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ABSTRACT 
 

In Section 1, it is given an introduction. In section 2, it is provided Parametric VaR 

Methodology based on explicit assumptions for factor returns that pricing functions are 

linear in the risk factor returns. Section 3 and section 4 describe two different 

methodologies to asses these risk. The first methodology is based on Monte Carlo 

simulation and does not make any analytical assumption regarding the pricing function of 

the underlying positions. The second methodlogy is HS which based on historical 

fequencies of returns.  Section 5 and section 6 explains two different methods to examine 

risk based on these historical frequencies of retuns. In section 5, WHS which assignes 

higher weight to new observations and a lower weight to older observations. In section 6, 

FHS is introduced. It is shown how it eliminates the problem with irrelevant current regime 

by scaling historical observations by an estimate of their volatility. Finally, it is concluded 

in section 8.  

 

ÖZET 

 

Birinci bölüm giriş kısmıdır. İkinci bölümde parametrik riske maruz değer yöntemi, fiyat 

fonksiyonlarıyla risk faktöru getirileri arasında linear bir ilişki vardır varsayımi altında

incelenmektedir. Üçüncü ve dördüncü bölümlerde bu riski incelemek için  iki farklı

yöntem daha sunulmaktadır. Birincisi Monte Carlo simulasyon yöntemidir. Bu yöntem  

fiyat fonksiyonları ve risk faktör getirisi arasındaki ilişkiyle ilgili her hangi bir analitik 

varsayımda bulunmaz. İkincisi tarihsel simulasyon yöntemidir. Bu yöntem geçmiş risk 

faktörü verilerinin getirilerini kullanarak risk incelemesi yapar. Beşinci bölümde, 

ağırlıklandırılmış tarihsel simulasyon yöntemi incelenmektedir. Bu yöntem, riski geçmiş

verilere bugünden geçmişe azalarak ağırlıklandırma vererek incelemektedir. Altıncı

bölümde, süzülmüş tarihsel simulayon yöntemi incelemektedir. Bu yöntem geçmiş risk 

faktör getirilerini ölçeklendirerek şimdiki rejimle iligili oluşabilecek problemi yok etmeye 

çalışır. Yedinci bölümde sonuç kısmını veriyorum. 
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1 INTRODUCTION 

 

Value-at-Risk1(VaR) was generally used for measuring market risk2 in trading portfolios as 

a risk measurement at the begining of 1990s (http//www.riskglossary.com/link/value at 

risk, para. 7 and Jorion, 2001, p.22). Its roots can be traced back as far as 1922 to capital 

requirements the New York Exchange. Also, VaR has origins in portfolio theory3 and 

crude VaR measure published in 1945 (Holton, 2002, p.1). Till Guildmann can be seen as 

the inventor of the name value at risk while head of global reserch at J.P. Morgan in the 

late 1980s (Jorion, 2001, p.22). 

 

VaR was firstly used by major financial firms in the late 1980’s to measure the risks of 

their trading portfolios. Currently VaR is used by large financial firms. Also, it is 

increasingly being used by smaller financial institutions, non-financial corporations, and 

institutional investors (Linsmeier and Pearson, 1996, p.2).  

 

During 1990s number of organizations4 -including Orange Country, Barings Bank, 

Metallgesellschaft, Daiwa Bank and Sumitomo Corporation- suffered staggering losses due 

to speculative trading, failed hedging programs or derivatives. In Particular, in adequacy of 

traditional measures of exposures and the move toward mark-to-market both cash 

instruments and derivatives represented a new challenge for risk measure. And VaR has 

been revealed as a risk measure from the recognition that a tool which is needed accounts 

for various sources of risk and expresses loss in terms of probability.  Until then, risk was 

measured and managed at the level of a desk or business unit (Holton, 2003, p.21). 

 

The concept of the VaR approach depends on Harry Markowitz portfolio selection paper. 

Markowitz (1952) firstly used the volatility of return  as a risk metric by emphasising on 

the tradeoff between expected return and volatility in a period as a  risk measure5

(http//www.riskglossary.com/link/value at risk, para 8). Roy (1952) firstly mentioned a 

confidence-based risk measure. He defended selecting portfolios that minimize the 
 
1 See Holton (2003) for the history of VaR and  seeLinsmeier and Pearson (1996) and Jorion (2001) for a 
general introduction to VaR. Also, see Duffie and Pan (1997) for the overview of various approaches to 
calculate VaR. 
2 For more inforemation on the market risk disclosure rules, see www.bis.org. The actual text is at 
http://www.bis.org/publ/bcbs119.pdf.
3 See Jorion (2001), pp: 147-153. 
4 See Jorion (2001), pp: 34-43. 
5 See Artzner, Delbaen and Health (1999) for the properties of a risk measure. 
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possibility of a loss greater than a catastrophic level. In addition, Baumol (1963) advocated 

a risk mesurement depends on a lower confidence limit at some confidence level (Jorion, 

2001, p.115).  

 

In the following years, many risk metrics has been used to manage risk exposures of the 

uncetainity. Because VaR metric gives institutions the ability to find out any mis-hedges 

portfolios before a loss incurred by describing probabilistically the risk of these portfolios, 

it is accepted as a risk metric in finance. It describes some of the basic issues involved in 

measuring the market risk of a financial firms’ book, the list of positions in various 

instruments that expose the firm to financial risk ( http://www.riskglossary.com/link/value

at risk, para.2). 

 

VaR measures the worst expected loss under normal market conditions over a specific  

time interval at a given confidence level. As one of my reference states: “  VaR answers 

the question: How much can be lost with x % probability over a pre-set horizon” (J.P 

Morgan, RiskMetrics-Technical Document). Another way of expressing this is that VaR is 

the lowest quantile of the potential losses that can occur within a given portfolio during a 

specified time period (Longerstaey, 1996, p.6).  

 

The calculation of VaR is straightforward, but its implementation is not. (Marshall and 

Siegel, 1996, p.3, Benninga and Wiener, 1998, p.2). The concept of VaR is not new. So 

that, the methodology behind VaR is not new.  It results from merging of financial theory,

which focuses on the pricing and sensitivity of financial instruments, and statistics, which 

studies the behaviour of the risk factors (Jorion, 2001, p.257). The VaR revolution6 started 

in 1993. It has originated the Group of 30 (1993), JP Morgan RiskMetrics system (1994) 

and the Basel Committee on Banking Supervision (1995). 

 

VaR has many applications such as in risk management to evaluate the performance of risk 

takers because regulators require financial institutions backtest their internal VaR 

methodologies7. In particular, the Basel Committee on Banking Supervision (1996) at the 

bank for international Settlements dictates to financial institutions such as banks and 

 
6 See Jorion (2001), pp: 43-49. 
7 See Lopez’ s paper (1996) paper answers the question of how regulators should evaluate the accuracy of 
VaR models. 
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investment firms to meet capital requirements based on VaR estimates. So that, it is very 

important to develope methodologies that provide accurate estimates.  

 
Figure 1: VaR revolution 
 

In this context, there are three traditional VaR methodologies. Firstly, Parametric 

Methodology is based on the parametric distribution assumption for risk factor returns to 

calculate VaR. Secondly, Historical Simulation is based on empirical distribution 

assumption of  actual historical data to calculate VaR. Thirdly, Monte Carlo Simulation  is 

based on pesudo random generated factor returns’ distribution to calculate VaR. Thus, VaR 

calculation requires the calculation a quantile of the distribution of returns. 
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The main objective of this paper is to survey of VaR methodologies8 by comparing on 

weakness and strength of each one. It is wanted to focus on the logical flaws of the 

methodologies and not on their empirical application. In order to facilititate comparison, it 

is restricted the attention to four methodologies. The paper is organized as follows: In 

section 2-6,  it will be given a survey of Parametric VaR, Historical simulation VaR, 

Weighted Historical simualtion VaR, Monte Carlo simulation VaR and Filtered Historical 

simulation methodologies in theoretical foundations. In Section 7, it will be concluded. 

 

8 It is refered the interested reader to the excellent web sites www.gloriamundi.org, www.riskglossary and  
www.ssrn.org , www.riskcenter.com for a comprehensive listing of VaR contributioms. 
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2 PARAMETRIC VaR METHODOLOGY 

 

This chapter introduces Parametric VaR Methodology. Section 2.1 works in  a simple case 

with just one source of risk. Section 2.2 shows how to apply this methodology to construct 

VaR calculation. Then multiple sources of risk are  considered in Section 2.3. Finally, 

advantages and disadvantages of the methodology are introduced in Secion 2.4. 

 

2.1 ParametricVaR with one source of risk 

This section introduces Parametric VaR Methodology with one source of risk. The idea 

behind VaR calculation with this methodology is “to approximate the pricing functions of 

each standardized position in order to obtain a formula for VaR and other risk statistics”

(Mina and Xiao ,2001, p.21). This methodology works under the assumption that the P&L 

of a portfolio are linear in the underlying risk factors. It can be expressed as a linear 

combination of risk factor returns9 by using a first order Taylor series expansion. The 

construction of this methodology relies on two assumptions: Linearity and normality 

assumptions. 

 

• Linearity assumption: 

Let us assume that there is a single position dependent on n risk factors denoted by ( )rf iP ,

ni ,...,1= .

1. The present value PV of the position is approximated by using  a first order Taylor 

series expansion in order to construct Parametric VaR Methodology to be able 

calculate VaR. 

 ( ) ( ) ( ) ( ) ( )
1

n PVPV P rf P rf PV P Prf rfi iP rfi i

∂  +∆ ∆ ≈ + ∆ ∆∑    ∂=
2.1 

 

9 Note that Taylor series expansion uses actually percentage returns 
( )

( )
P rf ir

P rf i

∆
= , but this model relies on 

the logarithmic returns normality assumption. So that, an additional assumption is made to be consistent with 

this distributional assumption that is 1 1

0 0

log 1P P
P P

 
≈ − 

 
. For further description , please see (Mina and 

Xiao, 2001, p. 22). 
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( )( ) ( ) ( ) ( )
1

n PVPV P rf P PV Prf rfi iP rfi i

∂+∆ − ≈ ∆∑
∂=

2.2 

 ( ) ( )&
1

n PVP L P rf iP rfi i

∂
≈ ∆∑

∂=
2.3 

 ( )
( )

( ) ( )&
1

n P rfPV iP L P rf iP Prf rfi i i

∆∂
≈ ∑

∂=
2.4 

 

In other words, the equation 2.3 says that  when the underlying risk factor changes, then 

the profit and loss of the position approximately changes by the sensitivity of the position 

to changes in that linear risk factors (Mina and Xiao, 2001, p.21). 

 

2. Now, the change in present value can be approximated as  

 ( ) ( )&
1

n
P L i r i

i
δ≈ ∑

=
2.5 

1 21 2& ..... nnP L r r rδ δ δ≈ + + + 2.6 

'&P L rδ= 2.7                       

where ( ) ( )
( ) ( )P rfi

i P rfi
P rfi

δ
∆

= and it is called the delta equivalents for the position. They 

can be interpreted as “the set sensitivities of the present value of the position with respect 

to changes in each of the risk factors” (Mina and Xiao, 2001, p.21).  

 

• Normality assumption: 

An other assumption to construct VaR calculation with this methodology is normality 

assumption of risk factor returns. Since each risk factor return is normally distributed, the 

P&L distribution under the parametric assumptions is also normally distributed with mean 

zero and variance ( )'& ~ 0,P L N δ δ∑ . Then, VaR is calculated as a percentile of this 

P&L distribution. That percentile of the normal distribution is  multiple of the standard 

deviation of a portfolio (Mina and Xiao, 2001, p.23).  In other words, 

 

P,t+1 t tt+1
'=VaR α δ δ∑ 2.8 
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Thus, it is obtained a formula for VaR and other risk statistics by  approximating the 

pricing functions of each standardized position. The VaR calculation requires only a 

volatility estimation10 of the portfolio’s change. Return RiskMetrics: The Evaluation of a 

Standard11 (2001) chaper 2,  Jorion’s Financial Risk Manager handbook12 (2003) chapter 

17, Jorion’s Value at Risk13 (2001), Dowd’s Beyond Value at Risk14 (1998) and Hull15 

(1997) chapter 16 are useful resources to understand the theory of parametric VaR 

Methodology. Three different models are generally used to estimate volatility16: Historical 

Average (HA), Exponentially Weighted Moving Average (EWMA) and Generalized 

Autoregressive Conditional Heteroscedastic (GARCH) model. Let us briefly examine these 

models. 

 

i. Historical average 

If it is assumed that conditional expectation of the volatility is constant and the daily return 

has zero mean, the proper estimate of the volatility; 

 

n
2
i

i=1

1s= rn-1∑ 2.9 

 

where σ is the estimated volatility, n is is the sample size and r is the daily return. 

The weakness of this model is of course constant volatility assumption. This estimate of 

the volatility could not mimic the big changes in the volatility and remains nearly constant 

where the sample size increases. 

 

ii. Exponentially Weighted Moving Average 

EWMA past observations with exponentially decreasing weights to estimate volatility. 

Therefore, this is a modified version of historical averaging. Instead of equally weighting, 

in EWMA weights differ. The estimated volatility can be shown as; 

 
10 Christofersen, P., 2003, Elements of Financial Risk Management, Academic Press. 
11 Mina, J., and Xiao, Y. X., 2001, Return to RiskMetrics: The Evaluation of a Standad, RiskMetrics Group. 
12 Jorion, P., 2001, Value at Risk: The New Benchmark for Managing Fianacial Risk, McGraw-Hill, Second 
Edition. 
13 Jorion, P., 2003, Financial Risk Manager Handbook, Wiley Finance, Second Edition 
14 Dowd, K., 1998, Beyond Value at Risk: The New Science of Risk Management, John Wiley & Sons, 
England. 
15 Hull, John C., 1997, Options Futures, and Other Derivatives, Prentice-Hall, Third Edition 
16 Christofferson and Diebold (2000) investigate the usefulness of dynamic variance models for risk 
management at various forecast horizon. 
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( )2 22
11 tt trλ λσ σ −= − + 2.10 

 2
t tσ σ= 2.11 

By repeated substitutions it can rewritten the forecast as; 

 ( )2 1 2

1
1

n
i

tt
i

rλσ λ −

=
= − ∑ 2.12 

Equation 2.11 show the volatility is equal to a weighting average. The weights decrease 

geometrically. The value of  decay factor  estimated simply by minimizing the one week 

forecast errors.  

 

iii. Generalized Autoregressive Conditional Hetereoscedastic 

The family of ARCH17 models was introduced by Engle (1982) and Bollerslev (1986). The 

Generalized ARCH model of Bollerslev (1986) defined GARCH by; 

 

t t tr µ σ ε= + 2.13 

 ( )22 2

1 1

q p

t it i t jj
i j

rλ µσ α σβ− −
= =

= + +−∑ ∑  2.14

σσ 2

tt
= 2.15 

 

GARCH imposes that the proper volatility estimate is based on nots only the recent 

volatilities but also previous forecasts which include the previous volatilities. Then the 

GARCH model is a long memory model. The parameters of the GARCH can be estimated 

by a Maximum Likelihood procedure. 

 

17 See Bollerslev, Engle and Nelson (1995) for a survey. 
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2.2 Applying Parametric VaR methodology 
 
It has already been mentioned the content of the Parametric VaR Methodology. Now is the 

time to make up for the steps of calculation VaR. Linsmeier and Pearson18 (1996) explain 

computation of VaR for one source of risk using Parametric VaR Methodology in four 

steps: 

 

1. Risk Mapping: The first step is to map the position by determining the underlying 

risk factors and the standardized positions which are directly related to the risk 

factors. 

2. Statistical Analysis for Risk Factors: The second step is to estimate the parameter 

of risk factor returns depending on the underlying linearity and normality 

assumptions..  

3. Statistical Analysis for Standardized Positions: The next step is to identify the 

volatilities and correlations of changes in the value of the standardized positions.  

4. Portfolio Variance-Covariance Procedure: This step is the key, which includes  

identifying volatility of changes in mark-to-market portfolio value. 

 

The process explained above applies to a single risk factor. As it will be illustrated, the 

model can be generalized to describe the dynamics of multiple risk factors. 

 

2.3 Parametric VaR with multiple sources of risk 

It is now turned to the more general case of the methodology with many sources of 

financial risk. This section introduces Parametric VaR Methodology with multiple sources 

of risk which requires an additional work.  

 

Let us assume that there is m positions denoted by & jP L , 1,...,j m= . Due to delta 

equivalents aggreagtion properties, after calculating independently delta equivalent for 

each position, they are aggreagted to obtain the delta equivalent for the position( Mina and 

Xiao, 2001, p.23). In other words, 

 

18 Linsmeier, T. And Pearson, N.,1996, Risk Measurement: An Introduction to Value at Risk, University of 
Illinois 
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( )∑ ∑
= =

=≈
m

j

m

j

T

portfoliorjLPLP
1 1

&& δ 2.16 

 rLP
m

j

T

portfolio∑
=

≈
1

& δ 2.17 

 

The general finding of this methodology is that it imposes strong assumptions about the 

underlying risk factors as it has been mentioned in section 2.1. The empirical evidence 

about the distributional properties of risk factor changes provides evidence against these 

assumptions, e.g. Kendall (1953), Mandelbrot (1963) and Fama (1965). 

 

It has already been mentioned the process of calculating VaR by using the parametric VaR 

methodology, but so far the content has not been precise regarding its pros and cons. Now 

is the time to make up for that. 

2.4 Advantages & Disadvantages 

Jorion19 (2001) explains the pros and cons of this methodology as the following: 

 

Advatages 

• The main benefit of this approach is its simplicity. 

 

Disadvantages 

• Unlike HS VaR Methodology and WHS VaR Methodology, it requires parametric 

estimations such as volatilities, correlations or other parameters and thus does not 

maintain the ease of implementation . 

• Unlike MCS VaR Methodology, it cannot account for nonlinearity effects. 

• It may also underestimate the occurance of large observations beacuse of its 

reliance on a normal distribution. 

 

19 Jorion, P., 2001, Value at Risk: The New Benchmark for Managing Fianacial Risk, McGraw-Hill, Second 
Edition. 
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3 HISTORICAL SIMULATION VaR METHODOLOGY20 

Recognizing the fact that most underlying risk factor returns cannot be described by a 

theoretical distribution, an increasing number of financial institutions are using historical 

simulation.  

 

This chapter introduces Historical Simulation VaR Methodology . Section 3.1 works in a 

simple case with just one source of risk. Section 3.2 shows how to apply this method to 

construct VaR calculation. Then multiple sources of risk are considered in Section 3.3. 

Finally, advantages and disadvantages of the methodology are introduced in Section 3.4. 

 

3.1 Historical Simulation VaR  

 

This section introduces Historical Simulation VaR Methodology with one source of risk. 

It is “a simple, atherotical methodology that requires relatively few assumptions about the 

statistical distributions of the underlying risk factor returns to obtain future portfolio’s 

profits and losses (P&L) distribution” (Linsmeier and Pearson, 1996, p.2). The basic main 

assumption behind historical simulation is that changes in the undelying risk factors are 

identical to the looked at changes in those over a sample period (Mina and Xiao, 2000, 

p.26). That is, the historical data speak fully about the distribution of future return without 

dictating any further assumptions (Christofferson, 2003, p.101). This means that a 

historical simulation is performed by sampling from past returns, and applying them to the 

current level of the risk factors to obtain risk factor price scenarios. And then, these price 

scenarios are used to obtain P&L scenarios for the portfolio. 

 

It has been already mentioned the content of the HS approach. Now is the time to make up 

for the steps of calculation VaR.  

 

3.2 Applying Historical Simulation VaR methodology 

Linsmeier and Pearson (1996) explains the computation of VaR for a portfolio using 

historical simulation VaR methodology as the following steps: 

 

20 Historical Simulation is also known as bootstrapping simulation. 
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1. Risk mapping: The first step is to identify n risk factors rfi,  with i=1,...,n . 

2. Data: The next step is to collect historical values of n risk factors for the last  

determined period.  

3. Return: This step includes obtaining risk factor returns. 

4. Secanarios for risk factor price levels: This is the key step which attempts to obtain a 

formula expressing the mark-to-market value of the position in terms of each risk factor 

subjecting to current price level Pcpl.

cplkS
P ,trf ilog= eP P,rf Pi ,t-1rf i

3.1 

 

where  i=1,...,n. That is, if there is an instrument in a position and it contains n risk factors , 

the scenarios (S) of each future are obtained by expressing prices in a function of 

logarithmic returns of each risk factor. The current portfolio is subjected to the percentage 

changes in risk factors and prices experienced on each of determined period. 

5. PV of  instrument: This step expresses the present value of an instrument as a fuction 

of the n risk factors rfi with i =1,...n. 

6. Portfolio P&L: The profits and losses of a portfolio are calculated. 

7. Sorting portfolio P&L: The next step is to order the mark-to-market profits and losses 

from the largest profit to the largest loss. 

 
Table 3.1 HS-VaR calculation steps with one source of risk 

Data Return (R) Scenarios (S) PV P&L 
tP

1tP − t -1
1,t-1

t

P=logr
P

t-1t-1 r=S ePcpl  t-1PV t-1P&L

2tP −

1,t -2

t -2

t-1

P=logr
P

t-2t-2 r=S ePcpl  t -2PV t-2P&L

. . . . .

. . . . .
t mP − 1,t -mr t-mt-m r=S ePcpl  t-mPV t-mP&L

Finally, the loss which is equaled or exceeded p percent of the time is selected. Using the 

probability of p percent, this is the value at risk. That is, 
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( )

{ }{ }
( )

,
log 1 ,1, 1 , 1

1

,1& 1

1 1 ,1&
1

m
P trf i

percentile NV pVaR ePcplp t P trf i
i

mpercentile pP Li i

m
percentile i pP LT mm i

       = − × − −  +  −      =  

= − −=

   = − ≤ −  −  =  

( )1 1

& ( )

pF
P L k

−= −

=

where ( )mpk −= 1 . As the VaR typically falls in between two observations, linear 

interpolation can be used to calculate exact number. Thus, VaR is simply the lower 

percentile of the portfolio P&L distribution. 

 

The process explained above applies to a single risk factor. As it will be illustrated, the 

model can be generalized to describe the dynamics of multiple risk factors. 

 

3.3 Historical Simulation VaR with multiple sources of risk 

It  is now turned to the more general case of simulations with many sources of financial 

risk. This section introduces Historical Simulation VaR Methodology with multiple 

sources of risk which requires an additional work.  

Let us assume that there is m positions denoted by & jP L , 1,...,j m= . After summing profits 

and losses for each position for each day, they are ordered from the highest profit to lowest 

loss.  
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Table 3.2 HS-Portfolio P&L with multiple source of risk 

Portfolio P&L 

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t1,t 2,t n,t i ti=1

∑= =  

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-11,t-1 2,t-1 n,t-1 i t-1i=1

∑= =  

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-21,t-2 2,t-2 n,t-2 i t-2i=1

∑= =  

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-31,t-3 2,t-3 n,t-3 i t-3i=1

∑= =  

.

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-m1,t-m 2,t-m n,t-m i t-mi=1

∑= =

Now, portfolio P&L can be ordered and then VaR can be read off  by expressing the above 

process into blove formula to get the kth ordered P&L with the given confidence level at 

the defined sample histogram as the following: 

,
log 1 ,1, 1 , 11

1

,1&
1 1

1 1
1

m
P trfn i

percentile NV pVaR ePcplp t P trfi i
i

mn
percentile pP Li

i i

m
percentile

m i

         = − × − −∑  +   −    =     =  
    = − −∑  
  =  = 

= −
=

( ) ,1&
1

1(1 )
 & ( )

m
i pP LT j

J

pF
P L k

    ≤ −∑  −
  =  

−= −
=

where ( )mpk −= 1 . Thus, VaR is simply the lower percentile of the portfolio P&L 

distribution. It is seen that VaR caluculation can be performed without using standard 

deviation or correlation forecasts (Longerstaey, 1996, p.6).  
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3.5 Advantages & Disadvantages21 

It has already been mentioned the process of calculating VaR by using the HS approach, 

but so far the content has not been precise regarding its pros and cons. Now is the time to 

make up for that. 

 

Advantages: 

• Unlike Parametric-VaR-Methodology, it does not require parametric estimations 

such as volatilities, correlations or other parameters. and thus maintains the ease of 

implementation (Christofferson, 2003, p.101 and Dowd, 1998, p.100) . 

 

• It is “model-free apporach” which consists of two basic main properties.  

1. It does not relies on risk factor returns distributional assumption 

(Christofferson, 2003, p.101). 

2. It does not require parametric estimations such as volatilities, correlations or 

other parameters. (Dowd, 2003, p.100).  

 

Disadvantages: 

The “model-free approach”  so far paints a fairly rosy picture of the benefits of HS 

methodology . However,  it has serious drawbacks. 

 

• Unlike Weighted Historical Simulation, it puts the same weight on all observations 

in the window. (Andrew, 2006, Lecture Notes). 

• Unlike MCS VaR Methodology , HS VaR Methodology use only one sample path. 

So that, it can miss situations with temporarily potential volatility. (Christofferson, 

2003, p.101). 

• It requires an arbitrary decision on the number of observations, m, to use in 

estimating the cumulative distribution function. The choice of m represents a trade-

off between more data and stronger i.i.d (idependent and identically distributed). 

violation22. If m is too large, then the most recent observations will get as much 

weight as very old observations. If m is too small then it is difficult to estimate 

quantiles in the tails with precision (Andrew, 2006, Lecture Notes). 

 

21 See Jorion (2001), pp:223-223, Dowd (1998), pp:99-101 and Christofferson, 2003, pp:101-103. 
22 For a detailed discussion of the properties of historical simulation see Pritsker (2000). 
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4 MONTE CARLO SIMULATION VaR METHODOLOGY 
 
To overcome problems of linearising derivative positions and to account for expiring 

contracts, risk managers have begun to look at simulation techniques. Pathways are 

simulated for scenarios for linear positions, interest rate factors and currency exchange 

rate. Then, they are used to value all positions for ecah scenario. The VaR is estimated 

from the distribution of the simulated portfolio value. Monte Carlo simulation is generally 

used by financial institutions around the world (Barone-Adesi, Giannopoulos and Vosper, 

2000, p.3).  Nevertheless, this methodology has important criticisms.  

 

This chapter introduces Monte Carlo Simulation VaR Methodology. Section 4.1 works in a 

simple case with just one source of risk. Section 4.2 shows how to apply these methods to 

construct VaR. Then multiple sources of risk are considered in Section 4.3. Finally, 

advantages and disadvantages of the methodology are introduced in Section 4.4. 

 

4.1 Monte Carlo Simulation VaR23 

This section introduces Monte Carlo Simulation VaR Methodology. Simulations are useful 

to mimic the uncertainty in risk factors. They govern generating hypothetical variables 

with features similar to those of the looked at risk factors. These may be stock prices, 

exchange rates, bond yields or prices, and commodity prices. 

 

i. Simulating Markov process 

Markov process is a stochastic process where the probability of the price at any particular 

future time depends on the present value of the price level. That is, the past history is 

irrelevant. In other words, the probability distribution of the price at any particular time is 

not dependent on the particular path followed by the price in the past. Stock prices are 

usually assumed to fallow a Markov process. Its feature is consistent with the weak form of 

market efficiency which means that current price level of a stock contains all past data 

information. The Markov process is built from the following components, described in 

order of increasing complexity (Hull, 1997, pp: 216-217, Jorion, 2003, p.84). 

 

The Wiener process: This describes a variableW , sometimes referred to as Brownian 

motion, whose change is measured over the interval t such that its mean change is zero and 
 
23 For a general introduction please see Christopher, 1996, pp:151-159 and see Hull ,1997, pp:216-229 to 
understand how as stochastic variable evaluates. 
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variance proportional to t . The change in the variable W is ( ) ( )tNtW ∆∆ ,0~ where 

tW ∆=∆ ε with ( )1,0~ Nε . In addition, the increments W∆ are independent across time 

because winner process is a markov process24 (Hull, 1997, p: 218-219; Jorion, 2003, p.84 

and Tuncer, 2004, Lecture Notes, pp: 1-5). 

Figure 4.1 How a Wiener process is obtained when 0→∆t in tW ∆=∆ ε .
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(1) 05,0=∆t : changes in the stochastic variable in time intervals of lenght 0,05 years. 
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(2) 005,0=∆t : changes in the stochastic variable in time intervals of lenght 0,005 years. 
 

24 Please see the properties of Winner process ( Tuncer, 2004, FEC 552, Lecture Notes, pp:3-5). 
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Table 4.1 (continued) 

 

-0,40

-0,20

0,00
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0,40
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0,80
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0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

t

w

(3) 003,0=∆t : changes in the stochastic variable in time intervals of lenght 0,003 years. 

 

The Generalized Wiener process: This describes a variable X built up from a Wiener 

processW , which has an expected drift rate of a and a variance rate of  ( )2b ( Hull, 1997, 

p.221). 

 bdWadtdX += 4.1  

 dtbadtdX ε+= 4.2

where ( )( )2
,~ adt bdX N dW . The equation 4.1 consists of two parts deterministic 

component and stochastic component. A particular case is the martingale, which is a zero 

drift stochastic process, 0a = . This has the convenient property that the expectation of a 

future value is the current value (Hull, 1997, pp: 219-222,; Jorion, 2003, p.84 and  Tuncer, 

2004, Lecture Notes, pp: 5-6). 

 

The Ito process: This describes a generalized Wiener process, whose trend and volatility 

depend on the current value of the underlying variable and time (Hull, 1997, pp: 226-227 

and Jorion, 2003, pp: 226-227). 

 

( ) ( ) ( )dWtxbdttxatdX ,, += 4.3 
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So far, it has been explained a continuous variable, a continuous time stochastic process of 

a risk factor.  The crucial point is to choose a particular stochastic model for the behavior 

of a price level and then to calculate it by using Ito’s lemma. But what models should be 

use? The answer depends on the instrument whose risk factor it wish be modeled.  

 

ii. Geometric Brownian Motion 

For stock prices and currencies a commonly used model is the Geometric Brownian 

Motion (GBM). The GBM can be shown as 

 

( ) ( ) ( ) ( )tdWtSdttStdS σµ += 4.4 

 

where S is the current price of the stock, dS is the change in the stock price, µ is the 

expected rate of return (drift), σ is the volatility of S , dW = wiener increment = dtε , ε

is the standard normal distribution. This model assumes that the innovations in the asset 

price are uncorrelated over time (Tuncer, Ruhi, 2004, Lecture Notes, pp: 26-28). 

 

The stochastic process of pricing stock prices and currencies require  two parameters 

estimation : the drift µ and the volatility σ . Kim, Malz and Mina (1999) have shown that 

“mean forecasts for horizons shorter than three months are not likely to produce accurate 

predictions for future returns. In fact, most forecasts are not likely to predict the sign of 

returns for a horizon shorter than three months. In addition, since volatility is much larger 

than the expected return at short horizons, the forecasts of future returns are dominated by 

the volatility estimateσ . In other words, if it is being concerned with short horizons, using 

a zero expected return assumption is as good as any mean estimate” (As cited in Mina and 

Xiao, 2000). Hence, from this point view, it will been made the explicit assumption that 

the expected return is zero. 

 

The next question is how to estimate the volatilityσ . Three different models are generally 

used to estimate volatility: Historical Average (HA), Exponentially Weighted Moving 

Average (EWMA) and Generalized Autoregressive Conditional Heteroscedastic (GARCH) 

model. 
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The process (4.4) is geometric because the trend and volatility names are proportional to 

the current value of S .This is normally the case for stock prices, for which rates of returns 

come into view to be more stationary than the dollar returns. It is also used for currencies 

(Jorion, 2003, p. 84).  

 

This model is particularly important because it is the underlying process for the Black-

Scholes formula25. The important feature of this distribution is the fact that the volatility is 

proportional to S . This guarantees that the stock price will remain positive. In addition, 

when the stock price falls, its variance decreases. This makes it impossible to experience a 

large downmove that may drive the price into negative values (Jorion, 2003, p. 85).  

.

Using a logarithm transformation and applying the Ito’s lemma26, it can be reach the 

equation for the risk factor simulation which can be shown as: 

 

( ) ( )
2

(0)exp
2

S t S t W tσµ σ
  

= − +     

27 4.5

The model is based on a normal distribution of the underlying risk factor returns which is 

the same thing as saying that the underlying prices themselves are lognormally distributed. 

This is an important result. If stock prices displays a geometric Brownian motion, their 

distribution is log normal. A lognormal distribution is the right skewed distribution. The 

lognormal distribution permits for a stock price distribution between zero and infinity (i.e. 

no negative prices) and has an upward bias (representing the fact that a stock price can 

only drop 100% but can rise by more than 100%)  

 

The equation 4.4 can be repeated as often as needed. Define K as the number of 

replications. Figure 4.2 displays one trial which leads to final value ( )K

TS . This generates a 

distribution of simulated prices ( )T
S . With just one step 1=n , the distribution must be 

 
25 For the derivation see Tuncer, 2004, FEC 552, Lecture Notes, pp: 29-37. 
26 Tuncer, 2004, FEC 552, Lecture Notes, pp: 5-26. 
27 For the derivation see Hull, 1997,chapter 11 and Tuncer, 2004, FEC 552, Lecture Notes, pp: 25-26. 
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normal. As the number of steps n grows large, the distribution attends to a lognormal 

distribution. 

 
Figure 4.2 Simulating price path 
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Figure 4.3 Simulating price paths 
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iii. Simulating yields  

Although the GBM process is generally used for stocks and currencies, it cannot used by 

fixed-income products such as bond prices and commodities which presents mean 

reversion28. Such process is inconsistent with the GBM process, which presents no such 

mean reversion29.

The dynamics of interest rates ( )r t can be modeled by 

 

( ) ( )( ) ( ) ( )dr t r t dt r t dW tκ θ σ= − + 4.6 

 

where ( )dW t is the usual Wienner process. Here, it is assumed that 0 1, 0, 0κ θ σ≤ < ≥ ≥ .

Jorion (2003) explains this Markov’features as the following:.  

 

1. First, it presents mean reversion to a long-run value of θ . The parameter κ

manages the speed of mean reversion. When the current interest rate is high, 

i.e. ( )r t θf , the model has a negative drift ( )( )r tκ θ − towardθ . Conversely, low 

current rates create with a positive drift. 

 

2. The second feature is the volatility process. This class of model includes the 

Vasicek model when 0=γ . Changes in yields are normally distributed because 

rδ is a linear function of z∆ . This model is particularly useful because it leads to 

closed-form solutions for many fixed-income products. However, the problem is 

that it may allow negative interest rates because the volatility of the change in rates 

does not depend on the level. 

 

Equation is more general because it includes a powerγ of the yield in the variance 

function. With 1=γ , the model is the lognormal model. This implies that the rate of 

change in the yield has a fixed variance. Thus, as with the GBM model, smaller yields lead 

to smaller movements, which makes it impossible the yield will drop below zero. 

 
28 See Zangari, 1996, pp: 107-117. 
29 See http://www.puc-rio.br/marco.ind/sim_stoc_proc.html. 
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With 5,0=γ , this is the Cox, Ingersoll, and Ross (CIR) model. Ultimately, the choice of 

the explanatory γ is an empirical issue. Recent research has shown that 5,0=γ provides a 

good fit to the data. 

 

Using a logarithm transformation and applying the Ito’s lemma, it can be reached the 

equation for the interest rate simulation which can be shown as: 

 

( ) ( ) ( ) ( )



















−−−= ∫ tdWattrbbtr

t

0

expexp σ 30 4.7

Thus, at low values of the interest rate, the standard deviation becomes close to zero, 

cancelling the effect of the random shock on the interest rate. Consequently, when the 

interest rate gets close to zero, its evolution becomes dominated by the drift factor, which 

pushes the rate upward (Hull, 2003, p.100). 

 

The equation 4.7 can be repeated as often as needed. Define K as the number of 

replications. Figure 4.4 displays one trial which leads to final value K
Tr . This generates a 

distribution of simulated prices Tr .

Figure 4.4 Simulating interest rate path 
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Figure 4-5 Simulating interest rate paths 
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It has already been mentioned the content of the Monte Carlo simulation approach. Now is 

the time to make up for the steps of calculation VaR.  

 
4.2 Applying Monte Carlo Simulation VaR Methodology 

Linsmeier and Pierson (1996), explains computation of VaR for a single instrument 

portfolio using Monte Carlo simulation approach in five steps: 

 

1. The first step is to identify the basic risk factors, and to obtain a formula expressing 

the mark-to-market value of the position in terms of the risk factors subjecting to 

current price level Pcpl. That is, 

 cplkS
P ,trf ilog= eP P,rf Pi ,t-1rf i

4.8 

2. The second step is to determine a specific distribution for risk factor returns and to 

estimate the parameters of that distribution.  

3. The next step is to generate generator  hypothetical values of risk factor returns bu 

using pseudo-random. Then these hypothetical risk factors are used to calculate 

hypothetical mark-to-market portfolio values.  Hypothetical daily profits and losses 

are calculated  from each of the hypothetical portfolio values, 

Steps into the future 
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4. The last to steps are the same as in historical simulation. The mark-to-market 

profits and losses are ordered from the largest loss to lowest one. The value at risk 

is the loss which is equaled or exceeded p% of the time. 

 

Using the probability of p percent, this is the value at risk for GBM model. That is, 

( ) ( )

{ }{ }
( )

1 2(0)exp 1 ,1, 1 2

,1&

1 1 ,1&

m

S t W tNVpercentile pePVaR cplp t
i i

mpercentile pP Li

m
percentile i pP LT mm i

µ σσ

τ

        − +  × −= − −   +       
   

= − −

   = − ≤ −  −   

( )
( )

1 1

&

pF
P L k

−= −

=

Using the probability of p percent, this is the value at risk for CIR model. That is, 

( ) ( ) ( ) ( )

{ }{ }
( )

exp exp 1 ,1, 1
0

1

,1& 1

1 1 &
1

m
t

b b r t at dW tpercentile NV pVaR ePcplp t

i

mpercentile pP Li i

m
percentile iP LT mm i

σ

            − − − ∫= − × − −  +              = 

= − −=

= − ≤−
=

( )
( )

,1

1 1

&

p

pF
P L k

   −  
   

−= −

=

The model explained above applies to a single risk factor. As it will be illustrated, the 

model can be generalized to describe the dynamics of multiple risk factors. 

 

4.3 Monte Carlo Simulation VaR with Multiple Sources of Risk 

It is now turned to the more general case of simulations with many sources of n financial 

risk factors. According to Linsmeier and Pearson (1996), such a case requires only that a 
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bit of additional work to be performed in three of the steps, just as with historical 

simulation.  

 

1. In step 1, there are likely to be many more risk factors. These factors must be 

identified, and pricing formulas expressing the instruments` values in terms of risk 

factors must be obtained.  

2. In step 2, the joint distribution of returns scenarios for all of the  risk factors must be 

determined by using standard normal variables. To the this, a matrix is needed which 

requires n independent standard normal variables. The important thing is the choice of 

a matrix is not unique.  

 

Two popular methods for a matrix are the Cholesky decomposition and the Singular 

Value decomposition (SVD)31. Mina and Xia (2001) states in his paper one important 

difference between these decompositions that the Cholesky algorithm cannot provide a 

decomposition when the covariance matrix is not positive definite. A non-positive definite 

covariance matrix requires a situation where at list one of the risk factors is repetitive, 

meaning that the repetitive risk factor can be reproduced as a linear combination of the 

other risk factors. This situation generally corresponds when the number of days used to 

calculate the covariance matrix is smaller than the number of risk factors (Mina and Xiao, 

2001, p.19). The correlation structure can be protected in the process of simulation by 

“Cholesky Factorization”. The process requires factorizing the covariance matrix into a 

lower triangular and an upper triangular matrix. The critical point here is that the 

covariance matrix should be positive definite and symmetric in order to be decomposed. 

(Zangari, 1996, p.253-255). 

 

According to Jorion (2003),  

• The simulation can be firstly adapted by drawing a set of independent variablesη ,

• Then it is adapted by transforming them into correlated variablesε .

As an example for two factors : It can be written 

1 1ηε =

31 See Zangari, 1996, pp: 253-256 for an additional description. 
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( )1/ 22
2 1 21ρη ρ ηε = + −

Here, ρ is the correlation coefficient between the variablesε . Due to  unit variance and 

uncorrelated sη , it is verified that the variance of 2ε is one, as required. That is, 

( ) ( ) ( ) ( ) ( )
21/ 22 2 2 2

2 1 21 1 1ρ η ρ η ρ ρε  = + − = + − =  
V V V ,

In addition, the correlation between 1ε and 2ε is defined by 

( ) ( )( ) ( )1/ 22
1 2 1 1 2 1 2, ,  1  ,ρ ρ ρη η ρ η η ηε ε = + − = =Cov Cov Cov  

Defining ε as the vector of values, it is verified that the covariance matrix of ε is  

 

( ) ( ) ( )
( ) ( )
2

1 1 2

2
1 2 2

, 1
1,

Cov p
V R

pCov

σ ε ε ε
ε

ε ε σ ε

    = = =     
 

Note that this covariance matrix, which is the expectation of squared deviation from the 

mean, can be written as 

( ) ( )( ) ( )( ) ( )' 'V E E E Eε ε ε ε ε ε ε = − × − = ×  
 

because the expectation of ε is zero. 

 

3. In Step 3, similar to historical simulation, to reflect accurately the correlations of 

market rates and prices it is necessary that the mark-to-market profits and losses on 

every instrument be computed  

4. Then P&L are summed for each day, before they are ordered from highest profit to 

lowest loss in Step 4.  

 

Let us assume that there is n factors denoted by ( ) j
S t and ( )r t j 1,...,j n= . If the factors 

( ) j
S t and ( ) j

r t are independent, the processes can be performed independently for each 

variable, respectively.  For the GBM model,  

 

( ) ( ) ( ) ( )j j j j
d S t S t dt S t dW tµ σ= +  4.9 
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where the standard normal variables ε are independent across time.This means that the 

stock price can be written as  

 

( ) ( )
2

(0)exp
2
σµ σ

  
= − +     

j
jjj j

S t S t W t 4.10 

 

For the interest rate model, 

 

( ) ( )( ) ( ) ( )κ θ σ= − +
j j j j

dr t r t r t dW tdt  4.11

where the standard normal variables ε are independent across time.This means that the 

interest rate simulation can be written as  

 

( ) ( ) ( ) ( )exp exp
0

σ
  
  = − − − ∫    

j j j

t
r t b b r t at dW t  4.12

It is seen that  the evaluation of stock price over time are almost identical for a single or 

multiple risk factors. The only difference is that if there are more than one risk factors, the 

correlation between returns on the various risk factors is taken into account.  

 

Now, portfolio P&L can be ordered and then VaR can be read off  by expressing the above 

process into blove formula to get the kth ordered P&L with the given confidence level at 

the defined sample histogram for GBM as the following: 
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( ) ( )

{ }{ }
( )

1 2(0)exp 1 ,1, 1 2
1

1

,1& 1

1 1 &
1

m
n S t W tpercentile NV j pjVaR eP jjcplp t

j
i

mpercentile pP Li i

m
percentile P LT mm i

µ σσ

         − +   = − × − −∑    +       =     = 

= − −=

= − −
=

( )
( )

,1

1 1

&

i p

pF
P L k

   ≤ −  
   

−= −

=

where ( )mpk −= 1 . Thus, VaR is simply the lower percentile of the portfolio P&L 

distribution.  

 

Using the probability of p percent, the value at risk for CIR model is the following: 

 

( ) ( ) ( ) ( )

{ }{ }

exp exp 1 ,1, 1
01

1

,1& 1

1 1
1

m
tn b b r t at dW tpercentile NV pVaR eP j jcplp t

j
i

mpercentile pP Li i

m
percentile Tm i

σ

            − − − ∫= − × − −∑  +         =     = 

= − −=

= − −
=

( )

( )
( )

,1&

1 1

&

i pP L m

pF
P L k

   ≤ −  
   

−= −

=

It has already been mentioned the process of calculating VaR by using the MCS approach, 

but so far the concept has not been precise regarding its pros and cons. Now is the time to 

make up for that. 
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4.4 Advantages & Disadvantages 

Advantages 

• The independence between the distributional assumptions and the specific portfolio 

pricing functions allows flexibility to examine risk (Mina, Jorge and Xiao J., Yi, 

2001, p.19). 

• It is model-based approach. 

• It accounts for a wide range of risks, including non-linear price risk, volatility risk 

and even model risk. 

• It can incorporate time variation in volatility, fat tails and extreme scenarios. 

 

Disadvantages 

• The biggest drawback of this method is its computational cost.  

• The generation of the scenarios is based on random numbers drawn from a 

theoretical distribution, which is inconsistent  to the empirical distribution of most 

asset returns (Barone-Adesi, Giannopoulos and Vosper, 2000, p.3).  

• During market crises, monte Carlo simulation is likely to underestimate the 

possible losses when most historical correlations tend to increase rapidly (Barone-

Adesi, Giannopoulos and Vosper, 2000, p.3). 

• When a large number of scenarios is generated, simulation tends to slow (Barone-

Adesi, Giannopoulos and Vosper, 2000, p.3). 

 

Thus, overall, this method is probably the most comprehensive approach to measuring risk 

if modeling is done correctly. 

 

5 WEIGHTED HISTORICAL SIMULATION VaR METHODOLOGY 

 

An interesting variation of the historical simulation methodology is the weighted historical 

simulation methodology (called hybrid methodology, as well). This method is supported 

by Boudoukh, Richardson and Whitelaw (1998). This approach combines RiskMetrics and 

historical simulation methodologies  by applying exponentially declining weights to past 

returns. 
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This chapter introduces Weighted Historical Simulation (WHS) VaR Methodology. 

Section 3.1 works in a simple case with just one source of risk. Section 3.2 shows how to 

apply these methods to construct VaR . Then multiple sources of risk are considered in 

Section 3.3. 

 

5.1 Weighted Historical Simulation VaR with One Source of Risk 

 

It has been discussed the HS VaR Methodology approcah regarding the choice of sample 

size, m. All observations older than m get zero weight, and all observations more recent 

than m get equal weight. That is, 

 

1/ 0
0

m if j m
w j else

≤ <
= 


5.132 

This is an extreme choice for a “weighting function” for the observations (Andrew, 2006, 

Lecture Notes, pp: 163-164). If m is too small, then there are not enough observations in 

the left tail to calculate VaR. If m is too large, then the VaR will not be sufficiently 

responsive to the most recent returns (Christoffersen, 2003, p.103). An alternative might 

assign higher weight to more observations, and a lower weight to older observations, 

which the weights smoothly declining in the age of the observations. Such an approach is c 

“weighted historical simulation” (WHS) (Andrew, 2006, Lecture Notes, p. 163). 

WHS is implemented as follows: 

 

m is the sample of observations to use and λ is a smoothing parameter inside (0,1). An 

exponentially declining weighting function is used: 

 

( ) ( )1 1 0

0

j m if j m
w j

else

λλ λ − − ≤ <= 


5.233 

32 See Andrew, 2006, AF365, Lecture Notes, p. 163 and Christoffersen, 2003, p.101. 
33 See Andrew, 2006, AF365,  Lecture Notes, p. 164 and Christoffersen, 2003, p.103. 
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This function is such that the weights decline exponentially as j increases, and that 
1

0
1m

jj w−

=
=∑ .

By weighting recent observations more heavily than older observations more of the time-

varying nature of the distribution of returns is captured. In addition, since observations 

near m have to weight, the choice of m becomes less critical. However the choice of 

λ can be very important. Values of 99.0=λ or  95.0=λ have been used in past studies 

(Andrew, 2006, Lecture Notes, pp: 163-164). 

 

The weighted empirical cdf is 

 ( ) { }rr rwF jt

m

j
jt ≤=

−

−

=
+ ∑ 1

1

0
1 5.334 

and the VaR forecast based on the weighted empirical cdf is again obtained by inverting 

the function 

 ( )pFVaR ttHS
−= −

++
11

11,
5.435 

which is obtained in practise by assigning weights, w j , to each observation in the sample, 

rt j− , then sorthing these observations, and then finding the observation such that the sum 

of the weights assigned to returns less than or equal that observation is equal to 

( )p−1 (Andrew, 2006, Lecture Notes p.164). 

 

It has already been mentioned the content of the WHS-VaR-Methodology. Now is the time 

to make up for the steps of calculation VaR. 

 

5.2 Applying  Weighted Histrical Simulation 

Boudoukh, Richardson, and Whitelaw (1998) explain the computation of VaR for a 

portfolio using WHS VaR Mathodology as the following steps: 

 

1. Risk factors: The first step is to identify n risk factors rf i , with 1,...,i n= .

34 See Andrew, 2006, AF365,  Lecture Notes, p. 164 and Christoffersen, 2003, p.103. 
35 Oomen, 2006 , AF365, Lecture Notes, p. 23. 
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2. Data: The next step is to collect historical values of n risk factors for the last  

determined period. 

3. Return: Then their returns are obtained and  each return is assigned its corresponding 

weight. 

4. Secanarios for risk factors price levels: This is the key step which attempts to obtain a 

formula Prfi expressing the mark-to-market value of the position in terms of each risk factor 

subjecting to current price level Pcpl.

cplkS
P ,trf ilog= eP P,rf Pi ,t-1rf i

4.5 

 

where 1,...,i n= . That is, if there is an instrument in a position and it contains n risk factors 

, the scenarios of each future are obtained by expressing prices in a function of logarithmic 

returns of each risk factor. The current portfolio is subjected to the percentage changes in 

risk factors and prices experienced on each of determined period. 

5. PV of instrument: The present value of an instrument is expressed as a fuction of the n 

risk factors rf i , with 1,...,i n=

6. Portfolio P&L: Calculating the daily profits and losses that would occur if comparable 

daily changes in the risk factors are experienced and the current portfolio is marked-to-

market.  

7. Portfolio P&L: The next step is to order the mark-to-market profits and losses and 

weights in descending order by P&L. Unlike HS VaR Methodology, WHS VaR 

Methodology assignes weights to each observation in the sample by weighting recent 

observations more heavily than older observations then sorting these observations. 
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Table 5.1 WHS -VaR calculation steps with one source of risk 
 

Data Return (R) Scenarios (S) PV P&L 
tP

1tP − t -1
1,t-1

t

P=logr
P

t-1t-1 r=S ePcpl  t-1PV t-1P&L

2tP −
t -2

1,t-2
t-1

P= logr
P

t-2t-2 r=S ePcpl  t -2PV t-2P&L

. . . . .

. . . . .
t mP − 1,t -mr t-mt-m r=S ePcpl  t-mPV t-mP&L

Finally, the loss which is equaled or exceeded p percent of the time is selected. Using the 

probability of (1-p) percent, this is the value at risk. This processes can be shown 

analytically as the following: 

 

( )

{ }{ }
( ) ( ) ( ){ }

,
log 1 ,1, 1 , 1

1

,1& 1

1 1 1 ,1&
1

m
P trf i

percentile NV pVaR ePcplp t P trf i
i

mpercentile pP Li i

mj mpercentile i pP LT m i
λλ λ

       = − × − −  +  −      =  

= − −=

  = − − − ≤ − − =  

( )1 1

& ( )

pF
P L k

−= −

=

It has been shown that the steps of WHS VaR Methodology to calculate VaR is similar to 

HS VaR Methodology except that WHS VaR Methodology assignes weights to each 

observation in the sample by weighting recent observations more heavily than older 

observations. 
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5.3 Weighted Historical Simulation VaR with multiple sources of risk 

It is now turned to the more general case of simulations with many sources of financial 

risk. This section introduces Weighted Historical Simulation VaR Methodology with 

multiple sources of risk which requires an additional work.  

Let us assume that there is m positions denoted by &P L j , 1,...,j m= . After summing 

profits and losses for each position for each day, they are ordered from the highest profit to 

lowest loss.  
Table 5.2 WHS-Portfolio P&L with multiple source of risk 
 

Portfolio P&L 

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t1,t 2,t n,t i ti=1

∑= =  

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-11,t-1 2,t-1 n,t-1 i t-1i=1

∑= =  

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-21,t-2 2,t-2 n,t-2 i t-2i=1

∑= =  

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-31,t-3 2,t-3 n,t-3 i t-3i=1

∑= =  

.

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-m1,t-m 2,t-m n,t-m i t-mi=1

∑= =

Now, portfolio P&L can be  ordered and then VaR can be read off  by expressing the 

above process into blove formula to get the kth ordered P&L with the given confidence 

level at the defined sample histogram or sample inverse cumulative distribution function as 

the following: 
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,
log 1 ,1, 1 , 11

1

,1&
1 1

m
P trfn i

percentile NV pVaR ePcplp t P trfi i
i

mn
percentile pP Li

i

percentile
i

τ

         = − × − −∑  +   −    =     =  
    = − −∑  
  =  = 

= − ( ) ( ) ( )1 1 1 ,1&
1 1

1(1 )
 & ( )

mmj m i pP LT j
J

pF
P L k

λλ λ
    − − ≤ −∑  −
  =  = 

−= −
=

Thus, VaR is simply the lower percentile of the portfolio P&L distribution. It is seen that 

VaR caluculation can be performed without using standard deviation or correlation 

forecasts. (Longerstaey,1996, p.6). 

It has already been mentioned the process of calculating VaR by using the HS approach, 

but so far the concept has not been precise regarding its pros and cons. Now is the time to 

make up for that. 

 

5.4 Advantages & Disadvantages 

Christoffersen36 (2003) explains the prons and cons of this methodology in the following: 

Advantages: 
 

• Like HS VaR Methodology, WHS VaR Methodology does not require estimation 

and thus maintains the ease of implementation . 

• Unlike HS VaR Methodology, WHS VaR Methodology sorts changes in the value 

of the portfolio by  weighting recent observations more heavily than older 

observations, which provides consistency with today’s market conditions. 

• Unlike HS VaR Methodology, WHS VaR Methodology makes the choice of m 

somewhat less crucial.  

 
Disadvantages: 
 

• No guidance is given on how to choose λ .

36 Christofersen, P., 2003, Elements of Financial Risk Management, Academic Press. 
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• Like HS, much more important con is the effect on the weighting scheme of 

positive versus negative past returns. 

 

6 FILTERED HISTORICAL SIMULATION VaR METHODOLOGY  

 

Filtered Historical Simulation developed by Barone-Adesi, Bourgoin and Giannopoulos 

(1998) and Barone-Adesi, Giannopoulos and Vosper (1999) to overcome some of the 

disadvatages of HS approach. They take into account the changes in past and current 

volatilities of historical returns and make the least of assumptions about the statistical 

properties of future returns.  

 

This chapter introduces  Filtered Historical Simulation VaR Methodology. Section 6.1 

works in a simple case with just one source of risk. Section 6.2 shows how to apply these 

methods to construct VaR. Then multiple sources of risk are considered in Section 6.3. 

Finally, It is introduced advantages and disadvantages of the methodology in Secion 6.4. 

 

6.1     Filtered Historical Simualtion VaR 

So far , it has been discussed methods that take very different approaches; historical 

simulation (HS) is completely model-free approach, which imposes virtually no structure 

on the distibution of returns. The monte Carlo simulation (MCS) approach takes the 

opposite view and assumes parametric models for variance, correlation and the distribution 

of standardized returns. Both of these extremes in the model-free/model-based spectrum 

have pros and cons (Christoffersen, 2003, p.110). 

FHS attempts to combine the best of the model-based with the best of the model-free 

approaches. FHS combines model-based methods of variance with model-free methods of 

distribution. In other words,  these types of models aim to combine the benefits of 

parametric modelling of the conditional mean and conditional variance, with the benefits 

of nonparametric density estimation (Andrew, Patton, 2006, Lecture Notes). In thos 

methodology, although there is flexibilty to model variance, there is no flexibility to make 

a specific distributional assumption about the standardized returns. Instead, it is required 

the past returns data to tell us about the distribution directly without making further 

assumptions (Christoffersen, 2003, p.110). 
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It has already been mentioned the content of the FHS approach. Now is the time to make 

up for the steps of calculation VaR.  

 

6.2 Applying Filtered Historical Simulation 

According to Barone-Adesi, Bourgoin and Giannopoulos (1998), the computation of VaR 

for a portfolio using filtered historical simulation VaR methodology can be explained as 

the following steps: 

 

1. Risk factors: The first step is to identify n risk factors rf i , with 1,...,i n= .
2. Data: The next step is to collect historical values of n risk factors for the last  

determined period.  

3. Return: Then  the risk factor returns are obtained.. 

4. Secanarios for risk factors price levels: This is the key step which attempts to obtain a 

formula Prfi expressing the mark-to-market value of the position in terms of each risk factor 

subjecting to current price level Pcpl.

,t-1rf i

,trf i

2
cvl2cplrf S ki t

P
log

P ×s= eP P, s 6.1 

 

where  i=1,...,n. That is, if there is an instrument in a position and it contains n risk factors , 

the scenarios of each future are obtained by expressing prices in a function of logarithmic 

returns of each risk factor. The current portfolio is subjected to the percentage changes in 

risk factors and prices experienced on each of determined period. 

5. PV of  instrument: The present value of an instrument is expresses as a fuction of the n 

risk factors rfi with i =1,...n. 

6. Portfolio P&L: calculating the daily profits and losses that would occur if comparable 

daily changes in the risk factors are experienced and the current portfolio is marked-to-

market.  

7. Sorting portfolio P&L: The next step is to order the mark-to-market profits and losses 

from the largest profit to the largest loss. 
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Table 6.1 FHS -VaR calculation steps with one source of risk 
 

Data Return (R) Rescaled Return Scenarios (S) PV P&L 
tP

1tP − t -1
1,t-1

t

P=logr
P

t-1t-1 r= eRR Pcpl  t-1t-1 r=S ePcpl  t-1PV t-1P&L

2tP −

1,t -2

t -2

t-1

P=logr
P

t-2t-2 r= eRR Pcpl  t-2t-2 r=S ePcpl  t -2PV t-2P&L

. . . . . .

. . . . . .
t mP − 1,t -mr t-mt-m r= eRR Pcpl  t -mt-m r=S ePcpl  t-mPV t-mP&L

Finally, the loss which is equaled or exceeded p percent of the time is selected. Using the 

probability of p percent, this is the value at risk. That is, 

( )

{ }{ }

,
log

, 1 2 1 ,1, 1 2

1

,1& 1

m
P trf i

P trf i
percentile NV pVaR eP cvlcplp t

t

i

mpercentile pP Li

percenti

σ
σ

τ

            −    × = − × − −  +                  =  

= − −=

= − ( )

( )

 1 1 ,1&
1

1 1

& ( )

m
le i pP LT mm i

pF
P L k

   ≤ −  −  =  
−= −

=

Thus, VaR is simply the lower percentile of the portfolio P&L distribution. 

 

6.3  Filtered Historical Simulation VaR with Multiple Sources of Risk 

It is now turned to the more general case of simulations with many sources of financial 

risk. This section introduces Weighted Historical Simulation VaR Methodology with 

multiple sources of risk which requires an additional work.  
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Let us assume that there is m positions denoted by &P L j , 1,...,j m= .After summing 

profits and losses for each position for each day, they are ordered from the highest profit to 

lowest loss. 
 

Table 6.3 FHS-Portfolio P&L with multiple source of risk 

Portfolio P&L 

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t1,t 2,t n,t i ti=1

∑= =  

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-11,t-1 2,t-1 n,t-1 i t-1i=1

∑= =  

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-21,t-2 2,t-2 n,t-2 i t-2i=1

∑= =  

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-31,t-3 2,t-3 n,t-3 i t-3i=1

∑= =  

.

,,

n
P & L + P & L + ...+ P & L       P&LP&L p t-m1,t-m 2,t-m n,t-m i t-mi=1

∑= =

Now, portfolio P&L can  be ordered portfolio P&L and then VaR can be read off  by 

expressing the above process into blove formula to get the kth ordered P&L with the given 

confidence level at the defined sample histogram or sample inverse cumulative distribution 

function as the following: 
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,
log

, 1 2 1 ,1, 1 2
1

1

&
1

m
P trf i

P trfn i
percentile NV pVaR eP cvlcplp t

ti

i

m
percentile P Li

i

σ
σ

τ

               −     × = − × − −∑  +      =                 =  

= −
= =

( )

,1
1

1 1 ,1&
1 1

1(1 )
 & ( )

n
p

mm
percentile i pP LT jm J i

pF
P L k

    −∑  
    

    = − ≤ −∑  −
  =  = 

−= −
=

Thus, VaR is simply the lower percentile of the portfolio P&L distribution. It is seen that 

VaR caluculation can be performed without using standard deviation or correlation 

forecasts. (Longerstaey,1996, p.6). Barone-Adesi and Giannopoulos (1996) argue that the 

covarinaces and correlations are unnecessary in calculating portfolio risk.  

 

Hull and White (1998) introduces the filtered historical simulation approach. Pritsker 

(2001) finds that the FHS approach compares favorably with the HS and WHS 

methodologies. Engle and Manganelli (1999) suggests an alternative methodology to 

calculate VaR based on conditional quantile regression , which is not introduced in this 

paper (As cited in Christofferson, 2003). 

 

It has been already mentioned the process of calculating VaR by using the FHS approach, 

but so far the concept has not been precise regarding its pros and cons. Now is the time to 

make up for that. 

 

6.4 Advantages & Disadvantages 

Advantages:  

• Scaling past observations by an estimate of their volatility mitigates the problem 

with using past data which might not be relevant (Mina and Xiao,2001, p.25). 
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• It provides the benefits of the combination  parametric modelling  with the benefits 

of nonparametric density estimation (Andrew, Patton, 2006, Lecture Notes). 

Disadvantages: 

• There is no flexibility to make a specific distributional assumption about the 

standardized returns (Christoffersen, Peter F., 2003, p.110). 
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7 CONCLUSION 
 
This paper  provide a description of four VaR methodologies. Firstly, it is introduced 

Parametric VaR Methodology based on explicit  assumptions for factor returns that pricing 

functions are linear in the risk factor returns. Parametric-VaR-Methodology can represent 

an alternative to MCS to calculate VaR. Although MCS is highly accurate, it is 

computationally expensive. Then, it is introduced HS VaR Methodology which based on 

historical fequencies of returns. Thirdly, it is presented Monte Carlo simulation which does 

not make any assumption regarding the pricing function of the underlying positions. Monte 

Carlo simulation is one way to understand a sochastic process for a variable. It simulates 

the behavior of the variable. Before introducing MCS in this paper, it is described  the 

evaluation of a variable in terms of different processes: a wiener process , a generalized 

wienner process process and Ito process, then it is illustrated MCS VaR Methhodology. 

The Markov process states that  the current value of the variable is only related to the 

future value of that variable. The Wiener process explains the assessment of a normally 

distributed variable. The drift µ of the stochastic process is zero, and the variance rate σ

is one per unit time. That is, if the value of the variable is 0x at time zero, then at time t it 

is normally distributed with mean 0x and standard deviation t .The generalized Wienner 

process illustrates a normally distriuted variable with drift of a per unit time and the 

variance rate of 2b per unit time, where a and b are  constants. That is, as before, if the 

value of the variable is 0x at time zero, then it is normally distributed with a mean of 

0 + atx and the volatility of tb at time t. The Ito process describes the evaluation of a 

variable with the drift  and variance rate of x can be a function of both x itself and time. 

The stochastic process generally assumed for a stock price is geometirc Brownian motion. 

And the stochastic process usually assumed for an inretest rate is  Cox, Ingersoll, and Ross 

(CIR) model with 5,0=γ . In the following, it is introduced WHS and FHS VaR 

Methodologies respectively. 

 

At the end of the survey, it is seen that the computation of risk measure is independent of 

whether it is used Monte Carlo simulation, historical simulation, WHS or FHS to obtain 

scenarios when a set of P&L scenarios is obtained. The main difference lies the 

assumptions used to generate scenarios.  
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APPENDICES 

4.1 Derivation for GBM. Tuncer, 2004, FEC 552, Lecture Notes, pp: 29-37 is used. 

The purpose is to solve for tS . Set ( ), lnf t S Stt = . Using Taylo series expension, the 

following equation is obtained. 

( ) ( )
2

2
2

1
, 2tt

t t

f f f dtdf dt dSt S t S S
∂ ∂ ∂= + +
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2 2
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S St t

∂ =−
∂

so that 

using the Ito’s formula the following equation is obtained ( )2
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t t
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S S
= − . Then 

it is found 
( ) ( ) ( ) ( )2 2 2 22 2 2 22t t t t t t tdt dtdS S S S dW S dWµ σµ σ= + + . Then using Ito  
 
calculus’ poperties: 0dt dt = , 0dt dW t= , 0tdW dt = and 0t tdW dW = .

The followings is obtained. ( ) ( )2 22 2SdS dWtt tσ= . 2 2
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That is, 21
ln 2t tdtd S dWµ σσ

 = − +  
. Now the right hand side is independent of te variable 

tS so  that it can be solved this stochastic differential equation and write  
 

2
0

0 0

1
ln 2

t t
t

t tdtd S dWµ σσ
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ln ln 2t tdtS S Wµ σσ
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,

2
0

1
ln ln 2t tdtS S Wµ σσ

 ⇒ = + − +  
.

That is, ( ) ( )21(0) exp
2

S t S t W tµ σσ
  = − +    

.




