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ABSTRACT

In this thesis, it is shown that the class of social welfare functions that satisfy a

weak independence condition identi�ed by Campbell (1976) and Baigent (1987) is

fairly rich and freed of a power concentration on a single individual. This positive

result prevails when a weak Pareto condition is imposed. Hence, the impossibility

of Arrow (1951) can be overcame by simultaneously weakening the independence

and Pareto conditions. Moreover, under weak independence, an impossibility of

the Wilson (1972) type vanishes.

ÖZET

Bu tezde, Campbell (1976) ve Baigent (1987) taraf¬ndan tan¬mlanm¬̧s zay¬f

ba¼g¬ms¬zl¬k koşulunu sa¼glayan sosyal refah fonksiyonlar¬s¬n¬f¬n¬n oldukça zengin

ve tek bir birey üzerindeki güç yo¼gunlu¼gundan muaf oldu¼gu gösterilmektedir. Bu

pozitif sonuç, zay¬f Pareto koşulu uyguland¬¼g¬nda da geçerli olur. Sonuç olarak,

ba¼g¬ms¬zl¬k ve Pareto koşullar¬n¬n eş zamanl¬olarak zay¬�at¬lmas¬yla Arrow (1951)

imkans¬zl¬¼g¬n¬n üstesinden gelinebilir. Bunun yan¬s¬ra, zay¬f ba¼g¬ms¬zl¬k alt¬nda,

Wilson (1972) türü imkans¬zl¬k da kaybolur.
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CHAPTER 1

Introduction

In this thesis, the preference aggregation problem in a society which confronts

at least three alternatives is considered. A Social Welfare Function (SWF) is a

mapping which assigns a social ranking to any logically possible pro�le of individ-

ual rankings. A SWF is independent of irrelevant alternatives (IIA) if the social

ranking of any pair of alternatives depends only on individuals�preferences over

that pair. Since the seminal work of Arrow (1951), it is known that IIA and Pareto

optimality are incompatible, unless one is ready to admit dictatorial SWFs.

The Arrovian impossibility is remarkably robust against weakenings of IIA.1

For example, letting k stand for the number of alternatives that the society con-

fronts, Blau (1971) proposes the concept of m-ary independence for any integer

between 2 and k. A SWF is m-ary independent if the social ranking of any set of

alternatives with cardinality m depends only on individuals�preferences over that

set. Clearly, whenm = 2, m-ary independence coincides with IIA. Moreover, every

SWF trivially satis�es m-ary independence when m = k. It is also straightforward

to see that m-ary independence implies n-ary independence when m < n. Never-

theless, Blau (1971) shows that m-ary independence implies n-ary independence

when n < m < k as well. Thus, weakening IIA by imposing independence over

1 In fact, it is robust against weakenings of other conditions as well: Wilson (1972) shows that
the Arrovian impossibility essentially prevails when the Pareto condition is not used. Ozdemir
and Sanver (2007) identify severely restricted domains which exhibit the Arrovian impossibility.
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sets with cardinality more than two is not su¢ cient to escape from the Arrovian

impossibility, unless independence is imposed over the whole set of alternatives -

a condition which is satis�ed by the de�nition of a SWF.

Campbell and Kelly (2000a, 2007) further weaken m-ary independence by re-

quiring that the social preference over a pair of alternatives depends only on in-

dividuals�preferences over some proper subset of the set of available alternatives.

This condition, which they call independence of some alternatives (ISA) is con-

siderably weak. As a result, non-dictatorial SWF that satisfy Pareto optimality

and ISA -such as the �gateau rules�identi�ed by Campbell and Kelly (2000a)- do

exist. On the other hand, �gateau rules�fail neutrality and as Campbell and Kelly

(2007) later show, within the Arrovian framework, an extremely weaker version of

ISA disallows both anonymity and neutrality.

Denicolo (1998) identi�es a condition called relational independent deciseveness

(RID). He shows that although IIA implies RID, the Arrovian impossibility prevails

when IIA is replaced by RID.

Campbell (1976) proposes a weakening of IIA which requires that the social

decision between a pair of alternatives cannot be reversed at two distinct preference

pro�les that admit the same individual preferences over that pair. We refer to this

condition as quasi IIA.2 Baigent (1987) shows that every Pareto optimal and quasi

IIA SWF must be dictatorial in a sense which is close to the Arrovian meaning of

the concept - hence a version of the Arrovian impossibility.3

2 See Campbell (1976) for a discussion of the computational advantages of quasi IIA. Note
that when social indi¤erence is not allowed, IIA and quasi IIA are equivalent.

3 Baigent (1987) claims this impossibility in an environment with at least three alternatives.
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Results corresponding to the e¤ects of weakening IIA on the Arrovian impos-

sibility is presented as a negative nature in the literature. In order to contribute a

positive result, this thesis is conducted. Under the weakening proposed by Baigent

(1987), it is shown that the Arrovian impossibility can be surpassed by avoiding

the Pareto condition: The class of quasi IIA SWFs is described and shown as be-

ing a fairly large class which is not restricted to SWFs where the decision power

is concentrated on one given individual. Actually, SWFs included in this class are

both anonymous and neutral. In case of imposing a weak version of the Pareto

condition, this positive result holds.

According to the �ndings of this thesis, it is established that the tension be-

tween quasi IIA and the transitivity of the social outcome does not exist. Hence,

Wilson (1972) and Barberà (2003)�s results which states that the Pareto condi-

tion has little impact on the Arrovian impossibility which is essentially a tension

between IIA and the range restriction imposed over SWFs depart from our result.

Chapter 2 presents the basic notions.

Chapter 3 reviews the literature.

Chapter 4 states our results.

Chapter 5 makes some concluding remarks.

Nevertheless, Campbell and Kelly (2000b) show the existence of Pareto optimal and quasi IIA
SWF when there are precisely three alternatives. They also show that the impossibility an-
nounced by Baigent (1987) prevails when there are at least four alternatives and even under
restricted domains.



CHAPTER 2

Basic Notions

We consider a �nite set of individuals N with #N � 2, confronting a �nite set

of alternatives A with #A � 3.

De�nition 1 An aggregation rule is a mapping f : �N ! � where � is the set of

complete, transitive and antisymmetric binary relations over A while � is the set

of complete binary relations over A.

We conceive Pi 2 � as the preference of i 2 N over A.1 We write P =

(P1; :::; P#N) 2 �N for a preference pro�le and f(P ) 2 � re�ects the social pref-

erence obtained by the aggregation of P through f . Note that f(P ) need not be

transitive. Moreover, as f(P ) need not be antisymmetric, we write f �(P ) for its

strict counterpart.2

De�nition 2 An aggregation rule f is independent of irrelevant alternatives (IIA)

i¤ given any distinct x; y 2 A and any P; P 0 2 �N with x Pi y () x P 0i y 8i 2 N ,

we have x f(P ) y () x f(P 0) y.

We write � for the set of aggregation rules which satisfy IIA. For any distinct

x; y 2 A, let fx
y
;
y

x
; xyg be the set of possible preferences over fx; yg.3

1 As usual, for any distinct x; y 2 A, we intepret x Pi y as x being preferred to y in view of i.
2 So for any distinct x; y 2 A, we have x f�(P ) y whenever x f(P ) y and not y f(P ) x.
3 We interpret

x

y
as x being preferred to y;

y

x
as y being preferred to x; and xy as indi¤erence

between x and y:
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De�nition 3 An elementary aggregation rule is a mapping ffx;yg : f
x

y
;
y

x
gN !

fx
y
;
y

x
; xyg.

Any family f = fffx;ygg of elementary aggregation rules indexed over all possi-

ble distinct pairs x; y 2 A induces an aggregation rule as follows: For each P 2 �N

and each x; y 2 A, let x f(P ) y () ffx;yg(P
fx;yg) 2 fx

y
; xyg where P fx;yg 2

fx
y
;
y

x
gN is the restriction of P 2 �N over fx; yg.4 Note that f = fffx;ygg 2 �.

Moreover, any f 2 � can be expressed in terms of a family fffx;ygg = f of elemen-

tary aggregation rules.

Let < be the set of complete and transitive binary relations over A. A Social

Welfare Function (SWF) is an aggregation rule whose range is restricted to <.

De�nition 4 A SWF � : �N ! < is Pareto optimal i¤ given any distinct x; y 2 A

and any P 2 �N with x Pi y 8i 2 N , we have x ��(P ) y.

De�nition 5 A SWF � : �N ! < is dictatorial i¤ 9i 2 N such that x Pi y

implies x ��(P ) y 8P 2 �N ;8x; y 2 A:

The Arrovian impossibility, as we consider, announces that a SWF � : �N ! <

is Pareto optimal and IIA if and only if is � dictatorial.

4 So for any i 2 N , we have P fx;ygi =
x

y
() x Pi y.



CHAPTER 3

Literature Review

3.1 Arrovian Impossibility Theorem with Weak Independence

The �rst attempt for weakening the IIA condition comes from Blau (1971)

where the consequences of weakening IIA is stated, i.e whether it is still inconsistent

with the other conditions in Arrow�s Theorem or not. We will present here precise

de�nitions and theorems that Blau (1971) states and consider the results that is

reached.

De�nition 6 A SWF a is m-ary independent if 8X � A with #X = m where

m < #A and 8R;Q 2 <N with RX = QX , we have �(R)X = �(Q)X :

As it is clear from the de�nition, when m = 2; it is the usual IIA condition.

Also, Blau (1971) calls it as binary. Similarly, when m = 3; it is called as ternary.

Here is the �rst theorem that Blau (1971) states;

Theorem 7 Let #A = 4: Then, ternary implies binary.

Proof. Take any SWF a which satis�es ternary. Let A = fa; b; c; dg: Take

any two pro�les R;Q 2 <N with Rfa;bg = Qfa;bg: If there is an other alternative,

say c; with Rfa;b;cg = Qfa;b;cg; then �(R)fa;b;cg = �(Q)fa;b;cg since a satis�es ternary.

Then, �(R)fa;bg = �(Q)fa;bg by deleting c: Hence, � satis�es binary. However, it is
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not always the case of an existing alternative like c: Therefore, we need to �nd a

third pro�le S such that Rfa;b;cg = Sfa;b;cg and Qfa;b;dg = Sfa;b;dg:

Claim: Let R be an ordering on fa; b; cg and Q be an ordering on fa; b; dg with

Rfa;bg = Qfa;bg: Then there exist an ordering S on fa; b; c; dg such that Rfa;b;cg =

Sfa;b;cg and Qfa;b;dg = Sfa;b;dg:

Proof: Construct S as follows; order fa; b; cg same as on R: Then insert d in a

way that ordering R is same with the ordering Q on fa; b; dg: Since this is always

possible, the proof is done.

Then, �(R)fa;b;cg = �(S)fa;b;cg and �(Q)fa;b;dg = �(S)fa;b;dg since � satis�es

ternary. By deleting c; we have �(R)fa;bg = �(S)fa;bg and similarly, by deleting d,

we have �(Q)fa;bg = �(S)fa;bg which means that �(R)fa;bg = �(Q)fa;bg: Hence, �

satis�es binary.

Theorem 8 Let #A � 4: Then, ternary implies binary.

Proof. Take any SWF � which satis�es ternary and take any X � A with

#X = 4: Also for any fa; bg 2 X; take any two pro�les R;Q 2 <N with Rfa;bg =

Qfa;bg:

Claim1: � satis�es quaternary.

Proof: Let X = fa; b; c; dg. Also take any R;Q 2 <N with Rfa;b;c;dg =

Qfa;b;c;dg: Since X has 4 elements, then there are 6 doubletons. Take any double-

ton, say fa; bg: Then, Rfa;b;cg = Qfa;b;cg: Since � satis�es ternary, then �(R)fa;b;cg =

�(Q)fa;b;cg:Hence, by deleting c; we get �(R)fa;bg = �(Q)fa;bg: Therefore, �(R)fa;b;c;dg =

�(Q)fa;b;c;dg which means that � satis�es quarternary.
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After showing that � satis�es quarternary, we are sure that � induces a SWF

�0 on X: Now, we want to show that �0 satis�es ternary.

Claim2: �0 satis�es ternary.

Proof: Let T be a triple of alternatives in X: Take any R;Q 2 <N restricted

to X with RT = QT : Since � is ternary, �(R)T = �(Q)T : Moreover, since �(R)T =

�0(RX)T and �(Q)T = �0(QX)T ; we have �0(RX)T = �0(QX)T : Hence, �0 satis�es

ternary.

Next step is to show that �0 satis�es binary.

Claim3: �0 satis�es binary.

Proof: By using Theorem 7, �0 satis�es binary.

Now, we get �0(RX)fa;bg = �0(QX)fa;bg since �0 satis�es binary. Also, by de�-

nition of �0; we have �(R)X = �0(RX) and �(Q)X = �0(QX): If we restrict these

orderings on fa; bg; we get �(R)fa;bg = �0(RX)fa;bg and �(Q)fa;bg = �0(QX)fa;bg:

Since �0(RX)fa;bg = �0(QX)fa;bg; we have �(R)fa;bg = �(Q)fa;bg: Therefore, � satis-

�es binary.

Next theorem is a generalization of Theorem 7.

Theorem 9 Let #A = m+ 1 where m � 3: Then, m-ary implies (m� 1)-ary.

Proof. Take any SWF � which satis�es m-ary. Proof of theorem 7 is the case

where m = 3: So, suppose m > 3: Take any X � A with #X = m � 1 and take

any two pro�les R;Q 2 <N with RX = QX : There are only two elements in A�X:

Let�s denote them as c and d: Let C = X [ fcg and D = X [ fdg: Now, we need

to �nd a pro�le S such that RC = SC and QD = SD:
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Claim: Let R be an ordering on C and Q be an ordering on D with RX = QX :

Then there exists an ordering S on A such that RC = SC and QD = SD:

Proof: Construct S as follows; order C same as on R: Then insert d in a way

that ordering R is same with the ordering Q on D: Since this is always possible,

the proof is done.

Then, �(R)C = �(S)C and �(Q)D = �(S)D since � satis�esm-ary. By deleting

c; we have �(R)X = �(S)X and similarly, by deleting d, we have �(Q)X = �(S)X

which means that �(R)X = �(Q)X : Hence, � satis�es (m� 1)-ary.

Similarly, next theorem is a generalization of Theorem 8.

Theorem 10 Let #A � m+ 1 where m � 3: Then, m-ary implies (m� 1)-ary.

Proof. Take any SWF � which satis�es m-ary. Proof of theorem 8 is the case

where m = 3: So, suppose m > 3: Take any X � A with #X = m � 1 and take

any two pro�les R;Q 2 <N with RX = QX : Also take any two distinct elements

c; d 2 A � X: Let K = X [ fc; dg: As we have shown in proof of theorem 8,

ternary implies quaternary, similarly, m-ary implies (m+ 1)-ary. Thus, � induces

a SWF �0 on K: Also, �0 preserves the m-ary property of �: So, by theorem3,

�0 satis�es (m � 1)-ary. Also, by de�nition of �0; we have �(R)K = �0(RK) and

�(Q)K = �0(QK): If we restrict these orderings on X; we get �(R)X = �0(RK)X

and �(Q)X = �0(QK)X : Since �0(RK)X = �0(QK)X ; we have �(R)X = �(Q)X :

Therefore, � satis�es (m� 1)-ary.

Now, we are ready to present the main result of Blau (1971).

Theorem 11 Let #A > m and 1 < n < m: Then, m-ary implies n-ary.
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Proof of the theorem is an easy consequence of the preceeding theorems.

3.2 Contribution of Campbell and Kelly

Campbell and Kelly (2000a, 2007) follow a similar path as Blau (1971). As we

already know,m-ary independence cannot avoid the impossibility. What Campbell

and Kelly (2000a, 2007) did is to weaken the m-ary independence. Here are the

precise de�nitions and theorems that is stated.

De�nition 12 A SWF � satis�es weak unanimity if for any P 2 �N with x Pi y

8i 2 N; 8y 2 A� fxg; we have x ��(P ) y; 8y 2 A� fxg:

Weak unanimity is also a weaker version of Pareto optimality.

De�nition 13 A SWF � is anonymous if given any permutation � of N; and

given any P 2 �N ; �(P ) is also in �N and �(�(P )) = �(P ):

De�nition 14 A SWF � is neutral if given any permutation � of A; and given

any P 2 �N ; �(P ) is also in �N and �(�(P )) = �(P ):

De�nition 15 A SWF � satis�es independence of some alternatives (ISA) if given

any pair of alternatives x and y in A; there exist a proper subset X � A such that

8P;Q 2 �N with PX = QX ; we have �(P )fx;yg = �(Q)fx;yg:

De�nition 16 A SWF � satis�es weakest independence if for at least one pair of

alternatives x and y in A; there exists a proper subset X � A such that 8P;Q 2 �N

with PX = QX ; we have �(P )fx;yg = �(Q)fx;yg:
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De�nition 17 A subset X � A is said to be su¢ cient for fx; yg if 8P;Q 2 �N

with PX = QX ; we have �(P )fx;yg = �(Q)fx;yg:

Theorem 18 Let A is �nite and #A � 3: Then, there does not exist a SWF �

satisfying weak unanimity, nondictatorship, weakest independence and neutrality.

In order to prove theorem 18, we need to prove two lemmas.

Lemma 19 Let A is �nite and #A � 3: If a SWF � satis�es weakest independence

and neutrality, then it also satis�es ISA.

Proof. Take any SWF � which satis�es weakest independence and neutrality.

Since � satis�es weakest independence, 9a; b 2 A and 9B � A such that 8P;Q 2

�N with PB = QB; we have �(P )fa;bg = �(Q)fa;bg:

Claim: 9 c 2 A such that A� fcg is su¢ cient for fa; bg:

Proof: Since B is a proper subset of A; then there is at least one alternative

in A which does not belong to B: So let�s denote it as c: Clearly, B � A�fcg and

A� fcg is su¢ cient for fa; bg since B is su¢ cient for fa; bg:

Given any pair x; y 2 A; let � be a permutation with �(a) = x; �(b) = y and

�(c) = z:

Claim2: A� fzg is su¢ cient for fx; yg:

Proof: Suppose not. Then, there exist pro�les P;Q 2 �N with PA�fzg =

QA�fzg such that x�(P )fx;ygy and y��(Q)fx;ygx: Then consider the pro�les ��1(P )

and ��1(Q): Since PA�fzg = QA�fzg; then ��1(P )A�fcg = ��1(Q)A�fcg: By neutral-

ity, a�(��1(P ))fa;bgb and b��(��1(Q))fa;bga which violates the su¢ ciency of A�fcg

for fa; bg:
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Therefore, � satis�es ISA.

Lemma 20 Let A is �nite and #A � 3: If a SWF � satis�es weak unanimity,

weakest independence and neutrality, then it also satis�es IIA.

Proof. Take any SWF � which satis�es weak unanimity, weakest independence

and neutrality. Since � satis�es weakest independence and neutrality, then it also

satis�es ISA. Similarly, 9 c 2 A such that A� fcg is su¢ cient for fa; bg: Also we

know by Campbell and Kelly (2000a) that intersection of two su¢ cient sets for

fa; bg is also su¢ cient for fa; bg: then, by �niteness of A; there is a smallest set

which is su¢ cient for fa; bg and it is denoted by '(fa; bg): So, '(fa; bg) � A�fcg:

Claim: fa; bg � '(fa; bg):

Proof: Suppose not. Then, there are two cases;

case1: Both a and b is not in '(fa; bg):

Then, consider the pro�le P 2 �N with aPibPic; 8i 2 N; 8c 2 A � fa; bg: Let

Q 2 �N be another pro�le obtained from P by interchanging a and b in each

individual pro�le. So, we have PA�fa;bg = QA�fa;bg: Since '(fa; bg) � A � fa; bg;

then A � fa; bg is su¢ cient for fa; bg: Hence, �(P )fa;bg = �(Q)fa;bg: However, by

weak unanimity, a �(P )fa;bgb and b ��(Q)fa;bga which leads to a contradiction.

Therefore case1 does not hold.

case2: Either a or b is not in '(fa; bg):

If a 2 '(fa; bg) and b =2 '(fa; bg); then by neutrality it leads to a contradiction.

Hence, case2 does not hold as well.
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Therefore, we have fa; bg � '(fa; bg): So, c cannot be a or b: Then, by neu-

trality, for every c 2 A� fa; bg; A� fcg is su¢ cient for fa; bg: By �niteness of A

and repeated application of the intersection principle,

fa; bg =
\

c2A�fa;bg

A� fcg

is su¢ cient for fa; bg: Therefore, � satis�es IIA.

Proof. of Theorem 18. By Lemma 20, � satis�es IIA. By IIA and weak

unanimity, � satis�es Pareto Optimality. But, by Arrow�s Theorem, � cannot

satisfy nondictatorship.
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3.3 Independent Decisiveness and the Arrow Theorem

Denicolo (1998) shows that Arrovian impossibility still remains even if a weaker

condition is imposed instead of IIA. Here are the precise de�nitions and the theo-

rem.

De�nition 21 A subset K � N is said to be locally decisive over the ordered pair

(x; y) if for any pro�le R 2 <N with xPjy; 8j 2 K; we have x ��(R) y:

De�nition 22 A subset K � N is said to be decisive if it is locally decisive over

every ordered pair (x; y):

The following de�nition is stated by Baigent (1996).

De�nition 23 A subset K � N can enforce x against y if for any pro�le R 2 <N

with xPjy; 8j 2 K; there exists a pro�le R0 2 <N with Rfx;yg = R0fx;yg such that x

��(R0) y:

De�nition 24 A SWF a satis�es relational independent decisiveness if 8x; y 2 A;

K � N can enforce x against y; we have K is locally decisive over fx; yg:

Theorem 25 Let A is �nite and #A � 3: Then, there does not exist a SWF �

satisfying relational independent decisiveness, weak Pareto principle and nondic-

tatorship.

Lemma 26 For any K � N; if there exist a; b 2 A such that K is locally decisive

over fa; bg; then K is decisive.
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Proof. Take any SWF � which satis�es relational independent decisiveness

and weak Pareto principle. Also take any K � N: Suppose 9a; b 2 A such that

K is locally decisive over fa; bg: Then, take any pro�le R 2 <N with aPjb and

bPjc 8j 2 K and bPic; 8i 2 N � K where c is any di¤erent alternative from a

and b in A: By local decisiveness of K over fa; bg; we have a ��(R) b and by the

weak Pareto principle, we have b ��(R) c: Then, by transitivity of �(R); we have a

��(R) c: Hence, K can enforce a against c: By relational independent decisiveness,

K is locally decisive over fa; cg: Therefore, K is decisive.

Lemma 27 Let K is decisive and #K > 1: Then, there exists a proper subset of

K which is also decisive.

Proof. Partition K into K1 and K2: Take any pro�le R 2 <N with aPib and

aPic 8i 2 K1 and aPib and cPib 8i 2 K2: Since K is decisive, a ��(R) b: Now,

suppose a ��(R) c: Then, K1 can enforce a against c: Otherwise, 9 R0 2 <N with

aP 0i c 8i 2 K1 such that for every R00 2 <N with R0fa;cg = R00fa;cg; we have c �(R0)

a: Since Rfa;cg = R0fa;cg for a suitable choice of R; we have c �(R) a which leads

to a contradiction. By relational independent decisiveness and lemma 26, K1 is

decisive.

Now, consider the case c �(R) a: By transitivity, c ��(R) b: Then, by the same

reasoning, K2 can enforce c against a: By relational independent decisiveness and

lemma 26, K2 is decisive. Hence, either K1 or K2 is decisive.

Proof. of the Theorem 25 By the weak Pareto principle, N is decisive.

Since it is �nite, there exists an individual that must be decisive by iterated ap-
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plication of Lemma 27.
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3.4 Contribution of Baigent

Another way of weakening IIA is the following; Given any two pro�les0 where

the individual orderings are the same for two alternatives, social ordering for these

alternatives cannot be reversed at those pro�les. It is �rst used by Campbell (1976)

and further that Baigent (1987) replaces IIA with these weaker version in Arrow�s

theorem and reaches a weaker version of Dictatoriality. However, Campbell and

Kelly (2000b) state that Baigent (1987) result fails when there are three alterna-

tives and they show that the result holds for at least four alternatives. Here are

the precise de�nitions and the theorem.

De�nition 28 An individual i 2 N is decisive over fx; yg if for any pro�le R 2

<N with xPiy; we have x ��(R) y:

De�nition 29 An individual i 2 N is semi decisive over fx; yg if for any pro�le

R 2 <N with xPiy; we have x �(R) y:

De�nition 30 A SWF � is weakly IIA i¤ given any distinct x; y 2 A and any

R;R0 2 <N with x Ri y () x R0i y 8i 2 N , we have x ��(R) y ) x �(R0) y.

De�nition 31 A SWF � is weakly dictatorial i¤ 9i 2 N such that x Pi y implies

x �(R) y 8R 2 <N ;8x; y 2 A:

Theorem 32 Let A is �nite and #A � 4: If a SWF � satis�es weak Pareto

optimality and weakly IIA, then it is weakly dictatorial.
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Lemma 33 For any SWF � that satis�es weak Pareto optimality and weakly IIA,

if K � N is semi decisive over fx; yg; then it is also semi decisive over all pairs

of alternatives.

Proof. Take any K � N and any pro�le R 2 <N with xPiy and yPiz 8i 2 K

and yPjz; 8j 2 N � K where z is any di¤erent alternative from x and y in A:

SupposeK is semi decisive over fx; yg: Then, x �(R) y: By weak Pareto optimality,

y ��(R) z and by transitivity of �(R); x ��(R) z: Then, for any other pro�le

R0 2 <N with Rfx;zg = R0fx;zg; we have x �(R) z by weakly IIA. Hence, K is semi

decisive over fx; zg: Similarly, if K is semi decisive over fx; zg; then K is semi

decisive over fx; yg: In general, semi decisiveness over fx; yg can be extended to

all pairs of alternatives.

Proof. of Theorem 32. By weak Pareto optimality, there exists a decisive

subset of N and therefore it is a semi decisive subset. Since N is �nite, there exist

a smallest semi decisive subset K 0 � N: Suppose #K 0 > 1: Take any K � K 0 and

any pro�le R 2 <N with xPiy and xPiz 8i 2 K and xPjy and zPjy; 8j 2 K 0 �K

and xPky; 8k 2 N � K 0: By weak Pareto optimality, x��(R)y: If z��(R)y then

K 0 � K is semi decisive over fy; zg by weak IIA condition. Then, by lemma 33,

K 0 � K is semi decisive over all pairs which leads to a contradiction. Therefore,

y�(R)z: Then, by transitivity, x��(R)z: But, by weak IIA, K is semi decisive

over fx; zg and by lemma 33, K is semi decisive over all pairs which leads to a

contradiction. Hence, #K 0 = 1: Therefore, there is a weak dictator.



CHAPTER 4

Social Choice without the Pareto Principle under Weak Independence

4.1 Introduction

In brief, the literature which explores the e¤ects of weakening IIA on the Ar-

rovian impossibility presents results of a negative nature. We revisit this literature

in order to be contribute a positive result. We show that under the weakening pro-

posed by Baigent (1987), the Arrovian impossibility can be surpassed by dropping

the Pareto condition: We characterize the class of quasi IIA SWFs and show that

this is a fairly large class which is not restricted to SWFs where the decision power

is concentrated on one given individual. In fact, this class contains SWFs that are

both anonymous and neutral. This positive result prevails when a weak version of

the Pareto condition is imposed.

Our �ndings pave the way to surpass the impossibility of Arrow (1951). More-

over, we establish that there is no tension between quasi IIA and the transitivity of

the social outcome. Thus, we also contrast the results of Wilson (1972) and Bar-

berà (2003) who show that the Pareto condition has little impact on the Arrovian

impossibility which is essentially a tension between IIA and the range restriction

imposed over SWFs.



20

4.2 Results

Baigent (1987) proves a version of the Arrovian impossibility where IIA and

dictatoriality are replaced by their following weaker versions:

De�nition 34 A SWF � is quasi IIA i¤ given any distinct x; y 2 A and any

P; P 0 2 �N with x Pi y () x P 0i y 8i 2 N , we have x ��(P ) y ) x �(P 0) y.

De�nition 35 A SWF � is weakly dictatorial i¤ 9i 2 N such that x Pi y implies

x �(P ) y 8P 2 �N ;8x; y 2 A:

Baigent (1987) establishes that every Pareto optimal and quasi IIA SWF is a

weak dictatorship. Nevertheless, we remark that, unlike the original version of the

Arrovian impossibility, the converse statement is not true: Although every weak

dictatorship is quasi IIA, there exist weak dictatorships that are not Pareto opti-

mal.1 Following this remark, we allow ourselves to the state a slight generalization

of this theorem of Baigent (1987), corrected by Campbell and Kelly (2000b)2:

Theorem 36 Let #A � 4. Within the family of Pareto optimal SWFs, a SWF

� : �N ! < is quasi IIA i¤ � is weakly dictatorial.

We now explore the e¤ect of being con�ned to the class of Pareto optimal

SWFs. The strict counterpart of T 2 � is denoted T �. Let � : � �! 2< stand

1 For example the SWF � where x �(P ) y 8x; y 2 A and 8P 2 �N is a weak dictatorship but
not Pareto optimal.

2 Baigent (1987) claims this impossibility in an environment with at least three alternatives.
Nevertheless, Campbell and Kelly (2000b) show the existence of Pareto optimal and quasi IIA
SWF when there are precisely three alternatives. They also show that the impossibility an-
nounced by Baigent (1987) prevails when there are at least four alternatives and even under
restricted domains.
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for the correspondence which transforms each T 2 � over A into a non-empty

subset of < such that �(T ) = fR 2 < : xTy =) xRy; 8x; y 2 Ag: To have a

clearer understanding of �, we recall that every T 2 � induces an ordered list

of �cycles�.3 A set Y 2 2Anf;g is a cycle (with respect to T 2 �) i¤ Y can be

written as Y = fy1; :::; y#Y g such that yi T yi+1 8i 2 f1; :::;#Y � 1g and y#Y T

y1. The top-cycle of X 2 2Anf;g with respect to T 2 � is a cycle C(X;T ) � X

such that y T �x 8y 2 C(X;T ), 8x 2 XnC(X;T ).4 Now let A1 = C(A; T ) and

recursively de�ne Ai = C(An
i�1
[
k=1

Ak; T );8i � 2. Given the �niteness of A, there

exists an integer k such that Ak+1 = ;. So every T 2 � induces a unique ordered

partition (A1; A2; :::::; Ak) of A. It follows from the de�nition of the top-cycle that

whenever i < j, we have xT �y 8x 2 Ai; 8y 2 Aj.

Lemma 37 Take any T 2 � which induces the ordered partition (A1; A2; :::::; Ak).

Given any Ai with no indi¤erences among alternatives and any x; y 2 Ai; we have

x R y and y R x; 8R 2 �(T ):

Proof. Take any T 2 � which induces the ordered partition (A1; A2; :::::; Ak).

Take any Ai, any x; y 2 Ai and any R 2 �(T ):If #Ai = 1; then x R y and y R x

holds by the completeness of R. As #Ai = 2 cannot hold we complete the proof

by considering the case #Ai = k � 3: Let Ai = fx1; x2; :::::; xkg: Suppose, without

loss of generality, x1R x2 and not x2 R x1: This implies x1 T � x2, as R 2 �(T ).

Moreover, as Ai is a cycle with no indi¤erences, 9x 2 Ai such that x2 T �x. Let,

3 We use the de�nition of "cycle" as stated by Peris and Subiza (1999).
4 The top-cycle, introduced by Good (1971) and Schwartz (1972), has been explored in detail.

Moreover, Peris and Subiza (1999) extend this concept to weak tournaments. In their setting, as
C(X;T ) is a cycle, @Y � C(X;T ) with y T � x 8y 2 Y , 8x 2 C(X;T )nY .
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without loss of generality, x2 T � x3: Thus, x2 R x3 by de�nition of � which implies

x1R x3 and not x3 R x1 by the transitivity of R. Again by the de�nition of �, we

have x1 T �x3: As Ai is a cycle, 9j 2 f4; :::::; k � 1g such that x3 T � xj: Suppose,

without loss of generality, j = 4: So x3 T � x4, hence x3 R x4, implying x1R x4 and

not x4 R x1, which in turn implies x1T � x4. So, iteratively, 8i 2 f4; ::::; k� 1g; we

have xi T � xi+1;which implies xi R xi+1 and moreover x1R xi+1 and not xi+1 R

x1: Hence, x1 T � xi+1: As Ai is a cycle, xk T � x1: So, xk R x1 by the de�nition

of �: Then, xi R xi+1;8i 2 f2; 3; :::; k � 1g and xk R x1 implies by transitivity of

R; x2 R x1 which leads to a contradiction. Therefore, x R y and y R x for all

x; y 2 Ai;8R 2 �(T ):

Thus for any T 2 � which induces the ordered partition (A1; A2; :::::; Ak) and

any R 2 <, we have R 2 �(T ) if and only if for any x; y 2 A

(i) x; y 2 Ai for some Ai =) xRy and yRx

and

(ii) x 2 Ai and y 2 Aj for some Ai; Aj with i < j =) xRy.

We now proceed towards characterizing the family of quasi IIA SWFs. Take

any aggregation rule f 2 � which satis�es IIA. By composing f with �, we get a

social welfare correspondence � � f : �N �! 2< which assigns to each P 2 �N a

non-empty subset �(f(P )) of <. Clearly, every singleton-valued selection of � � f

is a SWF.5 Let �f = f� : �N ! < j � is a singleton-valued selection of � � f g.

We write � = [f2��f . Interestingly, the class of quasi IIA SWFs coincides with

�:

5 We say that � : �N ! < is a singleton-valued selection of ��f i¤�(P ) 2 ��f(P ) 8P 2 �N .



23

Theorem 38 A SWF � : �N ! < is quasi IIA i¤ � 2 �:

Proof. To establish the �only if�part, let � : �N ! < be a quasi IIA SWF.

For any distinct x; y 2 A, we de�ne ffx;yg : f
x

y
;
y

x
gN ! fx

y
;
y

x
; xyg as follows: For

any r 2 fx
y
;
y

x
gN ,

ffx;yg(r) =

x

y
if x ��(P ) y for some P 2 �N with P fx;yg = r

y

x
if y ��(P ) x for some P 2 �N with P fx;yg = r

xy if x �(P ) y and y �(P ) x for all P 2 �N with P fx;yg = r

. As

� is quasi IIA, ffx;ygis well-de�ned. Thus f = fffx;ygg 2 �. We now show �(P ) 2

�(f(P )) 8P 2 �N : Take any P 2 �N and any distinct x; y 2 A. First let x

f �(P ) y. So ffx;yg(P fx;yg) =
x

y
. By de�nition of ffx;yg, we have x ��(Q) y for

some Q 2 �N with Qfx;yg = P fx;yg which implies x �(P ) y as � is quasi IIA. If y

f �(P ) x, then one can similarly y �(P ) x. Now, let x f(P ) y and y f(P ) x: So,

ffx;yg(P
fx;yg) = xy which, by de�nition of ffx;yg; implies x �(Q) y and y �(Q) x

for all Q 2 �N with Qfx;yg = P fx;yg, hence x �(P ) y and y �(P ) x. Thus, x f(P )

y =) x �(P ) y for any x; y 2 A, establishing �(P ) 2 �(f(P )):

To establish the �if�part, take any � 2 �. So there exists f 2 � such that

�(P ) 2 �(f(P )) 8P 2 �N . Suppose � is not quasi IIA. So, 9x; y 2 A and

9P;Q 2 �N with P fx;yg = Qfx;ygsuch that x ��(P ) y and y ��(Q) x: By the

de�nition of � we have x f �(P ) y and y f �(Q) x which implies ffx;yg(P fx;yg) =
x

y

and ffx;yg(Qfx;yg) =
y

x
, giving a contradiction as P fx;yg = Qfx;yg, thus showing that

� is quasi IIA.
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By juxtaposing Theorems 36 and 38, one can conclude that removing the

Pareto condition has a dramatic impact, as the class � of quasi IIA SWFs is fairly

large and allows those where the decision power is not concentrated on a single

individual. This positive result prevails when the following weak Pareto condition

is imposed:

De�nition 39 A SWF � is weakly Pareto optimal i¤ given any distinct x; y 2 A

and any P 2 �N with x Pi y 8i 2 N , we have x �(P ) y.

De�nition 40 An aggregation rule f 2 � is weakly Pareto optimal i¤ for any

x; y 2 A and any r 2 fx
y
;
y

x
gN with ri =

x

y
8i 2 N , we have ffx;yg(r) 2 f

x

y
; xyg.

Let �� stand for the set of weakly Pareto optimal and IIA aggregation rules

and �� = [f2���f .

Theorem 41 A SWF � : �N ! < is weakly Pareto optimal and quasi IIA i¤ �

2 ��:

Proof. To show the �only if� part, take any SWF � : �N ! < which is

weakly Pareto optimal and quasi IIA. For any distinct x; y 2 A, we de�ne ffx;yg :

fx
y
;
y

x
gN ! fx

y
;
y

x
; xyg as follows: For any r 2 fx

y
;
y

x
gN ,

ffx;yg(r) =

x

y
if x ��(P ) y for some P 2 �N with P fx;yg = r

y

x
if y ��(P ) x for some P 2 �N with P fx;yg = r

xy if x �(P ) y and y �(P ) x for all P 2 �N with P fx;yg = r

. As

� is quasi IIA, ffx;ygis well-de�ned. Thus f = fffx;ygg 2 �. Suppose, f is not
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weakly Pareto optimal. So, 9x; y 2 A and 9P 2 �N with x Pi y 8i 2 N such that

y f�(P ) x, implying ffx;yg(P fx;yg) =
y

x
: By de�nition of ffx;yg, we have y ��(Q)

x for some Q 2 �N with Qfx;yg = P fx;yg, contradicting that � is weakly Pareto

optimal, which establishes f = fffx;ygg 2 ��: We now show �(P ) 2 �(f(P ))

8P 2 �N : Take any P 2 �N and any distinct x; y 2 A. First let x f�(P ) y. So

ffx;yg(P
fx;yg) =

x

y
. By de�nition of ffx;yg, we have x ��(Q) y for some Q 2 �N

with Qfx;yg = P fx;yg which implies x �(P ) y as � is quasi IIA. If y f �(P ) x, then

one can similarly y �(P ) x. Now, let x f(P ) y and y f(P ) x: So, ffx;yg(P fx;yg) = xy

which, by de�nition of ffx;yg; implies x �(Q) y and y �(Q) x for all Q 2 �N with

Qfx;yg = P fx;yg, hence x �(P ) y and y �(P ) x. Thus, x f(P ) y =) x �(P ) y for

any x; y 2 A, establishing �(P ) 2 �(f(P )):

To show the �if� part, take any � 2 ��: So there exists f 2 �� such that

�(P ) 2 �(f(P )) 8P 2 �N . Take any distinct x; y 2 A and any P 2 �N with x Pi y

8i 2 N: By the weak Pareto optimality of f; we have ffx;yg(P fx;yg) 2 f
x

y
; xyg, hence

x f(P ) y, which implies x �(P ) y by the de�nition of �: Thus, � is weakly Pareto

optimal. The �if�part of Theorem 38 establishes that � is quasi IIA, completing

the proof.



CHAPTER 5

Conclusion

Within the scope of the preference aggregation problem, we contribute to the

understanding of the well-known tension between requiring the pairwise indepen-

dence of the aggregation rule and the transitivity of the social preference. As

Wilson (1972) shows, a SWF � : �N ! < is non-imposed1 and IIA if and only if �

is dictatorial or antidictatorial2 or null3. Thus, aside from these, any aggregation

rule which is IIA allows intransitive social outcomes. In case these outcomes are

rendered transitive according to one of the prescriptions made by �, we attain a

SWF which fails IIA but satis�es quasi IIA. In fact, as Theorem 38 states, the class

of quasi IIA SWFs coincides with those which can be attained through a selection

made out of the social welfare correspondence obtained by the composition of a

SWF that is IIA with �. This can be interpreted as a positive result, as the class

of quasi IIA SWFs is fairly rich and not restricted to those where the decision

power is concentrated on one individual. In fact, this class contains SWFs that

are both anonymous and neutral.4 Moreover, as Theorem 41 states, this positive

result prevails when a weaker version of the Pareto condition is imposed. Thus,

we can conclude that the transitivity of the social outcome can be achieved at a

1 � : �N ! < is non-imposed i¤ for any x; y 2 A, there exists P 2 �N with x �(P ) y.
2 � is anti-dictatorial i¤ 9i 2 N such that x Pi y implies y ��(P ) x 8P 2 �N ;8x; y 2 A:
3 � : �N ! < is null i¤ x �(P ) y 8x; y 2 A and 8P 2 �N .
4 For instance, the SWF in Example 2 of Campbell and Kelly (2000b), which shows the failure

of Theorem 36 for #A = 3, belongs to this class.
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cost of reducing IIA to quasi IIA and compromising of the strenght of the Pareto

condition - hence an escape from an impossibility of both the Arrow (1951) and

Wilson (1972) type.

This escape imposes indi¤erence in social preference, as quasi IIA and IIA co-

incide otherwise. One can ask for minimizing this imposition. It is straightforward

to see that given an aggregation rule f 2 �, there exists a unique selection of

� � f which minimizes the imposed indi¤erences in the social decision: Writing

(A1; A2; :::::; Ak) for the ordered partition induced by f(P ) 2 � at P 2 �N , take

�(P ) 2 �(f(P )) where x ��(P ) y 8x 2 Ai and 8y 2 Aj with i < j. On the other

hand, an open question of interest is the choice of the (non-dictatorial) f that

minimizes the imposed social indi¤erence. We conjecture, by relying on Dasgupta

and Maskin (2008), that this will be the pairwise majority rule.
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