
DESIGN OF A WAREHOUSE ORDER PICKING POLICY

USING GENETIC ALGORITHM

by

Ahmet Can Saner

Submitted to the Institute of Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Intelligent Systems Engineering

İstanbul Bilgi University

2017

ii

DESIGN OF A WAREHOUSE ORDER PICKING POLICY

USING GENETIC ALGORITHM

APPROVED BY:

Assoc. Prof. Dr. Ayhan Özgür Toy ……………………………………

(Supervisor)

Dr. Zehra Düzgit ……………………………………

(Supervisor)

Assist. Prof. Dr. Deniz Özdemir ……………………………………

Assist. Prof. Dr. Umman Mahir Yıldırım ……………………………………

Prof. Dr. Yavuz Günalay ……………………………………

DATE OF APPROVAL: / /

iii

ACKNOWLEDGEMENTS

I dedicate this thesis to my father, Kemal Saner, MS, CE (1950-1994). My father was a

hardworking, benevolent and respected man who had profound love for his family. He is my

first and best hero in my life that I had the chance to know only until my secondary school

years. He is the one that actually formed my qualities and ambitions, the actual essence of

who I am. I owe my everything to my father; my ultimate source of guidance and inspiration,

my role model.

After this dedication, I would like to express my gratitude to people who in one way or

another contributed and assisted in the preperation and completion of this thesis.

First and foremost, I would like to express my deepest thanks to my advisor Dr. Zehra

Düzgit, for her supervision, excellent guidance, patience, support and continuous

encouragement to continue and complete this thesis. Above all and the most needed, she

guided me in every step of this thesis on each matter that should be focused. She was always

ready to answer my questions any time and she patiently corrected all my writing. Without

her, this thesis would not have been completed or written within the limited time frame. I

cannot think of a better or friendlier advisor to have. I am indebted to her more than she

knows. I sincerely hope I continue to have opportunities to interact with her for the rest of

my career.

I offer my utmost gratitude to my advisor Assoc. Prof. Dr. Ayhan Özgür Toy, for his

guidance from the very early stage of this thesis, for his valuable advices, supervision and

crucial contribution to this thesis. His involvement with his extraordinary experiences and

feedback throughout the work, his encouragement and support in various ways allowed me

to prepare such a detailed work. He provided me an excellent atmosphere for doing research

and freedom to work in my own way. I am grateful to him in every possible way.

I would also like to thank my committee members, Prof. Dr. Yavuz Günalay, Assist. Prof.

Dr. Deniz Özdemir and Assist. Prof. Dr. Umman Mahir Yıldırım, for their time, interest,

iv

brilliant suggestions and providing insightful discussions and helpful comments about this

thesis.

A very special gratitude goes to all my Computer Science instructors, specially to Chris

Stephenson, MA, Assoc. Prof. Dr. Mehmet Gençer, and Dr. Elif Pınar Hacıbeyoğlu for

showing me, by their example, how a good scientist and person should be. As my teachers

and mentors, they have taught me more than I could ever give them credit for here. Special

thanks to Mehmet Gençer for convincing me to start Intelligent Systems Engineering

program in Bilgi University that gave me the golden opportunity to complete this thesis.

Thanks to all my teachers for their intellectual contributions to my development as a

scientist.

And finally, last but by no means least, I would like to thank my amazing family, unique in

many ways, for their unconditional love and support all these years. My mother Canan has

given up many things for me to have a good education, my sisters Cana and Ceren cherished

with me in good times and encouraged me with their wishes in bad times. Most importantly,

I wish to thank my loving wife, Beyza, who provides me my unending inspiration to work.

She is the source of my love, my creativity and my patience. She were there when I felt tired

to get me up, she were there when my thoughts are dried to help me find a way out. She were

there when sometimes I went mad to calm me down. She were always there cheering me up

and stood by me through the good times and bad.

I would like to thank to everybody who was important to the successful realization of this

thesis, as well as expressing my apology that I could not mention personally one by one.

v

DESIGN OF A WAREHOUSE ORDER PICKING POLICY

USING GENETIC ALGORITHM

Ahmet Can Saner

Intelligent Systems Engineering, M.S. Thesis, 2017

Thesis Supervisors: Assoc. Prof. Dr. Ayhan Özgür Toy, Dr. Zehra Düzgit

In this study, improving order-picking process is considered which is an essential

operation critically impacting warehouse and supply chain performance. The

problem of reducing travelled distance of an order picker is examined in a multi-

block warehouse. The study is composed of two phases: In the first phase, the

shortest path between each pair of items is determined in a pick list leading to the

second phase of determining the sequence of all items to be picked. A

mathematical model is utilized to find the shortest path between each item pair in

a pick list. A genetic algorithm based approach is developed to decide the picking

sequence of all items in an order list, given the shortest distance between each pair

of items. The performance of the proposed algorithms is compared to popular

heuristics used for multi-block warehouses, namely: S-Shape and Largest Gap.

Keywords: order picking, picker routing, meta-heuristic, genetic algorithm

vi

GENETİK ALGORİTMA KULLARAK BİR DEPO SİPARİŞ

TOPLAMA POLİTİKASI TASARIMI

Ahmet Can Saner

Akıllı Sistemler Mühendisliği, Yüksek Lisans Tezi, 2017

Tez Danışmanları: Doc. Dr. Ayhan Özgür Toy, Dr. Zehra Düzgit

Bu çalışmada, depo ve tedarik zinciri verimi için kritik öneme sahip sipariş toplama

sürecinin iyileştirilmesi amaçlanmaktadır. Çok bloklu depolarda sipariş toplayıcı

tarafından katedilen mesafenin azaltılması problemi incelenmiştir. Çalışma iki fazdan

oluşmaktadır: Birinci fazda sipariş toplayıcının sipariş listesindeki her iki ürünün

arasındaki en kısa mesafe ve rota hesaplanır ve ikinci fazda bu mesafeler ışığında sipariş

listesindeki toplanacak ürünlerin sırası ve rotası belirlenir. Sipariş listesindeki her iki

ürünün arasındaki en kısa mesafeyi hesaplamak için bir matematiksel model

kullanılmıştır. Sipariş listesindeki ürün ikililerinin arasındaki en kısa mesafeleri

kullanarak sipariş listesindeki toplanacak ürünlerin sırasını belirleme aşaması genetik

algoritma tabanlı bir yaklaşım izlenerek geliştirilmiştir. Önerilen algoritmanın performansı

popüler çok bloklu sipariş toplama rotası sezgiselleri: s-şekilli ve en büyük aralık sezgiselleri

ile karşılaştırılmıştır.

Anahtar Kelimeler: sipariş toplama, toplayıcı rotası, meta-sezgisel, genetik algoritma

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT... v

ÖZET... vi

TABLE OF CONTENTS... vii

LIST OF FIGURES.. ix

LIST OF TABLES.. xi

LIST OF SYMBOLS / ABBREVIATIONS... xii

1. INTRODUCTION ... 1

2. LITERATURE REVIEW .. 14

3. PROBLEM DESCRIPTION ... 19

 3.1. WAREHOUSE LAYOUT ... 21

 3.2. ITEM COORDINATE SYSTEM .. 23

 3.3. ASSUMPTIONS .. 24

4. SOLUTION METHODOLOGY .. 25

5. GENETIC ALGORITHM .. 27

 5.1. GENETIC ALGORITHM MECHANISMS .. 30

 5.1.1. Selection (Reproduction) ... 30

 5.1.2. Crossover (Recombination) ... 33

 5.1.3. Mutation ... 34

 5.1.4. Reinsertion (Survival) .. 35

 5.2. ORDERING PROBLEMS AND INVALID (INFEASIBLE) OFFSPRING 38

 5.3. CROSSOVER OPERATORS FOR PICKING SEQUENCE PROBLEM 39

 5.3.1. Cycle Crossover (CX) .. 40

 5.3.2. Partially-Mapped Crossover (PMX) .. 42

 5.3.3. Order Crossover (OX) .. 45

6. PARAMETER TUNING ... 49

7. S-SHAPE and LARGEST GAP HEURISTICS ... 54

viii

8. COMPUTATIONAL TESTS ... 56

9. CONCLUSION ... 64

REFERENCES .. 67

APPENDIX A: PSEUDOCODE FOR S-SHAPE HEURISTIC 71

APPENDIX B: FLOWCHART FOR S-SHAPE HEURISTIC 72

APPENDIX C: PSEUDOCODE FOR LARGEST GAP HEURISTIC 73

APPENDIX D: FLOWCHART FOR LARGEST GAP HEURISTIC 74

ix

LIST OF FIGURES

Figure 1.1. Distribution of Warehouse Operating Expenses, ([2]) ………...…………….. 3

Figure 1.2. Classification of Order Picking Systems, ([3])…………………..…………... 4

Figure 1.3. Distribution of Order Picker’s Time, ([2]) …………………………..………. 6

Figure 1.4. Routing Policies for Single-block Warehouse, ([3]) …………………...……. 8

Figure 1.5. Routing Policies for Multi-block Warehouse, ([9]) …………………...……. 11

Figure 3.1. Forward Pick Area Layout ………………………………………………….. 22

Figure 3.2. Item Coordinate System …………………………………………………….. 23

Figure 4.1. Junction Points ……………………………………………………………… 26

Figure 5.1. An Example of a Tour for Picking Sequence ………………………………. 28

Figure 5.2. Roulette Wheel Representation for Selection Method ……………………… 32

Figure 5.3. Pseudocode of Genetic Algorithm ………………………………………….. 37

Figure 5.4. Steps of Genetic Algorithm ………………………………………………… 38

Figure 5.5. Invalid Offspring …………………………………………………………… 39

Figure 5.6. Parental Chromosomes for Crossover Examples …………………………… 40

Figure 5.7. Identifying Cycles for Cycle Crossover …………………………………….. 41

Figure 5.8. Filling Cycles in Offspring for Cycle Crossover …………………………… 41

Figure 5.9. Listing Missing Values of First Offspring for Partially-Mapped Crossover .. 43

Figure 5.10. Placement of First Missing Value for Partially-Mapped Crossover ………. 44

Figure 5.11. Filling Remaining Genes of the First Offspring for Partially-Mapped

Crossover ……………………………………………………………………………….. 45

Figure 5.12. Forming the Second Offspring with Partially-Mapped Crossover ……....... 45

Figure 5.13. Forming Offspring with Order Crossover ………………………………… 46

Figure 5.14. Offspring Chromosome for Mutation Examples ………………………….. 47

Figure 5.15. Mutation of Offspring with Inversion Mutation …………………………... 47

Figure 5.16. Mutation of Offspring with Swap Mutation ………………………………. 48

Figure 6.1. Parameter Tuning for Population Size ……………………………………… 50

Figure 6.2. Parameter Tuning for Crossover Probability ……………………………….. 51

x

Figure 6.3. Parameter Tuning for Mutation Probability ………………………………… 53

Figure 7.1. Routing Paths for: (a) S-Shape (b) Largest Gap ……………………………. 54

xi

LIST OF TABLES

Table 5.1. Sample Shortest Distance Matrix for a 4-Item Picklist (in meters) …………. 28

Table 5.2. Total Travelled Distance (in meters) and Fitness Score of the 1st Generation . 30

Table 5.3. Selection Probabilities ……………………………………………………….. 31

Table 5.4. Mating Pool Generation ……………………………………………………... 32

Table 5.5. Implementation of Crossover Probability on the Mating Pool ……………… 33

Table 5.6. Implementation of Mutation Probability on Formed Offspring …………….. 35

Table 5.7. Ranking of Chromosomes in Mating Pool for Reinsertion ………………….. 36

Table 5.8. Total Travelled Distance (in meters) and Fitness Score of the 2nd Generation 36

Table 6.1. Average Travelled Distance Results per Population Size …………………… 49

Table 6.2. Average Travelled Distance Results per Crossover Probability …………….. 51

Table 6.3. Average Travelled Distance Results per Mutation Probability ……………… 52

Table 8.1. Performance Comparison for Travelled Distance for 25-Item Pick List (meters)

…………………………………………………………………………………………… 58

Table 8.2. Running Time for 25-Item Pick List (seconds) ……………………………… 59

Table 8.3. Performance Comparison for Travelled Distance for 50-Item Pick List (meters)

…………………………………………………………………………………………… 60

Table 8.4. Running Time for 50-Item Pick List (seconds) ……………………………… 61

Table 8.5. Performance Comparison for Travelled Distance for 100-Item Pick List (meters)

…………………………………………………………………………………………… 62

Table 8.6. Running Time for 100-Item Pick List (seconds) …………………………….. 63

xii

LIST OF SYMBOLS / ABBREVIATIONS

A Horizontal block index of Item Coordinate System

B Vertical block index of Item Coordinate System

C Side of block of Item Coordinate System

D Shelf Index of Item Coordinate System

K Length of a shelf of warehouse

L Carton flow rack system length of warehouse

W Carton flow rack system width of warehouse

S Number of shelf per carton flow rack system of warehouse

AS/RS Automated Storage/Retrieval System

CX Cycle Crossover Operator

GA Genetic Algorithm

NP Nondeterministic Polynomial Time

OX Order Crossover Operator

P Polynomial Time

P/D Pick-up/Drop-off Point

PMX Partially-Mapped Crossover Operator

RF Radio Frequency

SKU Stock Keeping Unit

TSP Travelling Salesman Problem

1

1. INTRODUCTION

In commerce, supply chain is the distribution and coordination network of goods and

resources for delivering from supplier as a point of origin, through intermediaries and third-

party service providers to customer as a point of consumption. Supply chain management is

the design, planning and management of this flow and its activities in a timely and cost-

effective manner. Logistics or logistics management, which is a part of supply chain

management, is the combination of activities such as procurement, maintenance,

distribution, forward and backward flow and storage of goods in right conditions. In other

words, logistics is the management of inventory in motion.

In the past, keeping inventory meant warehousing products in excess quantities that is much

more than demand and usually considered as a back-office operation that is undesirable,

costly but necessary. Fundamental changes such as competition and emergence of online

shopping or e-tailing changed companies of the past to use contemporary just-in-time

inventory management and to apply lean thinking on their supply chain management. More

global a company is, warehousing of products has more impact on their operations, service

level and costs. Today, companies facing great global competition are not treated by sole

quality of their products, they are also expected to efficiently deliver products to customers.

Due to the growth, globalization and popularity of e-commerce, customer preferences also

shifted to companies having more product diversity with less delivery time, meaning more

flexible and responsive to customer needs. All these changes required organizations to

reinforce logistics operations, to focus much more on warehousing accurate amount and type

of products in the right and most strategic locations to gain and sustain competitive

advantage.

When viewed in this context, warehousing becomes a critical activity of supply chain.

Following demanded quality and customer service improvements, warehouses are not only

major components of logistics systems as points of storage in the distribution network, but

also are essential for success due to their inventory visibility and accuracy functions.

2

Nowadays, efficient management of warehouses is a key factor for the companies’ success.

Keeping the right products available for the customers concerning product popularity,

picking and shipping these items to customers on time are considered responsibilities of

current warehouses to fulfill customer expectations, therefore increase product sales.

Warehouses are accounted as profit-centers instead of cost-centers these days and more

companies that are competing for growing e-tail market look to improve productivity and

decrease costs within their warehouses through designing and operating their various

operations in the most efficient and effective manner.

According to [1], the following standardized operations take place in a typical warehouse:

- Receiving: all activities to be done for the task of receiving products such as unloading

and inspecting incoming products and updating records.

- Storage: transferring products from the receiving area to their location in storage and

housing products until requested.

- Order Picking: retrieving right amount of right products from their storage locations for

a set of independent customer orders.

- Shipping: Packing, accumulating and sorting customer orders.

Among all these operations forming flow of products from supplier to customer, most

crucial, highest priority and strategic operation of a warehouse regarding customer

expectations is order picking. It is the most labor-intensive, time consuming hence most

expensive function of a warehouse impacting for more than a half of the total warehousing

costs, as seen in Figure 1.1. According to [2], 55% of all operating expenses are accredited

to order picking activity.

3

Figure 1.1. Distribution of Warehouse Operating Expenses, ([2])

The efficient organization and management of order picking operation concluded to less time

spent on order picking operation yields less delivery time supporting higher customer service

level, thereby directly impacts warehouse's and whole supply chain's performance.

Management of order picking operation differs mainly per employed order picking system

in the warehouse.

As shown in Figure 1.2, [3] classify order picking systems mainly into two categories, that

is, employing humans or automated machines. Self-explanatory automated and robotized

picking systems are very specially used for small and delicate items and are not very

common. Among the warehouses mostly using order picking systems that is employing

humans, sub classifications as picker-to-parts, parts-to-picker and put systems exist. Two

types of picker-to-parts system can be recognized: low-level or high-level picking systems.

In low-level order picking systems, order picker travels throughout the storage area and picks

required items from storage racks. In high-level order picking systems, order picker travels

to pick location boarding an order picking truck or crane and perform picking activity with

it. Parts-to-picker systems comprise AS/RS (automated storage/retrieval system) that

retrieve required unit loads to a Pick-up/Drop-off (P/D) point for order picker to take

required number of items from inside and store remaining load back. Put systems are formed

of retrieval and distribution process. For retrieval process, parts-to-picker or picker-to-parts

system may be used. For the distribution process, pre-picked items are directed to an order

picker in order to make them distributed over pick lists. Order picker puts retrieved items to

10%

15%

55%

20%

Receiving Storage Picking Shipping

4

customer packages. Among all these systems, according to [3], low-level picker-to-parts

order picking systems employing humans are the most widely used systems and constitute

over 80% of all order picking systems in Western Europe.

Figure 1.2. Classification of Order Picking Systems, ([3])

According to [4], in order to effectively minimize the time spent for picking and maximize

efficiency of storage space, it is necessary for warehouse managers to solve some

management decision problems namely layout design, storage assignment problems which

are classified as strategic problems and order picking policies and routing policies problems

which are classified as operational problems.

Strategic management decisions are long term decisions aiming to increase competency.

Operational decisions are short-term decisions related to warehouse operations.

5

Layout design problem focuses on maximizing efficient usage of warehouse storage layout.

Sizing of warehouse, where to place warehouse departments and determining layout of all

these departments are all related to layout design. Warehouses are divided by aisles

containing shelves where the products are stored for pickers to travel to and retrieve. P/D

point is where pick lists are received and are given to order picker to start retrieving them.

Usually but not required, there are also cross aisles perpendicular to aisles that enables order

picker to change any aisle or move around the warehouse A warehouse layout can be

classified as single-block or multi-block warehouse. In single-block warehouses, order

picker can change aisles at front and back cross aisle of warehouse having single block

between these two cross aisles. That is the reason these warehouses are named single-block

warehouses. There can also be one or more cross aisles at positions in between front and

back cross aisle. These warehouses with more than two cross aisles are named multi-block

warehouses.

Storage assignment policies specify where items will be assigned to storage locations in

warehouse layout. According to [4], there are five mostly used storage assignment policies:

1- Random: items are randomly assigned to an eligible empty location.

2- Closest-open-location: items are assigned to the closest empty location.

3- Dedicated: items either in stock or out of stock are assigned to a fixed location.

4- Full-turnover: items are distributed over the storage area according to their turnover.

Simply, products with the highest sales rates are located at the easiest reachable

locations, usually near P/D point.

5- Class-based: items are classified into different classes and assigned to a location in a

dedicated, fixed area of warehouse that is reserved for each class.

Order picking policies state how order picker behaves in his picking tour for the items in the

pick list. Three order picking policies are considered as zoning, batching and routing. Zoning

is a way of dividing the total storage area for order picking to retrieve items into smaller

units. Zoning takes place when order pickers only pick items from an order that are located

in their assigned zone. Using this way, an order is distributed over a number of order pickers

and several order pickers work to complete the same order. Batching is to let an order picker

6

combine and retrieve several orders simultaneously at the same time. Using this way, order

pickers collects batch of orders, sorting items before or after the retrieval of item.

Routing policies define in which order an order picker will retrieve the items in his pick list.

These policies mainly focus on travelling time of an order picker which is typically the most

time-spent activity of an order picker in a usual picking tour. Typical distribution of an order

picker's time in a typical warehouse with a picker-to-parts human employing order picking

system with manual picking operations according to [2] is shown on Figure 1.3. Travelling

activity accounts for 50% of total order processing time hence it is counted as a key

performance indicator of order picking systems. Compared to other activities during order

picking, travelling is the most focused activity to improve and routing policies are specially

developed to reduce travelling distance and in consequence to reduce the costs related to

travelling activity of order pickers.

Figure 1.3. Distribution of Order Picker’s Time, ([2])

The problem of routing order pickers is generally solved using heuristic methods which are

algorithms that solve a problem with a feasible but not guaranteed to be optimal solution. As

shown in Figure 1.4, for single-block warehouses, the heuristic methods mainly used are:

5%

10%

15%

20%

50%

Other Setup Pick Search Travel

7

1. S-Shape (Traversal) Heuristic: Basically, order picker traverses through the entire

length of any aisle containing at least one item. Aisles where there is no item to be picked

are skipped by order picker.

2. Return Heuristic: Order picker enters any aisle containing at least one item and leaves

each aisle from the same end. Aisles where there is no item to be picked are skipped by

order picker.

3. Midpoint Heuristic: Warehouse is divided into two halves. Items of an aisle to be

picked in the front half are entered from front cross-aisle and items of an aisle to be

picked in the back half are entered from the back cross-aisle. Order picker traverses to

the back half of the warehouse by the first or the last aisle containing at least one item to

be picked.

4. Largest Gap Heuristic: Similar to midpoint heuristic, except order picker enters an aisle

containing at least one item as far as the largest gap within an aisle, instead of midpoint

of the aisle. A gap represents the distance between any two adjacent items, between the

first item of the aisle and the front cross-aisle, or between the last item to be picked and

the back cross-aisle. The largest gap within an aisle is the portion of the aisle that is not

traversed by order picker. If the largest gap is between two adjacent items to be picked,

the picker enters same aisle from both ends. Otherwise, picker enters aisle from either

front of back aisle.

5. Combined Heuristic: Order picker enters any aisle containing at least one item and

decides whether to leave from the same end or the other end using dynamic

programming. Order picker will choose whether to traverse the entire aisle or not

according to the next item location on next aisle aiming to have a better starting point for

the next aisle.

In addition to these heuristics, an optimal algorithm is proposed by [5], to find shortest

picking route for single-block warehouses.

8

Figure 1.4. Routing Policies for Single-block Warehouse, ([3])

All the above heuristic methods, that are initially generated for single-block warehouses, can

also be used for multi-block warehouses with some modifications, as shown in Figure 1.5.

According to [6], heuristic methods used for multiple block warehouses are:

9

1. S-Shape (Traversal) Heuristic: Order picker first calculates the left-most pick aisle and

the farthest block from the P/D point that contains at least one item. Order picker starts

his route by traversing the left-most pick aisle until the front cross-aisle of the farthest

block and continues to traverse the entire length of sub aisles having at least one item to

the back cross-aisle of the farthest block and to returns to the front cross-aisle of the

farthest block again while picking items on his route. Sub aisles without any item are

skipped. At the last sub-aisle order picker either traverses the entire aisle from back

cross-aisle to front cross-aisle or enters from front-cross aisle and leaves from the same

end to finish the route of the block on his front cross-aisle and continues the same

procedure for the next block. Order picker finishes picking items block-by-block and

returns to P/D point.

2. Largest Gap Heuristic: Starting procedure of calculating the left-most pick aisle, the

farthest block of warehouse that contains at least one item and traversing the left-most

pick aisle until the front cross-aisle of the farthest block is the same with S-Shape

heuristic. After order picker starts to pick items for a selected block following starting

procedure, picker enters a sub-aisle containing at least one item as far as the largest gap

within that sub-aisle instead of entirely traversing it. The last subaisle of the selected

block is traversed entirely by order picker to continue to pick non-picked sub-aisle items

entering front cross-aisle of the selected block as well. When all items for a selected

block are picked, order picker continues to pick items for the next block using the same

procedure until he returns to P/D point.

3. Aisle-by-aisle Heuristic: This algorithm proposed by [7] aims to visit every aisle that is

having at least one item only once. Order picker similarly starts from the left-most aisle

that is having at least one item and continues with selecting the most suitable cross aisle

using dynamic programming according to the starting point of the next selected pick

aisle.

4. Combined Heuristic: Combined heuristic method differs from S-Shape heuristic by the

ability to choose between entirely traversing a sub-aisle or entering and leaving from the

same end of a sub-aisle using dynamic programming by looking at the starting point of

the next pick sub-aisle ahead. This method uses the same starting procedure as S-Shape

method and starts picking items from the left-most pick aisle.

5. Combined+ Heuristic: An improved and more complex version of combined heuristic

method that uses dynamic programming method twice due to the fact that warehouse is

10

assumed to be divided into two parts, left and right. Order picker does not start picking

items from the left-most pick aisle but instead he uses dynamic programming to select

pick aisle of the left part of a selected block to go to the back cross-aisle of that selected

block and uses dynamic programming again to select pick aisle of the right part of the

selected block to return to the front cross-aisle of the selected block. Order picker

continuously picks items of every block using the same selection process determined by

dynamic programming.

In addition to these heuristics, an optimal algorithm is introduced by [8] for multi-block

warehouses to find the shortest picking route based on the optimal method proposed by

[5]. This optimal method is proposed for warehouses having only one-cross-aisle

between the front and back aisle.

11

Figure 1.5. Routing Policies for Multi-block Warehouse ([9])

In this study, order picking problem of a company employing manual, low-level, picker-to-

parts system in its order picking area having multi-block layout is taken into consideration.

In picker-to-parts order picking systems, determining a suitable sequence of pick locations

to minimize total travelling distance is somewhat similar to travelling salesman problem

(TSP).

The travelling salesman problem (TSP) searches an answer to: "Given a set of cities and the

distances between each pair of these cities, what is the route with minimum total travelling

distance while visiting each city exactly once and returning to the starting city?". TSP is a

12

classic example of NP-hard problems in operations research that cannot be solved using a

polynomial time algorithm.

To describe what an NP-hard problem is, problem definitions and classes of computational

complexity theory should be examined. There are various kinds of computational problems

in computational complexity theory that classified according to the possible algorithm to

solve that problem. For P (polynomial time) problems, there is a polynomial time algorithm

to solve it. For NP (nondeterministic polynomial time) problems, a given solution can be

verified as a solution in polynomial time. This means that for NP problems we may not have

an efficient way of finding a solution for a NP problem, but if we have any solution we can

verify this solution. Nondeterministic polynomial time means when the input size to an

algorithm for these problems increases, execution time of the algorithm increases

exponentially. NP-hard problems is a class of problems which is neither a sub class of NP

problems nor P problems. A problem is NP-hard if it is as hard as any NP-problem, or maybe

harder. That means an NP-hard problem is at least as hard as the hardest problems in NP.

The picking sequence problem is a generalization of TSP meaning it is also an NP-hard

problem. Usually heuristics and meta-heuristics such as tabu search, simulated annealing,

genetic algorithm are commonly used to solve this type of combinatorial optimization

problems. In this study, the problem of finding the best picking sequence that minimizes

total travelled distance for an order picker in a multi-block warehouse, is solved with one of

the most frequently used meta-heuristic methods: genetic algorithm.

There is no known algorithm that can solve picking sequence problem precisely and usually

heuristics and meta-heuristics such as tabu search, simulated annealing, genetic algorithms

are commonly used to solve this type of combinatorial optimization problems. In this study,

the problem of finding the best picking sequence that minimizes total travelled distance for

an order picker in a multi-block warehouse, is solved with one of the most frequently used

meta-heuristic methods: genetic algorithm (GA).

Although there is an optimal procedure for a two-block warehouse suggested by [8], it is

reported that implementation of optimal procedure may lead to unpredictable computation

times. Therefore, a comparison of total travelled distance results of picking sequence

13

problem are reported using genetic algorithm under different settings, in comparison to S-

Shape and Largest-Gap heuristic algorithms.

The study is organized as follows. In Chapter 2, a literature review is given regarding order

picking and genetic algorithm. The problem description takes place in Chapter 3. The

proposed solution methodology is presented in Chapter 4. Genetic Algorithm approach is

detailed in Chapter 5. Chapter 6 contains parameter tuning. S-Shape and Largest Gap

heuristics are explained in detail in Chapter 7. Computational tests are reported in Chapter

8. Conclusions are drawn in the last chapter.

14

2. LITERATURE REVIEW

There are numerous studies in the field of order picking and warehousing. To present

classifications of order picking systems and routing heuristics for single block warehouses,

review of [3], which is about manual order picking processes regarding layout design, storage

assignment techniques, order batching, zoning, routing strategies, order accumulation and

sorting methods, is analyzed. A taxonomy developed by [10] is also considered to classify

order picking systems into five categories as “Picker-to-parts”, “Pick-to-box”, “Pick-and-

sort”, “Parts-to-picker” and “Completely automated picking”. [11] provides a literature

review about order picking systems as well. Categorization of order picking systems,

components of order picking time, factors affecting order picking process and routing

heuristics are topics covered by the survey which is broadly used for the introduction part of

this study.

This study is focused on improving order picking performance of a multi-block warehouse

so a performance basis for multi-block warehouses is needed to compare the proposed

solution. To analyze solution approaches for multi-block warehouses, various studies for

multi-block warehouses are examined. [6] considers a parallel-aisle warehouse. Average

travel time is compared for warehouses with and without a middle aisle, through a

simulation. Three factors are taken into account: warehouse size, warehouse layout (the

presence or absence of a middle aisle; the number of aisles), pick list size. A routing

algorithm is proposed where aisle changing is allowed, due to cross aisles. Also [8]

introduces combined and combined+ routing heuristics in this study for warehouses with

more than two cross aisles where items are stored randomly. The proposed heuristics use

dynamic programming. The performance of the proposed heuristics is compared to a branch-

and-bound algorithm under different warehouse layouts and pick list sizes. [12] studies order

picking problem and compare optimal and heuristic algorithms, in terms of average travel

time and total route time (which includes other activities such as administrative tasks,

acquisition and dropping off pick carriers, in addition to travel time). [9] describes routing

policies and storage assignment policies for multi-block warehouses. A simulation study

15

takes place to evaluate several storage assignment policies and routing policies for various

layouts.

To analyze different management decision problems that warehouse managers encounter to

improve warehouse productivity, reviews and studies based on main warehouse activities

and policies are examined. [13] mentions basic warehouse functions, order picking

strategies, automation, classification of order picking systems and warehouse equipment.

[14] presents a literature review including classification of warehouses, strategic-tactical-

operational warehouse decisions, storage location assignment problem, order batching,

routing and sequencing issues. Storage location assignment is considered as an intermediate

range management decision whereas routing, sequencing and order batching are considered

as short range operational decisions. [15] reviews literature on warehouse design and control

systems, focusing internal warehouse structure and operations. Warehouse characteristics

regarding warehouse processes, warehouse resources, warehouse organization issues are

covered. Warehouse design problems at strategic, tactical and operational level are

examined. [16] presents a review and categorize operational level warehouse operation

planning problems, based on four warehouse activities: receiving, storage, order picking and

shipping. [17] compares several picking, storage and routing policies in manual order

picking systems via a simulation study. The effect of these three decisions are examined on

order picker travel time, with regards to reduction in total picking time by comparing to a

baseline policy. The baseline policy refers to the actual policy of the firm which employs

traversal routing and random storage. A sensitivity analysis is also conducted to explore the

effect of order size, warehouse shape, location of pick-up/drop-off point, and demand

distribution on order picker travel time.

[18] focuses joint order batching and order picking problems. A mathematical formulation

is proposed for the joint problem, based on integrating bin packing problem and TSP. It is

stated that bin packing problem is equivalent to order batching problem where bin represents

the order picking vehicle and items to be packed are items to be picked. The aim is to find

the assignment of orders to batches to minimize the number of batches subject to not

exceeding the capacity of the vehicle. TSP is equivalent to obtaining the sequence of items

to be picked. Moreover, two heuristic algorithms are suggested to be able to solve the

problem within reasonable running time. This is because order batching and order picking

16

problems are said to be two key operational problems which must be solved frequently and

require fast solutions.

[19] considers order picking problem where items can be stored in multiple locations, as

opposed to general setting. A model is suggested for simultaneous determination of location

assignments and picking sequence. However, given the complexity of the problem, TSP

heuristics such as nearest neighbor and shortest arc are modified for the problem setting.

Also, a tabu search algorithm is developed for the problem.

In terms of studies that describe and implement GA, [20] examines evolutionary algorithms,

in specific, genetic algorithms. Steps and process of genetic algorithm, genetic operators,

advantages of genetic algorithms and selection methods are explained. This study is mainly

used to have a brief introduction to GA and to understand the functioning of GA.

Among diverse applications of GA to solve different problems in literature, studies proposed

for warehousing problems using GA are concerned majorly. To be able to decide on selection

method, crossover and mutation operators and to determine the value ranges of parameters

to be used in GA in parameter tuning for crossover and mutation probability, the following

studies are examined. [21] considers order picking problem in an automated single-block

warehouse by taking travelling time into account. A GA is implemented which uses roulette

wheel as selecting strategy, with the optimal individual preserving strategy (in other words,

elitism). Solutions’ convergence situation in terms of total travel time is reported under

different iteration times. [22] considers order batching problem where customer orders are

grouped into batches optimally to minimize total travel distance by the help of a GA. The

proposed algorithm can be applied to not only single-aisle or rectangular but any type of

warehouse layout.

[23] proposes an order batch picking model which takes earliness and tardiness penalties

into account, in addition to travel cost. Retrieving items earlier than their due date leads to

piled up items around the warehouse. Retrieving items after their due date leads to

transportation delays and customer dissatisfaction. Roulette wheel selection approach is

employed. A multiple-GA method, which consists of two different GA-based algorithms, is

constructed to solve the proposed model. The first GA algorithm is used to find an optimal

order batching plan to minimize earliness and tardiness penalties and travel cost. The second

17

GA algorithm is utilized to obtain the optimal travel path within an order batch to minimize

travel distance. A parameter tuning takes place to find best parameter combinations,

regarding maximum number of iterations, crossover probability, mutation probability and

population size.

[24] focuses on order batching problem in a low-level, picker-to-parts, single-block

rectangular warehouse. A GA is presented which applies parameterized uniform crossover

operation that mixes the information of two parents according to a fixed mixing ratio. An

immigration operator is employed, instead of a mutation operator, by generating some new

chromosomes as initial solution generation phase in order to provide genetic diversity and

not to get stuck in local optima. [25] considers storage allocation and order picking problems

in a single-block fast-moving consumer goods warehouse. Elitism is implemented by

copying the first best two chromosomes to the next generation.

[26] focuses on order picking multi-objective optimization problem. The number of order

pickers per shift and the best retrieving sequence of items are to be determined. Roulette

wheel is used as a parent selection technique and order crossover is employed to generate

offspring. Inversion mutation is incorporated. [27] proposes a dynamic mathematical model

to solve small-size order picking problems by taking product life, customer importance,

probabilistic demand and backordering strategy into account. A GA is proposed to solve

similar large-size problems. Three metrics are used for performance comparison of two

methods: Elapsed CPU time, number of fulfilled orders, quality of objective function.

[28] examines order picking problem in a multi-aisle automated warehouse to minimize total

travel time of storage/retrieval machine. In the warehouse, each item can be retrieved from

several storage locations. A GA is constructed which uses roulette wheel as selection method

and partially matched crossover as crossover operator. Two performance measures, CPU

time and travel time, are analyzed.

[29] considers the problem of a film-copy deliverer, as an extension of TSP. There is an

analogy between order picking problems and TSP such that order picker is analogous to

salesman whereas items to be picked are analogous to cities to be visited. Therefore, film-

copy delivery problem is also similar to order picking problem. In this problem, there are

18

several cinemas and only one film-copy. The duty of the deliverer is to bring the film-copy

to each cinema based on the predetermined show times. A GA is developed for which a new

crossover operator is designed to prevent illegal offspring and a new mutation operator is

designed to mutate offspring. [30] investigates the relationship between order picking

problem inside warehouse and vehicle routing problem outside warehouse for conventional

single-block and multiple-cross aisle warehouses. A GA-based approach is proposed to solve

these problems in a hierarchical manner. [31] solves order batching and pick routing

problems simultaneously via GA based methods. Two new GA-based methods are proposed

that can be employed for both conventional single block and multi-block warehouses.

Roulette wheel is used as selection method.

Based on the examined studies in literature, it can be said that order picking is a popular

subject among researchers and a real problem encountered by warehouse practitioners in

logistic companies. Moreover, GA is one of the mostly preferred meta-heuristics to solve

combinatorial problems, like order picking.

19

3. PROBLEM DESCRIPTION

This study is focused on improving order picking routing strategy of Ekol Logistics, an

integrated logistics company providing warehousing services in Turkey. One of its

distribution warehouses, namely Mimoza, is examined as a case for its order picking and

routing policies.

Similar to most distribution warehouses, the facility has its forward pick area and reserves

storage area separated. In reserve storage area, items are kept in large container boxes placed

on racks and in stacks loaded on pallets from which case picks are done to restock forward

pick area when needed. In forward pick area where order picking activity takes place,

random storage assignment policy is used to replenish SKUs (stock keeping units) that are

stocked on multi-level carton flow racks. A well-established stock-location system is

actually being used to keep track of SKU locations supported by labeled carton flow racks

with definite stock-location address.

Manual, low-level, human employing picker-to-parts system is established as order picking

system in forward pick area. SKUs are actually item cartons of identical size that contains

multiple quantities of same product that order pickers extract required number of products

from them in order to retrieve items on their pick list. Order pickers use equipment such as

radio frequency (RF) hand terminals and picking carts to run their order picking operations.

RF hand terminals are used to track assigned pick lists efficiently and to document picking

transactions. Picking carts with a maximum capacity of 100 items are used to gather and

carry items.

Order pickers start and finish their route on P/D point where pick lists are generated and

finalized as a required operation for pickers to proceed and terminate travelling activity. On

the assigned pick list that order picker can access through RF hand terminal, order picker

selects any main aisle having at least one pick location and can see any pick item address

with its block number and shelf number. During travelling activity, order pickers can traverse

20

all aisles in both directions, can change direction within vertical sub-aisles any time and can

change their main aisle in any of cross aisles, at the front end and at the rear end of pick area.

Order pickers having pick item location decide their route to that location themselves.

When order picker finishes his route to the pick location, there is no reaching or bending

activity for order pickers to access pick locations traversing vertical sub-aisles. These

vertical sub-aisles are narrow enough for order pickers to extract and pick from both sides

of them without changing position. When picker finishes collecting all pick items in a sub-

aisle of a block, usually he proceeds to the sub-aisle of next block until he reaches the rear

aisle, selects any other main aisle having at least one pick location through RF hand terminal

and changes main pick aisle at the rear end to that selected main aisle. Following this

behavior, routing strategy of warehouse may be named to S-Shape (traversal) heuristic due

to its resemblance. If there is no pick location in the sub-aisle of next block, he may also

change pick aisle in cross aisle to pick any pick item nearby before returning to P/D point to

deposit all picked items. An order picker does not always turn back to deposit point with

fully loaded (100 items) picking cart. Sometimes, when the picking cart is quarterly loaded

(25 items) or half loaded (50 items), he may go to the deposit point to unload the cart due to

size or urgency of the order.

For the investigated warehouse facility, some detected problematic points need to be fixed

to improve the performance of order picking process. Order pickers decide their route to

reach any pick location. Minimum travel time and travel distance to any pick location of

pick list is not guaranteed. Without any specific routing policy, when order picker decides

his own route for any pick item in a pick list during daily travelling activity, travelled time

and travelled distance may become excessive. Order picker may decide to change his route

any time according to subjective proximity of next pick location on pick list. Order picker

does not know which picking sequence of pick items ensures minimum total travelling

distance. He only takes action observing the next pick location's closeness.

Taking the aforementioned problems into account for the warehouse under consideration, a

generalized solution to increase order picking productivity is formulated, which can be used

for all multi-block warehouses.

21

For enhancing order picking performance through an order picker routing policy, this study

concentrates on answering the following question:

“Given a set of item locations of a pick list, what is the best picking sequence (accordingly,

the best route) to follow by an order picker to minimize total travelled distance during order

picking process?”

3.1. WAREHOUSE LAYOUT

As seen in Figure 3.1, a P/D point takes place in the front aisle in the lower left corner when

order picking area is seen from top projection. In the order picking area, there are 3 blocks

of totally 30 carton flow rack systems that are all two-sided. These 30 carton flow rack

systems form 31 vertical aisles on each block. There is a front and a rear aisle and 2 cross

aisles in-between which make up 4 horizontal aisles. Each carton flow rack system has

equally sized 10 locations to store on any side.

Properties of layout can be summarized as:

• Number of blocks: 3

• Number of carton flow rack system in a block: 30

• Number of vertical aisles: 31

• Number of horizontal aisles: 4

• Number of shelf per carton flow rack system: 10

The dimensions of the warehouse are as follows:

• S: Number of shelf per carton flow rack system (S = 10)

• K: Length of a shelf (K = 2.77 m)

• W: Carton flow rack system width (W = 1.2 m)

• L: Carton flow rack system length (L = 27.7 m)

22

F
ig

u
re

 3
.1

.
F

o
rw

ar
d
 P

ic
k

 A
re

a
L

ay
o
u
t

23

3.2. ITEM COORDINATE SYSTEM

An item coordinate system is developed to address any possible pick location on any

carton flow rack system on pick area layout. An item is represented by a quartet (A,B,C,D)

where:

• A: Horizontal block index, (A=1,2,3)

• B: Vertical block carton flow rack system index, (B=1,2,…,29,30)

• C: Side of carton flow rack system, (C=0: Left; C=1: Right)

• D: Shelf index, (D=1,2,…,10)

An example of an item representation is given in Figure 3.2.

Figure 3.2. Item Coordinate System

24

The proposed item coordinate system is used in computationl tests while generating random

pick lists to measure the performance of the constructed solution methodology. There are

1800 item locations inside the order picking area. Items in pick lists are generated randomly

based on these possible item locations.

3.3. ASSUMPTIONS

The following assumptions hold within the framework of this study:

• All order data and pick lists are known beforehand.

• The locations of items are known a priori.

• Items are retrieved from storage locations with horizontal travel; vertical movement

of picking is disregarded.

• A picker-to-parts warehouse system is assumed.

• The storage size in each location is identical.

25

4. SOLUTION METHODOLOGY

A two-phase solution methodology is proposed to solve the picking sequence and routing

problem. In the 1st phase, a mathematical model takes place which is taken from the study,

entitled “An Application of Warehouse Order-Picking Route Optimization Design at Ekol

Logistics” by [32]. The mathematical model gives the shortest path and the shortest travelled

distance between only two items whose coordinates are given through the item coordinate

system mentioned in Section 3.2. The warehouse dimensions K, S, W and L that are shown

in Figure 3.2. are parameters of the mathematical model to be solved in first phase and are

given as input to this mathematical model. This model is solved for each pair of item in the

pick list and a distance matrix is constructed which shows the shortest distance between

every item pair. This distance matrix is a symmetric matrix since total travelled distance as

going from the first to the second item is equal to the total travelled distance while going

from the second to the first item.

While solving the optimization model for the 1st phase, an assumption is stated. It is assumed

that there are “junction points” in the cross section of each aisle. A picker going from one

item to another, firstly goes the starting item to the closest junction point, then passes from

junction points until the last junction point closest to the ending item and goes to the ending

item.

Let (i,j) represent the coordinate of a junction point where “i” and “j” values represent

horizontal and vertical coordinates of a junction point, respectively. Value of ‘i’ runs up to

4 since the warehouse has 4 horizontal aisles and it increases when it goes to down direction,

as shown in Figure 4.1. Value of ‘j’ runs up to 31 since the warehouse has 31 vertical aisles

and it increases when it goes to right hand side.

26

Figure 4.1. Junction Points

In the 2nd phase, the aim is to find the picking sequence and the routing path of all items in

a pick list during order picking so as to minimize total travelled distance. The outputs of the

1st phase, namely the shortest distance and the corresponding routing between each pair of

items, become inputs for the 2nd phase where a genetic algorithm is implemented to find the

picking item sequence of items in the pick list.

27

5. GENETIC ALGORITHM

If a pick list contains “N” items, the number of possible different picking sequences is (N!).

In such combinatorial problems, meta-heuristics such as genetic algorithm, works well in

general. As mentioned before, order picking is a short-term decision and must be frequently

done in daily warehouse operations. The company picks on the average 6000 items daily.

The picking cart can take at most 100 items, which means that this problem must be solved

at least 60 times in a day, on the average. Therefore, running time is an important factor for

order picking problem. Genetic algorithm does not guarantee optimality but it gives good

solutions within tolerable computer running times. GA imitates natural evolution process in

computer environment. GA is developed based on ideas regarding natural selection and

genetics. GA grounds on the survival of the fittest among individuals.

In GA methodology, each individual represents a possible solution to picking sequence

problem in terms of a picking route and is encoded as a chromosome. A chromosome is

composed of a set of genes representing items to be picked. Chromosome and individual are

used interchangeably. The evolution is an iterative process generating new individuals from

present individuals of the population. A population is a set of individuals with the same

length of genes to be mated to form individuals, referring a set of potential solutions to

evolve toward better solutions. Population size is the number of chromosomes to be

generated in a population. Population in each iteration is a generation.

For picking sequence problem domain, permutation encoding works better among other

encodings because picking sequence is an ordering problem. Each solution is basically a tour

starting from P/D point and ending on P/D point as well, where a picking sequence tour is

encoded by a sequence of integers indexing all pick locations. P/D point is considered to be

a pick location, as well. The concepts and mechanisms of GA will be given through an

example as follows. For this example, P/D point is represented by index 1. An important

characteristic of a tour is the order of the genes but not their absolute position hence (15432)

and (54321) represent the same solution, since (1  5  4  3  2  1) and (5  4  3

 2  1  5) represent the same cycle as shown in Figure 5.1.

28

Figure 5.1. An Example of a Tour for Picking Sequence

The first step of GA is to create an initial population and to identify it as the first generation

of the population. Consider a 4-item pick list where each chromosome is composed of 5

genes encoded with path representation. Let N represent the population size. For a

population size of N = 4, suppose the following four chromosomes are generated randomly

as the initial population: {(15432) – (32451) – (24513) – (43521)}. Then, these

chromosomes are identified as the 1st generation.

Suppose that, Table 5.1 shows the shortest distance matrix between each pair of 5 pick

locations which is obtained from the 1st phase of solution methodology.

Table 5.1. Sample Shortest Distance Matrix for a 4-Item Picklist (in meters)

1 (P/D point) 2 3 4 5

1(P/D point) 0 10 12 8 15

2 10 0 7 11 9

3 12 7 0 18 13

4 8 11 18 0 6

5 15 9 13 6 0

29

Having a new generation ready, GA always evaluates each chromosome of the new

generation using fitness function and tests for the termination criterion to decide whether to

continue to evolve one more generation or to terminate the process.

A fitness function is an evaluation function that determines which solutions are better than

others. It is generally a utility function to be maximized. The objective in order picking

problem is to minimize total travelled distance during picking all items in a pick list.

Therefore, this minimization problem must be converted into a maximization problem.

Fitness function of each individual can be computed using the formula below:

𝑭𝒊𝒕𝒏𝒆𝒔𝒔 𝒔𝒄𝒐𝒓𝒆 𝒐𝒇 𝒊𝒕𝒉 𝒄𝒉𝒓𝒐𝒎𝒐𝒔𝒐𝒎𝒆:

𝒇(𝒙𝒊) =
𝟏

𝑻𝒓𝒂𝒗𝒆𝒍𝒍𝒆𝒅𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝒙𝒊)
 𝒘𝒉𝒆𝒓𝒆 𝒊 = 𝟏, 𝟐, … , 𝑵

TravelledDistance(xi) gives the total distance travelled, based on ith chromosome. If

TravelledDistance(x1) < TravelledDistance(x2), then f(x1) > f(x2), which means x1 is

preferable to x2 (that is, x1 is fitter). Then, a fitter chromosome (a better picking sequence)

has a larger fitness value (equivalently, less total travelled distance). Based on the given

shortest distance matrix, total travelled distance for the chromosome (15432) is calculated

by adding all shortest distances of picking sequence of all items. As given in Table 5.1, all

shortest distances from source item to destination item for (15432) are:

• 1  5 : 15

• 5  4 : 6

• 4 3 : 18

• 3  2 : 7

• 2  1 : 10

The total travelled distance and fitness score of each chromosome for the 1st generation are

computed in Table 5.2.

30

Table 5.2. Total Travelled Distance (in meters) and Fitness Score of the 1st Generation

Chromosome
Total travelled distance

(meters)
Fitness score

15432 15+6+18+7+10 = 56 1/56 = 0.01785714

32451 7+11+6+15+12 = 51 1/51 = 0.01960784

24513 11+6+15+12+7 = 51 1/51 = 0.01960784

43521 18+13+9+10+8 = 58 1/58 = 0.01724138

In this study, termination criterion is selected as meeting a condition such that fitness of the

chromosome with the best fit does not change during a pre-defined number of generations

(in other words, reaching a pre-defined number of stagnant iterations). For the example GA

run, pre-defined number of stagnant iterations is specified as 2. Since (32451) and (24512)

yield the same fitness score, based on an arbitrarily selection between these two

choromosomes, the chromosome with the best fitness is set as (32451) with fitness value:

0,01960784. GA test termination criterion is not met since generation count having stagnant

fitness value of 2 is not reached yet so GA continues to evolve one more generation.

To form new individuals (offspring) for the next generation, GA operates 4 successive

mechanisms:

1. Selection (Reproduction)

2. Crossover (Recombination)

3. Mutation

4. Reinsertion (Survival)

5.1. GENETIC ALGORITHM MECHANISMS

5.1.1 Selection (Reproduction)

Selection is the process of determining how to choose parents for mating. Each parent is

evaluated based on their fitness score. Then, a mating pool is created. The expectation is that

average fitness is to be increased in successive generations, due to the fact that, the best

parents are selected for breeding to produce better children.

31

In this study, roulette wheel selection method is preferred where the probability of selection

is proportional to fitness value of a chromosome. By this way, a fitter chromosome

(corresponding to a shorter travel distance) has a larger chance to be chosen for mating. To

implement this method, sum of fitness values over all individuals is calculated. Probability

of being selected is calculated as shown below:

𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒐𝒇 𝒔𝒆𝒍𝒆𝒄𝒕𝒊𝒏𝒈 𝒊𝒕𝒉 𝒄𝒉𝒓𝒐𝒎𝒐𝒔𝒐𝒎𝒆:

𝑷(𝒙𝒊) =
𝒇(𝒙𝒊)

∑ 𝒇(𝒙𝒊)
𝑵
𝒊=𝟏

 𝒘𝒉𝒆𝒓𝒆 𝒊 = 𝟏, 𝟐, … , 𝑵

Fitness value of each chromosome over sum of all fitness values gives the probability of

being selected for that chromosome. The larger fitness value the chromosomes has, the

higher chance to be selected and the bigger slice of the roulette wheel they fall into.

Cumulative probabilities are calculated to map individuals to contiguous intervals in the

range of [0,1]. Then, for each individual to be selected, a random number is generated in the

interval [0, 1] and the individual whose segment spans the random number is selected as a

parent for reproduction. This process is repeated until the number of chromosomes equals to

the population size.

For the example GA run, selection probabilities and intervals are listed in Table 5.3:

Table 5.3. Selection Probabilities

Chromosome Fitness score Probability of being selected Contiguous Intervals

15432 0.01785714 0.24029 [0 – 0.24029]

32451 0.01960784 0.26385 [0.24030 – 0.50414]

24513 0.01960784 0.26385 [0.50415 – 0.76799]

43521 0.01724138 0.23201 [0.76800 – 1]

 Total 0.07431421 1

32

Figure 5.2 shows so-called roulette wheel of the selection mechanism reflecting the selection

of chromosome’s chance of being selected. Pie chart is selected as a tool to present roulette

wheel due to its analogy.

Figure 5.2. Roulette Wheel Representation for Selection Method

4 random numbers are generated between [0,1] to select from roulette wheel: {0.638425,

0.48754, 0.045572, 0.439298}. Chromosomes for which any random number falls between

their mapped interval of probability are selected to mating pool. Table 5.4 shows how to

select chromosomes for mating pool at the end of selection process.

Table 5.4. Mating Pool Generation

Random number Fallen mapped interval

Corresponding

chromosome to be selected

(Mating pool)

0.638425 [0.50415 – 0.76799] 24513

0.48754 [0.24030 – 0.50414] 32451

0.045572 [0 -0.24029] 15432

0.439298 [0.24030 – 0.50414] 32451

[1 5 4 3 2]

[3 2 4 5 1]
[2 4 5 1 3]

[4 3 5 2 1]

[1 5 4 3 2] [3 2 4 5 1] [2 4 5 1 3] [4 3 5 2 1]

33

Selection (reproduction) process ensure the population is enriched with better individuals.

Reproduction makes clones of better solutions but does not search for new solutions. The

search of the solution space is mainly done by crossover mechanism. Selection mechanism

supplies mating pool to crossover mechanism as an input of individuals with better genes.

5.1.2 Crossover (Recombination)

Crossover is combining pairs of parents to create new individuals or offspring. Two children

are produced from two parents through a crossover operator which is a function that gets

some of genes from one parent and the rest from the other parent to form two offsprings.

The expectation is that the newly formed chromosomes have good genes of old

chromosomes.

It is a good practice not to allow crossover mechanism to be performed for all individuals in

a population to keep some selected chromosomes of a population as genetic memory. Here

comes a question about which chromosomes will be subject to crossover operation and

which survival mechanism will be used for chromosomes that will not be crossed over.

Crossover probability, represented by Pc, is the parameter of GA that states how often

crossover mechanism will be performed. For the example GA run, crossover probability is

taken as 0.7. A random number is generated between (0,1) for each chromosome pair in the

mating pool and if that random number is less than or equal to the crossover probability,

crossover operation is performed. Otherwise, crossover operation is not performed for that

pair of chromosomes. Table 5.5 shows how GA decides to perform crossover operation on

selected chromosomes of old population in mating pool.

Table 5.5. Implementation of Crossover Probability on the Mating Pool

Chromosome pairs in

mating pool

 Crossover

Probability
Random number Selected for Mating?

 (24513 & 32451) 0.7 0.214939833 0.214939833 <= 0.7  Yes

 (15432 & 32451) 0.7 0.790672194 0.790672194 > 0.7  No

34

As seen in Table 5.5, (24513 & 32451) chromosome pair is selected for mating so two parent

chromosomes (24513) and (32451) are selected for mating. Suppose that, a crossover

operation is performed and the produced offspring turn out to be (34521) and (52413), which

become two individuals of the next generation. If the number of new indiviuals formed is

not equal to the population size as in this example, a reinsertion operation is required to reach

a population size of 4.

Following crossover operation, two offspring resulting from crossover operation are

subjected to mutation operation. Crossover mechanism supply generated offspring to

mutation mechanism as input.

5.1.3. Mutation

Mutation is introducing new genetic material in the population by randomly altering some

selected genes of offspring chromosomes generated by crossover operation. An original

offspring turns into a mutated offspring. Usually mutation operator maintains genetic

diversity in the population and prevents to get stuck in a local optimum.

Mutation probability represented by Pm, is the parameter of GA that determines which

offspring will be subject to mutation operation. For the example GA run, mutation

probability is taken as 0.01. Likewise crossover probability, a random number is generated

between (0,1) for each offspring that are formed at the end of crossover operation and if that

random number is less than or equal to the mutation probability, mutation operation is

performed. Otherwise, mutation operation is not performed for that offspring and it stays as

it is.

There are only 2 newly generated offspring chromosomes out of crossover operation. Table

5.6 shows how GA decides to perform mutation operation on generated offspring by

crossover operation. No mutation operation will take place for (34521). (52413) is selected

to mutate. Suppose that, through a mutation operator the mutated offspring turns out to be

(53412).

35

Table 5.6. Implementation of Mutation Probability on Formed Offspring

Mated

Chromosomes

 Mutation

Probability
Random number Selected for Mutating?

34521 0.01 0.394763129 0.394763129 > 0.01  No

52413 0.01 0.008672194 0.008672194 <= 0.01  Yes

From one generation to another, population size should remain fixed. However, during

crossover operation, if one of the generated random numbers is less than the crossover

probability for a chromosome pair and that pair is not selected for mating, fewer individuals

than population size may be produced. Then, reinsertion mechanism is the remedy for

inserting remaining chromosomes to complete the population size.

5.1.4. Reinsertion (Survival)

The difference between population size and the number of chromosomes reproduced through

evolution is termed a generation gap. Reinsertion mechanism is used to decide which

chromosomes should survive and be inserted to the next generation, in case of a generation

gap.

Reinsertion mechanism to be used in this study is preferred to be elitist method. Elitist

reinsertion keeps the fittest parents to the next generation. It enables preserving a few best

chromosomes ever encountered to the successive generations.

For the example GA run, the population size is 4 and 2 offspring chromosomes are produced

through crosoover operation, hence generation gap to be filled is 2 chromosomes. To select

fittest parents, GA ranks all chromosomes of the mating pool accordin to their fitness value

and inserts 2 top-valued chromosomes of this ordered list to the next generation. Table 5.7

shows how GA runs elitist reinsertion to select chromosomes to be reinserted to the next

generation.

36

Table 5.7. Ranking of Chromosomes in Mating Pool for Reinsertion

Chromosomes in

mating pool
Fitness score

Rank of

chromosome

Selected for

Reinsertion?

24513 0.01960784 1 Yes

32451 0.01960784 1 Yes

15432 0.01785714 3 No

32451 001960784 1 Yes (duplicated)

Having a new generation ready, GA evaluates each chromosome of the new generation using

fitness function. Source of production, total travelled distance and fitness score of each

chromosome for the 2nd generation are listed in Table 5.8.

Table 5.8. Total Travelled Distance (in meters) and Fitness Score of the 2nd Generation

Source of

Production
Chromosome

Total travelled distance

(meters)
Fitness score

Crossover 34521 55 1/55 = 0.01818182

Crossover, Mutation 53412 58 1/58 = 0.01724138

Reinsertion 24513 51 1/51 = 0.01960784

Reinsertion 32451 51 1/51 = 0.01960784

After the evaluation of chromosomes of the 2nd generation, GA checks whether termination

criterion is met or not. For the example GA run, termination criterion is selected as reaching

2 stagnant iterations which means that the fitness of the chromosome with best fitness score

should not change during 2 consecutive generations. For the 2nd generation, the fittest

chromosomes are (24513) and (32451) with fitness score: 0.01960784. For 1st generation,

chromosome with best fitness score had a fitness value score of 0,01960784. When GA

compares the fitness scores of best chromosomes of the 1st and the 2nd generations, GA stops

the evolution process since the values are the same and 2 stagnant iterations are completed.

There is no difference for solutions (24513) and (32451) in terms of travelled distance since

they refer to the same loop for picking tour so the best solution for the picking sequence

37

problem for this example has multiple solutions, both yielding 51 meters of travelled

distance.

In this study, the following genetic algorithm mechanisms are employed:

• Selection method: Roulette wheel

• Crossover operators: Cycle (CX), Partially Mapped (PMX), Order (OX)

• Mutation operators: Inversion(Reverse Sequence), Swap (Exchange)

• Reinsertion method: Elitist

The pseudocode for genetic algorithm is given in Figure 5.3:

Generate initial population of size N
Evaluate the fitness score of each chromosome in the population
WHILE Termination criterion is not met
 Select parents for mating
 Apply crossover operation based on crossover probability (Pc) on parents
 Apply mutation operation based on mutation probability (Pm) on offsprings
 Apply reinsertion mechanism to complete a population of size N with parents and offsprings
 Evaluate the fitness score of each chromosome in the population
ENDWHILE

Figure 5.3. Pseudocode of Genetic Algorithm

The flowchart in Figure 5.4 summarizes the steps of genetic algorithm:

38

Figure 5.4. Steps of Genetic Algorithm

5.2. ORDERING PROBLEMS AND INVALID (INFEASIBLE) OFFSPRING

For ordering problems, such as TSP and order picking, conventional binary encoding does

not work, where every chromosome consists of a string of bits (0 or 1). Instead, permutation

encoding is suitable for such problems where each chromosome is composed of a string of

numbers. Also a path representation is used to represent a picking tour.

Moreover, classical crossover operators do not work properly for ordering problems. When

classical crossover operators are applied, produced offspring may become invalid violating

the constraint of ordering and some repairing process is needed to make it valid. Consider

the parents in Figure 5.5. Suppose a classical crossover operator, namely two-point

crossover, is applied so two crossover points are selected randomly (between 2nd & 3rd genes

and between 4th & 5th genes). For the 1st offspring, the part from the beginning until the first

crossover point is copied from the 1st parent, the part between crossover points is copied

from the 2nd parent and the rest is copied from the 1st parent again. A similar procedure is

applied for the 2nd offspring.

39

1st parent 2 4 5 1 3 0 7 6 9 8

2nd parent 3 2 4 5 1 7 9 0 8 6

1st offspring 2 4 4 5 3 0 7 6 9 8

2nd offspring 3 2 5 1 1 7 9 0 8 6

Figure 5.5. Invalid Offspring

Based on the classical two-point crossover operation, the formed offspring turn out to be

invalid or infeasible since for the 1st offspring, 1st item is not picked in the and 4th item is

picked twice whereas for the 2nd offspring ,4th item is not picked and 1st item is picked twice.

Therefore, different crossover and mutation operators are employed for ordering problems.

Appropriate crossover and mutation operators preserving a given order to solve order

picking problem is explained in the next section.

5.3. CROSSOVER OPERATORS FOR PICKING SEQUENCE PROBLEM

Three frequently used crossover operators are considered in this study:

1. Cycle Crossover (CX)

2. Partially Mapped Crossover (PMX)

3. Order Crossover (OX)

40

5.3.1. Cycle Crossover (CX)

The Cycle Crossover (CX) proposed by [33] is a position-based crossover where each gene

comes from one of the parents and positions of those genes in its parent are conserved. A

number of cycles between two parent chromosomes are identified and cycles are copied from

each parent one by one to form an offspring. Consider the parent chromosomes in Figure

5.6. The same parent chromosomes are used for all crossover operator examples.

1st parent 8 4 7 3 6 2 5 1 9 0

2nd parent 0 1 2 3 4 5 6 7 8 9

Figure 5.6. Parental Chromosomes for Crossover Examples

Mechanism of the cycle crossover is explained through an example as follows. Identification

of cycles starts from the first gene of the first parent with corresponding value of “8” and

continues with the gene on the same (first) position in the second parent. The first gene of

the second parent has a value of “0” so cycle continues with the gene having value of “0”

with 10th position in the first parent. The cycle continues with the gene on the 10th position

in the second parent having value of “9”. The gene with a value of “9” in the first parent has

9th position so the cycle continues with that gene. The cycle continues with the 9th gene of

the second parent having value of “8” and since the cycle started with a gene having value

of “8”, the cycle terminates. Figure 5.7. shows the identification of cycles for cycle

crossover.

41

1st parent 8 4 7 3 6 2 5 1 9 0

2nd parent 0 1 2 3 4 5 6 7 8 9

Figure 5.7. Identifying Cycles for Cycle Crossover

Applying the same mechanism on both parents results identifying 3 cycles:

• 1st cycle: 8  0  9  8

• 2nd cycle: 4  1  7  2  5  6  4

• 3rd cycle: 3  3

After cycles are identified, offspring are filled by copying these cycles from parents in turn.

• 1st cycle: Genes of the first parent of the first cycle are copied to the first offspring.

Genes of the second parent of the first cycle are copied to the second offspring.

• 2nd cycle: Genes of the first parent of the second cycle are copied to the second

offspring. Genes of the second parent of the second cycle are copied to the first

offspring.

• 3rd cycle: Copying 3rd cycle is the same as the 1st cycle. Genes of the first parent are

copied to the first offspring and genes of the second parent are copied to the second

offspring.

Figure 5.8. shows how offspring are formed for cycle crossover.

1st offspring 8 1 2 3 4 5 6 7 9 0

2nd offspring 0 4 7 3 6 2 5 1 8 9

Figure 5.8. Filling Cycles in Offspring for Cycle Crossover

42

When offspring are compared with its parents, it is seen that Cycle crossover directly copies

parents’ genes with their absolute positions while producing offspring.

5.3.2. Partially-Mapped Crossover (PMX)

The Partially-Mapped Crossover proposed by [34] is an interval-preserving crossover that

copies an interval from one parent to the offspring and then genes are added to that offspring

according to their relative order in the second parent.

Two crossover points are selected randomly and the segment between them is carried to the

offspring preceding position-by-position exchange operations to sprinkle genes of the

corresponding segment of the other parent. Parents are mapped to each other, therefore this

method is called partially-mapped crossover. Functioning of partially-mapped crossover is

as follows:

1. Randomly select two crossover points and copy the segment between two crossover

points from the first parent to the first offspring. Note the gene positions of the

segment.

2. Looking at the same segment positions in the second parent, list each gene value that

has not already been copied to the first child.

a. For each of these gene values:

i. Mark the position of the gene having this value in the second parent.

Obtain the value of the gene on this same position of the first parent.

ii. Find the gene having the same value in the second parent.

iii. If the gene having this value in the second parent is a part of the

crossover segment of the second parent, go to step i. using this value.

iv. If the position of the gene having this value is not a part of the

crossover segment of the second parent, set step a's value to the first

offspring’s gene on this position.

3. Copy any genes for remaining positions from the second parent to the first offspring.

Consider the same parent in Figure 5.6. Mechanism of the partially-mapped crossover is

given through an example as follows:

43

Step 1: Two random crossover points are selected between the 3rd and 4th genes and between

the 8th and 9th genes so the crossover segment of the first parent is {36251} and the crossover

segment of the second parent is {34567}. Crossover segment of the first parent is copied to

the first offspring.

Step 2: Looking crossover segment genes of the second parent, gene values that are not

copied to the first offspring are 4 and 7. Figure 5.9. shows how missing values of the first

offspring is listed.

1st parent 8 4 7 3 6 2 5 1 9 0

2nd parent 0 1 2 3 4 5 6 7 8 9

1st offspring 3 6 2 5 1

Figure 5.9. Listing Missing Values of First Offspring for Partially-Mapped Crossover

Step a: “4” is the first missing value of the first offspring.

Step i-ii-iii: The gene having value of “4” in the second parent is on the 5th position. The

value of the gene on the 5th position of the first parent is “6”. The gene having value of “6”

in the second parent is a part of the crossover segment of the second parent. Step i is set to

rerun with value of “6”

Step i-ii-iii: The gene having value of “6” in the second parent is on the 7th position. The

value of the gene on the 7th position of the first parent is “5”. The gene having value of “5”

in the second parent is a part of the crossover segment of the second parent. Step i is set to

rerun with value of “5”

Step i-ii-iv: The gene having value of “5” in the second parent is on the 6th position. The

value of the gene on 6th position of the first parent is “2”. The gene having value of “2” in

44

the second parent is on the 3rd position and is not a part of the crossover segment of the

second parent. The gene on the 3rd position of the first offspring is set to have value of “4”.

Figure 5.10. shows how the first missing value “4” is placed to the first offspring.

1st parent 8 4 7 3 6 2 5 1 9 0

2nd parent 0 1 2 3 4 5 6 7 8 9

1st offspring 4 3 6 2 5 1

Figure 5.10. Placement of First Missing Value for Partially-Mapped Crossover

Step a: “7” is the second missing value of the first offspring.

Step i-ii-iv: The gene having value of “7” in the second parent is on the 8th position. The

value of the gene on the 8th position of the first parent is “1”. The gene having value of “1”

in the second parent is on the 2nd position and is not a part of the crossover segment of the

second parent. The gene on the 2nd position of the first offspring is set to have value of “7”

Step 3: The first offspring have genes on the 1st, 9th and 10th positions remaining. The genes

on the 1st, 9th and 10th positions of the second parent are copied to the first offspring.

Figure 5.11. shows how remaining genes of first offspring is filled with genes of second

parent.

45

1st parent 8 4 7 3 6 2 5 1 9 0

2nd parent 0 1 2 3 4 5 6 7 8 9

1st offspring 0 7 4 3 6 2 5 1 8 9

Figure 5.11. Filling Remaining Genes of the First Offspring for Partially-Mapped

Crossover

The second offspring is formed by simply swapping the parents and starting the same

procedure again. Figure 5.12. shows production of the second offspring.

1st parent 0 1 2 3 4 5 6 7 8 9

2nd parent 8 4 7 3 6 2 5 1 9 0

2nd offspring 8 2 1 3 4 5 6 7 9 0

Figure 5.12. Forming the Second Offspring with Partially-Mapped Crossover

When offspring are compared to their parents, it is seen that partially-mapped crossover

tends to respect absolute positions of parents’ genes while producing offspring.

5.3.3. Order Crossover (OX)

The Order Crossover proposed by [35] is another interval-preserving crossover that copies

an interval from one parent directly to the offspring and copies genes with remaining values

from the other parent preserving the relative order of genes of the second parent.

Two crossover points are selected randomly and the segment between these crossover points

is carried to the first offspring. Genes for the remaining positions of the first offspring are

placed from the second parent with genes having remaining values in the order which they

46

appear in the second parent. Consider he same parents in Figure 5.6. Mechanism of the order

crossover is given through an example as follows:

Two random crossover points are selected between the 3rd and 4th genes and between 8th and

9th genes so the crossover segment of the first parent is {36251} and the crossover segment

of the second parent is {34567}.

Crossover segment of the first parent is copied to the first offspring. The copied crossover

segment of the first parent is {36251} so each gene of this segment of the second parent is

marked to not being inserted. The order of the genes of the second parent starting from the

second crossover point is (8  9  0  1  2  3  4  5  6  7). Genes having

values of “3”,”6”,”2”,”5” and “1” are marked to not being inserted so genes having these

values are removed from the insertion list. Hence the order which genes of the second parent

to be inserted becomes (8  9  0  4  7). Genes of the first offspring are filled with

this order for the positions starting on the right side of the crossover segment. The second

offspring is formed by simply swapping the parents and starting the same procedure again.

Figure 5.13. shows produced offspring using order crossover for the given example.

1st parent 8 4 7 3 6 2 5 1 9 0

2nd parent 0 1 2 3 4 5 6 7 8 9

1st offspring 0 4 7 3 6 2 5 1 8 9

1st parent 0 1 2 3 4 5 6 7 8 9

2nd parent 8 4 7 3 6 2 5 1 9 0

2nd offspring 8 2 1 3 4 5 6 7 9 0

Figure 5.13. Forming Offspring with Order Crossover

47

When offspring are compared to their parents, it is seen that ordered crossover tends to

respect relative positions of parents’ genes while producing offspring.

5.4. MUTATION OPERATORS FOR PICKING SEQUENCE PROBLEM

Two frequently used mutation operators are considered in this study:

1. Inversion (Reverse Sequence)

2. Swap (Exchange)

5.4.1. Inversion (Reverse Sequence) Mutation

Inversion mutation operator selects two mutation points randomly and reverses the order of

the segment between these points. Consider the offspring before mutation in Figure 5.14.

The same offspring is used for all mutation operator examples:

Offspring 1 2 3 4 5 6 7 8 9 0

Figure 5.14. Offspring Chromosome for Mutation Examples

Two random mutation points are selected between the 3rd and 4th genes and between 8th and

9th genes so the mutation sequence of offspring is (45678). The gene order in mutation

sequence is reversed to (87654). Functioning of Inversion Mutation is shown on Figure 5.15.

Offspring 1 2 3 4 5 6 7 8 9 0

Mutated Offspring 1 2 3 8 7 6 5 4 9 0

Figure 5.15. Mutation of Offspring with Inversion Mutation

48

5.4.2. Swap (Exchange) Mutation

Swap mutation operator allows the exchange of position of two randomly selected genes.

Consider the same offspring before mutation in Figure 5.14. Mechanism of inversion

mutation is given through an example as follows. Two random genes are selected as the 4th

and 8th gene. The 4th and 8th gene are swapped. Functioning of swap mutation is shown on

Figure 5.16.

Offspring 1 2 3 4 5 6 7 8 9 0

Mutated Offspring 1 2 3 8 5 6 7 4 9 0

Figure 5.16. Mutation of Offspring with Swap Mutation

49

6. PARAMETER TUNING

In GA, there are several parameters whose values must be decided. The following control

parameters of GA are tested with a parameter tuning, using 80640 replications forming of

80 randomly generated 25-item pick lists are tested with 12 different population size, 7

different crossover probability and 12 different mutation probability values. (12*12*7*80 =

80640):

• population size values of [50, 100, 150, 200 ,250, 300, 350, 400, 450, 500, 550, 600],

• probability of crossover values of [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9],

• probability of mutation values of [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,

0.1, 0.11, 0.12].

To determine the most appropriate population size, values between 50- 600 are tested,

through increasing values by 50. Performance of GA is measured according to average total

travelled distance and results are tabularized in Table 6.1.

Table 6.1. Average Travelled Distance Results per Population Size

Population Size Average of Travelled Distance Decrease in Travelled Distance

50 657.21 ...

100 635.82 21.39

150 628.98 6.84

200 624.56 4.42

250 623.42 1.14

300 621.37 2.05

350 620.22 1.15

400 620.86 -0.64

450 618.79 2.07

500 618.38 0.42

550 618.23 0.15

600 617.06 1.16

50

As shown in Figure 6.1., average travelled distance values of 6720 replications for each

population size value are plotted. When population size increases, travelled distance

decreases. The maximum travelled distance is 657.21 meters that corresponds to a

population size of 50 and it decreases to less than 620 meters when population size is 450 or

larger. Increasing population size from 400 to 450 decreases average travelled distance 2

meters but from 450 to 500 lead to a decrease of 0.41 meters. The population size is

determined to be 450 where travelled distance can be said to be stabilized around 618 meters.

450 is selected as the population size to be given for GA.

Figure 6.1. Parameter Tuning for Population Size

To determine the most suitable crossover probability, values between 0.6-0.9 are tested,

through increasing values by 0.05. Performance of GA is measured according to average

total travelled distance and results are tabularized in Table 6.2.

590

600

610

620

630

640

650

660

670

50 100 150 200 250 300 350 400 450 500 550 600

Tr
av

el
le

d
 D

is
ta

n
ce

 (
m

)

Population Size

51

Table 6.2. Average Travelled Distance Results per Crossover Probability

Crossover

Probability

Average of Travelled Distance Decrease in Travelled Distance

0.6 629.77 ...

0.65 627.72 2.06

0.7 625.85 1.87

0.75 624.27 1.58

0.8 622.93 1.34

0.85 623.69 -0.76

0.9 623.61 0.08

As shown in Figure 6.2., the range of travelled distance is fluctuating between 622 and 630.

The crossover probability is determined to be 0.8 where GA performs the best results for

this crossover probability and average travelled distance of GA increases instead of

decreasing after this value. Average travelled distance of solutions for GA having crossover

probability of 0.8 is around 623 meters. 0.8 is selected as crossover probability to be given

for GA.

Figure 6.2. Parameter Tuning for Crossover Probability

618

620

622

624

626

628

630

632

0,6 0,65 0,7 0,75 0,8 0,85 0,9

Tr
av

el
le

d
 D

is
ta

n
ce

 (
m

)

Crossover Probability (Pc)

52

To determine the most suitable mutation probability, values between 0.01 - 0.12 are tested,

through increasing values by 0.01. Performance of GA is measured according to average

total travelled distance and results are tabularized in Table 6.3.

As shown in Figure 6.3., travelled distance is ranged between 620 and 647 meters. When

mutation probability increases, average travelled distance decreases. Increasing mutation

probability from 0.07 to 0.08 decreases average travelled distance by 0.73 meters but

increasing mutation probability from 0.08 to 0.09 only decreases it by 0.2 meters. The

mutation probability is determined to be 0.08 where travelled distance can be said to be

stabilized around 621 meters. 0.08 is selected as mutation probability to be given for GA.

Table 6.3. Average Travelled Distance Results per Mutation Probability

Mutation Probability Average of Travelled Distance
Decrease in Travelled

Distance

0.01 647.45 ...

0.02 633.16 14.29

0.03 628.32 4.84

0.04 625.00 3.31

0.05 623.01 2.00

0.06 622.32 0.69

0.07 622.08 0.25

0.08 621.34 0.73

0.09 621.14 0.20

0.1 620.70 0.44

0.11 620.22 0.48

0.12 620.16 0.07

53

Figure 6.3. Parameter Tuning for Mutation Probability

605

610

615

620

625

630

635

640

645

650

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,11 0,12

Tr
av

el
le

d
 D

is
ta

n
ce

 (
m

)

Mutation Probability (Pm)

54

Figure 7.2. Routing Paths for: (a) S-Shape (b) Largest Gap

Figure 7.1. Routing Paths for: (a) S-Shape (b) Largest Gap

7. S-SHAPE and LARGEST GAP HEURISTICS

The performance of GA is compared to two popular order picking heuristics, namely S-

Shape and Largest Gap. For this comparison, these two heuristics are explored in detail and

coded in C#.

Given the same pick list, these heuristics provide different total travelled distance, different

routings, therefore different picking sequence, as shown in Figure 7.1.

Routing for S-Shape heuristic is depicted on the left hand side of Figure 7.1. Order picker,

starting from P/D point goes to the front cross aisle of the left-most pick aisle and traverses

it entirely until the front cross-aisle of the farthest block is reached. Order picker goes to the

front cross aisle of the left most sub-aisle of the farthest block and traverses this sub-aisle

entirely to reach the back cross aisle of the farthest block. After that point, order picker

continues to traverse each sub-aisle having at least 1 item entirely one by one from back to

 P/D point P/D point

(a)

Gi

ve

n

the

sa

me

pic

k

list

,

the

se

he

uri

sti

cs

(b)

Gi

ve

n

the

sa

me

pic

k

list

,

the

se

he

uri

sti

cs

pr

55

front cross aisle and front to back cross aisle in order. If picker finishes pick aisles on the

front cross aisle of a block, he picks last item(s) of the last pick aisle by entering from the

front cross aisle and exiting from the front cross aisle as well as he does for the farthest block

of this example. When an entire block is collected, order picker chooses to go to the closest

pick aisles on the edges of next block to start collecting next block’s items. Following the

same S-shape traversing procedure, he finishes next block’s pick items until he collects all

items of all blocks and returns to P/D point.

Routing for Largest Gap heuristic is depicted on the right hand side of Figure 7.1. and it is

similar until order picker reaches back cross aisle of the farthest block. After that point,

picker only collects items of pick aisles until he reaches largest gap of pick aisles and enters

and exits from the same point for each pick aisle. Only for the last pick aisles of blocks,

order picker entirely traverses pick aisle and continues to collect remaining items of the

block from entering the front cross aisle this time. After order picker finishes to collect a

block’s items, order picker chooses to go to the closest pick aisles on the edges of the next

block to start collecting the next block’s items, follows the same Largest Gap traversing

procedure until all items of all blocks are collected and returns to P/D point.

Pseudocode of S-Shape heuristic is given in Appendix A whereas pseudocode of Largest

Gap heuristic is given in Appendix C. Moreover, flowchart for S-Shape heuristic is given in

Appendix B whereas flowchart of Largest Gap heuristic is given in Appendix D.

56

8. COMPUTATIONAL TESTS

To demonstrate the effectiveness of the proposed GA methodology, 6 different settings of

GA are considered:

• GA with cycle crossover operator, swap mutation

• GA with cycle crossover operator, Inversion mutation

• GA with order crossover operator, swap mutation

• GA with order crossover operator, inversion mutation

• GA with partially-mapped crossover operator, swap mutation

• GA with partially-mapped crossover operator, inversion mutation

Performance comparison takes place against two popular heuristics: S-Shape and Largest

Gap. The heuristic algorithms and the proposed GA are developed in C#.

To simulate the target warehouse s mentioned in Section 3.1, the problem is implemented in

C# to be defined with the dimensions of the warehouse (K,S,W,L), the number of blocks and

the number of aisles of warehouse and the location of P/D point given as parameters.

Parameters of GA are selected as population size of 450. crossover probability of 0.8 and

mutation probability of 0.08. Number of stagnant fitness value to terminate evolution is set

to 100.

To test the performance of the proposed GA, 500 randomly test instances are generated for

pick list of sizes 25, 50 and 100 items. For randomly generated pick lists, as mentioned in

Section 3.2, item locations are generated randomly using the proposed item coordinate

system (A,B,C,D), addressing any possible pick location of multi-block warehouse.

Computational tests are done on a PC machine with Core i7-6820HQ 2,7 GHz CPU 16 GB

in RAM with Windows 64-bit Windows 10 as an operating system.

The results are presented in terms of average total travelled distance measured which is the

objective to be minimized. Through these 500 instances, findings are reported with regards

to the minimum, maximum, average and standard deviation of average travelled distance.

57

Moreover, the number of times that GA outperforms S-Shape and Largest Gap heuristics

are given for 500 instances. In addition, running times are also reported not to make a

comparison, but to give an idea about average time required to run these algorithms.

According to Table 8.1., for 25-item pick lists, all of the proposed GA algorithms are

superior to S-Shape and Largest Gap heuristics, in terms of travelled distance. The number

of times where GA is better than S-Shape is larger than the number of times where GA is

better than Largest Gap. Additionally, according to internal comparison of two heuristics

method in terms of travelled distance, Largest Gap heuristics performs better than S-Shape

heuristic for 489 times of 500 samples. Regarding mutation operators in GA settings,

inversion mutation operator turns out to be better than swap mutation operator. Independent

of mutation operator, order crossover ends up best performing crossover operator among

all crossover operators.

GA with order crossover operator, inversion mutation gives the best results for 25-item pick

list with average travelled distance of 625.14 meters among proposed 6 GA variants. This

result is 34% better than S-Shape’s and 25% better than Largest Gap’s performance. GA

with partially-mapped crossover operator, inversion mutation performs second with

average travelled distance of 632.09 meters. GA with cycle crossover operator, inversion

mutation performs third with average travelled distance of 642.09 meters.

58

Table 8.1. Performance Comparison for Travelled Distance for 25-Item Pick List (meters)

Pick list

size = 25

items,

for 500

different

randomly

generated

pick lists

S
-S

h
a

p
e

L
a

rg
es

t
G

a
p

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

 G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

 G
A

 w
it

h
 p

a
rt

ia
ll

y
-

m
a

p
p

ed
 c

ro
ss

o
v

er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

G
A

 w
it

h
 p

a
rt

ia
ll

y
-

m
a

p
p

ed
 c

ro
ss

o
v

er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

Min 701.30 605.78 181.52 338.44 399.82 297.62 428.40 285.32

Max 1116.00 988.00 918.80 852.08 890.86 793.66 904.86 838.76

Average 949.40 827.75 716.81 642.09 665.65 625.14 704.50 632.09

Standard

deviation
61.11 59.47 89.89 76.40 81.02 77.57 79.45 81.51

Number of

times GA is

better than

S-shape

(out of 500)

X X 496 499 499 499 500 500

Number of

times GA is

better than

Largest

Gap

(out of 500)

X X 442 496 491 496 467 497

According to Table 8.2., for 25-item pick lists, none of the proposed 6 GA algorithms are

better than S-Shape and Largest Gap heuristics, in terms of running time. Running time is

reported as 3 decimals after the comma. 0,000 does not mean exactly 0 seconds but when

more digits are written, a time very close to 0 seconds is obtained. In addition to these

running times for GA, an average of 36,50 seconds is required to obtain the shortest distance

matrix for the 1st phase of the solution methodology which is used as an input for the 2nd

phase where GA is implemented. Yet, order picking is a labor-intensive and repetitive

process. And when an order list is completed, an order picker starts for a new picking

sequence for a brand new pick list. Therefore, although running times seem to be worse

than heuristics, they can still be assumed to be very reasonable and can be run frequently

59

during daily warehouse order picking operations. Especially, when the gain in terms of

travelled distance is considered, these running times turn out to be insignificant.

Table 8.2. Running Time for 25-Item Pick List (seconds)

Pick list size

= 25 items,

for 500

different

randomly

generated

pick lists

S
-S

h
a

p
e

L
a

rg
es

t
G

a
p

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

 G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

 G
A

 w
it

h
 p

a
rt

ia
ll

y
-

m
a

p
p

ed
 c

ro
ss

o
v

er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

G
A

 w
it

h
 p

a
rt

ia
ll

y
-

m
a

p
p

ed
 c

ro
ss

o
v

er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

Min ~0.000 ~0.000 3.464 3.611 1.245 1.476 1.868 2.041

Max 0.060 0.005 12.644 20.728 7.569 8.094 6.614 7.793

Average ~0.000 ~0.000 5.942 7.777 2.586 3.063 3.206 3.762

Standard

deviation
0.003 ~0.000 1.331 2.433 0.896 0.992 0.810 0.982

According to Table 8.3., for 50-item pick lists, all of the proposed 6 GA algorithms are

superior to S-Shape heuristics but regarding the comparison with Largest Gap, only GA

algorithms with inversion mutation operator performs better than Largest Gap heuristics,

in terms of travelled distance. The number of times where GA is better than S-Shape is

larger than the number of times where GA is better than Largest Gap similar to pick lists of

size 25. For the performance comparison of heuristics for pick lists of size 50, Largest Gap

heuristics performs better than S-Shape heuristics for all of 500 samples over 500.

Regarding mutation operators in GA settings, inversion mutation operator give better

results than swap mutation operator. Order crossover is ranked first in order of travelling

distance performance among all crossover operators.

GA with order crossover operator, inversion mutation gives the best results for 50-item pick

list with average travelled distance of 972.89 meters among proposed GA variants. This

result is again 34% better than S-Shape’s and 19% better than Largest Gap’s performance.

GA with partially-mapped crossover operator, inversion mutation performs second with

60

average travelled distance of 980.65 meters. GA with cycle crossover operator, inversion

mutation performs third with average travelled distance of 984.77 meters.

Table 8.3. Performance Comparison for Travelled Distance for 50-Item Pick List (meters)

Pick list size

= 50 items,

for 500

different

randomly

generated

pick lists

S
-S

h
a

p
e

L
a

rg
es

t
G

a
p

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

 G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

 G
A

 w
it

h
 p

a
rt

ia
ll

y
-

m
a

p
p

ed
 c

ro
ss

o
v

er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

G
A

 w
it

h
 p

a
rt

ia
ll

y
-

m
a

p
p

ed
 c

ro
ss

o
v

er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

Min 1276.58 1006.22 785.82 547.56 583.98 625.80 751.36 555.96

Max 1734.60 1402.82 1558.56 1296.76 1433.36 1299.32 1637.26 1308.50

Average 1469.80 1206.29 1240.21 984.77 1112.05 972.89 1225.80 980.65

Standard

deviation
77.59 60.63 129.41 120.46 128.82 120.16 139.99 115.54

Number of

times GA is

better than

S-shape

(out of 500)

X X 476 500 498 500 474 500

Number of

times GA is

better than

Largest Gap

(out of 500)

X X 191 489 384 492 223 490

Table 8.4. reports running times for 50-item pick lists. In addition to these running times

for GA, an average of 164.57 seconds is required to obtain the shortest distance matrix for

the 1st phase of the solution methodology which is used as an input for the 2nd phase where

GA is implemented.

61

Table 8.4. Running Time for 50-Item Pick List (seconds)

Pick list size

= 50 items,

for 500

different

randomly

generated

pick lists

S
-S

h
a

p
e

L
a

rg
es

t
G

a
p

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

 G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

 G
A

 w
it

h
 p

a
rt

ia
ll

y
-m

a
p

p
ed

cr
o

ss
o

v
er

 o
p

er
a
to

r,
 s

w
a

p

m
u

ta
ti

o
n

G
A

 w
it

h
 p

a
rt

ia
ll

y
-m

a
p

p
ed

cr
o

ss
o

v
er

 o
p

er
a
to

r,

in
v

er
si

o
n

 m
u

ta
ti

o
n

Min ~0.000 0.001 15.932 27.929 3.788 4.240 7.675 8.986

Max 0.002 0.003 76.740 126.195 19.904 23.305 31.055 34.326

Average 0.001 0.001 32.867 57.369 9.364 10.101 15.531 17.829

Standard

deviation
~0.000 ~0.000 9.139 15.068 2.720 2.710 4.197 4.424

According to Table 8.5., for 100-item pick lists, only 3 GA algorithms having inversion as

mutation operator are superior to S-Shape and Largest Gap in terms of travelled distance.

The number of times where GA is better than S-Shape is larger than the number of times

where GA is better than Largest Gap similar to pick lists of size 50. For the internal

comparison of two heuristics for 100-item pick lists, Largest Gap heuristics again performs

better than S-Shape heuristics for all of 500 samples over 500. Regarding operators in GA

settings, inversion mutation operator give better results than swap mutation operator as well

and order crossover is again ranked first in terms of travelling distance performance among

all crossover operators.

GA with order crossover operator, inversion mutation gives the best results for 100-item

pick list with average travelled distance of 1569.73 meters among proposed GA variants.

This result is 26% better than S-Shape’s and11% better than Largest Gap’s performance.

GA with partially-mapped crossover operator, inversion mutation performs second with

average travelled distance of 1600.93 meters. GA with cycle crossover operator, inversion

mutation performs third with average travelled distance of 1622.83 meters.

62

Table 8.5. Performance Comparison for Travelled Distance for 100-Item Pick List (meters)

Pick list

size = 100

items,

for 500

different

randomly

generated

pick lists

S
-S

h
a

p
e

L
a

rg
es

t
G

a
p

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

 G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

 G
A

 w
it

h
 p

a
rt

ia
ll

y
-

m
a

p
p

ed
 c

ro
ss

o
v

er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

G
A

 w
it

h
 p

a
rt

ia
ll

y
-

m
a

p
p

ed
 c

ro
ss

o
v

er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

Min 1833.16 1562.70 1529.24 1000.20 1355.90 864.14 1614.78 934.48

Max 2397.32 1987.92 2773.96 2094.42 2645.94 2005.26 2781.72 2022.80

Average 2129.34 1773.59 2250.28 1622.83 2042.53 1569.73 2222.63 1600.93

Standard

deviation
96.34 71.94 205.79 192.46 203.60 184.92 198.29 179.23

Number of

times GA

is better

than S-

shape

(out of

500)

X X 142 500 323 500 157 499

Number of

Times GA

is better

than

Largest

Gap (out

of 500)

X X 7 381 51 438 7 407

Table 8.6. reports running times for 100-item pick lists. In addition to these running times

for GA, an average of 559.29 seconds is required to obtain the shortest distance matrix for

the 1st phase of the solution methodology which is used as an input for the 2nd phase where

GA is implemented.

63

Table 8.6. Running Time for 100-Item Pick List (seconds)

Pick list size

= 100 items,

for 500

different

randomly

generated

pick lists

S
-S

h
a

p
e

L
a

rg
es

t
G

a
p

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

G
A

 w
it

h
 c

y
cl

e
cr

o
ss

o
v

er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

 G
A

 w
it

h
 o

rd
er

 c
ro

ss
o

v
er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

 G
A

 w
it

h
 p

a
rt

ia
ll

y
-

m
a

p
p

ed
 c

ro
ss

o
v

er

o
p

er
a

to
r,

 s
w

a
p

 m
u

ta
ti

o
n

G
A

 w
it

h
 p

a
rt

ia
ll

y
-

m
a

p
p

ed
 c

ro
ss

o
v

er

o
p

er
a

to
r,

 i
n

v
er

si
o

n

m
u

ta
ti

o
n

Min 0.001 0.002 119.593 295.624 17.139 20.506 51.235 63.464

Max 0.004 0.007 503.495 883.670 76.016 86.470 263.582 246.695

Average 0.001 0.002 254.371 512.749 37.208 41.628 107.405 125.553

Standard

deviation
~0.000 0.001 59.092 89.790 11.060 11.217 33.794 35.170

When only GA with different settings are considered, the best three performing settings

among all GA does not change for different sizes of pick lists. GA with order crossover

operator and inversion mutation operator is the best performing setting following GA with

partially-mapped crossover operator with inversion mutation on the second rank and GA

with cycle crossover operator and inversion mutation operator on the third rank. It is clearly

seen that inversion mutation operator performs better than swap mutation operator for

picking sequence problem. Among crossover operators, performance ranking is the same

with ranking of all GA settings: the first is order crossover operator, the second is partially-

mapped crossover operator and the third is cycle crossover operator.

64

9. CONCLUSION

In order to improve customer service level, time required to fulfil customer orders should be

minimized. Order picking operation, which is the most time consuming function of a manual

warehouse, directly impacts order completion time, hereby affecting customer service level.

In this study, picking sequence problems of an actual warehouse is taken into consideration.

The warehouse under consideration reflects a typical multi-block warehouse that implements

manual, low-level, picker-to-parts system.

A two-phase solution methodology is proposed to solve the problem. The first phase focuses

on calculating the shortest distance and shortest path between two pick locations in a

warehouse. Given the shortest distances and path from the first phase, the second phase

focuses on the optimization problem of finding the best picking sequence to minimize

travelled distance. Determining the most suitable sequence of pick locations to reduce total

travelled distance of an order picker resembles the well-known combinatorial optimization

problem of travelling salesman.

In this study, results of travelled distance as a performance measure are measured for genetic

algorithm under different crossover and mutation operators. Results are compared to the

outputs of S-Shape and Largest Gap heuristics. Three different pick-list sizes are considered:

25-item, 50-item and 100-item pick lists. 500 randomly generated test instances are

generated for each pick list size. The minimum, maximum, average and standard deviation

of average travelled distance results are tabularized.

From the results acquired, it can be inferred that, for 25-item pick lists, all of the proposed

GA algorithms are superior to S-Shape and Largest Gap heuristics, in terms of travelled

distance. GA with order crossover operator, inversion mutation operator provides the best

results in terms of average travelled distance. For 50-item pick lists, all of the proposed GA

algorithms are superior to S-Shape, in terms of travelled distance. But when compared to

Largest Gap heuristic, only GA algorithms with inversion mutation operator performs

better than Largest Gap, in terms of travelled distance. Again, GA with order crossover

65

operator, inversion mutation operator setting provides the best results for in terms of

average travelled distance. This leads to the idea that pick list size is irrelevant. For 100-

item pick lists, only GA algorithms with inversion mutation operator performs better than

both S-Shape and Largest Gap heuristics, in terms of travelled distance. GA with order

crossover operator, inversion mutation operator setting performs the best in terms of

average travelled distance for pick lists of size 100.

For the different settings of GA operators tested, order crossover operator with inversion

mutation operator is the best setting resulting in the minimum average total travelled

distance. It is seen that among crossover operators, order crossover which respects to the

relative pick location order of past solutions is performing better than other crossover

operators which respects to the absolute pick location positions of past solutions while

producing new solutions from them. For mutation operators, inversion mutation operator is

performing better than swap mutation opera3tor for picking sequence problem.

For any size of pick lists, 25, 50 or 100, independent of the pick list size, the first three best

performing GA setting does not change. For any size, the first best performing setting is

GA with order crossover operator with inversion mutation operatör, the second best

performing setting is GA with partially-mapped crossover operator with inversion

mutation operator and the third best performing setting is GA with cycle crossover operator

and inversion mutation operator.

From academic point of view, this study offers a solution approach using genetic algorithm

for finding the picking sequence leading to the minimum total travelled distance for a

picking tour an order picker performs. This study contributes to operations management

literature by providing results on using genetic algorithm as an order picking algorithm

compared to using S-Shape and Largest Gap heuristics, in terms of travelled distance. It

also provides internal comparison of S-Shape and Largest Gap heuristics and internal

comparison of different settings of GA for different size of pick lists. Other than results,

this study also supplies clear internal functioning of S-Shape and Largest Gap heuristics for

multi-block warehouses by their clear pseudocode provided. Functioning of GA is briefly

explained with some selected operators and mapping order picking problem with well

known problem TSP is detailed.

66

From a management perspective, this study proposes a better performing order picking

algorithm that may help improving warehouse productivity and customer service level.

Applying it as a routing policy is technically possible because when running times are

examined, although running time of GA may seem to need more time than heuristics such

as S-Shape or Largest Gap, GA is still be assumed to be very reasonable in terms or running

time which enable a warehouse to run GA algorithm for every pick list during daily

warehouse order picking operations. Especially when the gain in terms of travelled distance

is considered, running time of GA turns out to be insignificant. Genetic algorithm does not

guarantee optimality but it gives good solutions within tolerable computer running times.

GA still provides a quick and effective decision support for warehouse management with

shorter travelled distance. The shorter the travelled distance, the sooner the orders become

ready for delivery which may lead to an improvement in customer service level in a

warehouse.

Further research directions may deal with other settings of GA to be applied on picking

sequence problem. In this study, it is insighted that crossover operators that tend to respect

relative position of parent gene positions lead to better results of GA for order picking

problem. More crossover operators supporting this condition may be tested to understand

if this foreseight is actually true or not. Other extensions of order crossover such as non-

wrapping order crossover or many other may be tested for picking sequence problem.

Clearly many more mutation operators should be tested to examine more clear impact of

mutation operators on order picking problem. Also a comparison of other meta-heuristics

with GA will certainly be good for future research.

67

REFERENCES

1. Hompel, M.T. and Schmidt, T., "Management of Warehouse Systems", in Hompel, M.T.

and Schmidt, T., Warehouse Management: Automation and Organisation of Warehouse

and Order Picking Systems, pp. 13-62, Springer, Berlin, 2007.

2. Tompkins, J., White, J., Bozer, Y. and Tanchoco, J., Facilities Planning, John Wiley &

Sons, Hoboken, 2010.

3. De Koster, R., Le-Duc, T. and Roodbergen, K., "Design and Control of Warehouse Order

Picking: A Literature Review", European Journal of Operational Research, Vol. 182,

No. 2, pp.481-501, 2007.

4. Roodbergen, K.J., Layout and Routing Methods for Warehouses, PhD Thesis, Erasmus

University Rotterdam, The Netherlands, 2001.

5. Ratliff, H. and Rosenthal, A., "Order-Picking in a Rectangular Warehouse: A Solvable

Case of the Traveling Salesman Problem", Operations Research, Vol. 31, No. 3, pp.507-

521, 1983.

6. Roodbergen, K. and De Koster, R., "Routing Order Pickers in a Warehouse with a

Middle Aisle", European Journal of Operational Research, Vol. 133, No. 1, pp.32-43,

2001.

7. Vaughan, T.S. and Petersen, C.G., "The Effect of Warehouse Cross Aisles on Order

Picking Efficiency", International Journal of Production Research, Vol. 37, No. 4,

pp.881-897, 1999.

8. Roodbergen, K. and De Koster, R., "Routing Methods for Warehouses with Multiple

Cross Aisles", International Journal of Production Research, Vol. 39, No. 9, pp.1865-

1883, 2001.

9. Roodbergen K.J., "Storage Assignment for Order Picking in Multiple-Block

Warehouses", in Riccardo Manzini ed., Warehousing in the Global Supply Chain,

Advanced Models, Tools and Applications for Storage Systems, pp: 139-155, Springer,

London, 2012.

10. Dallari, F., Marchet, G. and Melacini, M., "Design of Order Picking System", The

International Journal of Advanced Manufacturing Technology, Vol. 42, No. 1-2, pp.1-

12, 2008.

68

11. Tuna G., Tunçel G., "Depo Yönetiminde Sipariş Toplama Sistemleri: Bir Literatür

Araştırması", Dokuz Eylül Üniversitesi Mühendislik Fakültesi, Mühendislik Bilimleri

Dergisi, Vol. 14, No. 42, pp.15-31, 2012.

12. De Koster, R. and Poort, E., "Routing Orderpickers in a Warehouse: A Comparison

Between Optimal and Heuristic Solutions", IIE Transactions, Vol. 30, No. 5, pp.469-

480, 1998.

13. Park B.C., "Order Picking: Issues, Systems and Models", in Riccardo Manzini ed.,

Warehousing in the Global Supply Chain, Advanced Models, Tools and Applications for

Storage Systems, pp: 1-30, Springer, London, 2012.

14. Van den Berg, J., "A Literature Survey on Planning and Control of Warehousing

Systems", IIE Transactions, Vol. 31, No. 8, pp.751-762, 1999.

15. Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G., Mantel, R. and Zijm, W.,

"Warehouse Design and Control: Framework and Literature Review", European Journal

of Operational Research, Vol. 122, No. 3, pp.515-533, 2000.

16. Gu, J., Goetschalckx, M. and McGinnis, L., "Research on Warehouse Operation: A

Comprehensive Review", European Journal of Operational Research, Vol. 177, No. 1,

pp.1-21, 2007.

17. Petersen, C. and Aase, G., "A Comparison of Picking, Storage, and Routing Policies in

Manual Order Picking", International Journal of Production Economics, Vol. 92, No. 1,

pp.11-19, 2004.

18. Won, J. and Olafsson, S., "Joint Order Batching and Order Picking in Warehouse

Operations", International Journal of Production Research, Vol. 43, No. 7, pp.1427-

1442, 2005.

19. Daniels, R., Rummel, J. and Schantz, R., "A Model for Warehouse Order Picking",

European Journal of Operational Research, Vol. 105, No. 1, pp.1-17, 1998.

20. Ficko M., Klancnik S., Brezovnik S., Balic J., Brezocnik M., Lerher T., "Intelligent

Optimization Methods for Industrial Storage Systems", in Riccardo Manzini ed.,

Warehousing in the Global Supply Chain, Advanced Models, Tools and Applications for

Storage Systems, pp: 341-370, Springer, London, 2012.

21. Chen, Z., Xie, S. and Wu, D., "Order Picking Path Optimization Based on Genetic

Algorithm", Key Engineering Materials, Vol. 464, pp.379-382, 2011.

69

22. Hsu, C., Chen, K. and Chen, M., "Batching Orders in Warehouses by Minimizing Travel

Distance with Genetic Algorithms", Computers in Industry, Vol. 56, No. 2, pp.169-178,

2005.

23. Tsai, C., Liou, J. and Huang, T., "Using a Multiple-GA Method to Solve the Batch

Picking Problem: Considering Travel Distance and Order Due Time", International

Journal of Production Research, Vol. 46, No. 22, pp.6533-6555, 2008.

24. Öncan, T., "A Genetic Algorithm for the Order Batching Problem in Low-Level Picker-

to-Part Warehouse Systems", Proceedings of the International MultiConference of

Engineers and Computer Scientists 2013, IMECS 2013, Hong Kong, 13-15 March 2013,

Hong Kong, 2013.

25. Bottani, E., Cecconi, M., Vignali, G. and Montanari, R., "Optimisation of Storage

Allocation in Order Picking Operations through a Genetic Algorithm", International

Journal of Logistics Research and Applications, Vol. 15, No. 2, pp.127-146, 2012.

26. Molnár, B. and Lipovszki, G., "Multi-Objective Routing and Scheduling of Order

Pickers in a Warehouse", International Journal of Simulation, Vol. 6, No. 5, pp.22-32,

2005.

27. Seyedrezaei, M., Najafi, S.E., Aghajani, A. and Valami, H.B., "Designing a Genetic

Algorithm to Optimize Fulfilled Orders in Order Picking Planning Problem with

Probabilistic Demand", International Journal of Research in Industrial Engineering,

Vol. 1, No. 2, pp.40-57, 2012.

28. Khojasteh-Ghamari, Y. and Son, J.D., "Order Picking Problem in a Multi-Aisle

Automated Warehouse Served by a Single Storage/Retrieval Machine", International

Journal of Information and Management Sciences, Vol. 19, No. 4, pp.651-665, 2008.

29. Cheng, R., Gen, M. and Sasaki, M., "Film-copy Deliverer Problem Using Genetic

Algorithms", Computers & Industrial Engineering, Vol. 29, No. 1-4, pp.549-553, 1995.

30. Şahin Y., Eroğlu A., "Sipariş Toplama ve Kapasite Kısıtlı Araç Rotalama Problemlerinin

Hiyerarşik Çözümü", Süleyman Demirel Üniversitesi Mühendislik Bilimleri ve Tasarım

Dergisi, Vol. 3, No. 1, pp.15-28, 2015.

31. Şahin Y., Kulak O., "Depo Operasyonlarının Planlanması için Genetik Algoritma Esaslı

Modeller", Uluslararası Alanya İşletme Fakültesi Dergisi, Vol. 5, No. 3, pp.141-153,

2013.

32. Duzgit, Z. and Toy, A.Ö., "An Application of Warehouse Order-Picking Route

Optimization Design at Ekol Logistics", Working Paper

70

33. Oliver, I. M. and Smith, D. J. and Holland, J. R. C., "A study of permutation crossover

operators on the traveling salesman problem", Proceedings of the Second International

Conference on Genetic Algorithms on Genetic algorithms and their application, John J.

Grefenstette (Ed.). L. Erlbaum Associates Inc., pp. 224-230, Hillsdale, NJ, USA, 1987.

34. Goldberg, D. E. and Lingle, J. R., "Alleles, loci, and the traveling salesman problem",

Proceedings of the 1st International Conference on Genetic Algorithms, Lawrence

Erlbaum, pp. 154-159, Hillsdale, NJ, USA, 1985.

35. Davis, L., "Applying adaptive algorithms to epistatic domains", Proceedings of the 9th

international joint conference on Artificial intelligence, IJCAI'85, Morgan Kaufmann

Publishers Inc., pp. 162–164, San Francisco, CA, USA, 1985.

71

APPENDIX A: PSEUDOCODE FOR S-SHAPE HEURISTIC

Define FARTHEST_BLOCK specifying the block that has coordinate on up most location of the room that contains at least 1
pick location
Define LEFT_MOST_PICK_AISLE specifying the aisle that has coordinate on left most location of the room that contains at
least 1 pick location
Send picker horizontally from DEPOT's location to the cross location of back cross aisle of DEPOT's block and
LEFT_MOST_PICK_AISLE
Send picker vertically through LEFT_MOST_PICK_AISLE until picker reaches front cross aisle of the FARTHEST_BLOCK
Locate all the subaisles of FARTHEST_BLOCK that has at least 1 pick location
Send picker horizontally to the front cross aisle of left most subaisle of FARTHEST_BLOCK that has at least 1 pick location
IF there is only one subaisle having any pick location on FARTHEST_BLOCK THEN
 Send picker vertically upwards to collect all items on one and only subaisle until last item location on subaisle and make
picker return to the front cross aisle of FARTHEST_BLOCK
 Set Picker to examine the block next to the FARTHEST_BLOCK that is one block closer to the DEPOT 's block
ELSE
 Send Picker upwards through left most subaisle of FARTHEST_BLOCK to reach back cross aisle of left most subaisle of
FARTHEST_BLOCK
 Set Picker to examine the FARTHEST_BLOCK
ENDIF
WHILE picker is not reached DEPOT 's block
 Locate all the subaisles of next unexamined block that has at least 1 pick location
 IF there are sub aisles having any pick location THEN
 Define LEFTMOST_SUBAISLE_OF_CURRENT_BLOCK as subaisle having any pick location on left most location of current
unexamined block
 Define RIGHTMOST_SUBAISLE_OF_CURRENT_BLOCK as subaisle having any pick location on right most location of
current unexamined block
 IF Picker's location is nearer to LEFTMOST_SUBAISLE_OF_CURRENT_BLOCK than
RIGHTMOST_SUBAISLE_OF_CURRENT_BLOCK THEN
 Set Picker to examine subaisles of this block starting on LEFTMOST_SUBAISLE_OF_CURRENT_BLOCK ending on
RIGHTMOST_SUBAISLE_OF_CURRENT_BLOCK
 ELSE
 Set Picker to examine subaisles of this block starting on RIGHTMOST_SUBAISLE_OF_CURRENT_BLOCK ending on
LEFTMOST_SUBAISLE_OF_CURRENT_BLOCK
 ENDIF
 FOR EACH subaisle having any pick location for the unexamined current block except last subaisle according to the
horizontal move of the picker
 IF Picker is currently on back cross aisle of current block THEN
 Send picker to back cross aisle of this subaisle
 Send Picker downwards through subaisle to the front cross aisle of subaisle
 ELSE
 Send Picker to front cross aisle of this subaisle
 Send Picker upwards through subaisle to the back cross aisle of subaisle
 ENDIF
 ENDFOR
 IF Picker is currently on back cross aisle of current block THEN
 Send picker to back cross aisle of last unexamined subaisle
 Send Picker downwards through subaisle to the front cross aisle of subaisle
 ELSE
 Send Picker to front cross aisle of last unexamined subaisle
 Send picker vertically upwards to collect subaisle items until last item location of subaisle and make picker return to
the front cross aisle of subaisle
 ENDIF
 ELSE
 Send picker vertically downwards through the subaisle to examine next unexamined block
 ENDIF
 Set picker to examine next block closer to the DEPOT's block.
ENDWHILE
Send picker horizontally to DEPOT's location

72

APPENDIX B: FLOWCHART FOR S-SHAPE HEURISTIC

73

APPENDIX C: PSEUDOCODE FOR LARGEST GAP HEURISTIC

Define FARTHEST_BLOCK specifying the block that has coordinate on up most location of the room that contains at least 1
pick location
Define LEFT_MOST_PICK_AISLE specifying the aisle that has coordinate on left most location of the room that contains at
least 1 pick location
Send picker horizontally from DEPOT's location to the cross location of back cross aisle of DEPOT's block and
LEFT_MOST_PICK_AISLE
Send picker vertically through LEFT_MOST_PICK_AISLE until picker reaches front cross aisle of the FARTHEST_BLOCK
Locate all the subaisles of FARTHEST_BLOCK that has at least 1 pick location
Send picker horizontally to the front cross aisle of left most subaisle of FARTHEST_BLOCK that has at least 1 pick location
IF there is only one subaisle having any pick location on FARTHEST_BLOCK THEN
 Send picker vertically upwards to collect all items on one and only subaisle until last item location on subaisle and make
picker return to the front cross aisle of FARTHEST_BLOCK
 Set Picker to examine the block next to the FARTHEST_BLOCK that is one block closer to the DEPOT's block
ELSE
 Send Picker upwards through left most subaisle of FARTHEST_BLOCK to reach back cross aisle of left most subaisle of
FARTHEST_BLOCK
 Set Picker to examine the FARTHEST_BLOCK
ENDIF
WHILE Picker is not reached DEPOT's block
 Locate all the subaisles of next unexamined block that has at least 1 pick location
 IF there are sub aisles having any pick location THEN
 Define LEFTMOST_SUBAISLE_OF_CURRENT_BLOCK as subaisle having any pick location on left most location of current
unexamined block
 Define RIGHTMOST_SUBAISLE_OF_CURRENT_BLOCK as subaisle having any pick location on right most location of
current unexamined block
 IF Picker's location is nearer to LEFTMOST_SUBAISLE_OF_CURRENT_BLOCK than
RIGHTMOST_SUBAISLE_OF_CURRENT_BLOCK THEN
 Set Picker to examine subaisles of this block starting on LEFTMOST_SUBAISLE_OF_CURRENT_BLOCK ending on
RIGHTMOST_SUBAISLE_OF_CURRENT_BLOCK
 ELSE
 Set Picker to examine subaisles of this block starting on RIGHTMOST_SUBAISLE_OF_CURRENT_BLOCK ending on
LEFTMOST_SUBAISLE_OF_CURRENT_BLOCK
 ENDIF
 FOR EACH subaisle having any pick location for the unexamined current block except last subaisle according to the
horizontal move of the picker
 Send picker to back cross aisle of this subaisle
 IF sub aisle has an item to be picked from back cross aisle of the block according largest gap algorithm THEN
 Send Picker to pick all items to be picked from back cross aisle of the block
 ENDIF
 ENDFOR
 Send picker to back cross aisle of last unexamined subaisle
 Send Picker downwards through subaisle to the front cross aisle of subaisle
 FOR EACH subaisle of the current block that have picks left to be picked from front cross aisle of the block
 Send picker to front cross aisle of this subaisle
 Send Picker to pick all items to be picked from front cross aisle of the block
 ENDFOR
 ELSE
 Send picker vertically downwards through the subaisle to examine next unexamined block
 ENDIF
 Set picker to examine next block closer to the DEPOT's block.
ENDWHILE
Send Picker horizontally to DEPOT's location

74

APPENDIX D: FLOWCHART FOR LARGEST GAP HEURISTIC

