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HIPERSPEKTRAL GORUNTULER, SPEKTRAL UZAMSAL
SINIFLANDIRMA

OZET

Son zamanlarda Uzaktan Algilama teknolojisinde cesitli gelismeler tanitilmistir.
Multispektral sensorler yillardir kullanilmakta ve 10-20 banta kadar ¢oklu bantlarda
goriintiiler saglamaktadirlar. Multispektral goriintiilerden ¢ikartilan bilgiler faydahdir
ve gergek problemlerde birgok farkli uygulamada yaygin olarak kullanilmakla birlikte,
hiperspektral goriintiilerin onemli rol oynadigi mineraller ve alt siniflar arasinda ayrim
yapmada basarisiz olabilirler.

Hiperspektral goriintiiler yiizlerce dar banttan olusmustur, ¢ogu durumda bant sayisi
200’e kadar ¢ikabilir . Bu yiiksek diizeyde ayrintili spektral bilgilerin olmasi daha iyi
bir ayrit etme yetenigi saglar.

Multispektral goriintiiler icin kullanilan geleneksel siniflandirma yontemleri
hiperspektral goriintiilere bir¢ok nedenden otiirii direk bir bicimde uygulanamaz. Bu
nedenle bir¢ok algoritma hiperspektral verileri isleyebilecek sekilde diizenlenmelidir.
Ornegin, istatistiksel smniflandircilarin hiperspektral goriintiileri islemesinde bazi
zorluklar vardir. Bunun nedeni istatistiksel parametrelerin yeterli dogrulukta egitim
orneklerinden tahmin edilmesi biiyiik miktarda veri i¢in kolay bir is degildir. Ek olarak
istatistiksel algoritmalar verilerin ger¢cek durumuyla 6rtiismeyen belirli bir dagilima
sahip oldugunu varsayabilir. Ote yandan, parametrik olmayan smiflayicilar
hiperspektral veriler i¢in goreceli olarak yiiksek ve kabul edilebilir dogrulukda iyi
coziimler saglarlar. Bazi durumlarda bu parametrik olmayan siniflandirma yontemleri
hiperspektral veriye direk bir sekilde ya da Oznitelik ¢ikarimi uygulandiktan sonra
uygulanabilir. K-En yakin Komsuluk (KEK) ya da Destek Vektor Makinalart (DVM)
en giiglii ve ¢cok kullanilan parametrik olmayan yontemlerdir.

Ozellikle SVM smirli  sayida egitim oOrnekleriyle bile hiperspektral veri
siniflandirmasinda glirbiiz bir yontem olarak rapor edilmistir.
Gergek hayatta komsu bolgelerden alinan egitim ornekleri (pikseller) biiyiik olasilikla
ayni sinifa aittirler. Ancak sadece spektral bilgileri kullanan siniflandirma yontemleri
homojen alanlarda goriilen yanhs siniflandirilmis pikseller gibi bazi sorunlara sahip
olabilirler.Son zamanlarda siniflandirma dogrulugunu gelistirmek ve smiflandirma
haritalarinda daha c¢ok homojen alanlar elde etmek igin literatiirlerde ¢esitli
yaklagimlar tanitilmistir.Gliglii yaklasimlardan biri spektral bilgiyi uzamsal bilgi ile
biittinlestirmeye dayanmaktadir.Bu tezde Genisletilmis Rastgele Yiirlime (GRY)
algoritmasina odaklanilmaktadir. GRY iki adimdan olusur; birinci adim herhangi bir
spektral simiflandirma algoritmasi tarafindan yapilan spektral siniflandirmadir.Bu
tezde ¢ekirdege dayali metodlardan biri olan DVM ile Radyal Taban Fonksiyonu
(RTF) ve dogrusal gekirdek islevi spektral siniflandirmada kullanilir.ikinci adim
DVM’dan elde edilen siniflandirma sonuglarina dayanir ve daha dogru olarak DVM
algoritmasindan elde edilen her piksele gore olasiliklara dayanir.Bu olasiliklar rastgele
yiirlime yontemini bir boliitleme yonteminden, ¢ok sinifli siniflandirma yontemine
dontistiirdir.

Anahtar kelimeler: hiperspektral goriintiiler, spektral uzamsal siniflandirma.
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SPECTRAL AND SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES
ABSTRACT

Recently various developments have been introduced in Remote Sensing Technology.
Multispectral sensors have been used for years and provide images with multi bands
up to 10-20 bands. The information extracted from the multispectral images are useful
and helped in many different applications in the real world, however it may fail in
distinguishing between different minerals or sub classes, where hyperspectral images
plays an important role.

Hyperspectral images are made of hundreds of narrow bands, in most of the cases it
can be up to 200 bands. Having this high level of detailed spectral information gives a
better distinguishing capability.

The conventional classification methods used for multispectral images cannot be
applied directly on hyperspectral images due to many reasons. Therefore, many
algorithms adjusted or introduced to fit the hyperspectral data. For example, statistical
classifiers have difficulties with these data, because calculating statistical parameters
for such a huge amount of data is not an easy task. Additionally, the statistical
algorithms assume that the data have a specific distribution which contradicts the real-
world situation. On the other hand, nonparametric classifies provides good solutions
with relatively high and acceptable accuracies. In some cases, these nonparametric
algorithms are applied directly on the hyperspectral data or after applying some of the
feature extraction methods. K-Nearest Neighbor (KNN) or Support Vector Machines
(SVMs) are one of the most widely used and powerful nonparametric methods.
Especially SVMs are reported as robust algorithms on hyperspectral data classification
even with limited number of training samples.

In real world, pixels/samples from neighboring areas are most likely belong to same
class. However, classification algorithms exploiting only spectral information cause
some noisy like misclassified samples in homogeneous areas. Various approaches
have been introduced recently in the literature to improve the classification accuracy
and obtain more homogeneous areas in classification maps. One of the powerful
approaches is based on integrating the spatial information with the spectral
information. In this thesis, we focus on the extended random walker (ERW) algorithm.
ERW consists of two main steps; the first step is the spectral classification which is
done by any spectral classification algorithm. In this thesis one of the kernel based
methods support vector machine (SVM) with the radial basis function (RBF) and the
linear kernel function are used in the spectral classification. The second step relies on
the results of the classification obtained by SVM and more accurately it depends on
the probabilities for each pixel obtained from the SVM algorithm. These probabilities
are used to transfer random walker from a segmentation algorithm into a multi class
classifier.

Keywords: Hyperspectral images, Spectral and Spatial Classification
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1 INTRODUCTION

1.1 Remote Sensing and Machine Learning

Remote sensing for Earth observation witnessed a lot of development and new
approaches. Generally Remote Sensing is divided into 2 main procedures, the first
procedure includes capturing images for the surface, the second step is to analyze these

captured images.

The data or images can be collected through different type of sensors, these sensors
collect the arising electromagnetic energy field, to be more specific the information is
included in the three variation of this field which are spatial, spectral and temporal
variation, the old sensors focused on collecting one spectral then studying the spatial
variation of this energy. The images provided by these sensors weren’t neither
informative enough nor able to distinguish between different classes. Scientists and
researchers tried to improve the resolution of these sensors, but they were confronted
by 2 difficulties. The first is producing sensors with a very high accuracy is very
expensive. The second difficulty, scanning a very small landscape with high accuracy
sensors will produce a huge amount of data and it’s very difficult to handle it or process
it. To overcome these obstacles a new approach was introduced. New sensors were
used to collect both spectral and spatial variation of the electromagnetic field and here
is where the multispectral images were originated. Multispectral images consist of ten
bands and these bands are relatively wide. Later the demands on more detailed
classification increased and these multispectral images were incapable of
distinguishing between similar types of land covering materials. As a response to these
demands hyperspectral images were introduced to replace multispectral images in the

earth observation (EO) application.

Hyperspectral images consist of hundreds of narrow bands covering from the visible
to the short-wave infrared region of the electromagnetic field. This new technology
wouldn’t be useful without finding proper way to handle it and extract information
from it. Extracting information and handling data from remote sensing application is

done by machine learning algorithms.



Machine learning is a part of artificial intelligence. The general concept of machine
learning is to let the machine improves its performance by learning form the available
data, learning here means using these data iteratively to optimize the machine
performance. Machine learning can be predictive or descriptive. One of the most
known predictive machine learning methods is regression were the machine can make
a prediction on a specific phenomenon, whereas classification is a famous part in
descriptive machine learning. Classification is the method used in most of EO
application. Classification in EO applications gives decisions about which area in the
land covering image belongs to which class and therefore provide important

information in several earth or environment monitoring systems.

Generally, machine learning can be divided into two main methods supervised learning
and unsupervised [1]. Supervised learning requires a prior knowledge of the processed
data by using labelled training samples. This prior knowledge and labelled training
samples are not used in unsupervised learning. However, there is special kind in of
machine learning called semi-supervised [2] which can be consider as a mix between
the supervised and unsupervised learning. This can be done by using both labelled and

unlabeled training samples.

1.2 Hyperspectral Images

To have a better understanding of hyperspectral images classification, a closer look to
hyperspectral images will be introduced. The humans’ eyes can see only 3 different
spectral bands corresponding to the visual primary
colors Red Green and Blue, but in hyperspectral
both the visible and invisible spectral are taking into
consideration. Hyperspectral images include up to
several hundred of contiguous spectral bands.
Every pixel contains high spectral information

which can be used to give precise and detailed

classification by using fine wave length resolution
and covering a wide range of wave length. Figure 1.1: Hyperspectral
Hyperspectral images are used to identify material, Image Cube.

finding and detecting objects, certain objects leave a special evidence which are called

spectral signature or fingerprints, these signatures are used to detect the objects. Some
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of the practical used way to collect these data is through using Airborne sensor or
satellites. These sensors provide us with cube of data where each layer represent an
image with a different wavelength so if we are measuring a 200-different wavelength
we will get an Image with 200 band like the image in Figure (1.1). the collected
precision can be evaluated according to the width of each band and referred to it as

spectral resolution.

What make hyperspectral images different from normal or multispectral images is the
spectral resolution. The higher spectral resolution gives the ability to distinguish more
substances. The object of interest can become more specific which means even if the
size of the observed object is very small, it’s still can be detected due the high spectral

resolution

1.3 Classification of Hyperspectral Images

In the beginning of hyperspectral images there was a consensus, that classification of
multispectral images can be applied directly on hyperspectral images and this
consensus came from the fact that hyperspectral were a normal extension of
multispectral images with a bigger number in bands. Later, this misconception was
removed and proved to be wrong. To illustrate this problem easily, the analysis of real
and complex numbers can be taken into consideration. The complex numbers are
considered as a normal extension of the real numbers, anyway applying mathematical
rules from real numbers directly on complex numbers wouldn’t give the required
results and for example derivatives in real analysis is totally different from derivatives

in complex analysis.

Analysis of hyperspectral image cannot be considered as trivial task and there are
many reasons which complicate this task even more, here is some of the main factors
which affects the classification in practical. 1) as mention before each class has its own
spectral signature, but in real life application these signatures have a large spatial
variability. 2) atmospheric effects can cause some noisy in the collected images and a
small variation in the collected data. 3) the curse of dimensionality, even scanning a
relative small area will give a huge data, due to the fact, that each vector pixel is consist
of hundreds of bands. From the supervised learning methods perspective, there are two
main inconveniences. 1) the limited number of training samples compared to the

number of feature which makes normal statistical methods not applicable on
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hyperspectral data, because this limitation of training samples will affect the estimation

of the parameters.

2) Hughes phenomenon [3], theoretical the increment in the feature space will lead to
a better discriminating ability which mean a better classification accuracy, but in some
practical cases the increment of feature space will adversely affect the classification
accuracy and this negative effect is Hughes phenomenon. 3) curse of dimensionality it
worth to be mentioned here again, as supervised learning requires to study the training
samples, creating the classification model and final apply this model on the required
data, all this procedures on a huge data set will require more time and more advanced

computers to be able to handle this amount of data.

In the literature, many efforts and works were done to overcome this methodological
problem, here some of these methods will be mentioned briefly. 1) instead of using the
covariance matrix obtained from the training samples directly some regularization was
applied on it [4]. 2) the statistic estimation can be enhanced and generalized by
including the contribution of the result of classified data in this estimation. [5] 3)
dimensionality reduction by using some of the feature selection of feature extraction

methods [6]. 4) modeling each class by the analysis of its spectral signature [7].

Nonparametric algorithms gained good reliability credit, due to its ability to function
with a very limited number of samples. As earlier mentioned nonparametric methods
can be applied directly without making neither distribution estimation nor calculating
of the mean values, covariance matrix, etc. Neural network (NN) [8], Support vector
machine (SVM) [9] and K-nearest neighbor (KNN) [10] are the commonly used
nonparametric algorithms in hyperspectral images. These algorithms can be applied
directly on the hyperspectral data without any feature extracting or selection, but also
can give a better result when its combined with some feature extraction methods, for
instance using principle component analysis with KNN algorithm. One of the
deficiency of these algorithms is taking on consideration only the spectral information.
Most of the information is included in the spectral variation of the hyperspectral data
but still spatial information can be extracted and used to improve the classification
results from the spectral classification. This new concept lead to new classification
methods called spatial-spectral classification. Many approaches were introduced in the
new field using segmentation algorithms, e.g. using watershed algorithms [11] to

divide the image into a separate spatial area, then using this area to improve the result
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obtained in spectral classification. More methods were used such as spatial feature
extraction models, define adaptive neighbor for each pixel by applying some special
filtering methods. This integration between spatial and spectral classification had
successfully improve the classification accuracy. Figure 1.2 illustrate a general
concept of the supervised learning algorithms in hyperspectral image, in fact there is
more types and complications of supervised algorithm and this Figure is just the

general concept.

Hyperspectral Image

v

Spectral Classification

|
l | |

Spatial Classification — Non-Parametric classification Statistical Classifier

Spatial-spectral integration ‘

Feature extraction

.

Final classification result

Figure 1.2: General Supervised Algorithm for Hyperspectral Images.

In this thesis SVM is used as a spectral classification method. It can be noticed that the
results of spectral algorithms in general like SVM have some misclassified samples,
this misclassified samples are distributed as salt and paper noise in the homogenous
areas. To reduce this misclassification and increase the accuracy in Extend random
walker (ERW) [12]are used to integrate the spatial information into the spectral
information. This integration using ERW can be done in many ways, in this approach
the different integration methods between SVM and ERW will be taken into
consideration in details, there are lot alternative ways which can improve the
classification accuracy. In the experiment part, these integration methods are exposed

and the results are compared in detail.






2 FEATURE EXTRACTION METHODS

2.1. Principle Component Analysis

2.1.1. Principle Component Introduction

Principle component analysis (PCA) [13] is a statistical procedure which allows to
transform of set of possibly correlated variables into a different space where the
variables are linearly uncorrelated. For instance, in case we have 2 variables one of
them is representing the length and the other one represents the width we can plot these
2 variables into 2- dimensional plane where the first axis represents the length and the
second axis represent the width. After plotting these variables, we will get the result
shown in Figure 2.1. After scattering the length and width it’s more obvious that these
2 variables are having the similar variance and they are highly correlated. We can add
a new axis along the biggest change of the data and then adding a new axis
perpendicular to the first one to represent the other changing in the data and these two-
new axes should pass through the centroid of the data. The data can be represented
according to the new coordination axes. In this new feature space, it’s obvious that the
variances of the data in the first axis is bigger than the variances over the second axis,
in the same time the spatial relationships between all the points is kept untouched so
the data was represented in a new feature space and saved the spatial relationships as

in figure 2.2. We can think of it as the data has been merely rotated.

The new axes are the result of rotating the data and can have many different meanings
according to the originals samples for example in this approach we can consider the
first axis represent the size measures where the data on the lift side consist of small
width and small length and moving to the right of the first axis the data will have larger
width and length, whereas the second axis can be representing the ratio between the

width and length.
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Figure 2.1: The real coordination axis for scattering the length and the width.
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Figure 2.2: New transformed coordination axis for scattering the length and the
width.

Dealing with small number of variables, the process of finding the relationships might
seems obvious but not when dealing with a larger number. This process helps to find
the relationships easier and faster. For some data set the variance of different axis
might varies, so the axis corresponding to a higher variance are considered more
important or containing more information than the other axis. The axis with low
covariance can be ignored this process is called dimensionality reduction where the

original d-dimensional space is converted to k-dimensional space where k<d.

The main concept of principle component analysis is rotating the data to have

successive axes representing the data in way that the covariance is decreasing along



the axes with the first axis having the highest covariance and the last axis having the

smallest covariance.

2.1.2. Principle Component Computation

The data being discussed in this computation part consist of P variables and n samples
in case of hyperspectral images the variables are the features (bands) and the samples
are the number of points (pixels) in the image. Before starting the data should be mean
normalized and in some data the feature normalization is also required. This
normalization insures that the data is centered on the origin and the spatial relationship
and the covariance between the variables are being conserved. the 1% component Y; is

equal to a linear combination of the variables X1, X5, ..., X,
Y1 = a1 Xy + aX, + -+ agp X, 2.1
In matrix notation:
Y; =alX 2.2)

As mentioned before the first axis or the first component represent the greatest
variance in the data. To choose a high variance for Y; a high value of the weights
@11, 12, -, Aqp Can be chosen, when choosing the values of this weights the following
constrain should be taken into consideration. The sum of squares of the weights should

be equal to 1.
afy +afy + - +afy =1 (23)

When selection the second principle component another condition should be taking
into consideration that the 1% component and the 2" one are uncorrelated i.e.,

perpendicular to each other.
Yz = (Z21X1 + C(22X2 + -+ aszp (2.4)

This process will continue till reaching Y, then the number of the principle component
is equal to the number of variables (P). in this stage, the sum of variances to all the
principle components should be equal to the sum of the variances to the all variables.

Therefore, all the originals information from the data are kept or accounted for in the



principle components. In the matrix notation, we can rewrite the principle components

equations collectively as
Y =XA 2.5)

Calculating the principle component requires a computer to perform the complicated
mathematical equations and later there is an example how to use MATLAB to
calculate this component. Back to the equation (2.5). The rows of A are called the
eigenvectors of matrix S,, S, is the variance and covariance matrix of the original data.

a;; are called the loading and they are the elements of A the eigenvector matrix. S, it
the variance and covariance matrix of the principle component. The diagonal elements
of the matrix S, are the eigenvalues which represent the varies in the variances
between the principle component, as mentioned before variances of the principle
component is descending starting with the highest value responding to the first

component.

The sample r can be directly calculated on the Kt® component by using the following

equation:
Yik = @iy + QgpXpp + -0 + ApkXrp (2.6)

The position of each observation in the new coordinate system is called score.

To have a better understanding of the principle component is good to observe the
correlation of the original variables with the principle component as this can be

calculated using the following equation.

i = faizjVar ) /sii 2.7

The result applying component analysis is a new feature space which have the same
number of dimensions as the real data, Figure 2.3 illustrate the result from applying
PCA on 200 bands hyperspectral image, it can be noticed that there are 200 Eigenvalue
and the high values are concentrated in approximately the first 10 eigenvalues, but the
mean idea of PCA is dimension reduction therefore some of the new principle
component can be ignored there are many criteria that determine how many PC should
be taken into consideration and how many should be ignored. One of this commonly
used criterion is to take all the component till reaching a PC that only make a small

10



increasing in the total variance a second criterion is to take the PCs that represent

approximately 90% of the total variance.

In this discussion, we used the first principle component. Computing PCA in
MATLAB:

There is a ready function in MATLAB called PCA which returns the principle
components coefficient (the loadings) i.e., having X consisting of n samples and P

variable, X is n*p matrix we can apply the following code: Loadings = pca(X);
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Figure 2.3: Eigenvalues after applying PCA on 200 Bands Hyperspectral Image.

A brief summarization of the PCA algorithm

1) Calculating the mean normalization and/or feature normalization

The mean value can be calculated using the following formula u; = i [ x}

then having x; = x;_u;
2) Compute the covariance matrix:X = % > eHEHT
3) Calculating the eigenvector of X matrix
This can be done using the ready MATLAB function (svd) singular value

decomposition as follow

[u,s,v] = svd(Z); u is n*n matrix and it represents the eigenvectors

The dimension reduction into a k-dimensional space can be done by selecting k vector
from u then multiple the original data with these new selected vectors u;, = u(:, 1: k);

PC = x*uy;
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3 STATISTICAL CLASSIFIERS

3.1 Statistical Classifier in General

A brief introduction to statistical classifier will be introduced here as these classifiers
can provide an easy and simple explanation of what a classifier is and on the other
hand these classifiers have many drawbacks when it comes to complicated
classification problems such as hyperspectral images. These methods need to do a pre-
calculation to find different parameters in the original data such as the mean, variance,
etc. These pre-calculations can become problematic in case of dealing with large
number of features and small number of training samples. Here these methods won’t
be deepened instead only a short review for maximum likelihood (ML) and expectation

maximization (EM) [14, 15] are introduced.

3.2 Maximum Likelihood Classifier

This classifier is based on the conditional probability density function and requires a
function for each class which means to classify a data with m classes for example this
method requires m conditional probability density functions; the general form of these

functions is:
9,0 =pxIC),i=1....m. 3.1)

This rule will be applied on each of the classes and the class which gives the highest

value (the maximum) will assign its label to the point x
w = argmax{g.(¥)},i=1..m = X €(, 3.2)

ML [14] is a statistical classifier therefore the solution of this problem is done by
calculation some parameters which are related to probability density function (PDF).
There are many different probability density functions which can be used in ML and

the most commonly used function is Gaussian density function because of its

13



convenient properties and the fact that it fits many process in the nature. The Gaussian

distribution of one-dimensional variable is given by:

1 —(x — w)?
x|C) = ex [ 3.3
Pl J2ma; P 20; 33)
The important of Gaussian distribution is confirmed by the central limit theorem which
states that, if a random observation is made on a large collection a of number of

independent random quantities, the observation will have a Gaussian distribution.

In case of dealing with hyperspectral or multispectral data each variable will be
represented as a vector, N-dimensional vector where N represent the number of
attribute or bands in this experiment the AVRIS used dataset consist of 200 bands. The

vector form of the Gaussian PDF is

r 1 >
p(FIC) = @S] (-3 G-I G-} G4

Where
X1 Uy 011 012 01N
Xy |  [G21 OG22 - - O2n
x=|"m="%=]" : o : 3.5
XN Un Ony1 Opn2 .« OpnN

X, represent the random variable and for each class there is 2 values need to be
calculated the mean and covariance matrix which are noted respectively as fi;, Y,
Having the following training dataset {(Xy,y1), (X1,¥1),.-., (X, Yn)} where X;
represent the training samples, { = 1, ...,n , n is the number of training samples, ¥;
represent the class labels, y; € {1,2,..., m}, m is the number of classes. There are two
variables need to be calculated in this algorithm the mean and covariance matrix for
each class, the following formulations explain how to calculate these two parameters

respectively.

IO
W = ; fo’{leyj =ii=1, ,m} (3.6)

j=1
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n;

1 j— a —_— (-9 T j— . .

—1 Z(xj — 4N — 1) Ax |y =i =1,..,m} 3.7
j=1

1
Where n; is the total number of the training samples of the class i.

3.3 Expectation Maximization

In classifying application specially in remote sensing the training labels are limit and
this limitation adversely affects the classification process with a limited number of
training samples it is hard or even not possible to obtain high complexity degree of
discrimination function which leads to low performance of the classifier, to overcome
this drawback the number of training samples used to obtain the parameter can be
increased by taken advantage of some of the unlabeled samples, this unlabeled samples
will be incorporated with this original training samples to get a better estimation of the
parameters, in the following section expectation maximization (EM) [14]will be
explained and how it can be used to enhance the estimation of the Gaussian density
function. In case of having Z training samples and X unlabeled samples to enhance the
mixture density, i will refers to the number of the class, i = {1, ..., m} where m is the
total number of classes, K is an index for each individual training sample. In case of
training samples, the two indexes will be used i, & to refer to the class and sample index

whereas in the labeled samples only the & index will be used.

m

p(%]6) = z apy(B),i = 1,...m 3.8)

i=1

The expectation maximization equations used for approximating maximum likelihood

parameters estimation of the mixture density are the following

a; N

t (= |Atyot
v aipi (Kl Y - n

o ——n el 7

b1 _ k=1 p(kuBt) k Zk—l ik

‘ sw_ afpiCElit, T
K=t p(xel6Y)

+Tli
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Where /¢ is the mean vector of class i iteration t and also Y. is the covariance matrix
of class i iteration t. all the prior probabilities, mean vectors and covariance matrices
are contained in the parameter ¢. The parameters estimation in Maximum likelihood
are obtained from the training samples and it can be obtained by using different initial
values but more reasonable to start from the training samples as initial values after that
new parameters can be obtained by iterating the above mentioned EM equations,
theoretically using unlabeled samples with the EM equation will always give a better
estimation of the parameters which means a better performance for the classifier but
unfortunately in practical it’s not necessary that unlabeled samples with EM will
improve the accuracy sometimes it might leads to undesirable results due to the
deviation of the data in the real world Therefore, in case of using supervised, semi-
supervised or unsupervised it is a good technique to start with the normal training
samples and after evaluating the performance of the classifier some extra unlabeled
samples can be used to enhance the statistical estimation of the parameter and in case
of unwanted results these unlabeled samples can be abandoned and new samples are

taken into consideration.
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4 NONPARAMETRIC METHODS

4.1 The concept of Nonparametric Methods

All classification algorithms based on statistics have a mutual disadvantages, in these
algorithms the data assumed to have specific distribution which is in most of the case
Gaussian distribution but in real-world data this assumption might be incorrect and in
addition, these classifiers need to calculate some statistical parameter and sometime it
requires to estimate these parameters and this parameter calculating or estimating
become problematic and critical when dealing with data that only have a small number
of training samples such as hyperspectral data. To overcome of this deficiency a lot of
methods were introduced. These complementary methods are used to enhance the
estimation of the parameter like EM, but still these methods sometimes fail to achieve
the required results therefore, a good alternative solution is nonparametric methods
where the main aim of these algorithm is to take full advantage of the available training
samples and extract all the information to constrain a proper discriminative rule, for
this reason these algorithms are highly used and preferred. Another advantage of these
methods that they are more resistant to Hughes effects [3] than parametric methods
due to the stabilities of the classification obtained regardless the dimensionality
changes. One of the most known and used nonparametric algorithm is K Nearest

Neighbor (KNN) [10] and Support Vector Machine (SVM) [9].

4.2 Nearest Neighbor Based Classifier

This algorithm is one of the easiest algorithm in image classification theory and still
have an acceptable accuracy. Nearest neighbor algorithm gives decision for each
sample based on the class of the nearest neighbor. When having many sample as
mentioned in [16] this rule has a probability of error which is less than twice the Bayes
probability of error. As all the classification algorithms nearest neighbor needs a
training set, this training set is used to classify the patterns in the data. In the Nearest
neighbor approach, the algorithm tries to find the similarity between each point of the

testing samples and all the training samples.
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In this approach, we will discuss Nearest neighbor and K- Nearest neighbor.

4.2.1 Nearest Neighbor Algorithm

This algorithm assigns to a testing pattern the label of its nearest training samples or
in other words it assigns the label of the nearest neighbor. Consider having n training

samples as follow:(X;Y;), (X,Y3), ..., (X,,Yy,), Where:

Y; represent the class label of the it" pattern, i*" is the i*" training samples P is the

testing sample. The decision rule can be written as

Y, = argmin{d(P, X;)} 4.1)

4.2.2 K-Nearest Neighbor

KNN has the same concept as the one used in nearest neighbor but instead of finding
only the nearest neighbor here we will find the K nearest neighbor, then the class will
be determined according to the majorities of the K nearest neighbors’ labels. K is real

positive integer chosen by the user.

As K is the only free parameter in this algorithm its value is critical in improving the
overall accuracy. Using KNN is more efficient than using 1-NN for a simple reason in
case of a noisy data the nearest neighbor might belongs to a different class but in case
where more than one of the nearest neighbors is having the same class this means it is

more likely that this testing point belongs to that class.

There are many different similarity measurements which are commonly used with
KNN, for example Euclidean distance or any other similarity function can be used as
Mahalanobis distance. MATLAB provide a ready function for KNN classifiers which
is knnclassify and MATLAB provide us with several distance measurements which
are Euclidean distance, sum of absolute differences, one minus the cosine of the
included angle between points, one minus the sample correlation between points
(treated as sequences of values) and percentage of bits that differ (suitable only for

binary data).

There is still more kind of nearest neighbors’ algorithms which MKNN the modified
K- nearest neighbor [17], the fuzzy KNN [18] and some other algorithm and as far
only KNN will be used in our approach the rest of the algorithms are not going to be

explain here. The following KNN numeric example is to illustrate how KNN algorithm
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woks. Let’s consider having the following training points and the testing point P = (15,

9, ?7) as shown in Figure 4.1.

X, = (4,4,1), X, =(5,51), X; = (6,4,1),
X, = (4,6,1), Xs = (6,6,1), X, = (20,15,2),
X, = (19,14,2), Xg = (21,14,2), Xo = (19,16,2),
X10 = (21,16,2), X1 = (16,3,3), X1, = (19,2,3),
X10 = (21,16,2), X1, = (16,3,3), X1, = (19,2,3),
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Figure 4.1: K-NN Numeric Example.

Classes 1,2,3 are represented by the red diamonds, blue circle and green °x’
respectively where the magenta square represent the testing point. The first number of
each point correspond to the first feature X1 and the second number correspond to the
second feature X2 and the 3™ number is the label. Applying the Euclidean distant rule

on our example

Euclidean distance d(X, P) = /(X[1] — P[1])? + (X[2] — P[2])?

After calculating the Euclidean distance between all the training samples and
P in case of having K=3 the 3 nearest training samples are X3, X;1,X; with
4.4721, 6.0828 and 6.4031 distance respectively, as we can see X;; and X,
are responding to class3 and X, responding to class 2 therefore the final

decision is that P belongs to the class 3.
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4.3 Kernel Methods and Support Vector Machine

4.3.1 Kernel Methods

Using linear discriminant functions is well known and easy to understand and apply,
due to the simplicity of the mathematical equation representing these functions, but in
the real-world applications linear discriminant is not sufficient in most of the cases
since most of the real data are not linearly separable. Instead of applying discriminant
functions directly on the original feature space Kernel methods transform the feature
space into a higher dimensional feature space where applying linear discriminant
function is applicable and this characteristic made the kernel methods widely used in
many different remote sensing application, due to the significant role of the kernels, a
great explanation of the kernels and their application can be found in [19, 20] . Figure
4.2 visualize the way kernel function works. The following sample example can
explain the general concept of kernels methods. Suppose that the following empirical

data need to be classified.(x, ¥1), ..., (Xp, yn) € XxY .

Where X is a set of data and Y is the target or labels of these data Y = {1, —1}, where
n is the index of the sample. Here no more additional assumption will be added to the
domain X, X is just a set of data and in order to study these data we need to find a way
to generalize these data which means in loosely speak we need to be able to classify
any extra point x if it belongs to the class Y = 1 or Y = —1, to do so similarity measure

in X and Y is required, for the former we require the function:
k:XxX - R, (x,x") = k(x,x") 4.2)

One of the similarity functions which can be used in this example is to find the mean

for each class 1 and -1 and then compare the point to these mean values.

Using Kernels allow us to find nonlinear or even sophisticated boundaries. Decision
in the real feature space derived from the linear decision boundary in new kernel
mapped feature space [13]. One of the well know and widely used kernels based
algorithms is Support Vector Machine and it can be used in many different fields, it is
a robust tool when it comes to high dimensional feature space and the overall accuracy

of the SVM is relatively high compared to other algorithms.
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Figure 4.2: a) Linearly Inseparable Original Feature Space b) Mapped Feature space
via @ is Linearly Separable. ¢) Using Kernel Function Makes Discriminant Function

Nonlinear in The Original Space.

4.3.2 Support Vector Machine

The main approach of support vector machine is to find a hyperplane that separate the
data in a way which makes the distance between samples and the hyperplane as big as
possible in other words the Idea of this algorithm is to find the optimized separation
between classes by selecting a decision boundary with the biggest margin from the
other samples. By using geometric margins this distance between the boundaries and
sample can be given as 2/||lw/|| as shown in Figure 4.3 so the generalization of SVM
performance is directly related to the concept of the margin if we want to increase the
generalization we need to increase the margin so it’s proportional relation between
generalization and margin. The detailed mathematical information and explanation
behind this powerful method can be found in [21, 22]. Here a brief explanation about
the mathematic behind the SVM in Linear cases and how we can use the kernel trick

to apply SVM on nonlinear cases.

First, let’s discus the linear separable cases if we want to find the optimal hyperplane

we need to solve the following quadratic problem.
o1
minimize : 5 w2l 4.3)

subject to : y((w.x;) +b) =1 i=12...m
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By using Lagrange formulation, we can convert this optimization problem into

dual problem
m 1 m m
maximize : Z a; — fz Z a;a;y;y;{X,. X;) 4.5)
i=1 i=1i=1
m
subject to : z ayi=0and a; 20,i =1,2,...,m
i=1

A
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Figure 4.3: SVM Linear Separation case.

The discriminant function which is used to find the optimal plane (with the largest

margin) can be written as follows:

F@ = ) a5 0) +b 4.6)
iEs
We still have one more variables to calculate which are the Lagrange multipliers «;s,

and those can be estimated using (QP) quadratic programming.

The S in the discriminant function above is equal to the nonzero Lagrange multipliers
in the training samples. We have two kinds of samples; one of them effects the decision
boundary and the other doesn’t, we denote the first one as significant training samples

and assign them to a nonzero Lagrange multiplier and assign the others to a zero
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Lagrange multiplayer. We use the term support vector to donate these samples

(nonzero «;).

A new concept was generalized to find optimal solution for using linear SVM in
remote sensing classification where most of the cases are linearly non-separable. The
new concept depends on finding an optimized hyperplane using the following cost

function

1 B m
Y@, OF® =5 Il +c ) & )
i=1

This cost function used to find the maximization of the margin and in the same time

try to keep minimizing the classification error.

We have two variables in this cost function; the first one ¢; called the slack variable
and the second one is C; this variable is used to control the error correction penalty.
Its proportional relation between the value of C and the penalty assigned to each
misclassification so if we want to increase the penalty we can increase the value of C

and vice versa, back to or cost function the minimization has the following constrains:
yiw.x)+b)=>21-¢,i=12,...,m 4.8)
&§=20,i=12,...,m 4.9

As itis mentioned before some of the training samples are more important than
the others and called support vectors in case of non-separable problem we
have two kind of support vectors the first one is the normal support vectors
which lie on the margin of the hyperplane therefore they are called margin
support vectors the second kind is called non-margin support vectors and

these vectors lie on the wrong side of the margin.

To overcome the linearity of SVM in the original feature space we can use
kernels. Which can turn the support vector machine into a nonlinear classifier.
By using kernel methods, we can use the new transformed feature space
(0(x).0(%))) instead of the inner product (x;.X;). and the advantage of using
kernel that satisfied the Mercel’s theorem [23] that we don’t have to calculate

the mapping function instead we can directly calculate the inner product in the
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transform space as by using kernels we simplify the solution of the dual

problem. The new modified formulations are written as follow:

m m m
maximize : Z a;—1/2 Z Z a;;y:yi(%. %) (4.10)
i=1 i=1j=1
m
subject to : Zaiyi =0and0<a; <C, i=12,...m
i=1

By replacing the inner product in the mapping space with kernel function the

discriminant function written as

f(x) = Z a;yiK(x. %) +b 4.11)
i€s
There are many types of kernel function and each type effect the classification,
therefore it is important to select the appropriate kernel function for each classification

problem. One of the widely-used kernel functions is Gaussian radial basis function:
K (3. %) = exp(—yll%, — xlI*) (4.12)

We can control the width of the Gaussian kernel by using the parameter y which is
inversely proportional to the width. Also, polynomial functions can be used as kernels

below:
K. x) =[x .x+1]? (4.13)

where P is the order of the polynomial function.

SVM is a binary classification algorithm. There are some techniques that can be used
to apply SVM on multi classes. The widely used techniques are called One-Against-
One (OAO) and One-Against-All (OAA). In our experiments, OAA technique is used

in multi-class SVM classification to obtain high classification accuracies.

In case of using linear SVM only complexity (C)parameter is needed to be chosen. and
for using RBF-SVM parameters C and y are chosen. In the experiments grid search

method can be used to select proper parameters for SVM classifiers.
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5 SPATIAL CLASSIFICATION:

5.1 Introduction to Spatial Classification

The results obtained from spectral classification can be improved by applying
complementing spatial algorithms on the results obtained from spectral classifier,
therefore the final decision for each pixel can be derived from the spectral features of
the pixel and in addition to the relation between this pixel and its neighboring pixels.
Some of the algorithms used in spatial classification are morphological filters [24],
morphological leveling [25]and Markov random fields (MRF) [26]These methods has
shown the ability to reach high classification accuracy. However, all these algorithms
have a common concept, which is all of them take a fixed-window-based of the
neighboring pixel into consideration, which leads to scale selection problems and if

the image contain small or complex structure this problem becomes more severe.

Alternative approach to the abovementioned methods is image segmentation [27, 28],
to obtain high performance a good segmentation of the image is required. This

segmentation gives information about each pixel and its neighboring pixels.

In previous study, image segmentation for multispectral image has been thoroughly
discussed, where the spectral similarity was mostly used to distinguish between
different area. One of the powerful software which has been used in image
segmentation is eCognition, which used bottom-up region margining [29]. Bottom-up
methods initial starts with the smallest element of the picture, it starts by considering
each pixel as a separate region and the next step is to connect these regions according
to some criterion in the shape and spectral of these regions. Another hierarchical image
segmentation approach was introduced by Tilton [30], in which both region growing
and spectral clustering where alternately used. This algorithm has some desired
advantages, on the other hand it has main drawback, to achieve a good segmentation
thresholds or homogeneity criterion must be chosen accurately. Segmentation based
on mathematical morphology were introduced in [31, 32, 25], which mostly used
granulometries or watershed transformation. Since there is no natural way for

multivariate pixels total ordering, applying morphological operators is a bit
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complicated. Works in [33, 34] provide extensive literature on mathematical
morphology for multispectral and color images. Also, some extensive literature about

watershed segmentation can be found in [35, 36, 37]

These approaches are not applicable for hyperspectral images, due to the following

reasons.

a) The structure of hyperspectral images which consists of hundreds of bands
makes it very hard to apply multivariate data total ordering schemes, for
examples bit mixing paradigm [33]can’t be applied in hyperspectral images,
because it will result a numerous number of value for each pixel.

b) Perceptional color spaces and polar-based representation were successfully
used in color images morphological analysis [35, 38] Unfortunately, these

approaches are not suitable for hyperspectral images.

Spectral-spatial classification of multispectral images is investigated in some studies.
Linden et al. [39] use the mean vector as the feature for each region. The mean vector
for each region are calculated after applying segmentation based on region growing,
as a result each region forms the segmentation has its own mean vector, then a spectral
classifier such as SVM is applied on the mean vectors for each region. However, the
results obtained using these algorithms weren’t better than results obtained by applying
the spectral classification only. Li and Xiao [40]also introduced spatial spectral
classification on 4 bands image by using both watershed segmentation and maximum
likelihood for the spectral part the two algorithms are applied separately. A pixel wise
approach is used to make decision for the regions, if a region contains more than 50%
of its pixel with the same class the whole pixels in this region will be assigned to this
class. The results obtain here were ultimately improved compared to the results

obtained using only maximum likelihood.

Spatial information is also used in classification problems by Widayati et al. [41]. 4-
band IKONOS image was used in the experiments. Merge using moments algorithms
are first used to obtain the segmentation map. Then two different methods to integrate
the spatial and spectral classifier are used. In the first approach, the mean for each
region is calculated and then these regions are classified according to their mean vector

as feature. In the second approach, a spectra classifier (Maximum Likelihood) are
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applied directly on the image and result are combined with segmentation results by

applying the majority voting therefore each region has the class of its majority class.

In this thesis watershed and random walker (RW) [42] algorithms on hyperspectral
images are employed for segmentation. And later Extended random walker (ERW)
[12] algorithm which is adapted version of random walker to integrate segmentation
and spectral classification is employed for hyperspectral data classification. EWR was
applied on hyperspectral data and gave good results [43] and later different kind of

learning methods integrated to enhance the obtained result [44]

5.2 Watershed:

Watershed was introduced by Beucher and Lantuejoul [11], as a powerful
mathematical morphology technique, this powerful method is used for image

segmentation.

The watershed deals with topographic images which is a 2D image and one band the
value of each pixel represents the elevation of that pixel. Watershed creates lines which
divide the image into catchment basins. Figure.5.1 illustrates how the image is divided,
each of these basins take one of the minimum in the image. Watershed cannot be
applied directly on the image instead first a gradient of the image is calculated and
later the watershed is applied on this gradient. The gradient function describes the
changes between neighbor pixels if the pixels belong to same region, they have similar
values and therefore, the gradient function has minima value, otherwise the gradient
function has maxima value. The watershed segmentation can give a meaningful result

if the gradient function gave a good description to the border between different areas.

Watershed Line

Catchment Basins

b Grey level
= elevation

Spatial
dimension

Minima

Spatial dimension

Figure 5.1: Topographic representation of a one band image.
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Many works in the literature focused on watershed algorithm e.g. Vencent and Soille

in [45] by using the flooding stimulations to apply efficient watershed transformation.

Watershed transformation on an image divides the image into small regions, each
region is separated from the other regions via watershed pixels (WHED) and each
region consists of pixels that all connected to a local minimum. Figure. 5.2 illustrates
watershed transformation in one dimension. In Figure. 5.2, there are 2 local maximum
points that are the watershed pixels (WHED) and they divide the 1D space into 3

regions each of them is connected to one of the 3 local minimum points.

region 1 region 2 region 3

Figure 5.2: Example of Watershed Transformation in One Dimension.

As mentioned before watershed algorithm is applied on gradient function, but
practically applying watershed directly on the result of gradient function will lead to
over segmentation, over segmentation means that the images is divided into very small
regions where each region contain only a local minimum without any of its neighbor.
There are many techniques to cope the over segmentation, using marker is one of the
good methods more details about using marker can be found in [45], also filtering the
image or the gradient function can be a helpful as well. Back to hyperspectral images,
these images contains hundreds of bands and watershed is applied on 2-Dimensional
one band images therefore some techniques can be used to enable this algorithm on
hyperspectral images in the following section these techniques will be discussed in

detail.
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5.2.1 Watershed Segmentation for Hyperspectral Images:

In the paper [46] watershed transformation was applied on B-band image to get a one-
band segmentation map. Let us consider that the image is set of n pixel vectors X =
{xj € RB,j =1,2,..,n} and each image band can be donated as X;, A = 1,2, ..., B.

Figure 5.3 illustrate the different ways watershed can be calculated.

Before applying gradient function directly on the original image some feature
extraction techniques can be used. The aim of this step is to obtain one band image or
multi-band image where most of the spatial information are available to distinguish
between different regions and one of the most popular feature extraction techniques is
PCA [13], alternative methods are independent component analysis (ICA) and
maximum noisy fraction (MNF) [47].

Hyperspectral image
(B bands)

et etk Feature extraction

I{q— —————— === Combine gradients

‘ - ———— Bt Combine regions

Segmentation map
(1 band)

Figure 5.3: Flow Chart Which Shows Strategies of Applying Watershed to
Hyperspectral Image.

In case we could obtain one-band image which contains enough spatial information to
distinguish between different regions, applying watershed would become an easy
straightforward task. A basic morphological gradient can be applied directly on this
one-band image the gradient is called Beucher gradient, this gradient basically
calculates the difference between the dilation and erosion using the following

equitation:
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pe(Y) = 6p(Y) —eg(Y) 5.1

In most of the cases obtaining one-band image which preserve most of the spatial
information is a hard task and most of the time we need to apply gradient function on
a multiband image, there are different ways to apply gradient function on these images

these ways can be categorized as the following:

A) To compute a vectoral gradient;
B) To compute a multidimensional gradient;

C) To compute watershed segmentation maps posteriori.

5.2.1.1 Computation of a Vectoral Gradient

Instead of calculating the distance between 2 pixels in the vectoral gradient the
distance between to pixels-vectors is calculated and produce a one-band gradient.
Many methods were proposed to calculate the metric based gradient in hyperspectral
images. To explain these methods let’s consider the vector pixel X, and ¥ =
[X 1,X§, ..., Xg] are the neighboring vector pixels for X,, and e is the number of
neighbor vector pixels which can be 4 or 8. The following equation shows how the
gradient is calculated according to the difference between the supremum and infimum

distances between X, and its neighbors:

V%Z(Xp) = Supiew{d(xp'le;)} - infjell){d(xp' Xz];)} (5.2)

Different distance measurements can be used to calculate the distances e.g. Euclidean,

Mahalanobis and chi-squared distance.

Robust color morphological gradient (RCMG) is another vectoral gradient which has
been developed by Evans and Liu, and later in [48] the ability to apply RCGM on

hyperspectral images are discussed.

5.2.1.2 Multidimensional Gradient Method

Instead of trying to transform our B-band image into a one-band image, the gradient
function can be applied on each band from the B-band image by considering each band
as a separate image. For B-band image B gradient function can be applied and thus we
can get B gradient maps p,(X;), 4 = 1,2, ..., B.These gradient maps can be combined

in some linear or nonlinear ways, a sum of the weight function can be used as an
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example of the linear operators. Let’s donate w, as the weight corresponding to the

band A, where 1 = 1,2, ..., B and the weight function can be given as

B
Vi= ) 01pe(Xa), 53)
A=1

If some bands contain more informative spatial information the weights functions
correspond to these bands can be modified to allow these band to have a higher
contribution in the final gradient map. Median operator and supremum are examples

of nonlinear operators.

5.2.1.3 Combination of Watershed Segmentation Maps:

In this approach, the gradient of each band is calculated independently from the other
bands and instead of combining these gradient maps together the watershed
transformation is applied on each band. Thus, we will obtain B band segmentation
maps and these segmentation maps can be combined to obtain the final segmentation

map.

One of the ways to obtain final segmentation map with relevant edges from the B
segmentation maps that we have is to add these maps together, each of the
segmentation maps is a binary map where the ones represent the edges and zeros
represent the segmented region. Let W, be the watershed map for the band A the

following equation shows how to sum the watershed maps.

B
W = Z A (5.4)
=1

To improve the final segmentation W a thresholding can be applied on the image as a
result of summing binary maps, some points have the value of zero and this means that
these points are not considered as a watershed line in any of the maps, on the other
hand some point will have values vary from 1 to B. If the point has high value that
means this point is a watershed line in many bands therefore, it can be considered as
reliable waterline. One important point should be taken into consideration in this
method we lose the information about the regions because adding watershed maps
together would change the shape of the obtained region and these new obtained regions
are needed to be checked and further closing and region labeling are required.
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5.2.2 Using Segmentation in Classification Scheme

The improvement in the classification result is done by integrating the watershed
segmentation result with the result obtain from the spectral classifier; in this section, a
spectral-spatial scheme is introduced, this scheme is used to enable spectral-spatial

classification on hyperspectral images using watershed segmentation.

Figure 5.4 shows a general flow chart of how this combined segmentation
classification method can be applied. In the first step B-band image represent the
hyperspectral image is subject two methods parallelly, the first is pixel-wise
classification in our case is done by SVM classifier, the second is segmentation done
by watershed and this segmentation can be applied by any of the 3 earlier mentioned
technique. This result of the segmentation maps where each pixel has the value of the
region it belongs to or the pixel is a watershed pixel and has one value and this value
is different from all the other regions. In case of applying watershed in MATLAB the
final map will contain integer values where the zeros represent the watershed line and

the rest are the indexes of the separated regions.

Hyperspectral image

to the neighboring T
regions

— (B bands)
Segmentation i i Pixel-wise
(bygwatershed} "i' No WHEDs i_ ClE(IES;ﬁSC\?&[;n
L | Spectral-spatial ! !
‘ I classification i !
i (by majority vote) | i
Watershed pixels =>| ! !
-
|
|

|
» With WHEDs [1-==-=-
i

Figure 5.4: Flow Chart of The Proposed Segmentation and Classification Scheme.

There are 2 different ways to combine the spectral and spatial classification the first
one is called no-WHEDs, in this method each region from watershed segmentation
will have the label of the majority labels obtained from the spectral classification for
this region and WHEDs will have their labels reserved. The additional part in with-
WHEDs method is checking the labels of WHEDs and assigning each WHED to its

nearest pixel,
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5.3 Random Walker:

Random walker is a semi-automated algorithm used in image segmentation. In this
approach, the image is treated as a graph made of vertices and edges. The edges
assigned to a real weighted value represent the likelihood that a random walker
standing on the first side of the edge will cross to the next side of the edge. To make it
more convenient we can consider our graph as a network each intersection (vertices)
represent a pixel form the original image and the lines connecting the intersections are
the edges. As a semi-automated algorithm, the user must assign the points as reference
points these points are called seeds. The main idea of the random walks is to calculate
the probabilities for all points, that a random walker starting from these points will
first reach a seed with a specified label. It has been proved in [49] that solving this
probabilities issue is equal to the solution of Dirichlet problem [50] and the boundaries
are at the location of the seeds to calculate the probability to reach the first seeds (each
kind of seeds represent a class) we set these seeds to unity and the rest are to zero.
There is a deep connection between the solution of discrete Dirichlet problem and the
electrical potential in any circuits where the nodes represent the pixels and the resistor
represent the inverse of weights and the seeds are the electrical sources. From this
point on circuits theory is used to explain the random walker algorithm. Figure 5.5
illustrates how the circuit theory is applied to solve the Dirichlet problem of random
walks. Assuming we have an image of 4 by 4 pixels with 3 different classes and 3
seeds. In 1.1 the image is represented as a graph, L1, L2, L3 are the seeds for class 1,
class 2, class 3, respectively. In 1.2 the seeds are replaced with electrical sources and
the edges with resistors which are equal to the inverse of weights. Next step is to
calculate the electrical potential three times, one for each class. To do that required
class seed is set to be the electrical source and make the other seeds as ground and after
doing this process for all classes, each node has 3 potential values each represent the
probability that a random walker starting form a node v; will first reach this seed.

Finally label of the maximum of the probabilities is assigned to the node v;.

5.3.1 Exposition of the Algorithms:

In this section, the aspects of the algorithm starting from creating the weighted graph

to establishing and solving the system equations are described.
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We start with the graph [51]as the data was reassembled into a graph and all the
procedure are directly applied on this graph. As mentioned earlier a graph is consist of
pairs of vertices (nodes, V) and edges (E) and the graph is noted as G=(V,E), v €
Vande € E €V X V. An edge which is denoted as e;;means it is spanning the

vertices v;v;. There are two kinds of graph that are weighted and unweighted graph.

(a) Seed points with segmentation (b} Probability that a random walker starting
from each node first reaches seed Ly

(c) Probability that a random walker starting (d) Probability that a random walker starting
fIUIU. CﬂC]I llﬂdc ﬁl‘sl I'Cufhﬂb SE‘QL{ L2 frﬂrll (’ﬂCh nO[‘IL‘ ﬁrﬁt 1‘(_‘.8(‘1[@8 H(?E‘(l Lu

Figure 5.5: illustrates circuit theory to solve the Dirichlet problem of random walks.

In this approach, we are only dealing with weighted graph. Therefore each edge, e;;
have value w(e;;) which is called weight. The degree of vertices can be defined as

follows:

34



d; = Yw(e;j) (5.5)

which can be said as the degree of each vertices is the sum of the weights for all edges
connected to this vertex. To make the weight as bias affecting the direction or steps of

a random walkers w(e;;) > 0.

Edge weight is a function that represents the relation between pixels of an image and
the graph biases. The value of the weight is related to the changes in the image
intensities. The idea of using weighted graph in image analysis is not a new concept
and many ready weight functions can be found in the literature [52, 42]The most

common used weight is in the following Gaussian weight.
wi; = exp(—B(g: — 9;)%) (5.6

where g; and g; are pixel intensities for neighbor pixels i and j, B is a free parameter

of random walker algorithm. In this thesis, the Gaussian weighting function is used in

random walker algorithm.

5.3.2 Discrete Dirichlet Problem:

Discrete Dirichlet problem can be considered as a complicated problem therefore only
the concerned part of this problem is explained and for further details of Dirichlet
problem can be found in [53],In [54]a convenient solution to our concerned part are

explained. The following part is a review of this solution.

Discrete Laplacian matrix is defined as

dy, ifi=j
Ly, = —w;; ,if v; and v; are adjacent nodes (5.7)
o , otherwise

L is a n by n square matrix where n is the total number of pixels (vertices) in an image
and v;. and v; are row and column vertices (indexes) of the matrix, respectively.

Discrete Laplacian matrix can be arranged according to the labels of each vertices as

follows:
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L= [g”; Z ] (5.8)

In this arrangement, the first group is for labeled elements which contains the
seed/marked vertices and the second group for the rest of the elements for unmarked

vertices. V;,and V,, denote marked and unmarked vertices respectively.

Itis noted that V,, NV, = @ and V,, UV, =V .

Define x; as the probabilities that each point V; belongs to each of the labels s. For
instance, 4 class case x; is the probabilities for V; which is 4 byl vector that each row
of it represent the probability of V; belongs to one of the classes. Define the new
function Q(v;) = s,V v; € V,, where s € Z,0 < s < K. Where K is the total number
of the classes, Then the marked vector for each label can be defined as follows:

s _ {1 if Q) =s

7 =10 if Qvy) # 5 )

The solution of combinatorial Dirichlet problem can be given from [54] as:
L,X = —Bm* (5.10)

Equation (5.8) is a symmetric sparse positive-definite system of linear
equitation, |v;|, 2| E| are the number of equation and the number of nonzero elements,
respectively. As mentioned before the graph is a connected graph and for a connected
graph, L is nonsingular [55]and therefore the solution to our system is granted to be

exist and unique.the following system is used to obtain the potentials for all labels,
L,X =—-BM (5.11)

Each column of M represents m®and each column of X represent x°, if K represent

the number of labels K-1 number of equations are to be solved.

5.3.3 Theoretical Properties of the Algorithm

The properties of the algorithm have already been mentioned in the introduction part
and in this section some propositions which have some practical consequences are

given. First if interpolation is required to be achieved between the solution of an image
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and the neutral solution, and this can be easily solved by adding constant to the weights
of the image this situation usually happens when the image is poor. Second in case of
independent random noisy at the level of the pixel the ideal weighting function should
produce at the weight level multiplicative noise, as a result the expected potentials
values in the presence of noisy should be equal to the expected potentials without
noisy. Third in case of pure noisy or very close to pure noisy the segmentation obtained
with Random Walker is the neutral segmentation. The following two properties are
discrete analogues of properties of continuous harmonic functions [50] and they can
be found by viewing the solution to the discrete Laplace above mentioned equitation
with the boundary conditions, by taking into consideration that each unlabeled point

should satisfy the following condition

i
X == Z w(ei)x, (5.12)

l ejjeE
where xjs is a vertex and can be unlabeled pixel or seed.

1. Maximum/ minimum principle which states V i, s the potential of x; € [0,1].
2. The mean value theorem: The potential of each unlabeled node assumes the

weighted average of its neighboring nodes.

Proposition 1: After the final segmentation, each node assigned to the label S
according to the above-mentioned rule is connected through a pass of nodes to at least
one of the label S seeds and the points in the path are also assigned to label S. another
way to describe this proposition that the connected component through the final
segmentation should contain at least one seed and all these connected points should

have the label of that seed.

Proof: Any connected subset P € 1, assigned to the labels must be at least connected

to one of the seeds with the label S.

A block of matrix taken from the unlabeled points satisfactory equations can be written

as:
Lpx5 = —R,x3, (5.13)

Where x¢ = [x;, x;], and the matrix L as following:
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L, R
L= [ p p] (5.14)

Ry Lp
P is the complement of P in V, in case {P=wv;}, L, =d; and — R,x; =

ZeijeE W(eij)x"g!

If x5 > x)¥ f # sthen x§ —x} > 0and L;'R,(x§ > x}) > 0 then by definition
of L the entries of R,, are non-positive, L;lR has nonnegative entries due to the fact

the L is a M-Matrix and any diagonal sub-matrix form M-matrix is M-Matrix and the

inverse of M-matrix have nonnegative entries therefore, some x; € P are greater than
xif € P and nodes not connected to P, are represented by 0 in R,, therefore to satisfy
the above inequality some nodes in p must be connected to P.

The rest 4 proposition have a common lemma this lemma is first mentioned (this
lemma is referred to as common lemma) and later the rest of the propositions.
Common Lemma: for the following 3 random variables X, A and B such that X =

g JE[x] =0if E[A] = 0and B > 0. by the Holder inequality it is proved that

E[A] = E[XB] < E[XIE[B]. And E[X]=E[4] < E[AIE[3]. Therefore, £l <
B B E[b]

E[X] < E[A]E[%].

There is a relation between the potential solved in L,x° = —BM? and weight tree

structure of the graph

For a node v; the potential in the presence of a unit voltage source is given in [6, 26].

ZTTETTI: l_[eijeTT W(el])
= (5.15)
ZTTETTG HeijeTT W(elj)

xi

In graph theory, a 2-Tree is defined as a tree with one edge removed. TT; is a set of 2-
tree represent in the graph where through this 2-Tree a node is connected to a seed
(labeled node), TT; is the set of all possible 2 trees in the graph. TT; € TT; V V;,
(5.15) can be restated as the sum over the product of weights over all 2-Trees where
the node v; is connected to a seed and divided over the sum over all the 2-Tree in the

graph the results is the potential obtained from solving (5.15) and it’s neither practical

38



nor helpful to use the equation (5.11) to solve (5.15) due to the enormous number of
2-Tree in any image graph but it’s helpful to prove some of the behavior of x; with
the usage of different weight functions. In the neutral case the potentials can be given

as:

s ITTy

o =) (5.16)

Now the 4 other propositions will be proved regarding x°in different conditions. It is
noted before that all the weights can be multiplied by a constant i.e. k and it wouldn’t
affect the result. It can be proved easily from (8.10) that both the numerator and

dominator are divided on the same number K.

Proposition 2. In case of identical random distributed positive weights (w;; > 0) the

segmentation results are equal to the neutral segmentation results.

Proof. This is prove as mentioned earlier using the common lemma. New variable will
be donated n7, TT, where n; the neutral potential that the node v; belongs to the class

S and TT, is the complement of TT; in TT; which means TT, U TT; = TTy and TT, N

TT; = @. For brevity Sy, will be used to donate Y.rrerr, ]_[eijeTT w(e;;)).

Srr, |TT;
Srr, + Srr,  |TTi| +|TT|

E[lx; —nj]=E (5.17)

Since each of 2-Tree have the same number of edges which is (n-2) and all the weights

in this case are identical distrusted the sum of |TT;| are contained in Syr,. Let u donate

the mean of new variable distribution is this case the numerator of (8.12) can be written

E[STTi(lTTil +I|TT.|) — |TTiI(STTL- + STTC)] =
pITTATT;| + |TT.) = |TT; | (uITT;| + ulTT;|) = 0

(5.18)

And due to the fact that all the weights are positive the dominator is strictly positive.
The condition of the common lemma can be satisfied if the left-hand side equal to zero

and subsequently E[x]] = n}.

Proposition 3. E[x; ] equals the potential obtain by setting the weights to be equal the
corresponding means, in case the weights were uncorrelated (not necessary

independent)
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Proposition 4.the same E[x;] can be obtained by replacing the weight w;;with
constants K;; (not necessary that these constants are equal) as long as w;; = K;;y;; and

Yyij are identically distributed random variables where y;; > 0

Proposition 5. If w;; = k;; + 1, k;; are not necessarily equal and r is equal constant,

lim x} =n}

Tr—>00

5.3.4 Algorithm Summary:
Random walker can be applied by using the following steps:

1. Define the set of seeds (labeled nodes), if the training samples are available
those can be used as seeds with K classes or the seeds should be chosen
manually

2. Calculate the weights using the image intensity

3. Solve (8.4) for each label expect the final one which can be calculated from the
following formulation xif =1—Ys<rx; or potential for all classes can be

solved directly from (8.5)

The final segmentation can be obtained by assigning the class with the highest
potentials to the nodes or an alternative methods K-dimensional clustering technique

can be applied on the potential vectors on each node
A Segmentation Example using Random Walker

The following example Figure 5.6 explains how the random walker algorithm works.
In this example, the algorithm is used to apply segmentation on small synthetic data
made up 9 pixels and 2 classes represented by 2 seeds (Seed 1 and seed 2). Other 7
pixels in the synthetic data are free pixels and they are needed to be assigned to one of
the 2 groups.The network between the pixels is to help in clarifying the idea of the
graph

The numeric solution of this problem consist of following steps:

1) Finding the weight between the adjacent points.
2) Writing the linear equation system.

3) Finding the solution of the linear equation system according to each seed.
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Figure 5.6: Random walker Numeric Segmentation Example.

The weight is a function that describe the gradient in intensities between adjacent seeds
here it will be referred to the weight between pixel 1 and pixel 2 as wy,, these weights
can be calculated using the Gaussian form (8.1) as follows:w;; = exp(—f(l; —
I;)? where I; and I; are intensities of pixels 1 and 2, respectively. As it can be noticed
from this equation if /; and I, have close intensity values then wj, is almost one. If
the values where close enough to each other these values show the probabilities that a
random walker standing at pixel number i will move toward pixel number j having a
bigger difference in intensity will reduce the probabilities that a random walker will
move to this direction and this is what is called a biased graph. In this example, some
random values are given to the weight function and this value must vary between 0

and 1.

A linear equation is written to each unlabeled pixel but here only the equation for pixel
number 1 is explained. U is used as a function for all unlabeled pixels and L is the
function for labeled pixels, then to obtain the equation for the first pixel U(p;) all the
labeled and unlabeled pixels connected to p; must be written with their weight

functions.

U(p1) = wizL(p2) + wiaU(py)

By applying the same rules on all the other unlabeled pixels:

U(p1) = wizL(p2) + wiaU(py)
U(p3) = wa3L(py) + wseU(pe)
41



U(ps) = wiaU(p1) + wasU(ps) + wa,U(p7)
U(ps) = wasU(ps) + wseU(ps) + wasL(p2) + wsgU(ps)
U(ps) = WeoL(po) + wssU(ps) + w3sU(p3)
U(p7) = wa7U(ps) + w7sU(ps)

U(ps) = w7gU(p7) + weoL(py) + wsgU(ps)

By moving all the values of U to the left side of the equality and dividing equations by

the weight of the seeds, these equations can be rewritten as follows:

W1a

—U@) ~ 2 UP)=L@,)

W12

1 W3e
—U(p3) ——U(ps) = L(p2)
Wos P3 Wys Pe b2

U(ps) — wiaU(p1) — wyusU(ps) — wyrU(p;) =0

L Ums) = 25 0 = 25 U ) = 2 U p) = L(py)
Wys Wys Wysg Wysg

1 Wse W3

—U(ps) ——U(ps) ———U(p3) = L(po)

Weo Ps Weo Ps Weo p3 Do
U(p;) — wayU(ps) —wygU(pg) =0

1 W7sg Wsg
—U(pg) ———U(p;) ———U(ps) = L(po)
Wes Ps Wes D7 Weo Ps P9

To solve these linear equations L functions for seed 1 and seed 2 are replaced with a
value to get 7 variables and 7 equations which make it possible to be solved. First the
probabilities of reaching the seed 1 are solved. To do that 1 is substituted in L(p,) and
0 is substituted in L(py). For solving probabilities of reaching the seed 2, 1 is
substituted in L(py) and 0 is substituted in L(p,). By this concept the discrete Dirichlet

problem are wused to solve the equations system as follow:

L 2™ 5 00 0
W1 Wiz
1 W36
0O — 0 0 —7— 0 0 U 1 -
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A solution of the matrix equation above is 7 by 2 matrix and the first and second
columns of the matrix are the probabilities that each unlabeled pixel belong to the
group of seed 1 and seed 2 respectively. Each unlabeled pixel is assigned a label of

(column index) the highest probabilities.

5.4 Extended Random Walker:

The Random Walker segmentation [42] has shown a great performance in many
different fields including medical images and it has desirable theoretical properties.
Random Walker is generally made as a semi-automated algorithm or in other words
an interactive segmentation tool, that the algorithm cannot proceeds without the
interaction of the user. The user must select a few number of pixels form the processed
image and assigns them to specific labels then the algorithm calculates as mentioned
above the probabilities that a random walker start forms each pixel will first reach one
of the preselected pixels. Random walker algorithm has many desirable properties

which are outlined in [42].

1. The solution of the probabilities is unique

2. The expected value of the probabilities for an image of pure noise, given by
identically distributed (not necessarily independent) random variables, is equal
to those obtained in uniform image

3. The expected value of the probabilities in the presence of random, uncorrelated
weights is equal to the probabilities obtained by using weights equal to the

mean of each random variable.

Despite these powerful and desirable properties. Random walker algorithm has some

disadvantages as mentioned in [43].

1. There must be a seed in each segment.
2. The absolute intensities are not well employed instead only the intensity
gradients were used.

3. The algorithm can proceed without the user intervene to select seeds.

These 3 disadvantages are considered as desirable properties in some segmentation
tasks such as ignoring the absolute intensity can be helpful in some case where

employing only the gradients can increase the robustness to quantization and decrease
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the classification error in the same homogenous area in addition to prevent noisy
caused by inversed and shifted intensity. However, it can become really impractical
when it comes to images containing many disconnected pieces. In such case the user
has to select seeds inside each disconnected piece and this is one of the main incentives
to come up with the new Extended Random Walker Algorithm where instead of using
user defined seeds for each disconnected area, the intensity model of an image can be
obtained and this model is used instead of the user input. This intensity model can be
calculated in different ways also can be calculated priori. In the explanation of the
algorithm in [43] for simplicity and clarity they used image with only one channel and
user seeds but this concept only to make it easier to explain but the algorithm can be

applied in multi-channels and without user intervene as it’s applied in this thesis.

The mixing between the spatial information and statistical information is not a quite
new approach in the computer vision literature. And this is usually performed by
adding new energy term to the total energy and applying minimization on the new
energy function [56]. Some spatial algorithms are considered as conservative
algorithm where it is not easy to mix between these algorithms and the density
estimation priors such as watershed transformation [46]. The new achievement in
Extended Random Walker algorithm is the ability of employing image priors to the
affective old spatial algorithm Random Walker to have a new algorithm which can

classify the disconnected area without the need of the user intervene.

5.4.1 Development of the Algorithm:

As the Random Walker algorithm, Extended Random Walker is also formulated on a
weighted graph, and all the definition of the graph such as edges, degree and Laplacian
matrix are valid for the Extended Random Walker algorithm therefore no need to

mention these definitions in this section again.

5.4.2 Label Priors:

The probability density A7 represent that the density at the node, v; belongs to the
intensity distribution of the classes g°, and these probability densities are considered
as nodewise priors, if we want to calculate the probability x; for the node v; belongs
to g°, and after assuming that the likely of all the nodes are equal then x; can be

written as follows:
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A

X =% IE (5.19)
q=1"q
by using vector notation this equation. can be written as follows:
k
Z A x5 =8 (5.20)
q=1

Note A® is a diagonal matrix where the values of A* on the diagonal and the rest of the

elements are zero.

The following formulation can be used to calculate the minimum energy distribution

for our new aspatial space.

Egspatiar (%) = z x1TATX9 + (x° — DTAS(x° — 1) (5.21)

q=1,q#s

A total energy function can be written by combining the spatial energy function and

the aspatial energy function by using the free parameter y.
E7S"0tal = E_gpatial + ijspatial (5-22)

If we considered the case where we don’t have any seeds, which means all the nodes
are label free (all x; are free nodes) we can calculate x* which satisfy the minimum of

the total energy function as:

k
(L + yz AT> X5 = yAS (5.23)
r=1

The Laplacian matrix in Random Walker is a singular matrix and therefore it cannot
be solved without having the user seeds but in the case adding the diagonal matrix
which is strictly positive definite to the original Laplacian matrix will guarantees that
the new combined matrix is positive definite. In this way, we can circumvent the semi-
automated Random Walker algorithm into an automated algorithm, however the user

seeds (if desired) can be used in this algorithm by solving the following system:
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k
<Lu+yZAZ)X§=y)li—st (5.24)
r=1

If we compare the new lattice we obtained with the one obtained from the Random
Walker we can easily see that the main different represented in having extra nodes.
These are the label nodes therefore there are extra one node for each label in the image

and these nodes are referred as floating nodes.

Each floating node is connected to all the other nodes and instead of using the weight
function on the new edges between the floating nodes and the normal nodes as it’s
mentioned in [12] the values of yA; are used. The weight of each new edge is equal

to the relevant yA;. The new lattice is depicted in Figure 5.7.

By making comparison between random walker and extended random walker we can
figure out that they are the same with Bf® = A% and L,, is simply the Laplacian matrix
of the new lattice with the addition to the diagonal matrix (y Y.X_; A7, ) .We obtain the
same results in case we apply the extended random walker with the incorporation of
priors or if we directly applied the Random walker on augmented graph. It’s more
convenient to consider the extended random walker as augmented graph since we can
treat it in the same frame work as the random walks and all the proofs given in [42]
can be considered applicable on the extended version therefore the robustness and the
behavior of the Random Walker also apply in the extended version (when the priors

are applied) [12].

Figure 5.7: The Use of Intensity Priors is Equivalent to Using K Labeled Floating
Node That Correspond to Each Label and Connected to Each Node.
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5.4.3 Algorithm Details:

This algorithm can be described in the following steps:

1.

A prior model describes the label intensities in some cases it can be available
for certain images or if not, it can be obtained with a user interaction via
estimation, and from this prior model the probabilities A; describes that each
node v; belongs the class S. This is the general first step in case of using SVM
and these probabilities can be obtained directly from the classification maps.
The second step is to apply random walker algorithm on the image without
calculating the segmentation which means only the graph from the original
image is created and the weights are calculated

Solving equation. (5.24) in case of very large image can be difficult. Checking
the array-size limit in case of using MATLAB, Octave etc. can be useful. This
calculation needs to be done to each class g° and we can use the unity sum
condition to calculate only k-1 equations and the last one can be obtained as
follow x¥ =1 — Y, x5

Each node v; have k probabilities representing that this node belongs to the
class S. The simplest rule and the most used one is to take the highest
probabilities and assign its label to the node. another way to assign labels is

apply some clustering technique on all nodes probabilities.

5.4.4 Prior Model:

In this approach, the prior model is easily obtained using training data and it is used to

obtain probabilities maps. The used SVM library in the experiments is LIBSVM [57]

which have many options. The user can choose to get a probabilities map as

classification result. In the general case, this prior need to be estimated and there is

many different ways to obtain priors. In [58]many helpful methods have been

provided. alternatively, Gaussian kernels can be calculated for each class and a

normalized histogram can be created and the probabilities can be found simply for

each intensity values of an image.
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5.4.5 Choosing Weight

There are many available functions to create weights between image intensities. In
[59] various weight functions and their proper use are mentioned. Apart from well

known a Gaussian weight function ubiquitous function is very useful.
wy; = e PUI)’ (5.25)
In practice, two variables can be added and the ubiquitous function becomes as follow:
I ) (5.26)
ij

where € is a small constant and the value of it might be around 107 , p is a
normalization function and it is equal to the maximum difference between the intensity
in the image. With this adjustment to the ubiquitous function we make sure that none
of the weights are exactly equal to zero instead the minimum weight is equal to €.
Another advantage is to keep [ relevant to images with different contrast and

quantization.

5.4.6 Numerical Solution

This algorithm does not differ much from the original random walker in context of
computational hurdle. It has larger sparse, symmetric and positive definite system of
linear equations. This equitation can be solved using direct methods but it may include
high memory consumption and in case of large images this cannot be the best way to
use. Instead, iterative methods can be used some of these methods are mentioned in
[60] such as preconditioned conjugate gradient is more appropriate to solve the linear
system of a large image due to its lower memory consumption and parallelization

capability.

5.5 Comparison between ERW and Watershed

The following table provide a brief comparison between the two proposed spatial

algorithms.
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Table 5.1: Comparison between ERW and Watershed.

No need for any image filtering

procedures

Seeds or labeled samples in the image

can be used to enhance the result

The relation between the spatial and
spectral classification can be calibrated
using the free parameter y, it’s very

easy and simple to control this relation

Can be applied directly or by using

feature extraction

The spectral classification part should
provide probability or probability

density for each class

The spatial classification cannot be
applied without the integration of the

classification result
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Without filtering over-segmentation

will occur

no seeds or labeled samples can be

integrated to the algorithm

To calibrate the relation between the
spatial and the spectral new filtering
procedure should be conducted on the
image and its very complicated and hard

to control this relation

Can be applied directly or by using

feature extraction

The spectral classification part can

provide only the labels for all samples

Spatial and spectral classification can be
applied separately and later the results

can be integrated together






6 MODIFIED ERW

Two different approaches were checked here to improve ERW performance the
validity of these methods was checked only by doing limited number of experiments,
but it still worth to mention these methods here. 3 different ways will be mentioned

here, all of them focus on the probabilities maps obtained from SVM.

6.1 Priority for Large Classes

This method is helpful when bigger classes have higher priority, to give a higher
priority to bigger classes. first of all, SVM is applied on the data then the classification
result from SVM will be used to calculated occurrence of each class to the total number

of classes as follow:

_ number of c¢; sampels obtained from SVM
B Total number of Samples

(6.1)

Ci

Where H, is the percentage of the total occurrence of the class i.Then the probabilities

map will be modified as follow: each column of the SVM probabilities map represent

a class, each column will be multiplied by the respective H,. So, if the class i appeared
a lot in the result H, will have a high value, therefor it will increase the effects of this

class in the spectral-spatial classification

6.2 Priority for Small Classes

The method is the opposite of the above-mentioned method, we can use this one when

small classes have higher priority in the experiments, here also need to calculate H

the percentage of the total occurrence for each class and instead of multiplying it

directly by probabilities map, instead a new value will be calculated as follow:

H,=1-H, (6.2)
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By using equation (6.2) high values will be related to small classes and then each

column of the SVM probabilities map will be multiplied by the relevant Hcl.
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7 THE DATA USED IN THE EXPERIMENTS

e synthetic data
e Indian Pines

e Salinas

7.1 synthetic data:

this is a grayscale image with Gaussian noisy, this image will first be used instead of
hyperspectral, because this image consists of only one band it’s easier to apply EWR
approach on it. Dealing with such image usually doesn’t require complicated algorithm
and a high accuracy can be reached by using simple algorithms such as maximum
distance to mean. This image consists of 2 classes, Figure 7.1 shows this image and

two alternative training samples or seeds.

a b c

Figure 7.1: A represents the original image with noise, B represents the original
noisy image with the location of the seeds, C is the same as B with extra seeds in the

2-separated area.

7.2 Indian Pines

This data was collected using AVIRIS sensor scanning the Indiana pines in the north-
western Indiana, the collected data is 145*145 with 224 spectral bands with the wave

length range 0.4 — 2.5 * 107° meters in this experiment we are using the corrected
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version of Indiana pines which consist of 145*145 pixel and only 200 bands, the
excluded bands are bands covering the region of water absorption. This data is

available through Pursue's univeristy MultiSpec site.

This data consists of 16 class and background the total number of samples is 21025,

the number of background samples is 10776.

The following table contain the ground truth table of the 16 classes and their respective

number

Table 7.1: Indian Pines Groundtruth classes and their respective samples number.

# Class Samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
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15 Buildings-Grass-Trees-Drives 386

16 Stone-Steel-Towers 93

In this experiment, there are 2 kind of training samples randomly selected samples

which represent around 4% of the original Image and neighboring pixels.

Figure. 7.2 Indiana Pines ground truth with the position of the random and
neighboring samples

In the real-life application, it’s hard and expensive to collect randomly distributed
samples but these randomly selected samples can give a better performance because
they cover a bigger range from each class. the random distributed training samples and
the real-life training samples will be referred to as random samples and real samples

respectively. Figure 7.2 shows the distribution or the position of the 2 kinds of samples.

7.3  Salinas scene:

This scene was collected as well with AVIRIS sensor over Salinas valley, California
USA. Like the Indiana pines this scene contain 224 bands and 20 water absorption
were discarded, in this case bands: [108-112], [154-167], 224. It includes vegetables,
bare soils, and vineyard fields. Salinas groundtruth contains 16 classes and background

occupies 56975 pixels.
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Table 7.2: Salinas Scene Groundtruth classes and their respective samples number.

# Class Samples
1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11271
9 Soil_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce _romaine_ 4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce _romaine 6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

Figure 7.3 shows the ground truth Salinas scene with the training samples, these
samples were randomly selected and they represent approximately 4 percent of the
total number of samples in the image and these samples are not randomly distributed

instead they have neighboring relation among each class More information about this
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scene, the size of this image is 512*217 pixel and the real number of bands is 224 but

here the corrected version will be used, the corrected version has only 204 bands.

Figure 7.3: Salinas scene Groundtruth and Training Samples.
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8 EXPERIMENTAL RESULTS:

In this part, Indian Pines and Salinas datasets were used to evaluate the robustness and
the reliability of the proposed algorithms, where the synthetic data will be used only
to illustrate the way these algorithms works. This synthetic data is a grayscale image;
however, the proposed algorithms can handle it as well. To evaluate the results the
overall accuracy, average accuracy, kappa coefficient and confusion matrix will be
calculated. These measurements are well known and used in most of the literature work
in this field. A brief definition will be introduced here. Overall accuracy is simply the
ratio between correct classified pixels and the total number of pixel in the image, it’s
similar to the average accuracy, but in the later mentioned the correct classified pixels
for each class will be divided on the number of pixels in each class then the average
will be calculated, Kappa coefficient is a measurement of agreement between two
variable, which compares the observed accuracy with the expected accuracy it’s a good
static to evaluate the classifier itself and to compare between different classifier.
Covariance matrix compares the obtained result with the ground truth and provides a
detailed information about each class, for example the number of misclassified pixel,
number of correct classified and further information about which class misclassified

data belongs to.

8.1 Synthetic Data

As this data is a one band image not a hyperspectral image, not all the above-mentioned
statics need to be calculated. First a spectral classifier will be applied on this data, the
training samples marked in Figure 7.1.b will be used. SVM is basically a binary
classification algorithm so, it can be applied directly on this gray scale 2-classes image.
As it can be shown in Figure 8.1. the result obtain by applying SVM is quiet good
result with an accuracy up to 98%, but the noise affects is obvious in the background
class the misclassification was caused by the noise in the real image. SVM gives
classification results upon the pixel intensities only despite any other factors which can
help in identifying whether this pixel belong to a specific class or not. 98% overall

accuracy can be considered as a very high accuracy but in this case, we are dealing
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with a simple syntactic data so such a result can be obtained easily by using any kind

of simple classifier.

Figure 8.1: SVM Classification result on Synthetic Data.

To show the differences between RW and ERW, segmentation using RW and two
different training samples or as they called in the RW algorithms two different seeds
groups will be used. In Figure 7.1, there are two different seeds group, group b contains
smaller amount of seeds and doesn’t have seeds in all separated areas, while group ¢

has a bigger number of seeds and these seeds are distributed in all the separated areas.

a b
Figure 8.2: RW segmentation result. a) is the result of using c-seeds group. b) is the

result of using b-seeds group.

In Figure 8.2-b, the segmentation result identified only the circular part of class 2
because there is no seeds in the other part of group 2. This is what makes RW not
applicable to real life images where there are many separated parts belongs to the same

class and in order to solve this problem a seed in each separated class is required. In
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Figure 8.2-a seeds where distributed in all separated areas, even though RW failed to
give a good segmentation, the main reason behind this failure is, that this image is a
gray scale image with a gaussian noisy and the intensity between the 2 classes are close
to each other, which makes it hard to separate between the classing using only spatial
algorithm. In ERW we need to apply both spectral intensity classifier and spatial
classification. The presented SVM results will be used to make classification map for

this image.

Figure 8.3: ERW illustrating. on synthetic Data, the 2-floating red and blue points

represent the class labels.

For this syntactic data, we will get 2 maps, one for each class and the number of points

in each map is equal to the total number of pixels (21025).

These maps are used later in the ERW. Each map will be used as an extra seed. To

represented in an easier way Figure 8.3. illustrate EWR in this image.

In RW algorithm the intensity gradient between neighboring pixels are calculated and
used as weights in the Laplacian matrix. In ERW in addition to these weights there are
extra points represent the classes, like the blue and red points in Figure 8.3. These
points are connected to all the pixel in the image, since these points are not pixels,
therefor the gradient intensity cannot be calculated among these points and the pixels
of the image, instead the probability obtained by the spectral classifier will be used
here as already explained in EWR algorithm, the result of SVM will be used in

cooperation with RW to give better classification result.
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Figure 8.4: Classification Result using ERW and b-seeds group.

By using both spectral and spatial classification we can overcome some of the
misclassified points in the homogeneous area, as it can be seen in Figure 8.4 the
classification results are more accurate than the results obtained via SVM. What make
ERW overcome RW is the ability of identifying pieces from the same class without
the necessity of having seeds inside of each separated piece. By comparing the results
obtain via SVM and ERW we can see that ERW with a good spectral classification
method can give a quit good result and overcome misclassification in homogeneous

areas.

8.2 Hyperspectral Image Classification

In this part, a lot of different experiments were applied on Indian pines data set and to
verify the generality of these algorithms, the results of some experiments on Salinas

scene will be briefly mentioned.

Indian Pines data set consist of 16 classes and background, so we divided our work
into 2 different parts, first part 17 classes including background, second part the
background were neglected and only 16 classes were studied. Figure 8.5 shows the

diverse options to apply these algorithms.

As it can be seen in Figure 8.5 spatial-spectral classification can be applied directly on
the hyperspectral images or it can be applied after doing some feature extraction such
as PCA.
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Prior modification on
SVM result

Hyperspectral Image SVM Classification OR
Feature Extraction OR

v

, 2o Spatial-Spectral
Using trainingSamples | _ _ _ _ _ _ - Classification
as Seeds

Figure 8.5: Flow chart of the diverse way to apply ERW.

8.2.1 Spectral classifiers:

In these following sections, all the experiments are done by using Indian pines real

life training samples, unless the opposite is mentioned.

8.2.2 KNN:

As KNN considered one of the easiest spectral classification algorithms it will be used
first on hyperspectral data to compare the results with the one obtained using SVM.
For KNN experiment 4 different values for K will be used, K = {1,3,5,7}; here KNN
will be applied directly on hyperspectral data.

Table 8.1: K-NN Classification result on Indian Pines.

17 Classes 16 Classes
K OA Kappa K OA Kappa
1 55.94% 0.465 1 68.87% 0.644
3 53.96% 0.443 3 66.78% 0.619
5 53.45% 0.437 5 65.87% 0.608
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7 52.88% 0.430 7 65.39% 0.603

Figure 8.6: KNN classification result on Indian pines 17 Classes.

there is some literature about using feature extraction technique to improve the result
of the KNN classifier, but here only the direct application of KNN on Hyperspectral

data will be taken into consideration.

K=1

K=5 K=7

Figure 8.7: KNN classification result on Indian 16 Classes.
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By comparing between Figure 8.6 and Figure 8.7 it can be noticed that a lot of
misclassification is caused by the background class (the black colored class). the
results obtain here are not going to be used later in the Spectral-Spatial classification
algorithm and it’s just to emphasis on the robust SVM algorithm by comparing the 2

results.

8.2.3 SVM

Before applying SVM on hyperspectral data, the data need to be Normalized in order
to get a better classification results, here the data is normalized between [-1, +1].
LibSVM is used in all SVM experiments done in this work here only the neighboring
samples will be taking into consideration and later the result of random training

samples for spectral-spatial classification will be introduced.

Two different Kernel Functions will be used here. First one is Linear SVM, second
one is radial basis function. Linear SVM has only one parameter which can be
adjusted, which is complexity, while radial basis function has two parameters

complexity and gamma.

c=103
Figure 8.8: SVM Linear Function 17 classes Classification Results Neighboring

Samples.
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to obtain a better evaluating of the SVM classifier performance SVM was not only
applied on the full hyperspectral data, but it was applied on the training data in order
to get the training accuracy and statics, then SVM classifier was applied on the testing
samples. In these experiments, all the sample from the real image excluding the
training samples were taken as testing samples. From the result in table 8.2, it can be
seen that, the parameter C in the linear SVM plays a major role. The parameter C or
as it called the penalty factor, can be used to control the trade-off between how
complex the decision boundary or decision rule is supposed to be and between the

error frequency.

Figure 8.9: SVM Linear Function 16 classes Classification Results Neighboring

Samples.

By comparing classification results for 16 classes and classification result for 17
classes, it’s obvious that the background can be considered as problematic class and
because it occupies a large space of the image, even more than 50% percent of the
image is background. This should be taken into consideration while comparing the
results between 16 and 17 classes case and not only the overall accuracy but the kappa
and average accuracy as well. In this case for example if the whole image was
classified as background we will get an overall accuracy equal to 10776/21025
(number of background pixels / total number of pixel) = 51,25, but average accuracy
will be equal to 1/17. Table 8.2. show the accuracies obtained using different C,

complexity variable in Linear SVM for both 16 and 17 classes and by using the
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neighboring training group which has 3403 training samples in 17 classes case and
2648 training samples in 16 classes case Figure 8.8 and Figure 8.9 show the

classification result for 17 and 16 classes respectively.

Table 8.2: Linear SVM Classification result on Indian Pines.

17 classes case

Training Result Testing Result Full Image result

C Overall | Average | kappa | Overall | Average | kappa | Overall | Average | kappa

Acc. Acc. Acc. Acc. Acc. Acc.

10 | 88.77 |88.92 |0.87 [53.79 |[62.73 |041 |5946 |70.48 |0.50
% % 2 % % 6 % % 3

102 | 94.65 |96.52 |0.62 |56.24 |66.23 [0.56 |62.45 |75.29 |0.53
% % 3 % % 0 % % 7

103 97.20 |98.70 |0.63 |56.85 |66.92 |0.57 |63.38 |76.34 |0.54
% % 2 % % 0 % % 8

10*| 98,54 |99.53 |0.63 |57.11 |66.71 |0.57 |63.80 |76.39 |0.55
% % 7 % % 5 % % 3

16 classes case

Training Result Testing Result Full Image Reult

C Overall | Average | kappa | Overall | Average | kappa | Overall | Average | kappa

Acc. Acc. Acc. Acc. Acc. Acc.

10 | 93.55 |93.36 |0.92 |64.07 |67.51 |[0.57 |71.79 |75.85 |0.58
% % 6 % % 9 % % 4

102 97.76 9795 |0.97 |68.53 |69.60 |0.63 |62.45 |7529 |0.53
% % 4 % % 2 % % 7
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103]97.20 |98.70 |0.63 |56.85 |66.92 |0.57 |63.38 |7634 |0.54
% % 2 % % 0 % % 8

10*| 100% | 100% |1 70.08 | 70.52 |0.65 |77.91 |79.81 |0.65
% % 1 % % 5

Now the radial basis kernel function will be used. Radial basis SVM has two

parameters which can be tuned to get a better classification result. These parameters

are complexity C and Gamma. The C has the same effect as the one mentioned in linear

kernel. Gamma defines the influence of the training samples; low values means that

training samples have far influence and high value means a close influence.

Figure 8.10 and 8.11 shows the result obtained from RBF SVM for 17 and 16 classes

respectively. Both 16 and 17 classes results in RBF are better than the results obtained

earlier using Linear SVM. 4 alternative values for the parameters C and Y were

applied.

C=10, Y=2

C=100, Y=2

Figure 8.10: SVM Radial Basis Function 17 classes Classification Results

Neighboring Samples.
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Table 8.3. show the accuracy obtained from Radial Basis Kernel SVM. By comparing
between the different result for both linear and Radial Basis function, the Radial Basis
SVM is more reliable and has a better classification accuracy, however there are more
kind of Kernel SVM for example polynomial, sigmoid, or by using pre-computed
kernels. a lot of studied focused on how to improve this accuracies by finding different
method focusing only on the spectral classification. Later the concept of cooperating

the spatial and spectral classification was introduced.

Here you will consider the highest accuracy reached in SVM as the optimal spectral

classification result and this result will be used in the spatial classification.

C=10, Y=2 C=100, Y=2

Figure 8.11: SVM Radial Basis Function 16 classes Classification Results
Neighboring Samples.

Table 8.3: RBF-SVM Classification result on Indian Pines.

17 classes
Training Result Testing Result Full Image Result
C,A OA AA K OA AA K OA AA K
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10,1 93.32% | 95.36% | 0.625 | 56.68% | 61.95% | 0.556 | 62.61% | 72.02% | 0.534
10%,1 | 98.56% | 99.47% | 0.647 | 58.38% | 64.11% | 0.585 | 64.88% | 74.71% | 0.564
10,2 95.76% | 97.50% | 0.630 | 56.87% | 60.94% | 0.563 | 63.17% | 71.90% | 0.540
10%,2 |99.61% | 99.89% | 0.642 | 57.53% | 62.13% | 0.578 | 64.34% | 73.35% | 0.556
16 classes
Training Result Testing Result Full Image Result
C,2 Overall | Average | kappa | Overall | Average | kappa | Overall | Average | kappa
Acc. Acc. Acc. Acc. Acc. Acc.
10,1 97.35% | 97.49% | 0.966 | 65.20% | 67.04% | 0.597 | 73.62% | 76.62% | 0.601
10%,1 | 99.96% | 99.94% | 0.999 | 69.68% | 68.84% | 0.649 | 77.61% | 78.61% | 0.652
103,0.1 | 99.77% | 99.81% | 0.997 | 73.27% | 72.32% | 0.690 | 80.21% | 81.23% | 0.693
10%,0.1 | 100% | 100% |1 73.69% | 72.39% | 0.695 | 80.58% | 81.34% | 0.698

All the results obtained via different kind of SVM are acceptable, but it’s obvious that,
there is a lot misclassification inside each separate homogenous area this
misclassification caused like the salt and paper noisy effect. This noisy alike effect
wasn’t that sever intense but in hyperspectral images, this affect is more visible. This
misclassification cannot be solved completely for all the images still the result can be
enhanced and as mentioned earlier one of the methods to enhance the quality of a
classification obtained from a spectral classifier is to integrate a spatial information

through a spatial classifier into the result.

8.2.4 Feature extraction:

Before applying spatial classifier on the spectral result PCA will be applied on our
image as a feature extraction method. PCA is usually used in image compression
application. In hyperspectral image, each band doesn’t contain a reliable spatial
information in contrast if one layer was shown it will appear like very noisy image.

Figure 8.12 shows the first principle Indian pines component after applying principle
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component analysis. One of the most basic definition of hyperspectral image is
transformation methods used to make the date easier to visualize and explore by
emphasizing on the variation to extract the strong patterns in the image. Later, PCA
result will be used in the coming experiment. Only the first 6 PCA component are area
of interest specially the first PCA component. The following shortened forms will be
used to refer to the first PCA component respectively 1% PC,2" PC, 3™ PC, etc.

ST .
Figure 8.12: First Principle Component from PCA Transformed Indian Pines

Feature extraction can be used as well with the spectral classification to overcome the
dimensionality curse. Transferring hyperspectral date from a high dimensional space
into a smaller space, while reserving most of the information in the data is a required
advantage, because it can help in dealing with a very large date with limited computer
resources. The studied images in this experiment are relatively small in the spatial size,
not spectral size, the spectral is huge for example the Indian pine is 145*145 pixel is
the spatial size and 200 band is the spectral size, so even with limited computer
resources these data can be handled efficiently, but feature extraction is used here not

only to make the data easier to handle but to make the spatial feature easier to extract.

In the next section the spectral and spatial classification will be applied with using

feature extraction and without. it
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8.2.5 Spatial classification:

8.2.5.1 Watershed:

Here the spatial classification will be used to improve the spectral classification. First,
Watershed algorithm will be applied. Watershed is an easy algorithm to use, but in
hyperspectral images it has some drawbacks. These drawbacks are mainly related to

extracting the spatial texture.

20 40 60 80 100 120 140 20 40 60 80 100 120 140

ek AL

Figure 8.13: Watershed segmentation. a) over-segmentation b) under-segmentation

c) proper-segmentation.

As explain in watershed algorithm there are main alternative solutions to apply
watershed on hyperspectral image, one of the powerful methods is to apply feature
extraction on the hyperspectral data and then use the most informative principle
component. applying watershed on an image directly will cause over-segmentation,

therefore some image filtering and edge detection is advised to be used. On the other
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hand, if the image was over filtered, the segmentation under fits the image which
means having big areas considered as separated areas. In Figure 8.13, a) represent over
segmentation where the watershed was applied directly on the first principle
component. b) represent watershed applied with some excessive unsuitable filtering
technique. c) represent the midpoint between a and b where the segmentation fit the
spatial texture and helps to improve the classification result by applying watersheds
on the first 6 PCA components. These three segmentation results will be used to
integrate the spatial information with the spectral classification result. The

classification results can be shown in Figure 8.14 and Figure 8.15.

Figure 8.14: SVM-Watershed, Spectral-spatial classification (17 Classes) al,bl,cl

represent with-WHEDs classification, a2,b2,c2 represent no-WHEDs classification.

Table 8.4: Watershed-SVM, Spatial-Spectral Classification result on Indian Pines

SVM-Watershed Spectral-Spatial classification (No WHEDs)
17 Classes 16 Classes
Overall | Average | Kappa Overall | Average | Kappa
acc. acc. acc. acc.
Seg (a) 67.16% | 77.95% | 0.592 79.83% | 79.83% | 0.769
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Seg (b) 57.14% | 62.88% | 0.480 74.75% | 64.28% | 0.710
Seg (c) 69.04% | 72.06% | 0.609 80.45% | 72.93% | 0.776
SVM-Watershed Spectral-Spatial classification (with WHEDs)

17 Classes 16 Classes

Overall | Average | Kappa Overall | Average | Kappa

acc. acc. acc. acc.
Seg (a) 71.56% | 77.43% | 0.638 81.55% | 78.39 0.788
Seg (b) 57.37% | 62.92% | 0.481 74.96% | 63.32% | 0.712
Seg (c) 72.53% | 73.26% | 0.647 82.07% | 73.86% | 0.794

the classes.

Classification
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Figure 8.15: SVM-Watershed, Spectral-Spatial Classification (16 Classes) al,bl,cl
Represent With-WHEDs Classification, a2,b2,c2 Represent No-WHEDs

By comparing the results between No WHEDs and With WHEDs it can be seen the
latter algorithm gives a better overall accuracy but the average accuracy is decreased

which means the improvement of the classification wasn’t equally distributed on all




8.2.5.2 ERW:

In the part, a lot of experiments were applied and developed. ERW basically can be
used in 2 different ways, one of them is to use some the pixels in the classified image
as seeds by solving equation (5.24) and in case there are no available seeds in the
image, equation (5.23) can be used to solve the ERW by using only the probabilities
obtained via SVM without any seeds, In addition to that, the image used in the spatial
part has also different options in this experiment we tried all the following choices a)

only the 1% PC. b) full spectral by using 200 bands
1% principle component experiment:

Table 8.5: EWR Classification Result On Indian Pines Using Only The 1st PC.

SVM-ERW 1% PC Spectral-Spatial classification (No Seeds)

17 Classes 16 Classes

Overall | Averag | Kappa | * | Overall | Average | Kappa | *

acce. € accC. acc. acc.

A=0.001 | 68.52% | 46.35% [ 0.563 |a |80.17% |[61.33% |0.770 |G

A=0.01 |75.68% |69.16% |0.689 |b |86.90% |[77.44% |0.849 |H

A=0.1 75.57% | 7632% | 0.690 |c |[86.85% |85.81% |0.849 |I

SVM-ERW 1% PC Spectral-Spatial classification (With Seeds)

17 Classes 16 Classes

Overall | Averag | Kappa | * | Overall | Average | Kappa | *

acc. € acc. acc. acc.

A=0.001 | 64.52% | 83.58% | 0.578 |d |89.56% |92.38% |[0.878 |J

A=0.01 |77.04% | 87.74% | 0.708 |e | 89.48% |92.28% |0.879 |K

A=0.1 76.81% | 87.11% | 0.706 | f |87.98% |90.81% |0.861 |L
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Figure 8.16: ERW Classification with Feature Extraction For 16 And 17 Classes

with/without Seeds.

Table 8.6: ERW Classification Results On Indian Pines Using Full Spectral

classification (No Seeds)

SVM-ERW Full Spectral — (no Feature Extraction) Spectral-Spatial

17 Classes 16 Classes
OA AA K * | OA AA K
A=0.001 | 75.11% | 69,57 0.682 |a |88.64% |90.22% | 0.869
A=0.01 |76.31% |78.72% | 0.698 |b | 86.77% | 87.86% | 0.847
A=0.1 72.08% | 80.92% | 0.652 |c |83.51% |84.14% |0.810

classification (With Seeds)

SVM-ERW Full Spectracl — (no Feature Extraction) Spectral-Spatial

17 Classes 16 Classes
OA AA K * | OA AA K
A=0.001 | 77.47% | 86.23% | 0.712 | d | 88.81% 91.67% 0.871
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A=0.01 |[76.93% |83.69% | 0.706 |e |86.37% |88.68% |0.843 |k

A=0.1 71.91% | 80.46% | 0.804 | f |83.22% |83.94% |0.807 |1

P

Figure 8.17: ERW Classification Without Feature Extraction For 16 And 17 Classes
With/Without Seeds.

(*) is the Figure number for each result, 16 classes results are high than 17 classes,
the highest OA for 16 classes was obtained by using Seeds, 1% component and 4
=0.001. for 17 classes case, the highest OA was obtained by using Full spectral
information, to give a better understanding of the parameter A role it’s easier to check
the 17 classes results, for example if we checked Figure 8.16 and Figure 8.17 and
compared between the classification map obtained in a and the classification map
obtained in ¢, in (a) 4 = 0.001 and therefore the spatial information has a higher
effect on the final classification map whereas in (c) 4 =0.1 and the contribution of the
spectral classification in the final classification map is higher. From equation (5.24)
and (9.5) it can be seen that 4 is multiplied by the probabilities obtained from spectral
classifier, which means lower 4 values will cause smaller contribution of the specatral
values and vice versa. To give a better overview of the results obtained from ERW

the confusion matrix will be calculated only for the 17 classes, 1% PC, with seeds.
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Table 8.7: Confusion Matrix for ERW 17 Classes with seeds and A = 0.1

Predicted Classes

c1i (c2 |c3 |c4 |c5 |c6 |[c7 |c8 |c9 |cio|cii|ciz2|ciz|cid|ci5|ci6|Cca7

C1 (6627 18| 334| 332| 179| 43| 381 5| 230| 14| 184| B883| 260| 51| 564( 607| o4

C2 0] 43 ] 0 (] (o] ] ] 2 1] 1 ] 1] o 0 0 0

c3 0 0|1130 4| 27 0 2 0 0 0| 21| 232 B 1 3 0 ]
Cc4 (i) 0| 17| 497 49 (1] 0 0 i) 0| 266 1 [t} 4] ] (1]

&5 0 1] 3 0| 226 ] ] 1] ] L] ] 1] B 0 1] 0 ]

co 120 5] 0 11 3| 312 6 0| 10 5] 1] (1] 5 o 0 1o 0

a E7 42 0 0 ] 0 0| 638 0 0 0 0 1] ] 0 0 0 0
C |8 1 ] 0 0 0 ] o 27 (i) ] 0 0 0 o ] L] L]
Q: c9 (1] 0 0 0 0 i) (i) 0| 478 0 o ) 0 a 1] 0 ]
% clo 0 5] 0 0 ] 0 ] o 0| 20 1] (1] L] 0 o o 0
% lenn 5 0] 59 ] 1 0 1 0 0 0| 735| 166 1 0 3 1 0
c1z2 1 0| 42 2 9 0 3 0 3 0| 37|2344| 13 0 1 0 0
€13 (1] i) ] 2 (] (1] () (] (1] i) 0| 16| 582 0 a 3 4
c14a (1) 1) 0 0 (1] (1] () ) () 1) 0 1 0| 204 ] ] ]
15 93 ] 0 0 0 0 ] 0 0 ] 0 1 1] 01169 Z 0
Cle 76 ] 1 0 (1] (1] 3 ] 0 ] 1] o] 1] 0 1| 303 0

L& B 0 ] 0 0 0 0 ] 0 1] ] 0 0 1] 0 0 0 0

In Table 8.7. C1 to C17 are the Classes, if we check the small classes we have C2,C8
and C10, and for example in C2, 43 samples were correctly classified out of 46, and
18 samples from Class C1 were classified as C2. And for the big Classes we can check
C12, 2344 samples out of 2455 samples were correctly classified and 883 samples
from C1 were classified as C12.a further study of the confusion matrix is important to
diagnose the performance of the algorithm in detail and to check which classes are
causing problem and for example different training sample can be chosen for these

classes.

8.2.6 The importance of the Training Samples:

In this section, the randomly distributed samples in Indian Pines from Figure 7.2 will
be used to emphasis on the importance of the Training Samples, only a few
experiments will be done here as in real life application it’s hard to obtain randomly
distributed samples. SVM on the 16 classes case will be applied using 4% of the total
samples as training samples in total 409 Training Samples after discarding the
background samples. Then ERW will be applied on the result obtained from SVM

Figure 8.18 and Table 8.8. show the result of using this training samples
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Figure 8.18: SVM and ERW classification results using only 409 training Samples.

In Figure 8.18 a) represent the result from ERW without seeds, b) represent the result
obtained via RBF-SVM and c) represent the result of ERW with using all the training

samples as seeds.

Table 8.8: SVM and EWR results using 4% of the total samples as training Samples:

Method Parameters OA
RBF-SVM c=10%g=0.1 74.10%
ERW no Seeds A=0.1 82.22%
ERW with Seeds A=10.01 96.42%

The OA accuracy obtained using only %4 of the total samples as training samples is
very is very high in ERW with seeds (96. 42%), the main reason of reaching this high
accuracy is the distribution of the training samples, for ERW which is diverted from
segmentation algorithm (RW) the spatial distribution of the samples plays a major role
in the final result. And form Figure 7.2 (a) it can be seen how the training samples are
distributed in all the separated areas, on the contrary of the training Samples in Figure

7.2 (b).

8.2.7 Salinas Scene:

Another data set is used to prove the generality of ERW algorithm, will take into
consideration only the 16 classes, the Training Samples shown in Figure 7.3 are going
to be used discarding the background samples. The total number of 16 classes training
samples in 3416 which is equal to 6% of the total 16 classes sample in the image. As
all the other experiment, SVM will be applied and the result of SVM will be integrated
with ERW, also here ERW will be applied twice, with seeds and without seeds. Figure
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8.19 shows the results for Salinas Scene and Table 8.9 contains the overall accuracies

and used parameters.

Figure 8.19: SVM and ERW Classification Result on 16 Classes Salinas Scene using

6% Training Samples.

From comparing the results obtained between ERW with seed and ERW without seeds
in Table 8.9 we can find that OA for EW without seeds is higher than the OA for ERW
with seeds, but if the seeds were well distributed in the image the accuracy of latter

algorithm will be higher.

Table 8.9: SVM and ERW Classification result on 16 Classes Salinas Scene using

6% training Samples.

Method Parameters OA
RBF-SVM c=104g=1 86.16%
ERW no Seeds A =0.05 91.75%
ERW with Seeds A =10.05 91.61%

8.3 Modified ERW Results

Many different approaches were tried to improve the accuracy obtained from ERW,
for example trying to find extra seeds or training samples. In most of the cases only
small enhancement in the accuracy was obtained, but one technique which worth to be

mentioned is adjusting the probabilities maps obtained from the spectral classification.
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As mentioned before there 2 possible ways to adjust the probabilities obtained from
SVM. 1) priority for small classes. 2) priority for large classes the first one will be
used with Indian pines 16 classes and the second one with Indian pines 17 classes. The
following table shows the improvement of the result by applying these 2 methods. To
apply these methods, the number of each class after applying SVM need to be
calculated then these numbers are normalized then multiplied with the relevant column

of the probability map.

Table 8.10: ERW results modification by giving different priorities for different

classes.
17 classes No seeds 16 Classes No seeds
Method OA AA Method OA AA
ERW 75.59% | 81.65% ERW 86.38% | 86.79

ERW Priority for | 73.46% | 83.63% | ERW Priority for | 87.38% | 86.69%

ERW Priority for | 76.93% | 53.56% | ERW Priority for | 80.17% | 61.74%
By checking the results in Table 8.10. We see that these methods can improve the

accuracy in some cases, but still not final or a general method to improve ERW and

further studies might be applied later to find better methods to improve the accuracy.
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