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Abstract 

 

 

This study aims to discuss the validity of the Efficient-Market Hypothesis 

by investigating the time evolution characteristics of ISE-100 index. Two 

major analysis methods are used and compared. First, the nonlinear 

dynamical behavior of the daily-return values of ISE-100 index (01.1990-

10.2009) is explored by implementing Chaos Theory and applying recent 

chaotic analysis methods.  Second, the same data set is used for linear time 

series modelling and by applying unit root tests we explore the stochastic 

behavior of the series. Finally, the comparison of the two major analysis is 

introduced. Our results uncover the chaotic behavior of the ISE-100 index 

and thus give more room to the predictivity analysis of daily-return values.  
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Özet 

 

 

Bu çalışma, IMKB-100 endeksinin zaman içindeki değişiminin efficient 

market hipotezindeki geçerliliğinin tartışmasını hedefler. İki analiz metodu 

uygulanmış ve karşılaştırılmıştır. İlk olarak, IMKB-100  endeksinin kapanış 

değerleri getirilerinin (01.1990-10.2009) doğrusal olmayan dinamik 

davranışını  kaos teorisi uygulayarak araştırıp, halen kullanılmakta olan 

kaotik analiz metotları kullanarak testler yapılması oluşturmuş, ikincil 

olarak, aynı data setine unit root testi uygulayarak, stokastik davranışını 

araştırmak için doğrusal zaman serisi analiz metodu uygulanmıştır. 

Son olarak iki analizin kıyaslaması yapılmış, sonuçlarımızın  IMKB-100 

endeksinin kaotik davranışını ortaya çıkarması ile, günlük kapanış değerleri 

getirilerinin tahmin edilebilirliğine daha fazla olanak sağladığı görülmüştür. 
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1.    Introduction 

         Until relatively recently, it was more or less taken for granted that 

movements in stock market prices were over-whelming stochastic in nature, 

if not actually a random walk. The assertion seemed unchallengeable on 

theoretical grounds- namely, consistency with the ruling efficient-market 

paradigm or efficient-market hypothesis (EMP). The EMP basically says 

that current prices fully reflect all known information. This implies that 

there is little or no correlation between returns; price changes occur in a 

random fashion, in reaction to new information and price movements do not 

follow any patterns or trends. That is, past price movements cannot be used 

to predict the future price movements but follow what is known as a random 

walk, an intrinsically unpredictable pattern (Campbell et al., 1997; Fama, 

1965). This assumption-which has never been conclusively proven-is the 

bed-rock upon which standard statistical analysis of the markets has been 

built. The law of large numbers, for example, applies only if price changes 

are independent (i.e., "efficient"). And it is the law of large numbers that 

validates statistical calculus and other linear models. Under the EMP, stock 

return process should be random. Therefore, it seems improbable a priori 

that the pattern of returns could be explained to any substantial degree by a 

deterministic process, given that the major cause of market movements is 

normally assumed to be the random flow of information. The mathematical 

expression of EMP is that the financial time series is characterized by a 

linear model and is independent and identically distributed (i.i.d.), so behave 

in a random manner. According to these implications, the importance of this 

research theme comes from the fact that chaos and EMP . As regards to the 

debate on the behavior of stock-index data and EMP, in this study we 

address two important questions that have been the focus of a substantial 

and still growing literature in recent years and that have been analyzed for 

many other stock-indexes of developed countries. Is there nonlinear 

dependence in ISE-100 stock-market returns (or closing values)? And, if so, 

is the nonlinear structure characterized by low-dimensional chaos? In other 



2 
 

words, is the apparent randomness of the time series pattern of returns 

explicable, in part at least, by a deterministic process? 

2.   Review of The Literature 

       Up to 90’s, many economic studies examined U.S, U.K and Canadian 

markets (Kendall, 1953; Brealey, 1970; Dryden, 1970; Cunningham, 1973; 

Brock, 1987) and support the EMP. The studies on the United Kingdom 

stock market report the weak form market efficiency as conjectured by the 

pioneering study Fama (1965) – namely, that the linear modeling techniques 

have limitations as they are not sophisticated enough to capture complicated 

“patterns” which chartists claim to see in stock prices. In fact, linear models 

will prove successful only to the extent that the system being analyzed is 

itself linear.  

If the system is nonlinear, the models will work, at best, only under 

"ideal" conditions and over short time periods. Thus the application of linear 

models to the market may be questionable, in view of recent research 

suggesting that the capital markets, and the economy as a whole, may be 

governed in part by non-linear dynamics. The main reason is briefly: when 

nonlinear dynamics are involved, a deterministic system can generate 

“random-looking” results that nevertheless exhibit persistent trends, cycles 

(both periodic and non-periodic) and long-term correlations. 

At last in 90’s, several developments that have led to serious 

questioning of the proposition that stock returns are inherently unpredictable 

have taken place. First, researchers using conventional econometric methods 

have uncovered several deviations from efficiency in the behavior of stock 

prices (Fama 1991). Second, the correlated studies in physics (Grassberger 

and Procaccia 1983; Wolf et al., 1985; Nychka et al., 1992; Gencay and 

Dechert 1992; Rosenstein et al.,1993; Kantz 1994), thermo dynamical 

engineering (Takens 1981; Ott E 1993), biomedical engineering (Barlow 

1985; Schuster 1989; Basar 1990; Jansen 1991), and hydrodynamics 

(Eckamnn 1983; Eckamnn et al., 1987) have resulted in the discovery of 
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“random-looking or apparently random” behaviors running the dynamical 

systems. Moreover, the studies in physics mentioned above also involved in 

the development of several tests capable of detecting nonlinear as well as 

linear patterns in the observed data. Third, the exciting progress in the last 

30 years in understanding the nonlinear dynamical systems means that we 

can now entertain the possibility of certain types of deterministic process in 

financial data (Peters 1991; Lorenz, 1993; Pesaran and Potter, 1993; Creedy 

and Martin, 1994; Trippe, 1995; Abhyankar et al., 1997; Hinich and 

Rothman, 1998; Mantegna and Stanley 2000; McKenzie, 2001; Barnett and 

William, 2004; Muckley, 2004; Das and Das, 2007; Hagtvedt 2009). In 

particular, it has become clear that many low-dimensional deterministic 

nonlinear systems are capable of generating output that is in most respects 

indistinguishable from white noise.  

It is important to note that, as far as financial series are concerned, 

this type of process could be consistent with market efficiency if it is only 

forecastable at horizons too short to allow any trade-off by speculators. The 

unresolved issue addressed in Scheinkman and LeBaron (1989), Peters 

(1991), Abhyankar et al., (1997), Mandelbrot (1999) relates, therefore, to 

whether stock-market index returns
1
 are best represented by a purely 

stochastic process or rather by a nonlinear deterministic structure.  As can 

be seen from Table 1
2
, there is already a substantial literature examining the 

questions addressed in these studies. Most of the financial research so far 

has concentrated on stock-market indexes, though a few have looked 

elsewhere (future markets, gold, and silver prices, energy prices, monetary 

movements, interest rates).  

All of these studies address the nonlinear deterministic structure
3
 

(static and dynamic) of a dynamical system which is assumed to generate 

                                                             
1 Following the findings of Fama and French (1992), Hagtvedt (2009) use the dynamic 

characteristics of individual stocks rather than stock-index to examine anomalies in 

Sharpe’s Capital Asset Pricing Model (CAPM) (Sharpe 1964) 
2 To conserve space, we state the studies which are mainly concerned with stock-indexes. 

The related studies on other types of  financial data are cited in the text. 
3 The wider formal description is given at Section 4.1. 
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the observed time series data and which is mainly detected by applying 

various tests (Ott E, 1993; Kantz and Schreiber, 1997). These tests are 

Brock-Dechert-Scheinkman (BDS) test for independence, estimation of the 

correlation dimension (CD) (Grassberger and Procaccia 1983a) for 

quantitative description of complexity in terms of the number of degrees of 

freedom and Kolmogorov entropy (Grassberger and Procaccia  1983b) 

estimate the degree of order-disorder and thus of the complexity of a 

dynamic system.  Finally, if nonlinear structure is observed
4
, then Lyapunov 

Exponent (LE) should be obtained by one of the “appropriate” algorithms 

(Wolf  et al., 1985; Nychka et al., 1992; Gencay and Dechert 1992; 

Rosenstein 1993; Kantz 1994).   

As it can be seen from Table 1, the most commonly deployed test is Brock-

Dechert-Scheinkman (BDS) test for independence, though several authors 

have relied on estimates of the correlation dimension (CD) and Kolmogorov 

Entropy estimation. While some of the authors who detect nonlinearity in 

observed time series data estimate LE’s, some others find it sufficient to 

show the nonlinearity and do not estimate LE’s.   

Table 1 

Related Researches  

Authors Dataset Sample 

Info 

Tests  Results 

Abhyankar 

et al., (1997) 

The S&P 

500, the 

DAX, the 

Nikkei 225, 

and the 

FTSE-100 

S=10000 1) BDS               

2) Nychka et 

al.,LE test 

1) Nonlinear      

2) No 

evidence of 

Chaos  

 

 

                                                             
4 According to Gencay and Dechert (1992),  if one of the Lyapunov Exponents is positive, 

then the system is nonlinear. Therefore, we do not in fact apply nonliearty test before 

examining chaotic behavior. 
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Abhyankar 

et al., (1995) 

FTSE-100 

cash 

S=60000 1) Bispectral 

linearty test      

2) BDS                  

3) LE 

1) Nonlinear       

2) No 

evidence of 

Chaos 

Eldridge and 

Coleman 

(1993) 

FTSE-100 

cash and 

futures 

S=1000 

6.1984-

9.1987 

1) Correlation 

Dimension 

test 

2) Wolf’s LE 

 Not i.i.d and 

consistent 

with chaos 

 

Hsieh (1993) 

 

Foreign 

Currency 

spots and 

futures 

S=1275, 

daily  

2.1985-

3.1990 

Tests of 

linear and 

nonlinear 

predictabilitie

s 

No linear and 

nonlinear 

predictables 

 

Philippatos 

et al.,(1993) 

 

Ten major 

national 

stock indexes 

S=833, 

weekly 

levels and 

returns  

1.1976-

12.1991 

BDS test Nonlinear 

Van Quang 

T (2006) 

Czech stock 

index PX50 

S=2270, 

daily 

returns 

1.1997-

9.2005 

1) BDS test       

2) LE 

1) Nonlinear 

2) Evidence 

of chaos 

Vaidyanatha

n and 

Krehbiel 

(1992) 

 

S&P500             

future 

mispricing 

S=1500 1) BDS test   

2)Correlation 

Dimension 

test 

Nonlinear and 

low-

dimensional 

chaos 

Vassilicos et 

al., (1992) 

 

NYSE  S=30000 1) Wolf’s LE 

2)Correlation 

Dimension 

test 

No evidence 

of chaos 
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Brock et 

al.,(1991) 

 

(1)CRSP            

(2) S&P 500 

S=2510 

daily 

1.1974-

12.1983 

1)BDS 

2)Dimension 

plots 

Nonlinearty ; 

little evidence 

of nonlinear 

forecastability 

Kodres and 

Papeil 

(1991) 

 

British P, 

Canadian D, 

DM, JYEN, 

Swiss Franc 

S=3500 

daily 

futures 

7.1973-

3.1987 

BDS test 

 

Nonlinear 

Frank and 

Stengos 

(1990) 

 

Returns of         

(1)Gold                 

(2) Silver 

prices 

(1)S=2900  

(2) S=3100 

1) Corr. Dim. 

Test                        

2)Kolmogoro

v Entropy 

1)dimension 

of 6 

2)positive;low

-dimensional 

chaos 

Mayfield 

and Mizrach 

(1989) 

S&P 500 S=20000,            

20 seconds, 

1987-1989 

Correlation 

dimension 

tests 

Low-

dimensional 

chaos 

Scheinkman 

and LeBaron 

(1989) 

CRSP 

weighted 

index 

S=5200, 

daily 

returns 

BDS test on 

original and 

filtered data 

Evidence of 

nonlinearty 

Panas and 

Ninni (2000)  

Rotterdam 

and 

Mediterranea

n petroleum 

markets             

(1) oil 

products 

S=1161 

daily, 

1.1994-

8.1998 

1) Correlation 

dimension 

test  

2) BDS test   

3)Kolmogoro

v entropy               

4) Wolf’s LE 

test 

Evidence of 

Chaos 

Vraon and 

Jalilvand 

(1994) 

 

TSE-300 

index 

S=3000 and 

2500; daily 

and 

monthly  

1.1977-

12.1991 

1) Correlation 

dimension 

test  

2) BDS test 

1) Evidence 

of chaos in 

monthly data 

2)little 

evidence of 

chaos in daily 

returns 
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Serletis and 

Dormaar 

(1996) 

 

Australlian 

Dollar and 

USD 

exchange 

rates 

S=300, 

weekly 

1.1987-

6.1993 

1) Nychka et 

al. 

nonparametri

c LE test 

1)Evidence of 

Chaos 

Matilla-

Garcia M 

(2007) 

 

Energy 

futures 

(1)Natural 

gas  (2) 

unleaded gas 

(3) light 

crude oil 

New York 

Mercantile 

Exchange 

(NYMEX) 

daily, S: 

3700 

3.1990-

10.2005 

1) BDS test    

2) Wolf’s LE 

test                         

3) Rosenstein 

LE test 

1)Nonlinearit

y in future 

 returns  

2)Evidence of 

Chaos 

Krager and 

Kugler 

(1992) 

 

Exchange 

rates JYEN; 

DM; FF; 

Italian Lira; 

Swiss Franc 

S=500 

weekly 

returns 

6.1980-

12.1990 

BDS test Nonlinear 

EE Peters 

(1991) 

 

S&P 500 

index 

Snot 

indicated 

1)CD             

2)Wolf’s LE 

1)Nonlinearit

y  

2) Evidence 

of chaos 

E.Panas 

(2002) 

 

London 

Metal 

Exchange 

Market 

S=2987dail

y closing 

metal 

prices 

1.1989 to 

12.2000 

1) Correlation 

Dimension 

test  

2)  LE 

1) The metal 

commodities 

zinc and tin 

are chaotic. 

 

Atin Das, 

Pritha Das 

(2007) 

 

Foreign 

Exchange Rate 

of Twelve 

countries 

S=8500 

daily 

01.1971-

12.2005 

1)Wolf’s LE 

test 

1) Nonlinearity 

2) Evidence of 

chaos 

M.Neugart 

(1999) 

German 

labour 

market 

S not 

indicated. 

1) Correlation 

dimension 

test  

2) BDS test 

1) Chaos does 

not occur. 
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Following Table 1 and as regards the main conclusions of the 

literature, there is a broad consensus of support for the proposition that the 

return ( or closing values) process is characterized by a pattern of nonlinear 

dependence. In particular, BDS test almost invariably reject the null of i.i.d 

process. On the other hand, the evidence on chaos is more mixed, with some 

evidence of low-dimensional structure in the U.S. stock-market index 

(Mayfield and Mizrach 1989; Vaidyanathan and Krehbiel 1992). Note, 

however, that these conclusions are based on CD, rather than LE estimates.  

Peters (1991) examine the S&P 500 by calculating CD and by estimating 

the largest LE as proposed by Wolf et al. (1985).  

The author reports strong evidence of chaos in S&P 500 index. Moreover, 

for four well-known stock-index including S&P 500 index (the S&P 500; 

the DAX; the Nikkei 225; the FTSE-100) are analyzed by Abhyankar et al., 

(1997) and the authors estimate largest LE by using the method Wolf et al., 

(1985) and Nychka et al.,(1992). Even though Abhyankar et al., (1997) find 

the presence of nonlinear dependence in the returns on all indexes; the 

authors report no evidence of low-dimensional chaos and conclude that the 

data are dominated by a stochastic component. Findings of Abhyankar et al. 

(1997) are also consistent with the results of Scheinkman and LeBaron 

(1989) in sense of nonlinearity. Scheinkman and LeBaron (1989) report the 

existence of the nonlinearity for U.S weekly returns on the Center for 

Research in Security Prices (CRSP) value-weighted index, employing the 

BDS statistic, and find rather strong evidence of nonlinearity and some 

evidence of chaos. These evidences from different authors are sufficient to 

call into question the EMP, which underlies the linear modelling used in 

most capital market theory. It also lends validity to a number of investment 

strategies that should not work if markets are efficient, including trend 

analysis, market timing, value investing and tactical asset allocation. This 

finding is of particular importance for practitioners, because experience has 

shown that these strategies do work when properly applied, even though 

theory tells us they should not work in a random-walk environment. 

Conversely, strategies that depend upon efficient markets and continuous 
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pricing, such as portfolio insurance, Alexander filters and stop/loss orders, 

become suspect, because chaotic markets are neither efficient nor 

continuously priced. This calls into question the Capital Asset Pricing 

Model (CAPM) and most option-pricing theories, which are based upon 

normal distributions and finite variances. It is worthwhile to note that, by 

focusing on the chaotic properties of stocks at the firm level rather than the 

properties of indices, Hagtvedt (2009) obtains dominant LE and the CD for 

weekly returns to individual stocks and concludes that the firm 

characteristics size (market value) was found to exhibit chaotic 

characteristics of the stocks showing the anomalies in Sharpe’s Capital 

Asset Pricing Model (Sharpe 1964). For other well-know world indexes, 

there are also several studies. Sewell et al. (1993) report evidence of 

dependency in the market index series in Japan, Hong Kong, South Korea, 

Singapore and Taiwan. De Lima (1995) argues that for the U.S data, 

nonlinear dependence is present in stock returns after the 1987 crash. Small 

and Tse (2003) analyze daily returns from three financial indicators: the 

Dow Jones Industrial Average, the London gold fixings, and the USD-JPY 

exchange rate and the authors conclude that all three time series are distinct 

from linear noise or conditional heteroskedastic models and that there 

therefore exists detectable deterministic nonlinearity that can potentially be 

exploited for prediction. 

Despite the affirmative chaos test results, there are some critiques of 

the chaos in the literature as well (Lee et al., 1993). Hamill and Opong 

(1997) conclude that even though there is nonlinear dependence in Irish 

stock returns, there is no evidence of chaos. Willey (1992) find no evidence 

of chaos in the Financial Times Industrial Index.  

Apart from stock-index analysis, Barnett et al. (1996) report the 

successful detection of chaos in the US division monetary aggregates. This 

conclusion is further confirmed by several authors (e.g. Hinich and 

Rothman 1998; Barnett and William, 2004). Frank and Stengos (1989) 

obtain similar results by investigating daily prices for gold and silver, using 

the correlation dimension and the Kolmogorov entropy. Serletis and Gogas 
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(1997) find the evidence consistent with a chaotic nonlinear generation 

process in seven East European black market exchange rates. Furthermore, 

foreign exchange markets are an essential domain in which chaos has been 

detected (Mantegna and Stanley, 2000; Das and Das, 2007). Many 

researchers (e.g. Granger and Newbold, 1974; Campbell et al., 1997; Lee et 

al., 1993; Bonilla et al., 2006) argue that financial market series exhibit 

nonlinearity. The terms of many financial contracts such as options and 

other derivative securities are also nonlinear (Mantegna and Stanley, 2000).  

By examining the unemployment and the rate of change of money 

wage rates in the U.K. 1861-1957 Fanti and Manfredi (2007) detect chaotic 

behavior in wage and unemployment rates.  

The studies on ISE-100 index are relatively less in number. Some 

studies on Turkish ISE market (e.g. Bayramoglu, 2007; Ozgen, 2007) 

demonstrate that the market is not efficient. Moreover, most of the studies 

on the behavior of ISE market prices supported the weak form market 

efficiency against the existence of chaos (Kenkül, 2006; Topçuoglu, 2006; 

Çıtak, 2003; Adali, 2006). On the other hand, in contrast with the above 

studies on ISE-100, by applying  BDS, Hinich Bispectral, Lyapunov 

Exponent and NEGM tests Ozer (2010) reject the efficient market 

hypothesis that the ISE-100 all share equity index series is random, 

independent and identically distributed (i.i.d). 

3.      Preliminary Notions 

         3.1.  Defining An Attractor 

           An attractor is a state that defines equilibrium for a specific system. 

As we shall see, equilibrium does not necessarily mean a static state, as 

econometric models define the term.  

A simple attractor is a point attractor. A pendulum with friction is an 

example of a point attractor. 
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 If you were to plot the velocity of the pendulum versus its position, 

you would obtain a graph that spirals in towards the origin, where velocity 

and position are zero. At this point, the pendulum has stopped.  

A graph of velocity versus position is an example of the phase space 

of a system. Each point on the graph defines the state of the system at that 

time. All paths in phase space lead to a point attractor, if one exists. No 

matter where the motion in phase space initiates, it must end up at the 

origin-the point attractor. A pendulum that periodically receives energy goes 

back and forth with no variation in its path. Its phase-space plot becomes a 

closed circle, with the origin at its center. This is called a limit cycle 

attractor. The radius of the circle is determined by the amplitude of the 

pendulum's swing. As a time series, a limit cycle appears as a simple sine 

wave.  

              3.1.1.   Chaotic Attractor 

A third kind of attractor is a chaotic, or fractal, attractor. With a 

chaotic attractor, the trajectories plotted in phase space never intersect, 

although they wander around the same area of phase space. Orbits are 

always different, but remain within the same area; they are attracted to a 

space, but never converge to a specific point. Cycles, while they exist, are 

non-periodic. With a chaotic attractor, equilibrium applies to a region, rather 

than a particular point or orbit; equilibrium becomes dynamic. For example 

in economics, equilibrium is commonly defined as static. In other words, an 

economic system is commonly thought to tend to equilibrium (a point 

attractor) or to vary around equilibrium in a periodic fashion (a limit cycle). 

But there is no evidence that capital markets tend toward either type of 

equilibrium. If anything, the actual behavior of economic time series 

appears to be non-periodic. That is, they have cycles without well defined 

periods. If the markets are non-periodic, then limit cycles and point 

attractors cannot define their dynamics. Chaotic Attractors using a simple 

convection model, Edward Lorenz (1963) was able to define the first known 

chaotic attractor. The model is based on a fluid heated from below.  
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At low temperature levels, heat transfer occurs by convection; the 

water molecules behave independently of one another. As the heat is turned 

up, a convection roll starts; the water molecules behave coherently, and the 

warmer fluid on the bottom rises, cools as it reaches the top and falls back to 

the bottom. The water molecules trace a limit cycle. If the heat is turned up 

further, turbulence sets in; the fluid churns chaotically. At this point, the 

water's phase space becomes a chaotic attractor. 

Chaotic attractors have an interesting property. Because of the possible 

nonlinearities in the underlying system, any errors in measuring current 

conditions eventually overwhelm any forecasting ability, even if the 

equations of motion are known. In other words, our ability to predict the 

future of a chaotic system is limited by our knowledge of current conditions. 

Errors in measurement grow exponentially in time, making any long-term 

forecast useless. This sensitive dependence on initial conditions made 

Lorenz conclude that any attempts at weather forecasting beyond a few days 

were doomed. If the economic cycle is governed by a chaotic attractor, it is 

easy to see why long-term econometric forecasts during the '70s and '80s 

were flawed.  

How do we determine if a system has an underlying chaotic attractor? First, 

a phase space for the system must be constructed. (When the equations of 

motion are not known, this is not a simple task.) The resulting phase space 

must meet two criteria for a chaotic attractor: 

           (1) a fractal dimension  

           (2) sensitive dependence on initial conditions.  

In the physics and engineering, various techniques have been developed to 

measure these items using experimental data.  

If this attractor arises, this is because the relations between the 

variables that govern market movements are nonlinear. Nonlinear systems 

are characterized by trends and long-term correlations. If the market is 
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nonlinear, then the widespread use of standard statistical analysis is 

questionable. In particular, the Efficient Market Hypothesis and the Capital 

Asset Pricing Model (in its current form) are suspect as workable theories. 

              3.1.2.   Constructing a Phase Space  

A phase space consists of "m" dimensions, where each dimension is 

a variable involved in defining the time evolution (“motion”) of the system. 

In a system where the equations of motion are known, constructing a phase 

space is simple. However, we rarely know the dynamics of the real system 

generating the observed time series data. By plotting one variable with 

different lags, one can reconstruct the original, unknown phase space with 

one dynamic, observable variable. This reconstructed phase space has all the 

characteristics of the real phase space, provided the lag time and embedding 

dimension are properly specified. (We discuss below how these parameters 

are determined.) Now the question becomes, what do we use as our single 

observable variable? Traditional analyses of the stock market use the 

percentage change in price (returns) or a logarithmic first difference. This 

removes the autocorrelations inherent in the original price series and makes 

the series suitable for linear statistical analysis. However, what standard 

statistical analysis considers undesirable may in fact be evidence of a 

nonlinear dynamic system. That is, the use of percentage changes in price 

may destroy any delicate nonlinear structure present in the data. In 

constructing attractors such as the Lorenz attractor, scientists use the actual 

value of the variables, not the rate of change. We apply this approach to our 

study of financial data. Economics, however, presents a problem that the 

physical sciences do not. As the economy grows, stock prices grow. Stock 

price data thus have to be detrended; in order to study the motion of stock 

prices, economic growth must be filtered out. Ping Chen, in his study of 

monetary aggregates, filtered out the internal rate of growth over the period.  

This method has the appeal of simplicity, but it assumes a constant 

rate of growth, which is unrealistic. As we know, economic growth is not 

constant, but varies over time. 
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Therefore we use the deflated ISE-100 time series as our dynamic 

observable. From this series, we can reconstruct a phase space to obtain a 

fractal dimension and to measure sensitive dependence on initial conditions. 

              3.1.3.   The Fractal Dimension  

The fractal dimension of phase space gives us important information 

about the underlying attractor. More precisely, the next-higher integer above 

the fractal dimension is the minimum number of variables we need to model 

the dynamics of the system. This gives us a lower bound on the number of 

degrees of freedom in the whole system. It does not tell us what these 

variables are, but it can tell us something about the system's complexity. A 

low dimensional attractor of, say, three or four would suggest that the 

problem is solvable. A pure random process, such as white noise, fills 

whatever space it is plotted in (Recurrence Plot, Eckmann 1987). In two 

dimensions it fills the plane. In three dimensions, it fills the three-

dimensional space, and so on for higher dimensions. In fact, white noise 

assumes the dimension of whatever space you place it in because its 

elements are uncorrelated and independent. The fractal dimension measures 

how an attractor fills its space. For a chaotic attractor, the dimension is 

fractional; that is, it is not an integer. Because a chaotic attractor is 

deterministic, not every point in its phase space is equally likely, as it is 

with white noise.  

Grassberger and Procaccia (1983a) estimate the fractal dimension as the 

correlation dimension, D. D measures how densely the attractor fills its 

phase space by finding the probability that any one point will be a certain 

distance, R, from another point.  

The correlation integral, Cm(R), is the number of pairs of points in an m-

dimensional phase space whose distances are less than R. 

For a chaotic attractor Cm  increases at a rate 
DR . This gives the following 

relation 

DRCm     or      cRDCm  log.log ,  where c is constant.  
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By calculating the correlation integral, Cm, for various embedding 

dimensions, m, we can estimate D as the slope of a log/log plot of Cm and 

R. Grassberger and Procaccia have shown that, as m is increased, D will 

eventually converge to its true value. Assume that for a dynamical 

system 4,2D . This means that the dynamics of this particular system can 

be defined with a minimum of three dynamic variables. Once these 

variables are defined, we can model the system. Of course, the fractal 

dimension does not tell us what the variables are, but only how many 

variables we need, at a minimum, to construct the model. Our estimate is 

low enough to suggest that the problem is solvable. 

                  3.1.3.1.  Recurrence Plot  

The method of recurrence plots (RP) was firstly introduced by 

Eckmannn et al., (1987) to visualize the time dependent behavior of the 

dynamics of systems ( the recurrence of states in a phase space) which can 

be pictured as a trajectory in the m-dimensional phase space. It represents 

the recurrence of the phase space trajectory to a certain state, which is a 

fundamental property of deterministic dynamical systems. The main step of 

this visualization is the calculation of the distances between all points lying 

in the phase-space. Usually, a phase space does not have a low enough 

dimension (two or three) to be pictured. Higher-dimensional phase spaces 

can only be visualized by projection into the two or three-dimensional sub-

spaces. However, Eckmann's tool enables us to investigate the m-

dimensional phase space trajectory through a two-dimensional 

representation of its recurrences. Such recurrence of a state at time i and a 

different time j is pictured within a two-dimensional squared matrix with 

black and white (and grey) dots, where black dots mark a recurrence, and 

both axes are time (number of observed data) axes. The recurrence plot 

exhibits characteristic large-scale and small-scale patterns which are caused 

by typical dynamical behavior,  e. g. diagonals (similar local evolution of 

different parts of the trajectory) or horizontal and vertical black lines (state 

does not change for some time). The RP exhibits characteristics which can 
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be observed as both large scale and small scale patterns). The first patterns 

(large scales) were denoted by Eckmann et al. (1987) as typology and the 

latter (small scales) as texture. The typology offers a global impression 

which can be characterized as homogeneous, periodic, drift and disrupted.  

 Homogeneous RPs are typical of stationary and autonomous systems 

in which relaxation times are short in comparison with the time 

spanned by the RP. An example of such an RP is that of a random 

time series.  

 Oscillating systems have RPs with diagonal oriented, periodic 

recurrent structures (diagonal lines, checkerboard structures). For 

quasi-periodic systems, the distances between the diagonal lines are 

different. However, even for those oscillating systems whose 

oscillations are not easily recognizable, the RPs can be used in order 

to find their oscillations.  

 The drift is caused by systems with slowly varying parameters. Such 

slow (adiabatic) change brightens the RP's upper-left and lower-right 

corners.  

 Abrupt changes in the dynamics as well as extreme events cause 

white areas or bands in the RP. RPs offer an easy possibility to find 

and to assess extreme and rare events by using the frequency of their 

recurrences.  
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In the figure above, the upper series are the original observed time series 

and lower series are Recurrence Plots associated to them, respectively.  

1. White Noise 2. Sine Wave 3. Lorenz System with linear time trend                

4. Distrupted (Brownian motion) with rare shocks.  

In addition to the large scales defined above, the closer inspection of the 

RPs reveals small scale structures (the texture) which are single dots, 

diagonal lines as well as vertical and horizontal lines ( the combination of 

vertical and horizontal lines obviously forms rectangular clusters of 

recurrence points).  

         1. Single, isolated recurrence points can occur if states are rare, if they 

do not persist for any time or if they fluctuate heavily.  

            2. Certain points in the observed time series are parallel to each other 

i.e. they have same values but are placed at a different interval. A diagonal 

line occurs when a segment of the trajectory runs parallel to another 

segment, i.e. the trajectory visits the same region of the phase-space at 

different times. The length of this diagonal line is determined by the 

duration of such similar local evolution of the trajectory segments. The 

direction of these diagonal structures can differ. These stretches can be 

visualized as diagonal lines in the recurrence matrix.  

These diagonal lines are called deterministic, because they represent a 

deterministic pattern in the series (the deterministic local evolution of states 

in the series). Therefore, Lyapunov exponent is defined as inverse of the 

length of these diagonal patterns.  

 a.) Diagonal lines parallel to main diagonal line represent the parallel 

running of the trajectories for the same time evolution.  

 b.) Diagonal lines perpendicular to main diagonal line represent the 

parallel running with contrary times ( may show improper embedding)  

          3. A vertical (horizontal) line marks a time length in which a state 

does not change or changes very slowly. It seems that the state is trapped for 
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some time. This is a typical behavior of laminar states (intermittency) and 

widely used in fluid dynamics in order to model the flow of a river when its 

debit forced to narrow. 

               3.1.4. Characteristic Exponent (Lyapunov    

                         Exponent)  
 

Lyapunov exponents, which provide a qualitative and quantitative 

characterization of dynamical behavior, are related to the exponentially fast 

divergence or convergence of nearby orbits in phase space. A system with 

one or more positive Lyapunov exponents is defined to be chaotic. To 

measure LE, we monitor the long-term growth rate of small volume 

elements in an attractor.  

  

Each positive exponent reflects a "direction" in which the system 

experiences the repeated stretching and folding that decorrelates nearby 

states on the attractor. Therefore, the long-term behavior of an initial 

condition that is specified with any uncertainty cannot be predicted; this is 

chaos. An attractor for a dissipative system with one or more positive 

Lyapunov exponents is said to be "strange" or "chaotic"  

 

The magnitudes of the Lyapunov exponents quantify an attractor's dynamics 

in information theoretic terms.  

The exponents measure the rate at which system processes create or destroy 

information ; thus the exponents are expressed in bits of information/s or 

bits/orbit for a continuous system and bits/iteration for a discrete system. 

For example (Wolf et al., 1985), in the Lorenz attractor the positive 

exponent has a magnitude of 2.16 bits/s . Hence if an initial point were 

specified with an accuracy of one part per million (20 bits), the future 

behavior could not be predicted after about 9 s [20 bits/(2.16 bits/s)], 

corresponding to about 20 orbits. After this time the small initial uncertainty 

will essentially cover the entire attractor, reflecting 20 bits of new 

information that can be gained from an additional measurement of the 

system. 



19 
 

                  3.1.4.1. Sensitive Dependence on Initial Conditions  

The positive maximal Lyapunov exponent implies the sensitive 

dependence of the dynamical system on initial conditions. Chaotic attractors 

are characterized by sensitive dependence on initial conditions. An error in 

measuring initial conditions will grow exponentially, so that a small error 

could dramatically affect forecasting ability. The further out in time we look 

the less certain we are about the validity of our forecasts. Contrast this with 

the linear models used in econometric forecasts. A small change in 

measuring current conditions has little impact on the results of a forecast. 

Theoretically, linear models imply that, if we have enough variables, we can 

forecast an indefinite period into the future. While the certainty of linear 

models is desirable, the uncertainty inherent in non-linear dynamics is closer 

to practical experience.  

Lyapunov exponents measure the loss in predictive power 

experienced by non-linear models over time. Lyapunov exponents measure 

how nearby trajectories in phase space diverge over time. Each dimension in 

phase space has its own Lyapunov exponent. A positive exponent measures 

expansion in phase space. A negative one measures contraction in phase 

space. For a fixed point in three dimensions, the Lyapunov exponents are 

negative. For a limit cycle, two exponents are negative and one equals zero. 

For a chaotic attractor, one is positive, one negative and one zero. A chaotic 

attractor is characterized by the largest Lyapunov exponent being greater 

than zero. It represents the divergence of points in phase space, or the 

sensitive dependence on the conditions represented by each point. When the 

equations or motion are known, Lyapunov exponents can be calculated by 

measuring the divergence of nearby orbits in phase space. In a linear world, 

points that are close together in phase space would remain close together; 

this reflects the linear world, where a small error in measurement has little 

effect on the result. In a non-linear world, things are different. Nearby points 

will diverge as the differences in initial conditions compound.  
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This method involves measuring the divergence of nearby points in the 

reconstructed phase space over fixed intervals of time. First, we choose two 

points that are at least one mean orbital period apart. The distance between 

the two points is measured after the fixed evolution period. If the distance is 

too long, one of the points is replaced. (This is necessary to ensure that we 

measure only the expansion of the points in phase space; if the points are 

too far apart, they will fold into one another.) In addition, the angle between 

the points is measured to keep the orientation of the points in phase space as 

close as possible to the original set.   

In theory, with an infinite amount of noise-free data, there occurs no 

difficulty. However, the real world presents us with a finite amount of noisy 

data. This means that the embedding dimension, m, the time lag, t, and the 

maximum and minimum allowable distance must be chosen with care. Wolf 

et al. give a number of "rules of thumb" for dealing with experimental data. 

First, the embedding dimension should be larger than the phase space of the 

underlying attractor. The time lag used to reconstruct the phase space must 

be computed; the maximum length of growth should be no greater than 10 

per cent of the length of the attractor in phase space. Finally, the evolution 

time should be long enough to determine stretching without including folds. 

However, these rules of thumb are more evaluated in recent years (Kantz 

and Schreiber 1997). 

Once done, the calculation over a long time series should converge to a 

stable value of LE. If stable convergence does not occur, it is possible that 

the parameters have not been well chosen, there are insufficient data for the 

analysis or the system is not truly non-linear.  

As an example, Peters (1991) use the Wolf algorithm for the detrended S&P 

500 data series (monthly data from January 1950 through December 1989), 

with an embedding dimension of four, a time lag of 12 and an evolution 

time of six months. This resulted in the stable convergence to a Lyapunov 

exponent of 0.0241 bits per month. This means that, even if we measure 

initial conditions to one bit of precision (one decimal place), all predictive 
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power would be lost after I/L1, or 42 months. This is roughly equal to the 

48-month mean orbital period obtained from rescaled range analysis. This 

relation would not be true of white noise, or a random walk.  

4.  Methodology  

      This part of the study aims to conceptualize the preliminary notions 

which constitute the basis of nonlinear dynamical analysis and which are 

informally introduced in Part I.  

      The first dynamic characteristic of interest, the largest LE measures the 

rate at which a system diverges or converges. If along some dimension a 

process diverges while as a whole converging, then the process is called 

chaotic, which may be defined as sensitivity to initial conditions. This is 

characterized by a positive LE. Although the process may be very sensitive 

to initial conditions, the returns process as a whole may converge to a stable 

space. When a process has converged, the subspace of the process moves 

through is called an attractor, and if the dimension of the attractor is 

noninteger, a strange attractor. The correlation dimension (CD) measures 

the dimension of the attractor. After the LE measures proposed the CD has 

not been applied widely. Instead, the Recurrence Plots (RP) which are also 

another diagnostic tool of correlation integrals have been used.  In our 

study, also we prefer to apply RP. 

 There is a major difficulty in measuring these dynamic characteristics when 

only the dependent variable in the process is observed. The process at any 

one time is a vector consisting of not only the stock return itself, but also the 

explanatory variables. This difficulty is resolved using Takens’ theorem 

(Takens, 1981). Adopting Takens’ Theorem we state that one may measure 

the dynamic characteristics using a sequence of vectors constructed from the 

lagged dependent variable instead of the sequence of vectors of returns and 

explanatory variables, provided the vector of lagged returns is constructed 

with the lags sufficiently large to be independent (here seven weeks), and 

with dimension at least [2m+1], where m is the dimension of the space the 
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process moves through. Takens’ theorem allows us to study a process with 

unknown independent variables. The largest LE and the CD were therefore 

calculated using the lagged returns vectors, but are estimates of the largest 

LE and the CD of the true data generating process. Although there are 

several measures of fractal dimension, the CD appears to be the most 

common in the literature (Brock et al., 1987). Grassberger and Procaccia 

compare the CD to other measures of fractal dimension and conclude that 

the CD requires far fewer observations to be accurate (Grassberger and 

Procaccia, 1983). Sugihara and May (1991) indicate that as few as 1000 

observations can be sufficient for consistent estimation of the correlation. 

The CD estimates the fractal dimension of the strange attractor while a 

random walk has no attractor and will fill all the available space. Therefore 

a test based on the difference in dimensionality of a random walk compared 

to the process studied is the basis for the BDS test for chaos (Scheinkman 

and LeBaron, 1989). This test is widely used but cannot differentiate 

between nonlinear noise and chaos (Brock et al., 1987), (Hsieh, 1989), 

(Barnett et al., 1997). Even though the stock returns may be noisy; first, 

there is no reason to assume the noise is simply additive and second, the 

noise occurs intrinsically. Therefore we do not prefer to use the LE for 

Noisy Nonlinear Systems (LENNS) in this study, which was developed 

specifically for the situations when the stochastic element of the dynamic 

system is intrinsic (Ellner et al., 1992).  

Instead, we prefer to use Kantz (1994) algorithm which is derived from the 

method of Wolf et al., (1985). We know that both of these two methods are 

robust to nonlinear noise.  

Theiler and Eubank (1993) show that prewhitening (filtering the data, e.g. 

using ARIMA) may remove the characteristics the analysis is meant to 

identify. Therefore we do not prewhiten the data in this case. 

ISE-100 composite index is Market-value weighted index which is like S&P 

500 index and New York Stock Exchange index.  
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tiL , the number of i-th stock at period t. (payed /1000)  

tiP ,
 = the price of i-th stock at period t.  

tiH ,  the sharing percentage of the i-th stock at period t.  

tD  the index dividend at period t. ( without units) If one or more of the 

firms are replaced by outsider firm(s), then the value of the dividend 

changes, otherwise it does not change.  

t

i

tititi

t
D

HPL

ISE




100

1

,,, )..(

      is the closing value of ISE-100 index at the end 

of period t 

Therefore tISE  reflects weighted-prices in TRL.  

Example :  

Company Percentage of  

Free Float Rate 

Price of Stocks 

(TL) 

Number of  

Stocks 

A 45% 25,000 1 million 

B 95% 12,500 1,5 million 

C 60% 52,000 500 thousand 

 

     
156710526

60,0.500000.5200095,0.500000,1.1250045,0.1000000.25000 
TtISE

               = 285 
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        4.1.Introducing the Nonlinear Dynamical System 

    Let us denote a dynamical system, nn RRf : , with the trajectory,  

 tt xfx 1   ,  ,....,2,1,0t        (1) 

Definition: Lyapunov Exponent (Characteristic Exponent) 

If the initial state of a time evolution (dynamical system) is slightly 

perturbated, the exponential rate at which the initial perturbation increases 

(or decreases) with time is called Characteristic Exponent or Lyapunov 

Exponent. Sensitive dependence on initial conditions corresponds to positive 

maximal Lyapunov exponent.  

The Lyapunov exponents for such a dynamical system are measures of the 

average rate of divergence or convergence of a typical trajectory. The 

trajectory is also written in terms of the iterates of f .  

With the convention that 0f  is the identity map, and tt fff 01  , then 

we also write  0xfx t

t  . A trajectory is also called an orbit in the 

dynamical system literature.  

For an n-dimensional system as above, there are n exponents which are 

customarily ranked from largest to smallest:  

n  .....21         (2) 

Associated with each exponent, ,,...,2,1 nj   there are nested subspaces 

nj RV   of dimension jn 1  and with the property that  

  vDf
t

x

t

t
j 0

ln
1

lim


  for all jVv \ 1jV     (3) 

It is a consequence of Oseledec’s Theorem (Oseledec 1968), that the limit in 

Eq.(3) exists for a broad class of functions. Additional properties of 

Lyapunov exponents and a formal definition are given in (Eckmann 83). 
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Notice that for 2j  the subspaces jV  are sets of Lebesque measure zero, 

and so for almost all nRv  the limit in Eq.(3) equals 1 . This is the basis 

for the computational algorithm of Wolf et a., (1985) which is a method for 

calculating the largest LE.  

Attractor  

Definition: Attractor  

An attractor is a set of points towards which the trajectories of 

f converge. More precisely,  is an attractor if there is an open nRU   

with  
0


t

t Uf  where U is the closure of U .  

An attractor can be chaotic or non-chaotic (ordinary). There is more than 

one definition for chaotic attractors in the dynamical systems literature 

(Gencay and Dechert 1992). In practice, the presence of a positive 

Lyapunov exponent is taken as a signal that the attractor is chaotic.  

The Recurrence Plot 

         Let  iy   be the i-th point on the orbit (trajectory) describing a 

dynamical system in m-dimensional phase- space, for i = 1, ..., T. The 

recurrence plot is an array of dots in a T x T  square, where a dot is placed at 

 ji,  whenever jy (  neighbors of iy ) is sufficiently close to  iy , for all i 

= 1, ..., T and  j = 1, ..., T . In practice one proceeds as follows to obtain a 

recurrence plot from the observed time series  tz . After reconstructing  m-

dimensional phase-space and hence m-dimensional orbit iy  for i = 1, ..., T , 

we choose i  (  which is the   chosen for iy , i-th point of the orbit) for  

such that the ball of radius i  centered at iy  in  space-
mR  contains a 

reasonable number of other points i

jy


 of the orbit. In other words, we 

choose  i   such that there exist at least 10 neighbors lying in the ball of iy  
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with radius i . Later on Kantz (1994) by using this idea, define the set iU  

which is the set of  neighbors of iy . 

Finally, one plots a dot at each point  ji,  for which the point which is in 

the ball of radius i  ( this point is denoted by i

jy


) centered at iy . We call 

this picture a recurrence plot. 

Definition :  Recurrence Plot 

jiR ,  jii yy      where Tji ,....,1,                      (4) 

where  i  is a cut-off distance (neighborhood criteria for i-th point iy )  ...  

distance function (a norm , e. g. the Euclidean norm) and   .  is the Heaviside 

function (or step-function) having the value as binary output (i.e.,  .criteria =1 

if the criteria is obtained;  .criteria =0 , otherwise) . Eckmann et al., (1987) 

propose to put black dot, for all 1’s and white dot for all 0 on T x T  square.  

A diagonal line ,1,  kjkiR   for   ,,.......,1 Lk   where L is length of diagonal  

line signifies the iterated distances of initially neighbors and occurs when a 

segment of the trajectory runs parallel to another segment, i.e. the trajectory visits 

the same region of the phase-space at different times. The length of this diagonal 

line is determined by the duration of such similar local evolution of the trajectory 

segments. The direction of these diagonal structures can differ. These stretches can 

be visualized as diagonal lines in the recurrence matrix. These diagonal lines are 

called deterministic, because they represent a deterministic pattern in the series (the 

deterministic local evolution of states in the series). Therefore, Lyapunov exponent 

is defined as inverse of the length of these diagonal patterns.  

The lengths of diagonal lines in an RP are directly related to the ratio of 

determinism or predictability inherent to the system. Suppose that the states 

at times i and j, iy  and jy  are neighbors, then the function gives 1, jiR   

and a black dot is put on coordinate  ji, . If the system behaves predictably, 

similar situations will lead to a similar future: for example, after 1 iteration 

( 1 ), the probability for ,11,1  jiR  is high. For perfectly predictable 
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systems, this leads to infinitely long diagonal lines (like in the RP of the sine 

function). In contrast, if the system is stochastic, the probability for  

,11,1  jiR  will be small and we only find single points or short lines ( the  

white-black signal of the no-channel program in older TV broadcasts, 

“Karlanma”.).  If the system is chaotic, initially neighboring states will 

diverge exponentially. Since, the lines parallel to main diagonal measures 

the inverse of positive Lyapunov exponents, the faster the divergence, i.e. 

the higher the Lyapunov exponent, the shorter the diagonals. 

On the other hand, a vertical (horizontal) line 1, kjiR  (for ,,.......,1 Lk   

where L is the length of the vertical line). marks a time length in which a 

state does not change or changes very slowly. It seems that the state is 

trapped for some time. This is a typical behavior of laminar states 

(intermittency) and widely used in fluid dynamics in order to model the 

flow of a river when its debit forced to narrow.  

The Preliminary Notations  

One rarely has the advantage of observing the state of the system at any 

period t, tx , and that the actual functional form, f , that generates the 

dynamics.  The model that is widely used is the following: associated with 

the dynamical system in Eq.(1) there is a measurement function RRh n :  

which generates the time series observed by us,  

 tt xhz           (6) 

It is assumed that all that is available to researcher is the sequence  tz .  

Let ty  be a vector,  

 tmtmtt zzzy ,.....,, 21         (7) 
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Takens’ Theorem (Taken 1981):  

Under general conditions, it is shown in (12) that if the set U is a compact 

manifold then for 12  nm  

           xfhxfhxfhyxJ mm

t

m 021 ,......,,      (8) 

Is an embedding of U  onto  UJ m . Generically for 12  nm , there can be 

found a function mm RRg :  such that  

 tt ygy 1          (9) 

 where  111 ,.....,,   tmtmtt zzzy                  (10) 

Moreover, notice that  

    t

m

t

m

t xfJxJy   11                   (11) 

Hence from (9) and (11) 

     t

m

t

m xJgxfJ  .                     (12) 

Under the assumption that mJ  is a homeomorphism, f  is topologically 

conjugate to g .  

This implies that certain dynamical properties such as Correlation 

dimension, Fractal dimension and Lyapunov exponents are identical. 

Therefore, if we obtain a positive Lyapunov exponent in 
mR , which is our 

phase-space, this reflect the chaotic characteristic of f  and hence the 

original dynamical system.  

Construction of Phase-Space mR  

From observed time series (sequence)  tz  , data vector 

 tdmtdmtt zzzy ,.....,, ).2().1(   is generated, where d is the time delay; this 

vector indicates one point of a m-dimensional reconstructed phase space 
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mR , where m is call embedding dimension. Therefore a trajectory can be 

drawn in the m-dimension reconstructed phase space by changing t.  Note 

that in Preliminary notation subsection above, d the time delay, is taken as 

equal to 1,  (d=1) for notational easiness.  

Assume that the target system is a deterministic dynamical system as given 

in Eq.(1), and that the observed time series is obtained through an 

measurement function as given in Eq.(6) . Then, the reconstructed trajectory 

is an embedding of the original trajectory when the m value is sufficiently 

large. If any attractor has appeared in the original dynamical system, another 

attractor, which retains the phase structure of the first attractor, will appear 

in the reconstructed state space. In order that such reconstruction achieves 

embedding, it has been proven that the dimension m should satisfy the 

condition given by Eq.(8)   However, this is a sufficient condition and 

upper-worst case. Depending on the data, embedding can be established 

even when m is less than 2n+1. 

In the embedding method, there are two parameters, embedding dimension 

and time delay. 

Abarbanel (1995) gives us a good suggestion on how to select those two 

parameters. Time delay does not strongly affect reconstruct phase space and 

Lyapunov exponents estimation. One approach to estimating this value is to 

select the frequency (1/time scale) that corresponds to a dominant power 

spectral feature. The reconstructed phase consists of points in m-dimension 

phase space. 

Given the observed time series data set Nzzz ,....,, 21 , where N is the length 

of the observed time series (sequence  tz . While embedding those data to 

m-dimension phase space, the time delay d can be used to get 

 dmN ).1(    points in phase-space (or the length of the orbit). Let us 

denote a point in the orbit by iy .  Then formally we obtain 
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  dmidiii zzzy .1,...,,   for all i  dmN ).1(               (13)  

If this is applied for all i  dmN ).1(  , we obtain the orbit, or trajectory 

and hence phase-space.  

From now on, since we analyze a discrete time series (ISE-100) the time 

delay d, is taken to equal to 1.  

        4.2. Computing Lyapunov exponents  

        In this subsection, we obtain the algorithms designed to estimate 

Lyapunov exponents of a dynamical system and widely used in Chaos 

Theory, by using Takens’ Theorem and  Eqs. [6-12].  

As we have indicated, Eq.(3) is the basis of Wolf’s algorithm. Now, let us 

focus on it more closely.  

 

            4.2.1. Wolf’s Algorithm  

            The first algorithm to compute Lyapunov exponent for an observed 

time series is introduced by Wolf et al., (1985). The method proposed by 

Wolf et al. (1985) not only estimates maximal Lyapunov exponent, but also 

computes all Lyapunov exponents of a dynamical system. In delay 

coordinates of appropriate dimension we look for a point of the time series 

which is closest to its first point, 1y . This is considered as the beginning of a 

neighboring trajectory, given by the consecutive delay vectors. Then we 

compute the increase in the distance between these two trajectories in time 

(iteration). When the distance exceeds some a priori determined threshold, 

for this point of the series a new neighboring trajectory is searched for, such 

that its distance is as small ias possible under the constraint that the new 

difference vector points more or less into the same direction as the old one. 

This is the direction of as the old one. This the direction of the local 

eigenvector associated to 1 (maximal LE). The logarithms of the stretching 
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factors of the difference vectors are averaged in time to yield the maximal 

Lyapunov exponent. In principle one should be able to compute all 

Lyapunov exponents by looking at the time evolutions of not distances but 

areas of (hyper) – surfaces.   

Given a continuous dynamical system in an m-dimensional phase space, we 

monitor the long-term evolution of an infinitesimal m-sphere of initial 

conditions; the sphere will become an m-ellipsoid due to the locally 

deforming nature of the flow. The i-th one-dimensional Lyapunov exponent 

is then defined in terms of the length of the ellipsoidal principal axis       

 iyt  :  
 
 iy

iy

t

t

t
i

0

2log
1

lim


                                                   (14) 

where the i  are ordered from largest to smallest as indicated by Eq.(2).  

Notice that the linear extent of the ellipsoid grows as 
t12


, the area defined 

by the first two principal axes grows as 
 t212

 
, the volume defined by the 

first three principal axes grows as 
 t3212

 
, and so on. This property yields 

another definition of the spectrum of exponents: the sum of the first j 

exponents is defined by the long-term exponential growth rate of a j-volume 

element.  

 

              4.2.2. Gencay and Dechert’s Algortihm  

        Gencay and Dechert (1992) use a result of (Gencay-Dechert 1990) 

which shows that the n largest Lyapunov exponents of a diffeomorphism 

which is topologically conjugate to the data generating process are the n 

Lyapunov exponents of the data generating process. The authors employ 

multilayer forward networks as a nonparametric estimation technique.  

Gencay and Dechert show that Eq.(3) suggests a more direct approach to 

calculating the exponents. Since  
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       
010

.... xxxx

t DfDfDfDf
tt 

                                             (15) 

All of the Lyapunov exponents can be calculated by evaluating the Jacobian 

of the function f  along a trajectory,  tx . The authors use QR 

decomposition for extracting the eigenvalues from  
0x

tDf  and hence 

function g .  

From Eq.(9) the mapping g may be taken to be  

 










































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z

z

z
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                (16) 

And this reduces to estimating  

 tmtmtmt zzzvz ,....,, 21                     (17) 

The derivative of g is the matrix  

 



























010000

000010

000001

... 121



vvvv

Dg

mmm

yt
                (18) 

where  
1




mt

m
z

v
v  for all 1m .  

Gencay-Dechert (1990) demonstrate that, if f

n

ff   ....21  are the 

Lyapunov exponents of f  and g

n

gg   ....21  are the Lyapunov 

exponents of g . Then generically g

i

f

i    for ni ,...,2,1 .  

Now, we have to estimate the function g  based on the data sequence 

  t

m xJ , and compute the Lyapunov exponents of  g . As m increases there 

is value between n and 2n+1 at which the n largest exponents remain 
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constant and the remaining m-n exponents diverge to  as the number of 

observations increases.  

            

           4.2.3. Kantz’s Algorithm 

       Kantz (1994) propose a robust algorithm in order to compute maximal 

Lyapunov exponent directly. As we show below, the method proposed by 

Kantz (1994) basis on the algorithm introduced by Wolf et al., (1985).  

Let us rewrite Eq.(3) in a different manner. Let ty  be the time evolution of 

some initial condition 0y  in our phase-space, 
mR .  

Then maximal Lyapunov exponent is found with probability 1 by,  

 















 


 






tt

t

yy

t
ln

1
limlim

0
max , 

    00 yy                     (19) 

For almost all difference vectors   
00 yy  .  To compute max  one can 

either apply Eq.(13) in 
mR  by searching for pairs of neighboring trajectories 

and follow how they diverge or one can evaluate Eq.(13) in the tangent 

space.  

Similar to the algorithm of Wolf et al.,(1985), Kantz (1994) use the fact that 

the distance between two trajectories typically increases with a rate given by 

the maximal Lyapunov exponent. Of course this is true only asymptotically.  

 
 















 




 








tt yy
t ln

1
lim

0
                 (20) 

    twyy utt .   
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where       twyy utt .   signifies the difference vector lying between the 

point ty  and its one of the neighbor(s)  
ty  in the phase-space.  

And, where the operator ...  shows the magnitude (norm) of the difference 

vector (distance between), lying between any two points in the phase-space. 

Thus we define the initial distance between a point  

ty  and its one of the  neighborhood point(s)  
ty  by ,  

        twtwyy uutt ..                   (21) 

 where  twu  is the local eigenvector associated with  t  and its 

magnitude is   1twu . This local eigenvector can be considered as the 

base vector of the phase-space.  

 t depends on the structure in tangent space and thus is position 

dependent. It is approximately the same for all trajectories inside a small 

neighborhood. By definition the average of  t  along the trajectory is the 

true Lyapunov exponent. 

All delay vectors of the series falling into the  neighborhood tU of ty  

will be considered as the beginning of neighboring trajectories, which are 

simply given by the points of the time series consecutive in time. If we 

measured the distance between neighboring trajectories in their true phase 

space, we would see exactly the fluctuations of the divergence rate 

described by the distribution of effective Lyapunov exponents (at least after 

some transient time, when the difference vector points into the most 

unstable direction). Starting from a univariate time series, we could realize 

this situation by measuring the distance in the embedding space. But apart 

from the fact that we have to fix the dimension in which we search for 

neighbors we do not want to distinguish any particular embedding 

dimension.  
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Therefore we define the distance between a reference trajectory ty  and one 

of its   neighbor(s)  
ty  after the relative time (iteration)    by a function  

  RRK m :.    

    


    tttt yyyyK ;,                                  (22) 

As we have denoted ty  as a vector in Eq.(7) and composed it with the 

lagged values of observed time series (sequence)  tz  embedding with 

appropriate dimension, we can rewrite  

    


    tttt yyyyK ;,                                  (23) 

                       

        22

22

2

11 ....)( 






   ttmtmtmtmt zzzzzz  

 where using Eq.(7),   

    tmtmtt zzzy ,.....,, 21  

and  

        









   tmtmtt zzzy ,.....,, 21  

    


    tttt yyyyK ;,  gives us the magnitude of the difference vector 

  
   tt yy  lying between the point ty  (which is the  -times iterated 

value of point ty )  and the point     
ty  ( which is  -times iterated value of 

point its neighbor  
ty )  in the phase-space.  

As given in Eq.(6), these distances are (generally nonlinear) projections of 

the difference vectors in the true phase space onto a one dimensional 

subspace spanned by the observable (in the simplest case the observable 

itself is one coordinate of the phase space). 
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In order to measure the maximal Lyapunov exponent we fix t, search for all 

neighbors   
ty  of ty  ,  inside an  neighborhood tU  and compute the 

average of the distances between all neighboring trajectories and the 

reference trajectory ty  as a function of   (by increasing  ).  

As defined in Eq.(23) ,   is the relative time (iteration) depends on t, 

therefore we may need to smooth the output of function (.)K  by taking the 

logarithm of it. We perform this calculation for all t=1,2,..,T  where T is the 

number of points in phase-space.  

Thus we compute  

    
 

 
 









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



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t Uy

tt

t tt

yyK
UT

S
1

;,
1

ln
1



 

                           (24) 

where tU  denotes the number of elements of set of  neighbors of ty . 

 The first sum in the RHS of the Eq.(24) composed of the distance 

between  ty  and every  neighbor of ty  ( for all  
tt Uy  ). Then we obtain 

its average and take logarithm. Since we should perform this calculation for 

all Tt ,.....,2,1  , we take its average to obtain average magnitude of the 

principal axis of the m-dimensional ellipsoid.  

Initially, the difference vectors in the true phase space are pointing in any 

direction. 

Thus for small  we cannot expect a scaling behavior. For an intermediate 

range of  ,  S increases linearly with the slope   which is our estimate of 

the maximal Lyapunov exponent. This is the scaling range, where on the 

one hand   is large enough such that nearly all distance vectors point into 

the unstable direction and on the other hand the corresponding distances 

 K  are smaller than the size of the attractor. When they reach the latter 

size,  S   asymptotically tends towards a constant (which is 

< In 1/4 if the diameter of the attractor is normalized to  1) since the distances 
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cannot grow any more. If the data are noisy, the typical distance between 

two nearby trajectories is of the order of the noise level. If we choose e 

smaller than the noise amplitude and if we find neighbors for this value, 

 S  jumps from a value smaller than ( ln ) to a value given by the noise 

level at 1  .  

If this value is not too large, one can still find a scaling range, and the 

exponent thus found is not affected by the noise. 

Finally, the slope of the curve  S  gives us the maximal Lyapunov 

exponent :  

 
 t

S










  for any   in the scaling region.               (25)  

In summary, our numerical value for the maximal Lyapunov exponent is the 

slope of the curve  S  in the scaling region. It does not contain the 

embedding dimension explicitly, but nevertheless it enters. We have to fix a 

dimension m for the delay embedding space in which we search for 

neighboring trajectories. If m is too small there is a nonzero probability that 

two trajectories are close in the embedding space but not  in the original 

space, nR .  

           4.2.4. The Comparison of the Effectiveness of   

                     Wolf’s, Gencay  Dechert’s  and  Kantz’s    

                     Algorithms 

 

         The main difference between these three methods is the space that the 

embedded points examined. While Gencay and Dechert (1992) propose to 

work on tangent space, Wolf et al., (1985) and Kantz (1994) prefer real 

space. Therefore, Gencay and Dechert (1992) computes the product of the 

Jacobians along the trajectory.  

The second difference lies between the method of Kantz (1994) and 

both the method of Gencay -Dechert and Wolf. That is, while Kantz (1994) 
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only computes the maximal Lyapunov exponents, both Gencay-Dechert and 

Wolf computes the spectrum of Lyapunov exponents. 

1.The method proposed by Wolf et al., (1985) is limited to maximal 

exponent one. The experiences show that even for the maximal exponent 

this algorithm does not yield very precise results. One reason is that if no 

optimal new neighboring trajectory is found, one has to use a bad one.        

One could think of disregarding parts of the trajectory where only “bad” 

neighbors are found but then the information about neighbors are found but 

then the information about the unstable direction also gets lost. 

 If the data are noisy one has to demand that the initial distance between the 

trajectory and a new neighbor is larger than the noise level, otherwise we 

would interpret fluctuations due to noise as if they were deterministic 

divergence. 

2. Since the method proposed by Gencay and Dechert (1992) yields 

production of Jacobians along the trajectory in order to calculate the 

spectrum of Lyapunov exponents, the function f  which drives the 

dynamical system and which is given by Eq.(1) must at least approximately 

be known.   

3. Another drawback for Wolf’s method and Gencay-Dechert’s method is that 

the embedding dimension is an important parameter. For too small a dimension 

the exponent is severely overestimated, since trajectories may diverge simply 

because they are not neighbors in the true phase space. While too large a 

dimension does not in principle cause problems, it does in practice. Typically 

the initial distance between the neighboring trajectories increases with the 

embedding dimension. Therefore the small length scales are less well explored 

and the number of time steps until a new neighboring trajectory has to be 

searched for decreases. This induces larger errors due to the deviations of 

directions. Kantz’s method does not need the exact determination of embedding 

parameter.  



39 
 

4. All of the three models suffer when the data is set is not long enough. For 

short data sets, higher embedding dimension and smaller   very few 

neighboring trajectories generally can be found.  

Therefore the curves may fluctuate due to low statistics. This is not a serious 

problem unless no neighbor is found at all for many points ty . In such a 

situation only the parts of the attractor are explored where the natural 

measure is highest.                         

If the spatial distribution of the effective Lyapunov exponents is non-

homogeneous this may lead to a wrong estimate of the average. Note that in 

Eq. (24) the averages are taken in such a way that exponents are averaged 

according to the natural measure only if all points of the time series have 

neighbors.  

Thus when working with fixed  -neighborhoods, one has to keep track of 

how many points have no neighbors and compares the results with 

different  . Fixed mass neighborhoods will lead to a mixture of length scales 

and reduce the scaling range. 

5. In Kantz’s method; first of all, an exponential divergence sets in only after 

some transient time, since an arbitrary difference vector has to turn into the 

most unstable direction. Eventually, this will happen with probability one. 

Secondly, the divergence rate of trajectories naturally fluctuates along the 

trajectory, with the fluctuations given by the spectrum of effective Lyapunov 

exponents. 

According to the comparison of the three models and our main goal which is to 

determine the maximal Lyapunov exponent of ISE-100, we choose to 

implement the method proposed by Kantz (1994). 
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5.  Time Series Analysis of   ISE -100 Composite Index 

       Understanding stock market price fluctuations plays an important role 

in economic policy and in corporate investment and financing strategies.  

The proposition that nonlinear processes studied in Chaos theory play an 

important role in these fluctuations. Studies in the application of non-linear 

modelling to examine the behaviour of asset returns in Turkey .                         

The ISE-100 consists of 100 stocks which are selected amongst the 

companies, except investment trusts, traded on National Market in 

accordance with the criteria set by ISE.   

ISE 100 Index automatically covers ISE 30 and ISE 50 stocks. The study 

uses daily prices data from the base period of index series.   

The data used in the study covers the period from January 1990 to October  

2009 . First , each of the ISE-100  index series transformed into logarithmic 

return, log_return. 

 

Parameter                        Value 

Number of observations 4922 

Mean 0,000676 

Median 0,000000 

Std. Deviation 0,012624 

Maximum 0,077190 

Minimum -0,086766 

Skewness -0,044823 

Jarque-Bera 2280,135 

Probability 0,000000 

     

    Figure  1. Statistical Properties of logarithmic return  ISE-100  
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The Figure 1 shows that the distribution of the daily return on the ISE 100 

index is right-skewed. The results of the study also suggest that nonlinear 

processes play a significant role in stock market behavior. 

        

        5.1. Time Series Analysis  

    Let ty  be a time series. Let us denote the expected value (mean) of ty  

by  tyE   then the variance  tyVar   of ty   is given by  

    2
 tt yEyVar  . 

Definition 1( Hamilton 1994): A stochastic process  ty   is stationary                      

( Hamilton 1994) if and only if  

              1. E ( ty )=  for t       R is constant. 

             2. Var ( ty ) = 2  for  t   
2   is constant. 

             3.    hyyCov htt ,     t ,h certain function of   h   in which 

E (.) is expected value operator, Var (.) signifies variance and  .Cov  

signifies covariance. 

              If one of these properties can not be reached, we can say that the 

stationarity of the process yt is violated. The more general definition of 

the non-stationary processes has been given in Banarjee et al.(1993) and 

these general processses are called Integrated processes. A knowledge of 

the fundamental properties of integrated processes is essential for 

understnading of tests for both non stationary and the existence of long-

run equilibrium relationships.  
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                5.1.1.   Unit Root and Integrated Processes  

         Let a vector autoregressive process order  pVarp,   process, be     

tptptt uyAyAy   .....11    where  ty   is vector of interested variables, 

and    piAi ,......1,        coefficient matrix,  is stable if the polynomial defined 

by    p

p zAzAIp  .........det 1       has no unit roots in and on the complex 

unit circle. 

      On the other hand, for univariate a autoregressive order one, AR(1) 

process, ttt upyy  1  ,this property means that   01  pz  for 1z                                                      

or equivalently, 1p   . 

For univariate AR(1) process  ttt upyy  1    consider the borderline case, 

where 1p  . The  resulting process    ttt upyy  1  is called random walk.  

Starting the process at 0t   with some fixed   0y   , it is easy to see by 

successive substitution for lagged  ty ’s, that  

  
t

i ittttt uyuyupyy
10121 ...........  

Thus, ty   consist of the sum of all disturbances or innovations of the previous 

periods so that each disturbance has a lasting impact on  the process. If tu  is 

white noise with variance    2

utuVar     then expected value of the signal 

ty    is   0yyE t    and the variance of it will be calculated by      .tyVar t                                                       

  2

ut tuVar  . Hence, the variance of a random walk tends to infinity.   
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Futhermore, the correlation is given by 

   
  

2
1

.
),(

22

11

uhtut

uiu
yyCorr

t

i

t

i i

htt

 


 

       
 

1

2
1.2





t

htt

t
 

                            for any integer  h .  

This latter property of a random walk means that ty   and  sy   are strongly 

correlated even if they are far apart in time. If    p

p zpzp  ..........1 1     

has a root for 1z  where    is called as drift, then a behavior similar to that 

of a random walk is also observed for higher order AR(p) processes such as :                                                 

tptptit uypypy   .......1  

Note that       zzzzpzp p

p

p   1......11......1 211  

 where  p ,....., 21  are the reciprocals of the roots of the polynomial. If the 

process has just one unit root  ( a root equal to 1) and all other roots are 

outside the complex unit circle, its behavior is similar to that of the random 

walk .  

That is, its variances increase linearly ,the correlation between variables h 

periods aparts tends to 1 and the process has linear trend in mean if µ≠0. 

The univariate processes with d unit roots (d roots equal to 1) in their AR 

operators are called “integrated of  order d” and are shown by I(d)
 
. 

Therefore, the ARMA(p,q) process with d unit roots may also be expressed as 

ARIMA(p,d,q). As one can easily derive, the stationary processes can be 

shown by I(0) series and the series  containing one unit root can be shown by 

I(1). The properties of series integrated of strictly positive orders differ 
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substantially from those of I(0) series. Consider a series containing a single 

unit root ttt upyy  1    ; where 00 y    and  ut ~I (0) or ,after 

integrating, tt Sy    where    it

t

i

i

t upS 




1

1
.  If |p≥1| then yt is non 

stationary, and if p=1, then it is integrated of order 1 , I(1).The series ty   is 

then the sum of all previous errors or innovations.To  compare these types of 

processes let us consider two special cases of the process: 

ttt upyy  1                                                                 (1) 

The first alternative of Eq.(1) is ttt upyy 11    , where |p|  and tu1  is  

independently, identically distributed process shown by tu1   ~i.i.d (0, 
2

1 ). 

The second one is  ttt uyy 21    where 0,1 0  yp   and  u2t ~ i.i.d(0, σ2
2
).   

The sequence tu  need not be an innovation sequence; tu   may itself follow a 

stationary ARMA process. In the first case, to ensure stationarity, let us 

assume that 0y  is drawn from the unconditional distribution of y , that is,                      

0y  ~ i.i.d       2
1

2 1/,0 p   . Table 2 compares the properties of these two 

processes. Specifically, in order to determine whether there exists unit root 

(non-stationarity) in the ISE-100  values or not, we apply the test methods 

which are described and reported by Fuller (1976); Dickey and Fuller (1979) 

and which are called as Dickey-Fuller test. 

We give a detailed description of the test procedure that we employ. For the 

remainder of the study we may interchangeably use the terms “non-stationary 

time series” , “I(d) variable” and “ARIMA(p,d,q) process” as well as the 

terms “stationary time series” and “I(0) variable”.   
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    Table 2:  

    Some Properties of Stationary and Integrated Process 

 

     Processes:                          ttt uyy 11   ;                                                          ttt uyy 21   ; 

                                       Where |ρ|˂1; u1t ~i.i.d(0,σ1
2 )                                        Where y0=0; u2t~i.i.d (0,σ2

2) 

     Integration order :                            (I(0))                                                                             (I(1))                   

     Variance                            Finite   122

1 1


                                     Unbounded  (grows as 
2

2t  )                                                                                                

     Conditional variance                                  
2

1                                                                      
2

2  

    Autocorrelation function  at lag i               
i

i                                    11 
t

i
i i as t     

    Expected time between   crossings of        0y   Finite                                               Infinite 

       Memory5                                                     Temporary                                              Permanent            

  source Banarjee et.al.(1993) 

                 

                5.1.1.1  Unit Root Analysis 

         In time series analysis literature various tests (Fuller 1976 and Hall 

1990) are defined for the unit root detection which can validly be applied 

to series that follow AR(p) processes containing no more than one unit 

root.  

However, for the processes  which may have unusual characteristics we 

find it useful to perform statistical tests which were designed for further 

class of series, ideally in such a way as to allow exogenous variables to 

enter the process as well. (Said and Dickey 1984) provide a test procedure 

valid for a general ARMA process in the errors; (Phillips 1987a) and 

(Perron and Phillips1988) offer a still more general procedure. These 

procedures totally called as “Augmented” Dickey-Fuller (ADF) tests. 

      While the Said-Dickey approach does present a generalization of the            

                                                             
          5 We say that a process has a permanent memory if the effect of an innovation or shock does      

             not disappear as  t . 



46 
 

      Dickey-Fuller procedure, it again yields test statistics within the same  

      asymptotic critical values as those tabulated by Dickey and Fuller.  

      The particular advantage of Said-Dickey test is that we can apply it not  

      only to models with MA parts in the errors, but also to models for which  

      the orders of the AR and MA polynomials in the error process are  

      unknown. The method involves approximating the true process by an  

      autoregression in which the number of lags increases with sample size. 

      Said-Dickey approach begins by assuming that the data generating  

      process follows: 

ttt uycty  1 , where Rc, and tu ~ ),( qpARMA                (2) 

 or     

    tt LuL            where t  ~  RN ,0  and L is lag operator.                                                                                                   

so that  the error  term in the autoregression follows an ),( qpARMA process, 

presumed to be stationary and invertible. Then the data generating process in 

Eq.(2) can be rewritten as 

    t

p

i

tititittt whereyyyctyy  


 
1

111 1

~  ,0N         or                                                                             (3) 

    t

p

i

titititt whereyyycty  


 
1

111

~  ,0N  and    is the first difference operator,   is drift and c is time trend 

and where p is large enough to allow a good approximation to the 

),( qpARMA  process tu , so that t  is approximately white noise. The null 

hypothesis  1:0 H  is 1  . 

                     5. 1.1.2. Application of Time Series Modelling   

                                    Worldwide  Stock Exchanges  (SE) 

          Most of the past studies on the behavior of security prices have utilised 

linear modelling techniques in their analysis. Fama (1965) admits that linear 

modelling techniques have limitations as they are not sophisticated enough to 
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capture complicated patterns which chartists claim to see in stock prices. 

Damodaran (1993) estimates the price adjustment coefficients for firms listed 

various stock markets in the U.S. and reports evidence of lagged adjustment 

to new information in shorter return intervals. 

 

           5.2.   Application of Time Series Modelling to ISE-100   

                   Stock Exchange 

         In this study we search for unit root (non-stationarity) in each of the 

sub-segments and  we particularly apply the Said-Dickey method. We 

consider that, the  ISE -100 data obtained can be examined  by linear time 

series model which has  two general forms shown by Eqs. (4) and (5) 

respectively.  

tt utcy  . , where Rc,  and tu ~ ),( qpARMA                               (4)      

 or     tt LuL    where t  ~  RN ,0  and L is lag operator. 

    tt LyL   ,  where t  ~  RN ,0                                                         (5) 

These two different structures, enable us to apply  the  non-stationarity tests  

to the  control ISE-100 data. For determining the existence of unit root, we 

use ADF statistic tests by following the algorithm which requires three steps 

procedure: 

i.)  By testing them individually we research which one of the two 

alternatives Eq. (4)  or   Eq. (5) characterizes our ISE-100 data them.  

ii.) We assume that there may be drift and a time trend  tc.  in these ISE-

100 data and we construct our null hypothesis according to this assumption. 

We apply Non-standard t-statistics by Ordinary Least Squares (OLS) 

regression method. 

iii.) We explore whether the errors or noise tu , to the system are 

independently, identically distributed (i.i.d) process or they have 

Autoregressive properties (AR(p)). If they have autoregressive character, then 

we must first, determine the exact order of the noise in the process by using 
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both Phillips – Perron Test (Phillips and Perron 1988) and Hannan Test 

(Banarjee et al. 1993; Hamilton 1994) and second, we have to transform to 

the white noise by using the Said- Dickey method (Said and Dickey 1984). 

This approach is called “whitening the noise”. After this transformation  we 

are eligible to perform the ADF  non-stationary tests.  

When we realize the first step, from the results of the OLS regressions we 

find out that both the control ISE-100 data have no drift and have no 

independent time trend.  

Thus we reject both the null hypothesis that the process contains drift and 

time trend ( 0:0 H ) and ( 0:0 cH ). Thus we focus on (5) to 

characterize ISE-100 data. 

Our test equation becomes:   

    t

p

i

titititt whereyyyy  


 
1

111 ~

 ,0N                                                                                                 (6) 

and p (order of the error in ISE-100 data) defines the dependence of the its 

own history. When the second and third steps indicated above were realized, 

we obtained the results shown in the following section, Section 4.3. 

               5.2.1.  Results of The Analysis  

         The first step in testing for nonlinearity and chaos is to test for the 

presence of a stochastic trend (a unit root) in the autoregressive representation 

of the series. In what follows we test the null hypothesis of a stochastic trend 

against the trend-stationary alternative by estimating by ordinary least squares 

(OLS) the following Augmented Dickey-Fuller (ADF) regression (Dickey 

and Fuller ,1981).  In what follows we test the null hypothesis of a stochastic 

trend against the trend-stationary alternative by estimating by ordinary least 

squares (OLS) the following Augmented Dickey-Fuller (ADF) regression 

(Dickey and Fuller ,1981).  
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 Results of Eq.(3)  → t

t

t

t

t

y

y

y

y






































 11

log.9218,00038,0log  

The serie Log_return, has no unit root . We rejected the Null Hypothesis. 

The serie is stationary and has no stochastic trend also.   

 

 

 

 

 

    Figure 2. Time Plot of ty  Residuals 
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Figure 3. Time Plot of  










1

log
t

t

y

y
 Residuals 

Table 3 

 Results of the ADF Test statistics of  










1

log
t

t

y

y
 Residuals 

 Significance Level Critical Values 

% 1 -3,95 

% 5 -3,41 

% 10 -3,12 
 

 

 

 

 

 

 

(*) Note that the ADF test statistic critical value is -64,85. 

 
 

Table 4 

Correlation Matrix of Index Serie 

 

 No root lies outside the unit circle. 

ARMA model is invertible. 

 The correlation matrix of the daily closed values and the first lagged of that 

serie is ;  

Variable 
ty  

1ty  

ty  1 0.99963 

1ty  0.99963 1 
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Figure 4. Time Plot of  










1

log
t

t

y

y
   

 

 Results for Eq.(6) 

              t

p

i

itititt rrrr   


 )loglog.(log.1log
1

11      

 

109876

54321

065,0039,033,001,00323,0

0062,0.031,00131,001,00266,0









ttttt

tttttt

yyyyy

yyyyyy
 

 
According to the test results, the closing values ( ty ) of  ISE-100 index  has 

a unit root, and non-stationary. 

   

  For the model selection criteria the Akaike Information Criterion (AIC) 

(Akaike, 1974) was used, and the order of the model was determined by 

relying on the minimum Akaike Information Criterion estimated as MA (1). 

Eq. of  AR modelling       tptptit uypypy   .......1
 

Eq. of  MA modelling       .......... 21   tktitt ykykuy   

Variable Akaike info criterion Std.error 

AR(1) -5,538 0.012 

MA(1) -5,905 0.0013 
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  5. 3.  Comparison Between ARIMA Modelling and   

                 Chaos   Modelling of    ISE-100 

 

     It appears very interesting to use chaos for modelling. Indeed, it is a non-

explosive system (no trend); it is an aperiodic system (no seasonality); it is a 

stationary system (invariant distribution-ergodicity). Thus, if we are able to 

know in which space the attractor lies, by determining the phase space using 

the embedding dimension for instance, and if we are able to re-build the 

orbits, then we can make predictions. 

Open problems 

This study discussed the approaches followed by some economists and 

financial researchers when they apply chaos theory to real data sets. The main 

difference between physicists and economics is due to the fact that in 

economy, we only have a unique trajectory (and not the possibility to repeat 

the experience as in physics) and also to presence of measurement noise in 

the time series. 

The presence of noise in real data sets is a brake for the use of chaos theory in 

practice. Thus, robust deconvolution techniques need to be developed more. 

Estimation theory is very often used under strong assumptions like 

independence of the data sets or Gaussianity of the observations: assumptions 

which are not verified in practice. Thus, new developments need to be 

considered in particular for data sets characterized by skewness or kurtosis.  

Another problem which is important is the existence of an invariant measure 

for chaotic systems. We can question if this assumption is realistic and we 

refer to Guégan (in press) for a discussion on this subject. 

Concerning predictions, no good solution has been proposed for medium-

term predictions. We conjecture that to predict at a medium-term horizon 

necessitates taking into account the divergence of the orbits if we are in a 

region of the attractor where the Lyapunov exponent is positive. 
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6. Results of Chaotic Analysis 

Table 5 

 Average Log Distance of daily reel-return values. Maximal Lyapunov 

Exponent for ISE-100 , daily reel-return values (detrended by Consumer 

Price Index 87=100 i.e., TUFE 87=100). The curves differs from each other 

in sense of the embedding dimension (m) and epsilon chosen (eps). Tho  , 

signifies iteration.  The negative values derives from logarithm of the 

distances lying the interval (0,1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The slope of the curves give the maximal Lyapunov Exponent,  tmax

  a la 

Kantz.  
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Table 6 

The Average Distances in phase space of daily closing values. Maximal 

Lyapunov Exponent for ISE-100 , daily closing values detrended by 

Consumer Price Index 87=100 (TUFE 87=100). The curves differs from 

each other in sense of the embedding dimension (m) and epsilon chosen 

(eps). Tho  , signifies iteration. 

 

 

 

 

 

 

 

 

The slope of the curves give the maximal Lyapunov Exponent,  tmax

  a la Kantz.  

 

Table 7 

 Maximal Lyapunov Exponent for ISE-100 , daily closing values detrended 

by Consumer Price Index 87=100 (TUFE 87=100). Tho max is 35, which 

shows the limiting case of the curves given in    Table 5.2.  
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     6.1.Implications  

     We have seen that the ISE-100 has an underlying "chaotic" attractor with 

a positive Lyapunov exponent. All this indicates that there is an underlying, 

non-linear mechanism to the ISE-100. The exact form of this mechanism is 

unknown at this time. A likely candidate, however, is a mixed feed-back 

system coupling the various capital markets. Earlier work has shown that 

the capital markets are non-linear. Now we have additional evidence that the 

ISE-100 has an underlying chaotic attractor, which may involve the other 

capital markets.  

The next step is to develop a model that explains the nonlinear mechanism 

that generates the chaotic attractor. We leave that for further research. 

     6.2.Practical Considerations  

      The existence of a chaotic attractor and non-periodic cycles vindicates a 

number of strategies that have been "disproved" using random-walk-based 

mathematics. Most studies of market timing and trend analysis, for example, 

make a Gaussian assumption about probability distributions. As we have 

noted, fractal distributions are infinite-variance distributions and require 

quite different analysis. Strategies based on "mean reversion," including 

value-based stock selection and market-timing techniques, also need to be 

updated. Because equilibrium is dynamic, rather than static, mean-reversion 

models of value need to be dynamic as well. A "chaotic" market also means, 

however, that market timing, value in-vesting and tactical asset allocation 

may all have relevance, and if properly done, should be able to capitalize on 

the market cycle. For the practitioner, this means that care should be taken 

when formulating an opinion about how the market works. For too long, we 

seem to have been divided between "technicians" who believe that the 

market follows a regular cycle and "quants" who believe there is no cycle at 

all. The truth lies somewhere in between. There are cycles, but they are not 

regular, hence may be invisible to standard statistical techniques. Investment 

professionals should begin relying on quantitative techniques that do not 

rely on random-walk assumptions but are more dynamic. These techniques 
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are just beginning to be developed. Long-range market forecasting is 

impossible and should not be attempted, or even considered.  

        6.3.Final Considerations  

     On a broader scale, we can see why standard econometric methods have 

failed in the past. Attempts to "whiten" data in order to make it suitable for 

linear-based forecasting technique, cover up the conclusions that non-linear 

dynamics gives us.  

Surprisingly, these conclusions tie in with experience.  

              (1) The market has cycles and trends.  

              (2) A small change in an indicator can have a major impact on the 

future.  

              (3) The further out in time we go, the less reliable our forecasts are.  

The last point is particularly important. It means that, as with the weather, 

accurate, long-range economic and market forecasting is not feasible from a 

practical standpoint.  

 

7.   Conclusion   

 

       In this study we test the Chaotic behaviour of ISE-100 returns with 

Lyapunov Exponent. According to the test results we have seen that chaos 

existed in the ISE-100 and has an underlying "chaotic" attractor with a 

positive Lyapunov exponent. All this indicates that there is an underlying, 

non-linear mechanism to the ISE-100. The exact form of this mechanism is 

unknown at this time. A likely candidate, however, is a mixed feed-back 

system coupling the various capital markets. Earlier work has shown that 

the capital markets are non-linear. Now we have additional evidence that the 

ISE-100 has an underlying chaotic attractor, which may involve the other 

capital markets. We were able to determine the equations of motion 

underlying the ISE-100, we would still not be able to forecast beyond a 

short time frame, because we are never able to measure current conditions 

with significant accuracy. The future in quantitative economic theory should 
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thus revolve around estimating the current probability distribution, which is 

not normal, so that we can better analyze the risks. Once that is done, viable 

economic and investment decisions can be made. Finally, the Efficient 

Market Hypothesis conforms to none of these observations. Neither does 

standard econometrics, which is based on static equilibrium assumptions. If 

the social sciences are to grow, consideration should be given to defining 

equilibrium in a more dynamic fashion. The next phase involves models that 

explain these dynamics and statistical techniques for estimating risk. There 

is still much work to be done. 
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Appendix                                             Recurrence Plot Analysis of Ise-100  

RP Analysis With Deflated (Real) Values 

Graph A. 1. 

 [1-2000] points, 01.90- 01.98  

The RP shows that, the ISE-100 closing deflated values show a 

checkerboard caharacteristic which is already stated in literature (Eckmann 

et al., 1987), implying chaotic behavior. This can be identified by irregular 

periodic oscillating dynamical system (Marwan 2002). 

 

 Graph A.2.   

  94 crisis. 94Q1-95Q1 Vertical lines are observed.  
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  Graph A.3.  

   98Q1- 99Q2, 98 Crisis 

 

  Graph A.4. 

  2000.06 -2002Q1 data 2001 crisis 
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RP Analysis With Nominal Closing Values  

 B1. Data: 08.93- 01.95 

     Data Interval [90,110] and [155-165] are white, implying that these 

points are far from other points.  Before and after these intervals, we have 

black regions, implying deterministic movement. [90,100] and [150-160] 

may imply regime change. The 90-th point dated as [01.94,02.94] and 

[03.94, 04.94].  After [155-165] points region , after 04.94, we have wide 

white region, implying that the points becoming far from previous points. 

However, there occurs a deterministic dependence to the point [90,110], 

these points are where initailly far from all their previous (in time) points.  

 

B2. Data: 08.97 - 02.99 the points [1900-2270] 

Between the points [150-250], corresponding to the dates [03.98-09.98] the 

system losts its dependence and diverges, implying rare shocks. This can be 

seen from the white region at the middle-bottom of the plot. This divergence 

is such that, the points lying in [150-250], do not show nay neighborhood to 

the first 150 points. 
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B3. Data: 10.2000 - 07.2001 the points [2669-2900] 

 

 

 

 B4.Data: 01.2003- 02.2006 
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B5.Data: 03.95- 08.97 between two crisis 

 

B6.Data: 99Q1-10.2000 between two crisis 

 
Recurrence Plot Analysis With Reel-Return  

The RP shows that, the ISE-100 closing deflated values show a 

checkerboard caharacteristic which is already stated in literature (Eckmann 

et al., 1987), implying chaotic behavior. This can be identified by irregular 

periodic oscillating dynamical system (Marwan 2002). 
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C1. Between 1000-1350.  

 

 

C2. Between 1900-2300  
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C3. Between 1500-1900 ,  Between crisis 94 and crisis 98  and without 

crisis. 

 

 Between 2600-2900  

 

 

 

 

 

 


