T.C. HİTİT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

i

TOPRAK ALKALİ METALLERİN ASESÜLFAM VE ASESÜLFAM - NİKOTİNAMİD KARIŞIK LİGAND KOMPLEKSLERİNİN SENTEZİ, YAPISAL KARAKTERİZASYONU VE ÇEŞİTLİ BİYOLOJİK UYGULAMALARI

Ömer YURDAKUL

YÜKSEK LİSANS TEZİ kimya anabilim dalı

DANIŞMAN Doç. Dr. Dursun Ali KÖSE

> HAZİRAN 2013 ÇORUM

Ömer YURDAKUL tarafından hazırlanan "Toprak Alkali Metallerin Asesülfam Ve Asesülfam-Nikotinamid Karışık Ligand Komplekslerinin Sentezi, Yapısal Karakterizasyonu ve Çeşitli Biyolojik Uygulamaları" adlı tez çalışması 21/06/2013 tarihinde aşağıdaki jüri üyeleri tarafından oy birliği ile Hitit Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı'nda Yüksek Lisans tezi olarak kabul edilmiştir.

Doç. Dr. Faruk GÖKMEŞE

Doç. Dr. Dursun Ali KÖSE

Yrd. Doç. Dr. Gülçin ALP AVCI

filmest

Hitit Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun ... / ... / ... tarih ve sayılı kararı ile Ömer YURDAKUL'un Kimya Anabilim Dalı'nda Yüksek Lisans derecesi alması onanmıştır.

> Prof. Dr. Ali KILIÇARSLAN Fen Bilimleri Enstitüsü Müdürü

TEZ BEYANI

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını beyan ederim.

Ömer YURDAKUL

TOPRAK ALKALİ METALLERİN ASESÜLFAM VE ASESÜLFAM-NİKOTİNAMİD KARIŞIK LİGAND KOMPLEKSLERİNİN SENTEZİ, YAPISAL KARAKTERİZASYONU VE ÇEŞİTLİ BİYOLOJİK UYGULAMALARI

Ömer YURDAKUL

HİTİT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Haziran 2013

ÖZET

Bu tez çalışması kapsamında, Mg(II), Ca(II), Sr(II) ve Ba(II) metallerinin ilk defa asesülfam (ace, acs) ve asesülfam-nikotiamide (na) karışık ligand kompleksleri sentezlenmistir $C_8H_{10}CaN_2O_9S_2$, $([Mg(H_2O)_6](acs)_2,$ $C_8H_{10}SrN_2O_9S_2$, $C_8H_{10}BaN_2O_9S_2$, $[Mg(H_2O)_4(na)_2](acs)_2,$ $[Ca(H_2O)_6(na)_2](acs)_2,$ $[Sr(H_2O)_7(na)_2](acs)_2$, $[Ba(H_2O)_7(na)_2](acs)_2$). Sentezlenen kompleksler erime noktası, elementel analiz, kütle spektroskopisi, FT-IR spektroskopisi ve uygun kristaller ayrılarak X-ışınları tek kristal kırınım yöntemleri ile karakterize edilmiştir. Komplekslerin termal özellikleri ise eş zamanlı TG-DTG ve DTA teknikleriyle aydınlatılmıştır. Geçiş metallerine karşı koordinasyon davranışı literatürde var olan, imin azotu, karbonil oksijeni, sülfonil oksijenleri ve halka oksijeni gibi verici atomlara sahip olan asesülfamat ligandının toprak alkali metallere karşı koordinasyon davranışları belirlenmiştir.

Asesülfam-metal komplekslerinin yapısal çalışmaları için önemli olan karakteristik v(OH), v(C=O), $v_{as}(SO_2)$ ve $v_s(SO_2)$ titreşimleri belirlenmiştir.

Komplekslerin yapıları X-ışınları tek kristal kırınımı yöntemiyle aydınlatılmıştır. Asesülfamat iyonunun Mg(II) kompleksinde tamamlayıcı iyon olarak davranmaktadır. Ca(II), Sr(II) ve Ba(II) komplekslerinde ise asesülfamat iyonunun çok dişli ligand olarak koordinasyona katıldığı belirlendi. Bu komplekslerin polimerik yapıya sahip olduğu anlaşılmıştır.

Ayrıca sentezlenen komplekslerin biyolojik aktivitesi incelenmiştir. Bu çalışma için *Escherichia coli*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Enterococcus faecalis* bakteri türleri ve *Candida albicans* mantar türü kullanılmıştır. Fakat komplekslerin antimikrobiyal özellik göstermediği tespit edilmiştir.

Anahtar Kelimeler: asesülfam, nikotinamid, toprak alkali metal, biyolojik aktivite

SYNTHESIS, STRUCTURAL CHARACTERIZATION AND VARIOUS BIOLOGICAL APPLICATION OF ALKALINE EARTH METALS-ACESULFAME AND ACESULFAME-NICOTINAMIDE MIXED LIGAND COMPLEXES

Ömer YURDAKUL

HITIT UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES June 2013

ABSTRACT

In the scope of this thesis study, the first acesulfame (ace, acs)-metal and acesulfamenicotinamide mixed ligand complexes of Mg(II), Ca(II), Sr(II) and Ba(II) metals have been synthesized ($[Mg(H_2O)_6](acs)_2$, $C_8H_{10}CaN_2O_9S_{28}$, $C_8H_{10}SrN_2O_9S_2$, $C_8H_{10}BaN_2O_9S_2$, $[Mg(H_2O)_4(na)_2](acs)_2$, Ca(H₂O)₆(na)₂](acs)₂, $[Sr(H_2O)_7(na)_2](acs)_2$, $[Ba(H_2O)_7(na)_2](acs)_2$). The synthesized acesulfame-metal complexes were characterized by melting point, elemental analysis, mass spectroscopy, FT-IR spectroscopy and X-ray single crystal method by selecting suitable crystals. The thermal behaviors of the acesulfame-alkaline earth metal complexes were also studied by simultaneous TG-DTG and DTA techniques in inert nitrogen atmosphere. The coordination behavior of acesulfamate against alkaline earth metals as a ligand which has several donor atoms i.e. imino, nitrogen, carbonyl oxygen, ring oxygen, sulphonyl oxygens has been determined.

The characteristic FT-IR bands of v(OH), v(C=O), $v_{as}(SO_2)$ and $v_{sym}(SO_2)$ of the metal-acesulfame complexes have been determined which are important for the structural study.

The crystal structure of complexes were determined by X-ray single crystal method. Acesulfamate ion acts as a counter ion in cationic magnesium-aqua complex. In synthesized complexes, it were determined, acesulfamate ion act as a multi-dental ligand in calcium, strontium and barium complexes. The structure of these metal cation complexes are obtained polymeric.

In addition the biological activity of the synthesized complexes was studied. For this study, *Escherichia coli*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Enterococcus faecalis* bacteria and *Candida albicans fungus* were used. But it were detected not to show antimicrobial property of complexes.

Key Words: acesulfame, nicotinamide, alkaline earth metal, biological activity

TEŞEKKÜR

"Toprak Alkali Metallerin Asesülfam ve Asesülfam-Nikotinamid Karışık Ligand Komplekslerinin Sentezi, Yapısal Karakterizasyonu ve Çeşitli Biyolojik Uygulamaları" başlıklı tez çalışmam süresince bilgi ve tecrübelerini benimle paylaşan, tezimin her aşamasında öneri ve tecrübeleriyle bana destek olan değerli hocalarım Sayın Prof. Dr. Hasan İÇBUDAK ve Sayın Doç. Dr. Dursun Ali KÖSE' ye sonsuz saygı ve teşekkürlerimi sunarım.

Biyolojik aktivite çalışmalarında emeği geçen Sayın Yrd. Doç. Dr. Emre AVCI, Sayın Yrd. Doç. Dr. Gülçin ALP AVCI, yüksek lisans öğrencileri, değerli arkadaşlarım Merve GELDİ ve Sevil UZELİ'ye çok teşekkür ederim.

Komplekslerin kütle analizlerinin(GC-Mass) yapımında yardımcı olan Arş. Gör. Demet BAYKAN'a çok teşekkür ederim.

Ayrıca bilgi ve tecrübelerinden yararlandığım, Kimya Bölümünün bütün Öğretim Elemanlarına teşekkür ederim.

Hitit Üniversitesi Bilimsel Araştırma Projeleri (BAP) birimine FEF03.12.05 no'lu projeye verdikleri destekten dolayı teşekkür ederim.

İÇİNDEKİLER

Sayfa

ÖZETiv
ABSTRACTvi
TEŞEKKÜRviii
İÇİNDEKİLERix
ÇİZELGELER DİZİNİxii
ŞEKİLLER DİZİNİ
RESİMLER DİZİNİ
SİMGELER VE KISALTMALAR
1. GİRİŞ1
2. KURAMSAL TEMELLER VE KAYNAK ARAŞTIRMASI
2.1. Asesülfam
2.2. Oksatiazinon Dioksit Bileşiklerinin Sentez Yöntemleri
2.2.1. Alkinlerden sentezi
2.2.2. Ketonlardan sentezi
2.2.3. β-diketonlardan sentezi
2.2.4. β-oksokarboksilik asitlerden sentezi
2.2.5. Benzileter metodu
2.2.6. Fenoksit metodu
2.2.7. KSI metodu
2.2.8. Halka kapanması
2.3. Asesülfam Ligandının Metal Kompleksleri İle İlgili Çalışmalar 9
2.4. Nikotinamid

Sayfa

	2.4.1.	Nikotinamidin biyolojik önemi	17
	2.4.2.	Nikotinamid-metal kompleksleri.	
3.	MAT	ERYAL VE YÖNTEM	19
	3.1. Mater	yal	
	3.2. Yönte	m	19
4.	ARAŞ	ŞTIRMA SONUÇLARI VE TARTIŞMA	
	4.1. Infrar	ed (FT-IR) spektroskopisi	
	4.1.1.	[Mg(H ₂ O) ₆](acs) ₂ kompleksi	
	4.1.2.	$C_8H_{10}CaN_2O_9S_2$ kompleksi	
	4.1.3.	$C_8H_{10}SrN_2O_9S_2$ kompleksi	25
	4.1.4.	C ₈ H ₁₀ BaN ₂ O ₉ S ₂ kompleksi	
	4.1.5.	[Mg(H ₂ O) ₄ (na) ₂](acs) ₂ karışık ligand kompleksi	
	4.1.6.	[Ca(H ₂ O) ₆ (na) ₂](acs) ₂ karışık ligand kompleksi	
	4.1.7.	[Sr(H ₂ O) ₇ (na) ₂](acs) ₂ karışık ligand kompleksi	
	4.1.8.	[Ba(H ₂ O) ₇ (na) ₂](acs) ₂ karışık ligand kompleksi	31
	4.2. X-Işır	ıları Tek Kristal Çalışmaları	33
	4.2.1.	[Mg(H ₂ O) ₆](acs) ₂ kompleksi	
	4.2.2.	$C_8H_{10}CaN_2O_9S_2$ kompleksi	
	4.2.3.	$C_8H_{10}SrN_2O_9S_2$ kompleksi	
	4.2.4.	$C_8H_{10}BaN_2O_9S_2$ kompleksi	47
	4.2.5.	[Mg(H ₂ O) ₄ (na) ₂](acs) ₂ karışık ligand kompleksi	51
	4.3. Terma	al Analiz Çalışmaları	
	4.3.1.	[Mg(H ₂ O) ₆](acs) ₂ kompleksi	

Sayfa

xi

4.3.2.	$C_8H_{10}CaN_2O_9S_2$ kompleksi
4.3.3.	$C_8H_{10}SrN_2O_9S_2$ kompleksi
4.3.4.	$C_8H_{10}BaN_2O_9S_2$ kompleksi
4.3.5.	$[Mg(H_2O)_4(na)_2](acs)_2$ karışık ligand kompleksi
4.3.6.	$[Ca(H_2O)_6(na)_2](acs)_2$ karışık ligand kompleksi
4.3.7.	[Sr(H ₂ O) ₇ (na) ₂](acs) ₂ karışık ligand kompleksi
4.3.8.	[Ba(H ₂ O) ₇ (na) ₂](acs) ₂ karışık ligand kompleksi
4.4. Erime	Noktası Tayini Çalışmaları60
4.5. Kütle	Spektroskopisi
4.5.1.	Metal-asesülfam kompleksleri
4.5.2.	Metal-asesülfam-nikotinamid karışık ligandlı kompleksler 61
4.6. Eleme	ntel Analiz
4.7. Biyolo	ojik Aktivite Çalışmaları
5. SONU	JÇ VE ÖNERİLER
KAYNAKLA	AR
ÖZGEÇMİŞ.	

ÇİZELGELER DİZİNİ

Çizelge Sayfa
Çizelge 2.1. Potasyum asesülfam'ın bazı fiziksel özellikleri
Çizelge 2.2. [Co(acs) ₂ (H ₂ O) ₄] kristaline ait kristalografik veriler
Çizelge 2.3. [Ni(acs) ₂ (H ₂ O) ₄] kristaline ait kristalografik veriler
Çizelge 2.4. [Zn(acs) ₂ (H ₂ O) ₄] kristaline ait kristalografik veriler
Çizelge 4.1. Asesülfam-Metal komplekslerinin karakteristik FT-IR titreşim değerleri
Çizelge 4.2. Asesülfam/Nikotinamid-Metal komplekslerinin karakteristik FT-IR titreşim değerleri
Çizelge 4.3. $[Mg(H_2O)_6](acs)_2$ kristaline ait veriler ve arıtım değerleri
Çizelge 4.4. (C ₈ H ₂₀ MgN ₂ O ₁₄ S ₂) molekülünün hidrojen atomu dışındaki atomlarına ait seçilmiş bağ uzunlukları(Å)
Çizelge 4.5. [Mg(H ₂ O) ₆](acs) ₂ kompleksinde Hidrojen Bağı uzunlukları(Å) ve açıları(°)
Çizelge 4.6. $[Mg(H_2O)_6](acs)_2$ kompleksinde bağ açıları(°)
Çizelge 4.7. [Mg(H ₂ O) ₆](acs) ₂ kompleksinde bağ uzunlukları(Å)
Çizelge 4.8. C ₈ H ₁₀ CaN ₂ O ₉ S ₂ molekülünün hidrojen atomu dışındaki atomlarına ait seçilmiş bağ uzunlukları(Å)
Çizelge 4.9. $C_8H_{10}CaN_2O_9S_2$ kompleksinde hidrojen bağlarına ait veriler 41
Çizelge 4.10. $C_8H_{10}CaN_2O_9S_2$ kristaline ait veriler ve arıtım değerleri
Çizelge 4.11. C ₈ H ₁₀ SrN ₂ O ₉ S ₂ molekülünün hidrojen atomu dışındaki atomlarına ait seçilmiş bağ uzunlukları(Å)
Çizelge 4.12. $C_8H_{10}SrN_2O_9S_2$ kristaline ait veriler ve arıtım değerleri
Çizelge 4.13. C ₈ H ₁₀ BaN ₂ O ₉ S ₂ molekülünün hidrojen atomu dışındaki atomlarına ait seçilmiş bağ uzunlukları(Å)
Çizelge 4.14. C ₈ H ₁₀ BaN ₂ O ₉ S ₂ kristaline ait veriler ve arıtım değerleri

Çizelge	Sayfa
Çizelge 4.15. Potasyum asesülfam ve komplekslerin erime noktaları	60
Çizelge 4.16. Komplekslerin elementel analiz verileri	66

ŞEKİLLER DİZİNİ

Şekil Sayfa
Şekil 1.1. Cisplatin
Şekil 1.2. <i>cis</i> -diamin(1,1-siklobütandikarboksilato) platin(II) 1
Şekil 1.3. Sulfonamide fonksiyonel grubu
Şekil 1.4. Sulfadiazine
Şekil 1.5. Sulfamerazine
Şekil 2.1. Asesülfam (a) ve Potasyum asesülfam (b) tuzunun molekül yapısı4
Şekil 2.2. Oksatiazinon dioksit bileşiklerinin genel yapısı
Şekil 2.3. Asesülfam'ın asetilenden sentezi
Şekil 2.4. Asesülfamın asetondan sentezi
Şekil 2.5. Asesülfamın β-diketonlardan sentezi
Şekil 2.6. Asesülfamın tert-bütil asetoasetattan sentezi
Şekil 2.7. Benzil salisilik asitten benzil oksatiazinon dioksit sentezi
Şekil 2.8. Asesülfamın aseton ile fenoksosülfonilizosiyonattan sentezi
Şekil 2.9. Asesülfamın klorosülfonilizosiyonat yöntemi ile tert-bütil asetoasetattan sentezi
Şekil 2.10. Bis(acesulfamato- $\kappa^2 N^3, O^4$)bis(2-aminopyirimidine- κN^1) copper(II) kompleksinin kristal yapısı
Şekil 2.11. [Ni(dmen) ₂ (H ₂ O) ₂](acs) ₂ kompleksinin yapısı
Şekil 2.12. <i>Trans</i> -bis(asesülfamato- <i>N</i>)tetraakuakobalt(II) kompleksinin kristal yapısı
Şekil 2.13. <i>Trans</i> -bis(asesülfamato- <i>O</i>)tetraakuanikel(II) kompleksinin yapısı 13
Şekil 2.14. <i>Trans</i> -bis(asesülfamato- <i>O</i>)tetraakuaçinko(II) kompleksinin yapısı14
Şekil 2.15. $Cu(acs)_2(H_2O)_2(C_2H_5OH)_2$] kompleksinin yapısı
Şekil 2.16. Nikotinamid

Şekil Say	yfa
Şekil 2.17. (a) NAD^+ ve (b) $NADP^+$ molekülü	17
Şekil 4.1. Potasyum asesülfamın FT-IR spektrumu	. 22
Şekil 4.2. [Mg(H ₂ O) ₆](acs) ₂ kompleksinin FT-IR spektrumu	.23
Şekil 4.3. $C_8H_{10}CaN_2O_9S_2$ kompleksinin FT-IR spektrumu	.24
Şekil 4.4. $C_8H_{10}SrN_2O_9S_2$ kompleksinin FT-IR spektrumu	.25
Şekil 4.5. $C_8H_{10}BaN_2O_9S_2$ kompleksinin FT-IR spektrumu	.26
Şekil 4.6. [Mg(H ₂ O) ₄ (na) ₂](acs) ₂ kompleksinin FT-IR spektrumu	. 28
Şekil 4.7. [Ca(H ₂ O) ₆ (na) ₂](acs) ₂ kompleksinin FT-IR spektrumu	. 29
Şekil 4.8. [Sr(H ₂ O) ₇ (na) ₂](acs) ₂ kompleksinin FT-IR spektrumu	. 30
Şekil 4.9. [Ba(H ₂ O) ₇ (na) ₂](acs) ₂ kompleksinin FT-IR spektrumu	.31
Şekil 4.10. [Mg(H ₂ O) ₆](acs) ₂ kompleksinin asimetrik birimdeki gösterimi	.34
Şekil 4.11. $[Mg(H_2O)_6](acs)_2$ kompleksinin b ekseni boyunca paketlenmesi	.34
Şekil 4.12. [Mg(H ₂ O) ₆](acs) ₂ kompleksinin üç boyutlu gösterimi	.35
Şekil 4.13. [Mg(H ₂ O) ₆](acs) ₂ kompleksinin birim hücredeki gösterimi	.35
Şekil 4.14. $C_8H_{10}CaN_2O_9S_2$ kompleksinin asimetrik birimdeki gösterimi	.39
Şekil 4.15. C ₈ H ₁₀ CaN ₂ O ₉ S ₂ kompleksi için iki boyutlu polimer yapının gösterimi.	.39
Şekil 4.16. $C_8H_{10}CaN_2O_9S_2$ kompleksinin üç boyutlu gösterimi	. 40
Şekil 4.17. $C_8H_{10}CaN_2O_9S_2$ kompleksinin birim hücresi.	. 40
Şekil 4.18. $C_8H_{10}CaN_2O_9S_2$ kompleksinde hidrojen bağları	.41
Şekil 4.19. $C_8H_{10}SrN_2O_9S_2$ kompleksinin asimetrik birimdeki gösterimi	.43
Şekil 4.20. Bir boyutlu polimer yapının O–H…O hidrojen bağları yardımıyla iki boyuta taşınması	44
Şekil 4.21. C_8H_{10} SrN ₂ O ₉ S ₂ yapısının üç boyutlu gösterimi.	.44

Şekil Sayfa	ł
Şekil 4.22. $C_8H_{10}SrN_2O_9S_2$ kompleksinin birim hücresi	5
Şekil 4.23. $C_8H_{10}BaN_2O_9S_2$ kompleksinin asimetrik birimdeki gösterimi 4	7
Şekil 4.24. C ₈ H ₁₀ BaN ₂ O ₉ S ₂ kompleksinde O–H…O hidrojen bağlarının oluşturduğu iki boyutlu yapının gösterimi	8
Şekil 4.25. $C_8H_{10}BaN_2O_9S_2$ yapısının üç boyutlu gösterimi	8
Şekil 4.26. $C_8H_{10}BaN_2O_9S_2$ kompleksinin birim hücresi	9
Şekil 4.27. <i>trans</i> -tetraakuabis(nikotinamid) magnezyum(II) kompleksinin öngörülen yapısı	1
Şekil 4.28. [Mg(H ₂ O) ₆](acs) ₂ kompleksinin TG-DTG ve DTA eğrileri	3
Şekil 4.29. $C_8H_{10}CaN_2O_9S_2$ kompleksinin TG-DTG ve DTA eğrileri	1
Şekil 4.30. $C_8H_{10}SrN_2O_9S_2$ kompleksinin TG-DTG ve DTA eğrileri	5
Şekil 4.31. $C_8H_{10}BaN_2O_9S_2$ kompleksinin TG-DTG ve DTA eğrileri	5
Şekil 4.32. $[Mg(H_2O)_4(na)_2](acs)_2$ kompleksinin TG-DTG ve DTA eğrileri	7
Şekil 4.33. $[Ca(H_2O)_6(na)_2](acs)_2$ kompleksinin TG-DTG ve DTA eğrileri 58	3
Şekil 4.34. [Sr(H ₂ O) ₇ (na) ₂](acs) ₂ kompleksinin TG-DTG ve DTA eğrileri	8
Şekil 4.35. $[Ba(H_2O)_7(na)_2](acs)_2$ kompleksinin TG-DTG ve DTA eğrileri 59	9
Şekil 4.36. $[Mg(H_2O)_6](acs)_2$ kompleksinin kütle spektrumu	2
Şekil 4.37. $C_8H_{10}CaN_2O_9S_2$ kompleksinin kütle spektrumu	2
Şekil 4.38. $C_8H_{10}SrN_2O_9S_2$ kompleksinin kütle spektrumu 6	3
Şekil 4.39. $C_8H_{10}BaN_2O_9S_2$ kompleksinin kütle spektrumu	3
Şekil 4.40. [Mg(H ₂ O) ₄ (na) ₂](acs) ₂ kompleksinin kütle spektrumu6	4
Şekil 4.41. [Ca(H ₂ O) ₆ (na) ₂](acs) ₂ kompleksinin kütle spektrumu 6	4
Şekil 4.42. $[Sr(H_2O)_7(na)_2](acs)_2$ kompleksinin kütle spektrumu	5
Şekil 4.43. [Ba(H ₂ O) ₇ (na) ₂](acs) ₂ kompleksinin kütle spektrumu	5

RESİMLER DİZİNİ

Resim	Sayfa
Resim 4.1. Cu(trp) ₂ (H ₂ O) kompleksinin bazı mikroorganizmalar üzerinde etkisi üzerine örnek görüntü.	ki 69
Resim 4.2. Metal-asesülfam komplekslerin E. coli bakterisi üzerine etkisi	70
Resim 4.3. Metal-asesülfam-nikotinamid karışık ligandlı komplekslerin <i>E. coli</i> bakterisi üzerine etkisi	71

xvii

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılan bazı simge ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklama
Å	Angström (10 ⁻¹⁰ metre)
G	Gram
Ka	Ayrışma Sabiti
L	Litre
р	p fonksiyonu (-log fonksiyonu), (pK _a)
Kısaltmalar	Açıklama
Ampym	Aminopirimidin
Dmen	Dimetiletilendiamin
DMF	Dimetil Formamit
DMSO	Dimetil Sülfoksit
DTA	Diferansiyel Termal Analiz
DTG	Diferansiyel (Türevsel) Termogravimetri
FDA	Food And Drug Administration- Yiyecek Ve
	İlaç Yönetimi
FSI	Florosülfonilizosiyanat
IUPAC	International Union Of Pure And Applied
	Chemistry
KSI	Klorosülfonilizosiyonat
\mathbf{NAD}^+	Nikotinamid Adenin Dinükleotid
NADP ⁺	Nikotinamid Adenin Dinükleotid Fosfat
PP	Pellegra Preventive
TG	Termogravimetri
V/V	Hacim/Hacim

1. GİRİŞ

Tıbbi inorganik kimya yaklaşık 5000 yıldır uygulanmaktadır. M.Ö. 3000 yıllarında Mısır'lıların su sterilizasyonu için bakır kullandıkları, M.Ö. 1500'lerde Arabistan ve Çin'de bazı ilaçlarda altın, Mısır'da ise çeşitli ilaçlarda demir kullanıldığı bilinmektedir. Yakın tarihlerde ise çinko, civa, galyum, germanyum, kalay, bizmut, titanyum, rutenyum, rodyum, iridyum ve molibden metallerinin tıbbi inorganik kimya alanında kullanımına başlanmıştır. Uzun yıllardan beri biyolojik aktiviteye sahip metal kompleksleri ilgi duyulan bir alan olmasına rağmen, 1960'ta *cis*-diamindikloroplatin(II) kompleksinin antitümör aktivitesinin keşfiyle tıbbi inorganik kimya gelişmeye başlamıştır (Rafique ve ark., 2000). Günümüzde platin komplekslerinin antitümör ve gümüş komplekslerinin antimikrobiyal özellikler gösterdiği bilinmektedir. Şekil 1.1'de görülen platin metalinin *cis*-[PtCl₂(NH₃)₂] kompleksi (CDDP) ve Şekil 1.2'de görülen karboplatin, yaygın bir şekilde kullanılan antikanser ilaçlarındandır (Rosenberg ve ark., 1969; Cavicchioli ve ark., 2010).

Şekil 1.1. Cisplatin (cisplatinum, *cis*-diamindikloroplatin(II), CDDP, Platinol, Platinol-AQ)

Şekil 1.2. cis-diamin(1,1-siklobütandikarboksilato) platin(II)

Benzer şekilde sulfonamide (Şekil 1.3), sulfadiazine (Şekil 1.4) ve sulfamerazine (Şekil 1.5) gibi sulfa grubu ilaçların çinko ve gümüş komplekslerinin antimikrobiyal

ve antifungal etkiye sahip olduğu yapılan çalışmalarla kanıtlanmıştır (Fisher ve ark., 2003).

Şekil 1.3. Sulfonamide fonksiyonel grubu

Şekil 1.4. Sulfadiazine

Şekil 1.5. Sulfamerazine

Bu bilgilerden yola çıkılarak bu çalışmada Mg(II), Ca(II), Sr(II), Ba(II) metallerinin asesülfam kompleksleri ve asesülfam-nikotinamid karışık ligandlı kompleksleri sentezlenmiş, sentezlenen kompekslerin yapıları X-ışınları tek kristal spektroskopisi, FT-IR spektroskopisi, elementel analiz, termal analiz (TG-DTG ve DTA) ve kütle spektroskopisi teknikleri ile aydınlatılmıştır. Yapısal karakterizasyonu yapılan komplekslerin anti-mikrobiyal aktivitileri incelenmiştir.

2. KURAMSAL TEMELLER VE KAYNAK ARAŞTIRMASI

2.1. Asesülfam

Asesülfam 1967'de kimyager Karl Clauss tarafından keşfedilen bir oksatiazinon dioksittir. Asesülfam sistematik olarak 6-metil-1,2,3-oksotiazin-4(3H)-on-2,2-dioksit olarak adlandırılır. Ayrıca 6-metil-3,4-dihidro-1,2,3-oksotiazin-4-on-2,2-dioksit, 1,2,3-oksotiazin-4(3H)-on-6-metil-2,2-dioksit, 6-metil-2,2-dioksooksotiazin-4-on (IUPAC) olarak da adlandırılmaktadır (Clauss ve Jensen, 1973). Yapısı Şekil 2.1 (a)'da görülen asesülfam halka azotu ve oksijeni, sülfonil grubu, metil grubu ve karbonil grubu içermektedir. Metil grubu alfa karbon atomuna sübstitüe olmuş ve alfa ve beta karbonları arasında çift bağ bulunmaktadır. Azota bağlı hidrojen atomu oldukça asidiktir (pKa:~2). Bu yüzden kolaylıkla potasyum tuzunu oluşturmaktadır. En yaygın kullanılan tuzu; yapısı Şekil 2.1 (b)'de görülen potasyum asesülfamdır (Hodgin, 2002). Potasyum asesülfam H₂O, DMSO ve DMF'de yüksek çözünürlüğe sahiptir. Etanol-su (60/40, V/V) ve gliserin-su (80/20, V/V) karısımında çözünmektedir. Aseton ve alkolde ise çok az çözünmektedir. Potasyum asesülfamın sudaki 0, 20, 50, 100°C'deki çözünürlüğü sırasıyla 150, 270, 580, 1300 g/L'dir. FDA tarafından izin verilmesiyle, 1983'de Avrupa'da 1988'de Amerika'da kalorisiz suni tatlandırıcı olarak kullanılmaya başlanmıştır (Duffy ve Anderson, 1998). Günümüzde birçok ülke asesülfam'ın potasyum tuzunun soğuk içeceklerde, şekerlemelerde, diş macunlarında, gargaralarda, kozmetiklerde ve ilaçlarda kullanılmasına izin vermiştir (Mukherjee ve Chakrabarti, 1997). Potasyum asesülfam vücutta metabolize olmaz ve enerji vermez. %3'lük çözeltisi çay şekerinden (sakkaroz) 200 kat daha tatlıdır. Potasyum asesülfam'ın en önemli özelliği ise sinerjistik etki (kimyasal maddelerin ve süreçlerin öngörülemeyen kombinasyonlar oluşturarak, beraber tepkimeye girme ve bunun sonucunda da tek başlarına sahip olduklarından belirgin bir biçimde daha güçlü ya da bütünüyle farklı bir etki gösterme eğilimi) göstermesidir. Yani diğer tatlandırıcılarla (sorbitol, siklamat, fruktoz, aspartam) birlikte kullanıldığında tatlılık derecesi artmaktadır. Potasyum asesülfam tek başına tatlandırıcı olarak kullanılabildiği gibi, aspartam ile 1:1 ve 1:5 oranında kullanıldığında en uygun sinerjistik etkiyi göstermektedir.

Şekil 2.1. Asesülfam (a) ve Potasyum asesülfam (b) tuzunun molekül yapısı

Molekül formülü	C ₄ H ₄ KNO ₄ S
Molekül Ağırlığı	201,242 g/mol
Yoğunluk	$1,82 \text{ g/cm}^3$
Erime Noktası	225 °C
Çözünürlük	270g/L _{SU} , 20 °C)

Çizelge 2.1. Potasyum asesülfam'ın bazı fiziksel özellikleri

2.2. Oksatiazinon Dioksit Bileşiklerinin Sentez Yöntemleri

Genel molekül yapısı Şekil 2.2'de verilen oksatiazinon dioksit bileşiklerinin sentezi için pek çok yöntem geliştirilmiştir. 6-metil oksatiazinon dioksit türevi asesülfam olarak bilinir. Asetilen, keton, β -diketon, β -oksokarboksilik asit ve benzil eterlerin florosülfonilizosiyanat (FSI) ile reaksiyonlarından sentezlenebilmektedirler (Clauss ve Jensen, 1973).

Şekil 2.2. Oksatiazinon dioksit bileşiklerinin genel yapısı

2.2.1. Alkinlerden sentezi

Alkinler FSI ile reaksiyona sokulduklarında oksatiazinon dioksit bileşikleri elde edilir. Asesülfamın elde edilebilmesi için başlangıç maddesi olarak asetilen seçilmelidir. Ara ürünün hidrolizi ve ardından NaOH çözeltisinin etkisi ile halka kapanması gerçekleşir. Sonuç olarak 6-metil oksatiazinon dioksit yani asesülfam elde edilmiş olur.

Şekil 2.3. Asesülfam'ın asetilenden sentezi

2.2.2. Ketonlardan sentezi

Ketonlarla FSI'nın reaksiyonu α hidrojen atomunun halosülfonil ile yer değiştirmesi ile başlar. Bazı durumlarda bu ara ürün kristal olarak izole edilir. Esasında halkanın kapanması ile reaksiyon ürünü elde edildiğinden izolasyona ya da saflaştırmaya gerek yoktur. Asetonun başlangıç maddesi olduğu reaksiyonda asesülfam (6-metil oksatiazinon dioksit) yan üründür ve verim %13 olmaktadır. Bu nedenle yüksek verimle ve ana ürün olarak asesülfamın elde edilebildiği değişik yöntemler araştırılmıştır.

Şekil 2.4. Asesülfamın asetondan sentezi

2.2.3. β-diketonlardan sentezi

β-diketonlar FSI ile reaksiyona girdiklerinde N-florosülfonil diaçilamitleri verir. Ara ürün etanolde ısıtıldığında ya da 1 mol NaOH ile muamele edildiğinde açil grubunu kaybeder. Ardından 2 mol NaOH ilavesi ile halka kapanır ve oksatiazinon dioksit oluşur. Burada asetilasetondan başlanarak 6-metil oksatiazinon dioksit (asesülfam), % 80 verimle sentezlenebilir.

Şekil 2.5. Asesülfamın β-diketonlardan sentezi

2.2.4. β-oksokarboksilik asitlerden sentezi

Tert-bütil asetoasetat, FSI ile reaksiyona girdiğinde termolabil α -sübstitüe ürün oluşur. Eğer oda sıcaklığında bekletilirse ya da 40-70°C'de ısıtılırsa CO₂ ve izobüten ayrılarak %85 verimle asesülfam elde edilir.

Şekil 2.6. Asesülfamın tert-bütil asetoasetattan sentezi

2.2.5. Benzileter metodu

Sakkarinin yapısına çok benzer olan benzil oksatiazinon dioksit bileşiği *o*-benzil salisilik asitten başlanarak elde edilmiştir. Fakat tadında biraz da acılık vardır.

Şekil 2.7. Benzil salisilik asitten benzil oksatiazinon dioksit sentezi

2.2.6. Fenoksit metodu

Yukarıdaki yöntemlerin her birinde florosülfonilizosiyonat (FSI) kullanılmaktadır. Florun yerine fenoksit türevlerinin yer alması ile de aynı maddeler kullanılarak oksatiazinon dioksit bileşikleri elde edilebilir. C_6H_5 -, 4-Cl- C_6H_4 -, 2,4,6-Cl₃ C_6H_4 -, flor yerine geçebilecek fenoksit gruplarıdır. Şekil 2.8'de asetonun fenoksosülfonilizosiyonat ile tepkimesinden asesülfam elde edilmesi gösterilmiştir.

Şekil 2.8. Asesülfamın aseton ile fenoksosülfonilizosiyonattan sentezi

Fenoksit yönteminde tepkime şartları fenoksit iyonuna bağlıdır. Triklorofenoksit, florür gibi kolaylıkla ayrılırken, sübstitüe olmamış fenoksit daha zor ayrılmaktadır.

2.2.7. KSI metodu

Kuvvetli S-F bağından dolayı F iyonunun kolay ayrılması şaşırtıcıdır. Florosülfonilizosiyonat (FSI) bileşiği yerine klorosülfonilizosiyonat (KSI) bileşiği kullanılarak yapılan denemeler ise başarısızlıkla sonuçlanmıştır. Bunun nedeni klorür florürden daha kolay ayrıldığı halde florürler için kullanılan şartlarda klorosülfonil grubunun hızla hidroliz olmasıdır. Fenol ya da florür iyonunun reaksiyon ürününden ayrılması zordur. Ayrıca tatlandırıcı olarak kullanılan oksatiazinon dioksit bileşikleri için toksik problemlerin oluşmasına neden olur. Bu nedenle klorosülfonilizosiyonat (KSI) kullanılarak gerçekleştirilen sentezlerin araştırılması devam etmektedir.

Ketonlar direkt ve kolaylıkla KSI ile tepkimeye girmezken β -dikarbonil türevleri kolaylıkla tepkimeye girebilir. Tert-bütil asetoasetat 0-20 °C aralığında %91 verimle α -(N-klorosülfonilkarbomoil)asetoasetata dönüşür. Isıtıldığında CO₂ ve izobüten ayrılır ve %85 verimle N-klorosülfonilasetoasetamit elde edilir.

Şekil 2.9. Asesülfamın klorosülfonilizosiyonat yöntemi ile tert-bütilasetoasetattan sentezi

2.2.8. Halka kapanması

Yukarıdaki metotlarla hazırlanan ara ürünlerde halka kapanması genellikle sulu çözeltilerde ya da yeteri kadar alkalinin yavaşça eklenmesi ile oluşan süspansiyonda gerçekleşir. Tuzlar gibi oksatiazinon bileşikleri çoğunlukla suda hazırlanır. Asitlendirilerek ya da organik çözücülerle ekstrakte edilerek izole edilirler.

2.3. Asesülfam Ligandının Metal Kompleksleri İle İlgili Çalışmalar

1967 yılında keşfedilen asesülfam ile biyokimya, gıda kimyası, inorganik kimya, bioinorganik kimya, analitik kimya ve farmakoloji alanlarında çok sayıda çalışma yapılmıştır. İnorganik kimya alanında asesülfamın ilk metal kompleksleri 2005 yılında rapor edilmiştir (Bulut ve ark., 2005; İçbudak ve ark., 2005).

Bis(acesulfamato- $\kappa^2 N^3$,O⁴)bis(2-aminopyirimidine- κN^1)copper(II) asesülfamın literatürde yer alan ilk karışık ligandlı kompleksidir. Bu kompleksin x-ışınları yöntemiyle yapısı aydınlatılmış ve asesülfamato ligandlarının *trans* konumda, imin azotu ve karbonil oksijeni üzerinden iki dişli davrandığı belirlenmiştir. Ayrıca komplekste ikincil ligand 2-aminopirimidinin hemen hemen düzlemsel olduğu gözlenmiştir. Kompleksin, hem Jahn-Teller etkisi, hem de dört üyeli şelat halkası nedeniyle bozulmuş oktahedral geometriye sahip olduğu ve asesülfamato ligandının karbonil oksijeni ve 2-aminopirimidin ligandının amin grubu arasında moleküller arası hidrojen bağı oluştuğu belirlenmiştir. Dört üyeli şelat halkanın bulunduğu Bis(acesulfamato- $\kappa^2 N^3, O^4$)bis(2-aminopyirimidine- κN^1)copper(II) kompleksi bozulmuş oktahedral geometriye sahiptir (Bulut ve ark., 2005). Şekil 2.10'da Bis(acesulfamato- $\kappa^2 N^3, O^4$)bis(2-aminopyirimidine- κN^1)copper(II) kompleksinin kristal yapısı görülmektedir.

Şekil 2.10. Bis(acesulfamato- $\kappa^2 N^3$,O⁴)bis(2-aminopyirimidine- κN^1)copper(II) kompleksinin kristal yapısı

Komplekste ekvatoryal düzlem iki aminopirimidin (ampym) ligandının azot atomları ve asesülfamat ligandlarının karbonil oksijeni tarafından oluşturulur. Asesülfamat ligandının halka azotu üzerinden gerçekleşen koordinasyon bağı oksijen üzerinden gerçekleşen bağa göre daha fazla uzamış ve eksen pozisyonundadır. Yapıda *trans* durumdaki asesülfamat ligandları Cu(II) iyonuna halka azotu ve karbonil oksijeni üzerinden bağlanarak çift dişli davranmışlardır. Oktahedral geometri tek dişli davranan iki nötral 2-aminopirimidin ligandı ile tamamlanmaktadır.

[Ni(dmen)₂(H₂O)₂](acs)₂ kompleksi, asesülfamat anyonunun tamamlayıcı iyon olarak davrandığı ilk komplekstir. Şekil 2.11'da yapısı verilen diakuabis(N,N'dimetiletilendiamin)nikel(II) asesülfamat kompleksinin termal bozunma mekanizması termal analiz (TG-DTG ve DTA) teknikleri ve kütle spektroskopisi yardımıyla incelenmiştir (İçbudak ve ark., 2005).

Şekil 2.11. [Ni(dmen)₂(H₂O)₂](acs)₂ kompleksinin yapısı

Asesülfam metal kompleksleriyle ilgili yapılan ilk çalışma, $[M(acs)_2(H_2O)_4]$ (M: Mn^{2+} , Co^{2+} , Ni^{2+} ve Cu^{2+} ; $[M(acs)_2(H_2O)_2]$ (M: Zn^{2+} ve Cd^{2+}) genel formülüne sahip komplekslerin sentezi, yapı ve özelliklerinin araştırılmasıdır (Çetin, 2005). Sentezlenen bu komplekslerden $[Co(acs)_2(H_2O)_4]$ 'nin kristal yapısı incelenmiş ve asesülfamato ligandının Co(II) iyonuna, *trans*-pozisyonunda imin azotu üzerinden koordine olduğu belirlenmiştir. $[Co(acs)_2(H_2O)_4]$ kompleksinde, asesülfamato ligandının sülfonil oksijenleri ile akua ligandlarının hidrojenleri arasında moleküller arası, asesülfamato ligandının karbonil oksijeni ile akua ligandlarının hidrojenleri arasında hem molekül içi hem de moleküller arası hidrojen bağları bulunduğu gözlenmiştir (İçbudak ve ark., 2005). Şekil 2.12'de $[Co(acs)_2(H_2O)_4]$ kompleksinin kristal yapısı, Çizelge 2.2.'de ise kristale ait veriler görülmektedir.

Şekil 2.12. Trans-bis(asesülfamato-N)tetraakuakobalt(II) kompleksinin kristal yapısı

Çizelge 2.2. $[Co(acs)_2(H_2O)_4]$ kristaline ait kristalografik ve	rile
--	------

Birim hücre hacmi (V)	1610,90(3) Å ³
Yoğunluk (d)	1,877 g.cm ⁻³
Birim hücredeki molekül sayısı (Z)	4
Kristal sistemi	Monoklinik
Uzay grubu	C2/c
Birim hücre parametreleri	
A	13,2321(14) Å
В	8,9874(6) Å
C	13,9519(15) Å
α	90°
β	103,854(8)°
γ	90°

Kristal yapısı ve termokromik özellikleri aydınlatılan $[Ni(acs)_2(H_2O)_4]$ kompleksinde asesülfamato ligandı, Ni(II) iyonuna, aynı genel formüle sahip $[Co(acs)_2(H_2O)_4]$ kompleksinden farklı olarak *trans* pozisyonunda *karbonil oksijeni* üzerinden koordine olduğu bulunmuştur. Ayrıca, iki akua ligandının hidrojen atomları ile asesülfamato ligandının karbonil ve sülfonil oksijenleri arasında moleküller arası hidrojen bağı oluştuğu gözlenmiştir (İçbudak ve ark., 2006).

Şekil 2.13. Trans-bis(asesülfamato-O)tetraakuanikel(II) kompleksinin yapısı

Çizelge 2.3.	$[Ni(acs)_2(H_2O)_4]$	kristaline ait	kristalografik	verile
--------------	-----------------------	----------------	----------------	--------

Birim hücre hacmi (V)	406,84(7) Å ³
Yoğunluk (d)	1,857 g.cm ⁻³
Birim hücredeki molekül sayısı (Z)	1
Kristal sistemi	Triklinik
Uzay grubu	P 1
Birim hücre parametreleri	
А	5,1534(5) Å
В	8,5002(2) Å
С	9,9966(10) Å
α	74,868(7)°
β	99,602(8)°
γ	75,521(8)°

Trans-bis(asesülfamato-*O*)tetraakuanikel(II), [Ni(acs)₂(H₂O)₄] kompleksinin hem faz geçişine, hem de deakuasyona bağlı termokromik özellik gösterdiği bulunmuştur.

Asesülfamato ligandının Ni(II) iyonuna karbonil oksijeni üzerinden koordine olduğu [Ni(acs)₂(H₂O)₄] kompleksi solvatokromik ve iyonokromik özellikler göstermemiştir (İçbudak ve ark., 2005).

Benzer yapıya sahip [Cu(acs)₂(H₂O)₄] kompleksi, deakuasyona bağlı termokromik, solvatokromik ve iyonokromik özellik göstermiştir.

 $[Cu(acs)_2(H_2O)_4]$ kompleksinin solvatokromik davranışında, çözücünün Lewis bazlığının artışı ile absorpsiyon bandının kırmızıya kaydığı gözlenmiştir. İyonokromik davranışında ise, $[Cu(acs)_2(H_2O)_4]$ kompleksinin Lewis bazı olarak davrandığı ve iyonların asesülfamato ligandına bağlandığı belirtilmektedir (Çetin, 2005).

Trans-bis(asesülfamato-*O*)tetraakuaçinko(II), $[Zn(acs)_2(H_2O)_4]$ kompleksinde, asesülfamato ligandı Zn(II) iyonuna *trans*-pozisyonunda karbonil oksijeni üzerinden koordine olmuştur (Şahin ve ark., 2010). Bu komplekste karbon ile oksijen arasındaki çift bağ karbonil karbonu ile azot atomu arasına kaymıştır. Kompleksin yapısı Şekil 2.14'te, birim hücre verileri ise Çizelge 2.4.'te görülmektedir.

Şekil 2.14. Trans-bis(asesülfamato-O)tetraakuaçinko(II) kompleksinin yapısı

Birim hücre hacmi (V)	407.77 7 Å ³
Yoğunluk (d)	1.880 g.cm ⁻³
Birim hücredeki molekül sayısı (Z)	1
Kristal sistemi	Triklinik
Uzay grubu	P1
Birim hücre parametreleri	
А	5.1638(5) Å
В	8.5338(9) Å
С	9.9583(9) Å
α	74.325(8) [°]
β	81.112(7) ^o
γ	75.800(8) ^o

Çizelge 2.4. [Zn(acs)₂(H₂O)₄] kristalinin birim hücre verileri

 $[Cd(acs)_2(H_2O)_2]$ kompleksinde deakuasyondan önce ve sonra faz geçişi gözlendiği belirtilmektedir. $[Zn(acs)_2(H_2O)_2]$ kompleksi ile $[Cd(acs)_2(H_2O)_2]$ kompleksinin stokiyometrilerinin aynı olduğu ve infrared spektrumlarının da benzer olduğu belirtilmiştir (Çetin, 2005).

komplekslerinde $[Ni(acs)_2(H_2O)_4],$ $[Zn(acs)_2(H_2O)_2]$ ve $[Cd(acs)_2(H_2O)_2]$ deakuasyonun tek basamakta; Mn(II) ve Co(II) komplekslerinde ise iki adımda gerçekleştiği görülmüştür. [Cu(acs)₂(H₂O)₄] kompleksinde ise deakuasyonun diğerlerinden daha düşük bir sıcaklıkta başladığı ve üst üste binmiş iki basamakta gerçekleştiği bulunmuştur. $[M(acs)_2(H_2O)_n]$ komplekslerinin deakuasyon basamağına ilişkin termal kararlılık (DTG_{maks}) sırası: Ni(II) (150°C) > Cd(II) (135°C) > Zn(II) $(125^{\circ}C) > Co(II)$ $(118^{\circ}C) > Mn(II)$ $(85^{\circ}C) > Cu(II)$ $(54^{\circ}C)$ seklinde bulunmustur (Çetin, 2005). [Cu(acs)₂(H₂O)₂(C₂H₅OH)₂] kompleksinde asesülfamato ligandlarının merkezi atom Cu²⁺ iyonuna sülfonil oksijeni üzerinden koordine olduğu gözlenmiştir. Ayrıca bu kompleksin solvatokromik, termokromik ve iyonokromik bilinmektedir. Kompleksin solvatokromik özelliğinden etki gösterdiği de

faydalanarak çözücülerin alıcı sayısı (Lewis asitliği) ve verici sayılarını (Lewis bazlığı) belirlemek mümkündür.

Şekil 2.15. [Cu(acs)₂(H₂O)₂(C₂H₅OH)₂] kompleksinin yapısı

2.4. Nikotinamid

 $C_6H_6N_2O$ kimyasal formülüne sahip, molekül ağırlığı 122,12 g/mol, erime sıcaklığı 128-131 °C olan bileşiğin IUPAC ismi 3-piridin karboksamid'dir. Temelde nikotinik asidin bir amidi olan nikotinamid; niyasinamid, niyasin, nikotin asit amid, vitamin PP olarak da isimlendirilmektedir. 20°C'de sudaki çözünürlüğü 100g/100ml iken, etanoldeki çözünürlüğü 666g/100 ml olup etanolde sudan daha iyi çözünür. Yağlarda hiç çözünmez, fakat eterde çok yavaş çözünür.

Şekil 2.16. Nikotinamid

Tsivadze ve ark. (1975a)'na göre kendine has bir kokusu ve tadı olan nikotinamid renksiz bir kristal maddedir. Nikotinamid piridin halkasına sahip olduğundan dolayı piridinin karakteristik reaksiyonlarını vermektedir (Edebalı, 2007).

2.4.1. Nikotinamidin biyolojik önemi

Tsivadze ve ark. (1978a)'na göre 1887 yılında tütünün alkoloidi olan nikotinin oksidasyonu sonucunda elde edilen nikotinamidin 40 yıl sonra çok önemli bir vitamin olduğunun farkına varılmıştır. Nikotinamidin biyolojik önemi son zamanlarda aydınlığa kavuşturulmuştur. Aynı vitamin değerine sahip olan nikotinik asit ve nikotinamidin fiziksel ve kimyasal özellikleri uzun zamandır bilinmektedir (Edebalı, 2007).

 B_3 vitamini olan nikotinamid suda çok kolay çözündüğünden vitaminin fazlası böbreklerden atılır. B vitaminleri olan nikotinamid, tiamin, riboflavin ve pantotenik asit biyolojik oksidasyon ve redüksiyon koenzimlerinin yapıtaşlarıdır. Nikotinamid de bir çok koenzimin yapısının bir parçasını oluşturur (Hökelek ve Necefoğlu, 1999a).

Tsivadze ve ark. (1975b)'na göre dokularda nikotinamid, nikotinamid adenin dinükleotid (NAD) ve nikotinamid adenin dinükleotid fosfat (NADP) şekillerinde bulunur. Nikotinik asit şeklinde alınan vitamin önce amidine sonra ise koenzim şekline dönüştürülür (Edebalı, 2007). Oral yolla alınan nikotinik asit bazı alerjik durumlar gösterirken nikotinamid bu durumu göstermez. Bu nedenle nikotinik asit şeklinde değil de nikotinamid olarak kullanılması daha uygundur.

Şekil 2.17. (a) NAD^+ ve (b) $NADP^+$ molekülü

NAD ve NADP koenzimleri, piridin koenzimleri veya nükleotitleri olarak da adlandırılırlar (Hökelek ve Necefoğlu, 1999b). En çok yerfistiği ve bira mayasında bulunan nikotinamid ayrıca meyveler, tahıllar, sebzeler, yeşil bitkiler, karaciğer ve böbrekte de bulunur (Hökelek ve Necefoğlu, 1998).

Kedilerin dışındaki memeliler, çoğu bakteri ve bitkiler bu vitamini sentezleyebilir (Hökelek ve Necefoğlu, 1998; Hoang ve ark., 1999). Kanatlılar da bu vitamini triptofandan sentezleyebilirler (Hoang ve ark., 1995). Triptofanca fakir olan mısır bitkisi ile beslenen hayvanlarda B₃ vitamini eksikliği görülür ki, bunun sonucunda insanlarda pellegra hastalığı baş gösterir (Antsyshkina ve ark., 1979).

2.4.2. Nikotinamid-metal kompleksleri

B₃ vitamini olarak görev yapan ve ilaç preparatlarında kullanılan nikotinamidin geçiş metalleriyle oluşturduğu kompleksler ile ilgili çalışmaların önemi son dönemlerde artmıştır. Nikotinamidin bu metallerle yaptığı komplekslerin spektral olarak incelenmesi sonucu, onun monodentant özelliğe sahip olduğu anlaşılmıştır. Nikotinamidin metallere aromatik halkada (piridin halkası) bulunan azot atomu üzerinden monodentant olarak koordine olduğu bilinmektedir (Edebalı, 2007).
3. MATERYAL VE YÖNTEM

3.1. Materyal

Komplekslerin sentezinde Aldrich marka $Ca(ClO_4)_2.4H_2O$ ve $Sr(ClO_4)_2$, Merck marka $Mg(ClO_4)_2.2H_2O$ ve $Ba(ClO_4)_2$, Fluka marka Potasyum asesülfam (Kacs, Kace), ve Nicotinamide, çözücü olarak saf su, Aldrich marka etanol kullanılmıştır.

3.2. Yöntem

Komplekslerin sentezinde, metal perklorat/potasyum asesülfam mol oranı 1:2 olacak yeterli miktarda alınarak (genellikle 0,01:0,02 mol oranında) ayrı ayrı beherlerde çözülmüş, oluşan çözeltiler yavaş yavaş karıştırılarak, aşağıdaki reaksiyonda görüldüğü gibi, KClO₄ tuzunun çökmesi ve komplekslerin oluşumu sağlanmıştır.

 $M(ClO_4)_2 + 2 K(acs) \rightarrow 2 KClO_4 + [M(acs)_n(H_2O)_x]$

Karışık ligandlı kompleksler ise; $[M(acs)_n(H_2O)_x]$ kompleksi sentezlendikten sonra metal/nikotinamid oranı 1:2 olacak şekilde her iki bileşenin sulu çözeltilerinin karıştırılması ile elde edilmiştir.

$$[M(acs)_n(H_2O)_x] + 2 nikotinamid \rightarrow [M(acs)_n(H_2O)_y(na)_m]$$

Bu yöntemlerle aşağıdaki formüllere sahip 8 adet kompleks sentezlenmiştir.

 $[Mg(H_2O)_6](acs)_2, C_8H_{10}CaN_2O_9S_2, C_8H_{10}SrN_2O_9S_2, C_8H_{10}BaN_2O_9S_2,$

 $[Mg(H_2O)_4(na)_2](acs)_2, [Ca(H_2O)_6(na)_2](acs)_2, C_8H_{10}SrN_2O_9S_2, Ba(H_2O)_7(na)_2](acs)_2$

Elde edilen kompleksler FT-IR Spektroskopisi, X-ışınları tek kristal kırınımı, termal analiz teknikleri, erime noktası, kütle spektroskopisi ve elementel analiz gibi yöntemler ile karakterize edilmiştir.

Komplekslerin yapı aydınlatılmasında kullanılan analitik bir yöntem olan infrared spektroskopisi komplekslerdeki çeşitli bağların titreşim frekanslarını ölçerek yapıdaki fonksiyonel gruplar, kompleksteki geometrik şekilleri ve yapıda bulunan bağların türleri hakkında fikir yürütülebilecek bilgi verir. Komplekslerin IR

spektrumları Bruker marka Vertex 80V Model FT-IR Spektrofotometresiyle 4000-400 cm⁻¹ aralığında kaydedilmiştir.

Termal analiz, herhangi bir numune önceden belirlenmis bir programa göre ısıtılıyor veya soğutuluyorken, numunede meydana gelen fiziksel ve kimyasal değişiklerin aynı anda kaydedildiği tekniklerin genel adıdır. Numunenin sıcaklığı doğrusal bir hızla artırılıyorken, aynı zamanda numune sıcaklığı ve ağırlığının sürekli olarak kaydedildiği teknik TGA (termogravimetrik analiz) olarak adlandırılır. Ağırlığın sıcaklığa karşı çizildiği grafiğe de termogravimetrik eğri denir. Termogravimetri teorisi basit olan bir tekniktir. Isıtmayla ayrışan bir maddenin, uçucu ürünlerini kaybetmesi sonucu ağırlığında azalma meydana gelir. Uçucu reaksiyon ürünlerinin uzaklasması sonucu meydana gelen numune ağırlığındaki azalma, bir maddedeki kimyasal değişikliklerin belirlenmesinde önemli bir olarak değişken kullanılmaktadır. Bir TG eğrisi, farklı sıcaklık aralıklarında meydana gelen ve birbirini izleyen reaksiyonlarla oluşan uçucu ürünleri, bir seri ağırlık kaybı basamağı olarak gösterir.

Erime noktası, bir bileşiğin önemli karakteristik özelliklerinden biridir ve o bileşiğin tanımlanmasında yaygın olarak kullanılmaktadır. Komplekslerin erime noktası STUART SMP30 cihazı ile, 5°C/dakika ısıtma hızı ile 20 – 300 °C sıcaklık aralığında ısıtma ile tayin edilmiştir.

Kütle analizleri, bir numuneyi özel bir düzenekle gaz halinde yüklü ve hareketli bileşenlerine dönüştürerek bunları kütle/yük oranına göre ayırma ve ayırmadan yararlanılarak da numuneyi teşhis ve tayin etme metodu olan Külte Spektroskopisi yöntemiyle gerçekleştirilir. Kütle/yük oranı genellikle m/z şeklinde ifade edilir. Komplekslerin kütle analizleri Thermo Scientific DSQII Solid Probe Analyzer model cihaz kullanılarak RT zamanına göre en uygun mass diyagramı seçilerek gerçekleştirilmiştir.

Sentezlenen komplekslerin antimikrobiyal aktivitesi disk difüzyon tekniği ile Grampozitif bakteriler (*Entereococcus feacalis* ATCC 29212 ve *Staphylococcus aureus* ATCC 25923), Gram-negatif bakteriler (*Pseudomonas aeroginosa* ATCC 27853 ve *Escherichia coli* ATCC 25922) ve mantar (*Candida albicans* ATCC 10231) suşlarına karşı in-vitro ortamda araştırılmıştır. Yöntem için öncelikle bakteri kültürleri 37 °C'de 18- 24 saat Nutrient Broth agar besiyerinde, mantar kültürü ise 37 °C'de 18- 24 saat Sabouraud Dextrose Broth besiyerinde yetiştirilmiştir. Kültür süspansiyonları 0,5 McFarland Standardı ile karşılaştırılarak ayarlandı. Petri kapları 100 µl kültür çözeltisine 20 ml Mueller Hinton Agar (MHA) eklenmesiyle hazırlanmıştır. Maddelerin emdirileceği diskler Watman No:4 kağıdından 6 mm'lik çapta kesilerek hazırlanmışlardır. Komplekslerin %10'luk DMSO çözücüsünde hazırlanan 0,001 gr/10 µL değişimdeki çözeltileri bu disklere emdirilmiştir.

Besiyeri ile yapılan çalışmalarda sterilizasyon oldukça önemlidir. Çünkü yapılacak çalışma ortamının ve malzemelerin tüm kontaminasyondan arındırılmış olması gerekmektedir. Bunun için de besi yerine konulacak diskler (Watman No:4) pastuer fırınında 175 °C'de steril edilirken, antimikrobiyal etkisi belirlenecek olan maddeler ise 0,45 µm por çapına sahip mikro filtrelerden geçirilerek steril edilmiştir.

Aktif hale getirilmiş mantar ve mikroorganizmaların üreyebileceği plak besiyeri yüzeyine ekimleri yapılmış daha sonra da madde emdirilmiş diskler ikili olarak karşılıklı besi yerine yerleştirilmiştir. Tüm bu işlemlerden sonra besiyerleri 37 °C'de 24-48 saat inkübe edilmiştir.

İnkübasyon sonucu diskler etrafında oluşan inhibisyon bölgeleri kumpas ile ölçülerek etki alanları bulunmuş ve değerlendirmeler yapılmıştır.

4. ARAŞTIRMA SONUÇLARI VE TARTIŞMA

4.1. Infrared (FT-IR) Spektroskopisi

Sentezlenen M-asesülfam ve M-asesülfam-nikotinamide (M: Mg, Ca, Sr, Ba) komplekslerinin 4000-400 cm⁻¹ aralığındaki FT-IR spektrumları incelenmiş ve karakteristik titreşimler belirlenerek bu titreşimler ile komplekslerin yapıları arasındaki ilişki araştırılmıştır. Komplekslerin koordinasyon özellikleri hakkında daha fazla bilgi edinebilmek için asesülfamat ligandına ait imin, karbonil ve sülfonil gibi grupların gerilme titreşimleri potasyum asesülfam tuzunun titreşimleri ile karşılaştırılarak titreşimlerdeki değişimler araştırılmıştır. Literatürde asesülfamat ligandına benzer ligandların (sakkarin) metal komplekslerinde sülfonil grubunun asimetrik ve simetrik titreşimleri arasındaki fark 140 cm⁻¹ civarındadır. 3100-2800 cm⁻¹ aralığında C-H titreşimleri bulunmaktadır. v_s(C-N-S) ve v_{as}(C-N-S) gerilme titreşimlerine ait keskin bant sırasıyla 1364 ve 941 cm⁻¹ olduğu belirtilmektedir (Yılmaz ve ark., 2001, 2002; Topçu ve ark., 2002).

Şekil 4.1. Potasyum asesülfamın FT-IR spektrumu

Potasyum asesülfamın FT-IR spektrumunda (Şekil 4.1), 3174 cm⁻¹'de aromatik C-H gerilme titreşimi, 2924 cm⁻¹'de alifatik C-H (CH₃) gerilme titreşimi, 1653 cm⁻¹'de karbonil grubuna (C=O) ait gerilme titreşimi, 1588 cm⁻¹'de C=C çifte bağına ait titreşim, 1360 cm⁻¹'de C-N-S grubuna ait simetrik, 939 cm⁻¹'de ise asimetrik gerilme titreşimi, 1290 cm⁻¹'de SO₂ grubuna ait asimetrik, 1172 cm⁻¹'de ise simetrik gerilme titreşimi görülmektedir.

4.1.1. [Mg(H₂O)₆](acs)₂ (Hekzaakuamagnezyum(II) asesülfamat) kompleksi

Şekil 4.2. [Mg(H₂O)₆](acs)₂ kompleksinin FT-IR spektrumu

 $[Mg(H_2O)_6](acs)_2$ kompleksinin FT-IR spektrumunda (Şekil 4.2); 3578 cm⁻¹ ve 3352 cm⁻¹'de görülen yayvan bantlar O-H gerilme titreşim bantlarıdır. Akua ligandlarının hidrojen bağına katılması nedeniyle O-H bandının genişlemesine neden olmuştur. Farklı O-H titreşimleri farklı kuvvetteki hidrojen bağlarından kaynaklanmaktadır. Bunlar; H—O—H……N, H—O—H……O=S=O ve H—O—H……O=C titreşimleridir.

K(acs)' de sırasıyla 1290 cm⁻¹ ve 1172 cm⁻¹'de görülen asimetrik ve simetrik SO₂ gerilme titreşimleri komplekste ise sırasıyla 1319 cm⁻¹ ve 1175 cm⁻¹'de görülmektedir. Potasyum asesülfamda sırasıyla 1360 cm⁻¹ ve 939 cm⁻¹'de görülen C-N-S grubunun simetrik ve asimetrik titreşimleri komplekste 1369 cm⁻¹ ve 939

cm⁻¹'de görülmektedir. Aromatik C-H gerilme titreşimleri 3180 cm⁻¹'de, karbonil grubu gerilme titreşimi 1662 cm⁻¹'de, C=C gerilme titreşimi 1557 cm⁻¹'de görülmektedir. Hem potasyum asesülfam'da hem de $[Mg(H_2O)_6](acs)_2$ kompleksinde asesülfam tamamlayıcı iyon olmasına rağmen, $[Mg(H_2O)_6](acs)_2$ kompleksindeki hidrojen bağları nedeniyle karbonil grubu ve sülfonil (SO₂) grubunun titreşim değerlerinde farklılıklar gözlenmektedir. Metal-oksijen bağı titreşimleri 523 cm⁻¹ ve 552 cm⁻¹'de gözlenmektedir.

4.1.2. C₈H₁₀CaN₂O₉S₂ kompleksi

Şekil 4.3. C₈H₁₀CaN₂O₉S₂ kompleksinin FT-IR spektrumu

 $C_8H_{10}CaN_2O_9S_2$ kompleksinin FT-IR spektrumu incelendiğinde (Şekil 4.3) 3564 cm⁻¹'de O-H gerilme titreşimi görülmektedir. Hidrojen bağlarından dolayı bu pikler yayvanlaşmıştır. Bu hidrojen bağları; H—O—H…N ve H—O—H…O(SO₂) arasındadır.

Aromatik ve alifatik C-H gerilmeleri sırasıyla 3110 cm⁻¹, 2968 cm⁻¹ ve 2927 cm⁻¹'de, C=C titreşimi 1535 cm⁻¹'de görülmektedir. Karbonil gerilme titreşiminde yarılma gözlenmektedir (1661 cm⁻¹ ve 1644 cm⁻¹). Yarılma kompleksin yapısında farklı şekilde bağlanma gösteren karbonil gruplarının bulunmasından kaynaklanmaktadır. SO₂ grubunun asimetrik gerilmesi 1279 cm⁻¹, simetrik gerilmesi 1178 cm⁻¹'de görülmektedir. C-N-S grubunun simetrik ve asimetrik titreşimleri komplekste 1352 cm⁻¹ ve 934 cm⁻¹'de görülmektedir. Komplekste asesülfamato ligandı sülfonil grubu üzerinden ve azot atomundan koordinasyon gösterdiğinden sülfonil ve C-N-S grubunun titreşim değerleri potasyum asesülfama göre değişiklik göstermiştir. Metaloksijen ve metal-azot bağlarına ait titreşimler 477 cm⁻¹ ve 519 cm⁻¹'de görülmektedir.

4.1.3. C₈H₁₀SrN₂O₉S₂ kompleksi

 $C_8H_{10}SrN_2O_9S_2$ kompleksinin FT-IR spektrumu (Şekil 4.4) incelendiğinde; 3623 cm⁻¹ ve 3554 cm⁻¹'de O-H gerilmeleri, 3116 cm⁻¹ ve 2922 cm⁻¹'de sırasıyla aromatik ve alifatik C-H gerilme titreşimleri, 1652 cm⁻¹'de C=O, 1568 cm⁻¹'de C=C gerilme titreşimi görülmektedir. SO₂ grubunun simetrik ve asimetrik gerilmeleri sırasıyla 1179 cm⁻¹ ve 1275 cm⁻¹'de, C-N-S grubunun simetrik ve asimetrik gerilmeleri sırasıyla 1367 cm⁻¹ ve 943 cm⁻¹'de görülmektedir. Kompleks, asesülfamato ligandlarının SO₂ grubu, azot atomu ve karbonil grubu üzerinden koordinasyon gösterdiği polimerik bir komplekstir. Bu yüzden SO₂ grubu ve C-N-S grubunun titreşim değerlerinde potasyum asesülfama göre dikkate değer farklılıklar bulunmaktadır. Metal-oksijen ve metal-azot bağlarına ait titreşimler 465 cm⁻¹ ve 524 cm⁻¹'de görülmektedir.

Şekil 4.4. C₈H₁₀SrN₂O₉S₂ kompleksinin FT-IR spektrumu

4.1.4. C₈H₁₀BaN₂O₉S₂ kompleksi

 $C_8H_{10}BaN_2O_9S_2$ kompleksinin FT-IR spektrumunda (Şekil 4.5) 3589 cm⁻¹ ve 3527 cm⁻¹'de O-H gerilmeleri, 3108 cm⁻¹ ve 2922 cm⁻¹'de sırasıyla aromatik ve alifatik C-H gerilme titreşimleri, 1651 cm⁻¹'de C=O, 1558 cm⁻¹'de C=C gerilme titreşimi görülmektedir. SO₂ grubunun simetrik ve asimetrik gerilmeleri sırasıyla 1175 cm⁻¹ ve 1275 cm⁻¹'de, C-N-S grubunun simetrik ve asimetrik gerilmeleri sırasıyla 1368 cm⁻¹ ve 942 cm⁻¹'de görülmektedir. Metal-oksijen ve metal-azot bağlarına ait titreşimler 464 cm⁻¹ ve 523 cm⁻¹'de görülmektedir.

Şekil 4.5. C₈H₁₀BaN₂O₉S₂ kompleksinin FT-IR spektrumu

Bileşik	v(OH)	<i>v</i> (С-Н)	v(C=O)	v(C=C)	$v_{\rm as}({ m SO}_2)$	$v_{\rm s}({ m SO}_2)$	v _s (CNS)	v _{as} (CNS)	v(M-O/M-N)
Kacs	-	3174 2924	1654	1588	1290	1172	1360	939	
$C_8H_{20}MgN_2O_{14}S_2$	3578 3352	3180	1661	1557	1319	1175	1369	939	488 523 557
$C_8H_{10}CaN_2O_9S_2$	3564	3110 2968 2927	1661 1644	1538	1279	1178	1352 1330	934	477 519 545
$C_8H_{10}SrN_2O_9S_2$	3623 3554	3116 2922	1652	1568	1275	1179	1367	943	465 524 565
$C_8H_{10}BaN_2O_9S_2$	3589 3527	3108 2922	1651	1558	1275	1175	1368	942	465 523 550

Çizelge 4.1. Asesülfam ve Metal komplekslerinin karakteristik FT-IR titreşim değerleri (cm⁻¹)

4.1.5. [Mg(H₂O)₄(na)₂](acs)₂ karışık ligand kompleksi

[Mg(H₂O)₄(na)₂](acs)₂ kompleksinin FT-IR spektrumunda (Şekil 4.6) 3565 cm⁻¹ ve 3431 cm⁻¹'de O-H gerilme titreşimleri görülmektedir. 3369 cm⁻¹ ve 3303 cm⁻¹'de N-H gerilme titreşimleri, 3211 cm⁻¹'de aromatik C-H, 3075 cm⁻¹'de alifatik C-H gerilme titreşimleri görülmektedir. Karbonil (C=O) gruplarının titreşimleri 1688_(amit) cm⁻¹ ve 1651_(acs) cm⁻¹'de görülmektedir. N-H grubu eğilme titreşimi 1599 cm⁻¹'de, C=C gerilme titreşimi 1550 cm⁻¹'de görülmektedir. Sülfonil grubu asimetrik gerilme titreşimi 1311 cm⁻¹, simetrik gerilme titreşimi 1169 cm⁻¹'de, C-N-S grubu asimetrik gerilme titreşimi 939 cm⁻¹, simetrik gerilme titreşimi 1396 cm⁻¹'de görülmektedir. Metal-oksijen ve metal-azot bağları 517 cm⁻¹ ve 560 cm⁻¹'de görülmektedir.

Şekil 4.6. [Mg(H₂O)₄(na)₂](acs)₂ kompleksinin FT-IR spektrumu

4.1.6. [Ca(H₂O)₆(na)₂](acs)₂ karışık ligand kompleksi

 $[Ca(H_2O)_6(na)_2](acs)_2$ kompleksinin FT-IR spektrumu Şekil 4.7'de verilmiştir. Spektrumda, 3518 cm⁻¹ ve 3423 cm⁻¹'de görülen keskin bantlar O-H gerilme titreşimlerine aittir. N-H (NH₂ grubu) gerilme titreşimleri 3368 cm⁻¹ ve 3296 cm⁻¹'de görülmektedir. Aromatik ve alifatik C-H gerilme titreşimleri sırasıyla 3060 cm⁻¹ ve 2960 cm⁻¹'de görülmektedir. Karbonil gruplarına ait gerilme titreşimleri 1678_(amit) cm⁻¹ ve 1650_(acs) cm⁻¹'de, N-H eğilme titreşimi 1600 cm⁻¹'de, C=C titreşimi 1578 cm⁻¹'de görülmektedir. Sülfonil grubunun asimetrik ve simetrik gerilme titreşimleri sırasıyla 1270 cm⁻¹ ve 1176 cm⁻¹'de, C-N-S grubunun asimetrik ve simetrik gerilme titreşimleri 936 cm⁻¹ ve 1385 cm⁻¹'de görülmektedir.

Şekil 4.7. [Ca(H₂O)₆(na)₂](acs)₂ kompleksinin FT-IR spektrumu

4.1.7. [Sr(H₂O)₇(na)₂](acs)₂ karışık ligand kompleksi

Şekil 4.8'de $[Sr(H_2O)_7(na)_2](acs)_2$ kompleksinin FT-IR spektrumu görülmektedir. 3577 cm⁻¹ ve 3520 cm⁻¹'de görülen keskin bantlar O-H grubu gerilme titreşimlerine aittir. 3370 cm⁻¹ ve 3290 cm⁻¹'de görülen banlar ise N-H gerilme titreşimine karşılık gelmektedir. Aromatik ve alifatik C-H gerilme titreşimleri sırasıyla 3143-3070 ve 2824 cm⁻¹'de görülmektedir. 1706_(amit) cm⁻¹, 1675 cm⁻¹ ve 1656_(acs) cm⁻¹'de görülen keskin bantlar, karbonil(C=O) grubu gerilme titreşimlerine aittir. NH₂ grubu eğilme titreşimi 1610 cm⁻¹'de, C=C çifte bağ gerilme titreşimleri sırasıyla 1251 cm⁻¹ ve 1160 cm⁻¹'de, C-N-S grubuna ait asimetrik ve simetrik gerilme titreşimleri sırasıyla 936 cm⁻¹ ve 1358 cm⁻¹'de görülmektedir.

Şekil 4.8. [Sr(H₂O)₇(na)₂](acs)₂ kompleksinin FT-IR spektrumu

4.1.8. [Ba(H₂O)₇(na)₂](acs)₂ karışık ligand kompleksi

Kompleksin FT-IR spektrumu Şekil 4.9'da görülmektedir. 3592 cm⁻¹ ve 3527 cm⁻¹' de görülen keskin bantlar O-H gerilme titresiminden kaynaklanmaktadır. NH2 grubuna ait N-H gerilme titreşimlerinden kaynaklanan bantlardan biri 3367 cm⁻¹'de aromatik C-H bandının genişlemesi nedeniyle görülürken, diğer bant görülememektedir. C-H gerilme titreşimleri 3161-3110 cm⁻¹ (aromatik) ve 2923 cm-1'de (alifatik) görülmektedir. Karbonil(C=O) gruplarının gerilme titreşimleri 1676(amit) cm⁻¹ ve 1652(acs) cm⁻¹'de görülmektedir. N-H eğilme titreşimleri 1600 cm⁻¹'de, C=C çift bağ gerilmesi 1558 cm⁻¹'de, sülfonil grubu asimetrik ve simetrik gerilme titreşimleri sırasıyla 1320 cm⁻¹ ve 1176 cm⁻¹'de görülmektedir. C-N-S grubuna ait asimetrik gerilme titresimi 941 cm⁻¹'de, simetrik gerilme titresimi 1368 cm⁻¹'de görülmektedir.

Şekil 4.9. [Ba(H₂O)₇(na)₂](acs)₂ kompleksinin FT-IR spektrumu

Bileşik	v(OH)	$v_{ger}(NH)$	<i>v</i> (С-Н)	v(C=O)	v _{eg} (NH)	v(C=C)	$v_{as}(SO_2)$	$v_{\rm s}({ m SO}_2)$	v _s (CNS)	v _{as} (CNS)	v(M-O/M-N)
$[Mg(H_2O)_4(na)_2](acs)_2$	3565 3431	3369 3303	3211 3075	1688 1651	1599	1550	1311	1169	1396	939	517 560
$[Ca(H_2O)_6(na)_2](acs)_2$	3518 3423	3368 3296	3060 2960	1678 1650	1600	1579	1270	1176	1385	936	468 520 557
$[Sr(H_2O)_7(na)_2](acs)_2$	3577 3520	3370 3300	3142 2824	1706 1675 1656	1610	1588	1251	1160	1358	936	518 550 570
$[Ba(H_2O)_7(na)_2](acs)_2$	3592 3527	3367	3161 3110 2923	1676 1652	1600	1558	1320	1176	1368	941	464 523 563

Çizelge 4.2. Asesülfam-Nikotinamid-Metal karışık ligand komplekslerinin karakteristik FT-IR titreşim değerleri (cm⁻¹)

4.2. X-Işınları Tek Kristal Çalışmaları

Kristallerin yapı çözümünde kullanılacak olan bağımsız yansımalar Ondokuz Mayıs Üniversitesi, Fizik Bölümü, X-ışınları laboratuvarında bulunan alan detektörlü STOE IPDS II (Stoe ve Cie, 2002) kırınım metresi ile MoK_{α} ışını kullanılarak toplanmıştır. Kristallerin yapı çözümü sırasında *WinGX* (Farrugia, 1999) paket programı içindeki *SHELXS 97* (Sheldrick, 2008) yazılımı, çözülen yapıların arıtımında ise *SHELXL 97* (Sheldrick, 2008) yazılımından yararlanılmıştır. Bulunan sonuçları görsel hale getirmek için *Mercury* (Macrae ve ark., 2006) yazılımı kullanılmıştır.

Yapı çözümü sırasında hidrojen dışındaki atomların konumları belirlenip çözüm işleminden sonra yapı arıtımına başlanmıştır. Arıtımın ilk aşamasında atomların konumlarının daha duyarlı hale gelmesi ve eksik atomların belirlenmesi için izotropik arıtım yapılmıştır. Arıtım sonucunda hidrojen atomları dışında eksik atom olmadığı görüldü ve anizotropik arıtım yapılmıştır. Oksijen atomlarına bağlı hidrojen atomları serbest olarak bağlanmış ve arıtılmıştır. Diğer bütün hidrojen atomlarının arıtımında binme (riding) modeli uygulanmıştır.

4.2.1. C₈H₂₀MgN₂O₁₄S₂ kompleksi

X-Işını kırınını tek kristal yöntemi ile yapısı aydınlatılan komplekste altı akua ligandının Mg^{2+} iyonuna koordine olduğu, asesülfamatların ise tamamlayıcı iyon olarak davrandığı görülmüştür. Serbest haldeki asesülfamato ligandlarının su molekülleri ile oluşturduğu O–H···O hidrojen bağları yapının üç boyutta paketlenmesini sağlamaktadır. Mg-O bağ uzunlukları 2.0445(11)-2.0817(12) Å aralığında değişmektedir. Şekil 4.10'da [Mg(H₂O)₆](acs)₂ kompleksinin asimetrik molekül yapısı görülmektedir. Şekil 4.11'de ise kompleksin kararlılığı sağlayan hidrojen bağları *b* ekseni boyunca ağ örgü yapısı görülmektedir. Şekil 4.12'de kompleksin üç boyutlu yapısı ve tabakalar arasındaki hidrojen bağları görülmektedir. Hidrojen bağları asesülfam molekülünde bulunan sülfonil oksijeni, karbonil oksijeni, halka azotu ve halka oksijeni ile akua ligandlarındaki hidrojen atomları arasında oluşmuştur. Şekil 4.13'te kompleksin birim hücre yapısı verilmiştir. Çizelge 4.3.'de [Mg(H₂O)₆](acs)₂ kristaline ait veriler ve arıtım değerleri verilmiştir. Çizelgeden de görüldüğü gibi kompleks triklinik kristal sistemine sahiptir. Molekülün birim hücre

parametreleri a=6.9404(8) Å, b=8.5775(11) Å, c=8.7200(12)Å, α =68.564(10)°, β =78.64(1)°, γ =81.26(1)° olarak bulunmuştur. Çizelge 4.4., Çizelge 4.5., Çizelge 4.6., ve Çizelge 4.7.'de komplekse ait önemli bağ açıları ve bağ uzunlukları verilmiştir.

Şekil 4.10. [Mg(H₂O)₆](acs)₂ kompleksinin asimetrik molekül yapısı.
[(i) -x+2, -y+2, -z.]

Şekil 4.11. [Mg(H₂O)₆](acs)₂ kompleksinin b ekseni boyunca paketlenmesi

Şekil 4.12. $[Mg(H_2O)_6](acs)_2$ kompleksinin üç boyutlu gösterimi

Şekil 4.13. [Mg(H₂O)₆](acs)₂ kompleksinin birim hücredeki gösterimi

Kimyasal Formül	$C_8H_{20}MgN_2O_{14}S_2$
Formül Ağırlığı (a.k.b.)	456.69
Kırınım Toplama Metodu	ω-taraması
X – Işını ve Dalga Boyu (Å)	MoK _{α} , $\lambda = 0.71073$ Å
Veri Toplama Sıcaklığı	296 K
Kristal Sistemi	Triklinik
Uzay Grubu	P-1
a (Å)	6.9404 (8)
b (Å)	8.5775 (11)
c (Å)	8.7200 (12)
α (°)	68.564 (10)
β (°)	78.64 (1)
γ (°)	81.26 (1)
Birim Hücre Hacmi (Å ³)	471.92 (10)
Birim Hücredeki Molekül Sayısı	1
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.607
F ₀₀₀	238
Gözlenen Yansıma Sayısı	7885
Bağımsız Yansıma Sayısı	1858
Çizgisel Soğurma Katsayısı (mm ⁻¹)	0.39
h, k, l Aralığı	-8→8, -10→10, -10→10
Parametre Sayısı	165
$S(F^2)$	1.09
$\Delta \rho_{\text{maks}}, \Delta \rho_{\text{min}} (e/\text{\AA}^3)$	0.22, -0.26
R _{int}	0.043
R	0.027
wR	0.078

Çizelge 4.3. $[Mg(H_2O)_6](acs)_2$ kristaline ait veriler ve arıtım değerleri

Çizelge 4.4. [Mg(H₂O)₆](acs)₂ molekülünün hidrojen atomu dışındaki atomlarına ait seçilmiş bağ uzunlukları (Å)

Mg1-O5	2.0445(11)	Mg1-O6	2.0644(12)
Mg1-O7	2.0817(12)	O3-S1	1.6064(12)
O1-S1	1.4224(13)	O2-S1	1.4224(14)
N1-S1	1.5648(13)	C1-O4	1.2472(18)
~ · · · · · ·	-		

Simetri kodu: (i) -x+2, -y+2, -z.

Λ Ц·····D	Hidrojen Bağı	Hidrojen Bağı
A—II D	Uzunlukları (Å)	Açıları (°)
O—H····N	1,951	167,38
О—Н…∙О (СО)	1,852	176,8
O—H····O (CO)	1,865	173,11
$O - H \cdots O'(SO_2)$	2,096	161,61
$O - H \cdots O$ " (SO_2)	2,126	163,28
$O - H \cdots O$ " (SO_2)	2,364	143,39

Çizelge 4.5. $[Mg(H_2O)_6](acs)_2$ kompleksinde Hidrojen Bağı uzunlukları(Å) ve açıları(°)

Çizelge 4.6. [Mg(H₂O)₆](acs)₂ kompleksinde bağ açıları(°)

			1	1	
Atomlar	Açı	Atomlar	Açı	Atomlar	Açı
12H-4C-14H	107,80	50-10S-60	103,56	19H-16O-15Mg	128,11
12H-4C-13H	118,05	50-10S-70	106,38	20H-16O-15Mg	122,55
13H-4C-14H	104,52	6O-10S-7O	119,29	30H-26O-15Mg	120,26
3C-4C-12H	107,00	3C-5O-10S	117,39	31H-26O-15Mg	120,74
3С-4С-13Н	109,66	32H-27O-33H	105,53	260-15Mg-270	90,80
3C-4C-14H	109,63	21H-17O-22H	111,59	260-15Mg-250	90,79
4C-3C-50	111,12	28H-25O-29H	106,42	260-15Mg-160	89,21
4C-3C-2C	127,90	23H-18O-24H	105,53	260-15Mg-180	89,20
3C-2C-11H	120,23	19H-16O-20H	106,42	170-15Mg-270	89,20
3C-2C-1C	123,03	30H-26O-31H	111,60	170-15Mg-250	89,21
11H-2C-1C	116,73	28H-25O-15Mg	128,11	17O-15Mg-16O	90,79
2C-1C-90	120,57	29H-25O-15Mg	122,55	17O-15Mg-18O	90,80
2C-1C-8N	119,92	32H-27O-15Mg	135,65	270-15Mg-160	91,41
90-1C-8N	119,50	33H-27O-15Mg	117,23	270-15Mg-250	88,59
1C-8N-10S	119,70	21H-17O-15Mg	120,26	16O-15Mg-18O	88,59
8N-10S-7O	112,79	22H-17O-15Mg	120,75	18O-15Mg-17O	90,80
8N-10S-6O	110,25	23H-18O-15Mg	135,64		
8N-10S-5O	106,62	24H-18O-15Mg	117,23		

Bağ	Å	Bağ	Å	Bağ	Å	Bağ	Å
4C-12H	0,945	1C-90	1,247	15Mg-17O	2,064	26O-30H	0,868
4C-13H	0,915	1C-8N	1,345	15Mg-16O	2,044	26O-31H	0,737
4C-14H	0,948	5O-10S	1,606	15Mg-18O	2,082	18O-24H	0,836
3C-4C	1,477	8N-10S	1,565	15Mg-26O	2,064	18O-23H	0,820
3C-5O	1,387	6O-10S	1,423	25O-28H	0,840	16O-20H	0,840
2C-3C	1,326	7O-10S	1,423	25О-29Н	0,788	16O-19H	0,788
11H-2C	0,930	15Mg-25O	2,044	270-32H	0,820	17O-22H	0,868
1C-2C	1,456	15Mg-27O	2,082	27О-33Н	0,836	17O-21H	0,737

Çizelge 4.7. [Mg(H₂O)₆](acs)₂ kompleksinde bağ uzunlukları (Å)

4.2.2. C₈H₁₀CaN₂O₉S₂ kompleksi

Kompleks (poly[di-µ₃-acesulfamato-O,O:O';O':O,O-di-µ-acesulfamato-O,O; N-di-µaquadicalcium(II)]) kalsiyum iyonlarının sekiz koordinasyona sahip olması, hem asesülfamato ligandlarının, hem de akua ligandlarının köprü ligand özelliği göstermesi nedeniyle ilginç bir yapıya sahiptir. C₈H₁₀CaN₂O₉S₂ kompleksine ait asimetrik molekül yapısı gösterimi Şekil 4.14'de görülmektedir. Asimetrik molekül yapısında birimde bir tane Ca(II) iyonu, iki tane koordine asesülfamato ligandı ve bir tane koordine su molekülü bulunmaktadır. Ca1 atomu dört karbonil oksijen atomu (O6, O6ⁱⁱ, O8 ve O8ⁱⁱ), bir sülfonil oksijen atomu (O5), bir azot atomu (N1) ve iki su molekülü (O10 ve O10ⁱⁱ) ile toplam sekiz bağ yapmaktadır. Yapıya ait kristalografik bilgiler 4.10'da verilmektedir. Cizelge Asesülfamato ligandları farklı koordinasyonlara sahiptir. Ligandlardan birisi Ca(II) iyonuna karbonil oksijen atomu ve azot atomu üzerinden çift dişli bağlanarak dört üyeli şelat halkası oluştururken diğer ligand iki farklı Ca(II) iyonunu karbonil oksijen atomu ve sülfonil oksijen atomu vasıtasıyla birbirine bağlayarak köprü ligandı görevi görmektedir. Ayrıca Ca(II) iyonları karbonil oksijen atomları ile birlikte dört üyeli Ca₂O₂ halkaları oluşturmaktadır. Ca₂O₂ halkalarındaki Ca(II) iyonları arasındaki mesafe 3.696 Å dur. Ca₂O₂ halkalarının birleşimi sonucunda [010] doğrultusu boyunca ilerleyen bir boyutlu polimerler oluşmaktadır. Komşu bir boyutlu polimerler asesülfamato ligandları yardımıyla iki boyutlu polimer yapıya taşınmaktadır (Şekil 4.15). İki boyutlu polimer oluşurken de Ca(II) iyonları ve asesülfamato ligandları 12 üyeli halkalar meydana getirmektedir. 12 üyeli halkayı oluşturan Ca(II) iyonları arasındaki mesafe 8.203 Å'dur. İki boyutlu polimer yapı zayıf C–H…O hidrojen bağları ile üç boyutlu (Şekil 4.16) paketlenmeye sahip olmaktadır. Ca-N bağ uzunluğu 2.5098(14) Å iken Ca-O bağ uzunlukları 2.2920(12)-2.6771(14) Å aralığında değişmektedir (Çizelge 4.8). C4-O6 [1.255(2) Å] ve C5-O8 [1.2650(18) Å] bağ uzunlukları tipik çift bağ karakterindedir.

Şekil 4.14. $C_8H_{10}CaN_2O_9S_2$ kompleksinin asimetrik molekül yapısı gösterimi

Şekil 4.15. C₈H₁₀CaN₂O₉S₂ kompleksi için iki boyutlu polimer yapının gösterimi

Şekil 4.16. $C_8H_{10}CaN_2O_9S_2$ kompleksinin üç boyutlu gösterimi

Şekil 4.17. $C_8H_{10}CaN_2O_9S_2$ kompleksinin birim hücresi

Şekil 4.18'de kompleksteki hidrojen bağları, Çizelge 4.9.'de ise bu hidrojen bağlarına ait veriler görülmektedir.

Şekil 4.18. C₈H₁₀CaN₂O₉S₂ kompleksinde hidrojen bağları

Çizelge 4.8. $C_8H_{10}CaN_2O_9S_2$ molekülünün hidrojen atomu dışındaki atomlarına ait seçilmiş bağ uzunlukları (Å)

Ca1-O6 ⁱⁱ	2.2920(12)	Ca1-O8	2.3811(11)
Cal-O5	2.4170(12)	Ca1-O8 ⁱⁱ	2.4378(11)
Ca1-O10	2.4887(12)	Ca1-N1	2.5098(14)
Cal-O10 ⁱⁱ	2.5669(13)	Ca1-O6	2.6771(14)
Simatri Iradar (ii) r + 1	x + 1/2 = - + 2/2		

Simetri kodu: (ii) -x+1, y+1/2, -z+3/2.

Çizelge 4.9. C₈H₁₀CaN₂O₉S₂ kompleksinde hidrojen bağlarına ait veriler

D-H	d(D-H)	d(HA)	a(DHA)	d(DA)	А	Simetri op.
O10-H10A	0.850	2.502	147.26	3.251	01	[-x+1, y-1/2, -z+3/2]
O10-H10B	0.845	2.132	143.75	2.858	N2	[x, -y+3/2, z+1/2]

Kimyasal Formül	$C_8H_{10}CaN_2O_9S_2$
Formül Ağırlığı (a.k.b.)	382.38
Kırınım Toplama Metodu	ω-taraması
X – Işını ve Dalga Boyu (Å)	MoK _{α} , $\lambda = 0.71073$ Å
Veri Toplama Sıcaklığı	296 K
Kristal Sistemi	Monoklinik
Uzay Grubu	P21/c
a (Å)	12.9812 (9)
b (Å)	7.0377 (3)
c (Å)	16.3973 (12)
α (°)	90.00
β (°)	109.175 (5)
γ (°)	90.00
Birim Hücre Hacmi (Å ³)	1414.91 (15)
Birim Hücredeki Molekül Sayısı	4
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.795
F ₀₀₀	784
Gözlenen Yansıma Sayısı	8885
Bağımsız Yansıma Sayısı	2777
Çizgisel Soğurma Katsayısı (mm ⁻¹)	0.79
h, k, l Aralığı	-15→16, -8→8, -20→20
Parametre Sayısı	240
$S(F^2)$	1.06
$\Delta \rho_{maks}, \Delta \rho_{min} (e/Å^3)$	0.37, -0.31
R _{int}	0.028
R	0.025
wR	0.069

Çizelge 4.10. $C_8H_{10}CaN_2O_9S_2$ kristaline ait veriler ve arıtım değerleri

4.2.3. C₈H₁₀SrN₂O₉S₂ kompleksi

Asimetrik molekül yapısında (Şekil 4.19) bir tane Sr(II) iyonu, iki tane asesülfamato ligandı ve bir tane koordine su molekülü bulunmaktadır. $C_8H_{10}SrN_2O_9S_2$ ve $C_8H_{10}BaN_2O_9S_2$ benzer kristalografik sonuçlar vermektedir. Sr1 atomu dört karbonil oksijen atomu (O4, O4ⁱⁱ, O8 ve O8ⁱ), iki sülfonil oksijen atomu (O1ⁱ ve O5ⁱⁱ), iki azot atomu (N1 ve N2) ve bir su molekülü (O9) ile toplam dokuz bağ yapmaktadır. Sr(II) iyonları karbonil oksijen atomları ile birlikte Sr₂O₂ halkaları oluştururken sülfonil oksijen atomları ile sekiz üyeli halkalar oluşturmaktadır. Sr(II) iyonları arasındaki mesafeler 4.289Å ve 4.334Å dur. Bu halkalar [100] doğrultusu boyunca bir boyutlu polimer yapı oluştururken O–H…O hidrojen bağları yapıyı ikinci boyuta taşımaktadır (Şekil 2.20). Ayrıca C-H…O hidrojen bağları yapının üç boyutlu paketlenmesine katkıda bulunmaktadır (Şekil 4.21). Sr-N bağ uzunlukları 2.761(3) Å ve 2.769(3) Å iken Sr-O bağ uzunlukları 2.509(2)-2.906(3) Å aralığında değişmektedir (Çizelge 4.11.).

Şekil 4.19. C₈H₁₀SrN₂O₉S₂ kompleksinin asimetrik molekül yapısı gösterimi

Şekil 4.20. C₈H₁₀SrN₂O₉S₂ kompleksinde bir boyutlu polimer yapının O–H···O hidrojen bağları yardımıyla iki boyuta taşınması.

Şekil 4.21. C₈H₁₀SrN₂O₉S₂ yapısının üç boyutlu gösterimi.

Şekil 4.22. C₈H₁₀SrN₂O₉S₂ kompleksinin birim hücresi

Çizelge 4.11. C₈H₁₀SrN₂O₉S₂ molekülünün hidrojen atomu dışındaki atomlarına ait seçilmiş bağ uzunlukları (Å)

O8—Sr1	2.906 (3)	Sr1—O8 ⁱ	2.509 (2)
O9—Sr1	2.615 (3)	Sr1—O1 ⁱ	2.581 (3)
Sr1—O4 ⁱⁱ	2.513 (2)	N2—Sr1	2.769 (3)
Sr1—O5 ⁱⁱ	2.586 (2)	Sr1—N1	2.761 (3)
Sr1—O4	2.819 (3)		

Simetri kodları: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z.

Çizelge 4.12.'de C₈H₁₀SrN₂O₉S₂ kristaline ait veriler ve arıtım değerleri verilmiştir. Kompleks monoklinik kristal sistemine sahiptir. Molekülün birim hücre parametreleri a=7.9784(5) Å, b=18.6171(8) Å, c=11.5494(7) Å, α =90.00°, β =123.423(4), γ =90.00° olarak bulunmuştur.

Kimvasal Formül	$C_8H_{10}SrN_2O_9S_2$
Formül Ağırlığı (a.k.b.)	429.92
Kırınım Toplama Metodu	ω-taraması
X – Işını ve Dalga Boyu (Å)	MoK _{α} , $\lambda = 0.71073$ Å
Veri Toplama Sıcaklığı	296 K
Kristal Sistemi	Monoklinik
Uzay Grubu	$P2_1/c$
a (Å)	7.9784 (5)
b (Å)	18.6171(8)
c (Å)	11.5494 (7)
α (°)	90.00
β (°)	123.423 (4)
γ (°)	90.00
Birim Hücre Hacmi (Å ³)	1431.79 (14)
Birim Hücredeki Molekül Sayısı	4
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.994
F ₀₀₀	856
Gözlenen Yansıma Sayısı	9025
Bağımsız Yansıma Sayısı	2809
Çizgisel Soğurma Katsayısı (mm ⁻¹)	4.11
h, k, l Aralığı	<i>-9→9, -22→22, -14→13</i>
Parametre Sayısı	239
$S(F^2)$	1.05
$\Delta \rho_{\text{maks}}, \Delta \rho_{\text{min}} (e/\text{\AA}^3)$	0.58, -0.61
R _{int}	0.062
R	0.036
wR	0.090

Çizelge 4.12. $C_8H_{10}SrN_2O_9S_2$ kristaline ait veriler ve arıtım değerleri

4.2.4. C₈H₁₀BaN₂O₉S₂ kompleksi

Şekil 4.23'de görüldüğü gibi asimetrik molekül yapısı bir tane Ba(II) iyonu, iki tane asesülfamato ligandı ve bir tane koordine su molekülü içermektedir. Ba1 atomu dört karbonil oksijen atomu (O4, O4ⁱ, O8 ve O8ⁱⁱ), iki sülfonil oksijen atomu (O1ⁱⁱ ve O5ⁱ), iki azot atomu (N1 ve N2) ve bir su molekülü (O9) ile toplam dokuz bağ yapmaktadır. Yapıya ait kristalografik bilgiler Çizelge 4.14'de verilmektedir. Asesülfamato ligandlarının Ba(II) iyonuna bağlanması ile dört üyeli şelat halkaları oluşmaktadır. Ba(II) iyonları karbonil oksijen atomları ile birlikte Ba₂O₂ halkaları oluşturmaktadır. Ba2O2 halkalarını oluşturan Ba(II) iyonları arasındaki mesafeler 4.466Å ve 4.473Å dur. Benzer şekilde Ba(II) iyonları ve sülfonil oksijen atomları vasıtasıyla sekiz üyeli halkalar oluşmaktadır. Bu halkalar [100] doğrultusu boyunca bir boyutlu polimer yapı oluşturmaktadır. Bir boyutlu polimer yapı O-H…O hidrojen bağları ile iki boyuta (Sekil 4.24) tasınırken, zayıf C-H...O hidrojen bağları ile üc boyutlu (Şekil 4.25) paketlenme sağlanmaktadır. Ba-N bağ uzunlukları 2.928(2) Å ve 2.949(2) Å iken Ba-O bağ uzunlukları 2.6788(19)-2.976(2) Å aralığında değişmektedir (Çizelge 4.13). C1-O4 [1.256(3) Å] ve C7-O8 [1.253(4) Å] bağ uzunlukları tipik çift bağ karakterindedir.

Şekil 4.23. C₈H₁₀BaN₂O₉S₂ kompleksinin asimetrik molekül yapısı gösterimi

Şekil 4.24. C₈H₁₀BaN₂O₉S₂ kompleksinde O–H…O hidrojen bağlarının oluşturduğu iki boyutlu yapının gösterimi

Şekil 4.25. $C_8H_{10}BaN_2O_9S_2$ yapısının üç boyutlu gösterimi

Şekil 4.26. C₈H₁₀BaN₂O₉S₂ kompleksinin birim hücresi

Çizelge 4.13. C₈H₁₀BaN₂O₉S₂ molekülünün hidrojen atomu dışındaki atomlarına ait seçilmiş bağ uzunlukları (Å)

Ba1—O4 ⁱ	2.6788 (19)	Ba1—O8 ⁱⁱ	2.682 (2)
Ba1—O1 ⁱⁱ	2.745 (2)	Ba1—O9	2.750 (3)
Ba1—O5 ⁱ	2.760 (2)	Ba1—N1	2.928 (2)
Ba1—O8	2.976 (2)	Ba1—N2	2.949 (2)
Ba1—O4	2.927 (2)		
C' · · · 1 · 11 · · · · · · 1	1 (")	. 1	

Simetri kodları: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1

Çizelge 4.14.'de $C_8H_{10}BaN_2O_9S_2$ kristaline ait veriler ve arıtım değerleri verilmiştir. Kompleks monoklinik kristal sistemine sahiptir. Molekülün birim hücre parametreleri a=8.2223(3) Å, b=18.9945(6) Å, c=11.7819(4) Å, α =90.00°, β =123.902(2)°, γ =90.00° olarak bulunmuştur.

Kimyasal Formül	$C_8H_{10}BaN_2O_9S_2$	
Formül Ağırlığı (a.k.b.)	479.64	
Kırınım Toplama Metodu	ω-taraması	
X – Işını ve Dalga Boyu (Å)	MoK_{α} , $\lambda = 0.71073$ Å	
Veri Toplama Sıcaklığı	296 K	
Kristal Sistemi	Monoklinik	
Uzay Grubu	$P2_1/c$	
a (Å)	8.2223 (3)	
b (Å)	18.9945 (6)	
c (Å)	11.7819 (4)	
α (°)	90.00	
β (°)	123.902 (2)	
γ (°)	90.00	
Birim Hücre Hacmi (Å ³)	1527.25 (9)	
Birim Hücredeki Molekül Sayısı	4	
Hesaplanan Yoğunluk (Mg.m ⁻³)	2.086	
F ₀₀₀	928	
Gözlenen Yansıma Sayısı	21747	
Bağımsız Yansıma Sayısı	3006	
Çizgisel Soğurma Katsayısı (mm ⁻¹)	2.92	
h, k, l Aralığı	-10	
Parametre Sayısı	239	
$S(F^2)$	1.12	
$\Delta \rho_{maks}, \Delta \rho_{min} (e/Å^3)$	0.41, -0.79	
R _{int}	0.056	
R	0.023	
wR	0.054	

Çizelge 4.14. $C_8H_{10}BaN_2O_9S_2$ kristaline ait veriler ve arıtım değerleri

4.2.5. [Mg(H₂O)₄(na)₂](acs)₂ karışık ligand kompleksi

Şekil 4.27'de muhtemel yapısı verilen komplekste magnezyum(II) iyonuna *trans* konumda iki nikotinamid ligandı koordine olmuştur. Oktahedral geometriye sahip komplekste diğer dört koordinasyonu akua ligandları sağlarken, asesülfamato iyonları tamamlayıcı iyon olarak davranmıştır. Kompleksin termal analiz eğrileri de bozunmanın sırasıyla 2 mol akua, 2 mol akua, 1 mol nikotinamid, 1 mol nikotinamid uzaklaşması ile gerçekleştiğini göstermektedir.

Şekil 4.27. trans-tetraakuabis(nikotinamid) magnezyum(II) kompleksinin öngörülen yapısı

Ca(II), Sr(II) ve Ba(II) katyonlarının asesülfam ve nikotinamid ligandları ile yaptığı karışık ligandlı komplekslerde Ca(II)'nin sekiz, Sr(II) ve Ba(II)'nin dokuz koordinasyona sahip olduğu düşünülmektedir. Bu kompleksler için önerilen kapalı formüller $[Ca(H_2O)_6(na)_2](acs)_2$, $[Sr(H_2O)_7(na)_2](acs)_2$ ve $[Ba(H_2O)_7(na)_2](acs)_2$ şeklindedir.

4.3. Termal Analiz Çalışmaları

Komplekslerin termal analizi (TG-DTG, DTA) Shimadzu DTG-60H sistemi ile, inert azot atmosferinde (100 mL/dak), 10° C/dakika ısıtma hızında, referans olarak α -Al₂O₃ kullanılarak platin krozede gerçekleştirilmiştir.

4.3.1. [Mg(H₂O)₆](acs)₂ kompleksi

 $[Mg(H_2O)_6](acs)_2$ kompleksinin TG-DTG ve DTA eğrileri Şekil 4.28'da verilmiştir. $[Mg(H_2O)_6](acs)_2$ kompleksinin termal analiz eğrisinde ilk aşama hidrate suyun uzaklaşmasıdır.

$$[Mg(H_2O)_6](acs)_2.xH_2O \xrightarrow{0.95,42 \ ^{o}C} [Mg(H_2O)_6](acs)_2 + xH_2O$$

0-95,42°C sıcaklık aralığına karşılık gelen ilk adımda yaklaşık 1 mol su uzaklaşmaktadır (deneysel: %3,29 - teorik: %3,94). Sonraki 3 adım deakuasyondur. Deakuasyonun ilk adımı 95,42-164,08°C sıcaklık aralığında %8,22'lik ağırlık kaybı ile gözlenmektedir. Bu kayıp 2 mol akua ligandının uzaklaşmasından kaynaklanmaktadır (teorik: %7,88).

$$[Mg(H_2O)_6](acs)_2 \xrightarrow{95,42-164,08 \ ^{\circ}C} Mg(H_2O)_4(acs)_2 + 2H_2O$$

164,08-212,79°C sıcaklık aralığında görülen %8,18'lik ağırlık kaybı deakuasyonun ikinci adımıdır. Bu aşamada da 2 mol akua ligandı uzaklaşmaktadır (teorik: %7,88).

$$Mg(H_2O)_4(acs)_2 \xrightarrow{164,08-212,79 \circ C} Mg(H_2O)_2(acs)_2 + 2H_2O$$

212,79 - 256,22°C sıcaklık aralığında ise deakuasyonun son aşaması gerçekleşmektedir. %8,04'lük ağırlık kaybında 2 mol akua ligandının uzaklaşmasına karşılık gelmektedir. Bu aşamadan sonra Mg(acs)₂ oluştuğu düşünülmektedir.

 $Mg(H_2O)_2(acs)_2 \xrightarrow{256,22-354,24 \ ^{\circ}C} Mg(acs)_2 + 2H_2O$

256,22-354,2°C aralığında %14,13'lük ekzotermik bir ağırlık kaybı görülmektedir. Bu kayıp acs ligandlarından birinin parçalanarak SO₂ uzaklaşmasına karşılık gelmektedir (teorik: %14,01). 354,24-429,26°C aralığında %13,934'lük yine ekzotermik bir ağırlık kaybı görülmektedir. Bu da diğer acs ligandının parçalanması ve SO₂ uzaklaşmasıdır. 429,26-508,60°C sıcaklık aralığında meydana gelen %32,323'lük endotermik ağırlık kaybının ligandların parçalanması sonucu oluşan organik kalıntının uzaklaşmasından kaynaklandığı düşünülmektedir. Son ürünün MgO olduğu düşünülmektedir (deneysel: %9,6 - teorik: %8,76). DTG eğrisi de akua ligandlarının kısımlar halinde ve yavaş bir şekilde uzaklaştığını göstermektedir.

Şekil 4.28. [Mg(H₂O)₆](acs)₂ kompleksinin TG-DTG ve DTA eğrileri

4.3.2. C₈H₁₀CaN₂O₉S₂ kompleksi

Kompleksin TG-DTG ve DTA eğrileri Şekil 4.29'de görülmektedir. TG eğrisinden kompleksin yaklaşık 185°C'ye kadar kararlı olduğu görülmektedir. Bu noktadan sonra 185-227°C aralığında TG eğrisinde %28,6'lık bir kütle kaybı gözlenmektedir. Bu kaybın akua ligandının uzaklaşması ve acs ligandlarının SO₂ çıkışı ile bozunmasından kaynaklandığı düşünülmektedir (teorik:%29,3). 227-1000°C

aralığında kalan organik kısımların yavaş bir şekilde ortamdan uzaklaştığı düşünülmektedir. Bozunma ürünü (kalan ürün) yaklaşık %15'lik bir kütleye karşılık gelmektedir. Bu ürünün CaO olduğu tahmin edilmektedir (teorik:%14,65).

Şekil 4.29. C₈H₁₀CaN₂O₉S₂ kompleksinin TG-DTG ve DTA eğrileri

4.3.3. C₈H₁₀SrN₂O₉S₂ kompleksi

TG-DTG ve DTA eğrileri Şekil 4.30'da görülen kompleks, 200°C'ye kadar %4'lik bir kütle kaybına uğramaktadır. Bu kayıp akua ligandının uzaklaşmasından kaynaklanmaktadır. 200-383°C aralığında kompleks iki aşamalı bozunmaya uğramaktadır. İlk aşama 200- 265°C arasında %15,08'lik, ikinci aşama 258-383°C arasında %14'lik bir kütle kaybına karşılık gelmektedir. Her iki aşamada da acs ligandlarının SO₂ vererek bozunmasından kaynaklanmaktadır (teorik: %14,9). Organik kalıntının uzaklaşması da 383-728°C ve 728-1000°C olmak üzere iki aşamada gerçekleşmektedir. Karşılık gelen kütle kayıpları sırasıyla yaklaşık %23 ve %21'dir (teorik: %22,8). Son ürün %23,5'lik kütle, SrO bileşiğine karşılık gelmektedir (teorik: %24,1).

Şekil 4.30. C₈H₁₀SrN₂O₉S₂ kompleksinin TG-DTG ve DTA eğrileri

4.3.4. C₈H₁₀BaN₂O₉S₂ kompleksi

Şekil 4.31'de TG-DTG ve DTA eğrileri görülen kompleks 190°C'ye kadar %1,77'lik kütle kaybına uğramaktadır. Bu kayıp kompleks üzerine adsorbe olmuş su moleküllerinin uzaklaşmasından kaynaklanmaktadır. TG eğrisinde, 190-206°C aralığında %4,2'lik bir kütle kaybı görülmektedir. Bu değer kompleksin yapısında bulunan bir mol akua ligandının uzaklaşmasına karşılık gelmektedir (teorik: %3,8). 206-268°C aralığında %13,26'lük ağırlık kaybı gözlenmektedir. Kalsiyum ve Stronsiyum komplekslerinde olduğu gibi, akua ligandının uzaklaşmasından sonra asesülfamat ligandının parçalanması ile oluşan SO₂ çıkışı bu kütle kaybına karşılık gelmektedir (teorik: %13,34). Diğer acs ligandının bozunması 268-383°C aralığında gerçekleşmektedir (deneysel: %13,38 - teorik: %13,34). Son aşamada ise organik kalıntıların uzaklaşmasına karşılık gelen %19,34'lük kütle kaybı gerçekleşmiştir. Son ürün magnezyum, kalsiyum ve stronsiyum komplekslerinden farklı olarak sülfat tuzudur (deneysel: %49,5 - teorik: %48,7).

Şekil 4.31. C₈H₁₀BaN₂O₉S₂ kompleksinin TG-DTG ve DTA eğrileri

4.3.5. C₂₀H₂₈MgN₆O₁₄S₂ karışık ligand kompleksi

Şekil 4.32'de C₂₀H₂₈MgN₆O₁₄S₂ kompleksine ait termal analiz eğrileri görülmektedir. Yapısında dört mol akua ligandı bulunan kompleks iki basamaklı deakuasyona uğramaktadır. 20-150°C aralığında görülen %5,38 ve 150-214°C aralığında da %5,32'lik kütle kayıpları ikişer mol akua ligandlarının uzaklaşmasından kaynaklanmaktadır (teorik: %5,4). Sonraki aşama nikotinamid ligandlarının tek tek uzaklaşmasıdır. 214-234°C aralığında görülen %18,43 ve 234-388°C aralığında görülen %18,34'lük kütle kayıpları birer mol nikotinamid ligandının uzaklaşmasından kaynaklanmaktadır (teorik: %18,37). Bu noktada Mg(acs)₂ tuzunun oluştuğu düşünülmektedir. Oluşan bu bileşik yüksek sıcaklıkta bozunmakta, organik kısmın (acs) uzaklaşmasıyla MgO bileşiğine dönüşmektedir (deneysel: %5,97 - teorik: %6,02). Asesülfamat iyonlarının uzaklaşması deneysel olarak %45,6'lik bir kütleye karşılık gelmektedir. Bu değer teorik olarak %46,4'tür.

Şekil 4.32. C₂₀H₂₈MgN₆O₁₄S₂ kompleksinin TG-DTG ve DTA eğrileri

4.3.6. C₂₀H₃₂CaN₆O₁₆S₂ karışık ligand kompleksi

Şekil 4.33'de termal analiz eğrileri görülen kompleks iki aşamada bozunmaktadır. İlk aşama altı mol akua ligandının uzaklaşmasına karşılık gelen deakuasyon (15-220°C aralığında, deneysel: %14,7 - teorik: %14,2), ikinci aşama nikotinamid ligandlarının uzaklaşmasıdır (220-450°C aralığında, deneysel: %33,97 - teorik: %34,05). Son ürün CaO bileşiğine karşılık gelmektedir (deneysel: %8,8 - teorik: %7,8). DTG eğrisinde ağırlık kayıplarının gözlendiği yerlerde keskin pikler gözlenmektedir. Bu da hem akua ligandlarının, hem de nikotinamid ligandlarının kompleksin yapısından hızlı bir şekilde uzaklaştığını göstermektedir.

Şekil 4.33. C₂₀H₃₂CaN₆O₁₆S₂ kompleksinin TG-DTG ve DTA eğrileri

4.3.7. $C_{20}H_{34}SrN_6O_{17}S_2$ karışık ligand kompleksi

Şekil 4.34. C₂₀H₃₄SrN₆O₁₇S₂ kompleksinin TG-DTG ve DTA eğrileri

Şekil 4.34'te termal analiz eğrileri görülen kompleks iki aşamada bozunmaktadır. Birinci aşama deakuasyondur. 21-204°C aralığında yapıdaki yedi mol akua ligandı uzaklaşmaktadır (deneysel: %16,37 - teorik: %16,13). İkinci aşama diğer nötral ligand olan nikotinamidin uzaklaşmasıdır. iki mol nikotinamid 204-255°C aralığında yapıdan uzaklaşmaktadır (deneysel: %31,26 - teorik: %31,23). Son ürünün SrO bileşiği olduğu tahmin edilmektedir. DTG eğrisinin yayvan oluşu uzaklaşan ligandların yapıdan yavaş bir şekilde uzaklaştığını göstermektedir.

4.3.8. C₂₀H₃₄BaN₆O₁₇S₂ karışık ligand kompleksi

4.35'te $[Ba(H_2O)_7(na)_2](acs)_2$ kompleksinin termal analiz eğrileri Sekil görülmektedir. Kompleks üç basamakta bozunmaktadır. Bozunmanın ilk aşaması deakuasyondur. Yedi mol akua ligandı 25-223°C aralığında uzaklaşmaktadır (deneysel: %15,05 - teorik: %15,15). Bozunmanın sonraki aşaması iki mol nikotinamid ligandının 223-387°C aralığında bir basamakta uzaklaşmasıdır (deneysel: %29,17 - teorik: %29,36). Bu aşamada Ba(acs)₂ tuzu oluşmaktadır. Bu tuz 650°C civarında bozunmaya başlamıştır. Son ürünün BaO bileşiği olduğu düşünülmektedir (deneysel: %13,4 - teorik: %18,4). DTG eğrisinde, ağırlık kayıplarının gözlendiği yerlerde keskin pikler görülmektedir. Bu da yapıdan uzaklaşan grupların hızlı bir şekilde uzaklaştığı anlamına gelmektedir.

Şekil 4.35. C₂₀H₃₄BaN₆O₁₇S₂ kompleksinin TG-DTG ve DTA eğrileri

4.4. Erime Noktası Tayini Çalışmaları

Komplekslerin erime noktası STUART SMP30 cihazı ile, 5°C/dakika ısıtma hızı ile 20 – 300°C sıcaklık aralığında ısıtma ile tayin edilmiştir. Çizelge 4.15.'de potasyum asesülfam ve metal komplekslerinin erime noktaları görülmektedir.

Bileşik	Sıcaklık (°C)	Gözlenen Olay
Potasyum Asesülfam	225	Erime
$[Mg(H_2O)_6](acs)_2$	88,9	Erime
$C_8H_{10}CaN_2O_9S_2$	220 - 260	Kararma/Bozunma
$C_8H_{10}SrN_2O_9S_2$	246 - 290	Kararma/Bozunma
$C_8H_{10}BaN_2O_9S_2$	218 - 270	Kararma/Bozunma
$C_{20}H_{28}MgN_6O_{14}S_2$	121-132	Kararma/Bozunma
$C_{20}H_{32}CaN_6O_{16}S_2$	210-235	Kararma/Bozunma
$C_{20}H_{34}SrN_6O_{17}S_2$	257-269	Kararma/Bozunma
$C_{20}H_{34}BaN_6O_{17}S_2$	206-250	Kararma/Bozunma

Çizelge 4.15. Potasyum asesülfam ve komplekslerin erime noktaları

4.5. Kütle Spektroskopisi

Teorik ve deneysel veriler kullanılarak metal komplekslerinin özelliklerinin ve termal bozunma mekanizmalarının aydınlatılması, yapısal farklılıkların ortaya konulması bakımından oldukça önemlidir. Son yıllarda, komplekslerin termal bozunma mekanizmalarının aydınlatılmasında eşzamanlı termal analiz tekniklerinin yanı sıra, yardımcı teknik olarak özellikle kütle spektroskopisinin kullanımı artmaktadır. Herhangi bir metal kompleksinin; kütle spektrumdan elde edilen verilerle, termal analiz verilerinin karşılaştırılması sonucu daha doğru bulgular elde edebiliriz. Bilindiği gibi bir molekülün kütle spektrumu, molekülün yapısındaki en kırılgan noktaları gösterir. Bağların kırılması aynı miktarda enerji gerektirdiğinden, bir dereceye kadar termal bozunma süreci ile iyonlaşma süreci birbirine benzerdir (İçbudak ve ark., 2005). Bu yüzen iyonlaşma süreci sonucu oluşan parçacıklar, termal bozunma prosesinde oluşan parçacıkların belirlenmesinde önemlidir.

4.5.1. Metal-asesülfam kompleksleri

Metal-asesülfam komplekslerinin termal analiz eğrileri incelendiğinde komplekslerin bozunmalarının benzer olduğu görülmektedir. Bozunmalar deakuasyon ile başlamakta, asesülfamato ligandlarının SO veya SO₂ vererek bozunmasıyla devam etmektedir. Bu komplekslerin kütle spektrumları incelendiğinde de benzer sonuçlar görülmektedir.

Şekil 4.36'da $[Mg(H_2O)_6](acs)_2$ kompleksinin kütle spektrumu verilmiştir. Spektrumda m/z oranı 64,17 olan pik SO₂'ye, 114 olan pik asesülfamat iyonundan SO₂ grubunun ayrılmasıyla geriye kalan organik kısmın uzaklaşmasına ait olduğu görülmektedir. m/z oranı 161,43 olan pik ise asesülfam iyonuna aittir. Benzer durum Şekil 4.36'da C₈H₁₀CaN₂O₉S₂ kompleksinin, Şekil 4.37'de C₈H₁₀SrN₂O₉S₂ kompleksinin, C₈H₁₀CaN₂O₉S₂ kompleksinin kütle spektrumlarında da gözlenmektedir. C₈H₁₀CaN₂O₉S₂ kompleksinin kütle spektrumlarında da olan pik SO₂'ye, 161,43 olan pik asesülfamat iyonuna aittir. C₈H₁₀SrN₂O₉S₂ kompleksinin kütle spektrumunda m/z oranı 64,17 olan pik SO₂'ye, 162,98 olan pik asesülfamat iyonuna aittir. C₈H₁₀BaN₂O₉S₂ kompleksinin kütle spektrumunda m/zoranı 64,00 olan pik SO₂'ye, 162,97 olan pik asesülfamat iyonuna aittir.

4.5.2. Metal-asesülfam-nikotinamid karışık ligandlı kompleksler

Şekil 4.39, Şekil 4.40, Şekil 4.41, Şekil 4.42'da sırasıyla $C_{20}H_{28}MgN_6O_{14}S_2$, $C_{20}H_{32}CaN_6O_{16}S_2$, $C_{20}H_{34}SrN_6O_{17}S_2$ ve $C_{20}H_{34}BaN_6O_{17}S_2$ komplekslerinin kütle spektrumu verilmiştir. *m/z* oranı SO₂ 'ye ait olan pik komplekslerde sırasıyla 63,98 - 64 - 63,91 - 64,35'te görülmektedir. Metal-asesülfam komplekslerinden farklı olarak metal-nikotinamid-asesülfam komplekslerinde nikotinamid ligandının uzaklaşmasından kaynaklanan pikler de bulunmaktadır. Bu pikler sırasıyla, 121,99 - 122,01 - 121,99 ve 122,37'de görülmektedir. Asesülfamat iyonlarının uzaklaşmasına karşılık gelen pikler sırasıyla 163,07 - 163,02 - 162,95 - 162,92'de görülmektedir.

Şekil 4.37. C₈H₁₀CaN₂O₉S₂ kompleksinin kütle spektrumu

Şekil 4.39. C₈H₁₀BaN₂O₉S₂ kompleksinin kütle spektrumu

Şekil 4.40. C₂₀H₂₈MgN₆O₁₄S₂ kompleksinin kütle spektrumu

Şekil 4.41. C₂₀H₃₂CaN₆O₁₆S₂ kompleksinin kütle spektrumu

Şekil 4.43. C₂₀H₃₄BaN₆O₁₇S₂ kompleksinin kütle spektrumu

4.6. Elementel Analiz

Metal-asesülfam komplekslerinin ve metal-asesülfam-nikotinamid karışık ligandlı komplekslerin elementel analiz sonuçları Çizelge 4.16'da verilmiştir. Elementel analiz sonuçlarından görüldüğü üzere deneysel değerler hesaplanan değerlerle uyum içindedir.

	%C	%H	%N
	Deneysel	Deneysel	Deneysel
	(Teorik)	(Teorik)	(Teorik)
[Mg(H ₂ O) ₆](acs) ₂ (456,69g/mol)	21,93 (21,04)	5,26 (4,4)	6,07 (6,14)
C ₈ H ₁₀ CaN ₂ O ₉ S ₂ (382,38g/mol)	25,56 (25,13)	3,52 (2,64)	7,43 (7,33)
$C_8H_{10}SrN_2O_9S_2$ (429,92/mol)	23,14 (22,35)	3,29 (2,34)	6,43 (6,52)
C ₈ H ₁₀ BaN ₂ O ₉ S ₂ (479,94g/mol)	20,86 (20,02)	2,97 (2,10)	5,72 (5,84)
$C_{20}H_{28}MgN_6O_{14}S_2$ (664,825g/mol)	35,84 (36,13)	5,67 (4,25)	12,69 (12,64)
$C_{20}H_{32}CaN_6O_{16}S_2$ (716,727 g/mol)	33,16 (33,49)	4,99 (4,5)	10,91 (11,72)
$C_{20}H_{34}SrN_6O_{17}S_2$ (782,284 g/mol)	31,24 (30,7)	4,21 (4,4)	9,66 (10,75)
$C_{20}H_{34}BaN_6O_{17}S_2 (832,004 \text{ g/mol})$	27,65 (28,88)	4,11 (4,12)	8,67 (10,1)

Çizelge 4.16. Komplekslerin Elementel Analiz Verileri

(Parantez içindeki değerler hesaplanan değerlerdir.)

4.7. Biyolojik Aktivite Çalışmaları

Sentezlenen sekiz adet kompleks bileşiğin disk difüzyon yöntemi ile, Gram-pozitif bakteriler (*Enterococcus faecalis* ATCC 29212 ve *Staphylococcus aureus* ATCC 25923) Gram-negatif bakteriler (*Pseudomonas aeroginosa* ATCC 27853 ve *Escherichia coli* ATCC 25922) ve mantar (*Candida albicans* ATCC 10231) suşlarına karşı in vitro ortamda antimikrobiyal aktivitesi incelenmiştir.

Stoklardan alınan mikroorganizmalar (*Escherichia coli*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Enterococcus faecalis*, *Candida albicans*) Nutrient Broth besiyerine ilk gün I. aktiflik, ikinci gün II. aktiflik yapılarak 24 saat 37 °C'de inkübe edilmiştir. Aktiflikleri yapılmış olan mikroorganizmaların absorbansı spektrometrede 600 nm'ye ayarlanmıştır. Mikroorganizmaların Nutrient Broth besiyerine 100 μL olacak şekilde yayma ekimleri yapılmıştır.

Whatman kağıdından (No:4) 6 mm çapında diskler hazırlanarak, pastuer fırınında 175°C' de steril edilmiştir. Hazırlanan diskler bakteri ekimi yapılmış her bir besiyerine dörder tane olacak şekilde yerleştirilmiştir.

Antimikrobiyal etkisi belirlenecek olan maddeler (0,001gr/10 μ L) hazırlanarak 0.45 μ m por çapı olan mikrofiltrelerden geçirilip steril edilmiştir.

Steril bir ortamda çözücü olarak %10'luk DMSO kullanılan maddelerden (0,001 g madde/10 mL %10'luk DMSO) ve çözücü olan %10'luk DMSO dan 10 μL disklere emdirildi. Her bir besiyerindeki 4 diskten karşılıklı olan ikisi antimikrobiyal aktivitesine bakılan madde iken diğer ikisine de çözücü olarak kullanılan %10'luk DMSO'dur.

Daha sonra 24 saat 37°C'de inkübe edilmiştir. İnkübasyon sonrası diskler etrafında inhibisyon bölgelerinin oluşmadığı görülmüştür.

Tüm deneyler iki kez tekrarlanmıştır. Fakat kullanılan maddeler mikroorganizmalar üzerinde antimikrobiyal etki göstermemiştir.

Madde yoğunluğunun mikroorganizmalar üzerinde antimikrobiyal aktivite için yetersiz olabileceği olasılığına karşı yoğunluk; 0,1 g madde/10 ml %10'luk

DMSO'ya kadar çıkarılmış ve deney tekrarlanmıştır. Bu yoğunlukta da antimikrobiyal etki görülmemiştir.

Resim 4.1'de bir bakır kompleksinin bazı mikroorganizmalar üzerinde bir etkili olduğunu gösteren bir çalışma görülmektedir.

Resim 4.1. Cu(trp)₂(H₂O) bazı mikroorganizmalar üzerindeki etkisi üzerine örnek görüntü

Resim 4.2'de metal-asesülfam komplekslerinin, Resim 4.3'te ise metal-asesülfamnikotinamid karışık ligand komplekslerinin çalışılan mikroorganizmalardan biri olan *Escherichia coli* bakterisi üzerine olan etkisi görülmektedir. Resimlerde de görüldüğü gibi diskler etrafında inhibisyon bölgeleri oluşmamıştır.

(a) $C_8H_{20}MgN_2O_{14}S_2$ -*E.coli*

(b) C₈H₁₀CaN₂O₉S₂-E.coli

(c) $C_8H_{10}SrN_2O_9S_2$ - E.coli

(d) $C_8H_{10}BaN_2O_9S_2$ -E.coli

(e) $C_{20}H_{28}MgN_6O_{14}S_2$ -*E.coli*

(f) C₂₀H₃₂CaN₆O₁₆S₂-E.coli

(g) $C_{20}H_{34}SrN_6O_{17}S_2$ -E.coli

(h) C₂₀H₃₄BaN₆O₁₇S₂-E.coli

Resim 4.3. Metal-asesülfam-nikotinamid karışık ligandlı komplekslerin *E. coli* bakterisi üzerine etkisi

5. SONUÇ VE ÖNERİLER

Bu tez çalışmasında, toprak alkali metallerin (Mg, Ca, Sr, Ba) ilk kez asesülfam kompleksleri ve asesülfam-nikotinamid karışık ligandlı kompleksleri sentezlenmiştir. Metal-asesülfam komplekslerinde; yapılan X-ışınları tek kristal analizine göre, Mg asesülfam kompleksinde magnezyum(II) katyonuna altı akua ligandının oktahedral geometride koordine olduğu, asesülfamat'ın tamamlayıcı iyon olarak davrandığı belirlenmiştir. Kompleks [Mg(H₂O)₆](acs)₂ formülüne sahiptir. Caasesülfam kompleksi ise kalsiyum(II) katyonlarının sekiz koordinasyona sahip olduğu, asesülfamat ligandlarının hem köprü ligand hem de çok dişli (multidental) olarak davrandığı polimerik bir komplekstir. Sr-asesülfam ve Ba-asesülfam komplekslerinin de kalsiyum kompleksi gibi polimerik kompleksler olduğu ve metal iyonlarının dokuz koordinasyon yaptığı tespit edilmiştir. Büyük atom yarıçapları nedeniyle bu iki atomun dokuz koordinasyon yapması olası bir durumdur. Literatürde de sekiz koordinasyona sahip kalsiyum ve dokuz koordinasyona sahip stronsiyum ve baryum kompleksleri mevcuttur (Murugavel ve ark., 2001; Grirrane ve ark., 2007; Ptasiewick-Bak ve Leciejewicz, 2010). Aynı zamanda bu iki kompleksin aynı kristal yapıya sahip olduğu belirlenmiştir (bkz. Şekil 4.22 ve Şekil 4.26). Metal-asesülfam kompleksleri aşağıdaki kapalı formüllere sahiptir.

 $C_8H_{20}MgN_2O_{14}S_2$ $C_8H_{10}CaN_2O_9S_2$ $C_8H_{10}SrN_2O_9S_2$ $C_8H_{10}BaN_2O_9S_2$

Komplekslerin termal analiz eğrileri incelendiğinde magnezyum asesülfam kompleksinin üç basamakta deakuasyona uğradığı ve her basamakta iki mol akua ligandının uzaklaştığı görülmektedir. İlk aşama yaklaşık 100°C'de gerçekleşmektedir. Kompleksin X-ışınları tek kristal analizinde de x, y, z ekseni boyunca Mg-O bağ uzunluklarının farklı olduğu (2,082-2,064-2,044 Å) görülmektedir. Yani bağ kuvvetleri birbirinden farklıdır. Bu sonuç 3 basamakta gerçekleşen deakuasyonu açıklamaktadır (bkz. Şekil 4.28). Kompleksin sonraki bozunması asesülfamat ligandlarının yaklaşık 350°C civarında parçalanmasından kaynaklanmaktadır. Kalsiyum, stronsiyum ve baryum komplekslerinde ise

bozunmalar yaklaşık 200°C civarında gerçekleşmektedir. Bu üç kompleks polimerik yapıya sahip olduğundan bozunmaları magnezyum kompleksine göre daha yüksek sıcaklıkta gerçekleşmiştir. Komplekslerin termal analiz eğrilerine bakıldığında (Şekil 4.29, Şekil 4.30, Şekil 4.31) kalsiyum kompleksinde akua ligandının uzaklaşmasının ve asesülfamat ligandının parçalanmasının aynı anda gerçekleştiği görülmektedir. Sr ve Ba komplekslerinde sırasıyla 200°C ve 190°C deakuasyon hemen ardından ise asesülfamat ligandlarının bozunması gerçekleşmektedir. Asesülfamat ligandının bozunması yapıdan SO₂ çıkışı ile gerçekleşmektedir. Komplekslerin kütle spektrumlarında m/z değeri yaklaşık 64 olan pik SO₂ grubunun uzaklaşmasına karşılık gelmektedir. Termal analiz verilerine göre komplekslerin kararlılıkları Sr>Ba>Ca>Mg şeklindedir.

Komplekslerin erime noktası tayininde, sadece magnezyum kompleksinde erime gözlenmiştir. Kompleks 89°C'de erimeye başlamıştır. Kalsiyum, stronsiyum ve baryum komplekslerinde ise erime gözlenmemiştir. Her üç kompleks 200°C üzerinde bozunmaya başlamıştır. Bozunma kalsiyum kompleksinde 220-260 °C, stronsiyum kompleksinde 246-290 °C ve baryum kompleksinde 218-270 °C aralığında gerçekleşmiştir. Erime noktasına göre komplekslerin kararlılık sırası Sr>Ba>Ca>Mg şeklindedir.

Metal-asesülfam komplekslerinin elementel analiz sonuçları teorik sonuçlarla uyumludur (bkz. Çizelge 4.16).

Metal-asesülfam-nikotinamid karışık ligand komplekslerinde ise nikotinamidin koordinasyon küresine girdiği ve asesülfamat iyonlarının bütün komplekslerde tamamlayıcı iyon olarak davrandığı tahmin edilmektedir. Nikotinamid ligandlarının koordinasyon küresine dahil olmasıyla kalsiyum, stronsiyum ve baryum komplekslerinin polimerik yapısının kaybolduğu, kalsiyum iyonunun sekiz, stronsiyum ve baryum iyonlarının ise dokuz koordinasyona sahip kompleksler oluşturduğu tahmin edilmektedir. Metal-asesülfam-nikotinamid karışık ligandlı kompleksler için önerilen formüller aşağıda verilmiştir.

 $[Mg(H_2O)_4(na)_2](acs)_2 (C_{20}H_{28}MgN_6O_{14}S_2)$ $[Ca(H_2O)_6(na)_2](acs)_2 (C_{20}H_{32}CaN_6O_{16}S_2)$

$$[Sr(H_2O)_7(na)_2](acs)_2 \quad (C_{20}H_{34}SrN_6O_{17}S_2)$$

$$[Ba(H_2O)_7(na)_2](acs)_2 \quad (C_{20}H_{34}BaN_6O_{17}S_2)$$

Metal-asesülfam-nikotinamid karışık ligantlı komplekslerin termal analiz eğrileri incelendiginde $[Mg(H_2O)_4(na)_2](acs)_2$ kompleksinin iki basamakta deakuasyona uğradığı ve her basamakta iki mol akua ligandının uzaklaştığı görülmektedir. Kompleksin sonraki bozunma aşaması nikotinamid ligandlarının tek tek uzaklaşmasıdır. Son ürünün MgO bileşiği olduğu düşünülmektedir (deneysel: %5,97 - teorik: %6,02). $[Ca(H_2O)_6(na)_2](acs)_2$ kompleksinde ise altı mol akua ligantı 220 °C civarında uzaklaşmaktadır (deneysel: %14,7 - teorik: %14,2). Sonraki bozunma aşaması iki mol nikotinamid ligandının uzaklaşmasıdır (220-450°C aralığında, deneysel: %33,97 - teorik: %34,05). Son ürün CaO bileşiğine karşılık gelmektedir (deneysel: %8,8 - teorik: %7,8). DTG eğrisinden bu iki ağırlık kaybının hızlı bir sekilde olduğu görülmektedir. $[Sr(H_2O)_7(na)_2](acs)_2$ ve $[Ba(H_2O)_7(na)_2](acs)_2)$ komplekslerinin termal bozunması birbirine oldukça benzemektedir. Her iki komplekste bozunmanın ilk aşaması deakuasyondur. $[Sr(H_2O)_7(na)_2](acs)_2$ kompleksinde 21-204°C aralığında, [Ba(H₂O)₇(na)₂](acs)₂ kompleksinde 25-223°C aralığında yedi mol akua ligandı uzaklaşmaktadır (sırasıyla deneysel: %16,37 teorik: %16,13 ve deneysel: %15,05 - teorik: %15,15). Sonraki aşama nikotinamid ligandlarının uzaklaşmasıdır (sırasıyla deneysel: %31,26 - teorik: %31,23 ve deneysel: %29,17 - teorik: %29,36). Her iki komplekste son ürünün metal oksit tuzu olduğu tahmin edilmektedir. Dört komplekste de akua ve nikotinamid ligandları uzaklaştıktan sonra M(acs)₂ tuzunun oluştuğu, asesülfamat iyonlarının ise SO₂ çıkışıyla bozunması sonucu karşılık gelen metal oksitin oluştuğu düşünülmektedir. Komplekslerin kütle spektrumlarında m/z değeri yaklaşık 64 olan pik SO₂ grubunun, yaklaşık 122 olan pik nikotinamid ligandının, 162-163 civarı görülen pik ise asesülfamat iyonlarının uzaklaşmasına karşılık gelmektedir.

Metal-asesülfam-nikotinamid komplekslerinde erime olayı gözlenmemiştir. Kompleksler 120-250°C aralığında değişen sıcaklıklara bozunmaya uğramıştır. Bozunma sıcaklıkları sırasıyla ; 121-132, 210-235, 257-269, 206-250°C aralığında gerçekleşmektedir. Buna göre metal-asesülfam-nikotinamid komplekslerinin kararlılık sırası Sr>Ba>Ca>Mg şeklindedir. Metal-asesülfam komplekslerinin ve metal-asesülfam-nikotinamid karışık ligandlı komplekslerin elementel analiz sonuçları teorik sonuçlarla uyumludur (bkz. Çizelge 4.16).

Komplekslerin antimikrobiyal aktivite çalışmalarında bütün komplekslerin çalışılan mikroorganizmalara (*Enterococcus faecalis* ATCC 29212, *Staphylococcus aureus* ATCC 25923, *Pseudomonas aeroginosa* ATCC 27853, *Escherichia coli* ATCC 25922 ve *Candida albicans* ATCC 10231) karşı aktivite göstermediği tespit edilmiştir. Çalışma ilk olarak 0,001 g madde/10 mL %10'luk DMSO ve daha sonra 0,1 g madde/10 ml %10'luk DMSO'da yapılmıştır. Her iki yoğunlukta da antimikrobiyal etki görülmemiştir.

KAYNAKLAR

Antsyshkina, A.S., Poray-Koshist, M.A., 1979. Koord.Khim., 5, 1716.

- Bulut, A., İçbudak H., Sezer G. Kazak C., 2005. Bis(acesulfamato- $\kappa^2 N^3$,O⁴)bis(2-aminopyirimidine- κN^1)copper(II). Acta Crystallographica, C61, 228-230.
- Cavicchiolia, M., Massabni, A.C., Heinrich, T.A., Costa-Neto, C.M., Abrao, E.P., Fonseca, B.A.L., Castellano, E.E., Corbi, P.P., Lustri, W.R., Leite, C.Q.F., 2010. Pt(II) and Ag(I) complexes with acesulfame: Crystal structure and a study of their antitumoral, antimicrobial and antiviral activities. Journal of Inorganic Biochemistry 104, 533–540.
- Clauss, K., Jensen H., 1973. Oxathiazinone dioxides a new group of sweetening agents. Angewandte Chemie International Edition in English, 12, 869-942.
- Çetin, N., 2005. Bazı Acesülfam-Geçiş Metal Komplekslerinin Sentezi, Yapısı, Spektroskopik, Termik Ve Kromotropik Özellikleri. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Samsun.
- Duffy, V.D., Anderson G.H., 1998. Use of nutritive and nonnutritive sweeteners. Journal of The American Dietetic Association, 98, 580-587.
- Edebalı, S., 2007. Çinko *P*-Floro Ve *P*-Bromobenzoatların Nikotinamid, İzonikotinamid Ve *N,N'*-Dietilnikotinamid Komplekslerinin Sentezi Ve Özellikleri. Yüksek Lisans Tezi, Kafkas Üniversitesi, Fen Bilimleri Enstitüsü, Kars.
- Farrugia, L.J., 1999. WinGX suite for smallmolecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837-838.
- Fisher, N.M., Marsh, E., Lazova, R., 2003. Scar-localized argyria secondary to silver sulfadiazine cream. Journal of the American Academy of Dermatology, 49, 4, 730–732.
- Grirrane, A., Pastor, A., Alvarez, E., Moyano, R., Galindo A., 2007. Inorganic Chemistry Communication, 10, 1125-1128.
- Hoang, N.N., Valanch, F., Dunajjurco, M., 1995. Bis(2-chloro-6fluorobenzoato)bis(nicotinamide)copper(II), Acta Crystallographica Section C-Crystal Structure Communication, 51, 1095-1097.
- Hoang, N.N., Valanch F., Menlik, M., 1999. Zeitschrift Für Kristalographie 208, 1, 1, 27-33.
- Hodgin, G., 2002. The history, synthesis, metabolism and uses of artificial sweeteners.

- Hökelek, T., Necefoğlu, H., 1998. *trans*-Diaquabis(nicotinamide)bis(p nitrobenzoato)cobalt(II). Acta Crystallographica, C54, 1242-1244.
- Hökelek, T., Necefoğlu, H., 1999a. *trans*-Diaquabis(nicotinamide) bis (phydroxybenzoato)cobalt(II). Acta Crystallographica, C55, 1438-1440.
- Hökelek, T., Necefoğlu, H., 1999b. *trans*-Diaquabis(nicotinamide)bis(p-aminobenzoato)cobalt(II). Analytical Sciences, 15, 1043-1044.
- İçbudak, H., Heren, Z., Uyanık, A., Odabaşoğlu, M., 2005. Prediction of the decomposition pathway of diaquabis(N,N'-dimethyl-1,2-ethanediamine) nickel(II) acesulfamate by thermal and mass spectroscopic data. Journal of Thermal Analysis and Calorimetry, 82, 303-306.
- İçbudak, H., Adıyaman, E., Çetin, N., Bulut, A., Büyükgüngör, O., 2006. Synthesis, structural characterization and chromotropism of a Ni(II) and a Co(II) compound with acesulfamate as a ligand. Transition Metal Chemistry, 31, 666-672.
- Macrae, C.F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., Van de Streek, J., 2006. Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography, 39, 453-457.
- Mukherjee, A., Chakrabarti, J., 1997. In vivo cytogenetic studies on mice exposed to acesulfame-K-a non –nutritive sweetener. Food and Chemical Toxicology, 35, 1177-1179.
- Murugavel, R., Baheti, K., Anantharaman, G., 2001. Reactions of 2-mercaptobenzoic acid with divalent alkaline earth metal ions: synthesis, spectral studies, and single-crystal x-ray structures of calcium, strontium, and barium complexes of 2,2'-Dithiobis(benzoic acid). Inorganic Chemistry, 40, 6870-6878.
- Ptasiewicz-Bak, H., Leciejewicz, J., 2010. The crystal structure of a strontium(II) complex with pyrazine-2,6-dicarboxylate and water ligands. Journal of Coordination Chemistry, 56:3, 223-229.
- Rafique, S., Idrees, M., Nasim, A., Akbar, H., Athar, A., 2010. Transition metal complexes as potential therapeutc agents. Biotechnology and Molecular Biology, 5(2), 38-45.
- Rosenberg, B., Vancamp, L., Trosko, J.E., Mansour, V.H., 1969. Nature 222, 385-386.
- Sheldrick, G.M., 2008. A short history of SHELX. Acta Crystallographica, A64, 112-122.

Stoe and Cie, 2002. X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.

- Topçu, Y., Andaç, Ö. Yılmaz, V.T., Harrison, W.T.A., 2002. Synthesis, characterization and spectral studies of triethanolamine complexes of metal saccahrinates. Crystal structures of [Co(tea)₂](sac)₂ and [Cu₂(μ-tea)₂(sac)₂].2(CH₃OH). Journal of Coordination Chemistry, 55, 805-815.
- Yılmaz, V.T., Güney, S., Andaç, Ö., Harrison, W.T.A., 2002. Different coordination modes of saccharin in the metal complexes with 2- pyridiylmethanol: synthesis, spectroscopic, thermal and structural characterization. Polyhedron, 21, 2393-2402.
- Yılmaz, V.T., Topcu, Y., Yılmaz, F., Thoene, C., 2001. Saccharin complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with ethanolamine and diethanolamine: synthesis, spectroscopic and thermal characteristics. Crystal structures of [Zn(ea)₂(sac)₂] and [Cu₂(μ-dea)₂(sac)₂]. Polyhedron, 20, 3209-3217.

ÖZGEÇMİŞ

Kişisel bilgiler

Soyadı, Adı	:YURDAKUL, Ömer
Uyruğu	:T.C.
Doğum tarihi ve yeri	:14.01.1983 - Gaziantep
Medeni hali	:Bekar
E-posta	:omeryurdakul@hitit.edu.tr

Eğitim

Derece	Eğitim Birimi	Mezuniy	v et tarihi
Lisans	Ondokuz Mayıs Üniversitesi/Kimya Bölümü	ï	2007
Lise	Gaziantep Ondokuz Mayıs Lisesi /YDA Pro	gram	2002

İş Deneyimi

Yıl	Yer	Görev
2011-	Hitit Üniversitesi	Araştırma Görevlisi

Yabancı Dil

İngilizce

Yayınlar

- Experimental and DFT Studies on Poly[di-μ₃-acesulfamato-O,O:O';O':O,Odi-μ-acesulfamato-O,O; N-di-μ-aquadicalcium(II)] Complex (Journal of Inorganic and Organometallic Polymers and Materials, Güneş Demirtaş, Necmi Dege, Hasan İçbudak, <u>Ömer Yurdakul</u>, Orhan Büyükgüngör Volume:22 Number:1 January 2012).
- Synthesis, Structural and Thermal Characterization and Biological Activity Determination of the Complexes of Ba(II) and Sr(II) ions with acesulfamato Ligands. 01-06 October 2012, Muğla, 218-219.

- 3. Synthesis, Structural and Thermal Characterization and Biological Activity Determination of the Complexes of Mg(II) and Ca(II) Metal cations with acesulfamato Ligands. 01-06 October 2012, Muğla, 305.
- Co(II), Ni(II), Cu(II), Zn(II) İyonlarının 3,5-Dinitrosalisilik asit ve Nikotinamid İçeren Karışık Ligandlı Komplekslerin Sentezi ve Yapısal Karakterizasyonu. 30 Mayıs – 2 Haziran 2013, Tokat, P356.
- Co(II), Ni(II), Cu(II), Zn(II) İyonlarının 3,5-Dinitrobenzoik asit ve Nikotinamid İçeren Karışık Ligandlı Komplekslerin Sentezi ve Yapısal Karakterizasyonu. 30 Mayıs – 2 Haziran 2013, Tokat, P355.