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Abstract

We study committee election models where voters' approvals over candidates are

collected and the election outcome is determined according to a predetermined voting

rule, in particular issue-wise majority rule. The properties of these models are inves-

tigated with a special attention to representativeness of the election outcomes, where

representativeness relates to the way they are consistent with the voters' preferences

over committees.



Özet

Bu çal�şmada, seçmenlerin adaylar hakk�ndaki onaylar�n�n topland��g� ve seçim

sonucunun önceden belirlenmiş bir seçim kural�na, özelde ço�gunluk kural�na gore be-

lirlendi�gi komite seçimi modelleri incelenmektedir. Bu modellerin özellikleri, seçim

sonuçlar�n�n temsiliyet özelliklerine odaklanarak araşt�r�lmaktad�r. Temsiliyet, seçim

sonuçlar�n�n seçmenlerin komite tercihleriyle tutarl�l��g� ile ilişkili olarak tan�mlan-

m�şt�r.



Acknowledgments

To begin with, I would like to thank to Jean Lainé not just for the long hours

he spent with me and for me in this work, but also for all his being so nice and kind,

for all his understanding, thoughtfulness and fun, and certainly for all the coffee, tea,

herbal tea and espresso he prepared for us. I know that I am incredibly lucky to have

the chance to work with such a good profesor and friend.

For sure, I owe to Remzi Sanver, who introduced us this �eld, gave us the most

enthusiastic talks in each of his lessons, encouraged us to keep on with our ideals and

let us understand what it is like to be a part of academic life. Without him I could

imagine myself working in front of a computer in a bank in stead of the life I am quite

happy to have now.

Special thanks to Jean-Fraçois Laslier and Gilbert Laffond, who have listened to

me and contributed to this work with their valuable comments and questions. It meant

a lot to me to be able to present my studies to those two names, who are extensively

equipped and experienced in this �eld, at an early stage of my academic life.

Most of this study was shaped during my visit to Rennes, France, where I could

work with Jean Lainé. I really want to thank to Joelle, Jeanne and Marc for letting me

stay at their place during this time, being great hosts and friends and trying to consume

what I've cooked for them despite the lack of the required ingredients there.

Certainly, one can never accomplish this kind of study without the supports and

encouragement of the people around. Thanks to all friends, whose names can not



be mentioned one by one here, and my family for just being there whenever I need.

Special thanks to �Irem, Özer and Ceyhun for all kind of support and friendship during

our master years.

I am indebted to TÜB�ITAK-B�IDEB for �nancial support during my master ed-

ucation and for the extra funds they raised to present a part of this work in SCW 2008

in Montreal, Canada.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Literature on satisfactory outcomes with majority voting . . . . . . . . . 5

1.1 Search for equilibrium in spatial models of voting . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 d-majority equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Weaker equilibrium concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Issue-wise majority rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Search for stable outcomes in committee elections . . . . . . . . . . . . . . . . . . . . . . 16

2 Approval balloting and committee elections . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Hamming extension rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Minisum and minimax committees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Representativeness of approval balloting in unrestricted
committee elections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Minisum committees under majority will . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Pareto-ef�ciency of the minisum committees . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Pareto-ef�ciency under Hamming criteria . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 A characterization result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



4 Representativeness of approval balloting in �xed-size
committee elections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Issue-wise majority rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Sequential approval balloting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



1

Preface

Committee election problems are particular types of multidimensional choice

problems where a wide range of approaches and models have been developed, solution

rules have been proposed and underlying properties have been analyzed. What makes

committee elections a signi�cant voting problem is its frequency of being realized as

a real-life case. In other words, rather than an abstract theory, committee elections

embrace an applied nature and the work done in this �eld conveys ideas applicable to

real life, either in state politics or more basic problems such as the election of a school

committee.

Two main approaches to committee election problems should be distinguished.

First, committees can be assessed in accordance with the outcomes they produce. From

this perspective what the voters care about and decide accordingly is not the candidates

or committees by themselves but the actions that would be performed by those com-

mittees. This approach rests upon an outcome function, which assigns to each possible

combination of candidates one or several outcomes, e.g.; elements of some space of

policy decision.

A second approach, that this study adopts, is regarding a committee election

problem as the election of a subset from a set of candidates. Given a society of vot-

ers, and a set of candidates, a predetermined voting rule is applied, which necessarily

consists of balloting and selection procedures in order to assign candidates as the com-

mittee members. This approach brings forth a large amount of variations in the design
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of the models. A committee may either be composed of hierarchic positions such as

the chair, major members and secondary members, or it can simply consist of equiva-

lent members such as in the case of assemblies. This symmetry or asymmetry of the

committees will in�uence the voting rule to be applied. Another potential asymme-

try may result from speci�c characteristics candidates may share or not. This suggests

that committee members should be chosen from different sets of candidates. Gender

restrictions or age restrictions can be given as examples. Furthermore, candidates may

have positions, which will determine the votes they will get from the voters. The case

of ideological positions where the voters vote according to the distance between their

own position and the relative positions of the candidates is the best-known example for

this interpretation of candidates. To concretize, candidates have positions on a [0,1]

line, 0 denoting extreme left and 1 denoting extreme right and voters have their own

positions in that line and vote in favor of the speci�ed number of candidates that are

closest to their own positions.

Apart from various candidate interpretations, those models may differentiate ac-

cording to the balloting procedures. Voters may cast their ballots either candidate-wise

or on entire committees. Eventually, moreover many voting rules may be considered.

Plurality voting, simple majority voting and variations of majority voting, transferable-
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voting procedures, scoring systems are some of the voting rules that are utilized in both

real-life elections and in the theory of committee elections.

The committee election model that will be studied in this paper focuses on ap-

proval balloting and most of the time, issue-wise majority voting. By approval ballot-

ing, we mean that voters cast their votes over candidates in a dichotomous way, that is

they vote in favor of the committee that is composed of their approved candidates. The

election outcome is determined according to the number of votes each candidate has

collected. Two cases can be considered; either the committees without any size restric-

tion or the case of �xed size committees. In the former case, the elected committee

is the candidate-wise majority committee, that is, the committee including the major-

ity approved candidates. In the case of committees of given size k, we distinguish

between two procedures. In the �rst one, the number of approvals in each ballot is re-

stricted to the same size k; and the winning committee is determined according to the

issue-wise majority rule with an additional restriction over the permissible vote matri-

ces. In the second procedure, which we call sequential approval balloting, voters are

free to approve as many as candidates they wish and the elected committee involves

the k candidates having collecting the highest number of approvals (with eventually

some tie-breaking rule).

The main purpose of this paper is to study the properties of this committee elec-

tion method. Special attention is paid to the representativeness properties of its out-
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comes, where representativeness relates to the way they are consistent with the voters'

preferences over committees.

The paper is organized in the following way: The �rst chapter reviews the exist-

ing literature on multidimensional choice models with a special focus on the equilib-

rium conditions of majority voting. The committee election model based on approval

balloting is introduced in the second chapter and the properties of two different voting

rules over this model are analyzed. The third and fourth chapter focuses on the rep-

resentativeness qualities of approval balloting in unrestricted commitee elections and

�xed-size committee elections, respectively.



5

Chapter 1
Literature on satisfactory outcomes with

majority voting

The search for a �satisfactory� outcome in multiperson decision-making mech-

anisms under the majority rule goes back to the old days that social choice theory

began to emerge as a discipline. After Arrow's classical work (1951), the major line

of interest problematized the possibility for irrational choice through mechanisms

which aim at respecting the majority will. With the characterization of May (1952),

majority rule is promoted to be a satisfactory voting rule which ful�lls some reason-

able properties when the alternative space is dichotomous. However, an increase in

the number of alternatives brings out the existence problem of an unbeaten alternative

under majority rule, which had been the most discouraging property of it since Con-

dorcet (1785). With Arrow, what became visible was that any social choice rule that

takes into account not only the preferences of one predetermined person, namely the

dictator, may result in socially "irrational" outcomes. Hence, a major line of research

focused on the search for the conditions that would result in satisfactory outcomes

without giving up the respect for majority will.

Although what is meant by being �satisfactory� changes throughout the liter-

ature, various stability concepts such as equilibrium, electing the Condorcet winner,
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or Condorcet consistent concepts such as Core, Top Cycle, Copeland winner, Un-

covered Set or closeness to Condorcet winner are used to qualify those �satisfactory�

outcomes. An equilibrium point is usually de�ned as a stable point in the sense that

no majority of the voters would prefer to deviate from. The existence of an equilib-

rium is simply interpreted as the existence of an unbeaten alternative. In the cases

that indifference relation between alternatives is allowed, the unbeaten alternative

need not to be unique. The set of undefeated alternatives by a majority of voters

is de�ned as the Core. Under the restriction of the admissible preferences to strict

pro�les and with odd numbers of voters, an unbeaten alternative will clearly be an

alternative that majority defeats any other alternative, namely the Condorcet winner.

Hence in the absence of indifference relation, Core necessarily consists of a unique

element, the Condorcet winner.

The median-voter theorem suggests the �rst and the best-known model that

guarantees the existence of an unbeaten alternative under majority voting. As estab-

lished by Black (1948, 1958), whenever some particular restrictions upon the pref-

erences of the voters and set of alternatives are sustained, an alternative cannot be

beaten by any other alternative under majority voting if and only if it is the most

preferred choice for the median-voter. The median-voter theorem requires (i) the

existence of a linear ordering of the alternatives, (ii) strict-convexity of preference

ordering of each individual over this set of alternatives. These two restrictions shape

the set of preference orderings called as single-peaked preferences. To clarify, to



7

have single-peaked preferences over the set of possible alternatives means that for

each voter there is a best possible alternative in the linearly ordered alternative set

and whenever s/he moves away from this alternative, either to the left or right, s/he

will be less and less satis�ed. Therefore, despite the quite restrictive assumptions,

the median voter theorem set forth a way to escape from intransitive social choice

and lead to a literature that investigates similar conditions to single-peakedness such

as weak single-peakedness, single-cavedness, separability, value-restrictedness, ex-

tremal restriction, limited agreement and generalized exclusion. Major work in this

line of research, as listed in the literature survey of Coughlin (1990), is due to Inada

(1964, 1969), Ward (1965), Sen (1966, 1969), Sen and Pattanaik (1969), Pattanaik

(1968, 1970a, 1970b) and Pattanaik and Sengupta (1974).

The non-existence of majority equilibrium in multidimensional choice space

was �rst illustrated in Black and Newing (1951) and Black (1958). The median

voter theorem is generalized to this setting by Tullock (1967a, 1967b). He showed

that single-peaked indifference curves will ensure the existence of equilibrium out-

come. Later on, this model is generalized by Grandmont (1978) by altering the shape

of individual distributions over the set of preference relations. Kramer (1973) con-

tributes to this literature by showing that the equilibrium conditions for majority rule

equilibrium such as single-peakedness, weak single-peakedness, single-cavedness,

separability, value-restrictedness, extremal restriction, limited agreement and gener-

alized exclusion are extraordinarily restrictive for a voting equilibrium when applied
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to multi dimensional models because these conditions fail if there exists just three

voters with contrasting preferences.

Resent research in this �eld is due to Holland and Le Breton (1996) and Vidu

(1998, 1999, 2002). All these works consider the multidimensional choice spaces

(either dichotomous or not) and show that under separable preferences which are

single-peaked on each dimension, majority cycles remain in pair-wise relations over

the outcome sets.

Once the search for stable majority outcomes goes beyond unidimensional

models, following is a huge literature on spatial models of voting that establishes

lack of equilibrium by changing the assumptions slightly and analyses the conditions

that will result in majority equilibrium in those spatial models.

1.1 Search for equilibrium in spatial models of voting

Spatial models of voting consider voting on multiple issues where alternative social

states are viewed as points in a convex policy space, such as En. Voters are assumed

to have "positions" in the alternative space and their preferences on alternatives are

shaped according to the distance to this position. The researchers in this wave were

mostly in pursuit of majority equilibrium, de�ned as the majority undefeated point.

The �rst representative of this line of research is Plott (1967). In his pioneering

work, Plott builds necessary and suf�cient conditions for equilibrium in multidimen-

sional majority rule spatial voting games under the assumptions of (i) �nite number
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of voters; (ii) differentiable individual utility functions that represent voters' prefer-

ences; (iii) one voter's ideal point coincides with the equilibrium social state. Under

this premises, a local majority equilibrium exists if and only if a pair-wise symmetry

condition is satis�ed, which states that all of the voters except the one with the equi-

librium as ideal point can be paired such that all nonzero utility gradients of voters in

each pair point exactly opposite directions.

Following Plott's work, Davis and Hinich (1968) and Davis, DeGroot and

Hinich (1972) deal with in�nite population cases, where preferences can be repre-

sented by quadratic utility functions on En. Davis et al. (1972) prove that under

the premises of Plott's model, a point x is a dominant point if and only if any hy-

perplane containing x divides the voter ideal points such that at least one half lie on

either closed side of the hyperplane. This can obviously be read as a strong symme-

try condition analogical to Plott's. The generalization of the spatial models of Plott

and Davis et al. are studied to different extents by Sloss (1973), Wendell and Thorson

(1974), Hoyer and Mayer (1975), McKelvey, Ordeshook, Ungar (1980). McKelvey

and Wendell (1976) reviews the previous work of spatial voting models in multi-

ple dimension, set some equivalence conditions among them and generalizes those

models in a way to reach global equilibrium conditions not only under differentiable

utility assumptions but also very general voter preference assumptions.

Thus, at the end of 70's the voting theorists in this wave have already agreed

upon the rectricted nature of majority equilibrium conditions in multidimensional
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election problems. A more pessimistic result about the utilization of majority vot-

ing for decision making in real life politics is demonstrated by McKelvey (1976).

McKelvey shows that when equilibrium collapses, it really collapses. More formally,

in the absence of a Condorcet winning outcome, �the intransitivities extend to the

whole policy space in such a way that all points are in the same cycle set.� Thus, he

destroys the more optimistic idea of selecting from the top-cycle, which is the set

of alternatives that majority beats the ones outside, in the absence of an obviously

winning outcome. He shows that any alternative, even a Pareto dominated one, is

attainable through a speci�c sequence of votes, or to quote from himself �it is theo-

retically possible to design voting procedures which, starting from any given point,

will end up at any other point in the space of alternatives, even at Pareto dominated

ones.� This discouraging result leads to a further literature of so-called �chaos the-

orems� (Riker 1980) and deepened and generalized by Bell (1978), Cohen (1979),

Cohen and Matthews (1980) and Scho�eld (1978a, 1978b, 1983, 1985).

Feld and Grofman (1987) review this literature on the majority equilibrium

conditions of spatial voting models and show that when they stick to the simple case

that �all voters have an ideal point in the policy space and voters order the alternatives

by how close they are to this ideal�, most of the famous results done in this �eld (also

reviewed here) can be stated in the course of the median voter theorem.

Following those spatial models of the �rst line of research on stable outcomes

in multi-dimensional majority voting, voting theorists open up new lines of related
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research. One way to go forward is to investigate what kind of a majority can be suf-

�cient to guarantee satisfactory results. A second idea is to weaken equilibrium re-

quirements by de�ning choice functions that are Condorcet consistent, that is, which

select the Condorcet winner when it exists. Making use of issue-wise majority rule

and working in more particular settings that are inspired by real-life multiple issue

voting problems are the extents that search for satisfactory outcomes keeps on.

1.2 d-majority equilibrium

Greenberg (1979) is one of the �rst to investigate what kind of majority rules give rise

to equilibrium results other than simple majority rule, which can achieve this objec-

tive in excessively restricted conditions in multi-dimensional models. Hence, he sets

the conditions that give rise to a d-majority equilibrium, de�ned as the choice of the

alternative that no other alternative is preferred to this alternative by at least d indi-

viduals. Under a convex and a compact alternative set of dimension m, a d-majority

equilibrium exists whenever d is greater than (m=(m + 1))n, n being the number

of voters. Greenberg's results trigger interest in d-majority equilibriums and many

scholars including Slutsky (1979), Coughlin (1981), Nitzan and Paroush (1984),

Greenberg and Weber (1985) search for equilibrium conditions under d-majority

rules.
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1.3 Weaker equilibrium concepts

Another idea that brought together huge diversi�cation afterwards is to weaken the

concept of equilibrium. In most of the previous models the search for equilibrium re-

sults has been the search for undominated outcomes and it has been established again

and again that the absence of a majority undominated alternative is the norm rather

than an exception. Hence choice functions like uncovered set, the Copeland winner

or weaker criteria like Pareto-optimality become the focus of search in a wide range

of models with a variety of assumptions on preferences (such as separability), space

of alternatives (unidimensional, multidimensional, dichotomous, multichotomous) or

voting behavior (sincere, sophisticated, simultaneous, sequential).

Uncovered set is the set of alternatives that a majority of the voters prefer to

any other alternative either directly or at one move. To put formally, with P as the

strict preference relation over alternatives, if x is in the uncovered set, then for all

y, either xPy or there exists z such that zPy and xPz: Uncovered set is studied in

Banks (1985), McKelvey (1986), Miller (1977, 1980, 1983), Shepsle and Weingast

(1984).

A Copeland winner is an alternative defeated by the fewest number of alter-

natives (Copeland 1951). The Copeland winner coincides with the core if it exists.

Glazer, Grofman, Noviello and Owen (1987) suggest Copeland as a stable solution

concept in multidimensional spatial voting models especially because it always exists
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and in general uniquely exists; is included in the uncovered set and Pareto set, thus

respects what most voters want. They analyze the characteristics of the Copeland

winner (which they call as the strong point) in the context of legislative voting un-

der the simple majority rule and characterize it in terms of a modi�cation of Shapley

value. Henriet (1984), Owen and Shapley (1985) and Straf�n (1980) are some of the

other researchers worked on Copeland winner as a stable outcome of majority voting.

Pareto-optimality is one of the oldest and mostly utilized criteria to qualify the

minimum level of satisfactory outcomes. A Pareto-optimal outcome is an outcome

which is not rejected under the unanimity rule. There does not exist any other alter-

native that all of the individuals in the society will be as happy as with that outcome

and at least one will be happier. Formally, given a pro�le, a point x is said to be

Pareto optimal, if there does not exist any other point y; such that all of the voters

are at least as good as with y compared to x; and at least one voter prefers y to x:

Hence, it will not be too demanding to expect Pareto-optimal outcomes from a so-

lution concept. All of the equilibrium concepts mentioned above; Core, Copeland

winner, Uncovered Set and actually any re�nement of the Uncovered Set will yield

outcomes from the Pareto set, the set of Pareto-optimal points.

1.4 Issue-wise majority rule

In the multidimensional cases an alternative way to select an unbeaten alternative, if

it exists, is the "division of the question". Kramer (1972) and Kadane (1972) consider
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issue-wise majority rule as a way to do so. Kramer shows that when the choice space

is Euclidean, the Condorcet winner will be chosen under majority rule when votes are

cast issue-wise by sophisticated voters. Kadane considers the case of multiple binary

issues and shows that under separable preferences the issue-wise majority rule selects

the Condorcet winner, whenever it exists. Separability of preferences is essential to

this result. The intuition behind Kadane's proof is simple: Under the separability,

the issue-wise majority platform will defeat either directly or indirectly any other

platform.

This result is later extended by Schwartz (1977) to the context of vote trading

and sophisticated voting. He shows that Kadane's result valid under either sophis-

ticated or sincere or simultaneous or sequential voting. Therefore, Kadane's and

Schwartz's results promote the use of issue-wise majority rule as a decisive tool in

the settings that separation of issues is reasonably applicable such as committee elec-

tions or referendum voting. What is crucial to have satisfactory outcomes with issue-

wise majority rule is the separability of preferences. As the voting rule takes into

account only the majority will issue-wise, the outcome will be a good representative

of voter preferences in cases individual will over issues depend on only the issue in

consideration.

Outcomes of the issue-wise majority rule for multiple binary issues under non-

separable preferences is deeply analyzed by Lacy and Niou (2000). They problema-

tize the representativeness property of voting by referendum. In their own words,
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they search whether its outcomes give an answer to the question "what did the peo-

ple want?". Thus, representativeness of a voting rule is interpreted in line with its

ability to choose consistently with the preferences of voters. Issue-wise majority rule

has been promoted to be representative of voters preferences if they are issue-wise

independent. What Lacy and Niou show is that once preferences over separate is-

sues become dependent to each other for some voters, issue-wise majority rule is not

that much successfull to represent voters preferences. Consider the following simple

example given in their work;

Given 3 voters and 2 issues, voters either accept or reject each issue by stating

Yes or No on each issue. Following is the table of preference rankings of voters over

possible outcomes.

Rank Voter 1 Voter 2 Voter 3
1 YN NY NN
2 YY YY YY
3 NY YN NY
4 NN NN YN

It is easily seen that under sincere voting, the outcome of the issue-wise ma-

jority voting will be the rejection of both issues even if this is the majority defeated

outcome. In addition, there is an obvious winner in this pro�le, which is the Con-

dorcet winner YY, exactly the opposite of the issue-wise majority winner.

The election of a Condorcet loser is not, under sincere voting, the worst possi-

ble scenario, as illustrated by the following example;
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Rank Voter 1 Voter 2 Voter 3
1 YYN YNY NYY
2 YNY NYY YYN
3 NYY YYN YNY
4 NNY NYN YNN
5 YNN YNN NYN
6 NYN NNY NNY
7 NNN NNN NNN
8 YYY YYY YYY

Notice that the issue-wise majority winner is YYY which is the worst pref-

erence of all of the voters. Thus, in addition to electing a Condorcet loser in the

existence of a Condorcet winner, under nonseparable preferences, sincere and simul-

taneous issue-wise majority voting may result in outcomes that are Pareto-dominated

by any other alternative. What Lacy and Niou propose to the problem of nonsepara-

ble preferences is sophisticated sequential voting, which will ensure the election of

the Condorcet winner, hence yield a stable and representative outcome.1

1.5 Search for stable outcomes in committee elections

Committee elections are particular types of multidimensional voting problems, where

a given set of voters are faced with a given set of candidates and supposed to select

a number of candidates from this set according to a predetermined voting rule. Cer-

tainly, the summarized literature can be read as the early literature of equilibrium

conditions in committee elections where majority voting is used.

1 The election of the Condorcet loser, or the election of a Pareto-dominated outcome are not the
only examples of the representativness failure of the issue-wise majority rule. Another one is brought
by the Paradox of Multiple Election (Brams, Kilgour and Zwicker, 1998; Scarsini 1998), which states
that issue-wise majority winner may be shared as an ideal by a minimum number of voters.
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A stable outcome in committee elections may refer to a representative commit-

tee for the given society of voters. A committee is quali�ed to be representative to the

extent of its consistency with the preference pro�le of society. In other words, repre-

sentativeness refers to the ability to re�ect voters' preferences over committees. For

instance, a Condorcet committee, being a stable outcome, is a good representative of

voters committee preferences.

In committee election models, a Condorcet committee is de�ned in two dif-

ferent ways. In the �rst approach the premises are the voter preferences over com-

mittees. The Condorcet committee is de�ned as the winner of the pair-wise contests

among committees (Fishburn (1981), Bock, Day and McMorris (1998)). The second

approach focuses on the preferences over candidates and de�nes a Condorcet com-

mittee as a committee consisting ofm members that would defeat every other candi-

date outside the committee in pair-wise contest. (Gehrlein (1985), Ratliff (2003)).

In line with the �rst approach, Fishburn (1981) shows that either with dichoto-

mous or single-peaked preferences over candidates when these preferences over can-

didates are extended to preferences over committees in consistence with separability,

those separable preference pro�les over committees will have a Condorcet winner

committee in single-member or all-but-one member cases. On the other hand, it is

not possible to ensure this existence when the number of members is in between.

Following the second approach to Condorcet committees, Gehrlein (1985) in-

vestigates the probability of existence of a Condorcet committee. His work continues
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with the calculations of the likelihood that several voting rules will select the Con-

dorcet winner.

Ratliff (2003) proposes electing the committee that is "closest" to being a Con-

dorcet winner, when itself does not exist. Two different approaches are used to de�ne

this "closeness" to a Condorcet winner. Given the complete and transitive preference

pro�les of the voters, a k-size Dodgson's Committee consists of the k candidates

that "requires the fewest adjacent switches in the voters' preferences to become the

Condorcet winner", whereas, Kemeny's method considers all of the pair-wise con-

tests and elects the committee that minimizes total margin of loss to be the Condorcet

winner. Surprisingly, given a pro�le the Dodgson's committee and Kemeny's com-

mittee need not to coincide or even have common members. Ratliff's suggestion is

an alternative to the utilization of majority rule as a decisive tool where the "the most

stable" alternative according to majority rule does not exist.
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Chapter 2
Approval balloting and committee elections

As a relatively young voting rule, approval voting has been introduced to lit-

erature at the end of 70's by Brams and Fishburn (1978). Since then, it became the

focus of heated debates among voting theorists. Advocates of approval voting pre-

sented it as a practical and ef�cient voting rule as it is easy to conduct and it yields

`stable' outcomes under certain conditions. As it does not restrict the voter to vote

in favor of a predetermined number of voters, it is claimed to promote sincere vot-

ing. And, most favorably, under dichotomous preferences, approval voting is proved

to be the only single-ballot system with outcomes in the Core and with undominated

strategies. (Brams and Fishburn (1978, 1981), Brams (1980)). A major opposition

against approval voting was due to the fact that dichotomous preferences is essen-

tial for the nice results of approval voting to hold. Niemi (1985) showed that in the

absence of dichotomous preferences, voters are inclined towards strategic voting, in

addition, a Condorcet winner may not be selected both under sincere or sophisticated

voting.

The idea of making use of approval balloting as a means of electing committees

has been introduced by Brams, Kilgour and Sanver (2004, 2005, 2007). It should be

noted here that what is proposed in their work and what will be studied in the sequel
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is not approval voting but approval balloting. Voters ballots indicating the approved

candidates are collected and the elected committee is determined according to a spec-

i�ed procedure which is not necessarily majority voting. Brams et al. proposed two

different methods to elect committees when voting ballots are approval ballots and

the preferences of voters are extended to preferences over committees in a very spe-

ci�c way of extension. As will be analyzed in details in the following parts, approval

balloting allows to consider majority will over candidates, which makes it a quite

appealing election procedure as long as respecting the majority will is taken to be

a representativeness criterion. Because, depending on the results of Kadane (1972)

and Schwartz (1977), what is known is that the issue-wise majority winner of the

approval ballots is necessarily the Condorcet winner, whenever it exists.

As long as there is no restriction upon the committee size, issue-wise majority

voting on approval ballots works in the following way: Are elected all those candi-

dates who are more often approved than disapproved.

Consider a society of voters I = f1; :::; n; :::Ng and a set of candidates C =

f1; :::; q; :::; Qg: A committee is a subset of C: Each voter n 2 N casts an approval

ballot in favor of the candidates s/he approves as committee member: the approval

ballot of the voter n, de�ned as xn is a vector of 0's and 1's, i.e.; xn = (xqn)q=1;:::;Q 2

f0; 1gQ where xqn = 1 means that voter n approves candidate q as a committee mem-

ber and xq0n = 0 denotes the disapproval of candidate q0 by n: It should be clear that

an approval ballot corresponds to a committee x 2 f0; 1gQ with k members, where
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k =j fxq 2 x : xq = 1g j . Let 
 = [Q�1f0; 1gQ be the set of committees. No-

tice there exists 2Q admissible approval ballots and hence 2Q committees including

the degenerate cases of no-member committee and all-member committee.

A (N;Q)-ballot is a vote matrix XNQ = [xqn]
q=1;:::;Q
n=1;:::;N ; where row n corre-

sponds to voter n's approval ballot. Let X = [N;Q�1XNQ. The issue-wise majority

committee of XNQ will be the one that consists of the candidates whose number of

approvals exceeds the number of disapprovals. To put formally;

De�nition 1 LetN be odd and letXNQ be a (N;Q)-ballot, the majority committee

m(XNQ) = (m1; :::;mQ) 2 f0; 1gQ is de�ned by: 8q = 1; :::; Q, j fn = 1; :::; N :

xqn = m
qg j> N

2
.

This is the usual outcome of committee elections with approval balloting.

Example 1 Consider the case N = 5; Q = 3 with the following approval ballots;

x1 = (1; 1; 0)

x2 = (0; 1; 0)

x3 = (0; 1; 1)

x4 = (1; 1; 1)

x5 = (0; 0; 1)

Obviously, the issue-wise majority winner will be m(XNQ) = (0; 1; 1), the

committee excluding only the �rst candidate, as the �rst candidate is not supported

by at least half of the voters.
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Approval balloting provides an incomplete information about preferences: Can-

didates are separated into two groups; the ones who are approvable (hence, under sin-

cere voting the ones liked by the voter) and the ones who are disliked. Thus, approval

balloting works as if candidates within each group are assumed to be indifferent for

the voter. In other words, approval balloting does not reveal individual's rankings

over candidates. Consider the following examples how far this information loss can

go in the case of a �xed size committee;

Example 2 Let Q = 4 with C = fa; b; c; dg and N = 27: Assume the voter prefer-

ences over candidates are as given in the following table;

5 8 8 4 1 1
a b a d c b
b c d c d a
c d c b a d
d a b a b c

The numbers in the �rst row indicate the number of voters who have the pref-

erence order in the corresponding column, i.e.; exactly 5 voters rank the candidates

from the most preferred to the least preferred as a,b; c; d, 8 voters have the ranking

b; c; d; a; and etc.

In this example, there are 6 groups among 27 voters with identical preference

orders within the group . One can check that a is the winner of pair-wise contest,

namely the Condorcet winner.

Now, let us check what will be the composition of committees that will be chosen

by approval voting under sincere voting. The assumption is that voters approve as
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many candidates as the size of the committee that will be chosen and the candidates

with the most number of approvals are elected.

Hence, if a single candidate will be chosen, this will be the Condorcet winner

a with the 13 approvals.

In a two-member committe election, the approval votes will be like:

number of voters approval ballot
5 (1; 1; 0; 0)
8 (0; 1; 1; 0)
8 (1; 0; 0; 1)
4 (0; 0; 1; 1)
1 (0; 0; 1; 1)
1 (1; 1; 0; 0)

total approval voting winner
27 (1; 1; 0; 0)

Thus, Condorcet winner a and another friend b are included in the committee

with exactly the same number of votes 14:

In case a committee of size 3 will be elected, the approval ballots will be

number of voters approval ballot
5 (1; 1; 1; 0)
8 (0; 1; 1; 1)
8 (1; 0; 1; 1)
4 (0; 1; 1; 1)
1 (1; 0; 1; 1)
1 (1; 1; 0; 1)

total approval voting winner
27 (0; 1; 1; 1)

Notice that the only candidate that is not included in a committee of three is

the remaining Condorcet winner!

Excluding the natural single winner is not the worst situation that can appear

in this setting. Consider the next example where the elected committee is exactly
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the opposite of the winner of majority tournament among candidates, where majority

tournament over the candidate set is de�ned as;

De�nition 2 Given a set of candidates C = f1; :::; q; :::; Qg; and a set of voters I =

f1; :::; n; :::; Ng; where N is odd, with individual preference orders over candidates

denoted by �n; the majority tournament T over the given preference pro�le is such

that; 8q; q0 2 C; q T q0,j n 2 I : q �n q0 j>j n 2 I : q0n �n q j

Observe that if the majority tournament among alternatives is well-de�ned, i.e.,

yields a transitive ranking of candidates, then the winner of the majority tournament

will be precisely the Condorcet winner of the alternative set.

Now, let us consider the following example which points out how approval

balloting may provide a committee which does not involve the �rst best candidates

of the transitive majority tournament over candidates;

Example 3 Let Q = 5 with C = fa; b; c; d; eg and N = 29: Assume the voter

preferences over candidates are as given in the following table;

9 8 6 6
a e e b
c d d c
b b a a
d c b d
e a c e

Similarly to the previous example, 9 voters strictly order the candidates as

a � c � b � d � e; 8 voters have the order e � d � b � c � a and so on.



25

The majority tournament over this pro�le is well de�ned and yield the following

preorder: a T b T c T d T e: Thus, a way to proceed to elect a committee of size 2

may be to select the most favored candidates a and b 2:

On the other hand, consider the winning committee of size 2 when approval

ballots are utilized. The election method is assumed to be like in the former example.

number of voters approval ballot
9 (1; 0; 1; 0; 0)
8 (0; 0; 0; 1; 1)
6 (0; 0; 0; 1; 1)
6 (0; 1; 1; 0; 0)

total approval voting winners

29
(0; 0; 1; 0; 1)
(0; 0; 1; 1; 0)

Again, the approval voting outcome, in both cases will exclude the two most

favored candidates.

At �rst sight, it may seem a little bit surprising that in the previous examples

the only candidates that is not included in the committes are the Condorcet winning

candidates. However, once approval ballots from the speci�ed preference orders are

collected in this fashion, then the pro�les under consideration is reduced or altered

to the following ones respectively;.

For the �rst example;

2 In Laffond and Lainé (2008) this method of electing the k-�rst best issues in the majority tour-
nament among alternatives is de�ned as Decision-wise procedure, whereas respecting the majority
tournament over extended pro�les is said to be Direct procedure. Laffond and Lainé shows that the
winner of the decision-wise procedure, if it exists, can be defeated and even worse covered in the ma-
jority tournament among programs where rank-based, monotone and independent extension rules are
used to extend preferences over committees to preferences over programs.
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5 8 8 4 1 1
a � b � c b � c � d a � d � c d � c � b c � d � a b � a � d

d a b a b c

For the latter;

9 8 6 6
a � c e � d e � d c � b

d � b � e b � c � a b � c � a e � d � a

with � as the indifference relation between candidates. Thus in the former, the

original �rst group of 5 voters with the strict preference over a; b; c; d in the speci-

�ed order, now are assumed to be indifferent among the candidates a; b; c and prefer

those to the last one, d. As can be easily noticed, in this new pro�le, a is not the Con-

dorcet winner but Condorcet loser, that is beaten by any other alternative in pair-wise

contest.

Similarly, in the second example, the former Condorcet winner a and her clos-

est friend b are now defeated by the remaining candidates c; d; e:

Thus, approval balloting works as if preferences over candidates are dichoto-

mous ones.

Inada (1964) had proved that if each voter classi�es all alternatives into two

indifference groups, then there will be a majority undefeated alternative. Thus, di-

chotomous individual preference orderings imply the existence of a stable outcome.

Later on, Brams and Fishburn (1978) showed that under dichotomous preferences,

the approval voting outcome will be a majority undefeated alternative, which implies

the election of Condorcet winner if it exists. But, all these results work when a sin-



27

gle candidate is elected, thus do not provide insights about how to elect committees

involving more than 1 member.

To comment on the representativeness of approval balloting in committee elec-

tions, we need to consider voter preferences over committees rather than preferences

over candidates. With approval balloting, what can be observed from voters' ballots

is only a pro�le of dichotomous preferences over candidates. Hence the domain of

preferences over committees that are compatible with such approval ballots is quite

large. What we know is that, even under the assumption of separable preferences, the

committee chosen through approval balloting may fail to be representative of voters'

preferences. Ozkal-Sanver and Sanver (2006) shows that, under the assumption of

separable preferences, it is impossible to guarantee Pareto optimal outcomes through

any kind of anonymous voting in multiple dichotomous choice models, in partic-

ular through issue-wise majority rule. Thus, as long as voting rules that does not

discriminate among the voters are used, which is quite reasonable, approval ballot-

ing outcomes may be Pareto-dominated, which means that can not sustain even the

minimum representativeness requirements. Further, when the commonly-used sep-

arability assumption is released, as illustrated by Lacy and Niou (2000) and Ratliff

(2006) a committee which is the last preference of all of the voters may be the elec-

tion outcome. To note, this non-separability of preferences would not be a mean-

ingless assumption in committee election settings, even further it may be the actual

case in most of real life election problems (Ratliff 2006). Nevertheless, ignoring po-
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tential spillover effects and restricting the pro�les to separable ones does not help to

ensure representable outcomes. Consider the following case where the preferences

over candidates in Example 2 is used;

Example 4 N = 27; C = fa; b; c; dg

5 8 8 4 1 1
a b a d c b
b c d c d a
c d c b a d
d a b a b c

Again a committee of 3 will be selected and preferences over candidates are ex-

tended to preferences over 3-sized committees in the following separable and lexicographic-

type way: 8n 2 N; 8k = 1; 2; 3; 4; the kth best ranked committee will be the one that

excludes the kth worst ranked candidate. This type of lexicographic extension leads

the following pro�le over 3-sized committees;
5 8 8 4 1 1
1110 0111 1011 0111 1011 1101
1101 1110 1101 1110 0111 1110
1011 1101 1110 1101 1110 0111
0111 1011 0111 1011 1101 1011

Under approval balloting, the elected committee is (0; 1; 1; 1): However, the

committee (1; 1; 1; 0) is the Condorcet winner of the pro�le and the remaining two

committees (1; 0; 1; 1) and (1; 1; 0; 1) defeats the approval balloting outcome (0; 1; 1; 1)

in pair-wise contest! Thus, a majority defeated outcome is the winner of issue-wise

majority voting over approval ballots.

This example illustrates how poor approval balloting can behave to be represen-

tative of voter preferences deduced from the ballots. Now, consider another example
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where preferences over committees are extended again from the same pro�le over

candidates, but with a different extension rule;

Example 5 N = 27; C = fa; b; c; dg: A committee of size 2 will be elected, there-

fore voter preferences over 2-sized committees are considered. Voters rank the com-

mittees according to the inclusion of the best candidate and the second-best candi-

date in the following way; 8n 2 N; a committee with the most-preferred 2 candidates

is the best. Then, the committees that include the best candidate but not the second-

best candidate are ranked as the second-preferred committees, the third-ranked com-

mittees are the ones that include the second-best candidate but not the �rst-best one.

And at last place, comes the committees that does not contain any of them. This

extension leads the following pro�le:

5 8 8 4 1 1
1100 0110 1001 0011 0011 1100
1010
1001

1100
0101

1100
1010

1001
0101

1010
0110

0110
0101

0110
0101

1010
0011

0101
0011

1010
0110

0101
1001

1010
1001

0011 1001 0110 1100 1100 0011

Notice that, the outcome of the issue-wise majority rule over approval ballots

is (1; 1; 0; 0); which is the Condorcet winner of the pro�le.

This is an example of the pro�les where approval balloting is representative of

the underlying preferences in the sense that it yields Condorcet consistent outcome.

The two different examples given here may give some clue about the range that

the winning commitees will be representative of the voters preferences: it is possi-
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ble to have counter-representative committees as well as representative committees

depending on the admissible preference pro�les. Thus, an intuitive path to follow is

to stick to one particular type of preference pro�le and investigate the representative

features of approval balloting over those pro�le. What Brams, Kilgour and Sanver

(2004, 2005, 2007) did in successive papers is to introduce a very appealing de�n-

ition of preferences over committees, preferences based on Hamming distance, that

favors approval balloting as a representative method. Hamming extension rule orders

committees according to the number of the members that coincide with the approval

ballots with the additional assumption that approval ballots re�ect true preferences

of voters. Following Brams et al (2007), we study below the properties of approval

balloting under the Hamming extension rule.

2.1 Hamming extension rule

As cited in the review of literature, at the beginning of the search for stable majority

outcomes with multiple issues, multidimensional spatial models were used to repre-

sent voters' preferences consistent with a distance criteria in the Euclidean space. In

those spatial models, voters are assumed to have a position, a best-preferred alterna-

tive in the predetermined space and order the other alternatives, positions according

to the distance to their own position. How far an alternative to a best-preferred posi-

tion, it is less and less preferred by the voter whose preferences are in consideration.
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With a similar intuition, Brams, Kilgour and Sanver make use of a distance

criterion to extend preferences from approval ballots to preorders over committees.

Before introducing Hamming extension rule, we should de�ne what an exten-

sion rule is.

We denote by �Q the set of all complete preorders on f0; 1gQ. LetR = [QQ�1�Q.

An extension rule is a function R from 
 to R which associates with each

committee x 2 f0; 1gQ an element R(x) of �Q: The asymmetric counterpart of R is

denoted by P and I stands for the indifference part.

Observe that as R is de�ned from the set of any size committees to the set of

complete preorders over any size committees; e.i. voter preferences are de�ned over

varying size committees.

An extension rule R associates with each (N;Q)-ballotXNQ a preference pro-

�le R(XNQ) = (R(x1); :::; R(xN)). To simplify notation, we will denote the ex-

tended preorder from voter n's approval ballot as Rn instead of R(xn):

Hamming distance between two committees is simply the number of candidates

they differ about. Formally, the Hamming distance d(x; y) between two committees

x and y is de�ned as;

De�nition 3 8Q; 8x = (x1; :::; xQ), y = (y1; :::; yQ) 2 f0; 1gQ, Hamming dis-

tance between x and y is de�ned as d(x; y) =j fq = 1; :::; Q : xq 6= yqg j .
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Obviously, Hamming distance criterion induces a very natural ordering of pref-

erences over committees such that the closer to the ideal will be ranked higher. For-

mally;

De�nition 4 RHam is said to beHamming extension rule if the following condition

is satis�ed: 8Q, 8x; y; z 2 f0; 1gQ; d(x; y) < d(x; z) , y PHam(x) z and d(x; y) =

d(x; z), y IHam(x) z:

Obviously, RHam induces a preference order with non-singleton indifference

classes. We denote as Ix(d) the indifference class of committees that are at distance

d to the committee x; i.e.; For each x 2 f0; 1gQ;8y 2 f0; 1gQ such that d(x; y) = d;

d being a non-negative integer, y 2 Ix(d):

Example 6 Consider the Hamming extended pro�le of voter n with an ideal com-

mittee of (1; 0; 0):

I(0) I(1) I(2) I(3)
100 110; 101; 000 111; 001; 010 011

In the table above, I(d) , d 2 f0; 1; 2; 3g denotes the indifference classes in-

duced by Hamming extension rule. The table shows the preorder of voter n; which is

formally; (1;0;0)Pn(1;1;0)In(1;0;1)In(0;0;0)Pn(1;1;1)In(0;0;1)In(0;1;0)

Pn(0;1;1):

Notice that the three committees in the indifference class I(1) are the ones

which are at distance 1 to the ideal and similarly the committees at I(2) have 2
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disagreements with the ideal. In the last indifference class, exactly the opposite of

the ideal stands.

Being based on a symmetric distance criterion, Hamming extension rule at-

tributes equal importance to the election of favorable candidates and to the exclusion

of the unfavorable candidates. This symmetry property can be interpreted from two

aspects:

i. Hamming extended preferences does not discriminate among the candidates

above approval line or similarly among the candidates below the approval line.

ii. Under Hamming extension rule, the exclusion of a favorable candidate will

have the same effect with the inclusion of an unfavorable candidate.

The �rst point above shows that Hamming criteria creates a "reasonable" ex-

tension method under approval balloting. For instance, consider two candidates ap-

proved by a particular voter. The committees that exclude one of those two candi-

dates and include the remaining one will be at the same indifference class for the

voter, other members kept constant. Thus, Hamming extension rule has nothing to

do with the rankings of favorable candidates, which makes it quite consistent to use

with approval balloting in this committee elections setting.

To assume Hamming extended preferences over committees is at the same time

to assume another condition that is frequently used to restrict preferences in this kind

of multiple binary issues settings: Separability. Separability is roughly can be de�ned

as the independence of the decision concerning a candidate (or a set of candidates)
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from the decisions about other candidates. In this varying size-committee setting,

separability refers to the comparison of any two committees independent of their

common decisions about candidates.

Before giving the formal de�nition of separability, we introduce a quick de�n-

ition of a sub-committee, which will be used in some of the following de�nitions and

proofs:

De�nition 5 Let Q � 1, x 2 f0; 1gQ and B � f1; :::; Qg be a subset of Q0 can-

didates. The sub-committee x=B is the element of f0; 1gQ0 de�ned by:8q 2 B,

(x=B)q = xq; e.g.; x=B is the sub-committee of x that indicates the approval or

disapproval of all candidates in B:

De�nition 6 R is said to be separable (S) if the following condition holds; 8Q,

8x; y; z 2 f0; 1gQ, (y=Qy 6=z) R(x=Qy 6=z) (z=Qy 6=z) ) y R(x) z; where Qy 6=z =

fq = 1; :::; Q : yq 6= zqg:

Under separability axiom, if a voter approves a candidate as a committee mem-

ber, then s/he will always prefer the committees including that candidate to the ones

excluding that candidate, without any change in the other members.

Example 7 Consider the Hamming preference order of individual n in the previous

example;

I(0) I(1) I(2) I(3)
100 110; 101; 000 111; 001; 010 011
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Consider the decision regarding the �rst candidate. Voter n prefers the candi-

date 1 to be in the committee, (1;0;0)Pn(0;0;0): Therefore, s/he prefers a commit-

tee with candidate 1 always to a committee without candidate 1, the other elements

of the committee being kept constant; (1;1;0)Pn(0;1;0) and (1;1;1)Pn(0;1;1):

Lemma 1 Any Hamming extension rule satis�es separability.

Proof. Take any Hamming extension rule R. Assume, for a contradiction, R does

not satisfy separability. Hence, there exists n 2 N and x; y 2 f0; 1gQ such that

(y=Qy 6=x) Rn(x=Q
y 6=x) and x Pn y: Let xn 2 f0; 1gQ denote the ideal of voter n: As

(y=Qy 6=x)Rn(x=Q
y 6=x) andR is a Hamming extension rule, then d((xn=Qy 6=x); (y=Qy 6=x))

� d((xn=Qy 6=x); (x=Qy 6=x)); which in turn implies d(xn; y) � d(xn; x): Therefore, y

Rnx:

2.2 Minisum and minimax committees

Brams, Kilgour and Sanver (2004, 2005, 2007) in their successive studies propose

two voting methods based on approval balloting to elect a representative committee.

In those studies, the representativeness of the elected committee is assessed by means

of a distance between committees and a vote matrix. The "closer" a committee to the

approval ballots the more representative it is. This interpretation of representative-

ness is in line with what is said in this paper. A representative committee should

allow a faithful de�nition of underlying voter preferences. As long as the committee
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rankings are compatible with a distance criteria, the closest committee will be con-

sistent with the hidden preferences. "Closeness", here, is determined through two

different methods. The former is the minimization of the sum of the distances to the

vote matrix while the latter is the minimization of the maximum distance. To de�ne

the distance between two committees, they refer to the Hamming distance as de�ned

above. A minisum outcome is de�ned to be the committee that minimizes the sum of

Hamming distances to all approval ballots, while a minimax outcome minimizes the

maximum distance to all ballots cast.

Brams, Kilgour and Sanver's setting is the one de�ned in details above. Voters'

preferences are derived from their approval ballots according to Hamming distance

criteria. From now on, let us assume that voters cast their ballots sincerely, thus their

approval ballots coincide with their ideal committees. Actually, as proved by Brams

et al. (2005) the minisum method does not necessitate this assumption as the voting

procedure is not manipulable when the elected committee is the minisum outcome,

while minimax outcome does not ensure sincere voting.

Note that while the balloting procedure is approval balloting, the election out-

come is determined according to another procedure, which is not de�ned as the issue-

wise majority rule.

However, Brams, Kilgour and Sanver (2004) prove that the minisum committee

coincides with the issue-wise majority winner.
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Proposition 2 (Brams et al. (2004) Proposition 4) Given an (N;Q)-ballot XNQ;

the majority committeem(XNQ) will be the committee that minimizes on f0; 1gQ the

total distance �Nn=1d(y; xn); where xn is de�ned to be the approval ballot of voter n

2 N:

The intuition under this proposition is quite simple. As the issue-wise major-

ity winner m(XNQ) is the committee that respects majority will on each candidate,

hence minimizes the number of disagreeing voters on each candidate, it minimizes

total number of disagreements either, which in turn coincides with minimizing sum

of distances.

The second election method based on approval balloting proposed by Brams

et. al is the election of minimax committee.

De�nition 7 Given any XNQ; x 2 f0; 1gQ is said to be the minimax outcome if it

minimizes on f0; 1gQ the maximum distanceMaxn2Nfd(y; xn)g; where xn is de�ned

to be the approval ballot of voter n 2 N:

Brams et al. identify the minimax committee as a representative committee in

the sense that "it does not antagonize any voter" too much.

Example 8 The table below demonstrates the determination of minisum and min-

imax outcomes for the particular XNQ given in the �rst example, with 5 voters, 3

issues and (0; 1; 1) asm(XNQ):
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In the �rst row the approval ballots of the voters take place. The �rst col-

umn shows all attainable committees with the speci�ed number of candidates. Thus,

minisum and minimax outcomes will be among the committees in the �rst column.

Obviously, the integers under the ballots are the distances between the ballot and the

corresponding committee. In the last two columns the total distances and the max-

imum distance of the corresponding committee to the approval ballots is denoted.

As expected, the minisum outcome is m(XNQ) = (0; 1; 1) with the minimum total

distance of 5 and the minimax outcomes are (0; 1; 0) and (0; 1; 1) with maximum dis-

tances of 2:
ballots 110 010 011 111 001 total distance max. distance
000 2 2 2 3 1 10 3
100 1 2 3 2 2 10 3
010 1 0 1 2 2 6 2
001 3 2 1 2 0 8 3
110 0 1 2 1 3 7 3
101 2 3 2 1 1 9 3
011 2 1 0 1 1 5 2
111 1 2 1 0 2 6 3

Up to now, the size of the elected committees has been unrestricted. In other

words, the number of the members involved in the elected committee is dependent

on the approval ballots. However, most real-life elections require the election of a

committee with a predetermined size, i.e.; a size restriction is imposed on the election

outcome. Brams et al. show how their results can be adapted to such a case. In the

case of a k-sized committee, the minisum outcome will be one that involves the

k candidates collecting the highest number of approval votes (Brams, Kilgour and

Sanver (2007)). Notice that in this case it is quite probable to have more than one
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minisum outcome. A minimax committee with a size restriction will be the one

with the speci�ed size and with the minimum maximum distance to the vote matrix.

Consider the following example where a committee of size 3 is to be elected:

Example 9 N = 7; Q = 4; k = 2 member committee will be elected.

Example 10

number of ballots approval ballots
2 0111
3 1100
2 0010

Observe that the 2 sized committee involving the members with most approvals

is (0; 1; 1; 0); whose members respectively collect 5; 4 approvals. The following table

shows the distances of each admissible committee to the vote matrix. (0; 1; 1; 0) is

both the minimax and minisum outcome.

approval
ballots

0111 1100 0010

number of
approvals

2 3 2
max:distance
total distance

1100
3
6

0
0

3
6

3
12

1010
3
6

2
6

2
4

3
16

1001
3
6

2
6

3
6

3
18

0110
1
2

2
6

1
2

2
10

0101
1
2

2
6

3
6

3
14

0011
1
2

4
12

1
2

4
16

Notice that in the examples given above, for both the restricted and unrestricted

cases, the minisum outcome is also one of the minimax outcomes. But this does not

have to be the case, as illustrated by Brams et. al (2007). Even, it is quite possible to
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have the minisum and the minimax outcomes as opposite committees. This triggers

to search for the conditions under which minisum committee is included by the set

of minimax outcomes. Although this question remains under investigation, the case

of three candidates can be mentioned here:

Take anyXNQ with (1; 1; 1) as the minisum outcome. This is not innocuous as-

sumption, because through a relabelling of the issues, the same result can be reached

for any case. The following table indicates all possible approval ballots, number of

approvals, and the distances between each ballot.
approval ballots 111 101 110 011 100 010 001 000

number of approvals
(weights) a b c d e f g h

111 0 1 1 1 2 2 2 3
101 1 0 2 2 1 3 1 2
110 1 2 0 2 1 1 3 2
011 1 2 2 0 3 1 1 2
100 2 1 1 3 0 2 2 1
010 2 3 1 1 2 0 2 1
001 2 1 3 1 2 2 0 1
000 3 2 2 2 1 1 1 0

To have (1; 1; 1) as the issue-wise majority winning committee, the following

conditions have to hold;

a+ b+ c+ e > d+ f + g + h

a+ c+ d+ f > b+ e+ g + h

a+ b+ d+ g > c+ e+ f + h

Recall howminimax committee is calculated via the table: The maximum num-

bers in each row is found and the committee with the minimum maximum number is

elected as the minimax committee. Let us call w 2 fa; b; :::; hg as weights of the cor-
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responding committees. Notice that if any of the w 2 fa; b; :::; hg is not equal to 0;

that is if all the possible ballots are cast, (1; 1; 1) will be one of the minimax commit-

tees as well as all the other ones. But, if any w 2 fa; b; :::; hg is equal to 0; meaning

that the corresponding ballot is not cast, then the column of that committee can be

removed from the table. In this case, the opposite committee of the removed commit-

tee will be the minimax winner as the maximum number in its row will be 2; while

all the others are 3: Thus, the �rst condition to have (1; 1; 1) as the minimax commit-

tee when at least one voter cast the ballot (0; 0; 0) is to have all the other ballots cast

as well.

Now, let us assume that w(0; 0; 0) = 0: Thus, we could remove the (0; 0; 0)

column from the table. In order to have (1; 1; 1) as the minimax committee, there

should not be any other committee without any 2 and 3 throughout its row. Hence,

some particular weights should not be equal to 0 at the same time, that is each of the

following conditions should not hold;

f = d = c = 0

g = d = b = 0

b = c = e = 0

a = d = f = g = 0

a = b = e = g = 0

a = c = e = f = 0

a = b = c = d = 0
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Observe that the last four conditions are already inconsistent with the condi-

tions that yield (1; 1; 1) as the issue-wise majority outcome. Hence, we can drop

them.

Notice that, each of the �rst three conditions are related to the ballots that agree

with (1; 1; 1) on one common issue. So, if the weight of at least one of [(1; 1; 0);

(1; 0; 1); (1; 0; 0)] , [(1; 1; 0); (0; 1; 1); (0; 1; 0)] and [(0; 1; 1); (0; 0; 1); (1; 0; 1)]is dif-

ferent than 0; then (1; 1; 1) will be the minimax outcome as well.

Formally;

GivenXN;3 andm(XN;3) as the minisum committee, under each of the follow-

ing conditionsm(XN;3) will be a minimax outcome:

(C1) If w(m(XN;3)) = 0; then for all distinct x 2 f0; 1gQ; w(x) 6= 0:

(C2) De�ne asMq; the set of committees that agree withm(XN;3) on candidate

q; i.e.; x 2 Mq , xq = mq(XN;3): If w(m(XN;3)) 6= 0;then 8q; 9x 2Mq such that

w(x) 6= 0:

The minisum and minimax committees are the outcomes of two different meth-

ods based on approval balloting. Given the approval ballots of the voters, with the

assumption that voters vote for their most preferred outcomes, Hamming distance

criteria is used to extend voters' preferences over committees. A quick observation is

that the minisum outcome will be the utilitarian outcome if voters' preferences over

committees is assumed to be represented by a utility function U inversely related

with the distance to the ideal of the voter such that
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De�nition 8 8n 2 I; 8Q; 8x; y 2 f0; 1gQ function U over f0; 1gQ is said to repre-

sent R if the following holds; Un(x) � Un(y), x Rn y:

Notice that, by de�nition of Hamming extension rule R;Un(x) � Un(y) ,

d(x; xn) � d(y; xn) with xn 2 f0; 1gQ as the ideal committee of voter n; whose

preference order is in consideration.

By this approach, the minisum outcome will de�nitely be the committee that

maximizes total utility of the society in the sense that it solves on f0; 1gQ the pro-

gram: Maxx2f0;1gQf
P

n2N Un(x)g.

On the other hand, the minimax outcome will be the one that maximizes the

minimum utility in the society in the sense that it solves on f0; 1gQ the program:

Maxx2f0;1gQfMinn2NUn(x)g:

Therefore, the minisum outcome represents the utilitarian approach, whereas

the minimax committee can be interpreted as the egalitarian outcome. Thus, the

representative qualities of these two committees will depend on the dominant values

in the society, which is the subject matter of another discussion that will not be made

here.

In the introduced methods of electing minisum and minimax committees, the

number of the voters who are in favor of a particular committee does not in�uence

the minimax outcome unlike the minisum outcome. Even if all voters but one cast

the same approval ballot, these two committees, supported by the two types of voters,

have the same in�uence in the determination of the minimax outcome. The minimax
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winner will be the one that lies in the middle of these two committees. Hence, ex-

treme votes have "extreme" impact in the determination of the minimax committee.

Although this feature of the minimax outcome is not inconsistent with the Rawlsian

interpretation of minimax committee as the egalitarian outcome, Brams, Kilgour and

Sanver (2005, 2005, 2007) propose two alternative weigthing system to overcome

this vulnerability of the minimax outcome to extreme votes, respectively called the

count weights and proximity weights.

Given a XN;Q; a distinct vote matrix is a (M;Q) ballot, XM;Q = [xqm]
q=1;:::;Q
m=1;:::;M

where M is the number of distinct ballots cast and the committee xm 2 f0; 1gQ

corresponds to the mth row in XM;Q: It is obvious thatM � N:Weighted minisum

committees are the ones that minimize the total weighted distance to the distinct

vote matrix while weighted minimax committees minimize the maximum weighted

distance to the distinct vote matrix. As expected, the weighted distance between two

committees is the Hamming distance multiplied by a predetermined weight factor.

De�nition 9 GivenXN;Q; x� 2 f0; 1gQ is a weighted minisum committee if it mini-

mizes on f0; 1gQ , �Mm=1(d(x�; xm)wm); where wm denotes the weight given to com-

mittee xm

De�nition 10 Given XN;Q; x�� 2 f0; 1gQ is a weighted minimax committee if it

minimizes on f0; 1gQ ,Maxm=1;:::;Mfd(x��; xm)wmg; where wm denotes the weight

given to committee xm:
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Let us consider a �rst weighting method, namely the count weight, in which

approval ballots are weighted by the number of voters who cast them. This count

weighting is already intrinsic to the usual minisum procedure, as pointed out by the

next example;

Example 11 XN;Q =

2664
(1; 0; 1)
(1; 1; 1)
(0; 1; 1)
(1; 0; 1)

3775 can be written in terms ofXM;Q =

24 (1; 0; 1)(1; 1; 1)
(0; 1; 1)

35and
a weight vector w =

0@ 2
1
1

1A ; each number in the weight vector shows how many
times the corresponding ballot in the XM;Q is cast, namely the count weight wm of

committee xm: Notice that the entries of the count weight vector sum up to the to-

tal number of voters, N . It is obvious that, the usual minisum outcome is exactly

the count weighted minisum outcome, or in other words x� 2 f0; 1gQ minimizes on

f0; 1gQ , �Mm=1(d(x�; xm)wm) if and only if x� = m(XN;Q) where wm denotes the

count weight of committee xm.

Using count weights in the determination of the minimax outcome will cer-

tainly reduce the signi�cance of extreme ballots and increase the impact of "popular"

ballots by giving more in�uence power to the committees approved by larger number

of voters. At this point, Brams et al. propose a second weighting method that takes

into account not only the counts but the proximity of ballots to each other. In the prox-

imity weights method, weight of a committee xm is de�ned as; wm = cwm
�Ml=1cwld(xm;xl)

;

where cwm denotes the count weight of committee xm.
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Consider the following example that illustrates the weighting methods men-

tioned;

Example 12

Ballot 001 101 110 m(XN;Q) 101
Count Weight 2 2 1
Proximity Weight 4 5 1 Maximum Total

000 2
4

4
10

2
2

4
10

8
16

100 4
8

2
5

1
1

4
8

7
14

010 4
8

6
15

1
1

6
15

11
24

001 0
0

2
5

3
3

3
5

5
8

110 6
12

4
10

0
0

6
12

10
22

101 2
4

0
0

2
2

2
4

4
6

011 2
4

4
10

2
2

4
10

8
16

111 4
8

2
5

1
1

4
8

7
14

N = 5; Q = 3 and in the �rst two rows of the table below, the ballots cast

and number of voters casting each distinct ballot is shown. When proximity weight

of each ballot calculated accordingly, one will get 2=5; 2=4 and 1=10 respectively.

When working with weights what matters is not the exact amount of weight but the

proportion of weights to each other. Hence, for simpli�cation purposes, each prox-

imity weight is multiplied by a common factor 10; and the weights in the third row

is acquired. In the column of each approval ballot the distances between the cor-

responding committee is shown; �rst number is the count weighted distance, while

second number indicates the proximity weighted distance. The maximum column de-
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notes the maximum distance of the each row, and the numbers in the total column

indicates the total of the corresponding row. As expected, minimax winner is the one

which has the smallest number in the maximum column, whereas minisum committee

is the one with the smallest value in the total column.

In this example, the outcomes of both weighting procedures and both methods

is the same committee, (1; 0; 1): For sure, this does not have to be the case. Consider

the following example;

Example 13 N = 101; Q = 3

Ballot 100 010 101 011 m(XNQ) = (1; 0; 1)
Count Weight 25 25 26 25
Proximity Weight 25=151 25=153 26=150 25=152 Total

000 25=151 25=153 52=150 50=152 1; 004575642
100 0 50=153 26=150 150=152 1; 486972824
010 50=151 0 78=150 25=152 1; 015599512
001 50=151 50=153 26=150 25=152 0;995730231
110 25=151 25=153 52=150 50=152 1; 004575642
101 50=151 75=153 0 50=152 1; 150269275
011 75=151 25=153 52=150 0 1; 006754101
111 50=151 50=153 26=150 25=152 0;995730231

Notice that, in this example there are two minisum committees with proximity

weights, (0; 0; 1), (1; 1; 1) and these two committees do not coincide with the issue-

wise majority winner (1; 0; 1).

Consider the Hamming preference pro�les of the same group of voters.
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25 25 26 25
100 010 101 011
000
110
101

000
110
011

001
100
111

001
010
111

010
111
001

100
111
001

011
110
000

101
110
000

011 101 010 100

Notice that all three minisum committees are in the Pareto-set, while the issue-

wise majority winner (1; 0; 1) defeats the proximity weighted minisum committees in

pair-wise contest. Even further, the committee (1; 0; 1) is the Condorcet winner of

the pro�le.

What this example implies is that once a weighting method that is not in direct

proportion with count weights is applied, the election of a majority unbeaten com-

mittee is not ensured. Proximity weighting increases the in�uence of ballots that are

close to each other, hence fosters voting for similar committees, at the cost of the

possibility of dropping a majority winning alternative.
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Chapter 3
Representativeness of approval balloting in

unrestricted committee elections

Both minisum and minimax committees are to be seen as representative in that

they maximize a social welfare function. Moreover, minisum committees coincide

with issue-wise majority committees. This chapter investigates further the repre-

sentativeness properties of minisum committees without a restriction on the elected

committee size.

More precisely, it �rst addresses the following question; Does minisum com-

mittee ful�ll the majority will regarding committees, when the latter is de�ned by

using the Hamming distance criterion? We show that the answer is negative, more

precisely a minisum committee can be majority defeated and even drop out of the

Uncovered Set of committees. This suggests to study a weaker representativeness

property by replacing the majority will with the unanimity will. Put differently, is

it true that for any set of approval ballots the minisum committee is always Pareto-

optimal? This is obviously true when the Hamming-distance prevails. We show that

this is also true for a much larger domain of separable preferences over committee.
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3.1 Minisum committees under majority will

We know that in multiple dichotomous choice models with separable voter pref-

erences, if a committee that beats every other in pairwise context exists, then the

issue-wise majority rule will select it (Kadane (1972), Schwartz (1977) and Kramer

(1972)). Certainly this result applies for the domain of Hamming extension rule as

shown by the following proposition;

Proposition 3 Given any XNQ; if a Condorcet winner exists under Hamming ex-

tension rule, the issue-wise majority rule will select it.

Proof. Take any XNQ; and the extended Hamming preference pro�le from the

ballots. Let x� 2 f0; 1gQ be the Condorcet winner of the pro�le. Hence, for all

distinct y 2 f0; 1gQ including the issue-wise majority winner m(XNQ); j n 2 I :

x�Pn y j> N=2:

Suppose, w.l.g. m(XNQ) = (0; 0; :::0) and de�ne B = fq 2 C : mq(XNQ) 6=

xq�g with j B j= Q0 < Q: Then, for all q 2 B; (m(XNQ)=B)q = 0; (x�=B)
q = 1;

j n 2 I : (m(XNQ)=B)Pn(x�=B) j> N=2 follows from the fact that (m(XNQ)=B)

is the issue-wise majority winner over XNQ0 , hence 8q 2 B; j n 2 I : xqn = 0 j>

N=2 which implies �Q
0

q=1�
N
n=1x

q
n < NQ0=2, suppose for a contradiction j n 2 I :

(m(XNQ)=B)Pn(x�=B) j� N=2; then, j n 2 I : �Q
0

q=1x
q
n < Q0=2 j� N=2; which

implies �Nn=1�
Q0

q=1x
q
n � NQ0=2; establishing the expected contradiction. Thus, as

stated before, j n 2 I : (m(XNQ)=B)Pn(x�=B) j> N=2 . Due to separability

of individual preferences the common members will not alter the preferences and
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hence, j n 2 I : m(XNQ)Pn x� j> N=2; creating a direct contradiction with having

x� 6= m(XNQ) as the Condorcet winner.

This proposition promotes the minisum committee as the relevant one when

satisfying the majority will is the goal. However, the problem of existence of the

Condorcet winner remains unanswered. Consider the following example;

Example 14 Q = 3; N = 5with the following approval ballots; (1; 1; 0); (1; 0; 1); (0; 1; 1)

and two (0; 0; 0): The extended Hamming pro�les are given below:
110 101 011 000 000

100; 010; 111 100; 001; 111 001; 010; 111 001; 010; 100 001; 010; 100
101; 000; 011 110; 011; 000 101; 000; 110 110; 101; 011 110; 101; 011

001 010 100 111 111

Observe that there is no Condorcet winner in this pro�le. Worse, the minisum

outcome, i.e., the issue-wise majority winner ism(XNQ) = (0; 0; 0): But as it can be

easily noticed, the issue-wise majority is defeated by its opposite, which is (1; 1; 1)

beats (0; 0; 0):3

Condorcet consistent choice rules, the Copeland Set, the Top Cycle and the

Uncovered Set, can be used to circumvent the existence of a Condorcet winner (recall

that Condorcet consistency means the ability to uniquely select the Condorcet winner

when it exists).

A Copeland winning committee will be one that beats the biggest number of

committees. The Copeland Set induces a complete preorder over the set of commit-
3 This condition is known as the Ostrogorski paradox, where the issue-wise majority winner is
majority-defeated in the majority tournament de�ned over committees. For a detailed analysis, one
can see Daudt and Rae (1976), Bezembinder and van Acker (1985), Deb and Kelsey (1987), Kelly
(1989), Laffond and Laine (2006, 2008).
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tees. For sure, Condorcet winner is the winner of the Copeland rule too, whenever

it exists. But in the absence of a Condorcet winning committee, the Copeland rank-

ing is shown to coincide with the ranking provided by the Kemeny ranking (Klamler,

2005). Thus, a Copeland winner can be said to be the "closest" to being a Condorcet

winner. Think about the following example;

Example 15 Q = 3; N = 5 and with the following pro�le;
110 101 011 000 000

100; 010; 111 100; 001; 111 001; 010; 111 001; 010; 100 001; 010; 100
101; 000; 011 110; 011; 000 101; 000; 110 110; 101; 011 110; 101; 011

001 010 100 111 111

To identify the Copeland winner of this pro�le consider the table below:
x 2 f0; 1g3 j fy 2 f0; 1g3 : x � yg j j fy 2 f0; 1g3 : y � xg j

111 1 6
110 1 4
101 1 4
011 1 4
100 4 1
010 4 1
001 4 1
000 6 1

In the table, the committees are listed in the �rst column. The second column

shows the number of alternatives that the corresponding committee beats, while the

number of committees which beats that committee is given in the third column. Note

that in cases where the sum of the second and the third column does not count to

7; which is the number of pairwise contests in relation with a particular committee,

indifference relation has taken place.

The Copeland rule ranks the committees according to the difference between

the second and the third columns.
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As can be noticed, the issue-wise majority winnerm(XNQ) is also the Copeland

winner, which quali�es it as "closest" to being the Condorcet winner.

This example may seem encouraging in the sense that in the absence of an

obvious winner, the "closest" alternative is elected. However, this is not the general

case when dealing with all possible pro�les, i.e.; there exist pro�les for which the

issue-wise majority winner is not the Copeland winner. A recent result shows that

under the assumptions made here, the issue-wise majority winner can be covered

in the majority tournament among committees (Laffond and Lainé (2008)). Hence,

Copeland winner being a re�nement of the Uncovered Set leaves the stage.

A second result in the same work ensures the inclusion of the issue-wise ma-

jority winner to the Top-Cycle. But since McKelvey (1976), Top-Cycle is not con-

sidered to be a "reliable" stability concept as it can consist of all of the alternative set.

For instance, in the previous example, all of the committees belong to the Top-Cycle

of the majority tournament. Actually, this is always the case when the issue-wise

majority winner is majority defeated by exactly the opposite committee (Laffond

and Laine (2008)). In addition to poor-selectivity, the Top-Cycle may select Pareto-

dominated outcomes. This suggests to investigate the Pareto-ef�ciency of issue-wise

majority rule over approval ballots.
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3.2 Pareto-ef�ciency of the minisum committees

As a reasonable minimum representativeness criterion, Pareto-optimality prohibits

the election of an alternative while another alternative is preferred to it by every in-

dividual in the society. Thus, the benchmark becomes the unanimity rule instead of

the majority rule. As mentioned before, issue-wise majority voting in multiple di-

chotomous choice models does not ensure the election of a Pareto-optimal outcome

when any separable preference consistent with the ballot is assumed (Ozkal-Sanver

and Sanver, 2006)4. Hence, an additional restriction on admissible preferences is

required beyond separability in order to ensure Pareto-optimality of the elected com-

mittee.

Benoit and Kornhauser (1994) address this question in the different setting of

numbered post election (which relates to asymmetric committee), where each issue

refers to a speci�c position in an assembly or a speci�c post in a legislation, and

they assume that the order of the importance of the issues is the same for all voters.

For instance, the most important issue to be voted is the presidency position and the

second important is the asistant president position, etc. They show that in a numbered

post election with a common order of importance of the issues, if the preferences are

separable and top-lexicographic then a Pareto-optimal assembly is always selected.

This top-lexicographicity property can be roughly de�ned as such: Consider two

assemblies with the most important position being the �rst issue for the voters and

4 This result holds only when at least three candidates have to be appointed.
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the second most important one being the second and so on. Preferences would be

top-lexicographic if any voter prefers the �rst assembly to the second where the �rst

issue that these two committees differ is occupied by the voter's best preference for

this position in the �rst assembly. Notice that this top-lexicographicity property is

designed for a very special type of voting procedure, which is the numbered post

election with a common order of importance of the issues, and does not guarantee

Pareto-optimality in more general settings.

It is obviously seen that a minisum committee is Pareto-optimal under Ham-

ming extension rule; indeed we know that it maximizes the sum of utilities. Is it

still the case for other preferences over committees? Indeed, the properties of the

issue-wise majority rule are very sensitive to the choice of extension rule.

Now, we study this question for preference domains larger than the Hamming

one. We prove that the preference domain that always insures a Pareto-optimal min-

isum committee is much larger than the Hamming extension rule. Next, we charac-

terize a larger domain (for inclusion) for which this is true.

3.2.1 Pareto-ef�ciency under Hamming criteria

Let us begin with the formal de�nition of a Pareto-optimal committee:

De�nition 11 Given XNQ; a committee x 2 f0; 1gQ is said to be Pareto-optimal if

there is no y 2 f0; 1gQ such that y Rn x for all n 2 N and y Pn� x for at least one

n� 2 N .
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The next de�nition introduces the Pareto-ef�ciency property of the issue-wise

majority rule:

De�nition 12 The issue-wise majority rule is said to be Pareto-ef�cient for the ex-

tension rule R if, for any N and Q, any (N;Q)-ballot XNQ = (x1; :::; xN) there is

no x 2 f0; 1gQ such that x Rn m(XNQ) for all n 2 N and x Pn� m(XNQ) for at

least one n� 2 N .

We �rst introduce a simple way to enlarge the Hamming preference domain by

"cutting ties" within each indifference class:

De�nition 13 RHamC is said to be a Hamming-consistent extension rule if and

only if 8Q;8x; y; z 2 f0; 1gQ; d(x; y) < d(x; z)) y PHamC(x) z:

Hamming consistency means that any two committees that are not in the same

indifference class (for the Hamming extension rule) remain compared according to

the Hamming extension rule and any ranking (strict or not) of committees within the

same class is allowed.

For instance consider the following example;

Example 16 Consider n 2 N with the best preference xn = (1; 1; 1); a committee

of three candidates. Hamming extension rule RHam yields the following pro�le;

(1;1;1) PHamn (1;1;0) IHamn (1;0;1) IHamn (0;1;1) PHamn (0;0;1) IHamn

(1;0;0) IHamn (0;1;0) PHamn (0;0;0)
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while the following belong to the set of Hamming-consistent extended preorders

with the best-preference (1; 1; 1);

(1;1;1) PHamCn (1;1;0)PHamCn (1;0;1) PHamCn (0;1;1) PHamCn (0;0;1)

IHamCn (1;0;0) IHamCn (0;1;0) PHamCn (0;0;0)

(1;1;1) PHamCn (0;1;1) PHamCn (1;1;0) IHamCn (1;0;1) PHamCn (0;0;1)

IHamCn (1;0;0) PHamCn (0;1;0)PHamCn (0;0;0)

What is altered in the second and third pro�les is exactly within the indiffer-

ence classes of the �rst pro�le. One can extend 169 Hamming-consistent preference

pro�les from the best preference (1; 1; 1); 36 of them being strict orders.

It should be clear that Hamming extension rule belongs to the class of Hamming-

consistent extension rules. Notice that similar to the Hamming extension rule, Hamming-

consistent extension rules satis�es separability and top-consistency. The following

proposition shows the minisum committee is always Pareto-optimal for Hamming-

consistent extension rules.

Proposition 4 Any Hamming-consistent extension rule RHamC is Pareto-ef�cient

for the issue-wise majority rule.

Proof. Given any XNQ and any Hamming-consistent extension rule RHamC ; sup-

pose for a contradiction thatm(XNQ) is Pareto dominated by a distinct y 2 f0; 1gQ:

Formally, y RHamCn m(XNQ) for all n and y PHamCn� m(XNQ) for at least one

n�: Due to Hamming-consistency, for all n; d(xn; y) � d(xn;m(X
NQ)); resulting
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in �n2Nd(xn; y) � �n2Nd(xn;m(XNQ)): As proved by Brams, Kilgour and Sanver

(2004), the committee that minimizes the total distance to the ideals is the issue-wise

majority winner.

Hence, �n2Nd(xn; y) = �n2Nd(xn;m(X
NQ)) and together with Hamming-

consistency for all n; d(xn; y) = d(xn;m(XNQ)):

Let B = fq = 1; :::; Q : mq(XNQ) 6= yqg with j B j= Q0 < Q: Q0 must

be an even integer. Suppose w.l.g. mq(XNQ) = 0 for all q. Then, for all q 2

B; (m(XNQ)=B)q = 0; (y=B)q = 1 and for all n; j q 2 B : (xn=B)
q = 0 j=

j q 2 B : (xn=B)
q = 1 j= Q0=2; implying for all n; �q2B(xn=B)q = Q0=2 =)

�n2N�q2B(xn=B)
q = NQ0=2 (1)

By de�nition of m(XNQ) and by construction for all q 2 B; j n 2 N :

(xn=B)
q = 1 j< N=2:Hence, for all q 2 B;�n2N(xn=B)q < N=2 =)�q2B�n2N(xn=B)

q <

Q0N=2 creating a direct contradiction with (1).

What this proposition shows is simply that the Pareto-ef�ciency of issue-wise

majority voting remains valid as long as the extended preferences over committees

are consistent with the partition into Hamming indifference classes.

3.2.2 A characterization result

The previous proposition suggests to specify the largest class of separable extension

rules for which a minisum committee is Pareto-optimal for any set of approval ballots.

We show that, under a mild additional restriction, this class is larger than the class
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of Hamming-consistent extension rules. It contains all weak Hamming consistent

extension rules, which are formally de�ned as follows;

De�nition 14 RWHam is said to be a weak Hamming-consistent extension rule if

and only if 8Q, 8� < Q
2
, 8x; y 2 f0; 1gQ, d(x; y) � � ) y P (x) (�y);where for

any y 2 f0; 1gQ; (�y) denote the opposite committee of y such that: 8q, (�y)q 6= yq:

The weak Hamming-consistency property only determines the ranking of a

committee relative to its opposite committee by comparing the distances to the ideal.

If the ideal of an individual is closer to a committee than its opposite committee, any

weakly Hamming consistent extension rule should rank this committee higher than

its opposite. In other words, if a committee coincides with the ideal of a voter at

more than half of the candidates, than this committee should be ranked higher than

its opposite by the voter. Note that unlike Hamming-consistency, weak Hamming-

consistency does not guarantee separability.

A neutral assumption is to consider that the admissible preferences are "minimally-

consistent" with the observed approval ballots. This leads to the top-consistency

property which states that ballots describe voters' ideals5.

De�nition 15 An extension rule R is said to satisfy top-consistency if the following

condition holds; 8Q, 8x 2 f0; 1gQ, x P (x) y for all y 2 f0; 1gQnx:

5 Top-consistency is equivalent to sincere voting under the assumption of dichotomous preferences.
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Top-consistency requires the single committee from which the preferences are

extended to be the �rst-ranked committee in the extended preorder.

It should be clear that any Hamming consistent pro�le is also top-consistent,

separable and weakly Hamming consistent.

How large is the set of weakly Hamming consistent extension rules in compar-

ison to Hamming consistent ones? When the number of candidates Q = 3; the set of

top-consistent, separable and weakly Hamming-consistent extension rules is exactly

the same as Hamming-consistent ones. But, even if we increase the number of can-

didates by 1, with Q = 4; the number of attainable individual pro�les under weak

Hamming-consistency will be 224 more than the number of attainable individual pro-

�les under Hamming-consistency, for sure without harming neither separability nor

top-consistency.

Example 17 Consider n 2 N with the best preference xn = (1; 1; 1; 1); a commit-

tee of four candidates. The extended Hamming pro�le would be;

I(0) I(1) I(2) I(3) I(4)

1111

1110
1101
1011
0111

1001
1100
1010
0011
0101
0110

1000
0100
0010
0001

0000

In the Hamming-consistent pro�le, the committees within the same indifference

class can be ordered in any possible combination. That makes 4!6!4! different strict

orders. Once indifference relation is taken into account, this number explodes.
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In the separable and weakly Hamming-consistent pro�le, respecting indiffer-

ence boundaries is not required as long as separability is preserved. In other words,

a committee does not have to belong to the Hamming indifference class. Consider

again the individual with the ideal (1; 1; 1; 1) and consider the indifference classes

shown above. In a weakly Hamming consistent separable pro�le with (1; 1; 1; 1) as

the top-preference, it is admissible to have either (1; 0; 0; 1) Pn(0; 1; 1; 1) or (1; 0; 0; 1)

Pn(1; 0; 1; 1). Actually, in a Hamming-consistent pro�le over committees with 4 can-

didates, 24 independent shifts in preferences will lead weakly Hamming-consistent,

separable and top-consistent pro�les.

This example with 4 candidates illustrates how large is the set of weakly Ham-

ming consistent pro�les compared to Hamming-consistent ones. The next result char-

acterizes the domain of weakly Hamming consistent extension rules as the largest

domain of separable and top-consistent rules for which the issue-wise majority rule

is Pareto-ef�cient for any set of approval ballots.

Theorem 5 Let D be the domain of top-consistent and separable extension rules

over committees. The issue-wise majority rule is Pareto ef�cient for R 2 D if and

only if R is weakly Hamming consistent.

Proof. Proof of the suf�ciency part:
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Let R be a weakly Hamming-consistent extension rule. Let Q;N be any non-

zero integers and letXNQ be a (N;Q)-ballot such thatm(XNQ) is Pareto-dominated

by x� = (x�1; :::; x�Q) in the pro�le R(XNQ) = (R(x1); :::; R(xN)).

Step 1: 8Q;N , 9n 2 f1; :::; Ng such that d(xn;m(XNQ)) < Q
2
:Indeed, it

follows from the de�nition of m(XNQ) that j fxqn : xqn = mq(XNQ)g j> NQ
2
(*).

Suppose for a contradiction that for any n, d(xn;m(XNQ)) � Q
2
:Then, for any n; j

fq = 1; :::; Q : xqi = mq(XNQ)g j� Q
2
, which immediate contradicts with (*). Thus,

there exists n such that j fq = 1; :::; Q : xqi = mq(XNQ)g j> Q
2
, which means that

d(xn;m(X
NQ)) < Q

2
. Furthermore, it follows from the de�nition of weak-Hamming

consistency that x� 6=m(XNQ).

Step 2: m(XNQ) is not Pareto-dominated by (�m(XNQ)):

This is an immediate consequence of Step 1 together with weak Hamming-

consistency.

Step 3: 8Q;N ,m(XNQ) is not Pareto-dominated.

Let B = fq = 1; :::Q : yq 6= mq(XNQ)g, with j B j= Q0 < Q (from Step

2). It follows from construction that x�=B = (�m(XNQ)=B). Moreover, it follows

from Step 1 that 9n 2 f1; :::; Ng such that d(xn=B;m(XNQ)=B) � Q0

2
. Thus, weak

Hamming-consistency ensures thatm(XNQ)=B P (x=B) x�=B. The conclusion fol-

lows from the separability property of R.

Proof of the necessary part:
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Let R be an extension rule that is not weakly Hamming-consistent. Thus, 9Q,

9� � Q
2
two integers such that 9x; y 2 f0; 1gQ which verify d(x; y) = � and (�y)

R(x) y. One may assume without loss of generality that yq = 1 for all q (through a

relevant relabelling of issues). We claim that there exists a (N;Q)-ballot XNQ such

thatm(XNQ) is Pareto-dominated.

Let N = � + 1, where � = (
Q
�
) = Q(Q�1):::(Q��+1)

2:3:4::::�(��1) . The set of ideal

committees for individuals in f1; :::; �g, that is [1�n��fxng, is fx 2 f0; 1gQ :j

fq = 1; :::; Q : xq = 0g j= �g, while xqN = 0 for all q = 1; :::; Q. Consider any

candidate q, and let us compute the number n(q) of approvals given to q. One get

n(q) = (
Q� 1
�

) = (Q�1):::(Q��)
2:3:4::::�(��1) =

(Q��)
Q
:�.

SSuppose that Q is even. Thus, � � Q
2
� 1 ) (Q��)

Q
:� > (1

2
+ 1

Q
):�. Since

n(q) is an integer, then n(q) > �+1
2
: indeed, if � is even, then n(q) > (1

2
+ 1

Q
):� )

n(q) > �
2
+1 > �+1

2
; if � is odd, then n(q) > (1

2
+ 1

Q
):� ) n(q) > �+1

2
+ �

Q
> �+1

2
.

Suppose that Q is odd. Then � < Q
2
) � � Q�1

2
) (Q��)

Q
:� > (1

2
+ 1

2Q
):�.

Since n(q) is an integer, then n(q) > �+1
2
: indeed, if � is even, then n(q) > (1

2
+

1
2Q
):� ) n(q) > �

2
+ 1 > �+1

2
; if � is odd, then n(q) > (1

2
+ 1

Q
):� ) n(q) >

�+1
2
+ �

2Q
> �+1

2
.

This proves that y = m(XNQ). It follows from the de�nition of �, together

with the lack of weak Hamming-consistency, that (�y) Rn y for all n = 1; :::; �.

Moreover, it follows from top-consistency that xN = (�y) PN y. Hence, (�m(XNQ))

Pareto-dominatesm(XNQ), which completes the proof.



64

Chapter 4
Representativeness of approval balloting in

�xed-size committee elections

In most of real life elections, the number of the committee members that will

be elected is restricted. Upto now, while investigating the representativeness proper-

ties, we have not assumed any restriction over the size of the elected committee. In

other words, the number of the members involved in the elected committee has been

dependent on the approval ballots. However, most real-life elections require the elec-

tion of a committee with a predetermined size, i.e.; a size restriction is imposed on

the election outcome. Now, we will investigate the Pareto characteristics in �xed-size

committee elections.

The problem under consideration is the election of a �xed number of candi-

dates, namely k; from the set of Q candidates, C = f1; :::; q; :::; Qg: Same as the

unrestricted model, all voters cast approval ballots indicating their approvals and dis-

approvals of candidates as committee members. Given any N and Q; the set of all

admissible election outcomes is de�ned as Kk = fx 2 f0; 1gQ :j fq 2 C : xq =

1g j= kg:

Two different election procedures are proposed to elect a �xed size committee

by approval balloting: issue-wise majority rule and sequential approval balloting.
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4.1 Issue-wise majority rule

In this procedure, each voter is asked to approve exactly k candidates and the winning

committee is determined according to the issue-wise majority rule. In this case it is

quite possible to have issue-wise majority winning committees with more or less than

k members. Thus, an additional restriction over the vote matrix is required to ensure

the election of k-member committees with issue-wise majority rule.

Formally, given a set of N voters; and Q candidates and a non-zero integer k;

each voter casts an approval ballot xn 2 Kk: XN;Q denotes the set of all approval

ballots with Q candidates and N voters and XN;Q;k is the subset of XN;Q de�ned as:

XNQk 2 XN;Q;k if and only if m(XNQk) 2 Kk; where m(XNQk) is the issue-wise

majority winner. Note that m(XNQk) is uniquely de�ned from the assumption that

N is odd.

Voter preferences over committees are complete preorders overK = [k�0;Q>kKk

extended from approval ballots via an extension rule. We denote by �Q;k the set of all

complete preorders over K: An extension rule R de�ned from K to Rk = [QQ�1�Q;k

associates with each committee x 2 Kk an element R(x) of �Q;k:

De�nition 16 An extension rule R is said to satisfy top-consistency if the following

condition holds; 8Q,8k < Q; 8x 2 Kk, x P (x) y for all y 2 Kknfxg:

De�nition 17 An extension rule R is said to satisfy separability if the following

condition holds; 8Q,8 0 < k � k0 < Q; 8x; y 2 Kk, 8z 2 Kk0�k; x R y )
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(x; z)R(y; z), where (x; z) refers to the k0-sized committee including the members of

both x and z:

In this restricted setting, to characterize the largest domain of separable and top-

consistent extension rules that yield out Pareto-optimal issue-wise majority winners

with Hamming-consistency, we need to adapt some particular de�nitions:

The distance between two �xed-size committees is de�ned as the number of

candidates that is excluded from one particular commitee while approved by the

other, i.e; distance is calculated based on particular subsets of these two commit-

tees, which refer to the subset of approved candidates by one of the two.

De�nition 18 8Q;8k;8x; y 2 K; d(x; y) =j fq 2 C : (y=A(x))q = 0g j; where

A(x) = fq 2 C : xq = 1g and y=A(x) stands for the restriction of the committee y

to the subset A(x):

Notice that this is a symmetric kind of distance in the sense that d(x; y) =

d(y; x); since x and y are of the same size.

Given any �xed size committee in K; the exact opposite committee will not be

a member of K: Hence, we need to modify the de�nition of opposite committee of a

�xed size committee as;

De�nition 19 8x 2 K; (�x) is the subset of opposite committees of x de�ned by;

y 2 (�x)()j fq 2 C : yq = xqg j=Maxf0; [k �Q=2]g:
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Notice that, if k � Q=2; (�x) will include the committees that have no com-

mon member with x. But if k > Q=2; as it is not possible for any two committee to

be disjoint, the committees that share the minimum possible common members with

a committee will be opposites of it.

De�nition 20 RWHam is said to be a weak Hamming-consistent extension rule if

and only if 8Q, 8� < k
2
, 8x; y 2 K; 8z 2 (�y); d(x; y) � �) y P (x) z:

The next proposition shows that similar to the case of committee elections with-

out a size restriction, the largest domain of separable and top-consistent extension

rules over �xed size committees that yield Pareto-optimal issue-wise majority win-

ners is the set of weak-Hamming consistent rules.

Proposition 6 LetD� be the domain of top-consistent and separable extension rules

over �xed size committees. The issue-wise majority rule is Pareto ef�cient forR 2 D�

if and only if R is weakly Hamming consistent.

Proof. Suf�ciency Part:

Given any XNQk 2 XN;Q;k; let R be a weakly-Hamming consistent exten-

sion rule and suppose m(XNQk) is Pareto-dominated by x� 2 K in the pro�le

R(XNQk) = (R(x1); :::; R(xN)):

We will �rst show that, 9n 2 I such that d(xn;m(XNQk)) < k
2
: Indeed, it

follows from the de�nition ofm(XNQk) that, for any elected member q; the number

of approvals given to q; n(q) > N=2: Hence, total number of approvals given to the
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elected members ofm(XNQk); n(m(XNQk)) > Nk
2
: Suppose for a contradiction that

for any n, d(xn;m(XNQk)) � k
2
; which implies that n(m(XNQk)) < Nk

2
; creating

the desired contradiction. Thus, 9n 2 I such that d(xn;m(XNQk)) < k
2
:Due to weak

Hamming consistency,m(XNQk)Pn z; 8z 2 (�m(XNQk)); establishing that any z 2

(�m(XNQk)) cannot Pareto-dominate m(XNQk): Let B = fq 2 C : mq(XNQk) =

1 and x�;q = 0g: As any z 2 (�m(XNQk)) cannot Pareto-dominate m(XNQk);

j B j< Q: Following the �rst claim, 9n 2 I for who d(xn=B; (m(XNQk)=B)) < jBj
2

. Again, weak Hamming consistency ensures that (m(XNQk)=B) P x�=B. The

conclusion follows from the separability property of R.

Necessary Part:

Let R be an extension rule that is not weakly Hamming-consistent. We claim

that 9 XNQk such that m(XNQk) is Pareto dominated in the pro�le R(XNQk) =

(R(x1); :::; R(xN)).

Let Q > 3; � < k=2; N =

�
k
�

�
+ 1: Let R(XNQk) be such that 9y 2 K

such that 8xn 2 K; d(xn; y) = � and zRny for one z 2 (�y); where ballots are

given by;

- 8n; j A(xn)� fq : yq = 1g j= �

- 8n 6= n0 < N; xn 6= xn0

- A(xN) = z

- 8q =2 f1; :::; kg; n(q) < N=2 (note that Q can be chosen large enough to

ensure this). It follows from construction thatm(XNQk) = y: Finally, zRnm(XNQk)
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for all n and due to top-consistency zPN m(XNQk): Hence,m(XNQk) is not Pareto-

optimal.

4.2 Sequential approval balloting

A second method to elect a committee of size k is sequential approval balloting,

which is proposed by Brams, Kilgour and Sanver (2004) under the name of restricted

size committee elections. Unlike to the former procedure, voters are free to approve

as many candidates as they like. Exactly k number of candidates with the most

approvals are elected as members of the winning committee.

Given a set of N voters; and Q candidates and a non-zero integer k; each voter

casts an approval ballot xn 2 f0; 1gQ:Committee c 2 f0; 1gQ with j q 2 C : cq =

1 j= k is elected if 8q with cq = 1; @q0 with cq0 = 0 such that �n=1;:::;N xq
0
n >

�n=1;:::;N x
q
n: Thus, a selected committee involves k members among those having

gathered as many approvals as possible. Given k; the set of eligible committtees of

vote matrix XNQ under this rule is denoted as ak(XNQ):

The distance between two committees is again calculated on a restricted area.

Given any committee, the distance between this committee and any other one is de-

�ned as the number of candidates that is excluded from the second commitee while

approved by the former.
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De�nition 21 8Q;8x; y 2 f0; 1gQ; d(x; y) =j fq 2 C : (y=A(x))q = 0g j; where

A(x) = fq 2 C : xq = 1g and y=A(x) stands for the restriction of the committee y

to the subset A(x):

Notice here that, unless x and y are committees of the same size, the distance

between them is not a symmetric distance in the sense that d(x; y) 6= d(y; x):

Preferences over committees are derived by the help of extension rules de�ned

from 
 toRk, where 
 = [Q�1f0; 1gQ andRk = [QQ�1�Q;k with �Q;k being the set

of all complete preorders on K = [k�0;Q>kKk

A slight change is required in the de�nition of top-consistency as;

De�nition 22 An extension ruleR is said to satisfy top-consistency if: 8Q,8k < Q;

i. 8n 2 I with j q 2 C : xqn = 1 j� k; x Pn y for all x 2 Kk with d(xn; x) = 0

and 8y 2 Kk with d(xn; y) > 0

ii. 8n 2 I with j q 2 C : xqn = 1 j> k; x Pn y for all x 2Kk with d(x; xn) = 0

and 8y 2 Kk with d(y; xn) > 0

Extension ruleR satis�es top-consistency, if for the voters that approve at most

k candidates, all the candidates approved are included as members in the �rst ranked

committees and for the voters that approve more than k candidates, all the members

of the �rst-ranked committee are approved in the ballots.

Preserving the modi�ed de�nition of a distance, Hamming extension rule will

rank the committees according to the distance to the ideal.
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De�nition 23 RHam is said to be Hamming extension rule if the following condi-

tion is satis�ed: 8Q, 8k;8x 2 f0; 1gQ; 8y; z 2 Kk; d(x; y) < d(x; z) , y P(x) z

and d(x; y) = d(x; z), y I(x) z:

De�nition 24 RHamC is said to be a Hamming-consistent extension rule if and

only if 8Q;8k;8x 2 f0; 1gQ;8y; z 2 Kk; d(x; y) < d(x; z), yP(x)z:

With sequential approval balloting, the set of eligible committees ak(XNQ)

does not necessarily consist of a single element regardless of N being odd or even.

Thus, the search for the largest domain of extension rules which yield Pareto-optimal

outcomes becomes a two-way problem: on one hand, we will search for the exten-

sions for which any eligible committee is never Pareto-dominated; on the other hand,

we will characterize the largest domain that an eligible committee is never Pareto-

dominated by a non-eligible committee. In the former, the unique rule will be Ham-

ming extension, while in the latter Hamming-consistent extension rules are made use

of.

Proposition 7 Let D�� be the domain of top-consistent and separable extension

rules from set of committees to set of complete orders over �xed size committees.

No eligible committee is Pareto dominated under sequential approval balloting for

R 2 D�� if and only if R is Hamming extension rule.

Proof. Suf�ciency Part:
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Given anyXNQ; letR be Hamming extension rule. Take any c 2 ak(XNQ) and

suppose c is Pareto-dominated by c�in the pro�le R(XNQ) = (R(x1); :::; R(xN)):

As c is an eligible committee, by de�nition, n(q) � n(q0) 8q 2 c, 8q0 =2 c;

where n(q) =j fn 2 I : xqn = 1g j : Let, N(c) denote the total number of approvals

collected by the members of c.

Since, 8n; c�Rn c; due to Hamming consistency, 8n; d(xn; c�) � d(xn; c);

which implies 8n; j fq 2 C : (c�=An)
q = 1g j�j fq 2 C : (c=An)

q = 1g j

:Thus, �n2I (c�=An)q � �n2I (c=An)q; yielding N(c�) � N(c): As, c is an eligible

committee, N(c�) = N(c) and 8n; j fq 2 C : (c�=An)
q = 1g j=j fq 2 C :

(c=An)
q = 1g j; which is 8n; d(xn;c�) = d(xn; c):

As R is the Hamming rule, 8n; c�Inc: Thus, an eligible committee is never

Pareto-dominated.

Necessary Part:

Let R be an extension rule that is not Hamming rule. We claim that 9 XNQ;

9k; 9c 2 ak(X
NQ) such that c is Pareto dominated in the pro�le R(XNQ) =

(R(x1); :::; R(xN)).

Consider the following XNQ with N = 6; k = 3; Q � 6 and rows indicating

the approval ballots.
1 2 3 4 5 6 7:::
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
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Both the committees c1=(1; 1; 1; 0:::) and c2=(0; 0; 0; 1; 1; 1; 0:::) are elements

of ak(XNQ): 8n; d(xn;c1) = d(xn; c2): As R is not Hamming rule, one can have the

pro�le such that 8n; c1Rnc2 and 9n�; c1Pn�c2:

This proposition shows that with Hamming extension rule, an eligible pro�le

under sequential approval voting is never Pareto-dominated and once another exten-

sion rule is used it is possible to �nd pro�les that an eligible committee is dominated

by another (not necessarily) eligible committee. Thus, it suggests to investigate the

domain of extension rules that yield out pro�les for which eligible committees can

not be Pareto-dominated by any non-eligible committee. This domain will be the one

that at least one eligible committee is not Pareto-dominated by any other committee.

Obviously, this domain will be larger than Hamming extension rule.

The next proposition shows that the largest domain of extension rules at which

at least one eligible committee is not Pareto-dominated is the class of Hamming

consistent extension rules. The suf�ciency part follows the previous proof closely till

the last step.

Proposition 8 Let D�� be the domain of top-consistent and separable extension

rules from set of committees to set of complete orders over �xed size committees.

At least one eligible committee is not Pareto dominated under sequential approval

voting for R 2 D�� if and only if R is a Hamming consistent extension rule.

Proof. Suf�ciency Part:
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Given any XNQ; let R be a Hamming consistent extension rule. Take any

c 2 ak(XNQ) and suppose c is Pareto-dominated by c� =2 ak(XNQ) in the pro�le

R(XNQ) = (R(x1); :::; R(xN)):

As c is an eligible committee, by de�nition, n(q) � n(q0) 8q 2 c, 8q0 =2 c;

where n(q) =j fn 2 I : xqn = 1g j : Let, N(c) denote the total number of approvals

collected by the members of c.

Since, 8n; c�Rn c; due to Hamming consistency, 8n; d(xn; c�) � d(xn; c);

which implies 8n; j fq 2 C : (c�=An)
q = 1g j�j fq 2 C : (c=An)

q = 1g j

:Thus, �n2I (c�=An)q � �n2I (c=An)q; yielding N(c�) � N(c): As, c is an eligible

committee, N(c�) = N(c), which directly contradicts with c� =2 ak(XNQ) .

Thus, c 2 ak(XNQ) can not be Pareto-dominated by any c� =2 ak(XNQ):

Now, suppose c� 2 ak(XNQ) dominates c 2 ak(XNQ): That is, N(c�) = N(c)

and 8n; j fq 2 C : (c�=An)
q = 1g j=j fq 2 C : (c=An)

q = 1g j; which is

8n; d(xn;c�) = d(xn; c). As R is a Hamming-consistent extension rule, one can

�nd pro�les that c� Pareto-dominates c: Let XNQ be such. Since Pareto-domination

de�nes a transitive binary relation, 9 ~c 2 ak(XNQ) that Pareto dominates all distinct

c 2 ak(XNQ) and is not Pareto-dominated by any of them.

Necessary Part:

Let R be an extension rule that is not Hamming consistent. We claim that 9

XNQ; 9k; 9c 2 ak(XNQ); 9c� =2 ak(XNQ) such that c� Pareto dominates c in the

pro�le R(XNQ) = (R(x1); :::; R(xN)).
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Let Q > 3; k � Q=2; N =

�
k

k � 1

�
+ 1; the approval ballots;

-8n < N; 8q 2 f1; :::; kg; j fq : xqn = 1g j= k � 1

-8n < N; 8q 2 f(k + 1); :::; 2kg; j fq : xqn = 1g j= 1

-8n; n0 with n 6= n0; xn 6= xn0

-8n < N; 8q > 2k; the total number of approvals, n(q) <
�

k
k � 1

�
� 1:

-For n = N; 8q 2 f(k+1); :::; 2kg; xqN = 1 and 8q =2 f(k+1); :::; 2kg x
q
N = 0:

It follows from construction that the unique sequential approval balloting out-

come c is such that: 8q 2 f1; :::; kg; cq = 1 and 8q =2 f(k + 1); :::; 2kg cq = 0:

However, as R is not Hamming consistent, it may be the case that 8n; xN R c and

from top-consistency 9n = N with xN PN c: One can check that this is compatible

with separability as well.



Conclusion

A committee election rule is certainly promoted as long as the outcomes are rep-

resentative of the underlying voter preferences. To represent underlying voter prefer-

ences faithfully, the outcomes produced by the voting rule should satisfy some require-

ments. Apart from Condorcet-consistency, maximizing some social welfare function

or minimizing a particular distance, what we mainly focus in this study is a mini-

mum level of requirement to secure representative election winners: Pareto-optimality.

We have de�ned the largest class of separable and top-consistent preference extension

rules that will yield out Pareto-optimal winners in both unrestricted and �xed-size

committee elections based on approval balloting.

For further study, the investigation of the same problem under strategic voting

would be complementary to this study. Here, we know that sincere voting is the domi-

nant strategy with Hamming preferences as shown by Brams et al. (2004) but, it would

not probably be the case with weakly-Hamming consistent preferences. Hence the rep-

resentative properties of elections based on approval balloting where strategic voting

is allowed stands as a problem to stick with.

Or to read the question other way round, speci�c properties of tournament so-

lutions for alternative de�nitions of preferences over committees compatible with ap-

proval ballots may be investigated. Some results have been reached for tournament

solutions for Hamming preferences (Laffond and Lainé, 2008) but, since the class of



preferences compatible with approval ballots is a large class, there is still room to go

on with.

A last proposition for further study would be fairness related questions. In ad-

dition to representativeness of an election rule, fairness of it is a crucial quali�er. In

the model introduced, the minimax rule is assumed to be "fair" in the sense that it rests

upon the egalitarian ideal of maximizing the minimum utility. However, fairness can

be de�ned in different ways and related to different criteria. For instance, once we de-

�ne a "fair" outcome in the sense that it coincides with all approval ballots for the same

number of candidates, a voting rule that maximizes this would be a fair one. Hence,

the search for fair voting rules would be an interesting question.
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