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ÖZET 
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SPECTRAL AND SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES 

ABSTRACT 

Recently various developments have been introduced in Remote Sensing Technology.  
Multispectral sensors have been used for years and provide images with multi bands 
up to 10-20 bands. The information extracted from the multispectral images are useful 
and helped in many different applications in the real world, however it may fail in 
distinguishing between different minerals or sub classes, where hyperspectral images 
plays an important role.  
Hyperspectral images are made of hundreds of narrow bands, in most of the cases it 
can be up to 200 bands. Having this high level of detailed spectral information gives a 
better distinguishing capability.  
The conventional classification methods used for multispectral images cannot be 
applied directly on hyperspectral images due to many reasons. Therefore, many 
algorithms adjusted or introduced to fit the hyperspectral data. For example, statistical 
classifiers have difficulties with these data, because calculating statistical parameters 
for such a huge amount of data is not an easy task. Additionally, the statistical 
algorithms assume that the data have a specific distribution which contradicts the real-
world situation. On the other hand, nonparametric classifies provides good solutions 
with relatively high and acceptable accuracies. In some cases, these nonparametric 
algorithms are applied directly on the hyperspectral data or after applying some of the 
feature extraction methods. K-Nearest Neighbor (KNN) or Support Vector Machines 
(SVMs) are one of the most widely used and powerful nonparametric methods. 
Especially SVMs are reported as robust algorithms on hyperspectral data classification 
even with limited number of training samples.  
In real world, pixels/samples from neighboring areas are most likely belong to same 
class. However, classification algorithms exploiting only spectral information cause 
some noisy like misclassified samples in homogeneous areas. Various approaches 
have been introduced recently in the literature to improve the classification accuracy 
and obtain more homogeneous areas in classification maps. One of the powerful 
approaches is based on integrating the spatial information with the spectral 
information. In this thesis, we focus on the extended random walker (ERW) algorithm.  
ERW consists of two main steps; the first step is the spectral classification which is 
done by any spectral classification algorithm. In this thesis one of the kernel based 
methods support vector machine (SVM) with the radial basis function (RBF) and the 
linear kernel function are used in the spectral classification. The second step relies on 
the results of the classification obtained by SVM and more accurately it depends on 
the probabilities for each pixel obtained from the SVM algorithm. These probabilities 
are used to transfer random walker from a segmentation algorithm into a multi class 
classifier.  

Keywords:   Hyperspectral images, Spectral and Spatial Classification 
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1 INTRODUCTION  

1.1 Remote Sensing and Machine Learning  

Remote sensing for Earth observation witnessed a lot of development and new 

approaches. Generally Remote Sensing is divided into 2 main procedures, the first 

procedure includes capturing images for the surface, the second step is to analyze these 

captured images. 

The data or images can be collected through different type of sensors, these sensors 

collect the arising electromagnetic energy field, to be more specific the information is 

included in the three variation of this field which are spatial, spectral and temporal 

variation, the old sensors focused on collecting one spectral then studying the spatial 

informative enough nor able to distinguish between different classes. Scientists and 

researchers tried to improve the resolution of these sensors, but they were confronted 

by 2 difficulties. The first is producing sensors with a very high accuracy is very 

expensive. The second difficulty, scanning a very small landscape with high accuracy 

sensors will produce 

it. To overcome these obstacles a new approach was introduced. New sensors were 

used to collect both spectral and spatial variation of the electromagnetic field and here 

is where the multispectral images were originated. Multispectral images consist of ten 

bands and these bands are relatively wide. Later the demands on more detailed 

classification increased and these multispectral images were incapable of 

distinguishing between similar types of land covering materials. As a response to these 

demands hyperspectral images were introduced to replace multispectral images in the 

earth observation (EO) application. 

Hyperspectral images consist of hundreds of narrow bands covering from the visible 

to the short-wave infrared region of the electromagnetic field. This new technology 

formation 

from it. Extracting information and handling data from remote sensing application is 

done by machine learning algorithms.  
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Machine learning is a part of artificial intelligence. The general concept of machine 

learning is to let the machine improves its performance by learning form the available 

data, learning here means using these data iteratively to optimize the machine 

performance. Machine learning can be predictive or descriptive. One of the most 

known predictive machine learning methods is regression were the machine can make 

a prediction on a specific phenomenon, whereas classification is a famous part in 

descriptive machine learning. Classification is the method used in most of EO 

application. Classification in EO applications gives decisions about which area in the 

land covering image belongs to which class and therefore provide important 

information in several earth or environment monitoring systems.  

Generally, machine learning can be divided into two main methods supervised learning 

and unsupervised [1]. Supervised learning requires a prior knowledge of the processed 

data by using labelled training samples. This prior knowledge and labelled training 

samples are not used in unsupervised learning. However, there is special kind in of 

machine learning called semi-supervised [2] which can be consider as a mix between 

the supervised and unsupervised learning. This can be done by using both labelled and 

unlabeled training samples.  

1.2 Hyperspectral Images  

To have a better understanding of hyperspectral images classification, a closer look to 

hyperspectral images will be introduced. 

spectral bands corresponding to the visual primary 

colors Red Green and Blue, but in hyperspectral 

both the visible and invisible spectral are taking into 

consideration. Hyperspectral images include up to 

several hundred of contiguous spectral bands. 

Every pixel contains high spectral information 

which can be used to give precise and detailed 

classification by using fine wave length resolution 

and covering a wide range of wave length. 

Hyperspectral images are used to identify material, 

finding and detecting objects, certain objects leave a special evidence which are called 

spectral signature or fingerprints, these signatures are used to detect the objects. Some 

Figure 1.1: Hyperspectral 
Image Cube. 



 

3 
 

of the practical used way to collect these data is through using Airborne sensor or 

satellites. These sensors provide us with cube of data where each layer represent an 

image with a different wavelength so if we are measuring a 200-different wavelength 

we will get an Image with 200 band like the image in Figure (1.1). the collected 

precision can be evaluated according to the width of each band and referred to it as 

spectral resolution. 

What make hyperspectral images different from normal or multispectral images is the 

spectral resolution. The higher spectral resolution gives the ability to distinguish more 

substances. The object of interest can become more specific which means even if the 

resolution  

1.3 Classification of Hyperspectral Images  

In the beginning of hyperspectral images there was a consensus, that classification of 

multispectral images can be applied directly on hyperspectral images and this 

consensus came from the fact that hyperspectral were a normal extension of 

multispectral images with a bigger number in bands. Later, this misconception was 

removed and proved to be wrong. To illustrate this problem easily, the analysis of real 

and complex numbers can be taken into consideration. The complex numbers are 

considered as a normal extension of the real numbers, anyway applying mathematical 

rules from real numbers directly on co

results and for example derivatives in real analysis is totally different from derivatives 

in complex analysis.  

Analysis of hyperspectral image cannot be considered as trivial task and there are 

many reasons which complicate this task even more, here is some of the main factors 

which affects the classification in practical. 1) as mention before each class has its own 

spectral signature, but in real life application these signatures have a large spatial 

variability. 2) atmospheric effects can cause some noisy in the collected images and a 

small variation in the collected data. 3) the curse of dimensionality, even scanning a 

relative small area will give a huge data, due to the fact, that each vector pixel is consist 

of hundreds of bands. From the supervised learning methods perspective, there are two 

main inconveniences. 1)  the limited number of training samples compared to the 

number of feature which makes normal statistical methods not applicable on 
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hyperspectral data, because this limitation of training samples will affect the estimation 

of the parameters.  

2) Hughes phenomenon [3], theoretical the increment in the feature space will lead to 

a better discriminating ability which mean a better classification accuracy, but in some 

practical cases the increment of feature space will adversely affect the classification 

accuracy and this negative effect is Hughes phenomenon. 3) curse of dimensionality it 

worth to be mentioned here again, as supervised learning requires to study the training 

samples, creating the classification model and final apply this model on the required 

data, all this procedures on a huge data set will require more time and more advanced 

computers to be able to handle this amount of data.  

In the literature, many efforts and works were done to overcome this methodological 

problem, here some of these methods will be mentioned briefly. 1) instead of using the 

covariance matrix obtained from the training samples directly some regularization was 

applied on it [4]. 2) the statistic estimation can be enhanced and generalized by 

including the contribution of the result of classified data in this estimation. [5] 3) 

dimensionality reduction by using some of the feature selection of feature extraction 

methods [6]. 4) modeling each class by the analysis of its spectral signature [7].  

Nonparametric algorithms gained good reliability credit, due to its ability to function 

with a very limited number of samples. As earlier mentioned nonparametric methods 

can be applied directly without making neither distribution estimation nor calculating 

of the mean values, covariance matrix, etc. Neural network (NN) [8], Support vector 

machine (SVM) [9] and K-nearest neighbor (KNN) [10] are the commonly used 

nonparametric algorithms in hyperspectral images. These algorithms can be applied 

directly on the hyperspectral data without any feature extracting or selection, but also 

can give a better result when its combined with some feature extraction methods, for 

instance using principle component analysis with KNN algorithm. One of the 

deficiency of these algorithms is taking on consideration only the spectral information. 

Most of the information is included in the spectral variation of the hyperspectral data 

but still spatial information can be extracted and used to improve the classification 

results from the spectral classification. This new concept lead to new classification 

methods called spatial-spectral classification. Many approaches were introduced in the 

new field using segmentation algorithms, e.g. using watershed algorithms [11] to 

divide the image into a separate spatial area, then using this area to improve the result 
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obtained in spectral classification. More methods were used such as spatial feature 

extraction models, define adaptive neighbor for each pixel by applying some special 

filtering methods. This integration between spatial and spectral classification had 

successfully improve the classification accuracy. Figure 1.2 illustrate a general 

concept of the supervised learning algorithms in hyperspectral image, in fact there is 

more types and complications of supervised algorithm and this Figure is just the 

general concept. 

 

Figure 1.2: General Supervised Algorithm for Hyperspectral Images. 

In this thesis SVM is used as a spectral classification method. It can be noticed that the 

results of spectral algorithms in general like SVM have some misclassified samples, 

this misclassified samples are distributed as salt and paper noise in the homogenous 

areas. To reduce this misclassification and increase the accuracy in Extend random 

walker (ERW) [12]are used to integrate the spatial information into the spectral 

information. This integration using ERW can be done in many ways, in this approach 

the different integration methods between SVM and ERW will be taken into 

consideration in details, there are lot alternative ways which can improve the 

classification accuracy. In the experiment part, these integration methods are exposed 

and the results are compared in detail.  
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2 FEATURE EXTRACTION METHODS  

2.1. Principle Component Analysis 

2.1.1. Principle Component Introduction   

Principle component analysis (PCA) [13] is a statistical procedure which allows to 

transform of set of possibly correlated variables into a different space where the 

variables are linearly uncorrelated. For instance, in case we have 2 variables one of 

them is representing the length and the other one represents the width we can plot these 

2 variables into 2- dimensional plane where the first axis represents the length and the 

second axis represent the width. After plotting these variables, we will get the result 

shown in Figure 2.1. 

2 variables are having the similar variance and they are highly correlated.  We can add 

a new axis along the biggest change of the data and then adding a new axis 

perpendicular to the first one to represent the other changing in the data and these two-

new axes should pass through the centroid of the data. The data can be represented 

us that the 

variances of the data in the first axis is bigger than the variances over the second axis, 

in the same time the spatial relationships between all the points is kept untouched so 

the data was represented in a new feature space and saved the spatial relationships as 

in figure 2.2. We can think of it as the data has been merely rotated. 

The new axes are the result of rotating the data and can have many different meanings 

according to the originals samples for example in this approach we can consider the 

first axis represent the size measures where the data on the lift side consist of small 

width and small length and moving to the right of the first axis the data will have larger 

width and length, whereas the second axis can be representing the ratio between the 

width and length. 
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Figure 2.1: The real coordination axis for scattering the length and the width. 

 

 

 

 

 

 

 

Dealing with small number of variables, the process of finding the relationships might 

seems obvious but not when dealing with a larger number. This process helps to find 

the relationships easier and faster. For some data set the variance of different axis 

might varies, so the axis corresponding to a higher variance are considered more 

important or containing more information than the other axis. The axis with low 

covariance can be ignored this process is called dimensionality reduction where the 

original d-dimensional space is converted to k-dimensional space where k<d. 

The main concept of principle component analysis is rotating the data to have 

successive axes representing the data in way that the covariance is decreasing along 

Figure 2.2: New transformed coordination axis for scattering the length and the 
width. 
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the axes with the first axis having the highest covariance and the last axis having the 

smallest covariance. 

2.1.2. Principle Component Computation 

The data being discussed in this computation part consist of P variables and n samples 

in case of hyperspectral images the variables are the features (bands) and the samples 

are the number of points (pixels) in the image. Before starting the data should be mean 

normalized and in some data the feature normalization is also required. This 

normalization insures that the data is centered on the origin and the spatial relationship 

and the covariance between the variables are being conserved. the 1st component  is 

equal to a linear combination of the variables   

  (2.1) 

In matrix notation: 

  (2.2) 

As mentioned before the first axis or the first component represent the greatest 

variance in the data. To choose a high variance for  a high value of the weights 

 can be chosen, when choosing the values of this weights the following 

constrain should be taken into consideration. The sum of squares of the weights should 

be equal to 1. 

  (2.3) 

When selection the second principle component another condition should be taking 

into consideration that the 1st component and the 2nd one are uncorrelated i.e., 

perpendicular to each other.   

  (2.4) 

This process will continue till reaching  then the number of the principle component 

is equal to the number of variables (P). in this stage, the sum of variances to all the 

principle components should be equal to the sum of the variances to the all variables. 

Therefore, all the originals information from the data are kept or accounted for in the 
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principle components. In the matrix notation, we can rewrite the principle components 

equations collectively as  

  (2.5) 

Calculating the principle component requires a computer to perform the complicated 

mathematical equations and later there is an example how to use MATLAB to 

calculate this component. Back to the equation (2.5). The rows of A are called the 

eigenvectors of matrix  is the variance and covariance matrix of the original data. 

 are called the loading and they are the elements of A the eigenvector matrix.  it 

the variance and covariance matrix of the principle component. The diagonal elements 

of the matrix  are the eigenvalues which represent the varies in the variances 

between the principle component, as mentioned before variances of the principle 

component is descending starting with the highest value responding to the first 

component.  

The sample r can be directly calculated on the  component by using the following 

equation: 

  (2.6) 

The position of each observation in the new coordinate system is called score.  

To have a better understanding of the principle component is good to observe the 

correlation of the original variables with the principle component as this can be 

calculated using the following equation. 

 
 (2.7) 

The result applying component analysis is a new feature space which have the same 

number of dimensions as the real data, Figure 2.3 illustrate the result from applying 

PCA on 200 bands hyperspectral image, it can be noticed that there are 200 Eigenvalue 

and the high values are concentrated in approximately the first 10 eigenvalues, but the 

mean idea of PCA is dimension reduction therefore some of the new principle 

component can be ignored there are many criteria that determine how many PC should 

be taken into consideration and how many should be ignored. One of this commonly 

used criterion is to take all the component till reaching a PC that only make a small 
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increasing in the total variance a second criterion is to take the PCs that represent 

approximately 90% of the total variance. 

In this discussion, we used the first principle component.  Computing PCA in 

MATLAB: 

There is a ready function in MATLAB called PCA which returns the principle 

components coefficient (the loadings) i.e., having X consisting of n samples and P 

variable, X is n*p matrix we can apply the following code: ; 

 

  

Figure 2.3: Eigenvalues after applying PCA on 200 Bands Hyperspectral Image. 

A brief summarization of the PCA algorithm  

1) Calculating the mean normalization and/or feature normalization   

The mean value can be calculated using the following formula  

then having   

2) Compute the covariance matrix:  

3) Calculating the eigenvector of  matrix  

This can be done using the ready MATLAB function (svd) singular value 

decomposition as follow  

 ; u is n*n matrix and it represents the eigenvectors  

The dimension reduction into a k-dimensional space can be done by selecting k vector 

from u then multiple the original data with these new selected vectors ; 

; 
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3 STATISTICAL CLASSIFIERS  

3.1 Statistical Classifier in General 

A brief introduction to statistical classifier will be introduced here as these classifiers 

can provide an easy and simple explanation of what a classifier is and on the other 

hand these classifiers have many drawbacks when it comes to complicated 

classification problems such as hyperspectral images. These methods need to do a pre-

calculation to find different parameters in the original data such as the mean, variance, 

etc. These pre-calculations can become problematic in case of dealing with large 

be deepened instead only a short review for maximum likelihood (ML) and expectation 

maximization (EM) [14, 15] are introduced.  

3.2 Maximum Likelihood Classifier  

This classifier is based on the conditional probability density function and requires a 

function for each class which means to classify a data with m classes for example this 

method requires m conditional probability density functions; the general form of these 

functions is: 

  (3.1) 

This rule will be applied on each of the classes and the class which gives the highest 

value (the maximum) will assign its label to the point x  

  (3.2) 

ML [14] is a statistical classifier therefore the solution of this problem is done by 

calculation some parameters which are related to probability density function (PDF). 

There are many different probability density functions which can be used in ML and 

the most commonly used function is Gaussian density function because of its 
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convenient properties and the fact that it fits many process in the nature. The Gaussian 

distribution of one-dimensional variable is given by:  

 
 (3.3) 

The important of Gaussian distribution is confirmed by the central limit theorem which 

states that, if a random observation is made on a large collection a of number of 

independent random quantities, the observation will have a Gaussian distribution. 

In case of dealing with hyperspectral or multispectral data each variable will be 

represented as a vector, N-dimensional vector where N represent the number of 

attribute or bands in this experiment the AVRIS used dataset consist of 200 bands. The 

vector form of the Gaussian PDF is 

 
 (3.4) 

Where 

 

 (3.5) 

 represent the random variable and for each class there is 2 values need to be 

calculated the mean and covariance matrix which are noted respectively as . 

Having the following training dataset {( , (  where  

represent the training samples,  , n is the number of training samples,  

represent the class labels, , m is the number of classes. There are two 

variables need to be calculated in this algorithm the mean and covariance matrix for 

each class, the following formulations explain how to calculate these two parameters 

respectively. 

 
 (3.6) 
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 (3.7) 

Where  is the total number of the training samples of the class i. 

3.3 Expectation Maximization 

In classifying application specially in remote sensing the training labels are limit and 

this limitation adversely affects the classification process with a limited number of 

training samples it is hard or even not possible to obtain high complexity degree of 

discrimination function which leads to low performance of the classifier, to overcome 

this drawback the number of training samples used to obtain the parameter can be 

increased by taken advantage of some of the unlabeled samples, this unlabeled samples 

will be incorporated with this original training samples to get a better estimation of the 

parameters, in the following section expectation maximization (EM) [14]will be 

explained  and how it can be used to enhance the estimation of the Gaussian density 

function. In case of having Z training samples and X unlabeled samples to enhance the 

mixture density, i will refers to the number of the class,  where m is the 

total number of classes, K is an index for each individual training sample. In case of 

training samples, the two indexes will be used i, k to refer to the class and sample index 

whereas in the labeled samples only the k index will be used.   

 
 (3.8) 

The expectation maximization equations used for approximating maximum likelihood 

parameters estimation of the mixture density are the following  

 

 
(3.9) 

 

 (3.10) 
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 (3.11) 

Where  is the mean vector of class i iteration t and also   is the covariance matrix 

of class i iteration t. all the prior probabilities, mean vectors and covariance matrices 

are contained in the parameter .  The parameters estimation in Maximum likelihood 

are obtained from the training samples and  it can be obtained by using different initial 

values but more reasonable to start from the training samples as initial values after that 

new parameters can be obtained by iterating the above mentioned EM equations, 

theoretically using unlabeled samples with the EM equation will always give a better 

estimation of the parameters which means a better performance for the classifier but 

improve the accuracy sometimes it might leads to undesirable results due to the 

deviation of the data in the real world Therefore, in case of using supervised, semi-

supervised or unsupervised it is a good technique to start with the normal training 

samples and after evaluating the performance of the classifier some extra unlabeled 

samples can be used to enhance the statistical estimation of the parameter and in case 

of unwanted results these unlabeled samples can be abandoned and new samples are 

taken into consideration. 
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4 NONPARAMETRIC METHODS  

4.1 The concept of Nonparametric Methods  

All classification algorithms based on statistics have a mutual disadvantages, in these 

algorithms the data assumed to have specific distribution which is in most of the case 

Gaussian distribution but in real-world data this assumption might be incorrect and in 

addition, these classifiers need to calculate some statistical parameter and sometime it 

requires to estimate these parameters and this parameter calculating or estimating 

become problematic and critical when dealing with data that only have a small number 

of training samples such as hyperspectral data. To overcome of this deficiency a lot of 

methods were introduced. These complementary methods are used to enhance the 

estimation of the parameter like EM, but still these methods sometimes fail to achieve 

the required results therefore, a good alternative solution is nonparametric methods 

where the main aim of these algorithm is to take full advantage of the available training 

samples and extract all the information to constrain a proper discriminative rule, for 

this reason these algorithms are highly used and preferred. Another advantage of these 

methods that they are more resistant to Hughes effects [3] than parametric methods 

due to the stabilities of the classification obtained regardless the dimensionality 

changes. One of the most known and used nonparametric algorithm is K Nearest 

Neighbor (KNN) [10] and Support Vector Machine (SVM) [9]. 

4.2 Nearest Neighbor Based Classifier 

This algorithm is one of the easiest algorithm in image classification theory and still 

have an acceptable accuracy. Nearest neighbor algorithm gives decision for each 

sample based on the class of the nearest neighbor. When having many sample as 

mentioned in [16] this rule has a probability of error which is less than twice the Bayes 

probability of error. As all the classification algorithms nearest neighbor needs a 

training set, this training set is used to classify the patterns in the data. In the Nearest 

neighbor approach, the algorithm tries to find the similarity between each point of the 

testing samples and all the training samples. 
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 In this approach, we will discuss Nearest neighbor and K- Nearest neighbor. 

4.2.1 Nearest Neighbor Algorithm 

This algorithm assigns to a testing pattern the label of its nearest training samples or 

in other words it assigns the label of the nearest neighbor. Consider having n training 

samples as follow: , Where: 

 represent the class label of the  pattern,  is the  training samples P is the 

testing sample. The decision rule can be written as  

  (4.1) 

4.2.2 K-Nearest Neighbor 

KNN has the same concept as the one used in nearest neighbor but instead of finding 

only the nearest neighbor here we will find the K nearest neighbor, then the class will 

be determined according to the majorities of the K nearest ne

positive integer chosen by the user.  

As K is the only free parameter in this algorithm its value is critical in improving the 

overall accuracy. Using KNN is more efficient than using 1-NN for a simple reason in 

case of a noisy data the nearest neighbor might belongs to a different class but in case 

where more than one of the nearest neighbors is having the same class this means it is 

more likely that this testing point belongs to that class. 

There are many different similarity measurements which are commonly used with 

KNN, for example Euclidean distance or any other similarity function can be used as 

Mahalanobis distance. MATLAB provide a ready function for KNN classifiers which 

is  and MATLAB provide us with several distance measurements which 

are Euclidean distance, sum of absolute differences, one minus the cosine of the 

included angle between points, one minus the sample correlation between points 

(treated as sequences of values) and percentage of bits that differ (suitable only for 

binary data). 

K- nearest neighbor [17], the fuzzy KNN [18] and some other algorithm and as far 

only KNN will be used in our approach the rest of the algorithms are not going to be 

explain here. The following KNN numeric example is to illustrate how KNN algorithm 
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woks.  consider having the following training points and the testing point P = (15, 

9, ?) as shown in Figure 4.1. 

 

 

 

 

 

 

Figure 4.1: K-NN Numeric Example. 

respectively where the magenta square represent the testing point. The first number of 

each point correspond to the first feature X1 and the second number correspond to the 

second feature X2 and the 3rd number is the label. Applying the Euclidean distant rule 

on our example 

Euclidean distance       

After calculating the Euclidean distance between all the training samples and 

P in case of having K=3 the 3 nearest training samples are  with 

4.4721, 6.0828 and 6.4031 distance respectively, as we can see  

are responding to class3 and  responding to class 2 therefore the final 

decision is that P belongs to the class 3.  
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4.3 Kernel Methods and Support Vector Machine  

4.3.1 Kernel Methods  

Using linear discriminant functions is well known and easy to understand and apply, 

due to the simplicity of the mathematical equation representing these functions, but in 

the real-world applications linear discriminant is not sufficient in most of the cases 

since most of the real data are not linearly separable. Instead of applying discriminant 

functions directly on the original feature space Kernel methods transform the feature 

space into a higher dimensional feature space where applying linear discriminant 

function is applicable and this characteristic made the kernel methods widely used in 

many different remote sensing application, due to the significant role of the kernels, a 

great explanation of the kernels and their application can be found in [19, 20] . Figure 

4.2 visualize the way kernel function works. The following sample example can 

explain the general concept of kernels methods. Suppose that the following empirical 

data need to be classified. . 

Where X is a set of data and Y is the target or labels of these data , where 

n is the index of the sample. Here no more additional assumption will be added to the 

domain X, X is just a set of data and in order to study these data we need to find a way 

to generalize these data which means in loosely speak we need to be able to classify 

any extra point x if it belongs to the class  or , to do so similarity measure 

in X and Y is required, for the former we require the function:  

  (4.2) 

One of the similarity functions which can be used in this example is to find the mean 

for each class 1 and -1 and then compare the point to these mean values.  

Using Kernels allow us to find nonlinear or even sophisticated boundaries. Decision 

in the real feature space derived from the linear decision boundary in new kernel 

mapped feature space [13]. One of the well know and widely used kernels based 

algorithms is Support Vector Machine and it can be used in many different fields, it is 

a robust tool when it comes to high dimensional feature space and the overall accuracy 

of the SVM is relatively high compared to other algorithms. 
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Figure 4.2: a) Linearly Inseparable Original Feature Space b) Mapped Feature space 

via  is Linearly Separable. c) Using Kernel Function Makes Discriminant Function 

Nonlinear in The Original Space. 

4.3.2 Support Vector Machine 

The main approach of support vector machine is to find a hyperplane that separate the 

data in a way which makes the distance between samples and the hyperplane as big as 

possible in other words the Idea of this algorithm is to find the optimized separation 

between classes by selecting a decision boundary with the biggest margin from the 

other samples. By using geometric margins this distance between the boundaries and 

sample can be given as  as shown in Figure 4.3 so the generalization of SVM 

performance is directly related to the concept of the margin if we want to increase the 

generalization and margin. The detailed mathematical information and explanation 

behind this powerful method can be found in [21, 22]. Here a brief explanation about 

the mathematic behind the SVM in Linear cases and how we can use the kernel trick 

to apply SVM on nonlinear cases.  

First, 

we need to solve the following quadratic problem.  

 
 

 
(4.3) 
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By using Lagrange formulation, we can convert this optimization problem into 

dual problem  

 
 (4.5) 

 

 

 

Figure 4.3: SVM Linear Separation case. 

The discriminant function which is used to find the optimal plane (with the largest 

margin) can be written as follows: 

  (4.6) 

We still have one more variables to calculate which are the Lagrange multipliers , 

and those can be estimated using (QP) quadratic programming. 

The S in the discriminant function above is equal to the nonzero Lagrange multipliers 

in the training samples. We have two kinds of samples; one of them effects the decision 

boundary and the othe denote the first one as significant training samples 

and assign them to a nonzero Lagrange multiplier and assign the others to a zero 
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Lagrange multiplayer. We use the term support vector to donate these samples 

(nonzero ). 

A new concept was generalized to find optimal solution for using linear SVM in 

remote sensing classification where most of the cases are linearly non-separable. The 

new concept depends on finding an optimized hyperplane using the following cost 

function 

 
 (4.7) 

This cost function used to find the maximization of the margin and in the same time 

try to keep minimizing the classification error. 

We have two variables in this cost function; the first one  called the slack variable 

and the second one is C; this variable is used to control the error correction penalty.  

Its proportional relation between the value of C and the penalty assigned to each 

misclassification so if we want to increase the penalty we can increase the value of C 

and vice versa, back to or cost function the minimization has the following constrains: 

  (4.8) 

  (4.9) 

As it is mentioned before some of the training samples are more important than 

the others and called support vectors in case of non-separable problem we 

have two kind of support vectors the first one is the normal support vectors 

which lie on the margin of the hyperplane therefore they are called margin 

support vectors the second kind is called non-margin support vectors and 

these vectors lie on the wrong side of the margin. 

To overcome the linearity of SVM in the original feature space we can use 

kernels. Which can turn the support vector machine into a nonlinear classifier. 

By using kernel methods, we can use the new transformed feature space 

 instead of the inner product . and the advantage of using 

 [23] 

the mapping function instead we can directly calculate the inner product in the 
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transform space as by using kernels we simplify the solution of the dual 

problem. The new modified formulations are written as follow: 

 
 (4.10) 

 

By replacing the inner product in the mapping space with kernel function the 

discriminant function written as  

  (4.11) 

There are many types of kernel function and each type effect the classification, 

therefore it is important to select the appropriate kernel function for each classification 

problem. One of the widely-used kernel functions is Gaussian radial basis function:  

  (4.12) 

We can control the width of the Gaussian kernel by using the parameter  which is 

inversely proportional to the width. Also, polynomial functions can be used as kernels 

below:  

  (4.13) 

where P is the order of the polynomial function. 

SVM is a binary classification algorithm.  There are some techniques that can be used 

to apply SVM on multi classes. The widely used techniques are called One-Against-

One (OAO) and One-Against-All (OAA). In our experiments, OAA technique is used 

in multi-class SVM classification to obtain high classification accuracies.  

In case of using linear SVM only complexity (C)parameter is needed to be chosen. and 

for using RBF-SVM parameters C and  are chosen. In the experiments grid search 

method can be used to select proper parameters for SVM classifiers.  
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5 SPATIAL CLASSIFICATION: 

5.1 Introduction to Spatial Classification 

The results obtained from spectral classification can be improved by applying 

complementing spatial algorithms on the results obtained from spectral classifier, 

therefore the final decision for each pixel can be derived from the spectral features of 

the pixel and in addition to the relation between this pixel and its neighboring pixels. 

Some of the algorithms used in spatial classification are morphological filters [24], 

morphological leveling [25]and Markov random fields (MRF) [26]These methods has 

shown the ability to reach high classification accuracy. However, all these algorithms 

have a common concept, which is all of them take a fixed-window-based of the 

neighboring pixel into consideration, which leads to scale selection problems and if 

the image contain small or complex structure this problem becomes more severe.  

Alternative approach to the abovementioned methods is image segmentation [27, 28], 

to obtain high performance a good segmentation of the image is required. This 

segmentation gives information about each pixel and its neighboring pixels. 

In previous study, image segmentation for multispectral image has been thoroughly 

discussed, where the spectral similarity was mostly used to distinguish between 

different area. One of the powerful software which has been used in image 

segmentation is eCognition, which used bottom-up region margining [29]. Bottom-up 

methods initial starts with the smallest element of the picture, it starts by considering 

each pixel as a separate region and the next step is to connect these regions according 

to some criterion in the shape and spectral of these regions. Another hierarchical image 

segmentation approach was introduced by Tilton [30], in which both region growing 

and spectral clustering where alternately used. This algorithm has some desired 

advantages, on the other hand it has main drawback, to achieve a good segmentation 

thresholds or homogeneity criterion must be chosen accurately. Segmentation based 

on mathematical morphology were introduced in [31, 32, 25], which mostly used 

granulometries or watershed transformation. Since there is no natural way for 

multivariate pixels total ordering, applying morphological operators is a bit 
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complicated. Works in [33, 34] provide extensive literature on mathematical 

morphology for multispectral and color images. Also, some extensive literature about 

watershed segmentation can be found in [35, 36, 37] 

These approaches are not applicable for hyperspectral images, due to the following 

reasons. 

a) The structure of hyperspectral images which consists of hundreds of bands 

makes it very hard to apply multivariate data total ordering schemes, for 

examples bit mixing paradigm [33]

because it will result a numerous number of value for each pixel. 

b) Perceptional color spaces and polar-based representation were successfully 

used in color images morphological analysis [35, 38] Unfortunately, these 

approaches are not suitable for hyperspectral images.  

Spectral-spatial classification of multispectral images is investigated in some studies. 

Linden et al. [39] use the mean vector as the feature for each region. The mean vector 

for each region are calculated after applying segmentation based on region growing, 

as a result each region forms the segmentation has its own mean vector, then a spectral 

classifier such as SVM is applied on the mean vectors for each region. However, the 

results obtained using these algorithms obtained by applying 

the spectral classification only. Li and Xiao [40]also introduced spatial spectral 

classification on 4 bands image by using both watershed segmentation and maximum 

likelihood for the spectral part the two algorithms are applied separately. A pixel wise 

approach is used to make decision for the regions, if a region contains more than 50% 

of its pixel with the same class the whole pixels in this region will be assigned to this 

class. The results obtain here were ultimately improved compared to the results 

obtained using only maximum likelihood. 

Spatial information is also used in classification problems by Widayati et al. [41]. 4-

band IKONOS image was used in the experiments. Merge using moments algorithms 

are first used to obtain the segmentation map. Then two different methods to integrate 

the spatial and spectral classifier are used. In the first approach, the mean for each 

region is calculated and then these regions are classified according to their mean vector 

as feature. In the second approach, a spectra classifier (Maximum Likelihood) are 
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applied directly on the image and result are combined with segmentation results by 

applying the majority voting therefore each region has the class of its majority class.  

In this thesis watershed and random walker (RW) [42] algorithms on hyperspectral 

images are employed for segmentation.  And later Extended random walker (ERW) 

[12] algorithm which is adapted version of random walker to integrate segmentation 

and spectral classification is employed for hyperspectral data classification. EWR was 

applied on hyperspectral data and gave good results [43] and later different kind of 

learning methods integrated to enhance the obtained result [44] 

5.2 Watershed: 

Watershed was introduced by Beucher and Lantuejoul [11], as a powerful 

mathematical morphology technique, this powerful method is used for image 

segmentation. 

The watershed deals with topographic images which is a 2D image and one band the 

value of each pixel represents the elevation of that pixel. Watershed creates lines which 

divide the image into catchment basins. Figure.5.1 illustrates how the image is divided, 

each of these basins take one of the minimum in the image. Watershed cannot be 

applied directly on the image instead first a gradient of the image is calculated and 

later the watershed is applied on this gradient. The gradient function describes the 

changes between neighbor pixels if the pixels belong to same region, they have similar 

values and therefore, the gradient function has minima value, otherwise the gradient 

function has maxima value. The watershed segmentation can give a meaningful result 

if the gradient function gave a good description to the border between different areas.  

 

 

 

 

 

 

 
Figure 5.1: Topographic representation of a one band image. 
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Many works in the literature focused on watershed algorithm e.g. Vencent and Soille 

in [45] by using the flooding stimulations to apply efficient watershed transformation. 

Watershed transformation on an image divides the image into small regions, each 

region is separated from the other regions via watershed pixels (WHED) and each 

region consists of pixels that all connected to a local minimum. Figure. 5.2 illustrates 

watershed transformation in one dimension. In Figure. 5.2, there are 2 local maximum 

points that are the watershed pixels (WHED) and they divide the 1D space into 3 

regions each of them is connected to one of the 3 local minimum points. 

 

 

Figure 5.2: Example of Watershed Transformation in One Dimension. 

As mentioned before watershed algorithm is applied on gradient function, but 

practically applying watershed directly on the result of gradient function will lead to 

over segmentation, over segmentation means that the images is divided into very small 

regions where each region contain only a local minimum without any of its neighbor. 

There are many techniques to cope the over segmentation, using marker is one of the 

good methods more details about using marker can be found in [45], also filtering the 

image or the gradient function can be a helpful as well. Back to hyperspectral images, 

these images contains hundreds of bands and watershed is applied on 2-Dimensional 

one band images therefore some techniques can be used to enable this algorithm on 

hyperspectral images in the following section these techniques will be discussed in 

detail. 
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5.2.1 Watershed Segmentation for Hyperspectral Images: 

In the paper [46] watershed transformation was applied on B-band image to get a one-

band segmentation map. Let us consider that the image is set of n pixel vectors 

 and each image band can be donated as  

Figure 5.3 illustrate the different ways watershed can be calculated. 

Before applying gradient function directly on the original image some feature 

extraction techniques can be used. The aim of this step is to obtain one band image or 

multi-band image where most of the spatial information are available to distinguish 

between different regions and one of the most popular feature extraction techniques is 

PCA [13], alternative methods are independent component analysis (ICA) and 

maximum noisy fraction (MNF) [47].  

 

Figure 5.3: Flow Chart Which Shows Strategies of Applying Watershed to 

Hyperspectral Image. 

In case we could obtain one-band image which contains enough spatial information to 

distinguish between different regions, applying watershed would become an easy 

straightforward task. A basic morphological gradient can be applied directly on this 

one-band image the gradient is called Beucher gradient, this gradient basically 

calculates the difference between the dilation and erosion using the following 

equitation: 
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  (5.1) 

In most of the cases obtaining one-band image which preserve most of the spatial 

information is a hard task and most of the time we need to apply gradient function on 

a multiband image, there are different ways to apply gradient function on these images 

these ways can be categorized as the following: 

A) To compute a vectoral gradient; 

B) To compute a multidimensional gradient; 

C) To compute watershed segmentation maps posteriori. 

5.2.1.1 Computation of a Vectoral Gradient  

Instead of calculating the distance between 2 pixels in the vectoral gradient the 

distance between to pixels-vectors is calculated and produce a one-band gradient. 

Many methods were proposed to calculate the metric based gradient in hyperspectral 

images. To explain  and  

 are the neighboring vector pixels for  and e is the number of 

neighbor vector pixels which can be 4 or 8. The following equation shows how the 

gradient is calculated according to the difference between the supremum and infimum 

distances between  and its neighbors: 

  (5.2) 

Different distance measurements can be used to calculate the distances e.g. Euclidean, 

Mahalanobis and chi-squared distance.  

Robust color morphological gradient (RCMG) is another vectoral gradient which has 

been developed by Evans and Liu, and later in [48] the ability to apply RCGM on 

hyperspectral images are discussed. 

5.2.1.2 Multidimensional Gradient Method  

Instead of trying to transform our B-band image into a one-band image, the gradient 

function can be applied on each band from the B-band image by considering each band 

as a separate image. For B-band image B gradient function can be applied and thus we 

can get B gradient maps .These gradient maps can be combined 

in some linear or nonlinear ways, a sum of the weight function can be used as an 
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example of the linear operators.  donate  as the weight corresponding to the 

band , where  and the weight function can be given as  

 
 (5.3) 

If some bands contain more informative spatial information the weights functions 

correspond to these bands can be modified to allow these band to have a higher 

contribution in the final gradient map. Median operator and supremum are examples 

of nonlinear operators.  

5.2.1.3 Combination of Watershed Segmentation Maps: 

In this approach, the gradient of each band is calculated independently from the other 

bands and instead of combining these gradient maps together the watershed 

transformation is applied on each band. Thus, we will obtain B band segmentation 

maps and these segmentation maps can be combined to obtain the final segmentation 

map. 

One of the ways to obtain final segmentation map with relevant edges from the B 

segmentation maps that we have is to add these maps together, each of the 

segmentation maps is a binary map where the ones represent the edges and zeros 

represent the segmented region. Let  be the watershed map for the band  the 

following equation shows how to sum the watershed maps. 

 
 (5.4) 

To improve the final segmentation  a thresholding can be applied on the image as a 

result of summing binary maps, some points have the value of zero and this means that 

these points are not considered as a watershed line in any of the maps, on the other 

hand some point will have values vary from 1 to B. If the point has high value that 

means this point is a watershed line in many bands therefore, it can be considered as 

reliable waterline. One important point should be taken into consideration in this 

method we lose the information about the regions because adding watershed maps 

together would change the shape of the obtained region and these new obtained regions 

are needed to be checked and further closing and region labeling are required.  
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5.2.2 Using Segmentation in Classification Scheme 

The improvement in the classification result is done by integrating the watershed 

segmentation result with the result obtain from the spectral classifier; in this section, a 

spectral-spatial scheme is introduced, this scheme is used to enable spectral-spatial 

classification on hyperspectral images using watershed segmentation. 

Figure 5.4 shows a general flow chart of how this combined segmentation 

classification method can be applied. In the first step B-band image represent the 

hyperspectral image is subject two methods parallelly, the first is pixel-wise 

classification in our case is done by SVM classifier, the second is segmentation done 

by watershed and this segmentation can be applied by any of the 3 earlier mentioned 

technique. This result of the segmentation maps where each pixel has the value of the 

region it belongs to or the pixel is a watershed pixel and has one value and this value 

is different from all the other regions. In case of applying watershed in MATLAB the 

final map will contain integer values where the zeros represent the watershed line and 

the rest are the indexes of the separated regions.  

 

Figure 5.4: Flow Chart of The Proposed Segmentation and Classification Scheme. 

There are 2 different ways to combine the spectral and spatial classification the first 

one is called no-WHEDs, in this method each region from watershed segmentation 

will have the label of the majority labels obtained from the spectral classification for 

this region and WHEDs will have their labels reserved. The additional part in with-

WHEDs method is checking the labels of WHEDs and assigning each WHED to its 

nearest pixel,  
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5.3 Random Walker:  

Random walker is a semi-automated algorithm used in image segmentation. In this 

approach, the image is treated as a graph made of vertices and edges. The edges 

assigned to a real weighted value represent the likelihood that a random walker 

standing on the first side of the edge will cross to the next side of the edge. To make it 

more convenient we can consider our graph as a network each intersection (vertices) 

represent a pixel form the original image and the lines connecting the intersections are 

the edges. As a semi-automated algorithm, the user must assign the points as reference 

points these points are called seeds. The main idea of the random walks is to calculate 

the probabilities for all points, that a random walker starting from these points will 

first reach a seed with a specified label. It has been proved in [49] that solving this 

probabilities issue is equal to the solution of Dirichlet problem [50] and the boundaries 

are at the location of the seeds to calculate the probability to reach the first seeds (each 

kind of seeds represent a class) we set these seeds to unity and the rest are to zero. 

There is a deep connection between the solution of discrete Dirichlet problem and the 

electrical potential in any circuits where the nodes represent the pixels and the resistor 

represent the inverse of weights and the seeds are the electrical sources. From this 

point on circuits theory is used to explain the random walker algorithm. Figure 5.5 

illustrates how the circuit theory is applied to solve the Dirichlet problem of random 

walks. Assuming we have an image of 4 by 4 pixels with 3 different classes and 3 

seeds. In 1.1 the image is represented as a graph, L1, L2, L3 are the seeds for class 1, 

class 2, class 3, respectively. In 1.2 the seeds are replaced with electrical sources and 

the edges with resistors which are equal to the inverse of weights. Next step is to 

calculate the electrical potential three times, one for each class. To do that required 

class seed is set to be the electrical source and make the other seeds as ground and after 

doing this process for all classes, each node has 3 potential values each represent the 

probability that a random walker starting form a node  will first reach this seed. 

Finally label of the maximum of the probabilities is assigned to the node .  

5.3.1 Exposition of the Algorithms:  

In this section, the aspects of the algorithm starting from creating the weighted graph 

to establishing and solving the system equations are described. 
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We start with the graph [51]as the data was reassembled into a graph and all the 

procedure are directly applied on this graph. As mentioned earlier a graph is consist of 

pairs of vertices (nodes, V) and edges (E) and the graph is noted as G=(V,E), 

 An edge which is denoted as means it is spanning the 

vertices . There are two kinds of graph that are weighted and unweighted graph. 

 

Figure 5.5: illustrates circuit theory to solve the Dirichlet problem of random walks. 

In this approach, we are only dealing with weighted graph. Therefore each edge,  

have value  which is called weight. The degree of vertices can be defined as 

follows: 
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   (5.5) 

which can be said as the degree of each vertices is the sum of the weights for all edges 

connected to this vertex. To make the weight as bias affecting the direction or steps of 

a random walkers . 

Edge weight is a function that represents the relation between pixels of an image and 

the graph biases. The value of the weight is related to the changes in the image 

intensities. The idea of using weighted graph in image analysis is not a new concept 

and many ready weight functions can be found in the literature [52, 42]The most 

common used weight is in the following Gaussian weight. 

  (5.6) 

where and are pixel intensities for neighbor pixels i and j

of random walker algorithm. In this thesis, the Gaussian weighting function is used in 

random walker algorithm.  

5.3.2 Discrete Dirichlet Problem:  

Discrete Dirichlet problem can be considered as a complicated problem therefore only 

the concerned part of this problem is explained and for further details of Dirichlet 

problem can be found in [53],In [54]a convenient solution to our concerned part are 

explained. The following part is a review of this solution. 

Discrete Laplacian matrix is defined as  

 
 (5.7) 

 

L is a n by n square matrix where n is the total number of pixels (vertices) in an image 

and . and  are row and column vertices (indexes) of the matrix, respectively. 

Discrete Laplacian matrix can be arranged according to the labels of each vertices as 

follows:  
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 (5.8) 

 

In this arrangement, the first group is for labeled elements which contains the 

seed/marked vertices and the second group for the rest of the elements for unmarked 

vertices. and  denote marked and unmarked vertices respectively.  

It is noted that  and  . 

Define  as the probabilities that each point  belongs to each of the labels s. For 

instance, 4 class case  is the probabilities for  which is 4 by1 vector that each row 

of it represent the probability of  belongs to one of the classes. Define the new 

function  where  Where K is the total number 

of the classes, Then the marked vector for each label can be defined as follows: 

 
 (5.9) 

The solution of combinatorial Dirichlet problem can be given from [54] as: 

 (5.10) 

Equation (5.8) is a symmetric sparse positive-definite system of linear 

equitation,  are the number of equation and the number of nonzero elements, 

respectively. As mentioned before the graph is a connected graph and for a connected 

graph,  is nonsingular [55]and therefore the solution to our system is granted to be 

exist and unique.the following system is used to obtain the potentials for all labels,  

  (5.11) 

Each column of M represents and each column of X represent  if K represent 

the number of labels K-1 number of equations are to be solved.  

5.3.3 Theoretical Properties of the Algorithm  

The properties of the algorithm have already been mentioned in the introduction part 

and in this section some propositions which have some practical consequences are 

given. First if interpolation is required to be achieved between the solution of an image 
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and the neutral solution, and this can be easily solved by adding constant to the weights 

of the image this situation usually happens when the image is poor. Second in case of 

independent random noisy at the level of the pixel the ideal weighting function should 

produce at the weight level multiplicative noise, as a result the expected potentials 

values in the presence of noisy should be equal to the expected potentials without 

noisy. Third in case of pure noisy or very close to pure noisy the segmentation obtained 

with Random Walker is the neutral segmentation. The following two properties are 

discrete analogues of properties of continuous harmonic functions  [50] and they can 

be found by viewing the solution to the discrete Laplace above mentioned equitation 

with the boundary conditions, by taking into consideration that each unlabeled point 

should satisfy the following condition  

 
 (5.12) 

where  is a vertex and can be unlabeled pixel or seed. 

 Maximum/ minimum principle which states  the potential of  

 The mean value theorem: The potential of each unlabeled node assumes the 

weighted average of its neighboring nodes. 

Proposition 1: After the final segmentation, each node assigned to the label S 

according to the above-mentioned rule is connected through a pass of nodes to at least 

one of the label S seeds and the points in the path are also assigned to label S. another 

way to describe this proposition that the connected component through the final 

segmentation should contain at least one seed and all these connected points should 

have the label of that seed.  

Proof: Any connected subset  assigned to the labels must be at least connected 

to one of the seeds with the label S.  

A block of matrix taken from the unlabeled points satisfactory equations can be written 

as: 

  (5.13) 

Where , and the matrix L as following: 
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 (5.14) 

  is the complement of P in V, in case { }, 

 

If then  then by definition 

of L the entries of  are non-positive,  has nonnegative entries due to the fact 

the L is a M-Matrix and any diagonal sub-matrix form M-matrix is M-Matrix and the 

inverse of M-matrix have nonnegative entries therefore, some  are greater than 

  and nodes not connected to P, are represented by 0 in  therefore to satisfy 

the above inequality some nodes in  must be connected to P. 

The rest 4 proposition have a common lemma this lemma is first mentioned (this 

lemma is referred to as common lemma) and later the rest of the propositions.  

Common Lemma: for the following 3 random variables X, A and B such that 

. by the Hölder inequality it is proved that 

 And  Therefore, 

.  

There is a relation between the potential solved in and weight tree 

structure of the graph  

For a node  the potential in the presence of a unit voltage source is given in [6, 26].  

 
 (5.15) 

 

In graph theory, a 2-Tree is defined as a tree with one edge removed.  is a set of 2-

tree represent in the graph where through this 2-Tree a node is connected to a seed 

(labeled node),   is the set of all possible 2 trees in the graph. , 

(5.15) can be restated as the sum over the product of weights over all 2-Trees where 

the node  is connected to a seed and divided over the sum over all the 2-Tree in the 

graph the results is the potential obtained from solving (5.15) and 
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nor helpful to use the equation (5.11) to solve (5.15) due to the enormous number of 

2- e of the behavior of  with 

the usage of different weight functions. In the neutral case the potentials can be given 

as: 

 
 (5.16) 

Now the 4 other propositions will be proved regarding in different conditions. It is 

noted befo

affect the result. It can be proved easily from (8.10) that both the numerator and 

dominator are divided on the same number K. 

Proposition 2. In case of identical random distributed positive weights ( ) the 

segmentation results are equal to the neutral segmentation results.  

Proof. This is prove as mentioned earlier using the common lemma. New variable will 

be donated  where the neutral potential that the node  belongs to the class 

S and  is the complement of  in  which means  and 

. For brevity  will be used to donate   

 
 (5.17) 

Since each of 2-Tree have the same number of edges which is (n-2) and all the weights 

in this case are identical distrusted the sum of  are contained in . Let  donate 

the mean of new variable distribution is this case the numerator of (8.12) can be written  

 

 
(5.18) 

And due to the fact that all the weights are positive the dominator is strictly positive. 

The condition of the common lemma can be satisfied if the left-hand side equal to zero 

and subsequently . 

Proposition 3.  equals the potential obtain by setting the weights to be equal the 

corresponding means, in case the weights were uncorrelated (not necessary 

independent) 
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Proposition 4.the same  can be obtained by replacing the weight with 

constants  (not necessary that these constants are equal) as long as and 

 are identically distributed random variables where  

Proposition 5. If  are not necessarily equal and r is equal constant, 

  

5.3.4 Algorithm Summary: 

Random walker can be applied by using the following steps: 

1. Define the set of seeds (labeled nodes), if the training samples are available 

those can be used as seeds with K classes or the seeds should be chosen 

manually  

2. Calculate the weights using the image intensity  

3. Solve (8.4) for each label expect the final one which can be calculated from the 

following formulation  or potential for all classes can be 

solved directly from (8.5)  

The final segmentation can be obtained by assigning the class with the highest 

potentials to the nodes or an alternative methods K-dimensional clustering technique 

can be applied on the potential vectors on each node 

A Segmentation Example using Random Walker  

The following example Figure 5.6 explains how the random walker algorithm works. 

In this example, the algorithm is used to apply segmentation on small synthetic data 

made up 9 pixels and 2 classes represented by 2 seeds (Seed 1 and seed 2). Other 7 

pixels in the synthetic data are free pixels and they are needed to be assigned to one of 

the 2 groups.The network between the pixels is to help in clarifying the idea of the 

graph  

The numeric solution of this problem consist of following steps: 

1) Finding the weight between the adjacent points.  

2) Writing the linear equation system. 

3) Finding the solution of the linear equation system according to each seed. 

 



 

41 
 

 

 

Figure 5.6: Random walker Numeric Segmentation Example. 

The weight is a function that describe the gradient in intensities between adjacent seeds 

here it will be referred to the weight between pixel 1 and pixel 2 as , these weights 

can be calculated using the Gaussian form (8.1) as follows:

where and  are intensities of pixels 1 and 2, respectively. As it can be noticed 

from this equation if  and  have close intensity values then  is almost one. If 

the values where close enough to each other these values show the probabilities that a 

random walker standing at pixel number  will move toward pixel number having a 

bigger difference in intensity will reduce the probabilities that a random walker will 

move to this direction and this is what is called a biased graph. In this example, some 

random values are given to the weight function and this value must vary between 0 

and 1.  

A linear equation is written to each unlabeled pixel but here only the equation for pixel 

number 1 is explained. U is used as a function for all unlabeled pixels and L is the 

function for labeled pixels, then to obtain the equation for the first pixel  all the 

labeled and unlabeled pixels connected to  must be written with their weight 

functions. 

 

 

By applying the same rules on all the other unlabeled pixels: 
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By moving all the values of U to the left side of the equality and dividing equations by 

the weight of the seeds, these equations can be rewritten as follows: 

=  

 

 

 

 

 

 

To solve these linear equations L functions for seed 1 and seed 2 are replaced with a 

value to get 7 variables and 7 equations which make it possible to be solved. First the 

probabilities of reaching the seed 1 are solved. To do that 1 is substituted in  and 

0 is substituted in  For solving probabilities of reaching the seed 2, 1 is 

substituted in  and 0 is substituted in . By this concept the discrete Dirichlet 

problem are used to solve the equations system as follow:
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A solution of the matrix equation above is 7 by 2 matrix and the first and second 

columns of the matrix are the probabilities that each unlabeled pixel belong to the 

group of seed 1 and seed 2 respectively. Each unlabeled pixel is assigned a label of 

(column index) the highest probabilities.  

5.4 Extended Random Walker: 

The Random Walker segmentation [42] has shown a great performance in many 

different fields including medical images and it has desirable theoretical properties. 

Random Walker is generally made as a semi-automated algorithm or in other words 

an interactive segmentation tool, that the algorithm cannot proceeds without the 

interaction of the user. The user must select a few number of pixels form the processed 

image and assigns them to specific labels then the algorithm calculates as mentioned 

above the probabilities that a random walker start forms each pixel will first reach one 

of the preselected pixels. Random walker algorithm has many desirable properties

which are outlined in [42]. 

1. The solution of the probabilities is unique  

2. The expected value of the probabilities for an image of pure noise, given by 

identically distributed (not necessarily independent) random variables, is equal 

to those obtained in uniform image 

3. The expected value of the probabilities in the presence of random, uncorrelated 

weights is equal to the probabilities obtained by using weights equal to the 

mean of each random variable.  

Despite these powerful and desirable properties. Random walker algorithm has some 

disadvantages as mentioned in [43]. 

1. There must be a seed in each segment. 

2. The absolute intensities are not well employed instead only the intensity 

gradients were used. 

3. The algorithm can proceed without the user intervene to select seeds. 

These 3 disadvantages are considered as desirable properties in some segmentation 

tasks such as ignoring the absolute intensity can be helpful in some case where 

employing only the gradients can increase the robustness to quantization and decrease 
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the classification error in the same homogenous area in addition to prevent noisy 

caused by inversed and shifted intensity. However, it can become really impractical 

when it comes to images containing many disconnected pieces. In such case the user 

has to select seeds inside each disconnected piece and this is one of the main incentives 

to come up with the new Extended Random Walker Algorithm where instead of using 

user defined seeds for each disconnected area, the intensity model of an image can be 

obtained and this model is used instead of the user input. This intensity model can be 

calculated in different ways also can be calculated priori. In the explanation of the 

algorithm in [43] for simplicity and clarity they used image with only one channel and 

user seeds but this concept only to make it easier to explain but the algorithm can be 

applied in multi-channels and without user intervene as it s applied in this thesis.  

The mixing between the spatial information and statistical information is not a quite 

new approach in the computer vision literature. And this is usually performed by 

adding new energy term to the total energy and applying minimization on the new 

energy function [56]. Some spatial algorithms are considered as conservative 

algorithm where it is not easy to mix between these algorithms and the density 

estimation priors such as watershed transformation [46]. The new achievement in 

Extended Random Walker algorithm is the ability of employing image priors to the 

affective old spatial algorithm Random Walker to have a new algorithm which can 

classify the disconnected area without the need of the user intervene. 

5.4.1 Development of the Algorithm: 

As the Random Walker algorithm, Extended Random Walker is also formulated on a 

weighted graph, and all the definition of the graph such as edges, degree and Laplacian 

matrix are valid for the Extended Random Walker algorithm therefore no need to 

mention these definitions in this section again.  

5.4.2 Label Priors: 

The probability density  represent that the density at the node,  belongs to the 

intensity distribution of the classes , and these probability densities are considered 

as nodewise priors, if we want to calculate the probability  for the node  belongs 

to  and after assuming that the likely of all the nodes are equal then  can be 

written as follows: 
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 (5.19) 

by using vector notation this equation. can be written as follows: 

 
 (5.20) 

Note  is a diagonal matrix where the values of  on the diagonal and the rest of the 

elements are zero. 

The following formulation can be used to calculate the minimum energy distribution 

for our new aspatial space. 

 
 (5.21) 

A total energy function can be written by combining the spatial energy function and 

the aspatial energy function by using the free parameter  

  (5.22) 

are label free (all  are free nodes) we can calculate  which satisfy the minimum of 

the total energy function as: 

 
 (5.23) 

The Laplacian matrix in Random Walker is a singular matrix and therefore it cannot 

be solved without having the user seeds but in the case adding the diagonal matrix 

which is strictly positive definite to the original Laplacian matrix will guarantees that 

the new combined matrix is positive definite. In this way, we can circumvent the semi-

automated Random Walker algorithm into an automated algorithm, however the user 

seeds (if desired) can be used in this algorithm by solving the following system: 
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 (5.24) 

If we compare the new lattice we obtained with the one obtained from the Random 

Walker we can easily see that the main different represented in having extra nodes. 

These are the label nodes therefore there are extra one node for each label in the image 

and these nodes are referred as floating nodes. 

Each floating node is connected to all the other nodes and instead of using the weight 

function on the new edges between the floating nodes 

mentioned in [12] the values of   are used. The weight of each new edge is equal 

to the relevant . The new lattice is depicted in Figure 5.7. 

By making comparison between random walker and extended random walker we can 

figure out that they are the same with  and is simply the Laplacian matrix 

of the new lattice with the addition to the diagonal matrix  .We obtain the 

same results in case we apply the extended random walker with the incorporation of 

priors or if we dire

convenient to consider the extended random walker as augmented graph since we can 

treat it in the same frame work as the random walks and all the proofs given in [42] 

can be considered applicable on the extended version therefore the robustness and the 

behavior of the Random Walker also apply in the extended version (when the priors 

are applied) [12]. 

 

 

Figure 5.7: The Use of Intensity Priors is Equivalent to Using K Labeled Floating 

Node That Correspond to Each Label and Connected to Each Node. 
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5.4.3 Algorithm Details: 

This algorithm can be described in the following steps: 

1. A prior model describes the label intensities in some cases it can be available 

for certain images or if not, it can be obtained with a user interaction via 

estimation, and from this prior model the probabilities  describes that each 

node  belongs the class S. This is the general first step in case of using SVM 

and these probabilities can be obtained directly from the classification maps. 

2. The second step is to apply random walker algorithm on the image without 

calculating the segmentation which means only the graph from the original 

image is created and the weights are calculated   

3. Solving equation. (5.24) in case of very large image can be difficult. Checking 

the array-size limit in case of using MATLAB, Octave etc. can be useful. This 

calculation needs to be done to each class  and we can use the unity sum 

condition to calculate only k-1 equations and the last one can be obtained as 

follow . 

4. Each node  have k probabilities representing that this node belongs to the 

class S. The simplest rule and the most used one is to take the highest 

probabilities and assign its label to the node. another way to assign labels is 

apply some clustering technique on all nodes probabilities. 

5.4.4 Prior Model: 

In this approach, the prior model is easily obtained using training data and it is used to 

obtain probabilities maps. The used SVM library in the experiments is LIBSVM [57] 

which have many options. The user can choose to get a probabilities map as 

classification result. In the general case, this prior need to be estimated and there is 

many different ways to obtain priors. In [58]many helpful methods have been 

provided. alternatively, Gaussian kernels can be calculated for each class and a 

normalized histogram can be created and the probabilities can be found simply for 

each intensity values of an image. 
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5.4.5 Choosing Weight  

There are many available functions to create weights between image intensities. In 

[59] various weight functions and their proper use are mentioned. Apart from well 

known a Gaussian weight function ubiquitous function is very useful. 

  (5.25) 

In practice, two variables can be added and the ubiquitous function becomes as follow:  

 
 (5.26) 

where  is a small constant and the value of it might be around  ,  is a 

normalization function and it is equal to the maximum difference between the intensity 

in the image. With this adjustment to the ubiquitous function we make sure that none 

of the weights are exactly equal to zero instead the minimum weight is equal to . 

Another advantage is to keep  relevant to images with different contrast and 

quantization.  

5.4.6 Numerical Solution 

This algorithm does not differ much from the original random walker in context of 

computational hurdle. It has larger sparse, symmetric and positive definite system of 

linear equations. This equitation can be solved using direct methods but it may include 

high memory consumption and in case of large images this cannot be the best way to 

use. Instead, iterative methods can be used some of these methods are mentioned in 

[60] such as preconditioned conjugate gradient is more appropriate to solve the linear 

system of a large image due to its lower memory consumption and parallelization 

capability. 

5.5 Comparison between ERW and Watershed  

The following table provide a brief comparison between the two proposed spatial 

algorithms. 
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Table 5.1: Comparison between ERW and Watershed. 

EWR Watershed 

No need for any image filtering 

procedures   

Without filtering over-segmentation 

will occur  

Seeds or labeled samples in the image 

can be used to enhance the result 

no seeds or labeled samples can be 

integrated to the algorithm 

The relation between the spatial and 

spectral classification can be calibrated 

using the free parameter 

easy and simple to control this relation  

To calibrate the relation between the 

spatial and the spectral new filtering 

procedure should be conducted on the 

image and its very complicated and hard 

to control this relation 

Can be applied directly or by using 

feature extraction 

Can be applied directly or by using 

feature extraction 

The spectral classification part should 

provide probability or probability 

density for each class 

The spectral classification part can 

provide only the labels for all samples 

The spatial classification cannot be 

applied without the integration of the 

classification result  

Spatial and spectral classification can be 

applied separately and later the results 

can be integrated together   
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6 MODIFIED ERW  

Two different approaches were checked here to improve ERW performance the 

validity of these methods was checked only by doing limited number of experiments, 

but it still worth to mention these methods here. 3 different ways will be mentioned 

here, all of them focus on the probabilities maps obtained from SVM. 

6.1 Priority for Large Classes  

This method is helpful when bigger classes have higher priority, to give a higher 

priority to bigger classes. first of all, SVM is applied on the data then the classification 

result from SVM will be used to calculated occurrence of each class to the total number 

of classes as follow: 

  
 (6.1) 

Where  is the percentage of the total occurrence of the class .Then the probabilities 

map will be modified as follow: each column of the SVM probabilities map represent 

a class, each column will be multiplied by the respective . So, if the class  appeared 

a lot in the result  will have a high value, therefor it will increase the effects of this 

class in the spectral-spatial classification  

6.2 Priority for Small Classes  

The method is the opposite of the above-mentioned method, we can use this one when 

small classes have higher priority in the experiments, here also need to calculate  

the percentage of the total occurrence for each class and instead of multiplying it 

directly by probabilities map, instead a new value will be calculated as follow: 

  (6.2) 



 

52 
 

By using equation (6.2) high values will be related to small classes and then each 

column of the SVM probabilities map will be multiplied by the relevant  

  



 

53 
 

 

7 THE DATA USED IN THE EXPERIMENTS 

 synthetic data  

 Indian Pines 

 Salinas 

7.1 synthetic data:  

this is a grayscale image with Gaussian noisy, this image will first be used instead of 

hyperspectral, because this image consists 

approach on it. D

and a high accuracy can be reached by using simple algorithms such as maximum 

distance to mean. This image consists of 2 classes, Figure 7.1 shows this image and 

two alternative training samples or seeds.  

 

Figure 7.1: A represents the original image with noise, B represents the original 

noisy image with the location of the seeds, C is the same as B with extra seeds in the 

2-separated area. 

7.2 Indian Pines 

This data was collected using AVIRIS sensor scanning the Indiana pines in the north-

western Indiana, the collected data is 145*145 with 224 spectral bands with the wave 

length range 0.4   meters in this experiment we are using the corrected 
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version of Indiana pines which consist of 145*145 pixel and only 200 bands, the 

excluded bands are bands covering the region of water absorption.  This data is 

available through Pursue's univeristy MultiSpec site. 

This data consists of 16 class and background the total number of samples is 21025, 

the number of background samples is 10776. 

The following table contain the ground truth table of the 16 classes and their respective 

number  

Table 7.1: Indian Pines Groundtruth classes and their respective samples number. 

# Class Samples 

1 Alfalfa 46 

2 Corn-notill 1428 

3 Corn-mintill 830 

4 Corn 237 

5 Grass-pasture 483 

6 Grass-trees 730 

7 Grass-pasture-mowed 28 

8 Hay-windrowed 478 

9 Oats 20 

10 Soybean-notill 972 

11 Soybean-mintill 2455 

12 Soybean-clean 593 

13 Wheat 205 

14 Woods 1265 
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15 Buildings-Grass-Trees-Drives 386 

16 Stone-Steel-Towers 93 

 

In this experiment, there are 2 kind of training samples randomly selected samples 

which represent around 4% of the original Image and neighboring pixels. 

 In the real-

samples but these randomly selected samples can give a better performance because 

they cover a bigger range from each class. the random distributed training samples and 

the real-life training samples will be referred to as random samples and real samples 

respectively. Figure 7.2 shows the distribution or the position of the 2 kinds of samples.  

7.3  Salinas scene: 

This scene was collected as well with AVIRIS sensor over Salinas valley, California 

USA. Like the Indiana pines this scene contain 224 bands and 20 water absorption 

were discarded, in this case bands: [108-112], [154-167], 224. It includes vegetables, 

bare soils, and vineyard fields. Salinas groundtruth contains 16 classes and background 

occupies 56975 pixels. 

Figure. 7.2 Indiana Pines ground truth with the position of the random and 
neighboring samples 
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Table 7.2: Salinas Scene Groundtruth classes and their respective samples number. 

# Class Samples 

1 Brocoli_green_weeds_1 2009 

2 Brocoli_green_weeds_2 3726 

3 Fallow 1976 

4 Fallow_rough_plow 1394 

5 Fallow_smooth 2678 

6 Stubble 3959 

7 Celery 3579 

8 Grapes_untrained 11271 

9 Soil_vinyard_develop 6203 

10 Corn_senesced_green_weeds 3278 

11 Lettuce_romaine_4wk 1068 

12 Lettuce_romaine_5wk 1927 

13 Lettuce_romaine_6wk 916 

14 Lettuce_romaine_7wk 1070 

15 Vinyard_untrained 7268 

16 Vinyard_vertical_trellis 1807 

Figure 7.3 shows the ground truth Salinas scene with the training samples, these 

samples were randomly selected and they represent approximately 4 percent of the 

total number of samples in the image and these samples are not randomly distributed 

instead they have neighboring relation among each class More information about this 
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scene, the size of this image is 512*217 pixel and the real number of bands is 224 but 

here the corrected version will be used, the corrected version has only 204 bands. 

 

 

Figure 7.3: Salinas scene Groundtruth and Training Samples. 
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8 EXPERIMENTAL RESULTS: 

In this part, Indian Pines and Salinas datasets were used to evaluate the robustness and 

the reliability of the proposed algorithms, where the synthetic data will be used only 

to illustrate the way these algorithms works. This synthetic data is a grayscale image; 

however, the proposed algorithms can handle it as well. To evaluate the results the 

overall accuracy, average accuracy, kappa coefficient and confusion matrix will be 

calculated. These measurements are well known and used in most of the literature work 

in this field. A brief definition will be introduced here. Overall accuracy is simply the 

ratio between correct classified pixels and the t

similar to the average accuracy, but in the later mentioned the correct classified pixels 

for each class will be divided on the number of pixels in each class then the average 

will be calculated, Kappa coefficient is a measurement of agreement between two 

static to evaluate the classifier itself and to compare between different classifier. 

Covariance matrix compares the obtained result with the ground truth and provides a 

detailed information about each class, for example the number of misclassified pixel, 

number of correct classified and further information about which class misclassified 

data belongs to.  

8.1 Synthetic Data 

As this data is a one band image not a hyperspectral image, not all the above-mentioned 

statics need to be calculated. First a spectral classifier will be applied on this data, the 

training samples marked in Figure 7.1.b will be used. SVM is basically a binary 

classification algorithm so, it can be applied directly on this gray scale 2-classes image. 

As it can be shown in Figure 8.1. the result obtain by applying SVM is quiet good 

result with an accuracy up to 98%, but the noise affects is obvious in the background 

class the misclassification was caused by the noise in the real image. SVM gives 

classification results upon the pixel intensities only despite any other factors which can 

help in identifying whether this pixel belong to a specific class or not. 98% overall 

accuracy can be considered as a very high accuracy but in this case, we are dealing 
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with a simple syntactic data so such a result can be obtained easily by using any kind 

of simple classifier. 

 

Figure 8.1: SVM Classification result on Synthetic Data. 

To show the differences between RW and ERW, segmentation using RW and two 

different training samples or as they called in the RW algorithms two different seeds 

groups will be used. In Figure 7.1, there are two different seeds group, group b contains 

has a bigger number of seeds and these seeds are distributed in all the separated areas.  

  

 

Figure 8.2: RW segmentation result. a) is the result of using c-seeds group. b) is the 

result of using b-seeds group. 

In Figure 8.2-b, the segmentation result identified only the circular part of class 2 

because there is no seeds in the other part of group 2. This is what makes RW not 

applicable to real life images where there are many separated parts belongs to the same 

class and in order to solve this problem a seed in each separated class is required. In 
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Figure 8.2-a seeds where distributed in all separated areas, even though RW failed to 

give a good segmentation, the main reason behind this failure is, that this image is a 

gray scale image with a gaussian noisy and the intensity between the 2 classes are close 

to each other, which makes it hard to separate between the classing using only spatial 

algorithm. In ERW we need to apply both spectral intensity classifier and spatial 

classification. The presented SVM results will be used to make classification map for 

this image.  

 

Figure 8.3: ERW illustrating. on synthetic Data, the 2-floating red and blue points 

represent the class labels. 

For this syntactic data, we will get 2 maps, one for each class and the number of points 

in each map is equal to the total number of pixels (21025).  

These maps are used later in the ERW. Each map will be used as an extra seed. To 

represented in an easier way Figure 8.3. illustrate EWR in this image. 

In RW algorithm the intensity gradient between neighboring pixels are calculated and 

used as weights in the Laplacian matrix. In ERW in addition to these weights there are 

extra points represent the classes, like the blue and red points in Figure 8.3. These 

points are connected to all the pixel in the image, since these points are not pixels, 

therefor the gradient intensity cannot be calculated among these points and the pixels 

of the image, instead the probability obtained by the spectral classifier will be used 

here as already explained in EWR algorithm, the result of SVM will be used in 

cooperation with RW to give better classification result.  
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Figure 8.4: Classification Result using ERW and b-seeds group

By using both spectral and spatial classification we can overcome some of the 

misclassified points in the homogeneous area, as it can be seen in Figure 8.4 the 

classification results are more accurate than the results obtained via SVM. What make 

ERW overcome RW is the ability of identifying pieces from the same class without 

the necessity of having seeds inside of each separated piece. By comparing the results 

obtain via SVM and ERW we can see that ERW with a good spectral classification 

method can give a quit good result and overcome misclassification in homogeneous 

areas. 

8.2 Hyperspectral Image Classification  

In this part, a lot of different experiments were applied on Indian pines data set and to 

verify the generality of these algorithms, the results of some experiments on Salinas 

scene will be briefly mentioned. 

Indian Pines data set consist of 16 classes and background, so we divided our work 

into 2 different parts, first part 17 classes including background, second part the 

background were neglected and only 16 classes were studied. Figure 8.5 shows the 

diverse options to apply these algorithms.  

As it can be seen in Figure 8.5 spatial-spectral classification can be applied directly on 

the hyperspectral images or it can be applied after doing some feature extraction such 

as PCA.  
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Figure 8.5: Flow chart of the diverse way to apply ERW. 

8.2.1 Spectral classifiers: 

 In these following sections, all the experiments are done by using Indian pines real 

life training samples, unless the opposite is mentioned.  

8.2.2 KNN: 

As KNN considered one of the easiest spectral classification algorithms it will be used 

first on hyperspectral data to compare the results with the one obtained using SVM. 

For KNN experiment 4 different values for K will be used, K = {1,3,5,7}; here KNN 

will be applied directly on hyperspectral data.  

Table 8.1: K-NN Classification result on Indian Pines. 

17 Classes 16 Classes 

K OA Kappa K OA Kappa 

1 55.94% 0.465 1 68.87% 0.644 

3 53.96% 0.443 3 66.78% 0.619 

5 53.45% 0.437 5 65.87% 0.608 
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7 52.88% 0.430 7 65.39% 0.603 

 

Figure 8.6: KNN classification result on Indian pines 17 Classes. 

there is some literature about using feature extraction technique to improve the result 

of the KNN classifier, but here only the direct application of KNN on Hyperspectral 

data will be taken into consideration. 

 

Figure 8.7: KNN classification result on Indian 16 Classes. 
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By comparing between Figure 8.6 and Figure 8.7 it can be noticed that a lot of 

misclassification is caused by the background class (the black colored class). the 

results obtain here are not going to be used later in the Spectral-Spatial classification 

results.  

8.2.3 SVM 

Before applying SVM on hyperspectral data, the data need to be Normalized in order 

to get a better classification results, here the data is normalized between [-1, +1]. 

LibSVM is used in all SVM experiments done in this work here only the neighboring 

samples will be taking into consideration and later the result of random training 

samples for spectral-spatial classification will be introduced. 

Two different Kernel Functions will be used here. First one is Linear SVM, second 

one is radial basis function. Linear SVM has only one parameter which can be 

adjusted, which is complexity, while radial basis function has two parameters 

complexity and gamma.   

 

Figure 8.8: SVM Linear Function 17 classes Classification Results Neighboring 

Samples. 
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to obtain a better evaluating of the SVM classifier performance SVM was not only 

applied on the full hyperspectral data, but it was applied on the training data in order 

to get the training accuracy and statics, then SVM classifier was applied on the testing 

samples. In these experiments, all the sample from the real image excluding the 

training samples were taken as testing samples. From the result in table 8.2, it can be 

seen that, the parameter C in the linear SVM plays a major role. The parameter C or 

as it called the penalty factor, can be used to control the trade-off between how 

complex the decision boundary or decision rule is supposed to be and between the 

error frequency.  

 

Figure 8.9: SVM Linear Function 16 classes Classification Results Neighboring 

Samples. 

By comparing classification results for 16 classes and classification result for 17 

because it occupies a large space of the image, even more than 50% percent of the 

image is background. This should be taken into consideration while comparing the 

results between 16 and 17 classes case and not only the overall accuracy but the kappa 

and average accuracy as well. In this case for example if the whole image was 

classified as background we will get an overall accuracy equal to 10776/21025 

(number of background pixels / total number of pixel)  51,25, but average accuracy 

will be equal to 1/17. Table 8.2. show the accuracies obtained using different C, 

complexity variable in Linear SVM for both 16 and 17 classes and by using the 
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neighboring training group which has 3403 training samples in 17 classes case and 

2648 training samples in 16 classes case Figure 8.8 and Figure 8.9 show the 

classification result for 17 and 16 classes respectively. 

 

Table 8.2: Linear SVM Classification result on Indian Pines. 

17 classes case 

 Training Result  Testing Result Full Image result 

C Overall 

Acc. 

Average 

Acc. 

kappa Overall 

Acc. 

Average 

Acc. 

kappa Overall 

Acc. 

Average 

Acc. 

kappa 

10 88.77

% 

88.92

% 

0.87

2 

53.79

% 

62.73

% 

0.41

6 

59.46

% 

70.48

% 

0.50

3 

 94.65

% 

96.52

% 

0.62

3 

56.24

% 

66.23

% 

0.56

0 

62.45

% 

75.29

% 

0.53

7 

 97.20

% 

98.70

% 

0.63

2 

56.85

% 

66.92

% 

0.57

0 

63.38

% 

76.34

% 

0.54

8 

 98,54

% 

99.53

% 

0.63

7 

57.11

% 

66.71

% 

0.57

5 

63.80

% 

76.39

% 

0.55

3 

16 classes case 

 Training Result  Testing Result Full Image Reult 

C Overall 

Acc. 

Average 

Acc. 

kappa Overall 

Acc. 

Average 

Acc. 

kappa Overall 

Acc. 

Average 

Acc. 

kappa 

10 93.55

% 

93.36

% 

0.92

6 

64.07

% 

67.51

% 

0.57

9 

71.79

% 

75.85

% 

0.58

4 

 97.76

% 

97.95

% 

0.97

4 

68.53

% 

69.60

% 

0.63

2 

62.45

% 

75.29

% 

0.53

7 



 

68 
 

 97.20

% 

98.70

% 

0.63

2 

56.85

% 

66.92

% 

0.57

0 

63.38

% 

76.34

% 

0.54

8 

 100% 100% 1 70.08

% 

70.52

% 

0.65

1 

77.91

% 

79.81

% 

0.65

5 

Now the radial basis kernel function will be used. Radial basis SVM has two 

parameters which can be tuned to get a better classification result. These parameters 

are complexity C and Gamma. The C has the same effect as the one mentioned in linear 

kernel. Gamma defines the influence of the training samples; low values means that 

training samples have far influence and high value means a close influence. 

Figure 8.10 and 8.11 shows the result obtained from RBF SVM for 17 and 16 classes 

respectively. Both 16 and 17 classes results in RBF are better than the results obtained 

earlier using Linear SVM. 4 alternative values for the parameters C and Y were 

applied.  

 

Figure 8.10: SVM Radial Basis Function 17 classes Classification Results 

Neighboring Samples. 
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Table 8.3. show the accuracy obtained from Radial Basis Kernel SVM. By comparing 

between the different result for both linear and Radial Basis function, the Radial Basis 

SVM is more reliable and has a better classification accuracy, however there are more 

kind of Kernel SVM for example polynomial, sigmoid, or by using pre-computed 

kernels. a lot of studied focused on how to improve this accuracies by finding different 

method focusing only on the spectral classification. Later the concept of cooperating 

the spatial and spectral classification was introduced.  

Here you will consider the highest accuracy reached in SVM as the optimal spectral 

classification result and this result will be used in the spatial classification. 

 

Figure 8.11: SVM Radial Basis Function 16 classes Classification Results 

Neighboring Samples. 

Table 8.3: RBF-SVM Classification result on Indian Pines. 

17 classes 

 Training Result  Testing Result Full Image Result 

C,  OA AA K OA AA K OA AA K 



 

70 
 

10,1 93.32% 95.36% 0.625 56.68% 61.95% 0.556 62.61% 72.02% 0.534 

 98.56% 99.47% 0.647 58.38% 64.11% 0.585 64.88% 74.71% 0.564 

10,2 95.76% 97.50% 0.630 56.87% 60.94% 0.563 63.17% 71.90% 0.540 

 99.61% 99.89% 0.642 57.53% 62.13% 0.578 64.34% 73.35% 0.556 

16 classes 

 Training Result  Testing Result Full Image Result 

C,  Overall 

Acc. 

Average 

Acc. 

kappa Overall 

Acc. 

Average 

Acc. 

kappa Overall 

Acc. 

Average 

Acc. 

kappa 

10,1 97.35% 97.49% 0.966 65.20% 67.04% 0.597 73.62% 76.62% 0.601 

 99.96% 99.94% 0.999 69.68% 68.84% 0.649 77.61% 78.61% 0.652 

 99.77% 99.81% 0.997 73.27% 72.32% 0.690 80.21% 81.23% 0.693 

 100% 100% 1 73.69% 72.39% 0.695 80.58% 81.34% 0.698 

there is a lot misclassification inside each separate homogenous area this 

misclassification caused like the salt and paper noisy effect. This noisy alike effect 

intense but in hyperspectral images, this affect is more visible. This 

misclassification cannot be solved completely for all the images still the result can be 

enhanced and as mentioned earlier one of the methods to enhance the quality of a 

classification obtained from a spectral classifier is to integrate a spatial information 

through a spatial classifier into the result.  

8.2.4 Feature extraction: 

Before applying spatial classifier on the spectral result PCA will be applied on our 

image as a feature extraction method. PCA is usually used in image compression 

application. In hyperspectral image, each band tial 

information in contrast if one layer was shown it will appear like very noisy image. 

Figure 8.12 shows the first principle Indian pines component after applying principle 
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component analysis. One of the most basic definition of hyperspectral image is 

transformation methods used to make the date easier to visualize and explore by 

emphasizing on the variation to extract the strong patterns in the image. Later, PCA 

result will be used in the coming experiment. Only the first 6 PCA component are area 

of interest specially the first PCA component. The following shortened forms will be 

used to refer to the first PCA component respectively 1st PC,2nd PC, 3rd PC, etc.   

 

Figure 8.12:  First Principle Component from PCA Transformed Indian Pines 

Feature extraction can be used as well with the spectral classification to overcome the 

dimensionality curse. Transferring hyperspectral date from a high dimensional space 

into a smaller space, while reserving most of the information in the data is a required 

advantage, because it can help in dealing with a very large date with limited computer 

resources. The studied images in this experiment are relatively small in the spatial size, 

not spectral size, the spectral is huge for example the Indian pine is 145*145 pixel is 

the spatial size and 200 band is the spectral size, so even with limited computer 

resources these data can be handled efficiently, but feature extraction is used here not 

only to make the data easier to handle but to make the spatial feature easier to extract. 

In the next section the spectral and spatial classification will be applied with using 

feature extraction and without. it  



 

72 
 

8.2.5 Spatial classification: 

8.2.5.1 Watershed: 

Here the spatial classification will be used to improve the spectral classification. First, 

Watershed algorithm will be applied. Watershed is an easy algorithm to use, but in 

hyperspectral images it has some drawbacks. These drawbacks are mainly related to 

extracting the spatial texture.  

 

Figure 8.13:  Watershed segmentation. a) over-segmentation b) under-segmentation 

c) proper-segmentation. 

As explain in watershed algorithm there are main alternative solutions to apply 

watershed on hyperspectral image, one of the powerful methods is to apply feature 

extraction on the hyperspectral data and then use the most informative principle 

component. applying watershed on an image directly will cause over-segmentation, 

therefore some image filtering and edge detection is advised to be used. On the other 
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hand, if the image was over filtered, the segmentation under fits the image which 

means having big areas considered as separated areas. In Figure 8.13, a) represent over 

segmentation where the watershed was applied directly on the first principle 

component. b) represent watershed applied with some excessive unsuitable filtering 

technique. c) represent the midpoint between a and b where the segmentation fit the 

spatial texture and helps to improve the classification result by applying watersheds 

on the first 6 PCA components. These three segmentation results will be used to 

integrate the spatial information with the spectral classification result. The 

classification results can be shown in Figure 8.14 and Figure 8.15. 

 

Figure 8.14: SVM-Watershed, Spectral-spatial classification (17 Classes) a1,b1,c1 

represent with-WHEDs classification, a2,b2,c2  represent no-WHEDs classification. 

Table 8.4: Watershed-SVM, Spatial-Spectral Classification result on Indian Pines 

SVM-Watershed Spectral-Spatial classification (No WHEDs) 

 17 Classes 16 Classes 

Overall 

acc. 

Average 

acc. 

Kappa Overall 

acc. 

Average 

acc. 

Kappa 

Seg (a) 67.16% 77.95% 0.592 79.83% 79.83% 0.769 
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Seg (b) 57.14% 62.88% 0.480 74.75% 64.28% 0.710 

Seg (c) 69.04% 72.06% 0.609 80.45% 72.93% 0.776 

SVM-Watershed Spectral-Spatial classification (with WHEDs) 

 17 Classes 16 Classes 

Overall 

acc. 

Average 

acc. 

Kappa Overall 

acc. 

Average 

acc. 

Kappa 

Seg (a) 71.56% 77.43% 0.638 81.55% 78.39 0.788 

Seg (b) 57.37% 62.92% 0.481 74.96% 63.32% 0.712 

Seg (c) 72.53% 73.26% 0.647 82.07% 73.86% 0.794 

 

 

Figure 8.15: SVM-Watershed, Spectral-Spatial Classification (16 Classes) a1,b1,c1 

Represent With-WHEDs Classification, a2,b2,c2  Represent No-WHEDs 

Classification 

By comparing the results between No WHEDs and With WHEDs it can be seen the 

latter algorithm gives a better overall accuracy but the average accuracy is decreased 

the classes.   
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8.2.5.2 ERW: 

In the part, a lot of experiments were applied and developed. ERW basically can be 

used in 2 different ways, one of them is to use some the pixels in the classified image 

as seeds by solving equation (5.24) and in case there are no available seeds in the 

image, equation (5.23) can be used to solve the ERW by using only the probabilities 

obtained via SVM without any seeds, In addition to that, the image used in the spatial 

part has also different options in this experiment we tried all the following choices a) 

only the 1st PC. b) full spectral by using 200 bands  

1st principle component experiment: 

Table 8.5: EWR Classification Result On Indian Pines Using Only The 1st PC. 

SVM-ERW 1st PC  Spectral-Spatial classification (No Seeds) 

 17 Classes 16 Classes 

Overall 

acc. 

Averag

e acc. 

Kappa * Overall 

acc. 

Average 

acc. 

Kappa * 

 =0.001  68.52% 46.35% 0.563 a 80.17% 61.33% 0.770 G 

 =0.01 75.68% 69.16% 0.689 b 86.90% 77.44% 0.849 H 

 = 0.1 75.57% 7632% 0.690 c 86.85% 85.81% 0.849 I 

SVM-ERW 1st PC  Spectral-Spatial classification (With Seeds) 

 

17 Classes 16 Classes 

Overall 

acc. 

Averag

e acc. 

Kappa * Overall 

acc. 

Average 

acc. 

Kappa * 

 =0.001  64.52% 83.58% 0.578 d 89.56% 92.38% 0.878 J 

 =0.01 77.04% 87.74% 0.708 e 89.48% 92.28% 0.879 K 

 = 0.1 76.81% 87.11% 0.706 f 87.98% 90.81% 0.861 L 
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Figure 8.16: ERW Classification with Feature Extraction For 16 And 17 Classes 

with/without Seeds. 

Table 8.6: ERW Classification Results On Indian Pines Using Full Spectral  

SVM-ERW Full Spectral  (no Feature Extraction) Spectral-Spatial 

classification (No Seeds) 

 17 Classes 16 Classes 

OA AA K * OA AA K * 

 =0.001  75.11% 69,57 0.682 a 88.64% 90.22% 0.869 g 

 =0.01 76.31% 78.72% 0.698 b 86.77% 87.86% 0.847 h 

 = 0.1 72.08% 80.92% 0.652 c 83.51% 84.14% 0.810 i 

SVM-ERW Full Spectracl  (no Feature Extraction) Spectral-Spatial 

classification (With Seeds) 

 
17 Classes 16 Classes 

OA AA K * OA AA K * 

 =0.001  77.47% 86.23% 0.712 d 88.81% 91.67% 0.871 j 
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 =0.01 76.93% 83.69% 0.706 e 86.37% 88.68% 0.843 k 

 = 0.1 71.91% 80.46% 0.804 f 83.22% 83.94% 0.807 l 

 

Figure 8.17: ERW Classification Without Feature Extraction For 16 And 17 Classes 

With/Without Seeds. 

 (*) is the Figure number for each result, 16 classes results are high than 17 classes, 

the highest OA for 16 classes was obtained by using Seeds, 1st component and  

=0.001. for 17 classes case, the highest OA was obtained by using Full spectral 

information, to give a better understanding of the parameter  

the 17 classes results, for example if we checked Figure 8.16 and Figure 8.17 and 

compared between the classification map obtained in a and the classification map 

obtained in c, in (a) and therefore the spatial information has a higher 

effect on the final classification map whereas in (c)  =0.1 and the contribution of the 

spectral classification in the final classification map is higher. From equation (5.24) 

and (9.5) it can be seen that  is multiplied by the probabilities obtained from spectral 

classifier, which means lower   values will cause smaller contribution of the specatral 

values and vice versa.  To give a better overview of the results obtained from ERW 

the confusion matrix will be calculated only for the 17 classes,1st PC, with seeds. 
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Table 8.7: Confusion Matrix for ERW 17 Classes with seeds and 0.1 

 

In Table 8.7. C1 to C17 are the Classes, if we check the small classes we have C2,C8 

and C10, and for example in C2, 43 samples were correctly classified out of 46, and 

18 samples from Class C1 were classified as C2. And for the big Classes we can check 

C12, 2344 samples out of 2455 samples were correctly classified and 883 samples 

from C1 were classified as C12.a further study of the confusion matrix is important to 

diagnose the performance of the algorithm in detail and to check which classes are 

causing problem and for example different training sample can be chosen for these 

classes.  

8.2.6 The importance of the Training Samples: 

In this section, the randomly distributed samples in Indian Pines from Figure 7.2 will 

be used to emphasis on the importance of the Training Samples, only a few 

experiments will be done here as in real lif randomly 

distributed samples. SVM on the 16 classes case will be applied using 4% of the total 

samples as training samples in total 409 Training Samples after discarding the 

background samples. Then ERW will be applied on the result obtained from SVM 

Figure 8.18 and Table 8.8. show the result of using this training samples  
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Figure 8.18: SVM and ERW classification results using only 409 training Samples. 

In Figure 8.18 a) represent the result from ERW without seeds, b) represent the result 

obtained via RBF-SVM and c) represent the result of ERW with using all the training 

samples as seeds. 

Table 8.8: SVM and EWR results using 4% of the total samples as training Samples: 

Method Parameters OA 

RBF-SVM  74.10% 

ERW no Seeds  82.22% 

ERW with Seeds  96.42% 

The OA accuracy obtained using only %4 of the total samples as training samples is 

very is very high in ERW with seeds (96. 42%), the main reason of reaching this high 

accuracy is the distribution of the training samples, for ERW which is diverted from 

segmentation algorithm (RW) the spatial distribution of the samples plays a major role 

in the final result. And form Figure 7.2 (a) it can be seen how the training samples are 

distributed in all the separated areas, on the contrary of the training Samples in Figure 

7.2 (b). 

8.2.7 Salinas Scene: 

Another data set is used to prove the generality of ERW algorithm, will take into 

consideration only the 16 classes, the Training Samples shown in Figure 7.3 are going 

to be used discarding the background samples. The total number of 16 classes training 

samples in 3416 which is equal to 6% of the total 16 classes sample in the image. As 

all the other experiment, SVM will be applied and the result of SVM will be integrated 

with ERW, also here ERW will be applied twice, with seeds and without seeds. Figure 
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8.19 shows the results for Salinas Scene and Table 8.9 contains the overall accuracies 

and used parameters.  

 

Figure 8.19: SVM and ERW Classification Result on 16 Classes Salinas Scene using 

6% Training Samples. 

From comparing the results obtained between ERW with seed and ERW without seeds 

in Table 8.9 we can find that OA for EW without seeds is higher than the OA for ERW 

with seeds, but if the seeds were well distributed in the image the accuracy of latter 

algorithm will be higher. 

Table 8.9: SVM and ERW Classification result on 16 Classes Salinas Scene using 

6% training Samples. 

Method Parameters OA 

RBF-SVM  86.16% 

ERW no Seeds  91.75% 

ERW with Seeds  91.61% 

8.3 Modified ERW Results 

Many different approaches were tried to improve the accuracy obtained from ERW, 

for example trying to find extra seeds or training samples. In most of the cases only 

small enhancement in the accuracy was obtained, but one technique which worth to be 

mentioned is adjusting the probabilities maps obtained from the spectral classification.  
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As mentioned before there 2 possible ways to adjust the probabilities obtained from 

SVM. 1) priority for small classes. 2) priority for large classes the first one will be 

used with Indian pines 16 classes and the second one with Indian pines 17 classes. The 

following table shows the improvement of the result by applying these 2 methods. To 

apply these methods, the number of each class after applying SVM need to be 

calculated then these numbers are normalized then multiplied with the relevant column 

of the probability map.   

Table 8.10: ERW results modification by giving different priorities for different 

classes. 

17 classes No seeds 16 Classes No seeds 

Method OA AA Method OA AA 

ERW  75.59% 81.65% ERW 86.38% 86.79 

ERW Priority for 73.46% 83.63% ERW Priority for 87.38% 86.69% 

ERW Priority for 76.93% 53.56% ERW Priority for 80.17% 61.74% 
By checking the results in Table 8.10. We see that these methods can improve the 

accuracy in some cases, but still not final or a general method to improve ERW and 

further studies might be applied later to find better methods to improve the accuracy. 
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