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Abstract

By incomplete tournaments, we mean asymmetric binary relations over �nite

sets. Tournaments, which are complete and asymmetric binary relations, and tourna-

ment solutions are exhaustively investigated in the literature. We introduce the struc-

ture of incomplete tournaments, and we adapt three solution concepts -top cycle of

Schwartz (1972), Miller (1977); uncovered set of Fishburn (1977), Miller (1977) and

Miller (1980), Copeland solution of Copeland (1951)- established for tournaments to

incomplete tournaments. We axiomatize top-cycle, and investigate the characterization

of the uncovered set and the Copeland solution.



Özet

Eksik turnuvalar sonlu kümeler üzerindeki asimetrik ikili ba�g�nt�lard�r. Tamam-

lanm�ş asimetrik ikili ba�g�nt� olan turnuvalar ve turnuva çözümleri literatürde kap-

saml� bir şekilde incelenmiştir. Bu çal�şmada eksik turnuvalar�n yap�s� incelenmiş,

ve üç önemli turnuva çözümü- Schwartz (1972), Miller (1977) tepe döngüsü; Fish-

burn (1977), Miller (1977), Miller (1980) kaplanmam�ş elemanlar kümesi; Copeland

(1951) çözümü- eksik turnuvalara adapte edilmiştir. Tepe döngüsü karakterize edilmiş

ve kaplanmam�ş elemanlar kümesi ile Copeland çözümünün karakterizasyonu incelen-

miştir.
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Preface

Since Arrow, in 1951, proved the impossibility of rational collective decision

making, many propositions have been made to overcome the problem. Most of the

tournament solutions are proposed for breaking the cyclical majorities by scientists in

Economics and Voting Theory. Tournaments have also been a great interest in the �eld

of Psychology, while researching non-transitive preferences of individuals (Tversky

1969, Ng 1989). In sports, ranking teams according to their wins and losses is another

problem of choosing from a tournament. The design of the tournaments for sports

competitions is another area of research where mathematicians and social choice the-

orists are involved.

Completeness and transitivity are traditionally de�ned as the postulates for ra-

tionality. A rational individual is assumed to reveal complete preferences, because

any incomplete preference may lead to indecisiveness. However, it is very likely to

observe incomplete preferences when we deal with the psychological preferences. Be-

sides, an individual can possibly �nd it better to be indecisive over some alternatives.

Aumann (1962, p.446) explains the reasons for such a behaviour as follows: "Of all

the axioms of utility theory, the completeness axiom is perhaps the most questionable.

... For example, certain decisions that an individual is asked to make might involve

highly hypothetical situations, which he will never face in real life; he might feel that

he can not reach an honest decision in such cases. Other decision problems might be
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extremely complex, too complex for intuitive insight, and our individual might prefer

to make no decision at all in these problems."

It is common to think that the revealed preferences must be complete. Eliaz and

Ok (2006) argue that an agent can "reveal" indecisiveness between certain alternatives.

It is also an interest to model the behaviour of an individual under imperfect informa-

tion, and this situation can very well be represented by incomplete preferences.

So, the basis of incomplete preferences in individual choice is well-founded.

However, tournaments are usually interpreted as the outcomes of pairwise majority

voting. So, it is obtained "through" individual preferences. So, what can lead to in-

complete tournament? Let's think about a social planner or a modeler, who has some

missing information about individual's pairwise comparisons on some issues. The

planner may also have some restrictions disabling comparison of some alternatives. In

both cases the resulting binary relation may be written as an incomplete tournament.

In many sports tournaments like tennis, players do not play with every other player, so,

the resulting relation is not complete. The overall ranking of the players often depends

on the results of their matches, and also the strength of the players they play with. All

countries in Europe have football leagues. If our alternative set contains football teams

in Europe, then it is very likely that many teams do not play with each other.
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The solution concepts designed for choosing the best alternative(s) through a

tournament are usually inspired by the voting rules based on the pairwise majority

comparison of alternatives. In our work, we focus on the how to choose from asym-

metric binary relations, as we call �incomplete tournaments�. So, we will propose

ways to choose from possibly incomplete and possibly cyclic results of a majority vot-

ing.

This theses is organized as follows: We will �rst introduce some basic solution

concepts for tournaments in Chapter 1. After we introduce the main structure of the

incomplete tournaments in Chapter 2, we will go on with the solution concepts that we

propose for incomplete tournaments. We �nally axiomatize these solution concepts,

and this will be the end of Chapter 2.

In the very beginning of his book "Tournament Solutions and Majority Voting",

1997; Jean François Laslier adressed the question "given a tournament, which are the

best outcomes?" . Now, we will seek for an answer to the following question:

Given an incomplete tournament, which are the best outcomes?
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Chapter 1
Tournaments

Tournaments are complete and asymmetric binary relations over a �nite set.

They have been exhaustively investigated in social choice theory since 1950s as well

as in mathematics as connected graphs. In graph theory, tournaments are de�ned as

complete and asymmetric directed graphs: for any vertex x and any vertex y with

x 6= y, there exists exactly one of the two arcs, (x; y) or (y; x): If we adapt this to

voting theory, the arc (x; y) will mean x is preferred to y by a majority of voters.

When there is a team in a sports tournament that beats every other team, or,

if there is a candidate that is preferred to any candidate by a majority of the voters,

choosing this team or candidate as the winner is unquestioned. This element is the

"Condorcet winner" of the tournament. In graph theory, when a vertex x is collec-

tively preferred to other vertices, or in other words, all the arcs adjacent to x go from

x towards the other vertices, x is the equivalent of Condorcet winner. The number of

the arcs going form x to other vertices is called "the out-degree of x": However, we

know that a Condorcet winner does not always exist, and the problem of choosing

from a tournament arises under this circumstance.
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Many of great social choice theorists have proposed choice correspondences to

determine the best outcomes of a tournament. These correspondences are generally

called "tournament solutions".

We will emphasize the two very important tournament solutions, top-cycle and

uncovered set, which are crucial for this work. We will then introduce some well-

known tournament solutions.

1.1 Tournament Solutions

We willl �rst introduce some basic notions which are only valid for this chapter of

this work.

We will let A be a �nite set of alternatives. We write � for the set of complete

and asymmetric binary relations over A. Any T 2 � is called a tournament. A

tournament solution is a mapping f : � ! 2A: To any tournament T , a tournament

solution associates a nonempty subset f(T ) of "best" outcomes, called the choice set

at T . For any B � A; f(T jB) is a restriction of T on B:

The following are the de�nitions of some appealing properties that a solution

may satisfy. They are used to characterize or investigate the characterization of the

tournament solutions.

Condorcet Consistency
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f : � �! 2A satis�es Condorcet Consistency iff whenever xTy 8y 2 A; then

f(T ) = x:

Smith Consistency

f : � �! 2A satis�es Smith Consistency iff y =2 f(T ) () y is eliminated

by some x 2 f(T ):

Arrow's IIA

f : � �! 2A satis�es Arrow's IIA iff whenever T jB= T 0 jB; f(T jB) =

f(T 0 jB) where B � A:

Neutrality

We will de�ne � as a permutation of A: The binary relation T � is de�ned as

aT �b () ��1(a)T��1(b): For all T 2 �; f : � �! 2A satis�es neutrality iff

f(T �) = �[f(T )]:

Expansion

f : � �! 2A satis�es expansion iff f(T jB) \ f(T 0 jB) � f(T jB[B0).

Aizerman

f : � ! 2A satis�es Aizerman iff f(T jB0) � B � B0 =) f(T jB) �

f(T 0 jB0):
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Idempotency

f : �! 2A is idempotent iff f(f(T )) = f(T ):

1.1.1 The Top-Cycle

When a tournament T 2 � is not connected, it is possible to decompose it into its

strongly connected components. For any tournament T; there exists a strongly con-

nected graph which is called the top-cycle. All the arcs in this tournament T are

from the top-cycle to the out of it. De�ning it in terms of candidates or teams, it as-

signs the set of the alternatives that beat every other alternative directly or indirectly.1

Top-cycle always induces a strongly connected subtournament of the tournament.

Tournament solutions are characterized as satisfying some consistency axioms.

The main consistency axiom in the literature is the "Condorcet Consistency", which

requires to uniquely choose the Condorcet winner whenever it exists. The top-cycle

satis�es Condorcet transitivity. Another consistency requirement, called "Smith Con-

sistency", was introduced by Smith (1973) which was a weakening of the "Condorcet

transitivity". Condorcet transitivity required that any element in the choice set beats

every element outside. "Smith consistency" weakens this property by saying that if

1 An alternative x can either directly beat y (xTy; T being a complete and asymmetric binary rela-
tion) or it beats y through a path: for instance x beats z; z beats w; w beats y:(xTzTwTy)



8

the elements of one subset of the alternative set beats every element outside, then the

choice set must be from this set.

These consistency axioms both lead to the characterization of the top-cycle.

Top-cycle is the smallest choice correspondence which satis�es Condorcet transitiv-

ity (Schwartz 1972), while it is the largest choice correspondence satisfying Smith

consistency (Smith, 1973). The top-cycle choice correspondence was introduced by

Schwartz (1972) and Miller (1977).

Although the top-cycle choice correspondence satis�es these indispensable ax-

ioms, it is shown in many examples that it is an undesirably large set. Besides, it leads

to Pareto dominated outcomes in the choice set (Fishburn, 1977). This was an incen-

tive for social choice theorists to seek for "better" choice correspondences. However,

all of the choice correspondences proposed for tournaments assign sets which are

subsets of the top-cycle. Choosing inside the top-cyle turned out to be a requirement

for rationality of a choice correspondence. (Moon 1968, Schwartz 1972).

Schwartz (1986) de�nes the GETCHA (Generalized top-choice assumption) as

the minimal set with respect to set inclusion where each element beats every other

outside this set. GETCHA is de�ned for asymmeyric binary relations. Let us have an

asymmetric binary relation, say P on A; and Schwartz calls "P-undominated subset

of A" any set where no alternative outside this set beats any of the alternatives from

this set. Whenever this set is minimal with respect to set inclusion, then it is called

minimum "P -undenominated subset" of A: In case of missing relationships, we may
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have more than one of "P -undenominated subsets" GOCHA (Generalized optimal

choice axiom) is de�ned as the union of some sets, in which P -undenominated sub-

sets. Whenever we have a tournament T 2 � on A, both GETCHA and GOCHA

coincide with the top-cycle. More detailed information on GOCHA will be given in

the next chapter.

1.1.2 Uncovered Set

Fishburn (1977) investigated some Condorcet social choice functions that had been

proposed before. He also introduces another Condorcet social choice correspondence

which he names as "Fishburn's function". Fishburn induces complete binary relations

through the simple majority voting over his alternatives. Fishburn's function is based

on the notion that if everything that beats an alternative- say x- also beats y under

simple majority, and if x beats or ties something that beats y, then x is better than

y under simple majority comparisons. It is seen that Fishburn actually deals with

weak tournament as Peris and Subiza (1999) will call later. Fishburn function is "su-

perior" to Schwartz function in terms of some properties that Fishburn has de�ned.

Please note that Schwartz function is equivalent to the top-cycle choice correspon-

dence in Fishburn's work. One of these properties is the Pareto Optimality condition

of Fishburn. This condition relates the choice function with the voters linear orders.

It requires that if for an alternative - say y� there is at least one alternative -say x�

which is ranked above in all individual pro�les, then the choice corresponce should
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not choose y: Schwartz function does not satisfy this property, while the Fishburn

function does. Another appealing property of the Fishburn function compared to

Schwartz function is its discriminability property. Discriminability is a condition re-

lated to "how small" the choice set is. Both Fishburn function and Schwartz function

turn out to have low discriminability. However, Fishburn's function is more disrimi-

nating than Schwartz's Function since Fishburn shows that if we ignore ties, then the

Schwartz's function will assign a superset of the Fishburn's functions.

After de�ning the Condorcet set (or minimal undominated set, which are equiv-

alent to the top-cycle) in his 1977 work, Miller (1980) seeks a choice correspondence

which is not as large as the Condorcet set, and which does not give Pareto dominated

outcomes. He de�nes the covering relation for complete, asymmetric and irre�ex-

ive binary relations. What he does in this further work is to de�ne the "Uncovered

Set" through the covering relation. The uncovered set is the set of the alternatives

that are not covered as well as it is the set of the alternatives that reach every other

alternative at most in two steps. Consequently, he �nds out that the uncovered set

is the re�nement of the Condorcet set. Miller (1980) also points out that if x cov-

ers y, then the Copeland score (dominion as Miller calls) of x must be larger than

y's. By pointing out this, he shows that Copeland winner is a subset of the uncovered

set. He links the uncovered set with the sophisticated voting, cooperative voting and

electoral competition.
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Shepsle and Weingast (1984) gives a full characterization of the uncovered set

as the equilibrium set of a sophisticated voting agenda. Mc Kelvey (1976) states in

his theorem that from any initial point, there is an agenda that will lead sincere voters

to any terminal point. Shepsle and Weingast show that from any initial point, there

is an agenda that will lead sophisticated voters to any point not covered by the initial

point. They use the term sophisticated voting as strategic voting in an institutional

context. They de�ne sophisticated agenda algorithm, and Banks (1985) �nds that

this algorithm ends up in the top-cycle of the tournament restricted on the uncovered

set. In Shepsle and Weingast work, uncovered set is characterized through the two

step principle as being the set of points which beat any other point by a path of length

one or two.They also announce that the uncovered set is always a subset of the Pareto

optimal outcomes.

The uncovered set is axiomatically characterized by Moulin (1986) based on

the expansion axiom borrowed from rationalizable choice functions. The theorem of

Moulin is the following:

Theorem (Moulin 1986): The uncovered set satis�es Neutrality, Arrow's IIA

and Expansion. Conversely any mapping satisfying Neutrality, Arrow's IIA, Expan-

sion and Condorcet consistency must contain the uncovered set

The theorem states that uncovered set is the smallest choice correspondence

with respect to set inclusion satisfying Neutrality, Arrow's IIA and Expansion and

Condorcet consistency.
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1.1.3 Copeland Solution

The Copeland score of an alternative is the number of alternatives beaten by that

alternative. A Copeland winner of a tournament is an alternative with the highest

Copeland score. It is proposed by Copeland (1951) and used in variety of �elds, in-

cluding biology as in Landau (1953); graph theory as in an den Brink and Gilles

(2003); economics as in Paul (1997); computer science as in Singh and Kurose

(1991) and social choice theory as in Moulin (1986). Rubinstein (1980) charac-

terizes the �Copeland welfare function� as a method to rank the participants of a

tournament. This characterization is through neutrality, Arrow's IIA and a type of

strong monotonicity. Henriet (1985) extends this characterization to environments

which allow ties between candidates. Moreover, he gives three characterization of

the �Copeland solution�which chooses among the participants of a tournament.

Copeland solution is always included in the uncovered set, and followingly, in

the top-cycle.

1.1.4 Some other tournament solutions

While choosing inside the top-cycle of a tournament has been a rationality require-

ment, most other solution concepts developed after uncovered set turned out to be the

re�nements of the uncovered set. One of them is the minimal covering set (Dutta,

1988), which was introduced as a Von-NeumannMorgenstern solution concept, satis-

fying both internal and external stability axioms. Minimal covering set is also de�ned
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through the covering relation. It is included in the top-cycle and also in uncovered

set.

Slater (1961) proposed the Slater Solution which is based on the idea of ap-

proximating a tournament by a linear order. One takes the usual distance between

graphs and considers linear orders at minimal distance from the tournament, then the

solution is by de�nition the set of outcomes which are top-element of one of these

closest orders.

1.1.5 Weak Tournaments

Peris and Subiza (1999) generalize some important tournament solutions to the con-

text in which ties are possible. Any complete binary relation will be called a weak

tournament. Two sports team may tie. Two candidates may obtain equal number

of votes when mutually compared. In this work named "Condercet choice corre-

spondences for weak tournaments", top-cycle, uncovered set and minimal covering

set solutions are generalized to weak tournaments context from a normative point of

view. In all of these generalizations, whenever the binary relation of interest corre-

sponds to a tournament, the extended weak tournament solution coincides with the

tournament solution.



14

Chapter 2
Incomplete Tournaments

2.1 Basic Notions

Let A be a �nite set of alternatives. We write � for the set of asymmetric binary

relations over A. Any T 2 � is called an incomplete tournament.

For anyX 2 2A; for any couple (x; y) 2 X�X;we say that �a path P (x; y)� is

the length of the shortest distance from x to y: P (x; y) is found through the sequence

�

xh
	

h=1;:::;H
in X such that x1 = x; xh = y and xhTxh+1 for all h = 1; :::; H � 1:

If there is no such sequence from x to y; then P (x; y) =1:We say that x reaches y

(or y is reachable by x) iff there is a path from x to y:

For any x; y 2 X with neither xTy nor yTx; we write x 
 y:We will denote

by T jX the restriction of T on X: T jX is connected iff @ nonempty strict subset Y

of X such that x 
 y, 8x 2 X n Y and 8y 2 Y:We say that T jX is a strongly con-

nected graph iff for any pair x; y 2 X; x is reachable by y: The maximal strongly

connected subgraphs of a strongly connected graph are called �strongly connected

components�. For any X 2 2A we will denote by CT (X) the set of strongly con-

nected components on X induced by T 2 �:
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2.2 The Structure of an Incomplete Tournament

Tournaments, which are complete and asymmetric binary relations, possibly admit

cycles as we interpret them as pairwise majority voting outcomes. For a �nite tour-

nament, instead of linear order of the alternatives, we may have a linear order of

�cycles�, in which it is possible to have a unique alternative. We call the maximal

cycle of this linear order �top-cycle�. In light of what we know about the structure

of tournaments, we investigate how this structure shapes under incompleteness. In

case of incomplete tournaments, it is possible that an element of the sequence is re-

peated to complete the cycle. This type of cycle will be called "weak cycle". The

elements belonging to a cycle in a tournament directly beat every element which is

ranked in one of the below cycles. Similarly, we can decompose an incomplete tour-

nament into its weak cycles in which the alternatives belonging to the weak cycle

�are not beaten� by any alternatives in a weak cycle below.

This leads to the following de�nition:

De�nition 1 Given T 2 �; Y � X 2 2A is an undominated set in X iff not xTy

for all x 2 X n Y and all y 2 Y:

This de�nition is similar to Schwartz's (1986) �-undominated subset de�niton.

An undominated set might contain a subset which is also an undominated set. Note

that X 2 2A is also an undominated set of itself. We follow Schwartz's tracks for
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the following de�niton. This de�nition below will restrict us to an undominated set

which does not contain any undominated set different than itself.

De�nition 2 (Schwartz 1986) Given T 2 �; Y � X is a minimal undominated set

in X iff Y is an undominated set in X according to T which is minimal with respect

to set inclusion.

If Y is a minimal undominated set, then T jY is a strongly connected compo-

nent.

We introduce a lemma for different minimal undominated sets.

Lemma 1 Given T 2 �; for the minimal undominated sets Y; Z � X of X with

Y 6= Z; Y \ Z = ?:

Proof. Let Y and Z are minimal undominated sets in X , and suppose for a contra-

diction that Y \Z 6= ?: For any x 2 Y \Z; either xTy or x 
 y for 8y 2 X n Y; in

particular 8y 2 Z nY: Similarly; for any x 2 Y \Z; since x 2 Z and Z is a minimal

undominated set in X , either xTy or x 
 y for 8y 2 X n Z; and in particular Y n Z:

These two results lead that Y \ Z is an undominated set itself, and this contradicts

that Y and Z are minimal with respect to set inclusion.

Proposition 2 Every incomplete tournament T 2 � admits the family of minimal

undominated sets fXigi=1;:::;k in X with 1 � k � n such that 8Xi; Xj with i 6= j,

the two sets are mutually disjoint.
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Proof. Take any T 2 � and X 2 2A: Suppose that T admits no minimal undom-

inated set. Since every minimal undominated set is an undominated set and X is

�nite, this leads that X admits no undominated set. This contradicts the fact that X

is an undominated set of itself. It is easily seen that the number of the minimal un-

dominated sets can be more than one but cannot exceed n; which is the cardinality of

X:

To keep up with the proof, now we have to show that for all minimal undomi-

nated sets Xi; Xj with i 6= j; xi 
 xj 8xi 2 Xi; 8xj 2 Xj: Since we already know

from lemma 2.1, these sets are distinct. We will suppose for a contradiction and with-

out loss of generality xiTxj for xi 2 Xi and xj 2 Xj: It immediately follows from

the de�nition of minimal undominated set that this case is not impossible.

This result is also mentioned in Schwartz's work. Note that the family of the

minimal undominated setsfXigi=1;:::;k for each X through T is uniquely de�ned.

2.3 Choosing from an Incomplete Tournament

An incomplete tournament solution is a mapping f : � � 2A �! 2A such that

f(T;X) � X 8(T;X) 2 �� 2A:

We directly borrow a very crucial axiom, Condorcet consistency, de�ned for

tournaments and we apply it to our world.

Condorcet consistency
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f : � � 2A �! 2A satis�es Condorcet consistency iff xTy 8y 2 X =)

f(T;X) = x

This axiom is very well known and it requires that the solution concept must

choose the Condorcet winner whenever it exists.

Before we de�ne a crucial axiomwhich is Smith Consistency, we will introduce

a binary relation called "elimination".

De�nition 3 For any pair x; y 2 X; x eliminates y in X iff P (x; y) = k and

P (y; x) =1:

Elimination is transitive and not complete.

Smith Consistency

f : � � 2A �! 2A satis�es Smith Consistency iff y =2 f(T;X) () y is

eliminated by some x 2 f(T;X):

So, any nonchosen outcome is eliminated by some chosen outcome.

In tournaments, some other axioms are used to characterize the solution con-

cepts. These are adapted into the world of incomplete tournaments.

Arrow's IIA

f : ��2A �! 2A satis�es Arrow's IIA iff whenever T jX= T 0 jX ; f(T;X) =

f(T 0; X):

Neutrality
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We will de�ne � as a permutation of A: The binary relation T � is de�ned as

aT �b () ��1(a)T��1(b): For all T 2 � and all X 2 2A; f : � � 2A �! 2A

satis�es neutrality iff f(T �; X) = �[f(T;X)]

Expansion

f : ��2A �! 2A satis�es expansion iff f(T;X)\f(T;X 0) � f(T;X [X 0).

Aizerman

f : � � 2A �! 2A satis�es Aizerman iff f(T;X 0) � X � X 0 =)

f(T;X) � f(T;X 0):

Finally, we introduce a very important consistency axiom for incomplete tour-

naments, which is monotonicity. We will de�ne the following sets for x 2 X :

D+(T; x) = fy 2 X : xTyg; and D�(T; x) = fy 2 X : yTxg

Monotonicity

Take T; T 0 2 � such that T jX�fxg= T 0 jX�fxg for any x 2 f(T;X):

f : ��2A �! 2A satis�es monotonicity iff [D+(T; x) � D+(T 0; x) and D�(T 0; x) � D�(T; x)] =

x 2 f(T 0; X):

2.3.1 Incomplete Tournament Solutions
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Top-cycle

Using the structure of an incomplete tournament, and the properties of the top-

cycle for tournaments, we are ready to introduce our top-cycle:

De�nition 4 The top-cycle choice correspondence assigns the set TC(T;X) =

fx 2 X : @y 2 X that eliminates xg

One can easily check that the top-cycle choice correspondence of X can also

be de�ned as the union of minimal undominated sets that X admits. This set is

equivalent to Schwartz's GOCHA set. Schwartz introduces a characterization of this

set through the following conditions:

-nothing out of GOCHA beats anything in GOCHA.

-there is no subset, sayB; of GOCHA, say C(A) such that something inB beats

something in C(A)�B; and nothing in C(A)�B beats anything in B:

-if B is an undominated set of A; then some element of B belongs to GOCHA.

Through the Smith consistency axiom we de�ned for incomplete tournaments,

we characterize our top-cycle as follows:

Theorem 3 The unique smallest (with respect to set inclusion) choice correspon-

dence satisfying Smith Consistency is the top-cycle.
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Proof. Since top-cycle is the union of minimal undominated sets, it consists of ele-

ments which are not eliminated. So, it is obvious that top-cycle satis�es Smith con-

sistency. Now, we will let f(T;X) be a choice correspondence satisfying Smith con-

sistency, and suppose for a contradiction that f(T;X) is a strict subset of TC(T;X):

So, there is x 2 TC(T;X) n f(T;X). Since f satis�es Smith consistency, x is elim-

inated by some z 2 f(T;X). So, P (x; z) = 1; and P (z; x) = k: It immediately

follows that this contradicts with x being in the top-cycle, establishing the result.

The Uncovered Set

In tournaments, which are complete and asymmetric binary relations the un-

covered set choice correspondence assigns the set of the elements which can beat

every other alternative at most in 2 steps. The top-cycle is a superset of uncovered set

since it contains the elements which can beat every other alternative in some steps. If

we look for the alternatives that beat every other alternative at most in 2 steps in in-

complete tournaments, we face the serious problem of not being well-de�ned as the

following example illustrates:

Example 1 Let X = fa; b; c; dg and aTb; bT c; cTd; dTa: In this incomplete tour-

nament, none of the alternatives can beat all others at most in 2 steps.

However, if we change our de�nition of the uncovered set to �the set of the

alternatives that beat every other alternative at most in 3 steps�, then the uncovered
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set will be the whole set: fa; b; c; dg: Nonetheless, if we let X 0 = fa; b; c; d; eg and

aTb; bTc; cTd; dTe and eTa; this will not work

Take any T 2 �; :and X 2 2A: We know that X will admit the family of

minimal undominated sets. For all x 2 Y where Y is a minimal undominated set in

X; we de�ne the maximum attainable path as P (x) = maxfP (x; y)y2Y�fxgg:

De�nition 5 For any Y 2 CT (X); the minimax choice correspondenceM : Y !

2Y assigns the set M(T; Y ) = fx 2 Y : P (x) � P (y) 8y 2 Y g: The uncovered

set UC : � � 2A ! 2A of an incomplete tournament T in X is UC(T;X) =

S

Y 2CT (X)

M(T; Y ).

In case of tournaments, when we seek for the set of the alternatives that beat

every other alternative at most in n�1 step, where n is the cardinality ofX;we obtain

the top-cycle. When we limit ourselves to 2 steps, the result is the uncovered set. It

is obvious that 2 steps principle may not give any solution and is not well-de�ned

in the case of incomplete tournaments. However, there is something in between top-

cycle and uncovered set, which, for example, is the set of the alternatives that beat

every other at most in 3 steps, when 3 < n � 1:. For incomplete tournaments, we

seek for the minimum number of steps that will give us a well de�ned set for each

minimal undominated set, and that gives us the minimax choice correspondence.. By

de�nition of the uncovered set, it will always be inside the top-cycle.
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An immediate result will link the uncovered set in tournaments with the sign

uncovered set. Before we present it, we should introduce some very well known

de�nitions from the world of tournaments. let us introduce a very well known lemma

by Shepsle and Weingast (1982).

Uncovered set is known to be the smallest set that satis�es neutrality, Ar-

row's IIA, expansion and Condorcet consistency in the world of tournaments (Moulin

1986). We expect that ourminimax choice correspondence satis�es the versions of

these axioms in our world. However, it is not the case.

Proposition 4 The minimax choice correspondence satis�es Monotonicity, Arrow's

IIA, and Neutrality.

Proof. Arrow's IIA and neutrality are straightforward. To show that monotonicity

is satis�ed let T; T 0 2 � and Y 2 CT (X). Letting x 2 M(T; Y ); suppose we have

T jY�fxg= T 0 jY�fxg; D
+(T; x) � D+(T 0; x); and D�(T 0; x) � D�(T; x): Since

x 2 M(T; Y ); P (x) � P (y) 8y 2 Y: This condition is still true for (T 0; Y ) under

these conditions. So, x 2M(T 0; Y ) andM satis�es monotonicity.

Proposition 5 The minimax choice correspondence does not satisfy Expansion or

Aizerman.

Proof. We produce an example showing that Expansion or Aizerman are not satis-

�ed.
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Let Y = fa; b; c; d; e; b0; e0; c0; d0g; and we have the following graph through

T 2 �:

a

b’

e’

c’d’

b

c

e
d

a

b’

e’

c’d’

b

c

e
d

Expansion: Let Y1 = fa; b; c; d; eg and Y2 = fa; b0; c0; d0; e0g: The correspond-

ing minimax set areM(T; Y1) = fa; b; c; d; eg andM(T; Y2) = fa; b0; c0; d0; e0g: Al-

though a 2M(T; Y1) \M(T; Y2); it is not inM(T; Y1 [ Y2): M(T; Y1 [ Y2) = feg;

and expansion is violated.

Aizerman: For the same incomplete tournament; we have feg � Y1 � (Y1 [

Y2): However,M(T; Y1) is not a subset ofM(T; Y1 [ Y2):

Given a tournament, minimax choice correspondence coincides with the un-

covered set.

In tournaments which are complete and asymmetric binary relations, there is

another solution which coincides with the Uncovered set. Finding the minimum

number of arrows to be reversed for each alternative to beat every other at most

in two steps and choosing the alternative with the minimum number of necessary

reversals would give us the Uncovered set. Now, we will adopt this to incomplete

tournaments:
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let D+(x; T jY )) = fx0 2 Y : xTx0g. The completion score of x in T jY is

de�ned as the minimal integer s(x) such that there exists T 0 on Y such that:

-D+(x; T ) � D+(x; T 0)

-8x0 2 Y; P (x; x0) � 2

-jD+(x; T 0)�D+(x; T )j = s(x)

The completion score of x 2 Y is the minimum number of additional points in

Y that x must defeat in order to defeat every point at most two steps. It follows from

de�nition that these additional points correspond to either an arrow reversal in T jY

or an additional arrow in T jY :

De�nition 6 Let T 2 � and Y 2 CT (X). For any x; x0 2 Y , x is said to domi-

nate x0 by min completion if s(x) < s(x0). Y mc denotes the subset of undominated

elements of any Y 2 CT (X).

De�nition 7 TheMin-completion uncovered set is de�ned byUCmc(T;X) =
S

Y 2CT (X)

Y mc:

It follows from the well-known characterization of uncovered set thatUCmc(T ) =

UC(T ) whenever T is complete.
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Copeland Solution

In a very recent work, Sanver et. al show that minimizing the number of steps

from an alternative to the others gives us the Copeland solution in tournaments. The

following de�nition originates from this result:

De�nition 8 Given T 2 �; Y 2 CT (X); the sum score of y 2 Y is sum(y) =

P

x2Y

P (y; x): The minisum choice correspondence MS : Y ! 2Y assigns the set

MS(T; Y ) to each T 2 � the alternatives with the minimum sum scores:MS(T; Y ) =

fy 2 Y : sum(y) � sum(x) 8x 2 Y g The Copeland solution C : � � 2A ! 2A of

T in X is C(T;X) =
S

Y 2CT (X)

MS(T; Y ):

A Set Theoretical Comparison

We have already shown that UC � TC: Now we will investigate the relation-

ships between the other solution concepts.

Although the Copeland solution is included in the top-cycle for complete case,

this is no longer true in incomplete tournaments. The following example shows that

they may even be disjoint:

Example 2 Let X = fa; b; c; d; e; f; gg and we have the following strongly con-

nected component:
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f

b

a

e

d

c

g f

b

a

e

d

c

g

In this incomplete tournament sum(f) = 9; which is the minimum among

the alternatives. However, f needs 3 steps to reach e; while e can reach all other

alternatives at most in 2 steps. The sum score of e is sum(e) = 10: So,MS(T;X) =

ffg while M(T;X) = feg; showing that these two choice correspondences, and

followingly the uncovered set and the Copeland solution can assign distinct sets in

incomplete tournaments.

Proposition 6 There exist X and T 2 � such that UCmc(T ) \M(T ) = ?:

Proof

Let X = fa; b; c; d; e; f; gg [fb0; c0; d0; e0; f 0; g0; h0g and let T 2 � be de�ned

as follows:

- aTbTcTdTeTfTgTa

- aTb0Tc0Td0Te0Tf 0Tg0Th0Ta

- aTd

- dTc0

It is easily checked that,

-Maxy2Y P (d; y) = 6
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-Maxy2Y P (z; y) = 7 for z = a; c; f 0; g0; h0

-Maxy2Y P (z; y) = 8 for z = b; g; e0

-Maxy2Y P (z; y) = 9 for z = f; d0

-Maxy2Y P (z; y) = 10 for z = e; c0

-Maxy2Y P (b0; y) = 11

Hence,M(T ) = fdg. And, s(a) = 4 and s(d) = 5. So,

- d must defeat g in at most 2 steps =) either dT 0f or dT 0g

- d must defeat c in at most 2 steps =) either dT 0b or dT 0c

- d must defeat b in at most 2 steps =) either dT 0a or dT 0b

- d must defeat b0 in at most 2 steps =) either dT 0a or dT 0b0

- d must defeat e0 in at most 2 steps =) either dT 0d0 or dT 0e0

- d must defeat f 0 in at most 2 steps =) either dT 0e0 or dT 0f 0

- d must defeat g0 in at most 2 steps =) either dT 0f 0 or dT 0g0

- d must defeat h0 in at most 2 steps =) either dT 0g0 or dT 0h0

A way to minimize the number of additional points defeated by d is to retain

dT 0f , a, b, e0, g0,so that s(d) = 5. Furthermore, a defeats any other point in at most

two steps if one adds up to the existing arrows the following: aTf , d0; f 0; h0, so that

s(a) � 4. It is obviously seen that actually s(a) = 4: Thus, UCmc(T ) \M(T ) = ?,

which concludes the proof.



29

References

[1] Banks JS (1985) Sophisticated Voting Outcomes and Agenda Control. Soc
Choice Welfare 1: 295-306

[2] Brink R and RP Gilles (2003), Ranking by outdegree for directed graphs,
Discrete Mathematics 271, 261-270

[3] Copeland AH (1951) A Reasonable Social Welfare Function. University of
Michigan, Ann Arbor, mimeo

[4] Dutta B (1988) Covering sets and a new Condorcet choice correspondence.
Journal of Economic Theory 44: 63-80

[5] Dutta B, Laslier (1999) Comparison functions and choice correspondences
Social Choice and Welfare 16: 513-532

[6] Fishburn PC. (1977) Condorcet Social Choice Functions. SIAM Journal of
Applied Mathematics 33: 469-489

[7] Henriet (1985) The Copeland Choice Functions: an Axiomatic Characteri-
zation. Soc Choice Welfare 2: 49-63

[8] Laffond G, Laine J, Laslier JF (1996) Composition consistent tournament
solutions and social choice functions. Soc Choice Welfare 13:75-93

[9] Laffond G, Laslier J-F, Le Breton M (1993) The Bipartisan set of a tourna-
ment game. Games and Economic Behavior 5: 182-201

[10] Laffond G, Laslier J-F, Le Breton M (1995) Condorcet Choice Correspon-
dences: A Set-Theoretical Comparison. Math Soc Sci 30: 25-35

[11] Laslier J-F (1997) Tournament Solutions and Majority Voting. Studies in
Economic Theory 7. Springer, Berlin Heidelberg New York

[12] Landau, HG (1953) On dominance relations and the structure of animal so-
cieties: III The condition for a score structure, Bulletin of Mathematical
Biology; 143-148



30

[13] Miller NR (1977) Graph theoretical approaches to the theory of voting, Amer-
ican Journal of Political Science

[14] Miller NR (1980) A New Solution Set for Tournaments and Majority Voting:
Further Graph-Theoretical Approaches to the Theory of Voting. Am J Polit
Sci 24: 68-96

[15] Moulin H (1979) Dominance solvable voting schemes, Econometrica 47:1337-
1351

[16] Moulin H (1986) Choosing from a tournament, Social Choice and Welfare
3:271-291

[17] Paul, S (1997) The quality of life: An international comparison based on
ordinal measures, Applied Economics Letters, 4, 411 - 414

[18] Peris J, Subiza B (1999) Condorcet choice correspondences for weak tour-
naments. Soc Choice Welfare 16: 217-231

[19] Rubinstein, A (1980) Ranking the participants in a tournament , SIAM 98,
108-111

[20] Schwartz T (1972) Rationality and the myth of maximum, Nous 6:97-117

[21] Schwartz T (1986) The Logic of Collective Choice. Columbia University
Press, New York

[22] Shepsle and Weingast (1984) Uncovered sets and sophisticated outcomes
with implications for agenda institution, American Journal of Political Sci-
ence 28:49-74

[23] Singh, S and Kurose, J (1991), Electing leaders based upon performance:
The delay model, IEEE 11th International Conference on Distributed Com-
puting, 464�471

[24] Slater, P (1961), Inconsistencies in a schedule of paired comparisons , Bio-
metrika 48.303.312

[25] Smith (1973) Aggregation pf preferences with a variable electorate, Econo-
metrica 41:1027-1041


