the concordance axiom does not induce an extension

axiom stronger than the Kelly principle.
Theorem 3.3.2 €“7" (p) = KELLY (p) V¥ e TI.

Proof. Take any p € II. The inclusion eXELEY (p) C £€““"(p) follows
from Remark 3.3.2. To see e¢““"“(p) C eXFLLY (p)  pick some (X,Y) ¢
el ELLY (p). So, Jy € Y and 37 € X \{¥y} such that 7 p* 7. First, consider the
first case where 7 ¢ X. Picksome 7 € [l withy 7 T 7 2 Vz € A\ {7,7}. Note
that C, € CWARP C COONC Asy ¢ X, we have O, (X) =T and C, (V) =7,
thus C,(X) p C.(Y) fails, establishing (X,Y) ¢ £°““"“(p) . Next, consider
the case where T ¢ Y. Pick some 7 € [l withZ 7 y 7 2z Vz € A\{7,7}.
Note that C, € CEON¢. As T ¢ Y, we have C, (Y) = 7 and C, (X) = 7,
thus C,(X) p C,(Y) fails, establishing (X,Y) ¢ " (p). Finally, consider
the case where y € X and ¥ € Y. Pick some 7 €e Il with 2z 72 7 y Vz €

7



A\ {Z,7}. Consider the choice function C defined as C(X) =7, C(Y) =7
and C(Z2) = C, (Z) VZ € A\{X,Y}. Note that C(X) p C(Y) fails. So we
complete the proof by showing C' € CYONC. To see this, take any distinct
S, T € A with C(S) = C(T). Note that S,T € {X,Y} cannot hold, by
construction of C. Now, consider the following three exhaustive cases:

Case 1: X € {S,T}, say S = X without loss of generality. So C (T) = 7,
which implies 7" € {{Z, 7}, {Z}} which in turn implies SUT = 5, establishing
C(SuT)=C(9).

Case 2: Y € {S,T}, say S =Y without loss of generality. So C (T') = 7,
which implies T = {7}, which in turn implies S UT = S, establishing
C(SuT)=C(9).

Case 3: X,Y ¢ {S,T}. Let 2 =C(S) = C(T). So z7 sVs € S and

zTtVte T, thus z 7 uVu € SUT, implying z = C(SUT).
Therefore, C € CYONC hence (X,Y) ¢ " (p). m

Remark 3.3.3 The antisymmetry of gCOONC follows from the antisymmetry

of eXPLLY a5 well as from the richness of CYONC
The following result is a corollary to Theorem 3.3.1 and Theorem 3.3.2.

Theorem 3.3.3 Given any D D CY°NY we have £P(p) = eXFLY (p) Vp €
IT.

Note that Theorem 3.3.3 covers the particular case where D = C”¢. Our
next result shows that by further restricting the set of admissible choice

functions through WARP, we fall into the Gérdenfors principle.!'®

Theorem 3.3.4 ¢ """ (p) = F(p) Vp e 1L

15Sanver and Zwicker (2007) consider various monotonicity and manipulability prop-
erties of irresolute social choice rules. Among other things, they show that certain
monotonicity conditions turn out to be equivalent, independent of whether the irresolute
social choice rule is refined through a total order or preferences over alternatives are ex-
tended over sets through the Gérdenfors principle. In fact, it is the result announced by
Theorem 3.3.4 which underlies this equivalence.



Proof. Take any p € II. To see <" """ (p) C £5F(p), pick some (X,Y)
¢ e (p). SoTyeY,Ix e X\Y withy p* Tor Iy € Y\X, IT € X with y
p* T. In the former case, pick some 7 € Il with Z 7§ 7 2 Vz € A\ {Z,7},
thus C, (X) = 7 and C, (Y) = 7, implying the failure of C; (X) p C. (Y)
while C; € CWARP hence establishing (X,Y) ¢ """ (p). In the latter
case, pick some 7 € Il with g 7 T 7 2 Vz € A\ {7, 7}, thus C; (X) =7 and
C.(Y) = 7, implying the faliure of C, (X) p C,(Y) while C, € CWAEP
hence establishing (X, Y) ¢ """ (p).

To see F(p) € "™ (p), pick any (X,Y) € % (p). So we have (z
pryVr e X\Y,Vy € Y)and (x p* y Ve € X, Vy € Y\X)}. In particu-
lar, C(X\Y) p* C(Y) VC € C whenever X\Y # () and C(X) p* C(Y\X)VC €
C whenever Y\X # (). Note that X and Y are distinct, thus X\Y and
Y\ X cannot be both empty. Let, without loss of generality, X\Y # 0.
Take any C' € CWARP. First, consider the case where C(X) € X\Y. Since
X\Y C X and C € CWARP we have C(X) = C(X\Y). Thus, C(X) p* C(Y).
Now, consider the case where C'(X) ¢ X\Y. So C(X) € XNY . Since
XNY C X and C € CWARP we have C(X) = C(X NY). If C(Y) €
X NY then C(Y) = C(X NY) follows by C € CWARP establishing
CX) prCY). IfC(Y) ¢ XNY, then C(Y) € Y\X, and we get C(Y) =
C(Y\X) by C € CWARF implying C(X) p* C(Y). Thus (X,Y) € """ (p)
and eSF(p) € " (p). =

Remark 3.3.4 The antisymmetry of gCv ARy follows from the antisymmetry

of €T as well as from the richness of CWVAEL,
We summarize below our findings upto now.

Corollary 3.3.1 cKFLLY (p) — C(p) = €77 (p) = €7 (p) ¢ €V (p) =

eF(p) Vp € 1L

Remark that a rich variety of choice axioms'¢ single out the Kelly and
Gérdenfors principles. As an interesting observation, the separability princi-

ple has not been induced by any of the choice axioms we considered. In fact,

16gee footnote 13



as we show below, there exists no class of admissible choice functions that

induces the separability principle. Before proving this, we state a lemma.

Lemma 3.3.1 Let D C C ensure 5% C eP(p) Vp € 1. Given any C € D
and any X,Y € A with #X = #Y = 2 and #(X NY) = 1, we have
CX)=XnY = CY)=XnNnY.

Proof. Let D be as in the statement of the lemma. Take any C' € D. Let
X = {z,y} and Y = {x,z} for some distinct x,y,z € A. Take any p €
IT with y p* z p* . Suppose C'(X) =z and C(Y)=2.So C(X) p C(Y)
fails, hence (X,Y") ¢ €P(p) while (X,Y) € o (p), contradicting the choice of
D. =

Theorem 3.3.5 3D C C which ensures 5 C £P(p) Vp € I1.

Proof. Let, for a contradiction, D C C ensure %% C £P(p) Vp € II. Take
any C' € D and any distinct z,y,z € A. Let, without loss of generality,
C({z,y}) = x. By Lemma 3.3.1, we have C' ({z,2}) = z and C({y, z}) = =.
However, again by Lemma 3.3.1, C' ({x, z}) = « implies C({y, 2}} = v, giving
the desired contradiction. m

The impossibility announced by Theorem 3.3.5 prevails for any variant of
Kannai and Peleg (1984) monotonicity which is stronger than separability.

We close the section by a remark regarding the strenghts of the extension
axioms that are conceivable in our environment. As noted by Remark 3.3.2,
the Kelly principle is the weakest among all conceivable extension axioms. On
the other hand, although the Gérdenfors principle is the strongest extension
axiom we encountered, we cannot claim it to be the strongest among all
conceivable extension axioms. For, although WARP is a fairly demanding
condition, the set of admissible choice functions can be further reduced. In
fact, at the extreme, D can be assumed to contain only one choice function.
Actually, the strongest conceivable extension axioms will be those which
are induced by singleton sets of admissible choice functions. In fact, any

D = {C} with C' € C induces a complete and transitive binary relation

10



eP(p) ={(X,)Y)e Ax A:C(X)pC(Y)} at each p € I1.'7 Nevertheless,
as we note below, it is not possible to speak about “the strongest” extension

axiom.

Proposition 3.3.2 Given any D = {C'} and D' = {C"} with distinct C,C" €
C, both £P(p) C eP'(p) and P (p) C P(p) fail at every p € 1.

Proof. Take any D = {C'} and D' = {C"} with distinct C,C" € C. So, there
exists X € A such that C'(X) # C'(X). Note that #X > 2. Take any p € II.
Consider the first case where C'(X) p* C(X). Note that ({C(X)},X) €
eP(p) but ({C(X)},X) ¢ £P'(p). Moreover (X,{C'(X)}) € P (p) but
(X, {C"(X)}) ¢ €P(p). Hence, neither eP(p) C P (p) nor P (p) C £P(p)
holds. Now, consider the case where C'(X) p* C'(X). Note that (X, {C (X)})
c eP(p) but (X, {C(X)}) ¢ £P'(p). Moreover ({C’'(X)},X) € P (p) but
({C"(X)},X) ¢ €P(p). Hence, neither eP(p) C ' (p) nor €2 (p) C £P(p)
holds. m

As a case of particular interest, we have D = {C} for C € CWARP Let
B,(X) € X denote the best element of X € A at p € II, ie., 3,(X) p x
Vaz € X. The lezimaz extension is the extension axiom A* defined for each
pellas A\ (p) = {(X,Y) e Ax A\{X} : 3,(X) p 8,(Y)}. Similarly, let
wp(X) € X satisfy x pw,(X) Vo € X. The leximin extension is the extension
axiom A\~ defined for each p € ITas A" (p) = {(X,Y) € A x A\{X}: w,(X)
p (V)1

Proposition 3.3.3 Given any D and any p € Il,we have

(i) €P(p) = A" (p) if and only if D = {C,}.
(ii) €P(p) = X"(p) if and only if D = {C,} for T € Il withx 7y <=y
pxVr,y e A.

Proof. Take any D and any p € II.

1"Remark that no D = {C?} is rich hence the corresponding complete preorder £ (p) is
not antisymmetric.

18Pattanaik and Peleg (1984), Bossert (1995), Campbell and Kelly (2002), Kaymak and
Sanver (2003), Dogan and Sanver (2007) explore lexicographic extensions under a variety

of definitions.
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We prove (i). To establish the “if” part, let D = {C,}. To see £P(p) C
A (p), take some (X,Y) € £P(p). So C,(X) p C,(Y). Moreover, by the
definition of C,, we have C, (X) = 3,(X) and C, (X) = 3,(Y), thus, ,(X)
p B3,(X), showing (X,Y) € A™(p). Tosee A" (p) C eP(p), pick some (X,Y) €
A" (p). So B,(X) pB,(Y), thus C, (X) p C, (Y), showing (X,Y) € £P(p). To
establish the “only if” part, assume eP(p) = A\*(p) and suppose 3C € D with
C # C,. So, C(X) # C,(X) for some X € A. Check that (X,{C,(X)}) €
A (p) but (X, {C,(X)}) ¢ €P(p), contradicting €P(p) = A" (p).

We prove (ii). To establish the “if” part, let D = {C.} for 7 € II with
v 7y < ypaxVry € A Tosee eP(p) C X\ (p), take some (X,Y) €
eP(p). So C; (X) p C, (V). Moreover, by the choice of 7, we have C; (X) =
wp(X) and C; (Y) = w,(Y), thus w,(X) p w,(Y), showing (X,Y) € A" (p).
To see A~ (p) C €P(p), pick some (X,Y) € A (p). So w,(X) p w,(Y),
thus C, (X) p C; (Y), showing (X,Y) € £P(p). To establish the “only if”
part, assume €2(p) = A\ (p) and suppose IC € D with C # C,. So, C(X) #
C;(X) for some X € A. Check that ({C(X)}, X) € A (p) but ({C-(X)}, X)
¢ €P(p), contradicting eP(p) = A"(p). =

So at a given p the leximax ordering A" (p) is induced if and only if D
= {C,}. Similarly, at a given p the leximin ordering A~ (p) is induced if and
only if D = {C.} such that 7 is the opposite ranking of p. As a corollary
which we state below, there exist no D which induces leximax (or leximin)

orderings at every p.

Theorem 3.3.6 There exists no D such that
(i) eP(p) =A"(p) Vpell
or
(i) eP(p) =A"(p) Vp € IL.

3.4 A Probabilistic Variant of the Model

We now consider a probabilistic variant of our model by allowing randomiza-
tions over the set of admissible choice functions D. A prior over D is a map-

ping 6 : D — (0, 1] such that Y 0(C) = 1. We write Op for some arbitrary
CeD
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(non-empty) set of priors over D. Let U, stand for the set of all (real-valued)

utility functions over A that represent p € I1.Y Any D and ©p induce an

extension axiom €97 as follows: At each p € II, for all distinct X,Y € A, we

have (X,Y) € €92(p) <= > 0(C)u(C(X)) > > 0(C)u(C(Y)) Yu € U,
ceDp CeD

Vo € Op.

Theorem 3.4.1 Given any D and Op, we have P (p) C €2 (p) Vp € I1.

Proof. Take any p € II and any (X,Y) ¢ €97 (p). So there exists u € U,

and 6 € ©p such that > 0(C).u(C(Y)) > > 0(C).u(C(X)). Since 0(C) >
ceD CeD
0 for each C' € D, the inequality holds only if there exists C' € D with

u(C'(Y)) > u(C' (X)), hence C'(Y) p* C'(X), establishing (X,Y) ¢
P(p). m
Whether the set inclusion announced by Theorem 3.4.1 is proper or not

3

depends on the richness of the set of admissible priors ©p. For example, as
we show below, when Op allows all priors over D, Theorem 3.4.1 holds as an

equality.

Theorem 3.4.2 Take any D and let Op be the set of all priors over D. We
have €P (p) = °7 (p) Vp € 1L

Proof. Take any p € II. The inclusion € (p) C 97 (p) is already established
by Theorem 3.4.1. To see €97 (p) C P (p), pick some (X,Y) € 2. Take
any C' € D and consider some prior % € ©p with 0" (C") = ¢ VC' € D\{C'}
and 0" (C) = 1 — (#D — 1).c where ¢ € (0, zp—=)- As (X,Y) € %7 (p),

we have (1 — (#D — 1).e).u (C (X)) + Cle%;{c}g.u(C’(X)) > (1 — (#D —

De)u(C(Y))+ > ewu(C'(Y)). Picking ¢ arbitrarily small, we get
c'eD\{C}

u(C(X)) > u(C(Y)), hence C (X) p C(Y), establishing (X,Y) € £P(p).

Nevertheless, there are restricted choices of ©p which render the set in-
clusion of Theorem 3.4.1 proper. To see this, let D = CWARP and Op = {@}
where 0 (C) = # VC € D. Take any distinct z, y, 2 € A and any p € II

19 A utility function u over A represents p € Il iff u(z) > u(y) < z p y Yo,y € A.
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with zp yp z. Note that ({z,y},{x, z}) € €97 (p) since “(I);u(y) > U(I);u(z)
Vu € U, while ({z,y},{x, z}) ¢ P (p).

4 PART II : Expected Utility Consistent Ex-

tensions

4.1 Extension Axioms and Priors Revisited

In this part, by an extension ariom, we mean a mapping 7 which assigns
to each p € II a strict partial order?® 7(p) of A such that for all distinct
z,y € A we have x p y <= {x} 7m(p) {y}. Given any extension axiom 7
and any p € II, we write D"(p) ={Re€ R: X w(p) Y = X P Y for all
distinct X,Y € A} for the set of complete and transitive binary relations
over A which are compatible with 7(p). 2!

Let Q2x be the set of all non-degenerate probability distributions over
X € A, ie., each wy € Qx is a probability distribution {wx(z)}.ex over X
where wx(z) € (0, 1] is interpreted as the (positive) probability that = € X
will be chosen from X.?> We call ) = XI;IAQX the set of priors over A. So,

in this part a prior w = (wx)xea € Qis a vector which collects a probability
distribution over each element of A. Any given non-empty set I' C ) of
admissible priors over A induces an extension axiom 7' which assigns to each
p € II a binary relation 7' (p) over A as follows: For all distinct X,Y € A, we
have X 7''(p) Y if and only if > wx(x).u(z) > Y wy(y).u(y) Vu € U,,Vw

zeX yey
€ T2 So D™ (p) is the set of orderings which are completions of the partial

order 7' that the set of admissible priors T' induces. We call D™ (p) the

set of orderings over A which are expected utility consistent with p (under

20 A strict partial order is a transitive and antisymmetric (but not necessarily complete)
binary relation.

2180 every R € D™(p) is a completion of the strict partial order 7(p) and D™(p) is
non-empty by Spilrajn’s Theorem.

2280 we have Y wx(x) =1 for all X € A.

zeX

230ne can immediately check that 7! is an extension axiom, i.e., 7' (p) is transitive and

antisymmetric, while = p y <= {z} 7' (p) {y} for all distinct z,y € A.
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the set of admissible priors I'). Note that for any p € Il and any R € &
we have R € D”F(p) <— V XY € A with X R Y, there exists (u,w)

€ U, x I such that ) wx(z)u(zr) > > wy(y).u(y). One could impose a
zeX yey
stronger expected utility consistency requirement by reversing the order of

the quantifiers. In other words, one could say that R € R is strongly expected
utility consistent with p € 11 (under the set of admissible priors T') iff there

exists (u,w) € U, xI'suchthat X RY <= > wx(z).u(x) > > wy(y).u(y)
zeX yey

for all X,Y € A. We write D" (p) for the set of orderings over A which are
strongly expected utility consistent with p € II. In what follows, we say that
a triple (p,u,w) € Il x U, x I" directly generates R € R iff X RY <=
S wx(x)u(z) > Y wy(y).u(y) for all XY € A. So DY(p) is the set of

reX yey
orderings over A which are directly generated by some (p, u,w) € IIx U, xT".

Note that D (p) € D™ (p) Vp € II follows from the definitions. On the other
hand, as we show in Section 4.3, the properness of the set inclusion depends

on the choice of admissible priors I'.

4.2 The choice of admissible priors

The precise meaning of the “expected utility consistency” of an extension
depends on the set of admissible priors and the set of admissible utility
functions. Given a preference p € II over alternatives, we let any u € U, to
be admissible. On the other hand, we allow the set of admissible priors I' to

vary. The literature exhibits three choices of I':

4.2.1 General Expected Utility Consistency (GEUC)

Any prior is allowed, i.e., I' = €2. As one can also deduce from Theorem 4.4.1
in Taylor (2005), the extension axiom 7% induced by GEUC is equivalent to
the extension axiom introduced by Kelly (1977):

Theorem 4.2.1 7%(p) = 75FLLY (p) Vp € I1.

Proof. Take any p € II. To see 75FLEY(p) C 7%(p), pick some (X,Y)
€ miPLLY (p). Let 2z, € X be such that z p 7, V2 € X and yp € Y be
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such that yo p y Vy € Y . As (X,Y) € n¥FLLY (p) we have xg p yo. Thus,
for any u € U, any wx € Qx and any wy € Qy, we have ) w,(x).u(r) >

reX
u(xo) = u(yo) = D wy(y)uly) . If X NY = @, then u(xg) > u(yo),
yey
implying > wa(z).u(z) > > wy(y)u(y) . If X NY # @, then at least
zeX yey

one of X and Y is not a singleton as otherwise X and Y would coincide.

In case X is not a singleton we have Y w,(z).u(z) > u(zy) and in case
zeX

Y is not a singleton we have u(yo) > > wy(y).u(y), both of which implies
yey

w;{ we(x).u(z) > %;wy(y).u(y), showing that (X,Y) € 7%(p).

To see 7(p) C TEELLY (), pick some (X,Y) ¢ aXELLY (p) . So there
exist yo € Y and xy € X \{yo} with yo p zo.Now, let ;1 € X be such
that z1 p x Vo € X. Take any u € U, and any r € (0,1) which satisfies
ra(zy) + (1 —7) Ju(zo) —u(yo)] < 0. So rau(zy) < (1 —71) Ju(yo) — u(zo)].
Let wx(z,) =wy(y,) =1—r. So we have

> wel(r)u(z) < wx(m,).u(zg) + (1 — wx(x,)) u(xy)
< =(1—7) u(z) + ru(z)
aao) + (1) Ju(yo) — (o)
u(yo) = :

u(1yo) = Wy (Yo)- u(yo)

Yy
which implies (X,Y) ¢ 7%(p). =

4.2.2 Bayesian Expected Utility Consistency (BEUC)

This is a restriction of GEUC that Barbera, Dutta and Sen (2001) and Ching
and Zhou (2002) use in their analysis of strategy-proof social choice corre-
spondences.?* The set of admissible priors is defined as T?*VC = {w € O :
wx(zr) = Z“)Aufj)(y) for all X € A\{A} and for all x € X}. As one can

yex
also deduce from Lemma 1 of Ching and Zhou (2002), the extension axiom

7777 induced by BEUC is equivalent to the extension axiom introduced

by Gérdenfors (1976):

24Barbera, Dutta and Sen (2001) call it Conditional Expected Utility Consistency.
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The proof of the equivalence theorem we will state benefits from the

following two lemmata.

Lemma 4.2.1 For all p € Il and all (X,Y) € 7% (p) with X NY # 0 and
X\Y #0, we have (X, X NY) € a7 (p).

Proof. Take any p € II and let (X,Y") be as in the statement of the lemma.
As (X)Y) € 7%F(p), wehave r py Vo € X\YVy € Y, thusz py
VaoeX\YVye XnY. Therefore, given any u € U, and any w €

PBEUC we have >, wx\y(@)u(z) > Y wxny(z)u(z), which implies

zeX\Y zeXNY
m > walz)u(x) > m > wa(z)u(z). Multiplying both
zEX\Y zeX\Y zEXNY reXNY
> walz)
sides by IEX\Y—(I) gives
reX
1 e§\YWA(x) 1
Sorm 2 wal@u(@) > | = T > walz)u(z)
mezx al )xeX\Y mEZX ale) re%ﬁY al )xeXmY
LS wa@ule) > e e e )
= — walx)u(x) > S=Fm = walx)ulx
TEZX A( ){E X\Y TEZX A( )IE;QY ) exny

=~ zim)( > wa@u(@)+ ¥ w<x>u<x>) > w3 wal@u()
= s D eal@ule) >~ 2 waleu(a)

IGX eX rEXNY reXNY

= > wx(z ) z) > Y wxny(T)u(z)

zeX zeXNY
= (X, XNY)er™"(p). =m

Lemma 4.2.2 For all p € Il and all (X,Y) € 7% (p) with X NY # () and
Y\X # 0 we have (X NY,Y) € 7777 (p).

Proof. Take any p € Il and let (X,Y") be as in the statement of the lemma.
As (X,Y) € 7% (p), wehave z py Vo € X Vy € Y\X, thusz py V
r € XNY VYyeY\X. Therefore, given any u € U, and any w € ['PEUC
we have ) wxny(z)u(z) > > wy\x(x)u(r), which implies

zEXNY zeV\X
—L— 3 wal@)u(@) > —=t— > wa(z)u(r). Multiplying both
ze;nYwA(w) zeXNY zE;\X wa(w) €Y \X
> wa(z)
sides by W—(m) gives

z€Y
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> wal(x)
OB > wa@u(@) > s 2 walr)u(w)
z%:Y WA(x):ce;mYWA(x) zeXNY z%ijA(w) €Y\ X

B o, B, o) |
= TS oa@ Y wea@) 2 WA(m)U($>>m Y walr)u(x)

ccy zeXNY Al T€XNY z€Y zeY\X
= lwA_(x) > walz)u(r) > m ( > walm)ulz)+ > wA(x)u(x))
zeXNY zeXNY z€Y zeY\X zeXNY

= w2 wal@u(n) > e 3 wal@)u()

zEXNY rzeXNY zeY

= (XNY,Y)ea™")). =
Theorem 4.2.2 77" (p) = 7% (p) Vp € 1.

Proof. Take any p € II. We first show 7 (p) C «7°""“(p). Take any
(X,Y) € 7% (p). Consider the following 4 exhaustive cases:

CASE1: XNY #£0, X\Y #0,Y\X =0. So Y = (X NY) C X and by
Lemma 3.1, we have (X, X NY) e 77" (p), thus (X,Y) € 77" (p).
CASE 2: XNY #0, Y\X #0,X\Y =0. So X =(XNY) CY and by
Lemma 3.2, we have (X NY,Y) € 77777 (p), thus (X,Y) e 77" (p).

CASE 3: XNY # 0, Y\X # (0, X\Y # (). The conjunction of Lemma 3.1
and Lemma 3.2 implies (X, X NY) € 7777 (p) and (X NY,Y) € 77777 (p)
while by transitivity we have (X,Y) € 777" (p).

CASE4: XNY =0. As (X,Y) € 7% (p), wehavex py Vo € X,Vy € Y.

So Y wx(@)u(z) > > wy(y)u(y) holds for all u € U, and all w € I'PEVC,
rzeX yey

showing (X,Y) € 777" (p).

We now show 77" (p) C 797 (p). Take some (X,Y) € Ax A\{X} with
(X,Y) € 7% (p). So at least one of the following two conditions holds:

(1) 3z € X\Y, Jy € Y such that y p x

(17) 3z € X, Jy € Y\ X such that y p x

First let (i) hold. Let a € X\Y be such that x p a Vz € X\Y and
b €Y be such that b p y Yy € Y. As (i) holds, we have b p a. Now fix

some u € U,. Take some € € (0,1) and consider the prior w € '®#V¢ where

= #Ae— 5 Vo € A\{a,b}. Consider first

wala) =wa(b) = ;6 and w4 (x)
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the case where b € X. We have

5 wx(@)u(z) = L (%u@ FIb) (X - 2) gy X u(cc))

zeX z€X z€X\{a,b}

and ¥ wy(yuly) = v (%uwm#y—l)m > u<y>>. S0

yey yey yeY'\{b}

when € is picked arbitrarily small, > wx(z)u(z) approaches to
reX
while ) wy(y)u(y) approaches to w(b) and as u(b) > wu(a), this allows
yey
S wy(uly) > 3 wx(x)u(z), showing that (X,Y) & 7" (p). Now
yey z€eX
1

consider the case where b ¢ X. We have wx(r)u(r) = =————
2 > wa@)

zeX

u(a)+u(b)
2

1—e _ _€ ulx an w U = ;
<Tu(a) +#X - 1) 74 xeXz\%a,b} ( )) d y%; v(y)uly) %;wA(y)

L= Eu(b) + (#Y — 1) #Ae_ 5 EYZ\{b} u(y) | . So when € is picked arbitrar-
Yy

ily small, Y  wx(z)u(x) approaches to u(a) while >  wy (y)u(y) approaches
zeX yey

to u(b) and as u(b) > u(a), this allows gwy(y)u(y) > ;(wx(x)u(x), show-

ing (X,Y) & 77" (p). Now let (ii) hold. Let a € X be such that = p a
Ve € X and b € Y\X be such that b p y Vy € Y\X. As (i7) holds, we

have b p a. Fixing some u € U,, taking some € € (0,1) and considering a

['BEUC as above, one can obtain > wy (y)u(y) > Y. wx(z)u(x),

yey zeX

prior w €

showing (X,Y) & 77" (p). m

4.2.3 Equal-Probability Expected Utility Consistency (EEUC)

This is a restriction of BEUC (hence of GEUC) that Feldman (1980) and
Barbera, Dutta and Sen (2001) use in their analysis of strategy-proof social

choice correspondences.? Letting w™ be defined for each X € A as w%(x) =

25Barbera, Dutta and Sen (2001) call it Conditional Expected Utility Consistency With
Equal Probabilities.
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2y forall z € X, we have "¢ = {w=}. We characterize I'""V¢ in
terms of an axiom that we call componentwise dominance. We define two
equivalent versions of it.

The Componentwise Dominance Principle 1: For any real number
r, we write [r] for the lowest integer no less than r. Let N stand for the
set of natural numbers. Picking any two m,n € N, we introduce a mapping
fmn : N — N defined for each it € N as f,,,(i) = [H"TH1 Note that
fmn is an increasing function on N. Now take any p € Il and any distinct
X,Y € A. Let, without loss of generality, X = {z1, .., vxx} with x;px;11Vi €
{1, ,#X — 1Y and Y = {1, .., yuy } with y;py;11Vj € {1,..,#Y — 1}. The
componentwise dominance principle 1 is defined through the strict partial
order “PH(p) = {(X,Y) € Ax A\{X} 1 @ip Yppnyy Vie{l, ., #X}}2O

The Componentwise Dominance Principle 2: Take any p € II
and any X = {x1,..,xpxx} € A with x;p 2,41 Vi € {1,..,#X — 1}. Given
any t € N, we define a t.#X dimensional vector X' such that given any
i €{1,.,t.#X}, we have )?f = xm.ﬂ In other words, we can write X! =
(1, ey @1y ooy T x, ., Tex ) Where each © € X appears ¢ times while given any
z;,x; € X with ¢ < j, z; appears at the left of x;. Take also Y = {y1, .., yuy}
e A\{X} with y;p yir1 Vi € {1,..,#Y — 1} and define Y similarly. The
componentwise dominance principle 2 is defined through the strict partial
order 7°02(p) = {(X,Y) € AxA\{X}: X pV# Vi e {1, #X #Y}}.2

Lemma 4.2.3 For all p € 11, we have 7P1(p) = 7P%(p).

Proof. Take any p € I1.To see 7¢P1(p) C wP%(p), pick some (X,Y) €
7¢Pl(p). Now take any k € {1,..,#X.#Y}. We have )?,féy = Tpk

ZY
GHX CcD1
Now check that fuxuv([4y]) < [g5| forall t € {1,.,#X#Y}. As

26The fact that e€“P1(p) is a strict partial order may not be visible at the first glance
and we discuss the matter at the end of the section.

27 As usual, X7 is the i’ entry of X*.

28The fact that e“P2?(p) is a strict partial order may not be visible at the first glance
and we discuss the matter at the end of the section.
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a result, Ypxar (50 P Y1 which implies Trle1 P Yk showing that
(X,Y) € 79P%(p).

To see 79P2(p) C 7PY(p), pick some (X,Y) € 79P%(p). So X#¥ p V¥ vi
€ {1,..,#X.#Y}. Suppose, for a contradiction, that (X,Y) ¢ 7°P1(p).
So there exists i € {1,..,#X} such that x; p Yfux wy() fails. Thus, if z;
p y; for some y; € Y then j > fux »y(i) + 1. This, combined with the
fact that )Z',L-#Yp z#x for each i € {1,..,#X.#Y}, implies (i — 1).#Y >
fax 4y (1).#X, which in turn implies fux »y (i) < (i — 1).%, contradicting
the definition of f4x 4y, hence showing 7P?(p) C 79Pl(p). m

So, for each p € II, we write 7P (p) = 7¢PL(p) = 7P?(p).

Theorem 4.2.3 7°P(p) = 77" (p) Vp e IL.

Proof. Take any p € II. To see 7¢P(p) C «™"""“(p), pick some (X,Y) €
mP(p). So X*Vp Y*¥ Vi € {1,.,#X.#Y}. Thus, for any u € U,

EX Y oy Xy ¥
we have 3. w(XF) > 3 w(Y*Y) , the inequality being strict due

i=1 =1
to the fact that X and Y are distinct. This inequality can be rewrit-
11X gy

> u(xi) > u(y;)

ten as IjXleiju(acl) > tiXY:lthu(yl), which implies =%— > = , thus
showing (X,Y) € HFEE{]C(p).

To see ' (p) C P (p), pick some (X,Y) ¢ TP (p). So there exists
j€{l,...,4X} such that z; p yys,, ., () fails, hence u(x;) < u(yr.x 4v() )
for any u € U,. Now, let X UY = Z = {2,.., 242} with zip 241 Vi €
{1,..,#Z—1} and take some € > 0 and some M > 0. Let z; € Z coincide with
x;. Consider the following u € U, defined as u(z4z) = 0, u(z;) — u(zit1) = €
for alli € {k,....,#Z — 1}, u(zk—1) — u(zx) = M, and u(z;) — u(z;41) = € for
alli € {1,...,k — 2}. Picking M arbitrarily large and e arbitrarily close to 0,

gy X

_Z u(y;) ﬁz: u(z;)

we have =— > =4+—, showing that (X,Y) ¢ " (p). m

We close by noting the straightforwardness of checking that WPEEUc(p) is

a strict partial order, thus answering the issue raised by Footnotes 26 and
28.
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4.3 Completing partial orders versus direct generation

of complete orderings

Whether an ordering over sets is obtained by completing a partial order
generated through expected utilities (i.e., expected utility consistency) or is
directly generated with reference to expected utilities (i.e., strong expected
utility consistency) matters. In other words, given a set I' of admissible
priors, the extension axiom 7! induced by I and a preference p € II, the sets
D"(p) and D™ (p) need not coincide. In fact, as we note in the beginning of
Part I, D" (p) being a subset of D™ (p) follows from the definitions. A formal

statement of this logical relationship is given by the following theorem.

Theorem 4.3.1 Given any set T of admissible priors over A, we have DY (p) C
D™ (p) Vp e1I.

Proof. Take any set I' of admissible priors over A, any p € II and any

R* € R\D™ (p). So there exist distinct X,Y € A with Y R* X while

Yo wx(x)u(zr) > > wy(y)u(y) Vu e U, Vwel. Thus, there exists no
yey

zeX

(p,u,w) € Il x U, x I that directly generates R*, showing R* ¢ D"(p). =
Whether the set inclusion announced by Theorem 4.3.1 is proper or not
depends on the choice of admissible priors I'. To explore this, we define
the strong leximax extension A*(p) € R and the strong leximin extension
A~ (p) € R of p € I1.>Y Under the strong leximax extension, sets are ordered
according to their best elements. If these are the same, then the ordering is
made according to the second best elements, etc. The elements according to
which the sets are compared will disagree at some step — except possibly when
one set is a subset of the other, in which case the smaller set is preferred.?’
To speak formally, given any p € I1, the strong leximaz extension AT (p) € R
is defined as follows: Take any distinct X,Y € A. First consider the case

29Kaymak and Sanver (2003) show that at each p € II, the leximax and leximin exten-
sions determine unique orderings A1 (p) and A~ (p) over A which are complete, transitive
and antisymmetric.

30This is exactly how words are ordered in a dictionary. For example, given three
alternatives a, b and ¢, the leximax extension of the ordering a p b p c is {a} AT (p) {a, b}

A*(p) {a,b,c} AT (p) {a,c} AT (p) {b} AT (p) {b,c} AT (p) {c}.
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where #X = #Y = k for some k € {1,...,#A — 1}. Let, without loss of
generality, X = {z1,...,2;} and Y = {yi, ..., yx} such that z; p x;41 and y,
p yj4 for all j € {1,...,k —1}. We have X A"(p) Y if and only if z} p
yp, for the smallest h € {1, ..., k} such that x, # y,. Now consider the case
where # X # #Y. Let, without loss of generality, X = {z,...,zxx}and Y =
{Y1, ..., ypy }such that x; p x;14 forall j € {1, ..., #X —1}and y; p y;41 for all
Jj€{1,...,#Y —1}. We have either z;, = y;, for all h € {1,..., min{#X, #Y }}
or there exists some h € {1,..., min{#X,#Y}} for which x, # y,. For the
first case, X AT(p) Y if and only if #X < #Y. For the second case, X
A*(p) Y if and only if xj p yp, for the smallest h € {1,..., min{#X, #Y }}
such that x; # y.

The concept of a leximin extension is similarly defined while it is based
on ordering two sets according to a lexicographic comparison of their worst
elements. Again the elements according to which the sets are compared
will disagree at some step — except possibly when one set is a subset of the
other, in which case the larger set is preferred.?! So given given any p € II,
the strong leximin extension A~ (p) € R is defined as follows: Take any
distinct X,Y € A. First consider the case where #X = #Y = k for some
ke {1,..,#A — 1}. Let, without loss of generality, X = {z1,...,xx} and
Y = {y1,...,yr} such that z; p ;41 and y; p y;41 for all j € {1,...,k —1}.
We have X A~ (p) Y if and only if x, p y, for the greatest h € {1,...,k}
such that x; # y,. Now consider the case where #X # #Y. Let, without
loss of generality, X = {z1,...,24x} and Y = {y1, ..., ygy }such that z; p
x4 forall j € {1,...,#X — 1}and y; p yj41 for all j € {1, ..., #Y —1}. We
have either x, = yp, for all h € {1,...,min{#X,#Y }} or there exists some
h e {1,..,min{#X,#Y}} for which z;, # y;,. For the first case, X A~ (p) Y
if and only if #X > #Y. For the second case, X A~ (p) Y if and only if =,
p yp for the smallest h € {1,..., min{#X, #Y }} such that z; # y.

The first application of Theorem 4.3.1 is for GEUC, when (2 is taken as
the set of admissible priors. In this case, Theorem 4.3.1 holds as an equality.

Before establishing this, we state a lemma.

31For example, the leximin extension of the ordering a p b p cis {a} A= (p) {a,b} A= (p)

{0} A (p) {a,c} A™(p) {a,b,¢} A= (p) {b,¢} A~ (p) {c}.
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Lemma 4.3.1 Take any one-to-one and real-valued function u defined over
A and any X € A with #X > 1. Given any real number r € (gg(l u(z),
I;lg%(u(.f)), there exists wx € Qlx such that z%( wy(x).u(x) =r.

Proof. Let u, X and r be as in the statement of the lemma. Let xzt, 2~
€ X be such that z7p x Vo € X and = p 2~ Vo € X. We define X+ =
{r € X :u(z) >r}and X~ = {xr € X : u(x) < r}. Both X* and X~
are non-empty, as x+ € X and x~ € X~. Take any wyx+ € Qx+ and any

wx- € Qx-. Let gt = Y wx+(z)u(r) and ¢~ = > wx-(x).u(z). Note
zeXt r€EX~

that g- <r < q". Let A = qf__qt € (0,1). Now define the following function

wx over X: For each z € X, we have wy(z) = (1 — Awx+(z) if x € X* and

wx(z) = Awx-(z) if x € X~. Tt is clear that wx(x) € (0,1) for all z € X.
Moreover, > wx(z) = (1—A) >, wx+(z)+A Y wx-(x)=(1-A)+A=

zeX zeX+ zeX—
1.Thus wx € Qx. Finally, > wx(z)u(x) = (1 —A) > wx+(z).ulx) +
zeX reXt
A > wx-(x)u(r) = (1 —A).¢" + Ag~ which, by the choice of A, equals to
zeX™
r. m

Theorem 4.3.2 D”(p) = D™ (p) V¥ p € IL.

Proof. Take any p € II. The inclusion D”(p) € D™ (p) follows from Theo-
rem 4.3.1. We now show D™ (p) C D"(p) or by Theorem 4.2.1 equivalenty
D™ (p) € D*(p). Let A = {ay, ..., a,} for some integer m > 2 and as-
sume, without loss of generality, that a; p a;41 for each i € {1,...,m}. Take
any R € D" (p). Let ¢, = {X € A: X RY VY € A} and define
recursively C; ={X €¢ A: X RY VY € A\ ZE:JiC]} So we express R in
terms of a family {C}, ..., Ci} of equivalence Claéses where k is some integer
that cannot exceed 2™ — 1. Note that for all X Y € A, we have X R Y
if and only if given any X € C; and Y € C} for some 4,5 € {1,...,k} with
i <j. As Re D™ (p), ¢y = {{a1}} and C; = {{an}}. Consider the
function f : {1,....,m} — {1,...,k} where for each i € {1,...,m} we have
{a;} € Cypy- So f(1) = 1 and f(m) = k. Moreover, as R € D™ """ (p),
for any 7,5 € {1,...,m} with i < j, we have f(i) < f(j). Now we define

a real valued utility function u over A as u(a;) = k — f(i) + 1 for each
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i € {1,...,m}. We complete the proof by showing the existence of some
{wx}xea € Q such that for each j € {1,...,k} and for each X € C; we have

> wx(z).u(x) =k — j+ 1, as this ensures that the triple (p, u, {wx}xea)
reX
directly generates R. So take any j € {1,...k} and any X € C;. Con-

sider first the case where {a;} € C; for some a;, € A. If X = {a;}, then
Y wx(x)u(x) = u(a;)) =k —j+ 1. If X and {a;} are distinct, then, as

zeX

R e D™ (p), there exist z,y € X \ {a;} such that = p a; and a; p
y. So min,ex u(z) < u(a;) < max,ex u(z) and by Lemma 4.3.1, there exists

wx € Qx such that > wx(z).u(z) = u(a;) = k—j+1. Now consider the case
zeX
where {z} € C; for no x € A. Let i € {1,...,m} be such that {aq} P X for

allie{1,...,i} and X P {ag} foralld € {i+1,...,m}. As Re D™ """ (p)
there exists x € X \ {a;} such that a; p x and there exists y € X \ {a;41}
such that y p a;41. Thus, min,ex u(z) < u(a;y1) = k— f(i+1) + 1 and
max,ex u(z) > u(a;) = k — f(i) + 1. Moreover, f(i) < j < f(i+ 1) implying

b

min,ey u(z) < k— j + 1 < max,cx u(z) which, by Lemma 4.3.1, implies the

existence of wx € Q2x such that ) wx(z)u(z)=k—j+1. m
zeX

Remark 4.3.1 For each p € II, we have A*(p), A~ (p) € D™ """ (p), hence
by Theorem 4.2.1, A*(p), A= (p) € D*(p).

The next application of Theorem 4.3.1 is for BEUC and EEUC, which
is a case in point to show that the converse of the inclusion expressed by
Theorem 4.3.1 need not hold.

rBEUC

Theorem 4.3.3 D" (p) ¢ D~ (p) and D™"""“(p) ¢ D
p € IL

rBEUC

Proof. Take any p € II. By Theorem 4.3.1, we have D" (p) C D™ (p)
and DV (p) C p (p). To see that both inclusions are strict, we
check that A*(p) € D™ (p)N D™ (p) while A*(p) ¢ D' (p) U
D (p). As D™ (p) € DT (p) and DM (p) € DFF(p),
it suffices to check that A*(p) € ™ (p) and At (p) ¢ D" (p).
We recall that by Theorem 3.3 pe (p) = D™"(p) and leave checking
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At(p) € D™ (p) as an exercice to the reader. To see A*(p) ¢ D" (p),
suppose there exists a triple (p, u, w) € II x U, x € that directly generates
AT (p). Take any distinct a,b,c € A with a p b p c¢. Note that by definition
of the strong leximax extension, we have {a,b,c} A*(p) {a,c} AT(p) {b}.

Therefore, m > walz)u(z) > ~o® 1wA(x) Yo wal(x)u(x)
z€{a,b,c} xe{a7b7c} z€{a,c} xE{CL,C}
= — 1 5 (wA(b)u(b) + > wA(x)u(x)> > m S wa(@)u(x)
z€{abc} re{a,c} z€{a,c} z€{a,c}

w4 (b)u(b) 1 N 1
= >, wal(x) > ( > wal(x) > wA(x)> Z UJA(iU)’LL(.Z')
z€{a,b,c} z€{a,c} ze{a,b,c} wE{CL,C}
wA(b)u(®) wAb)
S ea@ T T o s w2 wal@)ul@)
ze{a,b,c} ze{a,c} z€{a,b,c} me{a‘7c}
= u(b) > m > wa(x)u(z), contradicting that Y A*(p) Z, thus

z€{a,c} (EE{a,C}

that (p, u, w) directly generates A™(p). m

=

As one can see from the proof of Theorem 4.3.3, lexicographic exten-
sions may or may not be expected utility consistent, depending on whether

a partial order is completed or complete orderings are directly generated.

4.4 A Remark on Strategy-Proof Social Choice Corre-

spondences

The “strategy-proofness” of a social choice correspondence depends on how
preferences over alternatives is extended over sets. If this extension is made
through expected utility consistency, then the subtleties discussed in the
previous section affect the definition of strategy-proofness.

To argue this formally, let p = (py,...,p,) € IV stand for a preference
profile over A where p, is the preference of © € N. A social choice correspon-
dence (SCC) is a mapping f : IIV — A. Consider a set of admissible priors

I" inducing the extension axiom 7'. We say that a SCC f: IV — A is

e strategy-proof under I iff given any i € N and any p, p' € 1Y with p; =
p; ¥ j € N\{i}, we have f(p) R f(p') for all R € D"(p,).

e strongly strategy-proof under I' iff given any 7 € N and any p, p’ € v
with p, = p; V j € N\{i}, we have f(p) R f(p') for all R € D™ (p,).
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At a first glance, the second definition deserves to be qualified as “strong”,
because, by Theorem 4.3.1, we have D' (p) € D™ (p) for all p € II. Never-

theless, the two definitions coincide, as the following theorem announces:

Theorem 4.4.1 Taoke any non-empty I' C Q inducing the extension axiom
7l A SCC f : 1IN — A strategy-proof under T' if and only if f is strongly
strategy-proof under T".

154

Proof. Take any non-empty I' C ). The “if” part follows from Theorem
4.3.1. To show the “only if” part, consider a SCC f : II"Y — A which fails
to be strongly strategy-proof. So there exist i € N and p,p’ € TV with pj =
p; ¥ j € N\{i} such that f(p’) P f(p) for some R € D™ (p;). Thus (f(p),
f(p)) ¢ 7" (p;), implying the existence of some @ € U, and some @ € I such

that > Wppn(x)a(x) > > Wppy(x).u(x). Therefore, letting R € R be
zef(p)) w€f(p)
directly generated by (p;, U, @), there exist i € N and p,p" € IV with p; =

Py ¥V j € N\{i} such that f(p') P f(p) for R € D" (p,), showing that f fails
to be strategy-proof. m

Thus, in analyzing the strategy-proofness of SCCs, it does not matter
whether orderings over sets are obtained by completing a partial order gen-
erated through expected utilities or are directly generated with reference to
expected utilities. The literature on strategy-proof SCCs exhibits both defin-
itions of strategy-proofness. For example, Ching and Zhou (2002) use strong
strategy-proofness while Barbera, Dutta and Sen (2001) adopt the “weaker”
version. We know by Theorem 4.4.1 that this choice, everything else being
equal, does not affect the analysis.>?

On the other hand, it would be no surprise that the choice of the set of ad-
missible priors I' matters. In fact, it immediately follows from the definitions
that expanding I' can only strenghten strategy-proofness. As a case in point,

we have Barbera, Dutta and Sen (2001) who consider strategy-proofness un-
der TPEUC and TBFUC | They show that under I'PFUC strategy-proof SCCs

321t is worth noting that the analysis of Barbera, Dutta and Sen (2001) is for social
choice rules that map preference profiles over sets into sets. These being more general
than standard social choice correspondences, their impossibility under I'BZVC implies the
impossibility that Ching and Zhou (2002) establish under TBFUC,
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133 FBEUC’

are either dictatorial or bidictatorial>”while admits only dictatorial
rules. Hence the fact that TEPUC < T'BEUC matters and strategy-proofness
under I'PFUC s effectively stronger than it is under T'*#YC. On the other
hand, Ozyurt and Sanver (2006) pick T'“*U¢ as the set of admissible pri-
ors and show the equivalence between strategy-proofness and dictatoriality.
Thus expanding T'FPUC to TEUC leaves the definition of strategy-proofness

intact.

33A SCC f: IV — A is dictatorial iff 3i € N such that f(p) = {argmaxp,} Vp € II"V.
ASCC f:IIN — Ais bidictatorial iff 3, j € N such that f(p) = {arg max p;, arg max 2%
Vp e IV,
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5 Conclusion

As Barbera et al. (2004) eloquently survey, the literature on extending an
order a set to its power set admits a plethora of extension axioms. Neverthe-
less, the appropriateness of an extension axiom depends on how elements of
the power set are interpreted. We propose a model which incorporates the
“non-resolute outcome” interpretation. In the first part, we show that among
the plethora of extension axioms of literature, two of them —namely the Géir-
denfors (1976) and Kelly (1977) principles— arise as the appropriate ones.
This observation does not necessarily exclude the use of extension axioms
based on “expected utility consistency”, as these are essentially equivalent
to either the Girdenfors (1976) or the Kelly (1977) principle, depending on
the precise meaning attributed to “expected utility consistency”.?* On the
other hand, Theorem 3.3.5 sets an obstacle in using the separability principle
when sets are conceived as non-resolute outcomes.*

In the second part, we explore the problem of extending a complete order
over a set to its power set by the assignment of utilities over alternatives and
probability distributions over sets - hence the idea of expected utility con-
sistent extensions. We express three well-known expected utility consistent
extensions of the literature as a function of admissible priors and we charac-
terize them in terms of extension axioms which do not refer to the concept

of expected utility. Moreover, we display that

e assigning utilities and probabilities which end-up ordering sets accord-

ing to their expected utilities
and

e completing the partial order determined by the pairs of sets whose

ordering is independent of the utility and probability assignment

340ne can see Can et al. (2007) for a detailed exploration of this matter.

35To be sure, this does not criticize Roth and Sotomayor (1990) who use separability in
their manipulation analysis of many-to-one matching rules, as their environments conceives
sets as lists of mutually compatible outcomes.
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are different approaches. This difference has an immediate reflection to the
analysis of strategy-proof social choice correspondences which we also discuss
and clarify. In brief, we present a framework which allows a general and
unified exposition of expected utility consistent extensions while it allows to
emphasize various subtleties, the effects of which seem to be underestimated -

particularly in the literature on strategy-proof social choice correspondences.
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