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ABSTRACT

FERMAT’S LAST THEOREM FOR REGULAR PRIMES:
KUMMER’S APPROACH

In this thesis we present a partial proof of Fermat’s Last Theorem. We work on the

Fermat equation xp + yp = zp and prove that it has no integer solutions (except trivial

ones) if p is a regular odd prime. We follow Ernst Eduard Kummer’s (1810-1893) proof

and his ideas.

Cylotomic integers is the main interest of this thesis. We study number rings, Dedekind

domains and some factorization and divisibility properties of these special rings. Some

important properties of the trace and norm maps of algebraic integers are proved. We

also study ideal class groups. Fractional ideals are also introduced to see the ideal class

groups from another point of view.

By following Kummer’s approach, we divide the problem into two cases. In the first

case we assume that p does not divide any one of the integers x, y, z, and in the second

one we work under the assumption that p divides exactly one of the integers x, y, z.
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ÖZET

DÜZENLİ ASAL SAYILAR İÇİN FERMAT’NIN SON
TEOREMİ: KUMMER’İN YAKLAŞIMI

Bu tezde Fermat’nın Son Teoremi’nin kısmi bir kanıtı sunulmuştur. Düzenli tek asal

p sayıları için Fermat denklemi olarak adlandırılan xp + yp = zp denkleminin bariz

çözümler dışında tam sayı bir çözümü olmadığı kanıtlanmıştır. Bunu yaparken kul-

lanılan kanıt ve fikirler Ernst Eduard Kummer’e (1810-1893) aittir.

Döngüsel tam sayılar üzerinde önemli ölçüde durulmuştur. Sayı halkaları, Dedekind

bölgeleri ve bu özel halkaların bazı çarpanlara ayırma ve bölünebilme özellikleri çalışılmıştır.

Cebirsel sayıların iz ve norm fonksiyonlarının özellikleri aktarılmıştır. İdeal sınıflarının

grubu ve tek elemanla gerilen ideallerin sınıfları üzerinde önemli ölçüde durulmuştur.

Ayrıca ideal sınıflarının grubu kesirli idealler yolu ile de açıklanmıştır.

Kummer’in yaklaşımı izlenerek problem iki durumda incelenmiştir; birinci durumda

p’nin x, y, z tamsayılarından hiçbirini bölmediği varsayılmıştır. İkinci durumda ise

p’nin x, y, z tamsayılarından tam olarak birini böldüğü kabul edilmiştir.
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1. INTRODUCTION

Fermat’s Last Theorem was one of the challenging problems in mathematics until the

last century. In 17th century, Fermat made this famous conjecture in a margin of a

book, which is Diophantus’ Aritmetica, and wrote his famous phrase;

“Cubum autem in duos cu-

bos, aut quadratoquadratum

in duos quadratoquadratos, et

generaliter nullam in infini-

tum ultra quadratum potes-

tatem in duos eiusdem nomi-

nis fas est dividere cuius rei

demonstrationem mirabilem

sane detexi. Hanc marginis

exiguitas non caperet.” (Pierre

de Fermat, 1637)

“It is impossible to separate

a cube into two cubes, or a

fourth power into two fourth

powers, or in general, any

power higher than the second,

into two like powers. I have

discovered a truly marvelous

proof of this, which this mar-

gin is too narrow to contain.”

(Pierre de Fermat, 1637)

Fermat never gave a proof of his conjecture. Many mathematicians worked on Fermat’s

Last Theorem and early attempts to prove it had developed Algebraic Number Theory.

But Algebraic Number Theory solely is not enough to prove the theorem. In 20th cen-

tury it was proved by Andrew Wiles (1995), and his proof is far more beyond Algebraic

Number Theory. Wiles used methods from Algebraic Geometry in his proof. He found

a connection between elliptic curves, FLT (Fermat’s Last Theorem) and modular forms.

The most well-known mathematicians who worked on Fermat’s Conjecture are; Gauss,

Euler, Lame, Germain, Drichlet, Legendre, Liouville, Cauchy, Kummer and Wiles.

Kummer introduced the notion of regular primes and proved Fermat’s Theorem for

regular primes. A prime p is regular if it does not divide the order of the ideal class

group of its corresponding ring of cylotomic integers.

Theorem 1.1. [Fermat’s Last Theorem, 1637] For any integer n > 2, the equation

xn + yn = zn

has no non-trivial integer solutions, that is, if x, y, z ∈ Z satisfy this equation, then

xyz = 0.
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We will present a partial proof of Fermat’s Last Theorem by following the steps below:

In step II, we prove Fermat’s Last Theorem for regular odd primes.

Step I: n = 4k.

Step II: n = pk where p is an odd regular prime which is greater than or equal to 3

and k ∈ Z.

Case 1: p 6 |xyz, i.e., p divides none of x, y, z.

Sub-case 1: p = 3.

Sub-case 2: p > 3.

Case 2: p divides exactly one of x, y, z.

In Section 2, we will present a proof of Fermat’s Last Theorem for n = 4. It is proved

by Fermat himself, and it is the only case known to be proved by Fermat. The case

n = 3 is proved by Euler following Fermat and both of these basic cases uses the

method of infinite descent. In the preliminaries part, we are going to introduce the

basic definitions and tools that are needed. These cover the definitions of a number

field, a number ring and a Dedekind domain; some important properties of cyclotomic

integers, the trace and norm map defined on the number fields, ideal class groups, divis-

ibility properties of ideals and elements in Dedekind domains, fractional ideals, norm

of an ideal and regular primes. Then in Section 4 we are going to prove Kummer’s

Lemma on Units. In Section 5, we are going to prove the first case of Fermat’s Last

Theorem namely, when p does not divide xyz. In Section 6, we are going to prove the

second case of Fermat’s Last Theorem namely, namely p divides xyz.
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2. FERMAT’S LAST THEOREM FOR n=4k

Fermat himself, after stating the famous conjecture, gave a proof only for the case

n = 4. The proof uses the method of infinite descent which was introduced by Fermat.

After Fermat, Euler gave a proof for n = 3 using infinite descent which is a bit more

difficult than the case n = 4.

In this section, we will prove Fermat’s Last Theorem for n = 4 and then conclude

that Fermat’s Last Theorem is true for n = 4k where k ∈ N.

Definition 2.1. Let a and b be two elements of R−0. If 1 is the only common divisor

of a and b, then a and b are called relatively prime. It is denoted by (a, b) = 1.

Remark 2.2. If (a, b) = 1, then there exist x, y ∈ R such that

ax+ by = 1.

Lemma 2.3. [pp.186, Lemma 11.1 in [1]] Any pairwise coprime integer solutions to

x2 + y2 = z2 are in the following form

±x = r2 − s2

±y = 2rs

±z = r2 + s2

where r and s are coprime and exactly one of them is odd.

Proof. Without loss of generality, assume that x, y, z are all positive. Moreover, we

can observe that not all of x, y, z can be odd. If we find a triple (x, y, z) satisfying

the Fermat equation x2 + y2 = z2 with x and y are odd then z must be even since we

assumed that x, y, z are pairwise coprime. Say z is even and x, y are odd. In other

words,

x = 2k + 1, y = 2l + 1, z = 2j for some j, k, l ∈ Z.

Then we have,

(2k + 1)2 + (2l + 1)2 = (2j)2 and hence 4k2 + 4k + 1 + 4l2 + 4l + 1 = 4j2.

The last equation is impossible since the LHS is equivalent to 2 modulo 4 while the

RHS is equivalent to 0 modulo 4. This means that z cannot be even, that is to say x

or y is even.
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Assume, without loss of generality that y is even. Then we have:

y2 = z2 − x2 = (z − x)(z + x).

Since x, z are odd, z− x and z + x are even. Also z− x and z + x must be all positive

since we assumed x, y, z are all positive. Therefore we can say that y = 2a, z − x = 2b

and z + x = 2c for some positive integers a, b, c. Then we have

(2a)2 = (2b)(2c) =⇒ a2 = bc

If (b, c) 6= 1 then this means that there is a prime h other than 2 dividing both z + x

and z − x. Then h divides their sum 2z and difference 2x. Since h is an odd prime it

divides both z and x. But since x, y, z are relatively prime we must have (b, c) = 1. So

we conclude that each prime factor of a must occur as a square factor of either b or c.

Say b = s2 and c = r2 where (r, s) = 1. Thus,

2z = (z − x) + (z + x) = 2b+ 2c =⇒ z = b+ c = s2 + r2

2x = (z + x)− (z − x) = 2c− 2b =⇒ x = c− b = r2 − s2

We already know that x and z are odd, so exactly one of r or s must be odd. Also we

had shown that r and s are relatively prime. Moreover combining the above results we

can write y as follows:

y2 = z2 − x2 = (s2 + r2)2 − (r2 − s2)2 = s4 + 2s2r2 + r4 − r4 + 2r2s2 − s4 = 4r2s2,

which gives y = ±2rs.

Hence we have the desired result for x, y, z.

Theorem 2.4. [pp. 187, Theorem 11.2 in[1]] There exist no non-zero integer solutions

to the equation x4 + y4 = z2.

Proof. Without loss of generality we may assume that x, y, z are positive. Consider

the set of positive integer solutions of the equation x4 + y4 = z2. Choose a triple

(x, y, z) among them in which z is minimal. Consequently x, y and z are relatively

prime because if not we might simplify the common factor. Applying Lemma 2.3 to

the equation (x2)2 + (y2)2 = z2, we obtain that

x2 = r2 − s2, y2 = 2rs and z = r2 + s2,

for some r, s as in Lemma 2.3. By the first equation above we obtained another

Pythagorean triple x2 + s2 = r2. Since r and s are relatively prime so are x, r, s.
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From our first choice of x as in Lemma 2.3, we know that x is odd. Then applying

Lemma 2.3 again to the equation x2 + s2 = r2, we obtain a and b relatively prime such

that

x = a2 − b2, s = 2ab r = a2 + b2.

Then we see that

y2 = 2rs = 4ab(a2 + b2) (2.1)

Since a and b are relatively prime they must be pairwise coprime to a2 + b2 as well. So,

a prime factorization of equation (2.1) shows that there are integers c, d, e such that

a = c2, b = d2 and a2 + b2 = e2.

After arranging the above equation we obtain that

c4 + d4 = e2.

As a result we get e ≤ a2 + b2 = r < z which contradicts to the minimality of z. This

shows us that there is no non-zero solution to the equation x4 + y4 = z2.

Corollary 2.5. The equation

x4 + y4 = z4

has no non-trivial integer solutions.

Proof. Let (x, y, z) be a non-trivial solution to the equation. But then we obtain a

nontrivial solution (x, y, z2) to the equation x4 + y4 = z2. A contradiction to the

Theorem 2.4.

Ultimately, if x0, y0, z0 is a solution of x4k + y4k = z4k for some k ∈ N, then xk0, y
k
0 , z

k
0 is

a solution of x4 + y4 = z4. But this contradicts to Corollary 2.5. As a result, Fermat

equation has no nontrivial solution for all multiples of 4.
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3. PRELIMINARIES

In this section, we will introduce the fundamental definitions and tools that will be

useful for the rest of the thesis. These methods are mostly introduced by Kummer on

the way of proving Fermat’s Last Theorem which constitutes the basics of Algebraic

Number Theory.

3.1 NUMBER FIELD, NUMBER RING AND DEDEKIND DOMAIN

Throughout this thesis, we let ξ = e
2πi
p unless stated otherwise. Let R denote a

commutative ring with 1, and K denote a number field that is finite extension of Q.

In this subsection, we will introduce required definitions. Also we will explain the

algebraic structure of the set of cyclotomic integers, namely Z[ξ]. The definitions in

this section are taken from Marcus’s book which is titled as “Number Fields”, [2].

Definition 3.1. Let K be a finite extension of Q and let α ∈ K. Then the monic

irreducible polynomial of α having coefficients from Q is called the minimal polynomial

of α over Q.

Definition 3.2. A complex number α is an algebraic integer if and only if it is a root of

some monic polynomial with coefficients from Z. We will denote the set of all algebraic

integers in C by A.

Definition 3.3. LetK be an extension of Q. ThenK/Q is called an algebraic extension

if every element of K is algebraic over Q. In other words, if every element of K is a

root of some monic polynomial with coefficients from Q.

Fact 3.4. A field extension is algebraic if and only if it is a finite extension.

Definition 3.5. A subfield K of C is called a number field if K is a finite extension

of Q.

By Primitive Element Theorem [pp. 595, Theorem 25 in[4]] the field K in Definition 3.5

has the form Q(α) for some α ∈ C which is algebraic over Q. If α is a root of an

irreducible polynomial over Q of degree n for some n ∈ N, then

Q (α) =
{
a0 + a1α + . . .+ an−1α

n−1 : a0, a1, . . . , an−1 ∈ Q
}
.

It can be easily seen that {1, α, . . . , αn−1} is a basis for Q(α) as a vector space over Q,

and hence the above representation of Q(α) is unique.
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Example 3.6. The field Q(ξ) is a number field, since ξ is algebraic over Q with the

minimal polynomial xp−1 + xp−2 + . . . + x + 1. Then so, {1, ξ, . . . , ξp−2} is a basis for

Q(ξ) over Q.

More generally, Q(ω) is a number field where ω = e
2πi
m such that m ∈ Z+. It is called

the mth cyclotomic field.

Fact 3.7. [pp. 16, [2]] The set of algebraic integers in C form a ring. Furthermore

the set of algebraic integers in a number field K form a ring.

Definition 3.8. For any number field K, K∩A is called the number ring corresponding

to the number field K and denoted by OK . It is also called the ring of integers of K.

Fact 3.9. [pp. 67, Theorem 3.5 in [1]] The ring of integers of Q(ξ) is Z[ξ].

It is not always true that the ring of integers of an arbitrary number field Q(α) is Z[α].

For example, the ring of integers of Q(
√
−3) is not Z[

√
−3]. By Example 3.6, we know

that the cyclotomic field Q(ξ) has dimension p − 1. So, we may classify the elements

of Z[ξ] as follows.

Remark 3.10. The corresponding ring of integers of Q has the form

Z[ξ] =
{
a0 + a1ξ + a2ξ

2 + . . .+ ap−2ξ
p−2} .

Definition 3.11. An integral domain R is called a Dedekind domain if the following

conditions are satisfied:

1. Every ideal is finitely generated. (i.e. R is a Noetherian ring)

2. Every non-zero prime ideal is a maximal ideal.

3. R is integrally closed in its field of fractions

Q(R) =

{
α

β
: α, β ∈ R s.t. β 6= 0

}
,

i.e., if
α

β
∈ Q(R) is a root of some monic polynomial over R , then in fact

α

β
∈ R.

Fact 3.12. [pp. 56, Theorem 14 in [2]] Every number ring is a Dedekind domain.

Lemma 3.13. Let K be any number field. Then the field of fractions Q(OK) of OK
is K.

Proof. If x ∈ Q(OK), then x =
α

β
for some α, β ∈ OK such that β 6= 0. Then

α, β ∈ OK ⊆ K. So,
α

β
∈ K. Thus Q(OK) ⊆ K.
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Now take any element x ∈ K. Since K is a number field, K = Q(α) for some α ∈ K.

Then,

x = a0 + a1α + . . .+ an−1α
n−1

for some a0, a1, . . . , an−1 ∈ Q. Let d be the product of denominators of a0, a1, . . . , an−1.

Then dx ∈ OK = Z[α]. So, x ∈ Q(OK). As a result K = Q(OK).

3.2 CYCLOTOMIC INTEGERS

In this section we will introduce some basic and important properties of Z[ξ] where ξ

denotes the primitive pth root of unity e
2πi
p . The elements of the ring Z[ξ] are called the

cyclotomic integers. The term cyclotomic is inherited from the corresponding number

field Q(ξ), namely the cyclotomic field.

Definition 3.14. Let R be any commutative ring with 1. An element y is called an

associate of x in R if x = uy for a unit u ∈ R. Equivalently two elements x and y are

associates if x|y and y|x.

Lemma 3.15. The elements 1 − ξk and 1 − ξl are associates in Z[ξ] for any k, l ∈ Z
which are not divisible by p.

Proof. Without loss of generality we may assume that 1 ≤ l < k ≤ p− 1. Since p is a

prime, then l, k are units in the finite field Zp. So there are s, t in Z such that

k ≡ ls (mod p) l ≡ kt (mod p).

Then we have that,

1− ξk =
1− ξk

1− ξl
(1− ξl) =

1− ξls

1− ξl
(1− ξl) = (1 + ξl + ξ2l + . . .+ ξl(s−1))︸ ︷︷ ︸

∈Z[ξ]

(1− ξl)

(3.1)

1− ξl =
1− ξl

1− ξk
(1− ξk) =

1− ξkt

1− ξk
(1− ξk) = (1 + ξk + ξ2k + . . .+ ξk(t−1))︸ ︷︷ ︸

∈Z[ξ]

(1− ξk).

(3.2)

Equations (3.1) and (3.2) imply that 1 − ξk and 1 − ξl divide each other in Z[ξ], and

hence they are associates in Z[ξ].

Corollary 3.16. For any k = 1, . . . , p− 2, the element 1 + ξ + ξ2 + . . .+ ξk is a unit

in Z[ξ].
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Proof. We know that 1 + ξ + ξ2 + . . . + ξk =
1− ξk+1

1− ξ
. Since we know 1 − ξk+1 and

1− ξ are associates by Lemma 3.15, 1 + ξ + ξ2 + . . .+ ξk is a unit.

As a result of this corollary we obtain the following lemma.

Corollary 3.17. For any k, l ∈ Z which are not divisible by p, we have

〈
1− ξk

〉
=
〈
1− ξl

〉
= 〈1− ξ〉 .

Proof. Since 1− ξk, 1− ξl and 1− ξ are all associates, they differ only by a unit. This

means that they generate the same ideals.

Lemma 3.18. We have p = (1− ξ)(1− ξ2) . . . (1− ξp−1) in Z[ξ].

Proof. Since 1, ξ, . . . , ξp−1 are the all roots of the polynomial xp−1, we can decompose

this polynomial in Z[ξ] as follows,

xp − 1 = (x− 1)(x− ξ)(x− ξ2) . . . (x− ξp−1). (3.3)

On the other hand we have (xp−1)/(x−1) = xp−1+xp−2+ . . .+x+1. Then combining

this with Equation (3.3) we obtain,

xp−1 + xp−2 + . . .+ x+ 1 = (xp − 1)/(x− 1) = (x− ξ)(x− ξ2) . . . (x− ξp−1).

Then substituting x = 1 in the above equation we get that,

p = (1− ξ)(1− ξ2) . . . (1− ξp−1).

3.3 THE TRACE AND NORM

Let K be a number field having degree n over Q. We will define the trace and the

norm maps on K, denoted by TK and NK respectively.

Since K is a number field of degree n, K = Q(α) for some α ∈ C satisfying an ir-

reducible polynomial of degree n over Q. Since α satisfies an irreducible polynomial of

degree n over Q, say f(x), then K is a separable extension of Q by Appendix 1 of [2]

[pp. 254-258, Appendix 1 and Appendix 2 in [2]]. So any embedding of K into C will

naturally fix Q and send a root of f(x) to another root of f(x). Since there are exactly
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n distinct roots, this gives us exactly n such distinct embeddings. Let σ1, . . . , σn be

the n embeddings of K in C fixing Q. For each α ∈ K, define

TK(α) = σ1(α) + σ2(α) + . . .+ σn(α).

NK(α) = σ1(α)σ2(α) . . . σn(α).

Since σ1, . . . , σn are field embeddings of K fixing Q, then the definition above gives us

that,

TK(α + β) = TK(α) + TK(β)

NK(αβ) = NK(α)NK(β).

for all α, β ∈ K. Moreover, for r ∈ Q and α ∈ K we have

TK(r) = σ1(r) + . . .+ σn(r) = nr.

NK(r) = σ1(r) . . . σn(r) = rn.

TK(rα) = σ1(rα) + . . .+ σn(rα) = rσ1(α) + . . .+ rσn(α) = rTK(α).

NK(rα) = σ1(rα) . . . σn(rα) = rσ1(α) . . . rσn(α) = rnNK(α).

In the rest of the thesis we will need the fact that TK(α) and NK(α) are rational for

each α ∈ K. But to prove this we establish another formulation for the trace and

norm. For this let α ∈ K have degree d over Q (i.e. the minimal polynomial of α over

Q has degree d over Q, or equivalently α has d conjugates over Q, or equivalently Q(α)

has degree d over Q.) Let TQ(α)(α) and NQ(α)(α) denote the sum and product of d

conjugates of α, respectively. Then we have the following result.

Fact 3.19. [pp. 21, Theorem 4 in [2]] Let K be a number field of degree n and let

α ∈ K have degree d over Q. Then we have,

TK(α) =
n

d
TQ(α)(α).

NK(α) = (NQ(α)(α))
n
d .

(Note that
n

d
is an integer, in fact

n

d
= [K : Q(α)].)

Corollary 3.20. For any α ∈ K, TK(α) and NK(α) are rational.

Proof. Let f(x) be the minimal polynomial of α over Q. Then so, the coefficients of

f(x) are from Q. In other words, if

f(x) = a0︸︷︷︸
NQ(α)(α)

+a1x+ . . .+ ad−1︸︷︷︸
−TQ(α)(α)

xd−1 + xd,

then a0, a1, . . . , ad−1 ∈ Q. Then a0 is the product of all conjugates of α (roots of the

minimal polynomial of α over Q), which is equal to NQ(α)(α). Also −ad−1 is the sum



11

of all conjugates of α, which is equal to TQ(α)(α). Thus, NQ(α)(α) and TQ(α)(α) are

rational. It follows that,

TK(α) =
n

d
TQ(α)(α) and NK(α) = (NQ(α)(α))

n
d

are also rational since n
d

is integer.

The following corollary shows that if α ∈ Z[ξ] then the trace and norm maps send α

to a rational integer (In other words, TK(α), NK(α) ∈ Z).

Corollary 3.21. If α ∈ K is an algebraic integer, then TK(α) and NK(α) are in Z.

Proof. If α is an algebraic integer, then its minimal polynomial over Q has coefficients

in Z. Then NQ(α)(α) and TQ(α)(α) are in Z and so, NK(α) and TK(α) are in Z.

To simplify the notation we use N for the norm map on the field Q(ξ). The following

well-known results are very important for Kummer’s proof of FLT.

Lemma 3.22. For any 1 ≤ i ≤ p− 1 we have

N(1− ξi) = N(1− ξ) = (1− ξ) . . . (1− ξp−1) = p.

Proof. We know that all Galois conjugates of ξ are given by ξ, . . . , ξp−1 because they

all satisfy the minimal polynomial

f(x) = 1 + x+ . . .+ xp−1

of ξ over Q. Then if σi is an embedding of Q(ξ) into C such that σi(ξ) = ξi where

i ∈ 1, . . . , p− 1, then

σi(1− ξ) = 1− ξi.

Thus (1 − ξ), . . . , (1 − ξp−1) are all Galois conjugates of 1 − ξ, i.e., they satisfy the

minimal polynomial of 1 − ξ. So, they are in the splitting field of 1 − ξ. Hence we

obtain that,

N(1− ξ) = (1− ξ) . . . (1− ξp−1) = p.

The last equality in the above follows from Lemma 3.18. Similarly for any i ∈
{1, . . . , p− 1} the Galois conjugates of 1 − ξi are given by 1 − ξ, . . . , 1 − ξp−1, and

this gives us that

N(1− ξi) = (1− ξ) . . . (1− ξp−1) = N(1− ξ) = p.

So we are done.
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Lemma 3.23. Let u ∈ OK. Then u is a unit in OK if and only if N(u) = ±1.

Proof. If u is a unit in OK , then there exists a v ∈ OK such that uv = 1. Then taking

norms on both sides, we get N(uv) = N(u)N(v) = N(1) = 1 in Z. Since N(u) and

N(v) are both integers by Corollary 3.21, this give us N(u) = ±1.

Now assume that N(u) = ±1. By definition, N(u) = uc(u) where c(u) denotes the

product of all conjugates of u. Clearly, c(u) is an algebraic number because every

conjugate of u is a root of the minimal polynomial of u, and this means that every

conjugate of u is an algebraic number. But it may not be the case that every conjugate

of u is in K. However K is the field of fractions of its corresponding number ring OK ,

which gives us that

c(u) = ±1

u
∈ K.

Hence

c(u) ∈ K ∩ A = OK .

Thus u is a unit in OK .

As a corollary of the above lemmas we have an important result.

Corollary 3.24. For any 1 ≤ i ≤ p− 1, the element 1− ξi is irreducible in Z[ξ].

Proof. Assume that 1− ξi = αβ for some α, β ∈ Z[ξ]. Then taking norms of both sides

and using Lemma 3.22 we obtain,

p = N(1− ξi) = N(α)N(β) in Z.

But then either N(α) = 1 or N(β) = 1. Thus by Lemma 3.23, either α or β is unit.

Then 1− ξ is irreducible in Z[ξ].

Corollary 3.25. For any 1 ≤ i ≤ p− 1 we have N(ξ) = N(ξi) = 1.

Proof. We know that ξ and ξi are conjugates for any 1 ≤ i ≤ p− 1. So they have the

same norm (since they are roots of the same minimal polynomial). Also,

N(ξ) = N(ξi) = ξξ2 . . . ξp−1.

So, it is easy to see that N(ξ) is the constant coefficient of the minimal polynomial of

ξ which is 1 + x+ . . .+ xp−1. We have N(ξ) = 1.
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3.4 IDEAL CLASS GROUP

Kummer’s idea to prove FLT was based on Unique Factorization Property of ideals

in a ring. He discovered that not all rings are unique factorization domain. But, it is

proved that every ideal in a Dedekind domain, and so in a number ring, can be written

as a product of prime ideals in a unique way. Also, Kummer’s discovery of ideal classes

gave rise to many important tools, such as ideal class groups and class numbers which

is defined as the cardinality of the ideal class group. For some special primes that we

will see later, the ideal class group has important features and these features give us

FLT for these special primes. In this subsection, we will define the notion of the class

of an ideal and then show that these classes form an abelian group.

Let R be a number ring. Define a relation ∼ on the set of ideals of R as follows.

For ideals I and J of R

I ∼ J if and only if αI = βJ for some α, β ∈ R− {0} .

We can easily check that this is an equivalence relation:

• I ∼ I (we choose α = 1 = β).

• I ∼ J.
⇔ there exists α, β ∈ R such that αI = βJ.

⇔ βJ = αI.

⇔ J ∼ I.

• I ∼ J and J ∼ S.
⇔ there exists α, β, σ, γ ∈ R− {0} such that αI = βJ and σJ = γS.

⇒ σαI = σβJ and βσ︸︷︷︸
σβ

J = βγS.

⇒ σαI = βγS.

⇔ I ∼ S.

We denote by [I] the class of I under ∼ (Ideal class corresponding to the ideal I).

Now, we can define the multiplication · on the set of ideal classes of R as follows,

[I] · [J ] := [IJ ]

where [I] , [J ] are two ideal classes. Note also that this operation is well-defined. The

following lemma shows that the set of non-zero principal ideals of R form an ideal class

under the above equivalence relation.
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Lemma 3.26. If I and J are two non-zero principal ideals in R, then they are equiv-

alent with respect to the above equivalence relation ∼.

Proof. Assume I = 〈α〉 and J = 〈β〉 for some non-zero α, β ∈ R. Then clearly,

βI = αJ . Then, I ∼ J .

As a result of the lemma above, all principal ideals belongs to the same ideal class.

Therefore we can define Icl(OK) as the set of all principal ideals of R. Then Icl(OK) will

be the identity element of the ideal class group of R that we will define later. Because

if A = 〈a〉 is any principal ideal in R, then for any ideal I we have,

[I] · [A] = [I] · [aR] = [IaR] = [I]

where a ∈ R.

Fact 3.27. [pp. 57, Theorem 15 in [2]] Let I be an ideal in a Dedekind domain R.

Then there is an ideal J of R such that IJ is principal.

Fact 3.27 is essential to show that ideal classes of a Dedekind domain form a group.

Fact 3.28. [pp. 58, Corollary 1 in [2]] The ideal classes in a Dedekind domain form a

group where the identity of the group is Icl(OK) . Then so the ideal classes of a number

ring form a group.

For any number ring R, we denote the ideal class group by cl(R).

Fact 3.29. [pp. 132, Corollary 2 in [2]] Ideal class group of a number ring is finite.

So the ideal class group of any number ring has finite order. This will be an essential

part of the proof of Fermat’s Last Theorem. We will see later in Sections 5 and 6 how

the following Remark 3.31 is useful in the proof of Fermat’s Last Theorem. Actually

it is a consequence of the following group theoretical fact.

Fact 3.30. If a finite group has order m, then the mth power of every element is equal

to the identity.

In ideal class groups, the above group theoretical fact takes the following form.

Remark 3.31. If the ideal class group of any number ring has order h, then the hth

power of any ideal is principal.

By the definition of the multiplication defined on the set of ideal classes of OK we have,

[
Ih
]

= [I]h = Icl(OK).
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This means that Ih is principal.

Remark 3.33 below follows from the follow ing very well-known group theoretical fact.

Fact 3.32. [Lagrange Therorem; pp.89, Theorem 8 in [4]] Every element of a finite

group has order dividing the order of the group, i.e., if an element g of any finite group

G has order relatively prime to |G|, then g must be identity.

Remark 3.33. Let |cl(OK)| = h and p be a number relatively prime to h. Also, let

I /OK such that Ip is a principal ideal. Then I is a principal ideal.

3.5 IDEALS AND DIVISIBILITY IN DEDEKIND DOMAINS

Here we will see some divisibility properties of ideals in Dedekind domains. Unless

stated otherwise R denotes a Dedekind domain in this subsection.

Definition 3.34. Let I and J be two ideals of R and b be an element of R.

• I|J if and only if J = IS for some non-zero ideal S of R.

• If I| 〈b〉, then we write I|b and say I divides b.

Lemma 3.35. Let I and J be ideals in a Dedekind domain R. Then I|J if and only

if J ⊆ I.

Proof. Assume that I|J . Then, there exists a non-zero ideal S of R such that J = IS.

So, we have J = IS ⊆ I naturally.

Conversely, if J ⊆ I then fix an ideal S of R such that IS is principal by Fact 3.27.

Say IS = 〈α〉 for some α ∈ R.

Since SJ ⊆ SI = 〈α〉, C = 1
α
SJ is an ideal in R. Then

IC = I
1

α
SJ = IS

1

α
J = 〈α〉 1

α
J ⊆ RJ ⊆ J.

Also J ⊆ IC, because

J ⊆ 〈α〉 1

α
J = IS

1

α
J = IC.

We get IC = J .

Theorem 3.36. [pp. 59, Corollary 2 in [2]] For any non-zero ideals I, J and S in R,

we have IJ = IS if and only if J = S.

Lemma 3.37. Let I be a non-zero, nontrivial ideal in R, then for any non-zero ideal

J in R, IJ ⊂ J with strict inclusion.
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Proof. Clearly, IJ ⊆ J . We will show that IJ 6= J . If equality holds then by canceling

J we obtain I = 〈1〉 = R. This gives us a contradiction as we have chosen I to be

nontrivial.

Lemma 3.38. If I is a non-zero ideal in R, then I divides some principal ideal. In

other words, it contains a principal ideal as a subset.

Proof. Pick some a ∈ I. Then 〈a〉 ⊆ I. So, I| 〈a〉. Hence, 〈a〉 is a principal ideal

multiple of I.

Definition 3.39. Let I and J be two non-zero ideals in a Dedekind domain R. Then

I and J are called relatively prime ideals if there exists no proper ideal of R dividing

both I and J.

Fact 3.40. [pp. 59, Theorem 16 in [2]] Every non-zero ideal in a Dedekind domain R

is uniquely representable as a product of prime ideals.

Since every number ring is a Dedekind domain, the following corollary follows subse-

quently.

Corollary 3.41. [pp. 60, Corollary of Theorem 16 in [2]] The ideals in a number ring

factor uniquely into prime ideals.

Theorem 3.40 is called as the Fundamental Theorem of Ideal Theory [pp. 13, Section

5 in [3]].

Remark 3.42. [pp. 115, Lemma 5.8 in [1]] Take any two non-zero ideals I and J in

R. Since we know that ideals in a Dedekind domain factors uniquely into prime ideals

(by Theorem 3.40) we may write

I =
∏
i

Pmi
i and J =

∏
i

P ni
i

where Pi’s are distinct non-zero prime ideals in R and mi, ni ∈ Z. Then the greatest

common divisor and least common multiple of I and J are respectively as following,

gcd(I, J) = I + J =
∏
i

P
min(mi,ni)
i and lcm(I, J) = I ∩ J =

∏
i

P
max(mi,ni)
i .

Moreover, (I + J)(I ∩ J) = IJ .

Remark 3.43. [pp. 768, Proposition 17 in [4]] If I and J are relatively prime ideals

in R, then I + J = 〈1〉 = R.

Lemma 3.44. Let I be a prime ideal of R and β ∈ R. If I 6 | β, then Ik and β are

relatively prime for any k ≥ 1.
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Proof. Consider the ideal generated by β. Since R is a Dedekind domain it has a

unique factorization into prime ideals, say

〈β〉 = P k1
1 . . . P km

m

where P1, . . . , Pm are prime ideals of R and k1, . . . , km ∈ Z+. If I and 〈β〉 are not

relatively prime ideals, then there are prime ideals appearing in the decompositions of

both I and 〈β〉. But since I is a prime ideal itself, this means that I appears in the

decomposition of 〈β〉. But this means that I| 〈β〉, then so by Definition 3.34 I divides

β. Contradicting to our assumption.

Also, β and Ik are relatively prime for k > 1. Because if not there would be at least one

prime ideal appearing in the factorizations of both 〈β〉 and Ik. But since I is a prime

ideal and R has the property of unique factorization of ideals, the prime decomposition

of Ik is obvious. Thus we conclude that I must appear in the factorization of 〈β〉. So,

I| 〈β〉, i.e., I|β. Again contradicting to our assumption.

Lemma 3.45. Let a, p ∈ R such that 〈p〉 is a prime ideal of R. Then p 6 |a if and only

if 〈a〉 and 〈p〉 are relatively prime.

Proof. Assume 〈a〉 and 〈p〉 are not relatively prime. Since R is a Dedekind Domain

there is a unique factorization of ideals into prime ideals and 〈p〉 is a prime ideal. So

there must be an ideal I0 of R such that,

〈a〉 = 〈p〉 I0.

Then we have,

〈p〉 | 〈a〉 =⇒ 〈p〉 ⊃ 〈a〉 by Lemma 3.35.

And this means that, p divides a.

Conversely, assume p|a. Then a = pb for some b ∈ R. We get,

〈a〉 = 〈bp〉 = 〈p〉 〈b〉 =⇒ 〈p〉 | 〈a〉 .

Lemma 3.46. Let α and β be some elements in a commutative ring R. Then we have,

α|β as elements if and only if 〈α〉 | 〈β〉 as ideals.

Proof. Assume α divides β. Then β = αγ for some γ ∈ R. As R is a commutative

ring with 1, by considering the ideals generated by β and αγ, we have

〈β〉 = 〈αγ〉 = 〈α〉 〈γ〉 .
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Hence, 〈α〉 | 〈β〉 as ideals.

For the converse, assume that 〈α〉 | 〈β〉 as ideals. Then 〈β〉 = 〈α〉C for some ideal C

of R. Since

β ∈ 〈α〉C = {αc : c ∈ C} ,

we have β = αc1 for some c1 ∈ C. Hence, α|β as elements of R.

As we see, Lemma 3.46 says that divisibility relations does not differ between elements

and the principal ideals they generate. Kummer’s proof of FLT typically takes el-

ements of Z[ξ] and passes the corresponding ideals generated by these elements. So,

Theorem 3.46 will be one of the cornerstone ideas when proving FLT for regular primes.

The following lemma summarizes the relation between the relatively prime elements of

R and the relatively prime principal ideals of R.

Lemma 3.47. Let α and β be two elements of R. Then α and β are relatively prime

if and only if 〈α〉 and 〈β〉 are relatively prime as ideals.

Proof. Assume α and β are relatively prime. Let I be any ideal in R dividing both

〈α〉 and 〈β〉. Then by Lemma 3.35,

〈α〉 ⊆ I and 〈β〉 ⊆ I.

Then α ∈ I and β ∈ I, but since they are relatively prime this means that there are

x, y ∈ R such that

αx+ βy = 1.

This means that 1 ∈ I and so I = R. So the only ideal dividing both 〈α〉 and 〈β〉 is

R. Thus 〈α〉 and 〈β〉 are relatively prime ideals.

Assume on the contrary that 〈α〉 and 〈β〉 are relatively prime as ideals. Say there is

an a ∈ R and r1, r2 ∈ R such that

α = ar1 β = ar2.

Then by Theorem 3.46 〈a〉 | 〈α〉 and 〈a〉 | 〈β〉, contradicting to the assumption that 〈α〉
and 〈β〉 are relatively prime as ideals.

Since every number ring is a Dedekind domain all the results shown in this subsection

are also true in OK .
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3.6 FRACTIONAL IDEALS

In this section, we will describe the ideal class group from another point of view.

Throughout this subsection, R denotes an integral domain and K denotes its field of

fractions.

Definition 3.48. An R-submodule F of K is called a fractional ideal of R if

αF ⊆ R

for some non-zero α ∈ R.

Definition 3.49. Let I be a non-zero ideal of R. Define the inverse ideal of I as

follows

I−1 := {x ∈ K : xI ⊆ R} .

Note that I−1 is an R-submodule of K.

Remark 3.50. For any ideal I of R, I−1 is a fractional ideal.

The reason for this is that if I is any non-zero ideal of R then for any c ∈ I, c 6= 0 we

get,

cI−1 = {cx : x ∈ K and xI ⊆ R} ⊆ Ix ⊆ R.

Remark 3.51. • II−1 ⊂ R for any ideal I of an integral domain R.

• R ⊂ I−1 for any ideal I of an integral domain R.

Definition 3.52. If F = xR for some x ∈ K, then F is called a principal fractional

ideal of R.

Lemma 3.53. If I is a non-zero principal ideal of R, then I−1 is also a principal ideal.

Proof. Assume that I = αR for some non-zero α ∈ R. Then,

I−1 = {x ∈ K : xI ⊆ R} = {x ∈ K : xαR ⊆ R}

= {x ∈ K : xα ∈ R}

=
{
x ∈ K : x ∈ α−1R

}
=
{
x ∈ K : x = α−1r for some r ∈ R

}
= α−1R

As a result, since α−1 ∈ K where K is the field of fractions of R, then I−1 is a principal

fractional ideal.
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Definition 3.54. An R-submodule F of K is called an invertible fractional ideal of R

if there exists another fractional ideal F ′ ⊆ K such that FF ′ = R. In this case F ′ is

called as the fractional inverse of F .

Theorem 3.55. [pp. 110, (vii) in the proof of Theorem 5.6 in [1]] Every non-zero

fractional ideal of a Dedekind domain is invertible.

Corollary 3.56. [pp. 107, Theorem 5.5 in [1]] In a Dedekind domain R, the set of

non-zero fractional ideals forms an abelian group under multiplication of ideals. Also,

R is the identity element of the group.

Remember that OK is the ring of integers of the number field K. By Lemma 3.13, we

know that K is the field of fractions of OK . Since every number ring is a Dedekind

domain this gives us the set of fractional ideals in OK forms an group under multipli-

cation [pp. 56, Theorem 14 in [2]]. This group is called as the fractional ideal group of

OK , and denoted as Gf (OK). Also this group is abelian, because OK is a commutative

ring with 1 and so, the multiplication of ideals is commutative in OK .

Let us denote the set of principal fractional ideals of OK by Nf (OK). For any two

principal ideals xOK and yOK , we have (xOK)(yOK) = xyOK by commutativity of

the ring. So, Nf (OK) is closed under multiplication. Also, (xOK)(x−1OK) = OK . so,

we have (xOK)−1 = x−1OK . Hence, Nf (OK) is closed under taking inverse. Then we

have the following proposition.

Remark 3.57. The set Nf (OK) of principal fractional ideals is a normal subgroup of

the fractional ideal group Gf (OK) .

Since Gf (OK) is an abelian group, then Nf (OK) is a normal subgroup of it. The

quotient group Gf (OK)/Nf (OK) is considered as the fractional ideal class group of

OK . And it can be observed that this definition of the ideal class group is the same as

the ideal class group cl(OK) that we defined in the previous section (Section 3.4).

3.7 NORM OF AN IDEAL

In this section we define the notion of the norm of an ideal. It is different from the

norm of an element, but they have some connections for principal ideals.

Definition 3.58. Let I be a non-zero ideal of the ring of integers OK of a number

field K. We define the norm of I to be

N(I) = |OK/I| .
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By definition it is seen that the norm of any ideal is positive. In fact, the norm of an

ideal is the index of this ideal in its number ring (considered as additive subgroup).

Fact 3.59. [pp. 115, [1]]If I is a non-zero ideal of OK, then |OK/I| is finite.

Fact 3.60. [pp. 116, Corollary 5.10 in [1]] If I = 〈a〉 is a principal ideal then

N(I) = |N(a)| .

Corollary 3.61. If ξ is a primitive pth root of unity, then we have N(〈1− ξ〉) = p.

Proof. By Lemma 3.22, Lemma 3.60 and Lemma 3.22 we have,

N(〈1− ξ〉) = |N(1− ξ)| = p.

Fact 3.62. [pp. 116, Theorem 5.2 in [1]] If I and J are non-zero ideals of OK then

N(IJ) = N(I)N(J).

Theorem 3.63. [pp. 118, Theorem 5.14 in [1]] Let I be a non-zero ideal of OK. Then,

(a) If N(I) is prime number, then I is a prime ideal.

(b) N(I) is an element of I, or equivalently I|N(I).

(c) If I is a prime ideal then it divides exactly one rational prime p, and we have

N(I) = pm

where m ≤ n, the degree of the number field K.

Proof. For this theorem we will only prove the first item which is essential for the rest

of the thesis. The proof of the other items can be found in [1].

(a) Since I is an ideal of OK , then it has a factorization into prime ideals. Let’s say,

I = P n1
1 . . . P nk

k

for some prime ideals P1, . . . , Pk and n1, . . . , nk ∈ N. Then by the Fact 3.62 we

have

N(I) = N(P1)
n1 . . . N(Pk)

nk .
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Since N(I) is prime, then so it is also irreducible and N(I) = N(Pi) for some

i. Also, N(Pj) = ±1 for all i 6= j. By definition N(Pj) cannot be negative, so

N(Pj) = 1 for all i 6= j.. This means by the definition that

|OK/Pj| = 1 =⇒ Pj = OK for all i 6= j.

Then I = Pi is a prime ideal.

Lemma 3.64. Let I = 〈1− ξ〉 be the ideal generated by 1− ξ in Z[ξ] where ξ = e2πi/p.

Then the following statements hold.

(a) Ip−1 = 〈p〉.

(b) N(I) = p.

Proof. (a) By Lemma 3.18, p =
∏p−1

i=1 (1− ξi). Since we are working in a commutative

ring with 1, the ideal generated by p in Z[ξ] is

〈p〉 =

p−1∏
i=1

〈
1− ξi

〉
.

By Lemma 3.17 we know
〈
1− ξk

〉
= 〈1− ξ〉 so,

〈p〉 =

p−1∏
i=1

〈1− ξ〉 = 〈1− ξ〉p−1 = Ip−1.

(b) Follows by Corollary 3.61.

3.8 REGULAR PRIMES

The notion of regular prime was introduced by Kummer. In this subsection we will

introduce the definition of regular prime

Definition 3.65 (Regular Prime, Kummer, 1850). A prime p is regular if and only if

p 6 | |cl(Z[ξ])|

where ξ = e2πi/p.
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Remark 3.66. By a well-known result in group theory (Lagrange Theorem) it follows

that, if p is a regular prime then cl(Z[ξ]) does not contain an element of order p in

other words, for a regular prime p if the pth power of an ideal I is a principal ideal,

then I must be principal ideal by Remark 3.66.

Kummer made a conjecture that “there are infinitely many regular primes” however,

this conjecture is still open. Ironically, Jensen (1915) proved that “there are infinitely

many irregular primes” [pp. 82, [8]]. It is well-known that irregular primes less than

100 are only 37, 59 and 67. All primes less than 100 except 37, 59 and 67 are regular.

For example, 2, 3, 5, 7, 11, 13, 17, 19, 23 are regular primes.
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4. KUMMER’S LEMMA ON UNITS

In this section we assume that p is an odd prime number and ξ is a primitive pth root

of unity as usual.

Notation 4.1. Let u be an element of Z[ξ]. Then we can write it as u = g(ξ) for some

g(t) ∈ Z[t]. Then g(ξs) ∈ Z[ξ] for all conjugates ξs of ξ where s = 1, ..., p − 1. In this

case we define us := g(ξs) and it is a Galois conjugate of u.

In fact if σi is an embedding from Q(ξ) to C such that σi(ξ) = ξi then,

σi(u) = σi(g(ξ)) = g(σi(ξ)) = g(ξi) = ui.

Hence, u1, u2, . . . , up−1 are all Galois conjugates of u.

Fact 4.2. [pp. 189, Lemma 11.4 in [1]] The only roots of unity in K = Q(ξ) are ±ξm

for integers m.

Fact 4.3. [pp. 191, Lemma 11.6 in [1]] If p(t) ∈ Z[t] is a monic polynomial, all of

whose zeros in C have absolute value 1, then every zero of it is a root of unity.

Lemma 4.4. [Kummer’s Lemma on Units; pp. 191, Lemma 11.7 in [1], pp.191] Every

unit of Z[ξ] is of the form rξk where r ∈ R and k ∈ Z.

Proof. Let u be a unit in Z[ξ]. Then u = g(ξ) for some polynomial g(t) ∈ Z[t]. For

s = 1, . . . , p− 1 define,

us = g(ξs).

By the notion of conjugates, us is a Galois conjugate of u. Since u is a unit in Z[ξ], by

Lemma 3.23 we have that

±N(u) = ±u1.u2 . . . .up−1 = 1.

Hence each us is also a unit for s = 1, . . . , p−1. Furthermore for any s ∈ {1, . . . , p− 1}
we have

up−s = g(ξp−s) = g(ξ−s) = g(ξs) = g(ξs) = us

where the bar represents complex conjugation, i.e., ξs = ξ−s.

Then we have usup−s = |us|2 > 0.

It follows that ±1 = N(u) = (u1up−1)(u2up−2) . . . (ukup−k) > 0 as all the pairs uiup−i >

0.
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Thus N(u) > 0, this means that N(u) = 1. We claim that each
us
up−s

is a unit of

absolute value 1. To see this observe that

us
up−s

(up−s)
2
∏
k 6=s

ukup−k = N(u) = 1,

so
us
up−s

is a unit for all s = 1, . . . , p − 1. Also since |us| = |us| = |up−s|, we get∣∣∣∣ usup−s

∣∣∣∣ = 1.

Now consider the product
p−1∏
s=1

(t− us
up−s

) = f(t).

Claim 1. f(t) ∈ Z[t].

Proof of the Claim. First we will show that
u1
up−1

,
u2
up−2

, . . . ,
up−1
u1

are all conjugates

of
u1
up−1

not necessarily distinct. Let σi be any embedding form Q(ξ) to C such that

σi(ξ) = ξi. Then σi is a field isomorphism from Q(ξ) to Q(ξi) for any i ∈ {1, . . . , p− 1}.
Then for any i ∈ {1, . . . , p− 1} we have

σi

(
u1
up−1

)
= σi

(
g(ξ)

g(ξp−1)

)
=

σi(g(ξ))

σi(g(ξp−1))
=

g(σi(ξ))

g(σi(ξp−1))
=

g(ξi)

g(ξi(p−1))

=
g(ξi)

g(ξ−i)
=

g(ξi)

g(ξp−i)
=

ui
up−i

. (4.1)

But these conjugates do not have to be distinct, because we may have g(ξi) = g(ξj)

for some i 6= j. In fact, there are (p − 1)/m many conjugates of
u1
up−1

where m is the

degree of the minimal polynomial of
u1
up−1

. Now we will observe that, if p(t) is the

minimal polynomial of
u1
up−1

over Z, then p(t) divides f(t), in fact f(t) = (p(t))k for

some k ∈ Z. Say f(t) = (p(t))kh(t) for some h(t) relatively prime to p(t). If h(t) is not

constant polynomial, then some
ui
up−i

is a root of h(t). But then,

h

(
ui
up−i

)
= h

(
g(ξi)

g(ξp−i)

)
= h

(
g

(
ξi
ξp−i

))
= 0.

Let k(t) = h(g(t)). Then
ξi

ξp−i
is a root of k(t). Let p0(t) be the minimal polynomial

of
ξ

ξp−1
over Z (Note that

ξ

ξp−1
is algebraic over Z, because it is a unit in Z[ξ]). Then,
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we have p0(t)|k(t). So,
ξ

ξp−1
is also a root of k(t). Thus

k

(
ξ

ξp−1

)
= h

(
g

(
ξ

ξp−1

))
= h

(
u1
up−1

)
= 0.

Since p(t) is the minimal polynomial of
u1
up−1

, then p(t)|h(t). This contradicts to the

fact that p(t) and h(t) are relatively prime. So, h(t) must be a constant polynomial.

Thus we know p(t) ∈ Z[t], this implies that f(t) ∈ Z[t]. �

Hence by Lemma 4.3, zeros of f(t) are roots of unity. Since any root of unity is

of the form ±ξm by Lemma 4.2, we get

u/up−1 = ±ξm = ±ξm.ξp = ±ξm+p.

Since p is odd either m or p+m is even. Then we may assume

u/up−1 = ±ξ2n (4.2)

for some 0 < n ∈ Z. In fact it can be shown that u/up−1 = +ξ2n. To see this remember

that I = 〈1− ξ〉. Then,

ξ−nu = ξ−ng(ξ) = ξ−n(g0 + g1ξ + . . .+ grξ
r) = g0ξ

−n + g1ξ
1−n + . . .+ grξ

r−n (4.3)

≡ v (mod (1− ξ)) (4.4)

for some v ∈ Z. The last equality (4.4) follows by (b) of Lemma 3.64 (Since |Z[ξ]/I| = p,

every element of Z[ξ] is congruent to one of 0, 1, . . . , p− 1 modulo I). Thus,

ξ−nu− v ∈ I for some v ∈ Z. (4.5)

This means that

ξ−nu− v = (1− ξ)w

for some w ∈ Z[ξ]. Then by taking complex conjugation

ξ−nu− v = (1− ξ)w

we have that

ξnup−1 ≡ v (mod (1− ξp−1)). (4.6)

This comes from the fact that 1 − ξ and 1 − ξp−1 are associates by Lemma 3.15. So,
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we have I = 〈1− ξ〉 = 〈1− ξp−1〉. So, by Equations (4.5) and (4.6) we have that

ξ−n.u− ξnup−1 ∈ I (4.7)

=⇒ u/up−1 ≡ ξ2n (mod (1− ξ)).
If we had negative sign in Equation (4.2), i.e., if it were −u/up−1 = ξ2n, then combining

with the last equality we get

−ξ2n = u/up−1 ≡ ξ2n (mod (1− ξ)) =⇒ 2ξ2n ≡ 0 (mod (1− ξ)).

So, we would have that

(1− ξ)|2ξ2n.

Then this would imply that N(1−ξ)|N(2ξ2n). Then, p|2p−1 because we have N(1−ξ) =

p by Lemma 3.22 and N(2ξ2n) = N(2)N(ξ2n) = 2p−1 by Corollary 3.25 (Note that

±u/up−1 = ξ2n is a unit in Z[ξ]. So, its norm is 1). But p|2p−1 gives us a contradiction

as p is an odd prime.

Therefore, we must have u/up−1 = ξ2n. So, we have that ξ−nu ≡ ξnup−1 (mod (1−ξ)).
It can easily be seen that they are complex conjugates, as ξ−nu = ξnup−1. So,

ξnup−1 ∈ R. Now we are done with u = ξn(ξnup−1︸ ︷︷ ︸
∈R

).

Corollary 4.5. If u is a unit of Z[ξ] and if u is its complex conjugate then u/u = ξk

for some k ∈ Z.



28

5. FERMAT’S LAST THEOREM: CASE 1

It was Germain’s idea to divide Fermat’s Last Theorem into two cases such as p does

not divide xyz and p|xyz. Although she gave a wrong proof, her idea and Lame’s clever

factorization helped Kummer to prove Fermat’s Theorem for regular primes. In this

section we are assuming that p is an odd prime which does not divide any of x, y, z in

the equation

xp + yp = zp.

5.1 FLT FOR p=3

Now we will prove Fermat’s Last Theorem for p = 3 under the assumption that none

of x, y, z is divisible by 3. Actually the whole proof of case p = 3 was given by Euler

by using the method of infinite descent but we will not present it here.

Theorem 5.1. The equation

x3 + y3 = z3 (5.1)

has no non-trivial solution in Z where x, y, z are not divisible by 3.

Proof. Let x, y, z ∈ Z be a solution of Equation (5.1) such that 36 |x, y, z. Then if we

consider x, y, z in modulo 9, each of them are equivalent to 1, 2, 4, 5, 7, 8 modulo 9. In

other words,

x3, y3, z3 ≡ ±1 (mod 9).

Then we have only 3 possibilities for the sum of x3 and y3,

x3 + y3 ≡ 2,−2, 0 (mod 9).

But z3 is either 1 or −1 modulo 9. So we cannot have x3 + y3 ≡ z3 (mod 9). So there

is no solution for Equation (5.1) in which x, y, z are not divisible by 3.

5.2 FERMAT’S LAST THEOREM FOR p > 3

Let ξ denote a primitive pth root of unity as before.

Lemma 5.2. If α ∈ Z[ξ], then there is an element m ∈ Z such that

αp ≡ m (mod p).
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Proof. Take any α ∈ Z[ξ], then by Corollary 3.10

α = a0 + a1ξ + . . .+ ap−2ξ
p−2 where ai ∈ Z for all i = 0, 1, . . . , p− 2.

Then by the binomial theorem modulo p it can be shown that,

(
a0 + a1ξ + . . .+ ap−2ξ

p−2)p ≡ ap0 + ap1 + . . .+ app−2 (mod p).

Then, since ai ∈ Z for all i = 0, 1, . . . , p− 2 we have ap0 + ap1 + . . .+ app−2 ∈ Z.

Lemma 5.3. If p divides an element γ of Z[ξ], then p divides all the coefficients of γ

in Z.

Proof. Say γ = g0 + g1ξ + . . .+ gp−2ξ
p−2 where gi ∈ Z for all i = 0, 1, . . . , p− 2. Since

p divides γ in Z[ξ], then γ = pβ for some β ∈ Z[ξ]. Then by Corollary 3.10,

β = b0 + b1ξ + . . .+ bp−2ξ
p−2

for some b0, b1, . . . , bp−2 ∈ Z. Hence,

g0 + g1ξ + . . .+ gp−2ξ
p−2 = γ = pβ = p(b0 + b1ξ + . . .+ bp−2ξ

p−2)

= pb0 + pb1ξ + . . .+ pbp−2ξ
p−2

By the uniqueness of the representation of γ, we have gi = pbi for all i = 0, 1, . . . , p−2.

Thus p|gi for all i = 0, 1, . . . , p− 2.

So, we can prove the first case of Fermat’s Last Theorem for regular primes in light of

the above lemmas and Kummer’s Lemma on Units.

Theorem 5.4. If p is an odd regular prime then the equation

xp + yp = zp (5.2)

has no integer solutions x, y, z where

p 6 |x, p 6 | y, p 6 | z.

Proof. Without loss of generality we may take x, y, z relatively prime.

Factorize Equation (5.2) in Z[ξ] as follows

(x+ y) (x+ yξ) . . .
(
x+ yξp−1

)
= zp. (5.3)
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By passing to ideals, we get

〈x+ y〉 〈x+ yξ〉 . . .
〈
x+ yξp−1

〉
= 〈z〉p . (5.4)

Claim 1. The ideals on the left side of Equation (5.4) are pairwise coprime.

Proof of the Claim. Say I = 〈x+ yξi〉 and J = 〈x+ yξj〉 for i 6= j. Let P be a

prime ideal of Z[ξ] such that P |I and P |J . This means that I ⊂ P and J ⊂ P . Then

without loss of generality assuming i < j we get,

(x+ yξi)− (x+ yξj) ∈ P.

So,

yξi(1− ξj−i) ∈ P. (5.5)

We will see that we must have (1− ξj−i) ∈ P .

Multiplying Equation (5.5) by ξp−i, we get y(1 − ξj−i) ∈ P . Then since P is a prime

ideal either y ∈ P or (1− ξj−i) ∈ P .

Assume that (1− ξj−i) /∈ P , this means that y must be an element of the ideal P . By

our assumption I = 〈x+ yξi〉 ⊂ P , i.e., x + yξi ∈ P . Since P is an ideal of Z[ξ], by

Equation (5.3) it follows that zp ∈ P . Then since P is a prime ideal z ∈ P . But then

we have,

1 = gcd(y, z) ∈ P.

This gives us a contradiction as P is a prime ideal. Hence we have (1− ξj−i) ∈ P .

As we know 1− ξ and 1− ξj−i are associates in Z[ξ], so we have

〈
1− ξj−i

〉
= 〈1− ξ〉 in Z[ξ].

So

〈1− ξ〉 ⊂ P ⇒ P | 〈1− ξ〉

⇒ 〈1− ξ〉 = P.Q for some ideal Q of Z[ξ]

We know that N(〈1− ξ〉) = p and by properties of the Norm of ideals

p = N(〈1− ξ〉) = N(P )N(Q)

Then as p is prime, N(P ) is either p or 1. Since P 6= Z[ξ], N(P ) = |Z[ξ]/P | 6= 1. So
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we get N(P ) = p and N(Q) = 1, that is Q = Z[ξ]. Hence 〈1− ξ〉 = P .

Since P |I, by Equation (5.4) we get

P | 〈z〉p

and moreover P | 〈z〉 as P prime. Therefore, 〈z〉 = PQ for some ideal Q of Z[ξ]. This

means that

N(P )︸ ︷︷ ︸
p

|N(〈z〉) = |N(z)| =
∣∣zp−1∣∣ .

So, we obtain p|z which gives us a contradiction as p 6 |z.

By assuming I = 〈x+ yξi〉 and J = 〈x+ yξj〉 have a common divisor, we obtained a

contradiction. This proves Claim 1. �

By Corollary 3.41, prime factorization of ideals is unique in Z[ξ]. The RHS of Equation

(5.4) is a pth power and the ideals on the LHS are pairwise relatively prime. So, we

obtain that there are ideals Ii of OK = Z[ξ] such that Ii 6= Ij when i 6= j and

〈
x+ yξi

〉
= Ipi i = 0, 1, 2, . . . , p− 1.

Thus, Ipi is a principal ideal. This means that

[Ipi ] = [Ii]
p = Icl(OK)

where Icl(OK) denotes the class of principal ideals, which is the identity of the ideal class

group of Z[ξ]. So, the order of [Ii] divides p in the ideal class group of Z[ξ]. Therefore

the order of [Ii] is either 1 or p. But p 6 | |cl(Z[ξ])| as p is a regular prime. This means

that cl(Z[ξ]) cannot have an element of order p. Hence [Ii] must have order 1, i.e., Ii

is a principal ideal for each 1 ≤ i ≤ p− 1.

In particular I1 is principal, i.e., for some α ∈ Z[ξ],

〈x+ yξ〉 = 〈α〉p = 〈αp〉 .

So we get,

x+ yξ = uαp

for some unit u ∈ Z[ξ]. Then by Lemma 5.2,

x+ yξ ≡ u.m (mod p)
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for some m ∈ Z. By taking complex conjugation we get

x+ yξ−1 ≡ x+ yξ ≡ x+ yξ ≡ um ≡ u.m (mod p).

By the corollary of Kummer’s Lemma on Units (KLU in short),
u

u
= ξk for some k ∈ Z.

So we have, x+ yξ ≡ um
KLU
= uξkm = umξk ≡ (x+ ξ−1y)ξk (mod p).

This means, x+ yξ ≡ xξk + yξk−1 (mod p) .

In other words,

x+ yξ − xξk − yξk−1 ≡ 0 (mod p). (5.6)

Now we will show that this k must be equal to 1.

Claim 2. k ≡ 1 (mod p).

Proof of the Claim. Without loss of generality we may assume 0 ≤ k ≤ p−1. Now

we will show that k = 1 by by eliminating the other cases by means of Equation (5.6)

and Lemma 5.3.

Let γ := x + yξ − xξk − yξk−1. Note that since p|γ (by Equation (5.6)) p divides all

the coefficients of γ in the unique representation of it in the basis {1, ξ, ..., ξp−2}.
Case 1: If k = 0.

In this case, we have

p|x+ yξ − x. ξ0︸︷︷︸
1

−yξ−1 ⇒ p|y(ξ − ξ−1) = y(ξ − ξp−1)

⇒ p|y(ξ + 1 + ξ + ξ2 + . . .+ ξp−2)

⇒ p| y + 2yξ + yξ2 + . . .+ yξp−2︸ ︷︷ ︸
∈Z[ξ]

⇒ p|y.

But this gives us a contradiction since we have chosen y relatively prime to p. Thus,

k = 0 cannot be true.

Case 2: If k = p− 1.

Here we have,

γ = x+ yξ − xξp−1 − yξp−2

= x+ yξ − x(−(1 + ξ + . . .+ ξp−2))− yξp−2

= 2x+ (x+ y)ξ + xξ2 + . . .+ (x− y)ξp−2.

Now, if p|γ, then p|2x by Lemma 5.3. This implies that p|x as p is odd. Again we get
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a contradiction since x was chosen to be relatively prime to p. Thus k 6= p− 1.

Case 3: If 1 < k ≤ p− 2.

In this case we have the following information,

ξk 6= 1 and ξk 6= ξ and ξk 6= ξk−1.

Then by Equation (5.6) the coefficient of ξk in the unique decomposition of γ is equal

to −x. But then

p|γ = x+ yξ − ξkx− ξk−1y ⇒ p|x.

Then again we obtain a contradiction as x is not divisible by p. Thus k 6= 2, . . . , p− 2.

As a result, we can conclude that k = 1 and Claim 2 follows. �

Claim 3. x ≡ y (mod p).

Proof of the Claim. By Claim 2, k = 1. So, γ = x+ yξ − xξ − y = (x− y)(1− ξ).
Since p|γ (Equation (5.6)), we get p divides (x− y) by Lemma 5.3 again. Hence,

x ≡ y (mod p).

�

We had chosen pairwise relatively prime x, y, z as a solution of xp + yp = zp where p

is a regular prime and concluded that x ≡ y (mod p). But if x, y, z is a solution, then

x,−z,−y is also a solution to xp + yp = zp as p is prime. So, we may conclude that

x ≡ −z (mod p). (5.7)

Since x ≡ y (mod p), then xp ≡ yp (mod p). Also, zp ≡ (−x)p (mod p) Then, (re-

membering that p is odd)

2xp ≡ xp + xp ≡ xp + yp ≡ zp ≡ (−x)p ≡ −xp (mod p).

This implies that p|3xp. This means that either p = 3 or p|xp. However, if p = 3 then

Equation (5.2) has no integer solutions by Theorem 5.1. If p|xp then we obtain that

p|x. This leads to a contradiction by the assumption of the theorem.

In the next section, we will prove Fermat’s Last Theorem for the regular primes which

divide one of the integers x, y, z. The next case is a little bit harder and messier than

Case 1.
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6. FERMAT’S LAST THEOREM: CASE 2

In this section we will prove that there is no solution for pth Fermat equation when

p divides the solutions. As in the other sections, throughout this section, ξ refers to

a primitive pth root of unity and OK = Z[ξ] is the ring of cyclotomic integers. We

will assume all the properties of Dedekind domains and cyclotomic integers mentioned

before.

6.1 FURTHER PROPERTIES OF CYCLOTOMIC INTEGERS

In this section we are going to present some important properties of cyclotomic integers

which are essentially used in the proof of Fermat’s Last Theorem. Especially Lemma 6.2

below constitutes an important part of the proof of Fermat’s Last Theorem, by creating

a connection between integer solutions of Fermat’s equation which are relatively prime

to p in Z and cyclotomic integer solutions which are relatively prime to 1− ξ in Z[ξ].

Lemma 6.1. [pp. 157, Lemma 1 in [5]] In the ring Z[ξ], the ideal 〈1− ξ〉 is prime

and p has the factorization

p = (1− ξ)p−1ε (6.1)

where ε is a unit in Z[ξ].

Proof. We know that N(1− ξ) = (1− ξ) . . . (1− ξp−1) = p by Lemma 3.22, and hence

p = (1− ξ)p−1(1 + ξ)(1 + ξ + ξ2) · · · (1 + ξ + · · ·+ ξp−2).

By the Corollary 3.16, we know that 1+ξ+ . . .+ξk is a unit for any k ∈ {1, . . . , p− 2}.
Then so writing ε = (1 + ξ)(1 + ξ + ξ2) . . . (1 + ξ + . . .+ ξp−2), we obtain

p = (1− ξ)p−1ε where ε is a unit in Z[ξ].

Clearly by the first assertion of Theorem 3.63, 〈1− ξ〉 is a prime ideal of Z[ξ] as

N(〈1− ξ〉) = p is prime in Z.

Lemma 6.2. [pp. 158, Lemma 2 in [5]] If a ∈ Z is divisible by 1−ξ (in the ring Z[ξ]),

then it is also divisible by p for some p ∈ Z.

Proof. Assume a = (1 − ξ)α for some α ∈ Z[ξ]. Taking the norm of both sides, by

Lemma 3.22 we obtain

ap−1 = N(1− ξ)N(α) = pN(α)
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where N(α) ∈ Z by Corollary 3.21. So, the above equation is in Z. Since p is a prime

dividing ap−1, this gives us that p divides a in Z.

Actually the converse of the lemma above also holds, that is, a is divisible by 1− ξ in

Z[ξ] if and only if a is divisible by p in Z. However, we will only need the statement of

Lemma 6.2.

Lemma 6.3. Let w ∈ Z[ξ]be such that

w ≡ a (mod I) for some a ∈ Z.

Then we have that wp ≡ ap (mod Ip) (Note that I = 〈1− ξ〉).

Proof. Since w ≡ a (mod I), there exists v ∈ Z[ξ] such that,

w = a+ (1− ξ)v.

In Z[ξ] we may write,

wp − ap = (w − a)(w − aξ) . . . (w − aξp−1).

Then for any i = 0, 1, . . . , p− 1 we have,

w−aξi = (a+ (1− ξ)v)︸ ︷︷ ︸
w

−aξi = a(1−ξi)+(1−ξ)v = (1− ξ)[

∈Z[ξ]︷ ︸︸ ︷
a(1 + ξ + · · ·+ ξi−1) + v]︸ ︷︷ ︸

∈I=〈1−ξ〉

.

Thus, w − aξi ∈ I for all i = 0, 1, . . . , p− 1, i.e., w − aξi ≡ 0 (mod I). In other words,

since w − aξi ∈ I for all i = 0, 1, . . . , p− 1, then

(w − a)(w − aξ) · · · (w − aξp−1) ∈ Ip.

As a result we get,

wp ≡ ap (mod Ip).

Lemma 6.4. 1 + ξ is a unit in Z[ξ].

This follows by Corollary 3.16.
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6.2 KUMMER’S LEMMA

The following theorem is originally proved by Kummer, which is essential to prove

second case of Fermat’s Last Theorem. It is different from Kummer’s Lemma on Units

(Lemma 4.4), although they all classify the units of cyclotomic integers. We will not

give a proof of Kummer’s Lemma, because the tools used to prove it are beyond the

scope of this thesis. We refer the reader to the book [5] for the proof.

Theorem 6.5. [Kummer’s Lemma; pp. 377, Theorem 3 in[5]] Let p be a prime number.

If a unit u of Z[ξ], is congruent modulo p to a rational integer a, then the unit is the

pth power of another unit η ∈ Z[ξ], i.e., u = ηp.

6.3 FERMAT’S LAST THEOREM: CASE 2

In this section, we will present a proof of Fermat’s Last Theorem when p ≥ 3 is an odd

regular prime dividing the product xyz.

Theorem 6.6. If p is an odd regular prime then the equation,

xp + yp = zp (6.2)

has no integer solutions x, y, z satisfying p|xyz.

Proof. We will prove this theorem by contradiction. Assume that there are integers

x, y, z satisfying Equation (6.2) and p|xyz. Without loss of generality we may assume

that x, y, z are relatively prime positive integers and p divides only z. Since p|z we may

write z = pkz0 for some integers k ≥ 1 and z0 such that (z0, p) = 1. By Lemma 6.1 p

has the factorization,

p = (1− ξ)p−1ε

in Z[ξ] for some unit ε ∈ Z[ξ]. So we can rewrite Equation (6.2) as follows,

xp + yp = εp(1− ξ)pmzp0 (6.3)

where m = k(p− 1) > 0. Since p− 1 ≥ 2 and k ≥ 1, so we have

m = k(p− 1) ≥ 1 · 2 > 1.

In order to show that an equation of the form (6.2) is impossible in Z, we will show

that an equation of the form (6.3) is impossible in Z[ξ] where x, y, z0 are relatively
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prime to 1 − ξ. Because if we can find a solution in Z which is divisible by 1 − ξ in

Z[ξ], then this gives rise to a solution in Z which is divisible by p by Lemma 6.2 and

so we get a contradiction to our assumption.

Assume that there is a solution x, y, z0 of Equation (6.3) not divisible by 1 − ξ in

Z such that m > 1 is smallest (To avoid introducing new notation, suppose this solu-

tion is given by Equation (6.3)). As usual let I = 〈1− ξ〉. Then I is a prime ideal of

OK by Lemma 3.64 and Theorem 3.63. Let J = 〈z0〉 be the ideal generated by z0. By

factorizing Equation (6.3) as in Case 1 and passing to ideals we obtain,

p−1∏
k=0

〈
x+ yξk

〉
= IpmJp. (6.4)

Here I and J are relatively prime by Lemma 3.45 as 〈1− ξ〉 is a prime ideal and 1− ξ
is taken to be relatively prime with z0.

Since m > 1, we have pm > p > 0. Now we will show that all the terms on the

left side of Equation (6.4) are divisible by I and exactly one of them is divisible by I2.

Claim 1. For all i = 0, 1, . . . , p− 1, we have I| 〈x+ yξi〉.

Proof of the Claim. Since I is a prime ideal, at least one of the terms on the

left of Equation (6.4) is divisible by I. Say 〈x+ yξi0〉 is divisible by I for some i0 =

0, 1, . . . , p − 1. This means that x + yξi0 ∈ I. Clearly, for any i = 0, 1, . . . , p − 1 we

have the following equality in Z[ξ],

x+ yξi0 = x+ yξi − yξi(1− ξi0−i). (6.5)

Passing to ideals in Equation (6.5) and using the fact that 〈1− ξi0−i〉 = 〈1− ξ〉 = I by

Lemma 3.15 and Lemma 3.17, we get;

x+ yξi0 − x− yξi ∈ I.

Then it can be easily seen that I must divide 〈x+ yξi〉 for any i = 0, 1, . . . , p− 1, as it

divides 〈x+ yξi0〉. �

Claim 2. There is no i, j ∈ {0, 1, . . . , p− 1} such that i 6= j and the following is true,

〈
x+ yξi

〉
≡
〈
x+ yξj

〉
(mod I2).
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Proof of the Claim. Assume that the equivalence holds for some i < j. This means

that,

(x+ yξi)− (x+ yξj) = yξi(1− ξj−i) ∈ I2.

Then by Definition 3.34, I2 | 〈yξi(1− ξj−i)〉 = 〈y〉 I. Since we are working in a Dedekind

domain, we get I | 〈y〉. But by Theorem 3.46 this contradicts to the assumption that y

is relatively prime to 1− ξ. �

Claim 3. There exists a unique k ∈ {0, 1, . . . , p− 1} such that, I2 |
〈
x+ yξk

〉
.

Proof of the Claim. By Claim 2, 〈x+ yξi〉’s are pairwise non-congruent modulo I2

and by Claim 1 we have,
x+ yξi

1− ξ
∈ Z[ξ]

for all i = 0, 1, . . . , p− 1 . So, Claim 1 and Claim 2 imply that,

x+ yξi

1− ξ
, i = 0, 1, . . . , p− 1

are pairwise non-congruent modulo 1 − ξ. Since N(〈1− ξ〉) = N(I) = p, the quotient

group Z[ξ]/I has order p. Therefore, the ideals

〈
x+ yξi

1− ξ

〉
form a complete set of

residues modulo I and hence there exists only one k ∈ 0, 1, . . . , p− 1 such that,〈
x+ yξk

1− ξ

〉
≡ 0 (mod I).

As a result, only one
〈
x+ yξk

〉
is divisible by I2. �

Remark 6.7. In Equation (6.3), we could replace y by yξk for an arbitrary k and per-

form the factorization in (6.4) according to this. Therefore, without loss of generality,

we may assume 〈x+ y〉 is divisible by I2 and 〈x+ yξi〉 is divisible by I, but not I2 for

all i = 1, . . . , p − 1. Since we have p many factors on the left hand side of Equation

(6.4), it is divisible at least by Ip−1I2 = Ip+1. Moreover, the left hand side of Equation

(6.4) is also divisible by Ipm, because Ipm divides the right hand side of Equation (6.4).

Since I2 6 | 〈x+ yξi〉 for all i = 1, 2, . . . , p − 1, we have Ipm−(p−1) divides 〈x+ y〉 (Note

that m > 1). As a result, 〈x+ y〉 is divisible by Ip(m−1)+1 by Equation (6.4).

Let M denote the greatest common divisor of the ideals 〈x〉 and 〈y〉. Since x and y are

relatively prime to 1− ξ, M is not divisible by I = 〈1− ξ〉.

Claim 4. M divides 〈x+ ξi〉 for all i = 0, 1, . . . , p− 1.
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Proof of the Claim. Since M| 〈x〉 and M| 〈y〉, by Lemma 3.35,

〈x〉 ⊂ M and 〈y〉 ⊂ M =⇒ x ∈ M and y ∈ M.

Thus in Z[ξ] for any i = 0, 1, . . . , p− 1,

x+ yξi ∈ 〈x, y〉 ⊆ M.

Hence, 〈x+ yξi〉 is divisible by M for all i. �

Since Z[ξ] is a Dedekind domain and I is relatively prime to M, MI| 〈x+ yξi〉 for all

i = 0, 1, . . . , p− 1 by Claims 4, 3 and 1. Therefore by Remark 6.7, 〈x+ y〉 is divisible

by MIp(m−1)+1 as m > 1. Moreover, we will observe in Claim 5 that MI is the largest

common factor of 〈x+ yξi〉 for all i = 0, 1, . . . , p−1. So there are ideals N0,N1, . . . ,Np−1

such that,

〈x+ y〉 = MIp(m−1)+1N0〈
x+ yξi

〉
= MINi (i = 1, . . . , p− 1).

Claim 5. The ideals N0,N1, . . . ,Np−1 are pairwise relatively prime.

Proof of the Claim. Assume that Ni and Nj have a common divisor P for some

0 ≤ i < j ≤ p − 1. Note that this P must be relatively prime to MI. But this means

that 〈x+ yξi〉 and 〈x+ yξj〉 has a common divisor MIP. This means that,

x+ yξi ∈ MIP and x+ yξj ∈ MIP.

Considering the below equations in Z[ξ],

x+ yξi︸ ︷︷ ︸
∈MIP

= x+ yξj︸ ︷︷ ︸
∈MIP

+yξi(1− ξj−i)⇒ yξi(1− ξj−i) ∈ MIP

x+ yξj︸ ︷︷ ︸
∈MIP

= ξj−i (x+ yξi)︸ ︷︷ ︸
∈MIP

+x(1− ξj−i)⇒ x(1− ξj−i) ∈ MIP

we get,

MIP| 〈y〉 I and MIP| 〈x〉 I.

However, since Z[ξ] is a Dedekind domain, factorization of ideals into prime ideals is

unique and cancellation law holds. Hence we get,

MP| 〈y〉 and MP| 〈x〉 .
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So, we get a contradiction to the fact that M is the greatest common divisor of 〈x〉 and

〈y〉. �

Claim 6. For each i = 0, 1, . . . , p−1, there is an ideal Ji of Z[ξ] such that Ni = Jpi and

Ji 6= Jk if i 6= k. Moreover, I is relatively prime to each Ji.

Proof of the Claim. We may rewrite Equation (6.4) in the following form,

MpIpmN0N1, . . . ,Np−1 = IpmJp.

Since Z[ξ] is a Dedekind domain we may cancel Ipm’s to get,

MpN0N1, . . . ,Np−1 = Jp. (6.6)

Then since M and J have factorizations into prime ideals and each prime appearing in

the factorization of M must also appear in the factorization of J, we get

M = ps00 ps11 . . . psmm and J = pt00 p
t1
1 . . . p

tm
m ,

for some prime ideals p0, p1, . . . , pm and 0 ≤ si ≤ ti. As a result we have

N0N1 . . .Np−1 = p
(t0−s0)p
0 p

(t1−s1)p
1 . . . p(tm−sm)p

m

=
(
pt0−s00 pt1−s11 . . . ptm−smm

)p
.

Also if one prime appears in the ideal factorization of Ni, then it must not appear in

the factorization of Nj since Ni’s are relatively prime.

In other words,

if pk|Ni for some k ∈ {0, 1, . . . ,m} , then Ni = p
(tk−sk)p
k .

Therefore, there are relatively prime ideals J0, J1, . . . , Jp−1 such that each of them is a

product of ideals p0, p1, . . . , pm and,

Ni = Jpi i ∈ {0, 1, . . . , p− 1} .

Moreover, since I and J are relatively prime it is easy to observe that I is relatively

prime to each Ji by Equation (6.6). �
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As a result we have,

〈x+ y〉 = MIp(m−1)+1Jp0 (6.7)〈
x+ yξi

〉
= MIJpi (i = 1, . . . , p− 1). (6.8)

Solving Equation (6.7) for M and substituting in (6.8), we obtain

〈
x+ yξi

〉
Ip(m−1) = 〈x+ y〉 (JiJ−10 )p. (6.9)

Note that the ideal on the left hand side is principal since it is a product of principal

ideals. Then since 〈x+ y〉 is principal, its inverse is a principal fractional ideal by

Lemma 3.53. Then so, (JiJ
−1
0 )p is a principal fractional ideal. Now consider the

(fractional) ideal class group of the number ring Z[ξ]. Since p is a regular prime, p

does not divide the order of cl(Z[ξ]). Therefore JiJ
−1
0 is a principal fractional ideal by

Remark 3.33. This means that,

JiJ
−1
0 =

〈
αi
βi

〉
1 ≤ i ≤ p− 1 (6.10)

for some αi, βi ∈ Z[ξ].

Claim 7. For any 1 ≤ i ≤ p−1, the elements αi, βi are not divisible by (1− ξ) in Z[ξ].

Proof of the Claim. By Claim 6 we know that J0, ..., Jp−1 are not divisible by I.

Note that we may choose αi, βi such that not both of them are divisible by 1− ξ. Now,

JiJ
−1
0 =

〈
αi
βi

〉
implies

〈αi〉 J0 = 〈βi〉 Ji. (6.11)

If 1−ξ divides αi, then 〈1− ξ〉 divides LHS and hence also RHS of the Equation (6.11).

Since 1− ξ does not divide βi (as it can not divide both αi, βi) the ideal Ji is divisible

by 〈1− ξ〉 = I which is not the case by Claim 6. As a result 1− ξ does not divide αi.

Symmetrically, it can not divide βi. �

If two principal ideals are equal then their generators differ only by a unit factor in any

ring. Hence combining Equations (6.9) and (6.10) and passing to elements from ideals

we obtain,

(x+ yξi)(1− ξ)p(m−1) = (x+ y)

(
αi
βi

)p
εi (1 ≤ i ≤ p− 1), (6.12)



42

where εi ∈ Z[ξ] is a unit for all 1 ≤ i ≤ p− 1.

Consider now the equation below,

(x+ yξ)(1 + ξ)− (x+ yξ2) = xξ + yξ = (x+ y)ξ.

Multiplying it by (1− ξ)p(m−1) we get

(x+ yξ)(1 + ξ)(1− ξ)p(m−1) − (x+ yξ2)(1− ξ)p(m−1) = (x+ y)ξ(1− ξ)p(m−1). (6.13)

Now consider Equation (6.12) for i = 1 and i = 2.

for i = 1: (x+ yξ)(1− ξ)p(m−1) = (x+ y)

(
α1

β1

)p
ε1 (6.14)

for i = 2: (x+ yξ2)(1− ξ)p(m−1) = (x+ y)

(
α2

β2

)p
ε2. (6.15)

Substituting Equations (6.14) and (6.15) into Equation (6.13) we get,

(x+ y)

(
α1

β1

)p
ε1(1 + ξ)− (x+ y)

(
α2

β2

)p
ε2 = (x+ y)ξ(1− ξ)p(m−1). (6.16)

Simplifying (x+ y)’s and making some rearrangements in Equation (6.16) we get

(α1β2)
p − (α2β1)

p ε2
ε1(1 + ξ)

= (β1β2)
p ξ

ε1(1 + ξ)
(1− ξ)p(m−1). (6.17)

By Claim 7 and the fact that 1−ξ is a prime in Z[ξ], α1β2, α2β1 and β1β2 are all in Z[ξ]

and not divisible by 1 − ξ. Let α = α1β2, β = α2β1, γ = β1β2 and u1 = − ε2
ε1(1 + ξ)

,

u2 =
ξ

ε1(1 + ξ)
. Since 1 + ξ is a unit by Lemma 6.4, u1 and u2 are units in Z[ξ].

Rewriting Equation (6.17) again, we have

αp + βpu1 = γpu2(1− ξ)p(m−1) in Z[ξ]. (6.18)

By passing to ideals and going back again we will transform Equation (6.18) to the

form of Equation (6.3).

If we consider Equation (6.18) in ideal form, the right hand side becomes 〈γ〉p Ip(m−1)

and by Lemma 3.37 it is strictly contained in Ip (because m > 1, so that p(m−1) ≥ p).
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Thus,

αp + βpu1 ∈ Ip,

in other words

αp + βpu1 ≡ 0 (mod Ip). (6.19)

Since β is relatively prime to I, then by Lemma 3.44, β is also relatively prime to Ip,

i.e.,

〈β〉+ Ip = 〈1〉 .

This means that for some β′ ∈ Z[ξ], ββ′ − 1 ∈ Ip, i.e., ββ′ ≡ 1 (mod Ip). Multiplying

Equation (6.19) with (β′)p we get,

(β′)pαp + (β′)pβpu1 ≡ (β′α)p + (β′β)pu1 ≡ (β′α)p + u1 ≡ 0 (mod Ip).

Letting w = −β′α ∈ Z[ξ], we have

u1 ≡ wp (mod Ip). (6.20)

Claim 8. There exists a in Z such that w ≡ a (mod I).

Proof of the Claim. We know that N(I) = |Z[ξ]/I| = p. This gives us an

isomorphism

f : Z[ξ]/I −→ Zp

since any ring with p elements is isomorphic to Zp. Consider the following diagram

Z

σ

((

� � i // Z[ξ] π // Z[ξ]/I

f

��
Zp

, (6.21)

where i is the inclusion map and π and σ are the natural quotient maps. Clearly, both

σ and f ◦ π ◦ i are ring homomorphisms taking 1 to 1, hence they coincide on Z and

so the diagram is commutative. Now, consider f(π(w)). Clearly, there is a ∈ Z such

that σ(a) = f(π(w)). We will show that this a is a good choice, that is, w+ I = a+ I.

We have f(π(w)) = σ(a) = f(π(i(a))) where the last equality follows from the com-

mutativity of the diagram. Since f is one-to-one, we get π(w) = π(i(a)), which gives

the result. �

Hence w ≡ a (mod I) for some a ∈ Z. Then by Lemma 6.3,

wp ≡ ap (mod Ip)
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where a ∈ Z. By Equation (6.20), u1 is congruent to a rational integer modulo Ip,

namely

u1 ≡ ap (mod Ip).

But by Lemma 3.64 (a), we have Ip−1 = 〈p〉. Also by Lemma 3.37, we have

Ip = Ip−1I ⊂ Ip−1 = 〈p〉 .

Hence, u1 − ap ∈ Ip ⊂ 〈p〉 which means that

u1 ≡ ap (mod p) a ∈ Z.

So by Kummer’s Lemma (Theorem 6.5), the unit u1 is a pth power of another unit

η ∈ Z[ξ], i.e., u1 = ηp.

Therefore, by replacing u1 = ηp, Equation (6.18) turns to be

αp + (βη)p = γpu2(1− ξ)p(m−1). (6.22)

Remember that α, βη, γ are elements of Z[ξ] which are relatively prime to 1 − ξ. (η

is a unit.) Then we may easily notice that the above equation has the similar form of

Equation (6.3). But this time we have the exponent m − 1 instead of m. So we get

a contradiction to the assumption that m is the smallest such possible power. As a

consequence of this and Lemma 6.2, Fermat’s Equation (6.2) for p is a regular prime

has no nontrivial solutions in Z for which one of x, y, z is divisible by p.

As a result, Theorem 6.6 and Theorem 5.4 shows that Fermat’s equation has no non-

trivial integer solutions for regular prime exponents.
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