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2011



CLASSIFICATION OF IRREDUCIBLE CUSPIDAL

REPRESENTATIONS OF THE AUTOMORPHISM GROUPS

OF REGULAR TREES
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ABSTRACT

CLASSIFICATION OF IRREDUCIBLE CUSPIDAL

REPRESENTATIONS

OF THE AUTOMORPHISM GROUPS OF REGULAR

TREES

In this thesis we take a regular tree X of regularity greater than or

equal to three and we give a detailed proof of G. I. Ol’shanskii’s result

about the classification of irreducible cuspidal representations of the au-

tomorphism group Aut(X) of the tree X. First, we define a topology on

the automorphism group Aut(X) which makes it into a locally compact,

Hausdorff, separable and totally disconnected topological group. Later,

we work on some specific representations of the automorphism group

Aut(X). Finally we prove that irreducible cuspidal representations of

the automorphism group Aut(X) are induced from some specific repre-

sentations of some specific open compact subgroups of the automorphism

group Aut(X).
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ÖZET

HOMOJEN AĞAÇLARIN OTOMORFİZMA

GRUPLARININ İNDİRGENEMEZ KÜSPİDAL

TEMSİLLERİNİN SINIFLANDIRMASI

Bu tezde her noktasının derecesi üçten büyük eşit olan homojen bir X

ağacı alınmış ve bu ağacın Aut(X) simgesi ile gösterilen otomorfizma

grubunun indirgenemez küspidal temsillerinin ilk olarak G. I. Ol’shanskii

tarafından yapılan sınıflandırması detaylı olarak çalışılmıştır. Öncelikle

Aut(X) otomorfizma grubu üzerinde bir topoloji tanımlanmış ve Aut(X)

otomorfizma grubunun bu topoloji ile birlikte yerel kompakt, Hausdorff,

ayrılabilir ve bağlantısız bir topolojik grup olduğu gösterilmiştir. Daha

sonra Aut(X) otomorfizma grubunun bazı özel temsilleri incelenmiştir.

Son olarak Aut(X) otomorfizma grubunun indirgenemez küspidal tem-

sillerinin, bu grubun bazı açık kompakt alt gruplarının bir takım özel

temsillerinden yükseltilmiş temsiller olduklarının ispatı verilmiştir.
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she has given me through all my life.

v



INTRODUCTION

Let X be a regular tree with regularity greater than or equal to 3. The

automorphism or isometry group G of X is equipped in a natural way

with a topology which makes it into a locally compact separable metriz-

able group. If the regularity of X is of the form p+ 1, where p is a prime

number, then the tree under discussion can be considered as the sym-

metric space corresponding to the p-adic SL(2). In that case such trees

are special cases of the so-called the Bruhat-Tits buildings associated to

reductive p-adic groups. Then PGL(2,Qp) becomes a closed subgroup

of G.

The tree is in any case a kind of discrete version of the Poincare disk.

It will be seen that the group G also has many properties similar to the

SL(2,R). But the group G does not have any Lie group or p-adic group

structure. Therefore it is interesting to understand its representation

theory. The groups we considered first studied by G. Ol’shanskii in the

mid-seventies. The aim of this thesis is to work out the classification

of the irreducible cuspidal representations of G in detail and to write in

a nearly self-contained form. This classification shows some interesting

properties of these representations. In particular, they are obtained by

inducing some special representations from some special compact open

subgroups. This property is shared by irreducible cuspidal representa-

tions of p-adic groups as well. But the p-adic analogue of this result

has been established only recently. Therefore it seems quite natural to

understand these groups better. Because they may shed some more light

on the representation theory of p-adic and real Lie groups.
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1 Automorphism Groups of Regular Trees

1.1 The topological group AutX

A tree is a connected non-empty graph with no circuits. A tree is

called k-regular if every vertex is adjacent to exactly k many vertices, i.e.

the degree of each vertex is equal to k.

Let X be a k-regular tree for k ≥ 3.

Given two vertices x and y of the tree X, we define the distance

between x and y by the number of edges on the unique geodesic joining

x and y and we denote it by l(x, y). Given a subtree ∆ of the tree X,

when we write x ∈ ∆ we mean that x is a vertex of the subtree ∆.

Also given two subtrees ∆ and ∆
′

of the tree X, if ∆ is a subtree of

∆
′

we write ∆ ⊆ ∆
′
. A subtree ∆ of the tree X is said to be bounded

if its diameter diam(∆) = sup {l(x, y) : x, y ∈ ∆} is finite. For x ∈

X, set l(x,∆) = inf {l(x, y) : y ∈ ∆} and given n ∈ N, let Vn(∆) =

{x ∈ X : l(x,∆) ≤ n}. Using the natural distance l on the tree X, we

can define Aut(X) as the group of all bijective isometries of the tree X.

From now on, denote the group Aut(X) by G and fix a vertex x0 of the

tree X.

Let Bn := Bn(x0) = {x ∈ X : l(x, x0) ≤ n}.

Let Sn := {x ∈ X : l(x, x0) = n}.

The set Bn is called the ball with center x0 and radius n and the set

Sn is called the sphere around x0 of radius n.

Let Kn := Stab(Bn) = {g ∈ G : g(x) = x ∀x ∈ Bn}. Clearly, each

Kn is a subgroup of G.

Then the function d : G×G→ [0,∞) defined by

d(g, h) =

1 if g−1h /∈ Kn ∀n,

inf
{

1
n

: g−1h ∈ Kn

}
otherwise

gives a metric space structure to the group G.
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In fact, d is an ultrametric on the group G. To see this, let g, h

and k be pairwise distinct elements of the group G. If d(g, h) = 1
n

and

d(h, k) = 1
m

where n ≥ m > 1, i.e. if g = h on Bn and h = k on

Bm, then we get g = k on Bm as Bm(x0) ⊆ Bn(x0). So d(g, k) ≤ 1
m

=

max( 1
n
, 1
m

) = max(d(g, h), d(h, k)). If d(g, h) = 1 or d(h, k) = 1, we get

d(g, k) ≤ 1 = max(d(g, h), d(h, k)) as well.

Remarks:

• For all f ∈ G and for all g, h ∈ G, we have d(fg, fh) = d(g, h).

This follows from the fact that fg = fh on Bn iff g = h on Bn for all n.

• G is a topological group with respect to the metric topology:

First, let us show that multiplication map

m : G×G // G

(x, y) � // x.y

is continuous.

So take a convergent sequence {(gn, hn)}n in the space G×G with its

limit (g, h). Then we get that the sequence {d(gnh, gh)}n converges to 0.

To see this, it is enough to show that for all k > 0, (gh)−1(gnh) ∈ Kk for

n large enough. So let k > 0 and choose l > k with h(Bk) ⊆ Bl. As the

sequence (gn)n converges to the element g in the group G, there exists

N > 0 such that for all n > N , g−1gn ∈ Kl. Consequently, for all n > N ,

(gh)−1(gnh) = h−1(g−1gn)h ∈ h−1Klh ⊂ Kk as desired.

Now since

0 ≤ d(gnhn, gh) ≤ d(gnhn, gnh) + d(gnh, gh) = d(hn, h) + d(gnh, gh)

and the sequence (hn)n converges to the element h in the group G, by

Sandwich Lemma we get that the sequence {d(gnhn, gh)}n converges to

0, i.e. the sequence (gnhn)n converges to the element gh in the group G.

Secondly, let us show that the inversion map

i : G // G

x � // x−1

5



is continuous.

So take a convergent sequence (gn)n in the group G with its limit g.

Let k > 0. Choose l > k such that g−1(Bk) ⊂ Bl and choose N ∈ N

such that for all n > N , g−1gn ∈ Kl, i.e. gn = g on Bl. Let x ∈ Bk.

Then since g−1(x) ∈ Bl, for all n > N , gn(g−1(x)) = g(g−1(x)), i.e.

gng
−1(x) = x. Thus, we get g−1

n = g−1 on Bk for all n > N . This means

that the sequence (g−1
n )n converges to the element g−1 in the group G as

desired.

• K1 = {g ∈ G : d(g, e) < 1} and Kn =
{
g ∈ G : d(g, e) < 1

n−1

}
for

all n ≥ 2. Hence for all n ≥ 1, Kn is an open subgroup of G. Moreover

for each k, n ∈ N, Kn+k is a normal subgroup of the group Kn of finite

index. In particular, [K0 : Kn] < ∞ for all n ∈ N. Hence the subgroup

K0 of the group G is also open.

• Given r > 0, Kn ⊆ B(e, r) for all n > 1 satisfying 1
n
< r. So, the

sequence of open subgroups (Kn)n form a local basis at identity.

Lemma 1.1.1. K0 is a compact subgroup of the group G.

Proof. Let (gn)n be a sequence in the subgroup K0. It suffices to find a

convergent subsequence of the sequence (gn)n.

Note that each element gn of the subgroup K0 setwise stabilizes all

spheres around x0 . Then since the sphere Sn contains k.(k−1)n−1 many

vertices of the tree X, there are at most (k.(k − 1)n−1)! different actions

of the elements of the subgroup K0 on the sphere Sn for each n.

Therefore,

there exists a subsequence (g1,n)n of the sequence (gn)n such that

g1,n = g1,m on the sphere S1 for all n,m ∈ N,

there exists a subsequence (g2,n)n of the subsequence (g1,n)n such that

g2,n = g2,m on the sphere S2 for all n,m ∈ N and

there exists a subsequence (g3,n)n of the subsequence (g2,n)n such that

g3,n = g3,m on the sphere S3 for all n,m ∈ N.

Continuing this way, for each k ≥ 1 we find a subsequence (gk+1,n)n
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of the subsequence (gk,n)n such that gk+1,n = gk+1,m on the sphere Sk+1

for all n,m ∈ N.

Now let g ∈ K0 be defined by g = gn,n on the sphere Sn for each n.

Note that such an element g exists in the subgroup K0. This is because

gn,n = gk,k on the sphere Sk for all n, k with n > k. We will show that

this element g of the subgroup K0 is the limit of the subsequence (gn,n)n

of the sequence (gn)n.

So let n, k ∈ N with n ≥ k. Then, gn,n = gk,m for some m ∈ N so

that g = gk,k = gk,m = gn,n on the sphere Sk. To sum up, g = gn,n on the

sphere Sk for all k ≤ n, i.e. g = gn,n on the ball Bn. So for all n ∈ N,

d(g, gn,n) ≤ 1
n

and we are done.

Given g ∈ G and x ∈ X, let us denote the vertex g(x) by gx.

Corollary 1.1.2. For all possible bounded subtrees ∆ of the tree X, the

subgroups

K(∆) = {g ∈ G : gx = x ∀x ∈ ∆}

are open compact. In particular, each subgroup Kn is compact.

Proof. Let x1, ..., xn be the vertices of the subtree ∆. For i = 1, .., n,

choose gi ∈ G satisfying gi(x0) = xi. Then K(∆) =
⋂n
i=1 K(xi) =⋂n

i=1 giK(x0)g−1
i where each giK(x0)g−1

i is an open compact subgroup of

the topological group G. Hence K(∆) is an open compact subgroup of

the group G.

By the facts we proved up to here, we obtain that the sequence

(Kn)n∈N is a sequence of open compact subgroups of the group G which

form a local basis of unity. This implies that the group G is totally dis-

connected and first countable. To sum up, now we have the following

theorem.

7



Theorem 1.1.3. The automorphism group G of the regular tree X whose

regularity is greater than or equal to three is a locally compact, Hausdorff

and totally disconnected topological group.

Note that {gK0}g∈G is an open cover of the group G which has no

finite subcover. Hence the group G is not compact.

1.2 Haar measure on the automorphism group

Let H be an arbitrary locally compact, Hausdorff topological group. Let

B be the σ-algebra generated by all compact subgroups of H. A measure

µ on B is called a left Haar measure if

1. µ is outer regular for all Borel subsets of the group H,

2. µ is inner regular for all open subsets of the group H,

3. µ is finite on all compact subsets of the group H,

4. µ(g.E) = µ(E) for every subset E of the group H where g.E =

{g.e : e ∈ E}.

For locally compact Hausdorff topological groups we always have a

left Haar measure which enables us to take integrals of complex valued

functions defined on the group H. In particular, the automorphism group

G has a left Haar measure. This is guaranteed by the following theorem

which was first fully proven by Andre Weil.

Theorem 1.2.1. Every locally compact, Hausdorff topological group pos-

sesses a left Haar measure which is unique up to multiplication by a pos-

itive constant.

1.3 On complete subtrees of the regular tree X

The set of extremities ∂(∆) of the subtree ∆ is the the set of vertices of

∆ whose degrees in ∆ are exactly one. A subtree ∆ of the tree X is said

8



to be complete if V1({x}) ⊆ ∆ for each vertex x of the subtree ∆ which

is not contained in ∂(∆). A tree consisting of one vertex or one edge is

assumed to be complete.

Proposition 1.3.1. (a) The nonempty intersection of complete trees is

a complete tree.

(b) If T ⊂ X is an arbitrary subtree, then Vm(T ) is

a complete tree for m = 1, 2, ...

Proof. a) Let (∆i)i∈I be a family of complete trees and ∆ =
⋂
i∈I ∆i.

Let x ∈ ∆ such that x /∈ ∂(∆). Then x ∈ ∆i for all i and we can choose

two distinct vertices y, z ∈ ∆ which are adjacent to the vertex x. Since

y, z ∈ ∆i for all i, we get x /∈ ∂(∆i) for all i. Hence V1({x}) ⊆ ∆i for all

i so that V1({x}) ⊆ ∆.

b) Let x ∈ Vm(T ) such that x /∈ ∂Vm(T ). Then l(x, T ) < m.

Let z ∈ X with l(x, z) = 1. Then l(z, T ) ≤ l(x, T ) + 1 ≤ m. Hence

z ∈ Vm(T ).

Assume now that ∆ is a complete finite subtree of the tree X of

diameter ≥ 2. Set g∆ = {gx : x ∈ ∆} and K̃(∆) = {g ∈ G : g∆ = ∆}.

Then K̃(∆) is the normalizer of the subgroupK(∆) inG, in particular

K(∆) E K̃(∆): Let g ∈ K(∆) and h ∈ K̃(∆). Then for all x ∈ ∆, we

have

hx ∈ ∆⇒ ghx = hx⇒ h−1ghx = x⇒ h−1gh ∈ K(∆).

Hence K̃(∆) normalizes K(∆). Conversely, let h ∈ NG(K(∆)) and x ∈

∆. If hx /∈ ∆, n = l(hx,∆) ≥ 1. Let y ∈ ∆ with l(hx, y) = n and

(y, y1, ..., yn−1, hx) be the geodesic between the vertices y and hx. Since

our tree’ s regularity ≥ 3, there exists a vertex z ∈ X adjacent to the

vertex yn−1 and different from the vertices hx and yn−2. Then we can

choose an isometry g ∈ K(∆) such that g(yi) = yi for all i = 1, ..., n− 1

9



and g(hx) = z. But then we get h−1ghx = h−1z 6= h−1(hx) = x, i.e

h−1gh /∈ K(∆), a contradiction. Hence hx ∈ ∆ so that h ∈ K̃(∆).

The quotient group K̃(∆)/K(∆) is isomorphic to the finite group

Isom(∆) of all isometries of the finite subtree ∆. Indeed, the restriction

map on the subtree ∆

ϕ : K̃(∆)/K(∆) // Isom(∆)

gK(∆) � // g|∆

is a well-defined isomorphism.

Let ∆
′

be a maximal complete subtree of ∆. If diam(∆) = 2, then

as being complete ∆ = V1({x}) for some vertex x ∈ X and the maximal

complete subtrees of ∆ are exactly the k many edges of ∆. If diam(∆) >

2, the maximal complete subtrees of ∆ correspond bijectively to the

vertices of ∂(∆0) where ∆0 = {x ∈ ∆ : x /∈ ∂∆}. Indeed, if v ∈ ∂(∆0),

then the vertex v corresponds to the maximal complete subtree of ∆ that

we obtain by deleting the k− 1 vertices in ∂∆ which are adjacent to the

vertex v.

Note that if g ∈ K̃(∆), then g−1K(∆′)g = K(g−1∆
′
) for every subtree

∆
′

of ∆: If h ∈ K(∆
′
), g−1hg(g−1x) = g−1h(x) = g−1(x) for all x ∈

∆
′
. Conversely, if h ∈ K(g−1∆

′
), h = g−1(ghg−1)g where ghg−1(x) =

gg−1(x) = x for all x ∈ ∆
′
, i.e. ghg−1 ∈ K(∆

′
).

Moreover, if ∆
′

is a maximal proper complete subtree of ∆, then so

is the subtree g∆
′
. This is because g∆

′
is the subtree of ∆ that we

obtain by deleting the vertices in ∂(∆) which are adjacent to the vertex

gv ∈ ∂(∆0) from the subtree ∆ where v ∈ ∂(∆0) and ∆
′

is the subtree

of ∆ that we obtain by deleting the vertices in ∂(∆) which are adjacent

to v from the subtree ∆. Hence the internal automorphisms in K̃(∆)

permute the stabilizers of maximal complete proper subtrees of ∆.

10



1.4 A relation between Gelfand pairs and

unimodularity

Definition 1.4.1. A normed vector space (A, ‖·‖) over C is called a

normed algebra if it is an algebra satisfying ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈

A. A normed algebra A is called Banach algebra if the normed space

(A, ‖·‖) is a Banach space.

Let L1(H) be the space of complex valued functions defined on a

locally compact, Hausdorff topological group H which are integrable with

respect to a chosen left Haar measure µ on H. Note that this definition

does not depend on the choice of a left Haar measure on the group H

since any two left Haar measures on the group H are scalar multiples of

each other.

(L1(H), ‖·‖1) is a Banach space where

‖f‖1 =

∫
H

|f(x)| dµ(x)

for all f ∈ L1(H).

Given two functions f, g ∈ L1(H) we define their convolution product

f ∗ g by

f ∗ g(x) =

∫
H

f(y)g(y−1x) dµ(y)

for all x ∈ H. Since ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1, f ∗ g ∈ L1(H) and (L1(H), ∗)

is a Banach algebra.

Definition 1.4.2. A complex valued function f defined a group H is said

to K-left-invariant for a given subset K of the group H if f(kx) = f(x)

for all k ∈ K and for all x ∈ G. The function f is said to be K-right-

invariant if f(xk) = f(x) for all k ∈ K and for all x ∈ G. If the function

f is both K-left-invariant and K-right-invariant, then the function f is

said to be K-bi-invariant.

Definition 1.4.3. A pair (H,K), where H is a locally compact group

and K a compact subgroup, is called a Gelfand pair if the subspace

11



L1(K\H/K) of L1(H) consisting of K-bi-invariant functions is a com-

mutative subalgebra of L1(H) under convolution. Note that the space

Cc(K\H/K) of compactly supported, continuous andK-bi-invariant func-

tions on the group H is dense in L1(K\H/K). Hence, by the following

proposition it is equivalent to require that Cc(K\H/K) is commutative.

Proposition 1.4.4. Let A be a Banach algebra and B be a commutative

and dense subalgebra of A. Then A is also commutative.

Proof. Consider the map f : A × A → A defined by f(a, b) = ab − ba.

Since A is a Banach algebra, the map f is continuos on A×A. Now since

B is commutative, B × B ⊆ f−1({0}) so that B ×B ⊆ f−1({0}). But

since f is continuous, f−1({0}) is closed and B × B is dense in A × A.

So we get A× A ⊆ f−1({0}), i.e. A is commutative.

Definition 1.4.5. A locally compact Hausdorff topological group H is

called unimodular if each left Haar measure on H is a right Haar measure.

Definition 1.4.6. Let µ be a left Haar measure on a locally compact

Hausdorff topological group H. The modular function ∆ : H → R>0 of

H is defined by

µ(E.t) = ∆(t)µ(E)

for every Borel subset E of H.

Note that the modular function ∆ exists by the uniqueness of Haar

measure. Note also that ∆ is a continuous group homomorphism into

the multiplicative group of positive real numbers.

By the two definitions above we get that H is unimodular iff ∆ = 1.

Since our tree X is locally finite (i.e. every vertex is adjacent to

finite number of vertices), Bn is a finite set for all n ∈ N. Then as

X = ∪n∈NBn, the number of vertices of X is countable. So we can

enumerate the vertices of the tree X as {x0, x1, x2, x3...}. Now for all n,

let Hn = {g ∈ G : g(x0) = xn} and choose an element gn ∈ Hn. Note

that Hn = gnH0 for all n. This is because for all h ∈ Hn, h = gng
−1
n h ∈

12



gnH0 ⊂ Hn. We already know H0 = K0 is compact. This implies that

Hn = gnH0 is compact, hence has finite measure for all n. Then together

with G = ∪n∈NHn we get G is a σ-finite measure space. So, from now

on, we have the right to use Fubini’ s theorem when it is needed.

Proposition 1.4.7. Let H be a locally compact, Hausdorff topological

group and fix a left Haar measure µ on H. Let Cc(H) be the space of

continuous, compactly supported, complex valued functions on H. Then

for all f ∈ Cc(H),∫
H

f(x) dµ(x) =

∫
H

f(x−1)∆(x−1) dµ(x).

Proof. See Theorem 3.3.7, Harmonic Analysis for commutative spaces,

Joseph Albert Wolf.

Lemma 1.4.8. Let (H,K) be a Gelfand pair. Then H is unimodular.

Proof. Let µ be a left Haar measure onG. Since the positive real numbers

with multiplication has no nontrivial compact subgroup and since the

images of compact subgroups of H under ∆ are compact subgroups of

R>0 by the continuity of the group homomorphism ∆, ∆ is trivial on any

compact subgroup of H.

Thus, µ(Ek) = ∆(k)µ(E) = µ(E) for every Borel subset E and

for every k ∈ K so that µ is K-right-invariant. Consequently, given

f ∈ Cc(H), the projection

KfK(x) =
1

µ(K)2

∫
K

∫
K

f(kxk
′
) dµ(k) dµ(k

′
)

is contained in Cc(K\H/K).

Now let f ∈ Cc(K\H/K) be any. By Urysohn’ s Lemma for locally

compact Hausdorff spaces, there is a function g ∈ Cc(H) such that g = 1

on the compact set supp(f) ∪ (supp(f))−1. Then KgK ∈ Cc(K\H/K)

with KgK = 1 on supp(f) ∪ (supp(f))−1. Let h =K gK . Since (H,K) is

a Gelfand pair, Cc(K\H/K) is commutative and so we get
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∫
H

f(x) dµ(x) = f ∗ h(e) = h ∗ f(e) =

∫
H

f(x−1) dµ(x).

So for any f ∈ Cc(H),

∫
H

KfK(x) dµ(x) =

∫
H

KfK(x−1) dµ(x).

But since µ is K-bi-invariant,

∫
H

KfK(x) dµ(x) =
1

µ(K)2

∫
H

∫
K

∫
K

f(kxk
′
) dµ(k) dµ(k

′
) dµ(x)

=
1

µ(K)2

∫
K

∫
K

∫
H

f(kxk
′
) dµ(x) dµ(k) dµ(k

′
)

=
1

µ(K)2

∫
K

∫
K

∫
H

f(x) dµ(x) dµ(k) dµ(k
′
)

=

∫
H

f(x) dµ(x).

Similarly,

∫
H

KfK(x−1) dµ(x) =

∫
H

f(x−1) dµ(x).

Hence for any f ∈ Cc(H), we get

∫
H

f(x−1)∆(x−1) dµ(x) =

∫
H

f(x−1) dµ(x).

Since the subgroup K is both open and compact, the characteristic func-

tion χK of K is in Cc(H) by Urysohn’ s Lemma for LCH spaces. Then

for all h ∈ H,

∫
H

χhK(x−1)∆(x−1) dµ(x) =

∫
H

χhK(x−1) dµ(x).

14



But since ∆ is K-bi-invariant,

∫
H

χhK(x−1)∆(x−1) dµ(x) =

∫
H

χKh−1(x)∆(x−1) dµ(x)

=

∫
Kh−1

∆(x−1) dµ(x)

= ∆(h)µ(Kh−1)

and ∫
H

χhK(x−1) dµ(x) =

∫
H

χKh−1(x) dµ(x) = µ(Kh−1).

Thus, ∆(h)µ(Kh−1) = µ(Kh−1) so that ∆(h) = 1.

1.5 Unimodularity of the automorphism group

Lemma 1.5.1. (G,K0) is a Gelfand pair. Hence G is unimodular.

Proof. Let u, v ∈ L1(K0\G/K0). Then,

u ∗ v(k
′
gk) =

∫
G

u(h)v(h−1k
′
gk) dµ(h)

=

∫
G

u(k
′
h)v((k

′
h)−1k

′
gk) dµ(h)

=

∫
G

u(k
′
h)v(h−1gk) dµ(h)

=

∫
G

u(h)v(h−1g) dµ(h)

= u ∗ v(g).

So, the space L1(K0\G/K0) is a subalgebra of the convolution algebra

L1(G).

Now let g ∈ G. Since l(x0, gx0) = l(g−1x0, x0), there exists k ∈ K0

with kg−1x0 = gx0. So, g−1kg−1 ∈ K0 which implies g−1 ∈ K0gK0. Then

if u and v are K-bi-invariant, we get
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u ∗ v(g) =

∫
G

u(h)v(h−1g) dµ(h)

=

∫
G

u(h−1)v(h−1g) dµ(h)

=

∫
G

u((gh)−1)v((gh)−1g) dµ(h)

=

∫
G

u(h−1g−1)v(h−1) dµ(h)

=

∫
G

v(h)u(h−1g−1) dµ(h)

= v ∗ u(g−1)

= v ∗ u(g).

The groups of the form K(∆), where ∆ is an edge are called Iwahori

subgroups of G. If ∆ and ∆
′

are two edges, we can choose g ∈ G such

that g∆ = ∆
′
. Then gK(∆)g−1 = K(∆

′
). So the Iwahori subgroups are

conjugate to each other.

16



2 Irreducible Representations of Aut(X)

2.1 Terminology on representations

LetH be an arbitrary group. A representation of H on a vector space V

over the field of complex numbers is a homomorphism π : H → GL(V ) of

H to the group of automorphisms of V . We call V itself a representation

of H and we use the notation (π, V ) to denote the representation π. We

say that the homomorphism π gives V an H-module structure. Also

given x ∈ H and v ∈ V , we often write xv or x · v for π(x)(v).

Let V be the space of complex valued functions defined on H and

define πL : H → GL(V ) and πR : H → GL(V ) so that for f ∈ V and

x ∈ H, πL(x)(f)(y) = f(x−1y) and πR(x)(f)(y) = f(yx) for all y ∈ H.

Then (πL, V ) and (πR, V ) are representations of H and they are called

the left regular representation of H and the right regular representation

of H respectively.

A linear map T between two representations (π, V ) and (σ,W ) of the

group H is called an intertwinning operator if T (π(x)(v)) = σ(x)(T (v))

for every x ∈ H and v ∈ V . If there is a bijective intertwinning operator

between two representations V and W , we denote it by V ∼ W .

A subrepresentation of a representation V is a vector subspace W of

V which is invariant under the action of H.

A representation (π, V ) is called unitarizable if there exists a positive

definite, invariant Hermitian form on V .

A representation π is said to be a unitary representation of H on a

Hilbert space V if for all x ∈ H, π(x) is a unitary operator.

A unitary representation of H on a Hilbert space V is said to be

topologically irreducible if V has no proper nontrivial closed invariant

subspace and an arbitrary representation V is said to be algebraically

irreducible if V has no proper nontrivial invariant subspace. From now on,

by an irreducible representation we will mean an algebraically irreducible

representation unless otherwise stated.
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For a subset K of the group H, we denote the set of vectors in V

which are invariant under the map π(x) for each x ∈ K by V K , i.e.

V K = {v ∈ V : π(x)(v) = v ∀x ∈ K} .

Now let us consider the automorphism group G again and fix a Haar

measure µ on G.

A representation (π, V ) of G is called algebraic if V = ∪V K(∆) where

∆ runs through the set of finite(bounded) subtrees of the tree X, and

admissible, if moreover, dim V K(∆) <∞ for every finite subtree ∆ of the

tree X.

An admissible, unitarizable representation of G is called unitary.

Let (π, V ) be an algebraic representation of G and V ∗ be the dual

space of V . Then (π∗, V ∗) is also a representation of G where

π∗(g)(v∗)(v) = v∗(π(g−1)(v)) =
〈
π(g−1)(v), v∗

〉
for all g ∈ G, v ∈ V and v∗ ∈ V ∗. Now let Ṽ =

⋃
(V ∗)K(∆) where

∆ runs through the set of finite(bounded) subtrees of the tree X and

π̃ = π∗|Ṽ . Then (π̃, Ṽ ) is an algebraic representation of G and it is called

the contragradient representation of (π, V ). Also given ṽ ∈ Ṽ and v ∈ V ,

a map of the form g → 〈π(g−1)(v), ṽ〉 is called a matrix coefficient of the

representation (π, V ).

A representation of an algebra A is an homomorphism π of A into

the algebra End(V ) of linear maps on a vector space V .

For the definition of the formal dimension of an algebraic representa-

tion, see [1] Section 5.2.

2.2 Hecke algebra

A complex valued function f defined on G is said to be locally constant

if for every x ∈ G, there exists an open compact subgroup Kx of G

such that f is constant on the set xK. Denote by C(G) the space of

locally constant complex valued functions on G, and by CK(G), KC(G)
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and KCK(G), where K is a compact subgroup of G, respectively, the

subspaces of C(G) whose elements are K-left-invariant, K-right-invariant

and K-bi-invariant.

We denote by H(G) the space of locally constant, compactly sup-

ported complex valued functions on G and by H(G,K), where K is an

open compact subgroup of G, the subspace of H(G) whose elements are

K-bi-invariant.

Note that H(G) =
⋃
K H(G,K) where the union runs over open

compact subgroups of G. This can be seen as follows: Let f ∈ H(G)

and let F = supp(f). Since f is locally constant, for all x ∈ F , there

exists an open compact subgroup Kx such that f |xKx is constant. As

F ⊆
⋃
x∈F xKx and F is compact, there exists x1, ..., xn ∈ F such that

F ⊆
⋃n
i=1 xiKxi . Then for K1 =

⋂n
i=1 Kxi , f is K1- right-invariant.

Similarly, we can find an open compact subgroup K2 of G such that f is

K2-left-invariant. Then for K = K1

⋂
K2, we get f ∈ H(G,K).

Note that H(G) is an associative algebra under convolution and

(H(G), ∗) is called the Hecke algebra of G.

Now let (π, V ) be an algebraic representation of G. For f ∈ H(G)

and v ∈ V , we can choose an compact subgroup K such that both

f ∈ H(G,K) and v ∈ V K . Then we define a vector π(f)(v) ∈ V by

π(f)(v) =

 ∑
x∈G/K

f(x).π(x)(v)

 .µ(K) .

Note that the sum is finite as f is compactly supported and this

definition does not depend on the choice of K. Also π(f) ∈ End(V ) for

all f ∈ H(G). Hence V is a representation of the convolution algebra

H(G). Moreover, a subspace W is a subrepresentation of V if and only

if π(f)(W ) ⊆ W for every f ∈ H(G). In fact, if π(f)(W ) ⊆ W for every

f ∈ H(G) and w ∈ W ∩V K , then for any g ∈ G, π(g)(w) = π(egK)(w) ∈

W where for a given open compact subgroup K of G, eK = χK

µ(K)
∈ H(G).

There is a strong relationship between irreducible representations of

G and irreducible representations of the convolution algebra H(G,K).
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The following theorem shows how strongly related they are.

Theorem 2.2.1. ([ 1, Lemma 4.2.7 ]) Let (π, V ) be a representation

of G. Then (π, V ) is irreducible iff (π|H(G,K), V
K) is either 0 or an

irreducible representation of H(G,K). Furthermore, every irreducible

representation of H(G,K) appears in this way for some irreducible π.

Also this π is unique. In other words, for two irreducible representa-

tions (π1, V1) and (π2, V2) of G, (π1, V1) ∼ (π2, V2) iff there is some open

compact K such that (π1|H(G,K), V
K

1 ) ∼ (π2|H(G,K), V
K

2 ).

2.3 On the smooth part of a unitary representation

of the automorphism group on a Hilbert space

Given (π, V ) a unitary representation of G on a complex Hilbert space

V , for any f ∈ L1(G) we define an endomorphism π(f) of V as follows:

For v ∈ V , define Fv : V → C by

Fv(w) =

∫
G

f(g) 〈π(g)(v), w〉 dµ(g).

Fv is clearly linear.

Moreover, for all w ∈ V ,

|Fv(w)| ≤
∫
G

|f(g)| |〈π(g)(v), w〉| dµ(g)

≤
∫
G

|f(g)| ‖π(g)(v)‖ ‖w‖ dµ(g)

=

∫
G

|f(g)| ‖v‖ ‖w‖ dµ(g)

≤ ‖f‖1 ‖v‖ ‖w‖ .

Hence Fv is a bounded linear operator on V with |Fv| ≤ ‖f‖1 ‖v‖, i.e.

f ∈ V ∗.

Then by Riesz Representation Theorem, there is a unique element

fv ∈ V such that Fv(w) = 〈fv, w〉 for all w ∈ V .

Now we define π(f) : V → V by π(f)(v) = fv. Then for any v1, v2 ∈
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V , we get

〈π(f)(λv1 + βv2), w〉 = 〈fλv1+βv2 , w〉

= Fλv1+βv2(w)

=

∫
G

f(g) 〈π(g)(λv1 + βv2), w〉 dµ(g)

= λ

∫
G

f(g) 〈π(g)(v1), w〉 dµ(g)

+ β

∫
G

f(g) 〈π(g)(v2), w〉 dµ(g)

= λFv1(w) + βFv2(w)

= λ 〈fv1 , w〉+ β 〈fv2 , w〉

= 〈λfv1 + βfv2 , w〉

= 〈λπ(f)(v1) + βπ(f)(v2), w〉

for all w ∈ V and λ, β ∈ C so that π(f)(λv1 + βv2) = λπ(f)(v1) +

βπ(f)(v2). Thus, π(f) ∈ End(V ).

Moreover, ‖π(f)(v)‖ ≤ ‖f‖1 . ‖v‖ for all v ∈ V so that π(f) is

bounded. For this fact and for a more general result see Appendix 3,

Theorem A.3.3., A Course in Abstract Harmonic Analysis, Gerald. B.

Folland.

IfK is a compact subgroup ofG and eK = χK

µ(K)
, then π(eK)(V ) = V K .

It is easy to see that if v ∈ V K , then π(eK)(v) = v. This follows by the

equation

〈π(eK)(v), w〉 =
1

µ(K)

∫
G

χK(g) 〈π(g)(v), w〉 dµ(g)

=
1

µ(K)

∫
K

〈π(k)(v), w〉 dµ(k)

=
1

µ(K)

∫
K

〈v, w〉 dµ(k)

=
1

µ(K)
.µ(K). 〈v, w〉

= 〈v, w〉
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for all w ∈ V . Conversely, given v ∈ V and k ∈ K,

〈π(k)π(eK)(v), w〉 =
〈
π(eK)(v), π(k−1)w

〉
=

∫
G

eK(g)
〈
π(g)(v), π(k−1)w

〉
dµ(g)

=

∫
G

eK(g) 〈π(k)π(g)(v), w〉 dµ(g)

=

∫
G

eK(k−1g)
〈
π(k)π(k−1g)(v), w

〉
dµ(g)

=

∫
G

eK(g) 〈π(g)(v), w〉 dµ(g)

= 〈π(eK)(v), w〉 .

i.e. π(eK)(v) ∈ V K .

Now let (π, V ) be a unitary representation of G on a Hilbert space

V . Let V ∞ =
⋃

∆ V
K(∆) where ∆ runs over the finite complete sub-

trees of the tree X. Note that K(g∆) = gK(∆)g−1 and consequently

π(g)V K(∆) = V K(g∆). Hence V ∞ is an invariant subspace of V . V ∞ is

also nontrivial. Indeed, given 0 6= v ∈ V , since the map g 7→ 〈π(g)v, v〉 is

continuous at e and 〈π(e)v, v〉 = ‖v‖2 > 0, there exists a finite complete

subtree ∆ of the tree X such that Re (〈π(g)v, v〉) is strictly positive for

all g ∈ K(∆). Then, ∫
K(∆)

〈π(g)v, v〉 dµ(g) 6= 0.

But, ∫
K(∆)

〈π(g)v, v〉 dµ(g) = µ(K(∆)).
〈
π(eK(∆))v, v

〉
.

Hence, 0 6= π(eK(∆))v ∈ V K(∆).

Let M be a nontrivial invariant subspace of V . Now let v ∈ M

and ∆ be a complete finite subtree of the tree X. Assume v is K(∆
′
)-

invariant. Let ∆0 = ∆
⋃

∆
′
. v is clearly K(∆0)-invariant. K(∆0) is a

finite index subgroup of K(∆). So we can choose g1, ..., gn ∈ G such that

K(∆) =
⋃n
i=1 giK(∆0) where giK(∆0)

⋂
gjK(∆0) = ∅ for distinct i and

j. Then, for all w ∈ V we get

22



〈
π(eK(∆))v, w

〉
= (µ(K(∆)))−1

∫
K(∆)

〈π(k)v, w〉 dµ(k)

= (µ(K(∆)))−1

n∑
i=1

∫
giK(∆0)

〈π(g)v, w〉 dµ(g)

= (µ(K(∆)))−1.µ(K(∆0))
n∑
i=1

〈π(gi)v, w〉

=

〈
n∑
i=1

λπ(gi)v, w

〉

where λ = (µ(K(∆)))−1.µ(K(∆0)). Hence, π(eK(∆))v =
∑n

i=1 λπ(gi)v ∈

M , i.e π(eK(∆))M ⊂M .

It follows that V ∞ is dense in V . If M is a nontrivial invariant

subspace of V and 0 6= v ∈ M , then π(eK(∆))v ∈ M ∩ V K(∆) so that

M∩V ∞ 6= {0}. We know that (V ∞)⊥ is an invariant subspace of H. So, if

(V ∞)⊥ is also nontrivial, we get that (V ∞)⊥∩V ∞ 6= {0}, a contradiction.

Hence, (V ∞)⊥ = {0} which means V ∞ is dense in V .

Lemma 2.3.1. Let (π, V ) be a topologically irreducible unitary repre-

sentation of G in a Hilbert space V ; let π∞ be the restriction of π to

the dense invariant subspace V ∞. Then, π∞ is algebraic, admissible and

algebraically irreducible.

Proof. π∞ is algebraic by definition of V ∞. For the part π∞ is admissible,

see the paper of Ol’shanskii, Representations of groups of automorphism

of trees. To see π∞ is algebraically irreducible, let M be a nontrivial

invariant subpace of V ∞. Then M⊥ is a closed invariant proper subspace

of V . But since V is topologically irreducible, we get M⊥ = {0} and this

implies that M is dense in V . Then π(eK(∆))M is dense in π(eK(∆))V =

V K(∆) for any finite subtree ∆ of the tree X by the continuity of the

map π(eK(∆)). Since π∞ is admissible, V K(∆) hence π(eK(∆))M are finite

dimensional subspaces of V . Therefore, π(eK(∆))M is closed so that

π(eK(∆))M = V K(∆). But since π(eK(∆))M ⊂ M , we get V K(∆) ⊂ M .

Hence, M = V ∞ as desired.
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It is also known that any algebraic, algebraically irreducible repre-

sentations of G is admissible (due to a more general result of Harish-

Chandra). So it is natural for us to use the language of algebraic and

admissible representations.

Henceforward, all representations are assumed to be algebraic.

2.4 Complete reducibility of unitarizable admissible

modules

We call a topological group H an `-group if there is a fundamental sys-

tem of neighbourhoods of the unit element e consisting of open compact

subgroups.

Note that the automorphism group G of the tree X is an `-group.

Theorem 2.4.1. Let H be an `-group, V an admissible unitarizable H-

module. Then every irreducible subrepresentation W of V is comple-

mented.

Proof. Let W be an irreducible nonzero submodule of V . For each com-

pact open subgroup K of H, let U(K) be the subspace of V K such that

V K = WK ⊕ U(K). Since V is admissible, each V K is finite dimen-

sional, hence complete. Therefore we have such subspaces. Now let

U = H 〈∪KU(K)〉. Since V = ∪KV K , it is clear that V = W + U .

Since W is irreducible, we have W ∩U = {0}. Otherwise we would have

W ⊂ U . Therefore V = W ⊕ U .
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3 The Representations L(∆) and H(∆)

For a finite subtree ∆ ⊂ X, let L(∆) be the subspace of CK(∆)(G)

which consists of left invariant functions relative to some open compact

subgroups of G.

If f is a measurable function onG andK is an open compact subgroup

of G, we define the functions fK and Kf on G by

fK(g) =
1

µ(K)

∫
K

f(gk) dµ(k)

and

Kf(g) =
1

µ(K)

∫
K

f(k−1g) dµ(k).

The functions fK and Kf are called the right averaging of f on K

and the left averaging of f on K respectively.

Now for ∆ ⊂ X complete, finite and diam ≥ 2, let H(∆) be the

subspace of functions f in L(∆) such that for any complete proper subtree

∆0 of ∆, fK(∆0) ≡ 0.

Note that the left regular representation πL of G restricted to L(∆)

(hence to H(∆)) is algebraic, i.e. for any f ∈ L(∆), there exists a finite

complete subtree ∆f of the tree X where f ∈ L(∆)K(∆f ): If f ∈ L(∆)

and K is an open compact subgroup of G with f is K-left-invariant,

then πL(k)(f) = f for all k ∈ K. As K is a neighborhood of unity, there

exists a bounded subtree ∆
′

of the tree X such that K(∆
′
) ⊂ K. Then,

∆
′ ⊂ V1(∆

′
) ⇒ K(V1(∆

′
)) ⊂ K(∆

′
) ⇒ K(V1(∆

′
)) ⊂ K. By choosing

∆f = V1(∆
′
), we are done.

Proposition 3.0.2. (a) If f is measurable on G, fK is K-right-invariant

and Kf is K-left-invariant. Moreover the maps f 7→ fK and f 7→ Kf

preserve continuity and map compactly supported functions onto com-

pactly supported functions.

(b) The map α(∆,∆0) defined by f 7→ fK(∆0) is an

intertwinning operator from L(∆) to L(∆0). With this notation

H(∆) =
⋂

1≤i≤n

Ker α(∆,∆i)
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where ∆1,∆2, ...,∆n are maximal complete subtrees of ∆.

Proof. (a)

• Let g ∈ G and k0 ∈ K. Then,

fK(gk0) =
1

µ(K)

∫
K

f(gk0k) dµ(k)

=
1

µ(K)

∫
k0K

f(gk) dµ(k)

=
1

µ(K)

∫
K

f(gk) dµ(k)

which is equal to fK(g). Hence fK is K-right-invariant.

Now let h(k) = f(k−1k−1
0 g). Then,

Kf(k−1
0 g) =

1

µ(K)

∫
K

f(k−1k−1
0 g) dµ(k)

=
1

µ(K)

∫
K

h(k) dµ(k)

=
1

µ(K)

∫
K

h(k−1
0 k) dµ(k)

=
1

µ(K)

∫
K

f(k−1k0k
−1
0 g) dµ(k)

=
1

µ(K)

∫
K

f(k−1g) dµ(k)

= Kf(g)

Hence Kf is K-left-invariant.

• fK is K-right-invariant implies that it is locally constant, hence

continuous. Similarly, Kf is also continuous.

• Let f be compactly supported and let supp(f) = K
′
. If g /∈ K ′K,

i.e. gk /∈ K ′ for all k ∈ K, then f(gk) = 0 for all k ∈ K, i.e.fK(g) =

0. So, supp(fK) ⊆ K
′
K.

(b) Let f ∈ L(∆). Let K be an open compact subgroup of G with f

is K-left invariant. Then, for all k
′ ∈ K

fK(∆0)(k
′
g) =

∫
K(∆0)

f(k
′
gk) dµ(k) =

∫
K(∆0)

f(gk) dµ(k) = fK(∆0)(g).
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So, fK(∆0) is also K-left invariant. Together with part (a), we get

fK(∆0) ∈ L(∆0) so that α(∆,∆0) : L(∆)→ L(∆0) is well defined.

Now, let g ∈ G. Then, for all x ∈ G

α(∆,∆0)(πL(g)f)(x) =

∫
K(∆0)

πL(g)f(xk) dµ(k)

=

∫
K(∆0)

f(g−1xk) dµ(k)

= α(∆,∆0)(f)(g−1x)

= πL(g)(α(∆,∆0)(f))(x).

Hence α(∆,∆0) is an intertwinning operator from L(∆) to L(∆0).

Finally let us show, H(∆) =
⋂

1≤i≤nKer α(∆,∆i).

(⊆) follows from the definition of H(∆). Conversely, let f be a func-

tion in the right hand side. Then, f ∈ Ker α(∆,∆i) for all i. Let ∆0

be a finite complete subtree of ∆. Then ∆0 ⊂ ∆i for some i. Since the

group K(∆0)/K(∆i) is finite , we can write K(∆0) =
⋃m
j=1 gjK(∆i) for

some g1, ..., gm ∈ G. Then for all g ∈ G,

α(∆,∆0)(f)(g) =

∫
K(∆0)

f(gk) dµ(k)

=
m∑
j=1

∫
gjK(∆i)

f(gk) dµ(k)

=
m∑
j=1

∫
K(∆i)

f(ggjk) dµ(k)

= 0.

So f ∈ H(∆).

3.1 H(∆) is nontrivial

From now on, let ∆ be a complete finite subtree of X with diam ≥ 2.

Also let ∆1, ...,∆n be maximal complete subtrees of ∆.

Definition 3.1.1. A representation of K̃(∆) is called non-degenerate if it

has no non-zero K(∆i)-stationary vectors for i = 1, 2, ..., n. Let (K̃(∆))
′
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be the set of irreducible non-degenerate representations of K̃(∆) which

are trivial on K(∆).

We will now prove that (K̃(∆))
′ 6= ∅. In particular, we will get that

H(∆) 6= ∅. We first need a few lemmas.

Lemma 3.1.2. Let H be a finite group and H1, ..., Hn be n subgroups of

H. Then there exists an irreducible representation π of H such that π

has no non-trivial Hi-invariant vectors for every i = 1, ..., n if and only if

there exists a function on H not identically zero such that
∑

h∈Hi
f(ght) =

0 for every g, t ∈ H and i = 1, ..., n.

Proof. (⇐) Let

V =

{
f : H → C :

∑
h∈Hi

f(ght) = 0 ∀g, t ∈ H ∀i = 1, ..., n

}
6= {0}

. V is clearly a subspace of Func(G,C) which is the space of com-

plex valued functions on H. If H = {h1, ..., hn}, the characteristic func-

tions χ{h1}, ..., χ{hn} generate the space Func(H,C). So, Func(H,C) and

hence V are finite dimensional complex vector spaces.

If f ∈ V and h0 ∈ H,
∑

h∈Hi
πL(h0)(f)(ght) =

∑
h∈Hi

f(h−1
0 ght) = 0

for every g, t ∈ H and i = 1, ..., n. Similarly,
∑

h∈Hi
πR(h0)(f)(ght) =∑

h∈Hi
f(ghth0) = 0 for every g, t ∈ H and i = 1, ..., n. So, V is a

bi-invariant H-module.

Then by Maschke’ s Theorem, (πL, V ) is a direct sum of irreducible

representations of H.

If f ∈ V is Hi-invariant for some i,

f(t) =
1

|Hi|
∑
h∈Hi

f(t)

=
1

|Hi|
∑
h∈Hi

πL(h)(f)(t)

=
∑
h∈Hi

f(h−1g) =
∑
h∈Hi

f(eht)

= 0
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for all t ∈ H, i.e. f ≡ 0.

Hence a non-zero vector in V is not Hi-invariant for all i = 1, .., n. In

particular, any irreducible representation appearing in the decomposition

of V does not contain a non-zero Hi-invariant vector for every i = 1, .., n.

(⇒) Let V be an irreducible representation of H which has no non-

trivial Hi-invariant vectors for every i = 1, ..., n. Since V is irreducible,

it is equivalent to a subrepresentation N of (πL, Func(G,C)). The map

PL(Hi) : Func(H,C)→ Func(H,C) defined by

PL(Hi)(f) =
1

|Hi|
∑
h∈Hi

πL(h)(f)

is the projection on the space of Hi-left-invariant functions. So; if f ∈ N ,

PL(Hi)(f) ∈ NHi = {0}, i.e. PL(Hi)(f) ≡ 0. Then, since N is H-

invariant, we get PL(Hi)πL(g)(f)(t) = 0 for all g, t ∈ H and f ∈ N .

But

PL(Hi)πL(g)(f)(t) =
1

|Hi|
∑
h∈Hi

πL(h)(πL(g)(f))(t)

=
1

|Hi|
∑
h∈Hi

πL(g)(f)(h−1t)

=
1

|Hi|
∑
h∈Hi

f(g−1h−1t)

=
1

|Hi|
∑
h∈Hi

f(g−1ht)

for all g, t ∈ H and f ∈ N . It follows that for any f ∈ N ,
∑

h∈Hi
f(ght) =

0 for all g, t ∈ H and i = 1, ..., n.

Lemma 3.1.3. Let H be a finite group and H
′

= H1 × ... × Hn ⊆

H be the direct product of n nontrivial subgroups of H. Then if the

inner automorphisms of H permute the subgroups H1, ..., Hn; there exists

an irreducible representation of H which has no nontrivial Hi-invariant

vectors for all 1 ≤ i ≤ n.
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Proof. We will prove the lemma in two steps.

In the first step, we will show that the lemma holds when H
′

= H.

By the previous lemma, it is enough to find a function f on H such that

for all i = 1, .., n and g, t ∈ H,
∑

x∈gHit
f(x) = 0. But since each Hi

is normal in H, gHit = Higt for all g, t ∈ H. So it is enough to find a

function f on H satisfying
∑

x∈Hit
f(x) = 0 for all i = 1, .., n and t ∈ H.

Let Ei = {xi, yi} ⊆ Hi with xi 6= yi and E = E1 × ... × En. For

e ∈ E, let N(e) be the number of xi appearing in the coordinates of e.

For instance, if n = 4 and e = (x1, x2, y3, x4), then N(e) = 3. Now define

f on H by

f(e) =

(−1)N(e) if e ∈ E,

0 otherwise

Let h = (h1, ..., hn) ∈ H ′ = H. Given i with 1 ≤ i ≤ n,

Hih = {(h1, ..., hi−1, h, hi+1, ..., hn) : h ∈ Hi} .

Note that if hk /∈ Ek for some k 6= i, Hih ∩ E = ∅. Hence f ≡ 0 on

Hih so that
∑

x∈Hih
f(x) = 0. If hk ∈ Ek for all k 6= i,

Hih ∩ E = {(h1, ..., hi−1, xi, hi+1, ..., hn), (h1, ..., hi−1, yi, hi+1, ..., hn)} .

Then since

N((h1, ..., hi−1, xi, hi+1, ..., hn)) = N((h1, ..., hi−1, yi, hi+1, ..., hn)) + 1

, we get∑
x∈Hih

f(x) =
∑

x∈Hih∩E

f(x)

= f(h1, ..., hi−1, xi, hi+1, ..., hn) + f(h1, ..., hi−1, yi, hi+1, ..., hn)

= 0.

So in the case H
′
= H, we are done.

As a second step, we will pass to the general case. Again by the

previous lemma, it is enough to find a function F on H satisfying∑
x∈gHit

F (x) = 0, ∀g ∈ H and ∀i = 1, ..., n.

30



Since inner automorphisms of H permute H1, ..., Hn, given g ∈ H

and i, there exists j such that gHig
−1 = Hj. Then ∀t ∈ H, gHit =

gHig
−1gt = Hjgt. Hence, it is enough to find a function F onH satisfying∑

x∈Hit
F (x) = 0, ∀t ∈ H and ∀i = 1, ..., n.

Just take F = fχH′ where f is the map defined in the first step.

Then for all t ∈ H and for all i,∑
x∈Hit

F (x) =
∑
x∈Hit

fχH′ (x) =
∑

x∈Hit∩H′
f(x) =

∑
x∈Hit∩E

f(x) = 0

as desired.

Lemma 3.1.4. Let H be a finite nonabelian group and H
′

is a subgroup

of H such that every irreducible representation of H has a nontrivial

H
′
-invariant vector.Then,

|H∗| < |H| / |H ′| .

where by H∗ we mean the dual object of H, i.e. the set of nonequivalent

one dimensional representations of H.

Corollary 3.1.5. Let k + 1 ≥ 3. There is an irreducible representation

of Sym(k + 1) which has no nontrivial Sym(k)- invariant vectors. Here

we consider Sym(k) as the stability subgroup of the point k + 1.

Proof. It is enough to show that

|(Sym(k + 1))∗| ≥ |Sym(k + 1)| / |Sym(k)| = (k + 1)!/k! = k + 1.

But since Sym(k + 1) is a finite group, |(Sym(k + 1))∗| equals to the

number of conjugacy classes of Sym(k+1). (See Corollary 2.7, Character

Theory of Finite Groups, Irving Martin Isaacs). For each i = 2, 3, ..., k+1

choose an i-cycle Ci in Sym(k + 1). Then the conjugacy classes of Id,

C2,..., Ck+1 are pairwise disjoint. So the result follows.
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Theorem 3.1.6. For every finite complete subtree ∆ with diam(∆) ≥ 2,

the space (K̃(∆))
′ 6= ∅. In particular, H(∆) 6= {0}.

Proof. If diam(∆) = 2, then ∆ = V1({x}) for some x ∈ X and the maxi-

mal complete subtrees of ∆ are the k many edges of ∆. So, K̃(∆)/K(∆) ∼=

Sym(k + 1) and K(∆i)/K(∆) ∼= Sym(k) for all i = 1, ..., k where

∆1, ...,∆k are maximal complete subtrees of ∆. Then by corollary 3.1.5,

there is a unitary irreducible representation (π̃, V ) of K̃(∆)/K(∆) which

has no nonzero K(∆1)/K(∆) invariant vectors. Define π : K̃(∆) →

GL(V ) by π(g) = π̃(gK(∆)). Let gK(∆) = g̃ for all g ∈ G. Clearly,

〈π(g)v, π(g)w〉 = 〈π̃(g̃)v, π̃(g̃)w〉 = 〈v, w〉 for all g ∈ G, v ∈ V and

π(k)v = π̃(ẽ)(v) = v for all k ∈ K(∆), v ∈ V . So, (π, V ) is a unitary

irreducible representation of K̃(∆) which is trivial on K(∆) and which

has no nonzero K(∆1)-stationary vectors. Assume (π, V ) has a K(∆i)-

stationary vector v for some i. Let g ∈ G be such that gK(∆i)g
−1 =

K(∆1). Then for all h ∈ K(∆i), π(ghg−1)(π(g)v) = π(gh)(v) = π(g)(v)

so that π(g)v is a K(∆1)-stationary vector. Thus, (π, V ) has no nonzero

K(∆i)-stationary vectors for all i = 1, ..., k.

Note that for all i = 1, ..., n, ∆0 ⊂ ∆i and so K(∆i) ⊂ K(∆0). Let

x1, ..., xn ∈ ∂(∆0) and ∆1, ...,∆n be the corresponding maximal com-

plete subtrees of ∆. Given g ∈ K(∆0), for each i, there exists an el-

ement gi of K(∆i) with gi = g on the set {x : l(x,∆) = l(x, xi)} and

gi = Id on the set X − {x : l(x,∆) = l(x, xi)}. Then g =
∏n

i=1 gi

and g̃ =
∏n

i=1 g̃i in K(∆0)/K(∆). Since K(∆i) ∩ K(∆j) = K(∆),

K(∆i)/K(∆) intersects trivially with K(∆j)/K(∆) for all distinct i, j.

Hence K(∆0)/K(∆) is direct product of its subgroups K(∆1)/K(∆),...,

K(∆n)/K(∆). Note that the inner automorphisms of K̃(∆)/K(∆) per-

mute the groups K(∆1)/K(∆),

...,K(∆n)/K(∆). Then by lemma 3.1.3., K̃(∆)/K(∆) has an irreducible

unitary representation which has no K(∆i)/K(∆) for all i = 1, ..., n as

desired.

Now let (π, V ) ∈ (K̃(∆))
′
be unitary and let v ∈ V . Define a function
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f from G to C by

f(g) =

〈π(g)v, v〉 if g ∈ K̃(∆)

0 otherwise .

Let k, k
′ ∈ K(∆). Clearly, x ∈ K̃(∆) iff kxk

′ ∈ K̃(∆). Then

since V is trivial on K(∆), for x ∈ K̃(∆), f(kxk
′
) =

〈
π(kxk

′
)(v), v

〉
=

〈π(x)(v), v〉 = f(x) and for x /∈ K̃(∆), f(kxk
′
) = 0 = f(x) so that f is

K(∆)-bi-invariant. As f(e) = 〈v, v〉 = ‖v‖2 > 0, f is nonzero. Now let

∆i be a maximal complete subtree of the tree X. For any x /∈ K̃(∆),∫
K(∆i)

f(xk) dk =
∫
K(∆i)

0 dk = 0. Besides, for any x ∈ K̃(∆),∫
K(∆i)

f(xk) dµ(k) =

∫
K(∆i)

〈π(xk)v, v〉 dµ(k)

= µ(K(∆i))

∫
G

eK(∆i)(k)
〈
π(k)v, π(x−1)v

〉
dµ(k)

= µ(K(∆i))
〈
π(eK(∆i))v, π(x−1)v

〉
= 0

as π(eK(∆i))v ∈ V K(∆i) = {0}. Hence, f ∈ H(∆).

3.2 Subrepresentations of L(∆)

Lemma 3.2.1. Any nonzero G-invariant subspace L
′

of L(∆) has a

nonzero intersection with L(∆)K(∆). Conversely, if (T,H) is an irre-

ducible representation of G and HK(∆) 6= ∅, then T is equivalent to some

subrepresentation of L(∆).

Proof. Let f be a nonzero element of L
′
with f(g) 6= 0. Then, πL(g−1)f(e)

= f(g.e) = f(g) 6= 0 and πL(g−1)f ∈ L′ as L
′

is G-invariant. So we can

restart the proof by taking an element f ∈ L′ with f(e) 6= 0.

Let f ◦ = K(∆)f .

Firstly let us show that f ◦ ∈ L
′
. Let K

′
be an open compact sub-

group of G such that f is K
′
-left-invariant. Set M = K(∆) ∩ K ′ .
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Since {xM}x∈K(∆) is an open cover of K(∆) and K(∆) is compact,

K(∆) =
⋃n
i=1 xiM for some xi ∈ K(∆) where the sets x1M, ..., xnM

are pairwise disjoint.

Then,

f ◦(g) =

∫
K(∆)

f(k−1g) dµ(k)

=
n∑
i=1

∫
xiM

f(k−1g) dµ(k)

=
n∑
i=1

µ(M)f(x−1
i g)

= µ(M)

[
n∑
i=1

πL(xi)f

]
(g)

for all g ∈ G. So, f ◦ = µ(M) [
∑n

i=1 πL(xi)f ] ∈ L′ .

By proposition 3.0.2. part (a), f ◦ is K(∆)-left-invariant.

Since f is K(∆)-right-invariant, f ≡ f(e) on K(∆). Then,

f ◦(e) =
1

µ(K(∆))

∫
K(∆)

f(k−1) dµ(k)

=
1

µ(K(∆))

∫
K(∆)

f(e) µ(k) =
1

µ(K(∆))
.f(e).µ(K(∆)) = f(e) 6= 0.

So, f ◦ 6≡ 0.

Hence f ◦ ∈ L(∆)K(∆).

Now consider the mapping

φ : H // L(∆)

w � // φ(w) : G // C

g � // 〈T (g−1)w, ṽ〉

where ṽ is a nonzero element in H̃K(∆). We can choose such an element

as HK(∆) is nonempty.

For w ∈ H, let us denote φ(w) by φw. Now, φw is K(∆)-right-

invariant. This is because for all g ∈ G and k ∈ K(∆), we have

φw(gk) =
〈
T (k−1g−1)w, ṽ

〉
=
〈
T (g−1)w, T̃ (k)ṽ

〉
=
〈
T (g−1)w, ṽ

〉
= φw(g).
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If w is K-left invariant where K is an open compact subgroup of G,

φw(kg) =
〈
T (g−1)T (k−1)w, ṽ

〉
=
〈
T (g−1)w, ṽ

〉
= φw(g).

So φw is K-left-invariant, hence locally constant, hence continuous.

Thus the image of φ is in L(∆) so that φ is well defined.

The map φ : H → L(∆) is a nonzero intertwinning operator. This

follows from the following equation:

φ(T (h)v)(g) = φT (h)v(g)

=
〈
T (g−1)T (h)v, ṽ

〉
=
〈
T (g−1h)v, ṽ

〉
= φv(h

−1g)

= φ(v)(h−1g)

= πL(h)φ(v)(g)

for all g, h ∈ G and v ∈ H.

Then Ker (φ) = {0} as it is a proper G-invariant subspace of the

irreducible representation H.

Therefore φ is 1-1 and H is equivalent to the subrepresentation Im (φ)

of L(∆).

3.3 Finiteness of the functions in H(∆)

Lemma 3.3.1. Let ∆ be a finite complete subtree of the tree X with

diam(∆) ≥ 2. Let ∆
′

be a complete subtree not containing ∆. Then there

exists a proper complete subtree ∆0 ⊂ ∆, ∆0 6= ∆, such that K(∆0) ⊆

K(∆
′
)K(∆).

Proof. Without loss of generality we may assume that ∆
⋂

∆
′

contains

an edge. In fact, if their intersection is empty or consists of one vertex,

there exists only one x ∈ ∆ whose distance from ∆
′

is minimal. Let r

be the minimal distance between ∆ and ∆
′
. If there exists x, x

′ ∈ ∆
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and y, y
′ ∈ ∆

′
such that x 6= x

′
, y 6= y

′
and l(x, y) = l(x

′
, y
′
) = r ,

then (x, y) and (x
′
, y′) cannot intersect with ∆ or ∆

′
. So in the case

∆
⋂

∆
′

= ∅, we get a circuit [x, x
′
][x
′
, y
′
][y
′
, y][y, x] which leads to a

contradiction. In the case ∆
⋂

∆
′

contains only one vertex, r=0 and

consequently
{
x, x

′} ⊆ ∆
⋂

∆
′
, again a contradiction.

Now let ∆
′′

= {x ∈ X : l(x,∆′) ≤ r + 1}. As ∆
′′

= Vm(∆′), it is

complete. Let x be the vertex of ∆ whose distance from ∆
′

is r. Clearly,

x ∈ ∆′′. Since diam(∆) ≥ 2, there exists y ∈ ∆ with l(x, y) = 1 so that

l(y,∆′′) = r + 1, i.e. y ∈ ∆
′′
. Then ∆

⋂
∆
′′

contains the edge [x, y].

Moreover ∆′′ does not contain ∆. Otherwise, every y ∈ ∆ different from

x is adjacent to x which contradicts either with ∆ is complete or with

diam(∆) ≥ 2.

Since ∆′ ⊆ ∆′′, K(∆′′) ⊆ K(∆′). Now our aim is to find a proper

complete subtree ∆0 ⊂ ∆, ∆0 6= ∆, such that K(∆0) ⊆ K(∆
′′
)K(∆)

because if we find such ∆0 we get K(∆0) ⊆ K(∆
′′
)K(∆) ⊆ K(∆

′
)K(∆)

as desired.

Set ∆0 = ∆′′
⋂

∆. Since ∆′′
⋂

∆ contains an edge, diam(∆0) ≥ 1.

It is complete as it is the intersection of two complete trees and it is

different from ∆ as ∆ * ∆′′. For the boundary points x1, . . . , xn of ∆0,

let

Di = {x ∈ X : l(x,∆0) = l(x, xi)}
⋃
{xi}

and set

Ki = K ((∪j 6=iDj) ∪∆0) .

Clearly, Ki ⊆ K(∆0) for all i. Now, choose g ∈ K(∆0) and de-

fine gi ∈ G by gi = g on Di and gi = Id on the complement of

Di. Since Di

⋂
(
⋃
j 6=iDj) = ∅, we get gi = Id on

⋃
j 6=iDj and since

Di

⋂
(∆0\ {xi}) = ∅, we get gi = Id on ∆0\ {xi}. As these two force gi

to fix xi, we finally get gi ∈ Ki for all i and that g =
∏n

i=1 gi. Moreover,

Ki

⋂
Kj = {Id} for i 6= j. In fact, if g ∈ Ki

⋂
Kj, g fixes Di’s and ∆0

by definition of Ki and Kj so that g = Id. Hence, K(∆0) is the direct

product of its subgroups Ki, 1 ≤ i ≤ n.

36



For a given i, if ∆
⋂
Di = {xi}, ∆ ⊆ (

⋃
j 6=iDj)

⋃
∆0, i.e. Ki ⊆ K(∆).

Similarly, if ∆
′′ ⋂

Di = {xi}, Ki ⊆ K(∆
′′
). Therefore, if K(∆0) *

K(∆
′′
)K(∆), then for some i we have Ki * K(∆) and Ki * K(∆

′′
),

i.e. ∆
⋂
Di 6= {xi} and ∆

′′ ⋂
Di 6= {xi}. Thus there exist y1, y2 ∈ Di

such that y1 ∈ ∆, y2 ∈ ∆
′′
. Since ∆ and ∆

′′
are complete trees, we can

choose y1 and y2 so that l(y1, xi) = l(y2, xi) = 1. As ∆0

⋂
Di = {xi},

y1 6= y2. On the other hand, by the condition diam(∆0) ≥ 1, there exists

y ∈ ∆0 with l(y, xi) = 1. As y1, y2 /∈ ∆0, we have y 6= y1, y2. So xi is the

extremity of the two edges in ∆ and ∆
′′
, i.e. xi is not a boundary point

of ∆ and ∆
′′
. Then since ∆ and ∆

′′
are complete, all vertices adjacent

to xi are both in ∆ and ∆
′′

which implies y1 and y2 are in ∆0, i.e. xi is

not a boundary point of ∆0, a contradiction.

Lemma 3.3.2. Let ∆ and ∆
′

be complete trees with diam(∆) ≥ 2.

Let f ∈ H(∆)K(∆
′
). Then, f(g) = 0 if g∆ * ∆

′
, i.e. supp(f) ⊆{

g ∈ G : g∆ ⊆ ∆
′}

. In particular, if f ∈ H(∆)K(∆), f is supported on

K̃(∆).

Proof. First let us show that it sufficies to prove the theorem for g = e.

For this, assume we are done with the case g = e. Let g ∈ G be any

and consider the function πR(g)f . Observe that πR(g)f ∈ H(g∆)K(∆
′
).

Then since diam(g∆) = diam(∆) ≥ 2, we get πR(g)f(e) = f(g) = 0 if

g∆ * ∆
′

and we are done.

Now we will see f(e) = 0 if ∆ * ∆
′
. Since f is left K(∆

′
) and right

K(∆) invariant, f |K(∆′ ).K(∆) ≡ f(e) so that f |K(∆0) ≡ f(e) where ∆0 is

a proper complete subtree of ∆ satisfying K(∆0) ⊆ K(∆
′
)K(∆). Then
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together with f ∈ H(∆), we get

0 = α(∆,∆0)(f)(e)

=
1

µ(K(∆0))

∫
K(∆0)

f(k) dµ(k)

=
1

µ(K(∆0))

∫
K(∆0)

f(e) dµ(k)

=
1

µ(K(∆0))
.f(e).µ(K(∆0))

= f(e)

as desired.

Corollary 3.3.3. If ∆ is a finite complete subtree with diameter at least

2, then every element of H(∆) is compactly supported.

Proof. Let f ∈ H(∆). Then there is a finite complete subtree ∆f of X

such that f is K(∆f )-left invariant. This means by the previous lemma

that supp(f) is contained in the set S = {g ∈ G : g(∆) ⊆ ∆f}. Let (gn)n

be a convergent sequence in S with limn→∞ gn = g. Choose k ∈ N such

that ∆ ⊂ Bk and choose N ∈ N such that g = gn on Bk for all n ≥ N .

Then g∆ = gN∆ ⊂ ∆f , i.e g ∈ S. So, S is closed. Now let x be a vertex

of ∆ and y1, ..., ym be distinct vertices of ∆f . For each j = 1, ...,m, let

Sj = {g ∈ G : g(x) = yj}. Since each Sj is compact we get that S is

a closed subset of the compact set
⋃m
j=1 Sj. Then S, hence supp(f) is

compact.

Let us now state another corollary of lemma 3.3.2.

Corollary 3.3.4. The operator of left averaging over K(∆
′
) in H(∆)

projects H(∆) onto H(∆)K(∆
′
) and coincides with multiplication by the

characteristic function of the set
{
g ∈ G : g∆ ⊆ ∆

′}
.
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Proof. Let φ be the operator of left averaging over K(∆
′
) and f ∈ H(∆).

Since f is K(∆)-right-invariant, for all x ∈ G and y ∈ K(∆),

φ(f)(xy) =
1

µ(K(∆′))

∫
K(∆′ )

f(k−1xy) dµ(k)

=
1

µ(K(∆′))

∫
K(∆′ )

f(k−1x) dµ(k)

= φ(f)(x).

Hence φ(f) is K(∆)-right-invariant. By proposition 3.0.2, φ(f) is

continuous and K(∆
′
)-left-invariant. Also for all i = 1, ..., n and x ∈ G,

φ(f)K(∆i)(x) =
1

µ(K(∆i))

∫
K(∆i)

φ(f)(xk) dµ(k)

=
1

µ(K(∆i))

∫
K(∆i)

1

µ(K(∆′))

∫
K(∆′ )

f(g−1xk) dµ(g) dµ(k)

=
1

µ(K(∆′))

∫
K(∆′ )

1

µ(K(∆i))

∫
K(∆i)

f(g−1xk) dµ(k) dµ(g)

=
1

µ(K(∆′))

∫
K(∆′ )

fK(∆i)(g−1x) dµ(g)

= 0.

Thus, φ(f) ∈ H(∆)K(∆
′
).

Now if g∆ * ∆
′
, since φ(f) ∈ H(∆)K(∆

′
), by lemma 3.3.2., we

get φ(f)(g) = 0. If g∆ ⊆ ∆
′
, we get K(∆

′
) ⊆ K(g∆) = gK(∆)g−1.

Then, for all x ∈ K(∆
′
), there exists y ∈ K(∆) with x = gyg−1 so that

f(x−1g) = f(gy−1g−1g) = f(gy−1) = f(g). This implies that

φ(f)(g) = (µ(K(∆
′
)))−1

∫
K(∆′ )

f(x−1g) dµ(x)

= (µ(K(∆
′
)))−1

∫
K(∆′ )

f(g) dµ(x)

= f(g).

Hence φ(f) = fχ{g∈G:g∆⊆∆′} as desired.

Proposition 3.3.5. Every function in H(∆) is a finite sum of left trans-

lates of K(∆)-bi-invariant functions.
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Proof. Let f ∈ H(∆). As f is compactly supported, there exist g1, ..., gn ∈

G such that supp(f) ⊆
⋃n
i=1 giK̃(∆).

It is easy to check that πL(g−1)(f.χgK̃(∆)) = (πL(g−1)(f)) .χK̃(∆) so

that f.χgK̃(∆) = πL(g)
[
πL(g−1)(f.χgK̃(∆))

]
= πL(g)

[
(πL(g−1)(f)) .χK̃(∆)

]
for all g ∈ G. Then,

f = f.χ(
⋃n

i=1 giK̃(∆))

= f.

n∑
i=1

χ(giK̃(∆)) =
n∑
i=1

f.χgiK̃(∆) =
n∑
i=1

πL(gi)
[(
πL(g−1

i )(f)
)
.χK̃(∆)

]
where

(
πL(g−1

i )(f)
)
.χK̃(∆) = K(∆)

(
πL(g−1

i )(f)
)

is a K(∆)-bi-invariant

function for all i = 1, ..., n.

3.4 Admissibility of H(∆)

Let T (∆) be the representation of G in H(∆) by left translations.

Since any function f ∈ H(∆) is finite (compactly supported) on G,

H(∆) is a subspace of the space of square integrable functions L2(G) so

that we have an inner product on H(∆) that is defined by

〈f1, f2〉 =

∫
G

f1f2(g) dµ(g)

for f1, f2 ∈ H(∆). Note that this inner product is G-invariant, i.e.

〈T (∆)(g)f1, T (∆)(g)f2〉 = 〈f1, f2〉

for every f1, f2 ∈ H(∆) and g ∈ G.

Moreover, for every complete subtree ∆
′

of the tree X, the space

H(∆)K(∆
′
) is finite dimensional so that (T (∆), H(∆)) is an admissible

representation of G. Indeed, since for every f ∈ H(∆)K(∆
′
), f is K(∆)-

right-invariant and supported on the compact set
{
g ∈ G : g∆ ⊆ ∆

′}
,

H(∆)K(∆
′
) can be identified with the space V of functions on G/K(∆)

which take 0 on the cosets that do not intersect the set
{
g ∈ G : g∆ ⊆ ∆

′}
.

As
{
g ∈ G : g∆ ⊆ ∆

′}
is compact, only finitely many cosets, say
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g1K(∆), ..., gnK(∆) intersect with
{
g ∈ G : g∆ ⊆ ∆

′}
. Hence, V is gen-

erated by the functions f1, ..., fn where fi = χgiK(∆) for all i = 1, ..., n so

that V is finite dimensional. Then, H(∆)K(∆
′
) is also finite dimensional.

Consequently, the representation (T (∆), H(∆)) of G is unitary.

Note that as (T (∆), H(∆)) is algebraic, for all f ∈ H(∆) and f ∗ ∈

H(∆)∗ the matrix coefficient g 7→ 〈T (∆)(g)f, f ∗〉 is locally constant,

hence continuous.

3.5 A necessary and sufficient condition for T (∆) ∼

T (∆
′
)

Lemma 3.5.1. Let ∆
′

be a finite complete tree and diam(∆) ≥ 2. Then,

T (∆) ∼ T (∆
′
) iff ∆

′
= g∆ for some g ∈ G.

Proof. (⇒)Assume ∆
′ 6= g∆ for all g ∈ G. Without loss of generality,

assume Card(ver∆) ≥ Card(ver∆
′
). Then g∆ * ∆

′
for any g ∈ G. So

if f ∈ H(∆)K(∆
′
), by lemma 3.3.3. f(g) = 0 for all g ∈ G, i.e f ≡ 0.

In other words, there are no non-zero K(∆
′
)-stationary vectors in H(∆).

But by 3.2.1. H(∆
′
) contains a non-zero K(∆

′
)-stationary vector. Thus,

T (∆) and T (∆
′
) are disjunct.

(⇐) For the maximal complete subtrees ∆1, ...,∆n of ∆, the

maximal complete subtrees of ∆
′

are exactly g∆1, ..., g∆n. Note that

K(g∆i) = gK(∆i)g
−1 for all 1 ≤ i ≤ n. Then, if f ∈ H(∆), for all

x ∈ G and for all i we get

[πR(g)(f)]K(g∆i) (x) =
1

µ(K(g∆i))

∫
K(g∆i)

πR(g)(f)(xk) dµ(k)

=
1

µ(K(∆i))

∫
gK(∆i)g−1

f(xkg) dµ(k)

=
1

µ(K(∆i))

∫
K(∆i)

f(xgk) dµ(k)

=
1

µ(K(∆i))
fK(∆i)(xg)

= 0
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so that πR(g)(f) ∈ H(∆
′
).

Moreover, for all f ∈ H(∆) and x, h ∈ G,

[πR(g) ◦ T (∆)(h)] (f)(x) = πR(g) [T (∆)(h)f ] (x)

= [T (∆)(h)f ] (xg)

= f(h−1xg)

= [πR(g)(f)] (h−1x)

=
[
T (∆

′
)(h) ◦ πR(g)

]
(f)(x).

Thus πR(g) is an intertwinning operator from H(∆) to H(∆
′
). As

πR(g) is also bijective, we get T (∆) ∼ T (∆
′
).

3.6 Irreducible subrepresentations of H(∆)

Let H be a unimodular, seperable, locally compact group and K be

a closed subgroup of H. Let (π,W ) be a unitary representation of K

on a Hilbert space W and let V be the space of functions f : H → W

satisfying the following conditions:

1. f(hk) = π(k−1)f(h) for all k ∈ K and h ∈ H.

2. there is an open compact subgroup Kf of H such that f(kh) = f(h)

for all k ∈ Kf and h ∈ H.

3. f is compactly supported.

Then the representation (Ind(π), V ) acting according to the formula

Ind(π)(g0)(f)(g) = f(g−1
0 g)

is said to be induced by (π,W ). If f ∈ V , then f ∈ V Kf so that

(Ind(π), V ) is algebraic.

Moreover we can define an invariant inner product on V by

〈f, g〉 =

∫
H

〈f(x), g(x)〉 dµ(x)
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where µ is a left Haar measure on H.

Now let (π, V ) be an irreducible nondegenerate representation of the

compact group K̃(∆), which is trivial on K(∆) where ∆ is a complete

finite subtree of diameter ≥ 2. Since the group K̃(∆)/K(∆) is finite

and π is irreducible, π is finite dimensional. Then since π is a finite

dimensional representation of the compact group K̃(∆), we can put an

inner product on V that makes π a unitary representation on the Hilbert

space V .

Let (T (∆, π), Vπ) be the representation of G induced by π.

Set K = K(∆) and K̃ = K̃(∆).

Remark 3.6.1. Let h ∈ Vπ. Then the map h̃ : Vπ → C defined by

h̃(f) = 〈f, h〉 is contained in Ṽπ.

Proposition 3.6.2. Every matrix coefficient of π is a matrix coefficient

of T (∆, π) with support in K̃.

Proof. Given v ∈ V , define fv : G→ V by

fv(x) =

π(x−1)v if x ∈ K̃,

0 otherwise

Then, if g, k ∈ K̃,

fv(gk) = π(k−1g−1)v = π(k−1)π(g−1)v = π(k−1)fv(g)

and if g /∈ K̃ and k ∈ K̃ again we get

fv(gk) = 0 = π(k−1)fv(g)

so that

fv(gk) = π(k−1)fv(g)

for all g ∈ G and k ∈ K̃.

Similarly if g ∈ K̃ and k ∈ K,

fv(kg) = π(g−1k−1)v = π(g−1)π(k−1)v = π(g−1)v = fv(g)
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and if g /∈ K̃ and k ∈ K again we get

fv(kg) = 0 = fv(g)

so that fv is K-left-invariant.

Moreover, supp(fv) ⊆ K̃ so that fv is compactly supported.

Thus, fv ∈ T (∆, π).

Now, for g ∈ K̃ and v, w ∈ V ,

〈T (∆, π)(g)fv, fw〉 =

∫
G

〈T (∆, π)(g)fv(x), fw(x)〉 dµ(x)

=

∫
G

〈
fv(g

−1x), fw(x)
〉

dµ(x)

=

∫
K̃

〈
π(x−1g)v, π(x−1)w

〉
dµ(x)

=

∫
K̃

〈π(g)v, w〉 dµ(x)

= µ(K̃). 〈π(g)v, w〉

=
〈
π(g)v, µ(K̃).w

〉
and for g /∈ K̃,

〈T (∆, π)(g)fv, fw〉 = 0.

Hence the matrix element g 7→ 〈T (∆, π)(g)fv, fw〉 of T (∆, π) is equal

to the matrix element g 7→
〈
π(g)v, µ(K̃)w

〉
of π on K̃ and is equal to 0

elsewhere.

In other words, given a matrix element g 7→ 〈π(g)v, w〉 of π, the map

g 7→

〈π(g)v, w〉 if g ∈ K̃,

0 otherwise

is a matrix element of T (∆, π).

Lemma 3.6.3. Let ∆ be a finite complete subtree of the tree X and

diam(∆) ≥ 2. Then,

a) T (∆) splits into the direct sum of representations T (∆, π), where π

runs through the irreducible nondegenerate representations of K̃(∆). The
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representation T (∆, π) is irreducible and the multiplicity of its occurrence

in T (∆) is equal to dim π.

b)If π1 � π2, then T (∆, π1) � T (∆, π2).

Proof. a)Since H(∆) is unitary(i.e. admissible and unitarizable), by the-

orem 2.4.1. H(∆) is a direct sum of irreducible representations, say

H(∆) = ⊕i∈IHi. By lemma 3.2.1. each Hi contains a nonzero K(∆)-

invariant vector. So if I is infinite, we get infinitely many linearly inde-

pendent vectors inH(∆)K(∆). But this is impossible as dim(H(∆)K(∆)) <

∞. Hence, H(∆) is a direct sum of finitely many irreducible representa-

tions.

Now let H be an irreducible subrepresentation of H(∆). Set H =

H
⋂
H(∆)K . Then by theorem 2.2.1. each H is an irreducible represen-

tation of the convolution algebra H(G,K). Now let us understand the

action of the convolution algebra H(G,K) on H. So let ϕ ∈ H(G,K)

and f ∈ H. Then,

T (∆)(ϕ)(f)(g) = µ(K)

 ∑
x∈G/K

ϕ(x)f(x−1g)


=

∫
G

ϕ(x)f(x−1g) dµ(x)

= ϕ ∗ f(g)

for all g ∈ G. Hence, T (∆)(ϕ)(f) = ϕ ∗ f . Since ϕ ∗ f ∈ H(∆)K ,

supp(ϕ ∗ f) ⊆ K̃. On the other hand, supp(ϕ ∗ f) ⊆ supp(ϕ).supp(f) ⊆

supp(ϕ).K̃ . So, supp(ϕ ∗ f) ⊆ K̃
⋂

supp(ϕ).K̃. Note that if

K̃
⋂

supp(ϕ) = ∅, then K̃
⋂

supp(ϕ).K̃ = ∅ so that ϕ ∗ f ≡ 0.

Note also that H is a representation of K̃. Indeed, if f ∈ H and

x ∈ K̃, then given k ∈ K, x−1kx ∈ K as K is a normal subgroup of K̃

and consequently

T (∆)(k) [T (∆)(x)(f)] = T (∆)(x)
[
T (∆)(x−1kx)(f)

]
= T (∆)(x)(f).

Then (H)K = H is also a representation of the convolution algebra

H(K̃,K).
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For ϕ ∈ H(G,K), the restriction of ϕ on K̃ remains locally constant

as K̃ is open.

Hence, ϕ|K̃ ∈ H(K̃,K). Then, we observe that for all f ∈ H, if

g ∈ K̃
⋂
supp(ϕ).K̃

ϕ ∗ f(g) =

∫
K̃

⋂
supp(ϕ)

ϕ(x)f(x−1g) dµ(x) = ϕ|K̃ ∗ f(g).

Since

supp(ϕ|K̃ ∗ f) ⊆ K̃
⋂

supp(ϕ|K̃).K̃ ⊆ K̃
⋂

(K̃
⋂

supp(ϕ)).K̃ =

K̃
⋂

supp(ϕ).K̃, if g /∈ K̃
⋂
supp(ϕ).K̃,

ϕ ∗ f(g) = 0 = ϕ|K̃ ∗ f(g).

Thus we get ϕ ∗ f = ϕ|K̃ ∗ f . Consequently, H is an irreducible

representation of the algebra H(K̃,K), hence of the compact group K̃.

Let π be the representation of K̃ on the space H by left translations.

By definition of H(∆), H(∆)K is a space of functions on K̃, spanned over

the matrix elements of all irreducible nondegenerate representations of K̃

which are trivial onK. Hence π is nondegenerate and each nondegenerate

representations of K̃ trivial on K appears its dimension times.

Now define ϕ : T (∆, π) → H as follows: Take f ∈ T (∆, π). Since f

is compactly supported, supp(f) ⊆
⋃n
i=1 xjK̃ for some n ∈ N such that

xiK̃ 6= xjK̃ for distinct i, j. Then let

ϕ(f) =
n∑
i=1

T (∆)(xi)f(xi).

Since

ϕ [T (∆, π)(g)(f)] =
n∑
i=1

T (∆)(gxi)T (∆, π)(g)(f)(gxi)

=
n∑
i=1

T (∆)(gxi)f(xi)

= T (∆)(g)
n∑
i=1

T (∆)(xi)f(xi)

= T (∆)(g)ϕ(f)
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ϕ is an intertwinning operator.

Note that for each i, supp(T (∆)(xi)f(xi)) ⊆ xiK̃. Hence,

supp(T (∆)(xi)f(xi)) and supp(T (∆)(xj)f(xj)) do not intersect for dis-

tinct i, j so that ϕ(f) = 0 implies f = 0, i.e. ϕ is 1-1. Then since φ is

a 1-1 intertwinning operator to an irreducible representation H of G, we

get φ is onto.

Therefore, T (∆, π) ∼ H. Part (b) follows from proposition 3.6.2.
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4 Classification of

Cuspidal Representations of G

Since every irreducible algebraic representation of G is admissible,

Ol’shanskii had worked the irreducible admissible representations of G

to understand the irreducible algebraic ones. Also, he had worked the

irreducible admissible representations of G by seperating them into three

classes as follows.

Let ∆ be a fixed edge of our tree X and x1, x2 its extremities.

An irreducible admissible representation (π, V ) ofG is called cuspidal

if V has no nonzero K(∆)-stationary vectors.

An irreducible admissible representation (π, V ) of G is called special

if there is a nonzero K(∆)-stationary vector in V , but no nonzero vectors

which are stationary with respect to K({x1}) and K({x2}).

An irreducible admissible representation (π, V ) is called spherical if

there is a nonzero K0-stationary vector in V .

These definitions do not depend on the choice of ∆. For example to

see that the definition of a special representation does not depend on the

choice of ∆, let ∆
′
be a different edge from ∆ and x3, x4 be its extremities.

Let v be a nonzero vector in V which is K(∆)-stationary. Let h ∈ G be

such that h(x1) = x3 and h(x2) = h(x4). Then hK(∆)h−1 = K(∆
′
) and

consequently π(h)(v) is a nonzero K(∆
′
)-stationary vector. Moreover,

there is no K({x3}) and K({x4}) stationary vectors in V . Because, if

v is a nonzero K(
{
x3(4)

}
)- stationary vector, then π(h−1)v is a nonzero

K(
{
x1(2)

}
)-stationary vector, a contradiction.

The following theorem is the main theorem of this work. It gives

a classification for irreducible cuspidal representations of the automor-

phism group G.
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4.1 The main theorem and its proof

Theorem 4.1.1. 1. Let (T,H) be an admissible representation of G.

Then the following conditions are equivalent:

a) T is irreducible and cuspidal;

b) T ∼ T (∆, π), for some ∆ complete finite subtree of diameter ≥ 2

and for some π irreducible nondegenerate representation of K̃(∆),

which is trivial on K(∆).

c) T is irreducible and for all v ∈ H and ṽ ∈ H̃, the matrix element

g 7→ 〈T (g)v, ṽ〉 is compactly supported;

d) T is irreducible, unitary and its matrix coefficients lie in L1(G).

2. T (∆, π) ∼ T (∆
′
, π
′
), where (∆, π), (∆

′
, π
′
) are in b, iff there exists

g ∈ G such that g∆ = ∆
′
, and the representations a 7→ π(a) and

a 7→ π
′
(gag−1) of the group K̃(∆) are equivalent.

3. The formal dimension of the representation T (∆, π) is equal to

(dimπ)(vol(K̃(∆)))−1

where vol denotes the volume relative to the Haar measure on G.

Proof. 1. (a⇒b): Let (T,H) be an irreducible, cuspidal representa-

tion of G. Choose a complete finite subtree ∆ of the tree X such

that HK(∆) 6= {0} and for any complete finite subtree ∆
′

whose

diameter is less than the diameter of ∆, HK(∆
′
) = {0}. Then by

lemma 3.2.1. H is equivalent to a subrepresentation of L(∆) and

for any maximal complete subtree ∆i of ∆, H is not equivalent to a

subrepresentation of L(∆i). Let ϕ : H → L(∆) be a 1-1 intertwin-

ning operator. Now fix i and consider the intertwinning operator

ϕi = α(∆,∆i)◦ϕ fromH to L(∆i). If ϕi(H) 6= {0}, again by lemma

3.2.1. ϕi(H) hence H contains a nonzero K(∆i)- invariant vector,

a contradiction. Hence, for all i, ϕi(H) = α(∆,∆i) (ϕ(H)) = {0}
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so that ϕ(H) ⊆ H(∆). Hence we can consider H as a subrepresen-

tation of H(∆). Note that since H is cuspidal, diam(∆) ≥ 2. Then

by lemma 3.6.3. H is equivalent to T (∆, π) for some π irreducible

nondegenerate representation of K̃(∆), which is trivial on K(∆).

(b⇒a): Let (T,H) be a representation of G given as in b. By

lemma 3.6.3. T is equivalent to an irreducible subrepresentation

of H(∆). Now assume HK(∆
′
) 6= {0} for some edge ∆

′
of the

tree X. Then H(∆)K(∆
′
) 6= {0}. But since diam(∆

′
) = 1 and

diam(∆) ≥ 2 for any g ∈ G, g∆ * ∆
′
. So by lemma 3.3.2. we get

that if f ∈ H(∆)K(∆
′
), f(g) = 0 for all g ∈ G. So H(∆)K(∆

′
) = {0},

a contradiction.

(b⇒c): It is enough to show that matrix coefficients of the repre-

sentation H(∆) are compactly supported. So let f ∈ H(∆) and

f̃ ∈ H̃(∆). Then there is a finite subtree ∆
′

of X such that both

f ∈ H(∆)K(∆
′
) and f̃ ∈ H̃(∆)

K(∆
′
)

. But H̃(∆)
K(∆

′
)

= ˜H(∆)K(∆′ ).

Hence the matrix element g 7→
〈
T (∆)(g)f, f̃

〉
ofH(∆) is also a ma-

trix element of the Hilbert space H(∆)K(∆
′
). Note that H(∆)K(∆

′
)

is a Hilbert space as it is a finite dimensional inner product space.

Therefore it suffices to show that the matrix elements of H(∆)K(∆
′
)

are compactly supported. Since H(∆)K(∆
′
) is a Hilbert space, if φ

is a matrix element of H(∆)K(∆
′
),

φ(g) = 〈T (∆)(g)f, h〉

=

∫
G

f(g−1x)h(x) dµ(x)

for some f, h ∈ H(∆)K(∆
′
). Observe that if g /∈ supp(h).(supp(f))−1,

then φ(g) = 0. So, supp(φ) ⊆ supp(h).(supp(f))−1. As f and h are

in H(∆), both supp(h) and supp(f) are compact. Consequently,

supp(h).(supp(f))−1, hence supp(φ) is compact as desired.

(c⇒d): Matrix elements lie in L1(G) as they are compactly sup-

ported. Now fix a nonzero element F in H̃. Since the maps fv
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and fw which are respectively the maps g 7→ 〈T (g)(v), F 〉 and

g 7→ 〈T (g)(w), F 〉 are finite on G, we are allowed to define 〈v, w〉

as the integral of fv.fw over G. As T is algebraic and irreducible,

T is also admissible. Hence T is unitary.

(d⇒a): Assume HK(∆) 6= {0} for some edge ∆ of X. Then T is

either special or elementary. But in both cases, matrix elements

does not lie in L1(G)([3], Section 3 and Section 4), a contradiction.

2. (⇒) Assume T (∆, π) ∼ T (∆
′
, π
′
). Then there exists g ∈ G such

that g∆ = ∆
′
. Because, if g∆ 6= ∆

′
for all g ∈ G and Card(ver∆) ≥

Card(ver∆
′
) as we have shown before H(∆) has no nonzero K(∆

′
)-

invariant vectors. Then since T (∆, π) is equivalent to a subrepre-

sentation of H(∆), T (∆, π) has no nonzero K(∆
′
)-invariant vec-

tors. But H(∆
′
) has a nonzero K(∆

′
)-invariant vector. Then since

T (∆
′
, π
′
) is equivalent to a nonzero subrepresentation of H(∆

′
),

T (∆
′
, π
′
) has also a nonzero K(∆

′
)-invariant vector. To sum up, we

get that T (∆, π)K(∆
′
) = {0} whereas T (∆

′
, π
′
)K(∆

′
) 6= {0}. Simi-

larly, if Card(ver∆
′
) ≥ Card(ver∆) we get T (∆

′
, π
′
)K(∆) = {0}

whereas T (∆, π)K(∆) 6= {0}. So, both cases imply T (∆, π) �

T (∆
′
, π
′
), a contradiction.

Now fix g ∈ G with g∆ = ∆
′
. Let σ be the representation a 7→

π
′
(gag−1) of K̃(∆). Note that σ is irreducible, nondegenerate and

trivial on K(∆). We will show that the representations π and σ of

the group K̃(∆) are equivalent.

If π � σ, then by lemma 3.6.3.b. T (∆, π) � T (∆, σ). But since

T (∆, σ) ∼ T (∆
′
, π
′
), we get T (∆, π) � T (∆

′
, π
′
), a contradiction.

To see T (∆, σ) ∼ T (∆
′
, π
′
), define

φ : T (∆, σ) // T (∆
′
, π
′
)

f � // φ(f) : G // π
′

h � // f(hg)
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Since g∆ = ∆
′
, gK̃(∆)g−1 = K̃(∆

′
). So given k

′ ∈ K̃(∆
′
), k

′
=

gkg−1 for some k ∈ K̃(∆). Then for all f ∈ T (∆, σ),

φ(f)(hk
′
) = f(hk

′
g)

= f(hgk)

= σ(k−1)f(hg)

= π
′
(gk−1g−1)f(hg)

= π
′
((k

′
)−1)φ(f)(h).

Moreover, supp(φ(f)) ⊆ supp(f)g−1 so that φ(f) is compactly sup-

ported and φ(f) is Kf -left-invariant where f is Kf -left-invariant.

Hence φ is well-defined. φ is clearly a 1-1 intertwinning operator.

As T (∆
′
, π
′
) is irreducible, φ is also onto as desired.

(⇐) Assume there exists g ∈ G such that g∆ = ∆
′

and the repre-

sentations π and σ(defined as above) of K̃(∆) are equivalent. Let

T be a bijective intertwinning operator from π to σ. Now define a

map φ from T (∆, π) to T (∆
′
, π
′
) as follows:

φ : T (∆, π) // T (∆
′
, π
′
)

f � // φ(f) : G // π
′

h � // T (f(hg))

Let k
′ ∈ K̃(∆

′
). Then k

′
= gkg−1 for some k ∈ K̃(∆) and for all

f ∈ T (∆, π),

φ(f)(hk
′
) = T (f(hk

′
g))

= T (f(hgk))

= T (π(k−1)f(hg))

= π
′
(gk−1g−1)T (f(hg))

= π
′
((k

′
)−1)φ(f)(h)

3. Since T (∆, π) is unitarizable, its formal dimension dInd(π) can be

computed by the inverse of the L2 norm of a given matrix coefficient
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of T (∆, π). Let v ∈ V be such that ‖v‖ = 1. As we have seen

before(remark 3.6.1. and prop 3.6.2.), the map g 7→ 〈π(g)v, v〉 on

K̃ and which is supported on K̃ is a matrix coefficient of T (∆, π).

Call this map φ. Therefore,

dInd(π) =

(∫
G

|φ(g)|2 dµ(g)

)−1

=

(∫
K̃

|〈π(g)v, v〉|2 dµ(g)

)−1

=

[
µ(K̃)

∫
K̃

1

µ(K̃)
|〈π(g)v, v〉|2 dµ(g)

]−1

=
1

µ(K̃)
.

[
dim(π)

‖v‖2

]
= dim(π).(µ(K̃))−1.

Note that the fourth equation follows from Schur’s orthogonality

relation on the representations of compact group which states that

given a compact group H with its normalized Haar measure µ and

an irreducible finite dimensional representation π of H,∫
H

|〈π(h)(u), v〉|2 dµ(h) =
1

dim(π)
‖u‖2 ‖v‖2

for all u, v ∈ π.
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