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ABSTRACT

CLASSIFICATION OF IRREDUCIBLE CUSPIDAL
REPRESENTATIONS
OF THE AUTOMORPHISM GROUPS OF REGULAR
TREES

In this thesis we take a regular tree X of regularity greater than or
equal to three and we give a detailed proof of G. I. Ol’'shanskii’s result
about the classification of irreducible cuspidal representations of the au-
tomorphism group Aut(X) of the tree X. First, we define a topology on
the automorphism group Aut(X) which makes it into a locally compact,
Hausdorff, separable and totally disconnected topological group. Later,
we work on some specific representations of the automorphism group
Aut(X). Finally we prove that irreducible cuspidal representations of
the automorphism group Aut(X) are induced from some specific repre-
sentations of some specific open compact subgroups of the automorphism

group Aut(X).
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OZET

HOMOJEN AGACLARIN OTOMORFIZMA
GRUPLARININ INDIRGENEMEZ KUSPIDAL
TEMSILLERININ SINIFLANDIRMASI

Bu tezde her noktasinin derecesi iigten biiyiik egit olan homojen bir X
agacl alinmig ve bu agacin Aut(X) simgesi ile gosterilen otomorfizma
grubunun indirgenemez kiispidal temsillerinin ilk olarak G. I. OI’'shanskii
tarafindan yapilan simflandirmas: detayl olarak cahsimigtir. Oncelikle
Aut(X) otomorfizma grubu iizerinde bir topoloji tamimlanmig ve Aut(X)
otomorfizma grubunun bu topoloji ile birlikte yerel kompakt, Hausdorff,
ayrilabilir ve baglantisiz bir topolojik grup oldugu gosterilmigtir. Daha
sonra Aut(X) otomorfizma grubunun baz 6zel temsilleri incelenmistir.
Son olarak Aut(X) otomorfizma grubunun indirgenemez kiispidal tem-
sillerinin, bu grubun baz1 agik kompakt alt gruplarinin bir takim ozel

temsillerinden yiikseltilmis temsiller olduklarinin ispati verilmistir.
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INTRODUCTION

Let X be a regular tree with regularity greater than or equal to 3. The
automorphism or isometry group G of X is equipped in a natural way
with a topology which makes it into a locally compact separable metriz-
able group. If the regularity of X is of the form p+ 1, where p is a prime
number, then the tree under discussion can be considered as the sym-
metric space corresponding to the p-adic SL(2). In that case such trees
are special cases of the so-called the Bruhat-Tits buildings associated to
reductive p-adic groups. Then PGL(2,Q,) becomes a closed subgroup
of G.

The tree is in any case a kind of discrete version of the Poincare disk.
It will be seen that the group G also has many properties similar to the
SL(2,R). But the group G does not have any Lie group or p-adic group
structure. Therefore it is interesting to understand its representation
theory. The groups we considered first studied by G. Ol’'shanskii in the
mid-seventies. The aim of this thesis is to work out the classification
of the irreducible cuspidal representations of GG in detail and to write in
a nearly self-contained form. This classification shows some interesting
properties of these representations. In particular, they are obtained by
inducing some special representations from some special compact open
subgroups. This property is shared by irreducible cuspidal representa-
tions of p-adic groups as well. But the p-adic analogue of this result
has been established only recently. Therefore it seems quite natural to
understand these groups better. Because they may shed some more light

on the representation theory of p-adic and real Lie groups.
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1 Automorphism Groups of Regular Trees

1.1 The topological group AutX

A tree is a connected non-empty graph with no circuits. A tree is
called k-regular if every vertex is adjacent to exactly £ many vertices, i.e.
the degree of each vertex is equal to k.

Let X be a k-regular tree for k > 3.

Given two vertices x and y of the tree X, we define the distance
between x and y by the number of edges on the unique geodesic joining
x and y and we denote it by [(x,y). Given a subtree A of the tree X,
when we write * € A we mean that x is a vertex of the subtree A.
Also given two subtrees A and A" of the tree X, if A is a subtree of
A" we write A C A’. A subtree A of the tree X is said to be bounded
if its diameter diam(A) = sup{l(x,y) : x,y € A} is finite. For = €
X, set l(x,A) = inf{l(x,y): y € A} and given n € N, let V,(A) =
{r € X :l(z,A) <n}. Using the natural distance [ on the tree X, we
can define Aut(X) as the group of all bijective isometries of the tree X.
From now on, denote the group Aut(X) by G and fix a vertex z( of the
tree X.

Let By, := Bp(xg) = {x € X : l(z,z09) < n}.

Let S, :={z € X : l(x,x9) = n}.

The set B,, is called the ball with center xy and radius n and the set
S, is called the sphere around xq of radius n.

Let K, := Stab(B,) = {g € G : g(x) =z Vx € B,}. Clearly, each
K, is a subgroup of G.

Then the function d : G x G — [0, 00) defined by

1 if g7'h ¢ K, Vn,
d(g,h) =
inf {% g th e Kn} otherwise

gives a metric space structure to the group G.



In fact, d is an ultrametric on the group G. To see this, let g, h

and k be pairwise distinct elements of the group G. If d(g,h) = % and

d(h,k) = L where n > m > 1, ie. if g = hon B, and h = k on

1
m

B, then we get g = k on B,, as By,,(xg) C B(zg). So d(g,k) <
maxz(+, L) = max(d(g, h),d(h, k). If d(g,h) =1 or d(h,k) =1, w
d(g,k) <1=maz(d(g,h),d(h,k)) as well.

e get

Remarks:

e For all f € G and for all g,h € G, we have d(fg, fh) = d(g,h).
This follows from the fact that fg = fh on B, iff ¢ = h on B, for all n.

e (5 is a topological group with respect to the metric topology:

First, let us show that multiplication map

m:GxG——G
(2, y) — .y
is continuous.

So take a convergent sequence {(g,, hy,)}, in the space G x G with its
limit (g, k). Then we get that the sequence {d(g,h, gh)}, converges to 0.
To see this, it is enough to show that for all & > 0, (gh)~*(g,h) € K} for
n large enough. So let k > 0 and choose | > k with h(By) C B;. As the
sequence (g,), converges to the element g in the group G, there exists
N > 0 such that for alln > N, g~'g, € K;. Consequently, for all n > N,
(gh)Y(gnh) = h™ (g7 g,)h € R Kih C K}, as desired.

Now since
0 < d(gnhn, gh) < d(gnhn, gnh) + d(gnh, gh) = d(h,, h) + d(gnh, gh)

and the sequence (h,), converges to the element h in the group G, by

Sandwich Lemma we get that the sequence {d(g,,hn,gh)}, converges to

0, i.e. the sequence (g,hy), converges to the element gh in the group G.
Secondly, let us show that the inversion map

1:G6——{

[L’I—)—[L’il



is continuous.

So take a convergent sequence (g,), in the group G with its limit g.
Let k& > 0. Choose | > k such that ¢g~'(B)) C B; and choose N € N
such that for all n > N, g7 'g, € Kj, i.e. ¢, = g on B;. Let x € By.
Then since g~'(z) € By, for all n > N, g,(¢7'(z)) = g(g7()), ie.
gng (x) = z. Thus, we get g;' = ¢! on By for all n > N. This means
that the sequence (g, 1), converges to the element ¢! in the group G as
desired.

e K1 ={9€G:d(g,e) <1} and K, = {g € G :d(g,e) < 5} for
all n > 2. Hence for all n > 1, K,, is an open subgroup of G. Moreover
for each k,n € N, K, is a normal subgroup of the group K, of finite
index. In particular, [Ky : K,| < oo for all n € N. Hence the subgroup
Ky of the group G is also open.

e Given r > 0, K,, C B(e,r) for all n > 1 satisfying % < r. So, the

sequence of open subgroups (K,,), form a local basis at identity.
Lemma 1.1.1. Ky is a compact subgroup of the group G.

Proof. Let (g,), be a sequence in the subgroup Kj. It suffices to find a
convergent subsequence of the sequence (g, ).

Note that each element g, of the subgroup K, setwise stabilizes all
spheres around x, . Then since the sphere S,, contains k.(k—1)""! many
vertices of the tree X, there are at most (k.(k — 1)"~1)! different actions
of the elements of the subgroup Ky on the sphere S, for each n.

Therefore,

there exists a subsequence (g1,), of the sequence (g,), such that
91,n = g1,m on the sphere S; for all n,m € N,

there exists a subsequence (g2,,), of the subsequence (g; ), such that
92.n = g2.m on the sphere Sy for all n,m € N and

there exists a subsequence (gs,), of the subsequence (gs,,,), such that
93.n = g3,m on the sphere Ss for all n,m € N.

Continuing this way, for each £ > 1 we find a subsequence (gx+1.n)n



of the subsequence (gy.n), such that gii1, = gr+1,m on the sphere Syq
for all n,m € N.

Now let g € K( be defined by g = gy, on the sphere S, for each n.
Note that such an element ¢ exists in the subgroup K. This is because
Gnn = Gk on the sphere S for all n, k with n > k. We will show that
this element ¢ of the subgroup Kj is the limit of the subsequence (gnn)n
of the sequence (g, )n-

So let n,k € N with n > k. Then, ¢,, = grm for some m € N so
that ¢ = grx = gkm = gn,n ON the sphere S;. To sum up, g = ¢, on the
sphere S, for all £ < n, ie. g = g, on the ball B,,. So for all n € N,

d(g, gnn) < % and we are done.

Given g € G and x € X, let us denote the vertex g(z) by gz.

Corollary 1.1.2. For all possible bounded subtrees A of the tree X, the
subgroups

KA)={geG:gx=xVre A}
are open compact. In particular, each subgroup K, is compact.

Proof. Let xy,...,x, be the vertices of the subtree A. For ¢ = 1,..,n,
choose g; € G satisfying g;(z9) = x;. Then K(A) = (., K(z;) =
Ni, g:K (z0)g; " where each g;K (z)g; ' is an open compact subgroup of
the topological group G. Hence K(A) is an open compact subgroup of
the group G.

O

By the facts we proved up to here, we obtain that the sequence
(K )nen is a sequence of open compact subgroups of the group G which
form a local basis of unity. This implies that the group G is totally dis-
connected and first countable. To sum up, now we have the following

theorem.



Theorem 1.1.3. The automorphism group G of the reqular tree X whose
reqularity is greater than or equal to three is a locally compact, Hausdorff

and totally disconnected topological group.

Note that {gKo} e is an open cover of the group G which has no

finite subcover. Hence the group G is not compact.

1.2 Haar measure on the automorphism group

Let H be an arbitrary locally compact, Hausdorff topological group. Let
% be the o-algebra generated by all compact subgroups of H. A measure

poon A is called a left Haar measure if
1. p is outer regular for all Borel subsets of the group H,
2. p is inner regular for all open subsets of the group H,
3. p is finite on all compact subsets of the group H,

4. u(g.F) = p(FE) for every subset E of the group H where g.F =
{g.e:e € E}.

For locally compact Hausdorff topological groups we always have a
left Haar measure which enables us to take integrals of complex valued
functions defined on the group H. In particular, the automorphism group
G has a left Haar measure. This is guaranteed by the following theorem

which was first fully proven by Andre Weil.

Theorem 1.2.1. Fvery locally compact, Hausdorff topological group pos-
sesses a left Haar measure which is unique up to multiplication by a pos-

itiwe constant.

1.3 On complete subtrees of the regular tree X

The set of extremities O(A) of the subtree A is the the set of vertices of

A whose degrees in A are exactly one. A subtree A of the tree X is said



to be complete if Vi ({z}) C A for each vertex = of the subtree A which
is not contained in J(A). A tree consisting of one vertex or one edge is

assumed to be complete.

Proposition 1.3.1. (a) The nonempty intersection of complete trees is
a complete tree.
(b) If T C X is an arbitrary subtree, then V,,(T) is

a complete tree form =1,2, ...

Proof. a) Let (A;)ier be a family of complete trees and A = (1,.; A,.
Let z € A such that x ¢ O(A). Then x € A, for all ¢ and we can choose
two distinct vertices y, z € A which are adjacent to the vertex z. Since
y,z € A, for all 7, we get « ¢ O(A;) for all i. Hence Vi({z}) C A, for all
i so that Vi ({z}) C A.
b) Let z € V,,(T) such that x ¢ 0V,,(T). Then l(z,T) < m.
Let z € X with I(z,2) = 1. Then l(2,T) < l(z,T) + 1 < m. Hence
2z € Vi (T).
[

Assume now that A is a complete finite subtree of the tree X of
diameter > 2. Set gA = {gz: 2 € A} and K(A) = {g € G: gA = A},

Then K (A) is the normalizer of the subgroup K (A) in G, in particular
K(A) < K(A): Let g € K(A) and h € K(A). Then for all z € A, we

have
hx € A = ghx = hx = h™'ghx = = h™'gh € K(A).

Hence K (A) normalizes K(A). Conversely, let h € Ng(K(A)) and = €
A If he ¢ Ay n = I(hx,A) > 1. Let y € A with [(hz,y) = n and
(Y, Y1, ---s Yn—1, hx) be the geodesic between the vertices y and hz. Since
our tree’ s regularity > 3, there exists a vertex z € X adjacent to the
vertex y,_1 and different from the vertices hx and y,_s. Then we can

choose an isometry g € K(A) such that g(y;) =y; foralli=1,....n —1



and g(hz) = z. But then we get h™'ghx = h™'z # h7™l(hz) = z, ie
h=tgh ¢ K(A), a contradiction. Hence hz € A so that h € K(A).

The quotient group K(A)/K(A) is isomorphic to the finite group
I'som(A) of all isometries of the finite subtree A. Indeed, the restriction

map on the subtree A

¢ K(A)/K(A) — Isom(A)
gEK(A)——g|a
is a well-defined isomorphism.

Let A" be a maximal complete subtree of A. If diam(A) = 2, then
as being complete A = V;({z}) for some vertex x € X and the maximal
complete subtrees of A are exactly the £ many edges of A. If diam(A) >
2, the maximal complete subtrees of A correspond bijectively to the
vertices of O(A%) where A’ = {z € A: x ¢ OA}. Indeed, if v € O(AY),
then the vertex v corresponds to the maximal complete subtree of A that
we obtain by deleting the k — 1 vertices in A which are adjacent to the
vertex v.

Note that if g € K(A), then g 'K (A')g = K (g~*A) for every subtree
A of A If h € K(A"), g thg(g7'2) = g7 h(z) = g (x) for all = €
A'. Conversely, if h € K(¢g7'A"), h = g~'(ghg™")g where ghg~'(z) =
gg ' (z) =xforallz € A", ie. ghg™' € K(A).

Moreover, if A’ is a maximal proper complete subtree of A, then so
is the subtree gA’. This is because gA’ is the subtree of A that we
obtain by deleting the vertices in 9(A) which are adjacent to the vertex
gv € 9(A°) from the subtree A where v € 9(A°) and A’ is the subtree
of A that we obtain by deleting the vertices in 9(A) which are adjacent
to v from the subtree A. Hence the internal automorphisms in K (A)

permute the stabilizers of maximal complete proper subtrees of A.

10



1.4 A relation between Gelfand pairs and

unimodularity

Definition 1.4.1. A normed vector space (A, ||-||) over C is called a
normed algebra if it is an algebra satisfying ||zy|| < ||z ||y|| for all z,y €
A. A normed algebra A is called Banach algebra if the normed space

(A, ]]]]) is a Banach space.

Let L'(H) be the space of complex valued functions defined on a
locally compact, Hausdorff topological group H which are integrable with
respect to a chosen left Haar measure 4 on H. Note that this definition
does not depend on the choice of a left Haar measure on the group H
since any two left Haar measures on the group H are scalar multiples of

each other.

(L*(H),|]|l,) is a Banach space where

1l = /H (@) dp(a)

for all f € L'(H).
Given two functions f,g € L'(H) we define their convolution product
f*g by
frgla) = /Hf(y)g(y‘lm) dp(y)
for all z € H. Since ||f = g|l, < |fll,ll9ll;, f*g € L'(H) and (L*(H), *)

is a Banach algebra.

Definition 1.4.2. A complex valued function f defined a group H is said
to K-left-invariant for a given subset K of the group H if f(kz) = f(x)
for all £k € K and for all x € GG. The function f is said to be K-right-
invariant if f(xk) = f(x) for all k£ € K and for all x € G. If the function
f is both K-left-invariant and K-right-invariant, then the function f is

said to be K-bi-invariant.

Definition 1.4.3. A pair (H, K), where H is a locally compact group
and K a compact subgroup, is called a Gelfand pair if the subspace

11



LY(K\H/K) of L'(H) consisting of K-bi-invariant functions is a com-
mutative subalgebra of L'(H) under convolution. Note that the space
C.(K\H/K) of compactly supported, continuous and K-bi-invariant func-
tions on the group H is dense in L'(K\H/K). Hence, by the following
proposition it is equivalent to require that C.(K\H/K) is commutative.

Proposition 1.4.4. Let A be a Banach algebra and B be a commutative

and dense subalgebra of A. Then A is also commutative.

Proof. Consider the map f : A x A — A defined by f(a,b) = ab — ba.
Since A is a Banach algebra, the map f is continuos on A x A. Now since

B is commutative, B x B C f~1({0}) so that B x B C f~1({0}). But

since f is continuous, f~1({0}) is closed and B x B is dense in A x A.

So we get A x A C f71({0}), i.e. A is commutative. O

Definition 1.4.5. A locally compact Hausdorff topological group H is

called unimodular if each left Haar measure on H is a right Haar measure.

Definition 1.4.6. Let p be a left Haar measure on a locally compact
Hausdorff topological group H. The modular function A : H — R>° of
H is defined by

p(Et) = Al)u(E)

for every Borel subset F of H.

Note that the modular function A exists by the uniqueness of Haar
measure. Note also that A is a continuous group homomorphism into
the multiplicative group of positive real numbers.

By the two definitions above we get that H is unimodular iff A = 1.

Since our tree X is locally finite (i.e. every vertex is adjacent to
finite number of vertices), B, is a finite set for all n € N. Then as
X = UpenB,, the number of vertices of X is countable. So we can
enumerate the vertices of the tree X as {zg, x1, 2, z3...}. Now for all n,
let H, = {g € G:g(x9) =2x,} and choose an element g, € H,. Note
that H, = g,Hy for all n. This is because for all h € H,,, h = g,g,'h €

12



gnHy C H,. We already know H, = K is compact. This implies that
H, = g,Hy is compact, hence has finite measure for all n. Then together
with G = U,enH, we get G is a o-finite measure space. So, from now

on, we have the right to use Fubini’ s theorem when it is needed.

Proposition 1.4.7. Let H be a locally compact, Hausdorff topological
group and fix a left Haar measure p on H. Let C.(H) be the space of
continuous, compactly supported, complex valued functions on H. Then

for all f € C.(H),

/H F() du() = /H FE)AE) du(e).

Proof. See Theorem 3.3.7, Harmonic Analysis for commutative spaces,

Joseph Albert Wolf. O
Lemma 1.4.8. Let (H, K) be a Gelfand pair. Then H is unimodular.

Proof. Let pu be aleft Haar measure on G. Since the positive real numbers
with multiplication has no nontrivial compact subgroup and since the
images of compact subgroups of H under A are compact subgroups of
R>? by the continuity of the group homomorphism A, A is trivial on any
compact subgroup of H.

Thus, pw(Ek) = A(k)u(E) = pu(E) for every Borel subset E and
for every k € K so that p is K-right-invariant. Consequently, given
f € C.(H), the projection

K oK 1 ok /
P4 =z [ [ Sk anh) apir)

is contained in C.(K\H/K).

Now let f € C.(K\H/K) be any. By Urysohn’ s Lemma for locally
compact Hausdorff spaces, there is a function g € C.(H) such that g = 1
on the compact set supp(f) U (supp(f))~!. Then X¢¥ € C.(K\H/K)
with K¢ =1 on supp(f) U (supp(f))~t. Let h =K ¢&. Since (H, K) is
a Gelfand pair, C.(K\H/K) is commutative and so we get

13



/f du(z /fldu

So for any f € C.(H),
[ 5@ dnte) = [ S5 duta)

But since p is K-bi-invariant,

[ K5 dnto) - K/H/K/ka‘k au(k) du()
;{ /K/K/Hf (kak') dpu(x) dp(k) dp(K)
1 /K /K e K) du(k)
/ (x) du(a).
Similarly,

/f (&™) du(x) /f‘ldu

Hence for any f € C.(H), we get

| AT dute) = [ 1) duta)

Since the subgroup K is both open and compact, the characteristic func-
tion xx of K is in C.(H) by Urysohn’ s Lemma for LCH spaces. Then
for all h € H,

[ oG dnto) = [ e duta),

14



But since A is K-bi-invariant,

I
e
&

)
(oW
=
=

and

/H yare (@) dp(z) = / yienor (z) du(z) = p(EChY).

H

Thus, A(h)u(Kh™) = u(Kh™t) so that A(h) = 1.

1.5 Unimodularity of the automorphism group

Lemma 1.5.1. (G, Ky) is a Gelfand pair. Hence G is unimodular.

Proof. Let u,v € L*(K(\G/Ky). Then,

w s v(k gk) :/Gu(h)v(hlk/gk) du(h)

_ /G wlk R)o((K B) "'k gk) du(h)
= /G u(k'h)o(h™"gk) du(h)
_ / u(hyo(h~'g) du(h)
G
=ux*xv(g).

So, the space L*(Ky\G/Kj) is a subalgebra of the convolution algebra
LYG).

Now let g € G. Since I(zg, gzo) = (g xg, 7o), there exists k € Ky
with kg~ txg = gzo. So, g 'kg~! € K, which implies ¢g=! € KygK,. Then

if u and v are K-bi-invariant, we get

15



“g) du(h)

u(h)v(

>
<

uxv(g)

=
>
)
S—
(4
=
S
o,
=
=

u((gh)~v((gh)~"g) dp(h)

Q
>

=

=

L
Q

(b dp(h)

I
T—

|
4 <
* *
< I~
—~
=)
~—

]

The groups of the form K(A), where A is an edge are called Iwahori
subgroups of G. If A and A" are two edges, we can choose g € G such
that gA = A". Then gK(A)g~' = K(A"). So the Iwahori subgroups are

conjugate to each other.
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2 Irreducible Representations of Aut(X)

2.1 Terminology on representations

Let H be an arbitrary group. A representation of H on a vector space V'
over the field of complex numbers is a homomorphism 7 : H — GL(V) of
H to the group of automorphisms of V. We call V' itself a representation
of H and we use the notation (7, V) to denote the representation w. We
say that the homomorphism 7 gives V' an H-module structure. Also
given x € H and v € V| we often write xv or z - v for 7(x)(v).

Let V' be the space of complex valued functions defined on H and
define 7, : H — GL(V) and g : H — GL(V) so that for f € V and
v € H, 7 (2)(f)(y) = ') and 7a(2)(f)(y) = f(ya) for all y € H.
Then (7, V) and (7g, V') are representations of H and they are called
the left regular representation of H and the right regular representation
of H respectively.

A linear map T between two representations (7, V') and (o, W) of the
group H is called an intertwinning operator if T(mw(x)(v)) = o(z)(T(v))
for every x € H and v € V. If there is a bijective intertwinning operator
between two representations V' and W, we denote it by V ~ W.

A subrepresentation of a representation V is a vector subspace W of
V' which is invariant under the action of H.

A representation (7, V') is called unitarizable if there exists a positive
definite, invariant Hermitian form on V.

A representation 7 is said to be a unitary representation of H on a
Hilbert space V if for all z € H, m(x) is a unitary operator.

A unitary representation of H on a Hilbert space V is said to be
topologically irreducible if V' has no proper nontrivial closed invariant
subspace and an arbitrary representation V' is said to be algebraically
irreducible if V' has no proper nontrivial invariant subspace. From now on,
by an irreducible representation we will mean an algebraically irreducible

representation unless otherwise stated.
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For a subset K of the group H, we denote the set of vectors in V

which are invariant under the map m(z) for each z € K by V& i.e.
VE={veV:r(z)v)=v Vo € K}.

Now let us consider the automorphism group G again and fix a Haar
measure p on G.

A representation (7w, V) of G is called algebraic if V = UVE®) where
A runs through the set of finite(bounded) subtrees of the tree X, and
admissible, if moreover, dim V(&) < oo for every finite subtree A of the
tree X.

An admissible, unitarizable representation of G is called unitary.

Let (m,V') be an algebraic representation of G' and V* be the dual

space of V. Then (7*, V*) is also a representation of G where

T (9)(w) () = v*(n(g7")(v)) = (7(g7")(v), v")

forall g € G, v € V and v* € V*. Now let V = [J(V*)X®) where
A runs through the set of finite(bounded) subtrees of the tree X and
7 = m*|¢. Then (7, \7) is an algebraic representation of G and it is called
the contragradient representation of (m, V). Also given v € Vand v € vV,
a map of the form g — (w(g71)(v), V) is called a matriz coefficient of the
representation (7, V).

A representation of an algebra A is an homomorphism 7 of A into
the algebra End(V') of linear maps on a vector space V.

For the definition of the formal dimension of an algebraic representa-

tion, see [1] Section 5.2.

2.2 Hecke algebra

A complex valued function f defined on G is said to be locally constant
if for every & € G, there exists an open compact subgroup K, of G
such that f is constant on the set K. Denote by C(G) the space of

locally constant complex valued functions on G, and by Cx(G), xC(G)
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and xCk(G), where K is a compact subgroup of G, respectively, the
subspaces of C'(G) whose elements are K-left-invariant, K-right-invariant
and K-bi-invariant.

We denote by H(G) the space of locally constant, compactly sup-
ported complex valued functions on G' and by H(G, K), where K is an
open compact subgroup of G, the subspace of H(G) whose elements are
K-bi-invariant.

Note that H(G) = Uy H(G, K) where the union runs over open
compact subgroups of GG. This can be seen as follows: Let f € H(G)
and let F' = supp(f). Since f is locally constant, for all x € F, there
exists an open compact subgroup K, such that f|,x, is constant. As
F C U,ep *K, and F is compact, there exists x1,...,z, € F such that
F C U, K,,. Then for K1 = (;_, K,,, { is K;- right-invariant.
Similarly, we can find an open compact subgroup K, of GG such that f is
Ky-left-invariant. Then for K = K[| K, we get f € H(G, K).

Note that H(G) is an associative algebra under convolution and
(H(G), *) is called the Hecke algebra of G.

Now let (m, V') be an algebraic representation of G. For f € H(G)
and v € V, we can choose an compact subgroup K such that both

f € H(G,K) and v € VK. Then we define a vector 7(f)(v) € V by

w(f)w)=| Y fl@)mx(@)(w)| .pkK) .

2€G/K
Note that the sum is finite as f is compactly supported and this
definition does not depend on the choice of K. Also 7(f) € End(V) for
all f € H(G). Hence V is a representation of the convolution algebra
H(G). Moreover, a subspace W is a subrepresentation of V' if and only
if m(f) (W) C W for every f € H(G). In fact, if #(f)(W) C W for every
f € H(G) and w € WNVE  then for any g € G, 7(g)(w) = 7(eyx)(w) €

W where for a given open compact subgroup K of G, e = 2£. € H(G).

w(K)
There is a strong relationship between irreducible representations of

G and irreducible representations of the convolution algebra H(G, K).
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The following theorem shows how strongly related they are.

Theorem 2.2.1. ([ 1, Lemma 4.2.7]) Let (m,V) be a representation
of G. Then (m,V) is irreducible iff (7|mc,r), VE) is either 0 or an
irreducible representation of H(G,K). Furthermore, every irreducible
representation of H(G, K) appears in this way for some irreducible .
Also this m is unique. In other words, for two irreducible representa-
tions (w1, V1) and (w9, Vo) of G, (w1, V1) ~ (me, Va) iff there is some open

compact K such that (71 |ma.x), VE) ~ (72| H (G, k) V.

2.3 On the smooth part of a unitary representation

of the automorphism group on a Hilbert space

Given (7, V') a unitary representation of G on a complex Hilbert space
V, for any f € L'(G) we define an endomorphism 7(f) of V as follows:
For v € V, define F, : V — C by

E@Ozéﬂ@ﬁ@@ﬂ@de

F, is clearly linear.

Moreover, for all w € V,

|mmnsLuwmwwwwwwmw
séﬁ@MW@@MWH@@)
=/u@mwwnw@
G

< ANy ol el

Hence F), is a bounded linear operator on V with |F,| < || f]], ||v]], i-e.
fevn

Then by Riesz Representation Theorem, there is a unique element
fo € V such that F,(w) = (f,,w) for all w € V.

Now we define 7w(f) : V. — V by 7(f)(v) = f,. Then for any vy, v, €
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V', we get

(m() (Ao + Bva), w) = (Frortpess w)

= FAU1+5U2 (w)

_ /Gf(g) ((g) (Aor + Bua), w) du(g)
_ ) /G 1(9) (x(g)(v1), w) dp(g)
g /G £(9) (x(g)(v2), w) dpu(g)

= APy, (W) + BE, (w)

= A{for, 0) + B (fop, w)

= (Mo + Bfo,w)

= (A (f)(v1) + Br(f)(v2), w)

for all w € V and A\, 8 € C so that 7(f)(Avy + Bva) = Ar(f)(v1) +
Br(f)(ve). Thus, w(f) € End(V).

Moreover, [[7(f)(v)|| < ||fll;-]|v] for all v € V so that 7(f) is
bounded. For this fact and for a more general result see Appendix 3,
Theorem A.3.3., A Course in Abstract Harmonic Analysis, Gerald. B.
Folland.

If K is a compact subgroup of G and ex = i, then w(ex ) (V) = VE,
It is easy to see that if v € VX then m(ex)(v) = v. This follows by the

equation
(m(ex) (v),w) = ﬁ / xie(9) (w(g) (0),w) du(g)

1

- /K (r (k) @), w) dpu(k)
1

= uK) K<U7w> du(k)
1

= W(K) p(K). (v, w)
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for all w € V. Conversely, given v € V and k € K,

() (exe) (0), w) = (mex ) (), m (k1Y)
_ /G exc(g) ((g)(v), m(kw) du(g)

ex(g) (m(k)m(g)(v),w) du(g)

ex(k'g) (m(k)m (k™" g)(v),w) du(g)
ex(9) (m(g)(v),w) du(g)

= (m(ex)(v), w) .

I
S—a o

ie. mleg)(v) € VE.

Now let (m, V') be a unitary representation of G' on a Hilbert space
V. Let V®° = [, VE® where A runs over the finite complete sub-
trees of the tree X. Note that K(gA) = gK(A)g™! and consequently
m(g)VE®) = VEUA) Hence V™ is an invariant subspace of V. V* is
also nontrivial. Indeed, given 0 # v € V, since the map g — (7(g)v,v) is
continuous at e and (r(e)v,v) = ||Jv||* > 0, there exists a finite complete
subtree A of the tree X such that Re ({(m(g)v,v)) is strictly positive for
all g € K(A). Then,

/K L T de) #0
But,

/K (T o) = WK (8)- (oo )

Hence, 0 # m(ega))v € VEA).

Let M be a nontrivial invariant subspace of V. Now let v € M
and A be a complete finite subtree of the tree X. Assume v is K(A')-
invariant. Let Ag = AJA'". v is clearly K(Ag)-invariant. K(A) is a
finite index subgroup of K (A). So we can choose g1, ..., g, € G such that
K(A) = Ui, 9:K(Ao) where ¢;K(Ag) () g;K(Ag) = 0 for distinet ¢ and
j. Then, for all w € V we get
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(mexa))v,w) = (M(K(A)))_l/K(A) (m(k)v, w) dp(k)

=@ [ o duto)

i=1

= <Z Aﬁ(gi)v,w>

where A = (u(K(A))) L. u(K(Ag)). Hence, m(exa))v = Y iy Am(gi)v €
M, ie m(egay)M C M.

It follows that V*° is dense in V. If M is a nontrivial invariant
subspace of V and 0 # v € M, then m(ega))v € M N VE®) so that
MNV> = {0}. We know that (V°°)" is an invariant subspace of H. So, if
(V)" is also nontrivial, we get that (V°°)*NV> £ {0}, a contradiction.
Hence, (V)" = {0} which means V> is dense in V.

Lemma 2.3.1. Let (m,V) be a topologically irreducible unitary repre-
sentation of G in a Hilbert space V'; let m>° be the restriction of m to
the dense invariant subspace V>°. Then, ©° is algebraic, admissible and

algebraically irreducible.

Proof. ™ is algebraic by definition of VV*°. For the part 7 is admissible,
see the paper of Ol’shanskii, Representations of groups of automorphism
of trees. To see > is algebraically irreducible, let M be a nontrivial
invariant subpace of V°°. Then M~ is a closed invariant proper subspace
of V. But since V is topologically irreducible, we get M+ = {0} and this
implies that M is dense in V. Then 7(ex(a))M is dense in m(ex )V =
VE@®) for any finite subtree A of the tree X by the continuity of the
map 7(ex(a)). Since 7 is admissible, V() hence w(ex(a))M are finite
dimensional subspaces of V. Therefore, m(ex))M is closed so that
m(exa))M = VE@L) But since m(ex(a)M C M, we get VER) « M.
Hence, M = V> as desired.
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]

It is also known that any algebraic, algebraically irreducible repre-
sentations of GG is admissible (due to a more general result of Harish-
Chandra). So it is natural for us to use the language of algebraic and
admissible representations.

Henceforward, all representations are assumed to be algebraic.

2.4 Complete reducibility of unitarizable admissible

modules

We call a topological group H an ¢-group if there is a fundamental sys-
tem of neighbourhoods of the unit element e consisting of open compact
subgroups.

Note that the automorphism group G of the tree X is an ¢-group.

Theorem 2.4.1. Let H be an {-group, V' an admissible unitarizable H -
module. Then every irreducible subrepresentation W of V' is comple-

mented.

Proof. Let W be an irreducible nonzero submodule of V. For each com-
pact open subgroup K of H, let U(K) be the subspace of VX such that
VE = WK @ U(K). Since V is admissible, each V¥ is finite dimen-
sional, hence complete. Therefore we have such subspaces. Now let
U = H(UgU(K)). Since V. = UgV¥E it is clear that V = W + U.
Since W is irreducible, we have W NU = {0}. Otherwise we would have
W C U. Therefore V=W g U. [
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3 The Representations L(A) and H(A)

For a finite subtree A C X, let L(A) be the subspace of Cx(a)(G)
which consists of left invariant functions relative to some open compact
subgroups of G.

If f is a measurable function on G and K is an open compact subgroup

of G, we define the functions f% and X f on G by

1(0) = 5 [ (k) auti)
and
“1o) == [ 1070) duth)

The functions fX and X f are called the right averaging of f on K
and the left averaging of f on K respectively.

Now for A C X complete, finite and diam > 2, let H(A) be the
subspace of functions f in L(A) such that for any complete proper subtree
Ag of A, fER0) =0,

Note that the left regular representation 7, of G restricted to L(A)
(hence to H(A)) is algebraic, i.e. for any f € L(A), there exists a finite
complete subtree A of the tree X where f € L(A)XA0): If f € L(A)
and K is an open compact subgroup of G with f is K-left-invariant,
then 7. (k)(f) = f for all k € K. As K is a neighborhood of unity, there
exists a bounded subtree A" of the tree X such that K(A") € K. Then,
A c (A = K(Vi(A)) ¢ K(A) = K(Vi(A') € K. By choosing
Ay =Vi(A"), we are done.

Proposition 3.0.2. (a) If f is measurable on G, f¥ is K -right-invariant
and ¥ f is K-left-invariant. Moreover the maps f — f& and f — Kf
preserve continuity and map compactly supported functions onto com-
pactly supported functions.

(b) The map (A, Ao) defined by f s fEA0) js an
intertwinning operator from L(A) to L(Ay). With this notation

H(A) = [ Ker a(A A

1<i<n

25



where AY, A2, ..., A" are mazimal complete subtrees of A.
Proof. (a)
e Let g € G and kg € K. Then,

P gko) = — L /K F(gkok) dpu(k)

which is equal to f5(g). Hence f¥ is K-right-invariant.

Now let h(k) = f(k~'ky'g). Then,
K —1 _ 1 —17.—1
lks'9) = /K k) du(k)

~ 5 [ ) au)

I
=
HB‘
TS

hky'k) du(k)

=
-5

F(k™ Kok ' g) dpu(k)

f(k~tg) du(k)

|

= B
= =
Q\_/

Hence ¥ f is K-left-invariant.

o K is K-right-invariant implies that it is locally constant, hence

continuous. Similarly, ¥ f is also continuous.

e Let f be compactly supported and let supp(f) = K. If g ¢ K'K,
ie. gk ¢ K forallk € K, then f(gk) = 0forallk € K, i.e.f5(g) =
0. So, supp(f¥) C K'K.

(b) Let f € L(A). Let K be an open compact subgroup of G with f
is K-left invariant. Then, for all ¥ € K

FEEI (K g) = /

K(Ao)

F(K gy du(k) = / f(gk) du(k) = FKO0(g).

K(Ao)
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So, fK(R0) is also K-left invariant. Together with part (a), we get
fE@0) e L(Ap) so that a(A, Ag) : L(A) — L(Ay) is well defined.
Now, let g € G. Then, for all x € G

a(A, Do) (i (9)f) (&) = /K o, U ) aur)
- /K o ) au)

= a(A, A)(f)(g ')
= m(g9)(a(A, Ao)(f))(x).

Hence a(A, Ap) is an intertwinning operator from L(A) to L(Ay).

Finally let us show, H(A) = (,.;, Ker a(A, A7),

(Q) follows from the definition of H(A). Conversely, let f be a func-
tion in the right hand side. Then, f € Ker a(A,A?) for all i. Let Ag
be a finite complete subtree of A. Then Ay C A for some 7. Since the
group K(Ag)/K(A’) is finite , we can write K(Ao) = U2, g; K (A) for
some ¢i, ..., gm € G. Then for all g € G,

(A, A0)(f)(g) = /K o T

So f € H(A).

3.1 H(A) is nontrivial

From now on, let A be a complete finite subtree of X with diam > 2.

Also let Aq, ..., A, be maximal complete subtrees of A.

Definition 3.1.1. A representation of K (A) is called non-degenerate if it

’

has no non-zero K (A;)-stationary vectors for i = 1,2,...,n. Let (K(A))
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be the set of irreducible non-degenerate representations of K (A) which

are trivial on K(A).

/

We will now prove that (K(A)) # (). In particular, we will get that
H(A) # 0. We first need a few lemmas.

Lemma 3.1.2. Let H be a finite group and Hy, ..., H, be n subgroups of
H. Then there exists an irreducible representation m of H such that w
has no non-trivial H;-invariant vectors for every i =1, ...,n if and only if
there exists a function on H not identically zero such that ), .. f(ght) =
0 for every g,t € H andi=1,....n.

Proof. (<) Let

V:{f:H—>C : Zf(ght):O Vg,t € H Vz’zl,...,n}%{O}

heH;

V' is clearly a subspace of Func(G,C) which is the space of com-
plex valued functions on H. If H = {h4, ..., h,}, the characteristic func-
tions X{a,}, ---, X{h,} generate the space Func(H,C). So, Func(H,C) and
hence V are finite dimensional complex vector spaces.

I eV and ho € H, e, () (1) (0ht) = Sy, Flbg ght) = 0
for every g,t € H and i = 1,...,n. Similarly, >,y 7r(ho)(f)(ght) =
> nem, f(ghthy) = 0 for every g,t € H and i = 1,..,n. So, V is a
bi-invariant H-module.

Then by Maschke” s Theorem, (77, V) is a direct sum of irreducible
representations of H.

If f € V is Hi-invariant for some ¢,

£(t) = F1| S )
= T 2 m)
= f(hlg) =" fleht)
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forallt € H,ie. f=0.

Hence a non-zero vector in V' is not H;-invariant for all7 =1,..,n. In
particular, any irreducible representation appearing in the decomposition
of V' does not contain a non-zero H;-invariant vector for every i = 1, .., n.

(=) Let V' be an irreducible representation of H which has no non-
trivial H;-invariant vectors for every ¢ = 1,...,n. Since V is irreducible,
it is equivalent to a subrepresentation N of (7, Func(G,C)). The map

Py(H;) : Func(H,C) — Func(H,C) defined by

PL(H)() = ot S mu(h)(f)

| Z| heH,;

is the projection on the space of H;-left-invariant functions. So; if f € N,
Pr(H;)(f) € Nfi = {0}, ie. Pp(H;)(f) = 0. Then, since N is H-
invariant, we get Pp(H;)m.(g)(f)(t) = 0 for all g,t € H and f € N.
But

Pu(H)m(9)(H(E) = — mr(h)(me(g)(f))(t)

[H] 2

= m(g)(f)(h7')

>

- =
=

- =
=
M
=

= flg7'h71e)

>
m
=

- =

= f(g~'ht)

] 2
forallg,t € H and f € N. It follows that for any f € N, >, f(ght) =
0 forallgjte Handit=1,...,n.

=

>
x

Lemma 3.1.3. Let H be a finite group and H = H; x ... x H, C
H be the direct product of n nontrivial subgroups of H. Then if the
inner automorphisms of H permute the subgroups Hy, ..., H,; there exists
an irreducible representation of H which has no nontrivial H;-invariant

vectors for all 1 < i <n.
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Proof. We will prove the lemma in two steps.

In the first step, we will show that the lemma holds when H = H.
By the previous lemma, it is enough to find a function f on H such that
for all ¢ = 1,..,n and ¢g,t € H, ZmEgHit-f(x) = 0. But since each H;
is normal in H, gH;t = H;gt for all g,t € H. So it is enough to find a
function f on H satisfying > ,, f(z) =0foralli=1,..,nandt € H.

Let E; = {x;,y;} C H; with x; # y; and E = E; x ... x E,. For
e € E, let N(e) be the number of z; appearing in the coordinates of e.
For instance, if n = 4 and e = (21, 22, Y3, z4), then N(e) = 3. Now define
f on H by

—1)NE  ife e E,
ey =4 Y )

0 otherwise

Let h = (hy,...,h,) € H = H. Given i with 1 < i < n,
th = {(hla "'7hi—17h7 hi-i—la 7h7L) the H’L} :

Note that if hy ¢ Ej for some k # i, Hi/h N E = (). Hence f =0 on
H;h so that erHih f(z)=0. If hy € E}, for all k # i,

th, N FE = {(hla ceey hi,1,$i, hi+17 ceey hn)a (hl, ceey hifl,yi, hi+1’ ceey hn)} .
Then since

N((hl, ceny hifl,.flfi, hiJrl, ,hn)) = N((hl, ceey hifl,yl', hi+1> ceny hn)) + 1

, we get
Y o= ) f@
xc€H;h zeH;hNE
= f(hl, cees hi—h Zi, hi+1, ceey hn) + f(hl, ceey hi—la Yi, hi—i—l; ceey hn)
=0.

So in the case H = H, we are done.
As a second step, we will pass to the general case. Again by the

previous lemma, it is enough to find a function F' on H satisfying

ZmegHit F(‘T> =0, Vg € H and Vi = 1,...,n.
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Since inner automorphisms of H permute Hy, ..., H,, given ¢ € H
and 4, there exists j such that gH;g* = H;. Then Vt € H, gH;t =
gH;g ‘gt = H;gt. Hence, it is enough to find a function F on H satisfying
Yoeeny F(@) =0,vt € Hand Vi=1,...,n.

Just take F' = fx, where f is the map defined in the first step.
Then for all £ € H and for all 4,

ZF(I):ZJCXH’($>: Z flz) = Z f(x)=0

:EEHit ZEH,L't :EEHitﬂH/ IEEH,L'tﬂE

as desired.

]

Lemma 3.1.4. Let H be a finite nonabelian group and H' is a subgroup
of H such that every irreducible representation of H has a montrivial

H'-invariant vector. Then,
|H*| < |H|/|H'|.

where by H* we mean the dual object of H, i.e. the set of nonequivalent

one dimensional representations of H.

Corollary 3.1.5. Let k+ 1 > 3. There is an irreducible representation
of Sym(k + 1) which has no nontrivial Sym(k)- invariant vectors. Here

we consider Sym(k) as the stability subgroup of the point k + 1.

Proof. 1t is enough to show that
|(Sym(k +1))*| > |Sym(k +1)|/|Sym(k)| = (k+ D!/k! =k + 1.

But since Sym(k + 1) is a finite group, |(Sym(k +1))*| equals to the
number of conjugacy classes of Sym(k+1). (See Corollary 2.7, Character
Theory of Finite Groups, Irving Martin Isaacs). For eachi = 2,3, ..., k+1
choose an i-cycle C; in Sym(k + 1). Then the conjugacy classes of Id,

(s,..., Cky1 are pairwise disjoint. So the result follows.
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Theorem 3.1.6. For every finite complete subtree A with diam(A) > 2,
the space (K(A)) # 0. In particular, H(A) # {0}.

Proof. 1f diam(A) = 2, then A = V;({z}) for some x € X and the maxi-
mal complete subtrees of A are the k many edges of A. So, K(A)/K(A) =
Sym(k + 1) and K(A;)/K(A) = Sym(k) for all i = 1,...,k where
A, ..., Ay are maximal complete subtrees of A. Then by corollary 3.1.5,
there is a unitary irreducible representation (7, V) of K(A)/K(A) which
has no nonzero K(A;)/K(A) invariant vectors. Define 7 : K(A) —
GL(V) by 7(g) = m(gK(A)). Let gK(A) = g for all ¢ € G. Clearly,
(r(g)v, m(g)w) = (7(g)v,7(g)w) = (v,w) for all ¢ € G, v € V and
w(k)v = mw(e)(v) = v for all k € K(A), v € V. So, (7,V) is a unitary
irreducible representation of K(A) which is trivial on K(A) and which
has no nonzero K (A;)-stationary vectors. Assume (m, V') has a K(4,)-
stationary vector v for some i. Let g € G be such that gK(A;)g™! =
K(Ay). Then for all h € K(A;), m(ghg™")(m(g)v) = 7(gh)(v) = 7(g)(v)
so that 7(g)v is a K(A;)-stationary vector. Thus, (7, V') has no nonzero
K (A;)-stationary vectors for all i =1, ..., k.

Note that for all i = 1,...,n, A° C A; and so K(A;) C K(A"). Let
T1,...,z, € O(A%) and Ay, ..., A, be the corresponding maximal com-
plete subtrees of A. Given g € K(A?), for each i, there exists an el-
ement g; of K(A;) with g; = g on the set {x:1(z,A) =I(z,x;)} and
gi = Id on the set X — {z:l(z,A) =I(x,z;)}. Then g = [[_, 4
and g = [[L, g in K(A%)/K(A). Since K(A;) N K(4A;) = K(A),
K(A;)/K(A) intersects trivially with K(A;)/K(A) for all distinct 1, j.
Hence K(A%)/K(A) is direct product of its subgroups K (A;)/K(A),...,
K(A,)/K(A). Note that the inner automorphisms of K (A)/K(A) per-
mute the groups K(A)/K(A),

. K(A,)/K(A). Then by lemma 3.1.3., K(A)/K(A) has an irreducible
unitary representation which has no K(A;)/K(A) for all i = 1,...,n as
desired.

Now let (7, V) € (K(A)) be unitary and let v € V. Define a function
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f from G to C by

o (m(g)v,v) if g€ K(A)
0 otherwise .

Let k k' € K(A). Clearly, =z € K(A) iff kzk' € K(A). Then
since V is trivial on K(A), for z € K(A), f(kak') = (m(kxk)(v),v) =
(r(z)(v),v) = f(z) and for ¢ K(A), f(kzk') = 0 = f(z) so that f is
K(A)-bi-invariant. As f(e) = (v,v) = |[v||*> > 0, f is nonzero. Now let
A; be a maximal complete subtree of the tree X. For any = ¢ K(A),
iy F(@k) dk = [y a0 dk = 0. Besides, for any x € K(A),

/ o) ) = / NGCCIERTE

= £ (89) [ exiag () (ko ma™)o) dui)

= (K (A) (m(exay)v m(@)v)

=0

as m(eg(a,))v € VEAD) = {0}, Hence, f € H(A).

3.2 Subrepresentations of L(A)

Lemma 3.2.1. Any nonzero G-invariant subspace L' of L(A) has a
nonzero intersection with L(A)KA) . Conversely, if (T,H) is an irre-
ducible representation of G and HX®) £ (), then T is equivalent to some

subrepresentation of L(A).

Proof. Let f be anonzero element of L' with f(g) # 0. Then, 7(g7")f(e)
= f(g.e) = f(g) #0and n(¢g7")f € L' as L' is G-invariant. So we can
restart the proof by taking an element f € L' with f(e) # 0.

Let fo = K@&)f,

Firstly let us show that f° € L. Let K be an open compact sub-
group of G such that f is K -left-invariant. Set M = K(A)N K.
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Since {xM}, g a) is an open cover of K(A) and K(A) is compact,
K(A) = U, z;M for some x; € K(A) where the sets x1M, ..., x, M
are pairwise disjoint.

Then,
°(g) = k'g) dulk
7(9) /K(A)f( 9) du(k)
- Fg) duh)

= ZM(M)f(wflg)

= (M) [ZWL(Ii)f] (9)
i=1
for all g € G. So, f° = u(M)[>Sr_, mr(z:)f] € L.
By proposition 3.0.2. part (a), f© is K(A)-left-invariant.
Since f is K(A)-right-invariant, f = f(e) on K(A). Then,
°(e) = —— kY du(k
PO = ) oy (67 8

1
= M/K(A) fle) p(k) = m.f(e).u(K(A)) — f(e) #0.

So, f° 0.
Hence f° € L(A)K(4),

Now consider the mapping

¢:H L(A)

w—¢p(w) : G

C
g—(T(g~"w, D)

where 7 is a nonzero element in H5®). We can choose such an element
as HX(A) is nonempty.
For w € H, let us denote ¢(w) by ¢,. Now, ¢, is K(A)-right-

invariant. This is because for all g € G and k € K(A), we have

Gulgh) = (T(g™yw,7) = (T(g™yw, T(K)T) = (T(g™" )0, ) = dulg).
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If w is K-left invariant where K is an open compact subgroup of G,

duw(kg) = (T(g™ T (k™ Hw,0) = (T(g7w,T) = ¢u(g).

So ¢y, is K-left-invariant, hence locally constant, hence continuous.
Thus the image of ¢ is in L(A) so that ¢ is well defined.
The map ¢ : H — L(A) is a nonzero intertwinning operator. This

follows from the following equation:

(T (h)v)(g) = d1(nye(9)
= (T(g~")T(h)v,v)
= (T(g~'h)v,v)
= ¢,(h™'g)
= ¢(v)(h™'g)
= m(h)o(v)(g)

for all g,h € G and v € H.
Then Ker(¢) = {0} as it is a proper G-invariant subspace of the
irreducible representation H.

Therefore ¢ is 1-1 and H is equivalent to the subrepresentation Im (¢)
of L(A).

3.3 Finiteness of the functions in H(A)

Lemma 3.3.1. Let A be a finite complete subtree of the tree X with
diam(A) > 2. Let A" be a complete subtree not containing A. Then there
exists a proper complete subtree Ag C A, Ay # A, such that K(Ay) C
K(A)K(A).

Proof. Without loss of generality we may assume that A A’ contains
an edge. In fact, if their intersection is empty or consists of one vertex,
there exists only one € A whose distance from A’ is minimal. Let r

be the minimal distance between A and A'. If there exists z,z € A
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and y,y € A" such that x # 2z, y # vy and l(z,y) = I(2',y) = r ,
then (z,y) and (2',%') cannot intersect with A or A". So in the case
ANA" = 0, we get a circuit [z, 2'][z",y'|[y’,y][y, 2] which leads to a
contradiction. In the case A[A" contains only one vertex, 7=0 and
consequently {x, x'} C A A', again a contradiction.

Now let A" = {z € X :l(z,A") <r+1}. As A" = V, (4, it is
complete. Let z be the vertex of A whose distance from A’ is r. Clearly,
x € A", Since diam(A) > 2, there exists y € A with {(z,y) = 1 so that
I(y,A”) = r+1,ie. y € A". Then A(NA" contains the edge [z,y].
Moreover A” does not contain A. Otherwise, every y € A different from
x is adjacent to x which contradicts either with A is complete or with
diam(A) > 2.

Since A" C A", K(A”) C K(A’). Now our aim is to find a proper
complete subtree Ay C A, Ay # A, such that K(Ag) C K(A")K(A)
because if we find such Ay we get K(Ag) C K(A")K(A) C K(A)YK(A)
as desired.

Set Ay = A”(A. Since A" A contains an edge, diam(A,) > 1.
It is complete as it is the intersection of two complete trees and it is
different from A as A ¢ A”. For the boundary points z, ..., z, of A,
let

Di={re X :l(x,A) = l(m,xz)}U{x,}

and set

Ki =K ((ijéiDj) @) Ao) .

Clearly, K; C K(Ay) for all i. Now, choose g € K(Ap) and de-
fine g; € G by g = g on D; and ¢g; = Id on the complement of
D;. Since D;((U, Dj) = 0, we get g; = Id on |J,; D; and since
D; N(Ao\{xi}) = 0, we get g; = Id on Ag\ {x;}. As these two force g;
to fix x;, we finally get g; € K; for all i and that g = [[\_, g;. Moreover,
K,NK; = {Id} for i # j. In fact, if g € K, (K, g fixes D;’s and A
by definition of K; and K so that g = Id. Hence, K(A) is the direct

product of its subgroups K;, 1 <i < n.

36



Foragiveni, if AN D; = {x;}, A C (U, Dj) U Ao, ie. K; € K(A).
Similarly, if A"\ D; = {2}, K; € K(A"). Therefore, if K(Ay) ¢
K(A")K(A), then for some i we have K; ¢ K(A) and K; ¢ K(A"),
ie. AND; # {z;} and A”ﬂDi # {x;}. Thus there exist y;,y2 € D;
such that y; € A, y5 € A”. Since A and A" are complete trees, we can
choose y; and yy so that [(y1,z;) = (ys, ;) = 1. As Ao D; = {a;},
y1 # y2. On the other hand, by the condition diam(Ay) > 1, there exists
y € Ag with l(y,z;) = 1. As y1,ys & Ao, we have y # y1,y2. So z; is the
extremity of the two edges in A and A", i.e. z; is not a boundary point
of A and A”. Then since A and A” are complete, all vertices adjacent
to z; are both in A and A" which implies y; and y, are in Ay, i.e. x; is
not a boundary point of Ag, a contradiction.

]

Lemma 3.3.2. Let A and A" be complete trees with diam(A) > 2.
Let f € H(A)K(A/). Then, f(g) = 0 if gA € A', ie. supp(f) C
{g €eG:gAC A/}. In particular, if f € H(A)X®), fis supported on
K(A).

Proof. First let us show that it sufficies to prove the theorem for g = e.
For this, assume we are done with the case g = e. Let ¢ € G be any
and consider the function mg(g)f. Observe that mr(g)f € H(gA)K(A/).
Then since diam(gA) = diam(A) > 2, we get wr(g)f(e) = f(g) = 0 if
gA ¢ A" and we are done.

Now we will see f(e) = 0if A ¢ A, Since f is left K(A") and right
K(A) invariant, f|gary gxa) = f(e) so that flxag) = f(e) where Ag is
a proper complete subtree of A satisfying K(Ag) C€ K(A")K(A). Then
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together with f € H(A), we get

as desired.

O

Corollary 3.3.3. If A is a finite complete subtree with diameter at least
2, then every element of H(A) is compactly supported.

Proof. Let f € H(A). Then there is a finite complete subtree Ay of X
such that f is K(Ay)-left invariant. This means by the previous lemma
that supp(f) is contained in the set S = {g € G : g(A) C As}. Let (gn)n
be a convergent sequence in S with lim, ., g, = g. Choose k € N such
that A C By and choose N € N such that ¢ = g, on By, for all n > N.
Then gA = gyA C Ay, ie g € S. So, S is closed. Now let = be a vertex
of A and y, ..., ym be distinct vertices of Ay. For each j = 1,...,m, let
S; = {9 € G:g(x)=y,;}. Since each S; is compact we get that S is
a closed subset of the compact set U;nzl S;. Then S, hence supp(f) is
compact.

O
Let us now state another corollary of lemma 3.3.2.

Corollary 3.3.4. The operator of left averaging over K(A") in H(A)
projects H(A) onto H(A)K(A/) and coincides with multiplication by the
characteristic function of the set {g eG:gAC A/}.
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Proof. Let ¢ be the operator of left averaging over K (A/) and f € H(A).
Since f is K(A)-right-invariant, for all z € G and y € K(A),

1 1
AN = iy fog SO ) )
(A

- )
1 —1
= SRy T 0

o(f)(x).

Hence ¢(f) is K(A)-right-invariant. By proposition 3.0.2, ¢(f) is

continuous and K (A")-left-invariant. Also for alli=1,....,n and 2 € G,

K(Ad) () =
o) =

1

(KA /K - o(f)(xk) du(k)

1 | B
- M/K(Ai) WK (A) /K(A/)f(g zk) du(g) du(k)

1

(

1

(

(
1 —1
B T /K N Flg~tzk) du(k) dulg)

- u(E(AY) /K(A') u(K

K(A) (=1,
PTEN)] /K(A/)f (9~ ) dpu(g)

=0.

Thus, ¢(f) € H(A)K(A,).

Now if gA ¢ A, since ¢(f) € H(A)KA) by lemma 3.3.2., we
get ¢(f)(g) = 0. If gA C A', we get K(A) € K(gA) = gK(A)g™".
Then, for all z € K(A"), there exists y € K(A) with z = gyg~" so that

fatg) = flgy~'97"'9) = f(gy™!) = f(g). This implies that
o) = K@) [ g dut)
— (@) [ Hlo) dute)

Hence ¢(f) = fX{geG:gAgA’} as desired.
]

Proposition 3.3.5. Every function in H(A) is a finite sum of left trans-

lates of K(A)-bi-invariant functions.
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Proof. Let f € H(A). Asfis compactly supported, there exist g1, ..., gn €
G such that supp(f) C Ur, ¢:K(A).
It is easy to check that m(g7")(fX,z(n) = (Te(g7)(f)) Xz

that f.X,za) = 72(9) |70 (FXgrea)| = 7(0) | (T2la™) (D) Xy
for all g € G. Then,

f= fX( L e K ()
= f-ZX(gif((A fogl Z?TL 9) [ (g )(f)) ~XI~((A)]

where (m,(g;")(f)) Xi@) = K& (mp(g71)(f)) is a K(A)-bi-invariant

function for alli =1,...,n

3.4 Admissibility of H(A)

Let T'(A) be the representation of G in H(A) by left translations.

Since any function f € H(A) is finite (compactly supported) on G,
H(A) is a subspace of the space of square integrable functions L*(G) so
that we have an inner product on H(A) that is defined by

(fi, ) = /G fif2(g) dulg)

for f1, fo € H(A). Note that this inner product is G-invariant, i.e.

(T(A)(9) f1, T(A)(9) f2) = (f1, f2)

for every fi, fo € H(A) and g € G.

Moreover, for every complete subtree A’ of the tree X, the space
H(A)K (A is finite dimensional so that (T'(A), H(A)) is an admissible
representation of G. Indeed, since for every f € H(A)K(A,), fis K(A)-
right-invariant and supported on the compact set {g e G:gAC A/},
H(A)K(Al) can be identified with the space V' of functions on G/K(A)
which take 0 on the cosets that do not intersect the set {g eG:gAC A/}.

As {g eG:gAC A/} is compact, only finitely many cosets, say
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g K(A), ..., g, K(A) intersect with {g eG:gAC A/}. Hence, V' is gen-
erated by the functions fy,..., f, where f; = x4,x(a) foralli=1,...,n so
that V is finite dimensional. Then, H(A)X (A" s also finite dimensional.
Consequently, the representation (7'(A), H(A)) of G is unitary.
Note that as (T(A), H(A)) is algebraic, for all f € H(A) and f* €
H(A)* the matrix coefficient g — (T'(A)(g)f, f*) is locally constant,

hence continuous.

3.5 A necessary and sufficient condition for T'(A) ~
T(A)

Lemma 3.5.1. Let A’ be a finite complete tree and diam(A) > 2. Then,
T(A) ~T(A") iff A" = gA for some g € G.

Proof. (=)Assume A" # gA for all g € G. Without loss of generality,
assume Card(verA) > Card(verA'). Then gA ¢ A’ for any g € G. So
if f e HA)XA) by lemma 3.3.3. f(g) = 0 for all g € G, i.e f = 0.
In other words, there are no non-zero K (A')-stationary vectors in H(A).
But by 3.2.1. H(A") contains a non-zero K (A')-stationary vector. Thus,
T(A) and T(A") are disjunct.

(<) For the maximal complete subtrees Ay, ...,A, of A, the
maximal complete subtrees of A" are exactly gAq,...,gA,. Note that
K(gA;) = gK(Ay)g ! for all 1 < i < n. Then, if f € H(A), for all

x € G and for all ¢ we get

[mr(9)())]) (z) =
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so that 7z(g)(f) € H(A").
Moreover, for all f € H(A) and z,h € G,

[mr(g) o T(A) ()] (F)(x) = wr(g) [T(A) () f] (x)

Thus 7z(g) is an intertwinning operator from H(A) to H(A'). As
mr(g) is also bijective, we get T(A) ~ T(A").

3.6 Irreducible subrepresentations of H(A)

Let H be a unimodular, seperable, locally compact group and K be
a closed subgroup of H. Let (m, W) be a unitary representation of K
on a Hilbert space W and let V be the space of functions f : H — W

satisfying the following conditions:
1. f(hk)=m(k=Y)f(Rh) for all k € K and h € H.

2. there is an open compact subgroup K of H such that f(kh) = f(h)
for all k € Ky and h € H.

3. f is compactly supported.

Then the representation (Ind(w), V') acting according to the formula

Ind(7)(g0)(f)(9) = f(g5'9)

is said to be induced by (m,W). If f € V, then f € V&/ so that
(Ind(m), V) is algebraic.

Moreover we can define an invariant inner product on V' by

(f.9) = /H (f(@).g(x)) du(z)
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where p is a left Haar measure on H.

Now let (7, V') be an irreducible nondegenerate representation of the
compact group K (A), which is trivial on K (A) where A is a complete
finite subtree of diameter > 2. Since the group K(A)/K(A) is finite
and m is irreducible, 7 is finite dimensional. Then since 7 is a finite
dimensional representation of the compact group K (A), we can put an
inner product on V that makes 7 a unitary representation on the Hilbert
space V.

Let (T(A,7),V,) be the representation of G induced by .

Set K = K(A) and K = K(A).

Remark 3.6.1. Let h € V.. Then the map ho V., — C defined by
R(f) = (f,h) is contained in V.

Proposition 3.6.2. Fvery matriz coefficient of m is a matriz coefficient

of T(A,m) with support in K.
Proof. Given v € V, define f, : G — V by

m(xt if K
fo(w) = (x Y r €K,

0 otherwise
Then, if g,k € }?,
folgh) = m(k™ g™ = (k™ )m(g "o =7(k™") ful9)
and if g ¢ Kand ke K again we get
folgh) =0 =m(k™")f.(9)

so that
folgk) = (k™) fu(9)
forall g€ G and k € K.
Similarly if g € Kand ke K ,
folkg) = m(g~ kv =n(g Y r(k™ o =7(g7 v = fulg)
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and if g ¢ K and k € K again we get

folkg) = 0= f.(9)

so that f, is K-left-invariant.
Moreover, supp(f,) C K so that fv» is compactly supported.
Thus, f, € T(A, 7).
Now, for g € K and v,weV,

(T(A, 7)(9) for fuw) (T(A, m)(9) fo(@), fu(x)) dp(z)

(folg'x), fu(z)) du(z)

Am(z g, w(zHw) du(z)

[
m\w\a\q\

(m(g)v,w) du(z)

(). (r(g)v, w)
w(g)v, u(K)w)

I
/~ =

and for g ¢ K,
(T(A,m)(9)fv, fu) =0
Hence the matrix element g — (T (A, 7)(g) fu, fuw) of T(A, ) is equal
to the matrix element g — <7T(g)v, ,u(}?)w> of  on K and is equal to 0
elsewhere.
In other words, given a matrix element g — (7(g)v,w) of m, the map

R (n(g)v,w) if g€K,
g

0 otherwise

is a matrix element of T'(A, ).

O

Lemma 3.6.3. Let A be a finite complete subtree of the tree X and
diam(A) > 2. Then,
a) T(A) splits into the direct sum of representations T'(A, ), where 7

runs through the irreducible nondegenerate representations OfI?(A). The
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representation T'(A, ) is irreducible and the multiplicity of its occurrence
in T(A) is equal to dim .
b)If w1 o o, then T(A,m) ~ T(A, 7).

Proof. a)Since H(A) is unitary(i.e. admissible and unitarizable), by the-
orem 2.4.1. H(A) is a direct sum of irreducible representations, say
H(A) = ®;erH;. By lemma 3.2.1. each H; contains a nonzero K(A)-
invariant vector. So if [ is infinite, we get infinitely many linearly inde-
pendent vectors in H(A)X(A). But this is impossible as dim(H (A)K(A) <
oo. Hence, H(A) is a direct sum of finitely many irreducible representa-
tions.

Now let H be an irreducible subrepresentation of H(A). Set H =
H( H(A)X. Then by theorem 2.2.1. each H is an irreducible represen-
tation of the convolution algebra H(G, K). Now let us understand the
action of the convolution algebra H(G, K) on H. So let ¢ € H(G, K)
and f € H. Then,

for all ¢ € G. Hence, T(A)(¢)(f) = @ * f. Since p * f € H(A)K,
supp(p * f) C K. On the other hand, supp(p * f) C supp(e).supp(f) C
supp((p).f( . So, supp(e * f) C K N supp(cp).[?. Note that if
K (N supp(e) =0, then K () supp(p). K =0 so that ¢ = f = 0.

Note also that H is a representation of K. Indeed, if f € H and
T € [N(, then given k € K, v 'kx € K as K is a normal subgroup of K

and consequently
T(A) () [T(A) (@) ()] = T(A)(z) [T(A) (@ ka)(f)] = T(A) () (f).

Then (H)X = H is also a representation of the convolution algebra

H(K,K).
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For ¢ € H(G, K), the restriction of ¢ on K remains locally constant
as K is open.

Hence, ¢l € H(IN(,K). Then, we observe that for all f € H, if
g € K supp(y).K

o flg) = /K eI ) = ol = o)

Since

supp(plg * ) € K N supp(plp). K € K N (K N supp(p)).K =
K () supp(p).K, if g ¢ K supp(y).K,

wx* flg) =0= |z * f(9).

Thus we get ¢ * f = @[z * f. Consequently, H is an irreducible
representation of the algebra H (IN( , K), hence of the compact group K.

Let 7 be the representation of K on the space H by left translations.
By definition of H(A), H(A)X is a space of functions on K, spanned over
the matrix elements of all irreducible nondegenerate representations of K
which are trivial on K. Hence 7 is nondegenerate and each nondegenerate
representations of K trivial on K appears its dimension times.

Now define ¢ : T(A, ) — H as follows: Take f € T(A, ). Since f
is compactly supported, supp(f) € U, leN( for some n € N such that
2, K # %jz for distinct 4, j. Then let

o) = 3 T(A) @) @).

Since

n

P [T(A,m)(9)(N)] = ZT(A)(Q%')T(A?77)(9)(f)(917z‘)

_ ZT(A)(gxi)f (@)

=T(8)(9) Y T(A)(x:)f(x:)

=1

=T(A)(g)p(f)
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® is an intertwinning operator.

Note that for each i, supp(T(A)(x;)f(x;)) C 2;K. Hence,
supp(T'(A)(x;) f(z;)) and supp(T(A)(x;)f(x;)) do not intersect for dis-
tinct 7,5 so that ¢(f) = 0 implies f = 0, i.e. ¢ is 1-1. Then since ¢ is
a 1-1 intertwinning operator to an irreducible representation H of G, we
get ¢ is onto.

Therefore, T(A, ) ~ H. Part (b) follows from proposition 3.6.2.

47



4 Classification of
Cuspidal Representations of ¢

Since every irreducible algebraic representation of G is admissible,
Ol'shanskii had worked the irreducible admissible representations of G
to understand the irreducible algebraic ones. Also, he had worked the
irreducible admissible representations of GG by seperating them into three
classes as follows.

Let A be a fixed edge of our tree X and xq, x5 its extremities.

An irreducible admissible representation (7, V') of G is called cuspidal
if V' has no nonzero K (A)-stationary vectors.

An irreducible admissible representation (7, V') of G is called special
if there is a nonzero K (A)-stationary vector in V', but no nonzero vectors
which are stationary with respect to K ({x1}) and K ({z2}).

An irreducible admissible representation (7, V') is called spherical if
there is a nonzero Kj-stationary vector in V.

These definitions do not depend on the choice of A. For example to
see that the definition of a special representation does not depend on the
choice of A, let A" be a different edge from A and 3, 24 be its extremities.
Let v be a nonzero vector in V' which is K (A)-stationary. Let h € G be
such that h(x;) = x3 and h(zy) = h(x4). Then hK(A)h™' = K(A') and
consequently 7(h)(v) is a nonzero K(A')-stationary vector. Moreover,
there is no K({z3}) and K({z4}) stationary vectors in V. Because, if
v is a nonzero K ({x3()})- stationary vector, then w(h~')v is a nonzero
K ({xl(Q)})—stationary vector, a contradiction.

The following theorem is the main theorem of this work. It gives
a classification for irreducible cuspidal representations of the automor-

phism group G.
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4.1 The main theorem and its proof

Theorem 4.1.1. 1. Let (T, H) be an admissible representation of G.

Then the following conditions are equivalent:
a) T is irreducible and cuspidal;

b) T ~ T(A, ), for some A complete finite subtree of diameter > 2
and for some 7 irreducible nondegenerate representation of [?(A),

which is trivial on K(A).

c) T is irreducible and for allv € H and v € H, the matriz element

g+— (T(g)v,v) is compactly supported;

d) T is irreducible, unitary and its matriz coefficients lie in L'(G).

2. T(A,7) ~T(A', 7)), where (A7), (A", 7') are in b, iff there exists
g € G such that gA = A, and the representations a — m(a) and
a— 7 (gag™") of the group I?(A) are equivalent.

3. The formal dimension of the representation T (A, ) is equal to

(dimm)(vol (K (A)))™!
where vol denotes the volume relative to the Haar measure on G.

Proof. 1. (a=b): Let (T, H) be an irreducible, cuspidal representa-
tion of G. Choose a complete finite subtree A of the tree X such
that HX(®) = {0} and for any complete finite subtree A" whose
diameter is less than the diameter of A, HE®) = {0}. Then by
lemma 3.2.1. H is equivalent to a subrepresentation of L(A) and
for any maximal complete subtree A; of A, H is not equivalent to a
subrepresentation of L(A;). Let ¢ : H — L(A) be a 1-1 intertwin-
ning operator. Now fix ¢ and consider the intertwinning operator
0; = (A, A;)op from H to L(A;). If ¢;(H) # {0}, again by lemma
3.2.1. ¢;(H) hence H contains a nonzero K (A;)- invariant vector,

a contradiction. Hence, for all i, ¢;(H) = a(A,A;) (p(H)) = {0}
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so that ¢(H) C H(A). Hence we can consider H as a subrepresen-
tation of H(A). Note that since H is cuspidal, diam(A) > 2. Then
by lemma 3.6.3. H is equivalent to T'(A, 7) for some 7 irreducible

nondegenerate representation of K (A), which is trivial on K (A).

(b=-a): Let (T, H) be a representation of G given as in b. By
lemma 3.6.3. T is equivalent to an irreducible subrepresentation
of H(A). Now assume HX(A) £ {0} for some edge A’ of the
tree X. Then H(A)K(A) # {0}. But since diam(A") = 1 and
diam(A) > 2 for any g € G, gA ¢ A", So by lemma 3.3.2. we get
that if f € H(A)K@), f(g) = 0forall g € G. So H(A)KA) = {0},

a contradiction.

(b=-c): It is enough to show that matrix coefficients of the repre-

sentation H(A) are compactly supported. So let f € H(A) and

P

fe H(A). Then there is a finite subtree A" of X such that both

: ~ K(a') K(a") ,
fe HA)KAR) and f € H(A) . But H(A) = H(A)KA),
Hence the matrix element g +—> <T(A ) f, f> of H(A) is also a ma-

trix element of the Hilbert space H(A)K(A ). Note that H(A)K( K@)

is a Hilbert space as it is a finite dimensional inner product space.
Therefore it suffices to show that the matrix elements of H(A)X (ah
are compactly supported. Since H(A)X (A) is a Hilbert space, if ¢

is a matrix element of H(A)K(A/)7

¢(9) = (T(A)(9)f, 1)

/fgx dju(z)

for some f,h € H(A)KA). Observe that if g ¢ supp(h).(supp(f)) 2,

then ¢(g) = 0. So, supp(¢) C supp(h).(supp(f))~'. As f and h are
in H(A), both supp(h) and supp(f) are compact. Consequently,

supp(h).(supp(f))~!, hence supp(¢) is compact as desired.

(c=d): Matrix elements lie in L'(G) as they are compactly sup-

ported. Now fix a nonzero element F' in H. Since the maps f,
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and f, which are respectively the maps g — (T'(g)(v), F)) and
g — (T'(g)(w), F') are finite on G, we are allowed to define (v, w)
as the integral of f,.f, over G. As T is algebraic and irreducible,

T is also admissible. Hence T is unitary.

(d=a): Assume HX(®) #£ {0} for some edge A of X. Then T is
either special or elementary. But in both cases, matrix elements

does not lie in L'(G)([3], Section 3 and Section 4), a contradiction.

. (=) Assume T(A,7) ~ T(A', 7). Then there exists g € G such
that gA = A", Because, if gA # A’ for all g € G and Card(verA) >
Card(verA') as we have shown before H(A) has no nonzero K (A')-
invariant vectors. Then since T'(A, 7) is equivalent to a subrepre-
sentation of H(A), T(A,7) has no nonzero K(A')-invariant vec-
tors. But H(A') has a nonzero K (A')-invariant vector. Then since
T(A',7') is equivalent to a nonzero subrepresentation of H(A'),
T(A',7') has also a nonzero K (A')-invariant vector. To sum up, we
get that T(A, 7)) = {0} whereas T(A', 7' )KA) £ {0}. Simi-
larly, if Card(verA') > Card(verA) we get T(A', 7')5XA) = {0}
whereas T(A, m)5A) £ {0}. So, both cases imply T(A,7) ~

T(A',7"), a contradiction.

Now fix ¢ € G with gA = A'. Let ¢ be the representation a
7' (gag™) of K(A). Note that ¢ is irreducible, nondegenerate and
trivial on K (A). We will show that the representations m and o of

the group K (A) are equivalent.

If 7 » o, then by lemma 3.6.3.b. T(A, ) » T(A,0). But since
T(A,0) ~ T(A', 1), we get T(A, ) » T(A',7'), a contradiction.
To see T(A, o) ~ T(A', '), define

¢ : T(A>U>_>T(A/>7T/)
fr———0(f): G ——7

h+—— f(hg)
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Since gA = A', gK(A)g™! = K(A'). So given k' € K(A), k' =
gkg™! for some k € K(A). Then for all f € T(A, o),

O(f)(hK') = f(hK'g)
= [(hgk)
= o(k™") f(hg)
= (gk"'g7") f(hg)

/ /

=7 (K))o()(h):

Moreover, supp(¢(f)) € supp(f)g~" so that ¢(f) is compactly sup-
ported and ¢(f) is K s-left-invariant where f is K ;-left-invariant.

Hence ¢ is well-defined. ¢ is clearly a 1-1 intertwinning operator.

As T(A', ') is irreducible, ¢ is also onto as desired.

(<=) Assume there exists g € G such that gA = A" and the repre-
sentations 7 and o(defined as above) of K(A) are equivalent. Let

T be a bijective intertwinning operator from 7 to 0. Now define a

map ¢ from T(A, ) to T(A', 1) as follows:

¢:T(A 1) —=T(A,7)
f——=0(f): G
hi——=T(f(hg))

/

™

Let k' € K(A'). Then k' = gkg™! for some k € K(A) and for all
feT(A ),

3. Since T'(A,7) is unitarizable, its formal dimension dp,q) can be

computed by the inverse of the L? norm of a given matrix coefficient
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of T(A, 7). Let v € V be such that [[v|| = 1. As we have seen
before(remark 3.6.1. and prop 3.6.2.), the map g — (7(g)v,v) on
K and which is supported on K is a matrix coefficient of T(A, 7).
Call this map ¢. Therefore,

dind(r) = (/GW(Q)!Q du(g)> -1
— </f~<|<7r(9)v,v>|2 du(g))_l

_ lu(K) /. % (w(g)v, ) du(g)]
1 dim(m)

_mfo[ o] }

= dim(m).(u(R))"".

Note that the fourth equation follows from Schur’s orthogonality
relation on the representations of compact group which states that
given a compact group H with its normalized Haar measure y and

an irreducible finite dimensional representation 7 of H,

[ 00000 ) = s o

for all u,v € 7.

23



REFERENCES

1. Bernstein, J., Representation theory of p-adic groups, Harvard Lec-

tures, 1993.

2. Figa-Talamanca, A. and Nebbia, C., Harmonic analysis and repre-
sentation theory for groups acting on homogeneous trees, London
Math. Soc. Lecture Note Series, 162, Cambridge University Press
1991.

3. Ol'shanskii G. 1., Classification of irreducible representations of
groups of automorphisms of Bruhat-Tits Trees, Func. Anal. Appl.,
11 (1976), pp: 26-34.

o4



