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ÖZET 

Mesee ve Rogoff (1983) tarafından da belirtildiği gibi ekonomi temelli 

ekonometrik yöntemler ve zaman serileri yöntemleri gibi klasik yöntemler, döviz 

kuru tahmininde; döviz kurunun öngörülemez bir rassal süreç izlediğini belirten 

rassal yürüyüş modeline nazaran kayda değer bir başarı sergileyememişlerdir. 

Özellikle son 20 yılda, bilgi ve bilgisayar teknolojilerinde gözlenen hızlı gelişmeler 

sayesinde yapay zeka temelli yöntemler döviz kuru tahmininde umut vadeden 

yöntemler olarak yaygın bir şekilde kullanılmaya başlanmıştır. Bu çalışmanın amacı 

üç farklı Türk Lirası döviz kuru (TL/USD, TL/EUR, TL/GBP) için 2004-Ocak ve 

2013-Aralık ayı arası 120 gözlemden oluşan aylık verileri kullanarak, klasik 

yöntemler ve yapay zeka temelli yöntemlerin tahmin performanslarının 

karşılaştırılmasıdır. İlgili yöntemlerin; bir adım öte, gözlem içi ve gözlem dışı tahmin 

performansları; kök ortalama kare hatası istatistiği ve Diebold-Mariano test yoluyla 

karşılaştırmalı olarak incelenmiştir. Gerçekleştirilen analiz neticesinde; yapay zeka 

temelli yöntemlerin gözlem-içi tahmin performansı açısından, klasik yöntemlere göre 

kayda değer bir şekilde daha başarılı olduğunu görülmüştür. Öte yandan klasik 

yöntemler, gözlem-dışı tahmin performansı açısından analize konu olan bir çok 

durumda yapay zeka temelli yöntemlere göre istatistiki olarak anlamlı bir şekilde 

daha başarılı olmuştur. Bunlara ek olarak analizde kullanılan yedi farklı model 

gözlem-dışı tahmin performansı açısından incelenen yirmi bir durumdan onunda, 

rassal yürüyüş modelinden istatistiki olarak anlamlı şekilde başarılı bir tahmin 

performansı sergilemiştir. Rassal yürüyüş modeli ise hiçbir durumda söz konusu 

modellerden istatistiki olarak anlamlı bir şekilde daha başarılı bir gözlem-dışı tahmin 

performansı sergileyememiştir. 

 

 

 

Anahtar Kelimler: Döviz kurları, zaman serileri tahmini, yapay sinir ağları 
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SUMMARY 

As emphasized by Meese and Rogoff (1983) in their seminal paper; economic 

fundamentals based models and time series models (i.e. classical models) are unable 

to significantly outperform a random walk model, implying that exchange rates 

behave in a purely random and unpredictable manner. During the last decades with 

the rapid advancements in computer and information technologies artificial 

intelligence based models came into use in forecasting exchange rates as a promising 

forecasting tool. This paper aims to investigate predictive accuracy of classical 

models and artificial intelligence based models in forecasting three different Turkish 

Lira exchange rates (TL/USD, TL/EUR, TL/GBP), using monthly period data from 

January 2004 to December 2013 with 120 observations. One step ahead, in-sample 

and out-of-sample forecasting accuracy of each model analyzed comparatively by 

utilizing root mean squared error statistics and Diebold-Mariano test. Analysis results 

proposed that; artificial intelligence based models performed significantly better for 

in-sample forecasts. Besides, for out-of-sample forecasts; classical models performed 

statistically significantly better than artificial intelligence based models in most 

instances. Furthermore, in ten out of twenty-one instances all seven forecasting 

models in consideration (both classical models and artificial intelligence based 

models) were capable of beating random walk model; while random walk model was 

not capable of statistically significantly beating any of these seven models in 

consideration. 

 

 

 

Keywords: Exchange rates, time series forecasting, artificial neural networks 
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1. INTRODUCTION 

After the collapse of the Bretton-Woods system in 1973, fixed exchange rate 

regime obliged by the system disappeared and countries became vulnerable to 

sudden and drastic movements in exchange rate levels. In today’s overwhelmingly 

globalized, economically integrated world, exchange rate between currencies have 

become increasingly crucial and have profound impacts on all levels of the economy. 

Because of such reasons, accurate and reliable forecasting of exchange rates emerged 

as an important necessity. 

 

During the last decades exerting exchange rate movements, developing a 

model for forecasting exchange rates have been a dynamic and active research area 

in the literature. Many models have been proposed in economics literature, 

attempting to unveil exchange rate dynamics. These models are termed as economic 

fundamentals based models since they associate exchange rate behavior with 

macroeconomic variables. In addition to these standard econometric models with 

macroeconomic fundamentals, univariate and multivariate pure time series models 

are employed to exchange rate series for forecasting purposes. Meese and Rogoff 

(1983) in their seminal paper by conducting a comparative analysis of economic 

fundamentals based models and time series models (i.e. classical models) presented 

that these models are unable to significantly outperform a random walk model which 

implies that exchange rates behave in a purely random and unpredictable manner. 

This phenomenon is called in the literature as Meese-Rogoff puzzle. Subsequent, 

sophisticated empirical studies were also unable to strongly justify a solution to 

Mesee-Rogoff puzzle and prove that classical models are capable of beating naive 

random walk model. 

 

Such dismal performance of classical models is mainly attributed to unrealistic 

assumptions of these models like; linear dependency between independent and 

dependent variables and assumptions regarding the data generating process that does 

not comply with real world situations. During the last two decades with the rapid 

advancements in computer and information technologies artificial intelligence based 
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models came into use in forecasting exchange rates. Artificial intelligence based 

models don’t involve any assumptions about data generating process. They are 

capable of dealing with nonlinear relationships. They extract the relationship 

between variables by learning from data and base their forecasts on these nonlinear 

approximations. These distinctive features made them a promising and attractive 

forecasting tool. 

 

This paper conducts a comparative analysis of classical models such as; 

autoregressive moving average (ARIMA) models, autoregressive conditional 

heteroscedasticity (ARCH) models, vector autoregressive (VAR) models, error 

correction models (ECM) and artificial intelligence based models such as; multilayer 

feedforward neural networks (MLFFNN), recurrent neural networks (RNN), support 

vector regression (SVR) in forecasting Turkish Lira/U.S. Dollar (TL/USD), Turkish 

Lira/Euro (TL/EUR), Turkish Lira/British Pound (TL/GBP) exchange rates by using 

monthly observations from January 2004 to December 2013 of all three exchange 

rates, monetary aggregates of relevant countries and one year interbank borrowing 

rate of each currency. 

 

The rest of this study is organized as follows; section 2 gives theoretical 

foundations of economic fundamentals based models of exchange rate determination 

(purchasing power parity, the balance of payments flow approach, the monetary 

approach, the portfolio balance approach); section 3 describes the econometric, 

(ARIMA models, ARCH models, VAR models, ECM models) and artificial 

intelligence based models (MLFFNN, RNN, PNN, SVR) that are commonly used in 

financial time series forecasting. Then in section 4 these models are employed to 

Turkish Lira exchange rates in order to compare forecasting performance of each 

model and to assess their predictive ability. Concluding remarks derived through 

analyses are provided in the final section. 
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2. ECONOMIC FUNDAMENTALS BASED 

MODELS OF EXCHANGE RATE 

DETERMINATION 

2.1. Purchasing Power Parity 

Origins of purchasing power parity date back to sixteenth century workings of 

the scholars of Salamanca school, Spain. Purchasing power parity, in modern 

context, emerged as a response to the financial issues brought by the World War I. 

During the war, many countries suspended or abandoned the gold standard in which 

exchange rate between currencies reflected their relative gold values. This raised the 

problem of how to set exchange rates without disturbing too much the prices and 

government finances (Rogoff, 1996). Swedish economist Gustav Cassel in his work 

“The World’s Monetary Problems” suggested use of purchasing power parity as a 

tool to solve the problem. He stated that in absence of the restrictions to international 

trade, exchange rate between two countries’ currencies adjust to general price level 

of the each country. Hence, exchange rates are determined by the purchasing powers 

of the currencies and purchasing power parities represent the true equilibrium of the 

exchange rates (Cassel, 1921, pp. 36-38). Relationship between exchange rates and 

price levels can be explained with two different approaches called; absolute and 

relative purchasing power parity. They are both based on the law of one price, which 

states that under the assumptions of (i) relevant commodities are tradable, (ii) there 

are no restrictions to trade, (iii) there are no transaction costs, (iv) relevant 

commodities are perfectly homogeneous, these commodities should trade at a same 

price across countries when converted in a single currency. In the absolute version, 

exchange rate between two currencies is determined by the ratio of price levels of 

these countries. Relative version is based on absolute version but the only difference 

is that it uses percentage changes rather than absolute differences. According to 

relative version of purchasing power parity; percentage change in exchange rate of 

currencies is determined by the difference of percentage change in price levels of 

relevant countries (Rosenberg, 1996, pp. 12, 14).  
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Validity of purchasing power parity has long been focus of debate. Frenkel 

(1978, 1981), in his two highly influential papers regarding the phenomenon found 

that purchasing power parity relation was generally valid for the period between the 

1920s to 1970 but the relation nearly collapsed for the 1970s. Frenkel attributes this 

to the uncertain character of the 1970s and sharp, frequent changes of expectations 

resulting from real shocks like the oil crisis, supply shocks and shortages. Studies 

such as Adler and Lehmann (1983), Taylor (1988) argued that exchange rate 

behavior characterized by a random walk process rather than the behavior implied by 

purchasing power parity doctrine. Recently, research on the subject has questioned 

whether exchange rates follow a random walk process or they gravitate along some 

mean value and follow a mean reverting process. If exchange rates follow a mean 

reverting process along the path implied by purchasing power parity doctrine, then it 

can be traced that purchasing power parity is valid at least as a long run 

phenomenon. Jorion and Sweeney (1996) and Augustine et al. (2010) derived results 

that exchange rates tend to revert a long run equilibrium mean value while Baum et 

al. (1999) and Cushman (2008) derived results against long run equilibrium, mean 

reverting process. 

2.2. The Balance of Payments Flow Approach 

Balance of payments flow approach basically focuses on the role of 

international trade in determination of exchange rates. It was first introduced by the 

works of economists; Joan Robinson, Frizt Machlup and Gottfried Haberler 

(Rosenberg, 1996; pp. 69). Joan Robinson stated in “Essays in the Theory of 

Employment” for the theory of foreign exchange that the exchange rate is determined 

by supply and demand of home currency in terms of foreign currency. The demand 

for a foreign currency in terms of home currency (or the supply of home currency 

made available to the exchange market) mainly arises from the need to pay for goods 

and services purchased from foreigners and in order to make loans or purchase 

securities abroad. Demand for foreign currency arises from the domestic demand for 

foreign goods, services and financial instruments. In a similar vein, supply of foreign 

currency arises from the foreign demand for domestic goods, services and financial 

instruments (Robinson, 1947). Hence, if the international trade is balanced, i.e. 

domestic demand for foreign goods, services and financial instruments equals foreign 
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demand for domestic goods, services and financial instruments then the supply and 

demand of foreign currency should be in equilibrium as well. An imbalanced trade or 

disequilibrium gives rise to excess supply or excess demand for foreign exchange. In 

this case exchange rate adjusts until the trade imbalance is vanished and the 

equilibrium is restored. For instance if the exchange rate is at a level corresponding 

to a disequilibrium, domestic currency is overvalued where demand for foreign 

currency exceeds supply of foreign currency, domestic country would be running a 

trade deficit and foreign country would be running a trade surplus. Excess demand 

for foreign currency drives the exchange rate up, domestic currency depreciates and 

the foreign currency appreciates, until the equilibrium is restored. The amount and 

the duration of the adjustment depends on the both domestic and foreign countries’ 

elasticities of demand for exports and imports (Rosenberg, 1996, pp. 68-71). 

2.3. The Monetary Approach 

Monetary approach to exchange rate determination relates impacts of monetary 

policy to exchange rates; under the assumptions that; (i) money demand is a stable 

function of level of income and interest rates, (ii) purchasing power parity relation 

holds, (iii) arbitrage conditions implied by uncovered interest parity relation, i.e. 

interest yield of a domestic bond equals the interest yield on a foreign bond adjusted 

for the expected change in the exchange rate, holds each point in time. (Bilson, 1978, 

pp. 49). Its basic version; flexible price monetary model was first introduced by 

Frenkel (1976). Frenkel stated foundations of the model as; exchange rate, being 

relative price of two currencies, could be stated in terms of supply and demand for 

these currencies since the equilibrium exchange rate is attained when existing stock 

of these currencies are willingly held (Frenkel, 1976, pp. 201). Monetary approach, 

in its basic form, can be represented by following equation: 

  (    )    (   
 )    ( ̇

   ̇  ) (2.1) 

Where   and    are the log form of supply of money both in the domestic and 

foreign country respectively;    and    are income and interest rate elasticities of 

money demand which are assumed to be equal in domestic and foreign country;   
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and    are the log form of level of income in domestic and foreign country 

respectively;  ̇  and  ̇   are expected future monetary growth rates in domestic and 

foreign country respectively. Transmission mechanism implied by the model can be 

summarized as follows: (i) a change in the money supply transforms to a change in 

the price level as proposed by the quantity theory of money and resulting change in 

price level transforms to a change in exchange rate through purchasing power parity 

relation (ii) in monetary model interest rate differentials are assumed to reflect 

differences in inflation rates which in turn reflects the differences in expected future 

monetary growth rates; if domestic country experiences a rise in domestic interest 

rate, that is sufficient to result a rise in interest rate differential, this means that 

inflationary expectations have risen in domestic country which imply that expected 

future monetary growth rate has relatively risen and this gives rise to depreciation of 

the domestic currency. Hence; in monetary model value of the domestic currency 

moves in the opposite direction of interest rate differential as opposed to the way 

popularly thought. Over time, various versions of the model were developed. These 

alternative versions termed in the literature as; sticky price version, real interest rate 

differential version, equilibrium real exchange rate version and exchange market 

pressure version (Rosenberg, 1996, pp. 140-143). Variations of the monetary model 

can be summarized by using following equation: 

       (   
 )    (   

 )    (     
 )    ( 

    
 
)

   (     
 
)    (2.2) 

where   is the logarithm of spot exchange rate between domestic and foreign country 

currencies;      is the logarithm of domestic and foreign country money supplies 

in differential form,      is the ratio of logarithm of domestic and foreign country 

real income levels,      
  is the short term interest differential between domestic 

and foreign countries,    and   
 
 are the excpected future inflation rates in domestic 

and foreign countries respectively,    and   
 
 are the cumulated foreign trade 

balances of domestic and foreign countries and   is the error term. All variations of 

monetary model assume that     . The Frenkel-Bilson monetary model restricts 

     and by assuming that the purchasing power parity holds, sets        . 

The Dornbush-Frankel model by restricting      and      allows for deviations 

from purchasing power parity relation. Hooper-Morton monetary model by including 
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the long run effect of trade balance on exchange rates extends the Dornbush-Frankel 

monetary model. None of the coefficients is set to zero in this model and they are 

restricted as     ,     ,      (Meese and Rogoff, 1983; Kim and Mo, 1995). 

 

There exists a huge literature regarding empirical tests of the various versions 

of the monetary model and its predictive ability. Studies following early successful 

implementation of monetary model by Frenkel (1976) and  Bilson (1978) produced 

unsatisfactory results. Meese and Rogoff (1983) in their distinctive paper found that 

a random walk model outperforms monetary model in every forecasting horizons. 

Recent studies claimed that; adjustment of exchange rates to level implied by the 

monetary models is governed by a nonlinear adjustment process. Theoretical models 

are fundamentally sound but the linear methods used for estimating these models 

were the major cause of dismal empirical performance until then (Killian and Taylor, 

2003). Taylor and Peel (2000), Wu and Chen (2001), Kim et al. (2010), Junttila and 

Korhonen (2011), Beckmann (2013) presented that in contrast to studies based on 

linear methods, predictability of the monetary model increases when the nonlinear 

adjustment process is taken into account. 

2.4. The Portfolio Balance Approach 

Similar to the monetary approach, the portfolio balance approach links 

determination of exchange rates with interaction of supply and demand for financial 

assets but in a much broader sense. In portfolio balance approach exchange rates are 

determined not only by relative money supplies but also by relative bond supplies. 

Isard (1995) gives a brief, coherent background of its theoretical framework. 

 

According to portfolio balance approach the menu of assets that a resident of a 

country can allocate his/her wealth is as follows: (i) a non-interest bearing asset; 

reserve money of central bank ( ), (ii) domestic bonds that are issued by 

government and held by domestic private sector asset holders ( ), (iii) foreign bonds 

that are issued by foreign governments and held by domestic private sector asset 

holders ( ). 
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         (2.3) 

Net wealth of a domestic asset holder equals to sum of the amount of reserve 

money held, value of domestic government bonds and value of foreign government 

bonds in denominated in domestic currency, i.e. its value is multiplied by the 

exchange rate ( ) (see equation 2.3). The way monetary policy, fiscal policy and 

current account imbalances affect exchange rate in portfolio balance approach can be 

exemplified as follows; (i) If central bank of the domestic country pursues a 

expansionary monetary policy through an open market purchase; with the resulting 

swap between reserve money ( ) and domestic bonds ( ) domestic wealth remains 

constant. Such a monetary expansion, leave domestic asset holders with excess 

supply of reserve money and an equivalent excess demand for domestic bonds. These 

forces simultaneously drive the domestic interest rate downward and domestic 

currency depreciates as domestic asset holders attempt to substitute from domestic 

bonds to foreign bonds. (ii) If the government pursues an expansionary fiscal policy 

which is financed through issuing government bonds; resulting rise in the supply of 

domestic bonds ( ) induces a rise in domestic wealth ( ). While it is obvious that a 

rise in domestic interest rate is necessary to eliminate excess demand for money, net 

effect of the policy on exchange rates is ambiguous. Rise in wealth of the domestic 

asset holders (resulting from rise in the domestic bonds) will leave them with an 

excess supply for domestic bonds and an excess demand for remaining two 

components of wealth; reserve money and foreign bonds. While excess demand for 

foreign bonds drives the value of domestic currency downwards; the rise in domestic 

interest rate drives the value of domestic currency upwards by inducing domestic 

asset holders to substitute foreign bonds to domestic bonds. Net effect on exchange 

rate depends on which force will dominate. (iii) Assuming that a country runs a 

current account surplus and consequently foreign bonds that are held by the domestic 

asset holders rise. Such a rise in foreign bonds leaves domestic asset holders with an 

excess supply of foreign bonds and an excess demand for domestic bonds and 

reserve money. Excess demand for domestic bonds can only be offset if domestic 

interest rates decline while excess demand for reserve money can only be offset if the 

domestic interest rates rise. Since it is impossible for interest rates to rise and decline 

at the same time; the only way that the portfolio balance can be ensured is that the 
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exchange rate ( ) to decline by the same proportion as the rise in foreign bonds ( ) 

and hence holding domestic currency value of foreign bonds (  ) constant 

(Rosenberg, 1996, pp. 188-197; Enders, 1977) 
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3. EXCHANGE RATE FORECASTING MODELS 

3.1. Econometric Models 

3.1.1. Autoregressive Integrated Moving Average (ARIMA) Models 

Structure of an ARIMA (p, d, q) model which represents a combination of a 

autoregressive model (AR) of order; p, moving average model (MA) of order; q, 

integrated of order d, was first introduced by Box and Jenkins (1976). Box and 

Jenkins, compiled and integrated existing knowledge on time series forecasting and 

delivered a coherent, unique; three stage iterative process for model identification, 

parameter estimation and diagnostic checking. This iterative procedure is regarded in 

the literature as Box-Jenkins methodology. During the last half a century ARIMA 

models have been frequently used in many areas of time series forecasting. In an 

ARIMA (p, d, q) process, the future value of a variable is assumed to be a linear 

combination of its past values and past error terms which has the following form: 

                             

                           (3.1) 

where    is the value of the variable at time t,    is random error term at time t which 

is independent and identically distributed with mean 0 and variance   ,    and    are 

coefficients,   and   are autoregressive and moving average polynomials 

respectively (Hamilton, 1994, pp. 58). For instance, an ARIMA (1, 0, 1) process can 

be represented as follows: 

                       (3.2) 

It is a prerequisite to warrant that the data sample is stationary; in order to 

apply Box-Jenkins methodology and to estimate coefficients of the series. There are 

two main methods for detecting nonstationarity: (i) Graphical inspection: visual 

representation of stationary series against time, exhibit a smooth looking pattern, 

evenly distributed around a constant mean with no trend or seasonal deviation. It is 
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not easy to judge whether the series are stationary or not by visual inspection alone. 

A more useful tool is to analyze correlogram which represent behavior of 

autocorrelation and partial autocorrelation functions of the series. A white noise 

stationary process has autocorrelation and partial autocorrelation value which is not 

statistically significantly different from zero for arbitrarily chosen lag values. Hence 

stationary time series should represent a correlogram feature consistent with this. (ii) 

Unit root tests: in equation 3.3    is the value of the variable at time t and    is 

random error term; if  =1 series become a pure random walk process which is a 

characteristic nonstationary, unit root process. Unit root tests, question whether   

coefficient is statistically significantly different from 1 or not. If  =1, or in difference 

form if δ=1-   =0 (see equation 3.4), then series are said to be nonstationary. 

            (3.3) 

 

             (3.4) 

Unit root tests developed by Dickey and Fuller (1979) and Phillips and Perron 

(1988) are widely used in the literature for testing stationarity of time series 

(Johnston and Dinardo, 1997). 

 

In order to estimate an ARIMA (p, d, q) model, one needs to determine 

whether the series follow; a pure AR (p) process and if so what is the value of p, a 

pure MA (q) process and if so what is the value of q or an ARIMA process that is 

combination of an AR (p) process and MA (q) process. Box-Jenkins methodology 

identifies a three steps process that gives an answer to such questions. First step is 

identification. This step aims to find appropriate values of p, d and q for possible 

candidate models with the aid of autocorrelation functions and partial auto 

correlation functions of the series. (See table 3.1 for typical patterns of processes). 

Second step is estimation. Having identified possible candidates in the first step, in 

this step these alternative models are estimated. Third and the last step is diagnostic 

checking. The model that fits data best among alternatives is determined in this step. 

Statistical significance of coefficients of each estimation are questioned, estimates 

are compared with criterions such as Akaike’s information criterion and Schwarz’s 
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information criterion; autocorrelation functions and partial autocorrelation functions 

of residuals from each alternative regression is examined with the aid of Ljung-Box 

and Box-Pierce Q statistics to determine if they follow a white noise process 

(Gujarati, 2009, pp. 777). 

Table 3.1: Theoretical Correlation Patterns of AR and MA processes 1 

Table 3.1: Theoretical Correlation Patterns of AR and MA processes 

   
Type of Model Typical Pattern of ACF Typical Pattern of PAC 

AR (p) 

Decays exponentially or 

with damped sine wave 

pattern or both 

Significant spikes through 

lags p 

MA (q) 
Significant spikes through 

lags q 
Declines exponentially 

ARMA (p, q) Exponential decay Exponential decay 

   Source: Gujarati, 2009, pp. 781 

Meese and Rogoff (1983) presented that a bivariate autoregressive model is 

unable to beat a random walk model in all forecasting horizons from one to twelve 

months; for monthly point-sample data of Dollar/Pound, Dollar/Mark, Dollar/Yen 

and trade weighted Dollar exchange rates, regardless of whether root mean squared 

error or mean absolute error methodology used as a comparison criteria. Fernandez-

Rodriguez et al. (1999) applied non-parametric nearest neighbor forecasting 

technique and an ARIMA (1,1,0) model to currencies of nine countries participated 

in exchange rate mechanism of European Monetary System. Data set consist of daily 

spot exchange rates between the Deutsche mark and Belgian franc (BFR), the Danish 

Crown (DKR), the Portuguese Escudo (ESC), the French Franc (FF), the Dutch 

Guilder (HFL), the Irish Pound (IRL), the Italian Lira (LIT), the Spanish Peseta 

(PTA), the Pound Sterling (UKL) for the period from 1st January 1978 to 31st 

December 1994. Forecasting performances are compared by Theil’s U statistic and 

Diebold-Mariano test; ARIMA model offers lower U statistics only for three out nine 

cases and Dielbold-Mariano test results suggest that ARIMA model outperforms 

nearest neighbor predictor only for the Pound Sterling (UKL) exchange rate. Botha 

and Pretorius (2009) compared univariate models and multivariate models in 

forecasting South African Rand, U.S. Dollar exchange rate for one step ahead, two 

quarters and four quarters ahead horizons with mean absolute deviation criterion. 
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Results shown that while an ARIMA (1, 1, 1) model performed poorly for one step 

ahead forecast, its performance is improved as forecasting horizon is extended to two 

quarters and four quarters. McCrae et al. (2002) analyzed one to forty days ahead 

forecasts of ARIMA models in comparison with cointegration based error correction 

models (ECM) using an ARIMA (2, 1, 0) model for Japanese Yen, an ARIMA (4, 1, 

0) model for Malaysian Ringgit, an ARIMA (1, 1, 2) model for Philippines Peso, an 

ARIMA (0, 1, 5) model for Thai Baht and an ARIMA (0, 1, 1) model for Singapore 

Dollar. Data sample consisted of log daily US Dollar exchange rates of five 

currencies from 1 January 1985 to 28 February 1997. They proposed that forecasting 

accuracy of ARIMA models as regard to error correction models depend on 

exchange rate series under consideration and forecast horizon. Individual currency 

analysis revealed that; over short horizons, ARIMA models provide more accurate 

forecasts for moving average terms of order higher than one and ARIMA models 

dominated error correction models at all horizons for only Thai Baht exchange rate. 

3.1.2. Autoregressive Conditional Heteroskedasticity (ARCH) 

Models 

Financial time series such as; exchange rates, stock prices, inflation often 

exhibit a random walk process in the level form and they also represent wide swings 

and volatility in difference form; suggesting that variance of these series is not 

constant and varies over time. Autoregressive conditional heteroskedasticity (ARCH) 

model which is developed by Engle (1982) gives a procedure for modeling this 

conditional variance in time series forecasting (Gujarati, 2009, pp. 791). 

 

Within ARCH representation square of random error term (  ) is described as 

itself following an AR (p) process: 

  
           

        
          

     (3.5) 

where    is a white noise process with zero mean and constant variance. Conditional 

variance of this random error term (  ) then depends on lagged squared error terms 

(Hamilton, 1994, pp. 658, 659). 
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   (                 )    
           

        
          

  (3.6) 

Procedure for testing whether the autoregressive conditional heteroskedasticity 

is present or not can be summarized as follows: (i) Data set (  ) is transformed to 

return series; log mean adjusted relative change (  ) for instance (see equation 3.7); 

  
        

   
    

      
                         

  ̅ 
              

  

      
    ̅ 

  (3.7) 

(ii) Following AR (p) model of volatility is estimated with appropriate lag values: 

  
            

         
           

     (3.8) 

(iii) Residuals obtained from original regression (  ̂), i.e. residuals obtained from 

estimation of equation 3.8 are regressed in the following form by ordinary least 

squares (OLS) estimation technique: 

  ̂
   ̂   ̂    ̂  

   ̂    ̂  
     ̂    ̂  

  (3.9) 

(iv) Null hypothesis: 

                 (3.10) 

is tested for joint significance of  ̂ ,  ̂ ,…,  ̂  by usual F test. If these coefficients 

( ̂ ,  ̂ ,…,  ̂ ) are statistically significantly different from zero, i.e. if null 

hypothesis is rejected, then one can conclude that error terms do not have constant 

conditional variance and they follow conditional variation as implied by ARCH 

model. When the ARCH effect is present, applying generalized least squares (GLS) 

estimation technique instead of using ordinary least squares (OLS) can be a remedial 

measure (Johnston and Dinardo, 1997, pp. 196). 
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ARCH models gained enormous attention after the introduction by Engle 

(1982) and became widely used by researchers. Many variations of the model were 

developed. Among them one of the most frequently used is the generalized 

autoregressive conditional heteroskedasticity (GARCH) model which is developed 

by Bollerslev (1986). Within the GARCH presentation conditional variance is 

determined by not just lagged values squared error terms but also by lagged 

conditional variances (see equation 3.11) (Gujarati, 2009, pp. 796). 

   (  |                   )    
           

        
   

       
        

          
  (3.11) 

West and Cho (1995) compared out-of-sample forecasting performance of 

GARCH models with autoregressive models and a nonparametric Gaussian kernel 

model. Data sample consist of five different (Canada, France, Germany, Japan, 

United Kingdom) bilateral weekly U.S. Dollar exchange rates from 14 March 1973 

to 20 September 1989 with 863 observations. They concluded that; while GARCH 

models perform better than others for one-week horizon it is difficult to choose one 

model over another for twelve- and twenty-four-week-ahead forecasts. Vilasuso 

(2002) evaluated forecasting accuracy of GARCH model and its two variations; 

fractionally integrated GARCH (FIGARCH) model and integrated GARCH 

(IGARCH) model according to mean absolute error (MAE) and mean square error 

(MSE) criterion by using six different daily spot U.S. Dollar exchange rates within 

the period from 13 March 1979 to 31 December 1997. FIGARCH model dominated 

other models at all 1-, 5-, and 10-day forecast horizons with both mean absolute error 

(MAE) and mean square error (MSE) criterion. McMillan and Speight (2004) used 

alternative volatility measure suggested by Andersen and Bollerslev (1998) based on 

the cumulative squared returns from intra-day data instead of daily squared returns. 

Comparative analysis provided that simple GARCH outperforms the exponential 

smoothing and moving average models for almost all of the seventeen different 

exchange rates by means of a variety of error statistics: mean error, mean absolute 

error and root mean squared error. Chortareas et al. (2011) employed the intraday 

GARCH and FIGARCH models to 15 min data on returns of four Euro exchange 

rates with 509.472 observations from the period between January 4th, 2000, and 



 

16 

 

October 31st, 2004 and concluded that intraday FIGARCH outperformed traditional 

GARCH, AR and MA models. 

3.1.3. Vector Autoregressive (VAR) Models 

In a univariate time series model such as ARIMA model a variable is modeled 

depending merely on its own lagged terms. VAR models are used for modeling 

multivariate time series for which each variable is a linear function of past values of 

itself and past values of other explanatory variables. The model is termed as 

“autoregressive” because it consist past, lagged values of dependent variable and 

“vector” because it deals with a vector of two or more variables. A VAR (p) process 

with k different variables is as follows: 

                               (3.12) 

where    is a k x 1 vector of dependent variables,    are k x k matrices of 

coefficients,   is a k x 1 vector of constants and    is k x 1 vector of white noise 

error terms. For instance a simple VAR (1) model with two variables can be 

represented as follows: 

[
   
   
]   [

  
  
]   [

      
      

] [
      
      

]   [
  
  
] 

(3.13) 

And it can be written out in following explicit equation system (Johnston and 

Dinardo, 1997, pp. 287-288): 

                               
                               (3.14) 

Procedure for estimating a simple VAR model can be summarized as follows: 

since VAR model proposes a multiple equations system that consider joint behavior 

of several variables with all variables are endogenously determined by past values of 

itself and remaining variables in consideration, it is best suited with variables of 

bilateral causation. Bilateral causation can be examined with tests such as Granger 

causality test. VAR model can be specified in stationary form. If it is so; stationarity 

of the series can be ascertained by transforming the data set and can be ensured 
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through unit root tests. Appropriate degree of lagged values that will be included in 

the model can be determined by Akaike’s and Schwarz’s information criterion. For 

the purpose of forecasting, all equations including lagged values of each variable can 

be estimated by usual ordinary least squares (OLS) estimation technique (Gujarati, 

2009, pp. 784-788). 

 

Liu et al. (1994) used different VAR specifications such as full vector 

autoregressive (FVAR), mixed vector autoregressive (MVAR), Bayesian vector 

autoregressive (BVAR) specification in order to forecast three U.S. Dollar exchange 

rates by monetary asset model of exchange rate determination and compared 

forecasting outcomes of each VAR specification. Out of sample forecast for the 

period from January 1983 to December 1989 suggested that VAR presentation may 

be a reliable alternative for exchange rate forecasting purposes and restricted VAR 

specifications provide much more accurate forecasts than unrestricted specifications. 

Joseph (2001) examined forecasting performance of VAR models in non-stationary, 

stationary and error-correction forms for seven U.S. Dollar exchange rates in daily, 

weekly and monthly horizons. Data set spanned the period 24 October 1983 to 12 

May 1997 for daily bid-ask prices of seven currencies from the London FX market. 

Results proposed that non-stationary specification of VAR dominates its stationary 

and error correction specifications. 

3.1.4. Error Correction Models (ECM) 

Time series analysis often involves dealing with non-stationary series. Hence, 

transformation methods such as; differencing or seasonal adjustment applied to series 

in order to ascertain stationarity. Series that are not stationary in level form but 

becomes stationary after differencing say d times are called integrated of order d and 

presented as; I(d). 

 

Linear combination of integrated series generally produces integrated series 

with highest order of the combined series. But if dependent variable (  ) and 

explanatory variable (  ) are both integrated then the error term (  ) which is linear 

combination of them (see equations 3.15 and 3.16); will be integrated of higher order 
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of both too. For instance if    and    are I (1) then resulting error term (  ) is 

expected to be I(1). 

              (3.15) 

               (3.16) 

If series (   and   ) share a common trend and drift together; then resulting 

error terms from regressing these series may be stationary, even if   .and    are non-

stationary series. In such cases both series are said to be cointegrated. In economic 

terms two variables are considered to be cointegrated if there exist a long-run 

equilibrium or relationship between them.    in equation 3.16 is called cointegrating 

parameter and for multivariate presentations, vector of coefficient parameters is 

called cointegrating vector. 

 

Error correction mechanism is first introduced by Sargan (1964). Given that 

dependent variable is cointegrated with explanatory variable; error correction model, 

ties short run behavior of dependent variable with its long run equilibrium value by 

treating error term (   in equation 3.16) as equilibrium error and reveals short run 

relation between dependent and explanatory variables (Greene, 2003, pp. 649-653). 

 

Procedure for building a simple error correction model with a single regressor 

and regressand both integrated of order one is summarized as follows: Initially 

dependent variable is estimated through usual ordinary least squares technique to get 

equation 3.17. A trend variable ( ) may be included to the regression equation if 

necessary, i.e. if residuals obtained from the regression follow a trend stationary 

process. 

 ̂   ̂   ̂  ̂   ̂   (3.17) 

Residuals of the regression equation are obtained by subtracting actual values 

(  ) from the estimated values ( ̂ ) for each observation (see equation 3.18). 
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  ̂      ̂      ̂   ̂  ̂  (3.18) 

After that, stationartiy of the residuals is tested by performing a cointegration 

test such as augmented Engle-Granger test. According to test results if it is conferred 

that residuals are stationary then it is concluded that variables are cointegrated and 

they have a long-term relationship. Finally, following error correction model is 

regressed and significance of the coefficients are tested: 

  ̂         ̂      ̂      (3.19) 

where   ̂  is the differenced form of dependent variable,   ̂  is the differenced form 

of explanatory variable,   ̂   is lagged value of error term from equation 3.17,    is 

white noise error term and    is error correction coefficient which indicates how 

much of the discrepancy between long term and short term values corrected in one 

period (Gujarati, 2009, pp. 762-765). 

 

Kim and Mo (1995) applied error correction model to variations of monetary 

model (the Frenkel-Bilson monetary model, the Dornbusch-Frankel monetary model 

and the Hooper-Morton monetary model) in order to forecast U.S. Dollar/Deutsche 

Mark exchange rate. They concluded that while a random walk model dominates in 

the short run, all three structural monetary models strongly dominated random walk 

model in terms of long horizon forecasting accuracy. Fritsche and Wallace (1997) 

compared purchasing power parity model in error correction specification with a 

random walk model for U.S. Dollar exchange rate of four different countries’ (UK, 

Germany, Canada and Japan) currencies. Estimations are generated by quarterly data 

from the period between 1974:Q1 to 1992:Q4 and the period between 1993:Q1 to 

1994:Q4 used for forecasting. Purchasing power parity model in error correction 

specification was unable to beat a random walk model for currencies of UK and 

Germany but it performed better than random walk model for the currencies of 

Canada and Japan. Van Aarle et al. (2000) estimated the sticky-price monetary 

model with vector error correction model (VECM) to forecast four different Euro 

exchange rates (U.S. Dollar, British Pound, Japan and Swiss Franc). Data set 

consisted of monthly average data from January 1980 to February 1999. Results 
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showed that a monetary model in vector error correction form is capable of beating 

the naive random walk model and its forecasts outperformed forecasts of random 

walk model for all currencies except Swiss Franc. Chen and Leung (2003) introduced 

a new method called Bayesian vector error correction model (BVECM). This method 

is based on enhancing accuracy of a Bayesian vector autoregressive model by 

enabling it to capture information from the long-run uncovered interest-parity (UIP) 

relationship. Regression results for three different exchange rates (Australia 

Dollar/U.S. Dollar, Japanese Yen/U.S. Dollar, and Korea Won/U.S. Dollar) 

demonstrated that out-of-sample forecasting performance of proposed Bayesian 

vector error correction model is better than Bayesian vector autoregressive models 

and random walk models. Gharleghi and Nor (2012) used relative price monetary 

model (RPMM) in vector error correction (VEC) specification with the aim of 

forecasting Malaysian Ringgit/U.S. Dollar exchange rate by using monthly data set 

from January 1986 to September 2010. They concluded that; long term dynamics 

suggested by monetary model is valid according to Johansen-Juselius cointegration 

approach and a vector error correction based monetary model outperformed the 

random walk model. 

3.2. Artificial Intelligence Based Models 

Artificial intelligence based models; artificial neural networks, which have 

wide range of application area in time series forecasting were inspired by functioning 

of brain and nerve systems of living organisms (Luk et al., 2001). According to 

Haykin (1999) artificial intelligence era can assumed to be start with the seminal 

work of McCulloch and Pitts (1943). As a psychiatrist and mathematician; 

McCulloch and Pitts described logical calculus of neural networks and represented a 

formal model of artificial neuron that mimics biological neurons. Minsky (1961) in 

his work titled “Steps Towards Artificial Intelligence” defined the term neural 

networks and brought artificial neural networks as a theory of computation (Haykin, 

1999, pp. 38). 

 

Artificial neural networks resemble the learning process of the brain by 

interconnected units which serve as artificial neurons (Hinton, 1992). Artificial 

neurons of artificial neural networks composed of three main elements: (i) Synapses 
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or connecting links which weights the input signals. (ii) An adder which sums input 

signals weighted by synapses. (iii) An activation function which limit outcome of the 

neuron by transforming the inputs. Figure 3.1 represents a typical neuron of an 

artificial neural network. 

Figure 3.1: Typical Model of an Artificial Neuron 1 

Figure 3.1: Typical Model of an Artificial Neuron 

 

 

 Source: Haykin, 1999, pp. 13 

Mathematical structure of a neuron can be demonstrated by following 

equations: 

   ∑     

 

   

 (3.20) 

    (     ) (3.21) 

where   ,   , …,    are input signals    ,    , …,     are synaptic weights,    is 

the output of adder,    is the bias,  ( ) is activation function and    is the output 

signal of the neuron. Three basic types of activation function can be identified: (i) 

Threshold function, represented in equation 3.22 

 ( )  {
                
               

 
(3.22) 

(ii) Piecewise-linear function represented in equation 3.23 
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             ⁄       ⁄   
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(3.23) 

(iii) Sigmoid function represented in equation 3.24 by a logistic function where   is 

the slope parameter. (Haykin, 1999, pp. 10-14) 

 ( )  
 

     (   )
 

(3.24) 

In general a typical layered artificial neural network structure is composed of 

connected, simple knowledge processing elements called; nodes or neurons. Each 

node is connected to others by synapses, all of which is associated with a relevant 

weight factor (Palmer et al., 2006). Nodes with similar characteristics are organized 

in the form of layers. A layer is a group of nodes that broadcasts information to other 

connected layers and external environment which has no interconnections. Figure 3.2 

illustrates the simplest form of single layer feedforward (in which source nodes are 

transmitted to output nodes but not vice versa) neural network.  

Figure 3.2: A Simple Single Layer Feedforward Neural Network 2 

Figure 3.2: A Simple Single Layer Feedforward Neural Network 

 

 

 Source: Haykin, 1999, pp. 21 

First layer in the figure, connecting the input nodes, called input layer and the last 

layer consisting the output nodes is called output layer. The number of nodes in the 



 

23 

 

input layer and output layer depends on the number input parameters and output 

parameters respectively (Luk et al., 2001). 

 

Sophisticated empirical studies for nearly last half century proved that classical 

econometric models and time series models for forecasting exchange rates were not 

sufficient to reliably beat a naive random walk model which implies that exchange 

rates behave in a purely random and unpredictable manner (Ni and Yin, 2009). 

Classical models assume that the future value of a variable is linearly dependent on 

its own past values and past values of some other theoretical determinant variables 

with a random, white noise error term. These models are also based on the 

assumption that time series are generated by stationary processes. Disappointing 

performance of classical models was mainly attributed to these unrealistic 

assumptions accompanied by these models about the nature of data that does not 

comply with real world situations (Khashei et al., 2009). Autoregressive conditional 

heteroskedasticity (ARCH) and generalized autoregressive conditional 

heteroskedasticity models are developed by Engle (1982) and Bollerslev (1986) in 

order to overcome the difficulty of modeling non-constant variance feature of time 

series. These models are proven to be more effective in exchange rate forecasting 

than linear models. But while these models performed well for particular situations 

they were unable to serve as a convincing tool for modeling different type of 

situations (Ince and Trafalis, 2006). 

 

Using artificial neural networks in time series forecasting have become a 

common practice among researchers during the last decades. Distinctive features of 

artificial neural networks that made them attractive in time series forecasting are as 

follows: (i) Artificial neural networks do not rely on assumptions about the nature of 

the data, which is the case for classical models, instead they are data-driven 

techniques. Artificial neural networks are nonparametric techniques in the sense that; 

they can learn from experience incorporated within the data and extract functional 

relationships with no need for theoretical framework (ii) Artificial neural networks 

can reliably reveal characteristics of sample population by learning form sample data 

even if the sample data consist noisy information. (iii) Artificial neural networks are 

not subject to limitations from functional forms. They are universal functional 

approximators that can identify and approximate any continuous function. (iv) 
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Artificial neural networks don’t involve any assumptions about data generating 

process. They are capable of dealing with nonlinear relationships. They extract the 

relationship between variables by learning from data and base their forecasts on these 

nonlinear approximations (Zhang et. al., 1998). 

 

Charytoniuk and Chen (2000) identified process for developing artificial neural 

networks for forecasting purposes which involves a five steps procedure: (i) 

Selection of input variables: A neural network can deal with correlated variables but 

the higher the number of correlated variables used as input; necessitates the larger the 

architecture of network and longer training time. Hence, autocorrelation and partial 

autocorrelation patterns of relevant variables can be analyzed and also principal 

component analysis techniques can be applied in order to avoid including 

unnecessary variables as inputs. (ii) Design of neural network structure: determining 

optimal network type and number of layers is crucial for forecasting performance of 

the neural network. A trial error procedure or applying an algorithm like pruning 

algorithm may be useful. (iii) Extraction of training data: Since the measurement 

value of the each variable may differ, all data should be scaled within the same range 

via normalization techniques. Artificial neural networks require data sets that are 

representative of the population but not in the way that the statistical methods 

involve. In statistics, a sample is accepted to be representative of population only if it 

shares the distribution of the population. Representative in neural networks 

procedure means that; all variables in training data are represented equally, i.e. they 

have uniform distribution regardless of the population distribution. (iv) Training of 

the designed neural networks: training a neural network aims to minimize error, i.e. 

difference between desired output and actual output, by adjusting weights of each 

unit. An optimization algorithm, such as; back-propagation algorithm, may be 

resorted. (v) Validation of trained neural networks: Performance of the neural 

network should be validated for a different data set. This can be done by randomly 

selecting a part of training data set and taking them aside for testing to see if the 

errors are still acceptable. 
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3.2.1. Multilayer Feedforward Neural Networks (MLFFNN) 

Multilayer feedforward neural networks are extended structures of the single 

layer feedforward neural networks. They are termed as feedforward in the sense that 

information is processed in one direction; from input to output and multilayer in the 

sense they consist one or more hidden layers between the input and output layers 

(Haykin, 1999, pp. 21-22). In the one hidden layer case as represented in figure 3.3; 

input layer broadcasts to hidden layer by processing inputs through its nodes and 

after that the output layer use the outputs of hidden layer as inputs. Hence hidden 

layers are not directly connected to neural network’s inputs and outputs. Introduction 

of a hidden layer to the network aims to enhance the learning ability of the neural. 

network and to enable it to deal with functions of greater complexity (Hammerstrom, 

1993). 

Figure 3.3: A Multilayer Feedforward Neural Network 3 

Figure 3.3: A Multilayer Feedforward Neural Network 

 

 

 Source: Haykin, 1999, pp. 159 

In order to make a neural network of a specified architecture to perform some 

specific task; one need to determine optimal level of strength of connections, i.e. 

synaptic weights, that minimizes the difference between predicted and actual levels 

of outputs. This procedure is called learning of neural networks or training. Training 
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procedure requires to adjust weights until artificial neural network mimic the known 

behavior of the system to be modeled, as close as possible (Malinov et al., 2001). 

During the initial applications, training of artificial neural networks was based on an 

inefficient trail-error process that required large amount of effort to implement and 

produced unsatisfactory outcomes which caused artificial neural networks to receive 

little attention until 1970’s (Rumelhart et al, 1994). During the mid-1970’s Paul J. 

Werbos introduced an efficient procedure for training a multilayer feedforward 

neural network. This procedure is now known as back-propagation algorithm and 

was largely ignored and its usefulness was not well appreciated until the end of 

1980’s. David E. Rumelhart, Ronald J. Williams from University of California and 

Geoffrey E. Hinton were popularized the algorithm by demonstrating that it could 

teach the hidden units efficiently with a fair performance (Hinton, 1992). 

 

Multilayer feedforward neural networks have been successfully applied to 

solve some difficult and complex problems by training them with back-propagation 

algorithm. Back-propagation algorithm basically consists of two stages: a forward 

pass and a backward pass. During the forward pass; input layer broadcasts an activity 

pattern (vector of inputs) to all hidden nodes (nodes on the hidden layers) and hence 

its effect propagates layer by layer through the output node. Each output node then 

generates actual results by calculating weighted sum and passing this through the 

activation (transfer) function. During the forward pass synaptic weights of each node 

are all fixed. The second stage, backward pass, is based on adjusting synaptic 

weights in accordance with an error correction rule. During the backward pass; actual 

outcome of the neural network is subtracted from the target outcome to form output 

errors. Synaptic weights are adjusted to minimize output errors by propagating these 

output errors backward through opposite direction of the synaptic connections of the 

layers of the neural network. The name, “back-propagation” is derived from this 

back-propagation nature of the procedure (Haykin, 1999, pp. 156). 

 

To be more specific the way that the back-propagation algorithm works, can be 

explained as follows: (i) Explaining back-propagation algorithm necessitate 

representing outputs of a neural network in mathematical terms. Assuming that node 

j is a typical node in output layer and node i is a typical node in the previous layer. 
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An output node broadcast the outputs of the neural network in two stages. First; it 

computes total weighted sum of inputs using the formula in equation 3.25. 

   ∑     
 

 (3.25) 

where    is the output of the ith node in the previous layer and     is the fixed 

synaptic weight between ith and jth nodes. Then, each node on the output layer 

calculates the output of the neural network by processing weighted sums with 

activation function. In general, back-propagation algorithm entails the use of sigmoid 

type activation function. 

   
 

      
 (3.26) 

(ii) Once the outputs of all nodes on the output layer have been determined then total 

error ( ) is calculated which is defined as: 

  
 

 
 ∑(     )

 

 

 (3.27) 

where    is the output of the jth node in the output layer and    is the corresponding 

actual output of the jth node. Steps represented so far, constitute forward pass of 

back-propagation algorithm and remaining steps will represent backward pass of the 

algorithm. (iii) Error derivative (EA) is computed to see by how much the error 

changes as the output of the neural network (  ) is changed: 

     
  

   
       (3.28) 

(iv) Chain rule can be applied to see by how much the error changes as the output of 

the previous layer (  ) changes (EI): 

      
  

   
   

  

   
 
   

   
 (3.29) 
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Differentiating equation 3.26 with respect to    and replacing it in equation 3.29 

gives: 

      
  

   
  
  

   
 
   

   
       (    ) (3.30) 

(v) The speed with which the error changes as a synaptic weight on the connection of 

an output (   ) changes (EW) can be computed by: 

       
  

    
  
  

   
 
   

    
        (3.31) 

Equation 3.31 implies that the quantity EW equals to the quantity EI, which is 

calculated on the previous step, multiplied by the output of the node on the previous 

level, i.e. output of the node from which the connection emanates. (vi) Since when 

the output of a node in the previous layer (ith layer) changed it simultaneously 

affects outputs of all nodes that are connected to it; this last step involves computing 

overall effect of these changes on the error (EA) by adding all these separate effects 

on output nodes: 
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 ∑       

 

 (3.32) 

Once the EA is computed this procedure can be repeated for successively earlier 

layers as desired (Hinton, 1992; Rumelhart et al., 1986). 

 

Wu (1995) compared one step ahead and six step ahead forecasting 

performance of ARIMA and multilayer feedforward neural network (MLFNN) 

models using monthly average exchange rates between U.S. Dollar and New Taiwan 

Dollar; from January 1979 to December 1992. First 162 observations, from January 

1979 to December 1992, were used for regression and model building and remaining 

six observations were used for performance evaluation. Empirical analysis proposed 

that MLFNN model perform better than an ARIMA model for both one step ahead 

and six step ahead forecasts. Verkooijen (1996) used ordinary least squares (OLS) 

technique and artificial neural networks (ANN) for regressing structural models of 
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exchange rate determination and compared forecasting performance of OLS and 

ANN regressions. Data sample consisted of 228 monthly observations of U.S. 

Dollar/Deutsche Mark exchange rate from January 1974 to January 1993. Using 

rolling regression technique and starting with first 100 observations, compared 

forecasting performance of OLS and ANN regressions of three different structural 

models for one month, six months, twelve months, twenty four months and thirty six 

months ahead forecasts. According to root mean square error criteria while being 

closely followed by OLS regressions, ANN regressions always performed better than 

OLS regressions and also ANN regressions were much better in percentage of 

correctly predicted signs. Zhang and Hu (1998) examined the effects of; training 

sample sizes and network structures (i.e. number of inputs and number of hidden 

nodes) on out of sample forecasting performance of multilayer feedforward neural 

networks. Data set is composed of daily British Pound/U.S. Dollar exchange rates 

from the beginning of 1976 to end of 1993. MLFNN structures used in the study 

consisted of; ten levels of input nodes (from 1 to 10), five levels of hidden nodes (4, 

8, 12, 16, 20), two different training periods (from 1976 to 1992 and from 1988 to 

1992). It is derived that the impact of number of hidden nodes on forecasting 

performance is higher than the impact of number of hidden nodes and also; 

forecasting errors diminish with larger training sets. Panda and Narasimhan (2007) 

conducted a comparative analysis of multilayer feedforward neural networks with 

random walk models and linear autoregressive models using 496 weekly 

observations of Indian Rupee/U.S. Dollar exchange rates from January 6, 1994 to 

July 10, 2003. Initial 350 observations are kept for training and remaining 146 

observations are used for forecast comparison. Using six different forecasting 

evaluation criteria they concluded that neural network model is capable of beating 

random walk and linear autoregressive models for both out-of-sample and in-sample 

forecasting. 

3.2.2. Recurrent Neural Networks (RNN) 

Recurrent neural networks differ from feedforward neural networks by 

including at least one loop back either from output or an intermediate layer to input 

layer. Recurrent neural networks involve the use of outputs of hidden, intermediate, 

layers or the errors derived from the actual outcomes of neural network as inputs to 



 

30 

 

next period depending on whether the outcomes of the hidden layers or the output 

layer loop back (Dunis and Huang, 2002). In addition to input nodes and hidden 

nodes of a feedforward neural network, recurrent neural networks’ input layer or 

hidden layers include context nodes. These context nodes store the outputs of hidden 

layers or the errors of the neural network for the current period and broadcast them to 

next period. Recurrent neural network structure introduced by Elman (1990), uses 

outputs of all hidden neurons as inputs to next period thus having context nodes as 

many as the hidden nodes (More and Deo, 2003). Figure 3.4 depicts an Elman type 

recurrent neural network with one input node, one output node, three hidden nodes 

and hence three context nodes. 

Figure 3.4: A Typical Elman Recurrent Neural Network 4 

Figure 3.4: A Typical Elman Recurrent Neural Network 

 

 

 Source: Modified from Marra and Morabito, 2005 

Another widely used recurrent network structure is Jordan type recurrent neural 

network, introduced by Jordan (1989). This neural network structure loops the output 

errors of the neural network back as an input; through the context nodes in the input 

layer (Yasdi, 1999). Figure 3.5 depicts a Jordan type recurrent neural network with 

one output node and hence one context node. 

 

Recurrent neural networks ensure a richer dynamic structure than feedforward 

neural networks by enabling use of processed data of the previous period as an 

additional input to current period. This distinguishing structure allows them to 
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perform better when dealing with noisy data and extracting features of hidden states 

for outputs that depend on a number of outputs of previous periods (Saad et al., 

1998). Besides recurrent neural networks has a major drawback with respect to their 

feedforward counterparts; that they require more complex architectures with larger 

number of connections. This feature of recurrent neural networks has been subject to 

criticism concerning the lack of transparency (Dunis and Huang, 2002). 

Figure 3.5: A Typical Jordan Recurrent Neural Network 5 

Figure 3.5: A Typical Jordan Recurrent Neural Network 

 

 

 Source: Modified from More and Deo, 2003 

Kuan and Liu (1995) conducted a comparative analysis of random walk model 

and various structures of feedforward and recurrent neural networks in forecasting 

five different U.S. Dollar exchange rates (British Pound, Canadian Dollar, Deutsche 

Mark, Japanese Yen, Swiss Franc). Results provided limited evidence on neural 

networks as a forecasting tool. Neural networks while having significant ability to 

predict direction of movements of exchange rates, they were unable to strongly 

outperform random walk model (for only two currencies out of five). Tenti (1996) 

evaluated prediction accuracy of recurrent neural networks architecture using three 

different recurrent neural network structures. Analysis is based on profitability of 

two different trading strategies, associated with Deutsche Mark exchange rate 

forecasts of neural networks. Using various performance criteria based on forecasting 

accuracy and trade profitability, concluded that recurrent neural networks are useful 

and reliable tools for financial forecasting applications. Preminger and Franck (2007) 

investigated predictive accuracy of recurrent neural networks in comparison with 

random walk model and a linear autoregressive model. The models are applied to 

Japanese Yen and British Pound exchange rates against U.S. Dollar for one, three 
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and six months of forecasting horizons. Monthly observations are obtained for the 

analysis, end of month prices of each currency, starting from January 1971 to 

October 2004 with 406 observations. 307 observations are used for estimation and 

remaining observations are left for out-of-sample forecasts. Each model is estimated 

by using moving regression technique in which for an h-step ahead forecast 307-h 

observations are used for estimation. Results of the analysis suggested that; 

forecasting performances vary for forecasting horizon and currency under 

consideration while novel estimation technique presented in the study which is robust 

to outliers improved forecasting performances of each model. 

3.2.3. Probabilistic Neural Networks (PNN) 

Probabilistic neural network is another artificial neural network architecture 

that fundamentally differs from multilayer feedforward neural network and recurrent 

neural network architectures by using Bayesian decision rule in order to classify 

observations (Parry et. al., 2011). With reference to workings of Parzen (1962) and 

Cacoullos (1966), Specht (1990) delivered that both Bayesian theory of conditional 

probability and the nonparametric estimation method for probability density 

functions introduced by Parzen (Bayes-Parzen classifier) could be applied to large 

number of independently and parallelly running simple processes within a multilayer 

neural network architecture (Hajmeer and Basheer, 2003). 

 

Bayesian theory dictates that an observation vector   [          ] from a 

population consisting of K different categories (1, 2,    i,    K) belongs to category i 

if equation 3.33 holds for all categories with    : 

      ( )        ( ) (3.33) 

where    is the prior probability that the sample belongs to category i,    is the 

cost or loss associated with misclassifying a sample from category i and   ( ) is the 

probability density function of category i. Primary shortcoming of  Bayesian 

classification is to estimate probability density function of each category when 

underlying probability densities are actually unknown. A usual practice is to assume 
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normal (Gaussian) distribution. However this assumption produces high 

classification errors when actual distribution significantly deviates from normal 

distribution. Parzen (1962) proposed an estimator of probability density functions for 

univariate case and Cacoullos (1966) extended it to multivariate case. According to 

Cacoullos; joint probability density function of category i for a set of   observations 

(  [          ]) is as follows: 

  (          )   
 

         
 ∑ (
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 (3.34) 

where   is weighting function,   ,   , …,    are the smoothing parameters 

(alternatively called window or kernel width), i.e. standard deviation of random 

variables around the mean, and   is the total number of training parameters in 

category i. Equation 3.34 becomes to following reduced form when all smoothing 

parameters are assumed to be equal (   =   = …=    = σ) and a Gaussian function 

replaced for  : 
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 (3.35) 

where   is the input vector to be classified and    is the vector of training parameters in 

category i. 

 

General structure of a probabilistic neural network is comprised of four layers: 

(i) an input layer, (ii) a pattern layer (first hidden layer), (iii) a summation layer 

(second hidden layer), (iv) an output layer. Figure 3.6 illustrates a simple 

probabilistic neural network with four inputs ( =4), hence four nodes on input layer, 

two population classes (K=2); Class 1 and Class 2; eight training observations with 

five belonging to Class 1 (  =5) and remaining three belonging to Class 2 (  =3). 

 

Working process of a probabilistic neural network begins with input layer; 

each observation within the sample that is subject to classification represented in the 

input layer with a single node. Input layer broadcast inputs to pattern layer. Nodes in 

the pattern layer compute the distance between each input observation and the 
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training pattern presented by the relevant pattern node. Pattern nodes then subject 

these differences to activation function (exponential part of the equation 3.35.) and 

broadcast its outputs to summation layer. Summation layer comprise of number of 

nodes equal to the number of classes. Each node sums the outputs of the pattern 

nodes of corresponding classes and subjects them to constant part of the equation 

3.35. Finally output node compares the outcomes of summation nodes and yields the 

computed class with the probability that the sample will belong to that class (Specht, 

1990; Hajmeer and Basheer, 2003; Chen et al., 2003; Gan et al., 2005; Parry et al., 

2011). 

Figure 3.6: A Simple Probabilistic Neural Network Structure 6 

Figure 3.6: A Simple Probabilistic Neural Network Structure 

 

 

 Source: Hajmeer and Basheer, 2003 

3.2.4. Support Vector Regression 

Vapnik (1995) introduced a novel neural network algorithm that originally 

used for pattern recognition practices called; support vector machines. Afterwards, 

Vapnik et al. (1996) presented the way that the support vector machines can be 

utilized to nonlinear regression applications by introducing ε-sensitive loss function 

and this procedure is called in the literature as support vector regression (Tay and 

Cao, 2001). 
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Support vector regression has distinctive features that made it attractive 

compared to other neural networks. Support vector regression follows structural risk 

minimization principle and seeks to minimize upper bound of the generalization error 

instead of minimizing prediction error (empirical risk minimization principle) 

followed by other neural networks (Chen, 2011). Use of structural risk minimization 

enhances the ability of support vector regression to generalize input output 

relationship derived during the training phase and enables it to avoid vulnerability of 

over-fitting problem of other neural networks which may result in poor prediction 

ability when tested for different data sets (Wu and Akbarov, 2011). Architecture and 

weights of a support vector regression can be determined easily and rapidly by 

solving a quadratic optimization problem through a standard programming algorithm 

while the same process for other neural networks necessitates a tough and time-

consuming, trial-error procedure. This also means that the solution of support vector 

regression is unique, optimal and is not subject to risk of being stuck in local 

minima; which is the case for other neural networks (Lin et al., 2009; Tay and Cao, 

2001). 

 

Support vector regression performs a linear regression in high-dimensional 

feature space in order to estimate an unknown function  ( ) by mapping given noisy 

set of data points (  [(     ) (     )   (     )]  {(     )}    
 ; where    is 

the input values,    is the actual values,   is the total number of data points) into this 

feature space through nonlinear mapping. Hence support vector regression 

transforms a nonlinear regression problem in low-dimensional space to a linear 

regression problem in high dimensional space by regressing a linear function ( ( )) 

through solving a convex optimization problem. 

 ( )   ̂  〈   〉               
         (3.36) 

where;  ̂ is the estimated value of   with an error tolerance of ε,    represents 

dimensional space of input variables (  ),   represents dimensional space of actual 

values (  ), 〈   〉 represents dot product of two vectors in   ,   and   are the 

weight factors to be estimated and the intercept term respectively and    is the bias 

term. In estimating   support vector regression aims minimize norm of the   in 
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order to ensure that the estimated function is as flat as possible. This estimation 

problem can be written as following convex optimization problem: 
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   〈    〉       
〈    〉         

 
(3.37) 

Equation 3.37 implicitly assumes that a function  ( ) exist which estimate all 

pairs of (     ) with a precision error of ε, i.e. convex optimization is feasible. 

However, usually this is not the case and it is often required to allow some error 

larger than ε. In order to cope with such infeasible constraints of the optimization 

problem slack variables ( ,   ) can be introduced. 

 (     )      (      ( )   ) (3.38) 

To be more concrete; ε-sensitive loss function of the support vector regression 

defined in the equation 3.38 omits the error if the difference between estimated value 

( ( )) and actual value ( ) is lower than   (    ( )   ) and otherwise equal it 

to:     ( )   . 

Figure 3.7: The Soft Margin Loss Function 7 

Figure 3.7: The Soft Margin Loss Function 

 

 

 Source: Moura et al., 2011 
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Hence ε-sensitive loss function allows only error free tube of radius ε. In order 

to extend this radius, one may define following slack variables:     ( )      

for data points above the tube and     ( )       for data points below the tube 

(soft margin loss function); as illustrated in figure 3.7. 

 

With the introduction of slack variables optimization problem becomes: 
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(3.39) 

Constant term   (which is constrained to be;    ) represents the trade-off between 

flatness of  ( ) and the amount with which the errors higher than ε are tolerated (i.e. 

up to what amount the radius of the error tube extended). In order to solve the primal 

optimization problem presented by equation 3.39, Lagrange function of its dual 

problem can be formulated by introducing some equalities provided by Kuhn-Tucker 

conditions: 
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(3.40) 

where   and    are Lagrangian multipliers of the first two constraints of the primal 

optimization problem (equation 3.39). Solving for   yields: 
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 (3.41) 
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And hence  ( ) equals to: 

 ( )  ∑(     
 )

 

   

〈    〉    (3.42) 

Support vector regression can deal with situations where  ( ) is nonlinear. 

This can be simply done by preprocessing input values (  ) by mapping         

where    is some   dimensional feature space. It is sufficient to determine: 

 (    )  〈 (  )  ( )〉 for support regression to fulfill such mapping since it only 

involves dot products (see equation 3.42). Thus  ( ) becomes: 

 ( )  ∑(     
 )

 

   

 (    )    (3.43) 

where  (    )is the so-called Kernel function that may take the following forms 

presented in equations 3.44, 3.45 and 3.46: linear, polynomial and radial basis 

(Mohandes, 2002; Kamruzzaman et al., 2003; Smola and Schölkopf, 2004; Ince and 

Trafalis, 2006; Wu and Akbarov, 2011; Moura et al., 2011, Shabri and Suhartono, 

2012). 
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where;   ,   and   are kernel parameters. 

 

Since; as the dataset gets larger and larger, quadratic optimization problem 

involved in the training process of the above mentioned, support vector regression 

technique become a very complex issue and hence this technique entails time 

consuming computations when applied to large datasets. Least squares support vector 

regression technique (LSSVR) which is proposed by Suykens and Vandewalle 

(1999) simplifies the training process by offering a solution to system of linear 

equations through least squares technique instead of quadratic optimization problem 

involved in standard support vector regression technique.  
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In LSSVM; ε-sensitive loss function is replaced by least square of the error (  ) 

as loss function. With this replacement, the optimization problem becomes: 
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And the Lagrange function for the solution of the optimization problem can be 

constructed as: 

 (        )   (   )  ∑   
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          (3.48) 

Karush-Kuhn-Tucker conditions imply that the solution of the Lagrange function can 

be achieved by partially differentiating the function with respect to parameters;  , 

  ,    and   : 
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After eliminating    and   the solution is transformed to following system of linear 

equations: 

[
  
 
]  [
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(3.50) 

where;   [         ]
 ,    [      ]

 and   [         ]
  (Mak and Yang, 

2007; Zhang and Liu, 2009; Zhou et al., 2011; Liao et al., 2011; Zhu and Wei, 2013). 
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Kamruzzaman et al. (2003) applied alternative SVR structures to forecast 

seven different exchange rates by using 565 weekly observations from January 1991 

to July 2002. First 500 observations are used for training the model and the 

remaining observations are used for forecast comparison. Forecasts are based on 

differing SVR structures, in terms of kernel function types (linear, polynomial, radial 

basis and spline) for which the range of the regularization parameter ( ) is set to (0,1 

10
5
). Results proposed that the SVR models with radial basis kernel function and 

polynomial kernel function produce lower prediction errors while varying the value 

of parameter   did not affect prediction performance on a consistent basis. Bahramy 

and Crone (2013) conducted a comparative analysis of alternative SVR structures 

with differing kernel functions and input variables; in forecasting direction of the 

Euro/USD exchange rate movements. Data set is comprised of 4810 daily 

observations from which the 50% is retained as the training set, 25% as the 

validation set and remaining 25% as the test set. Grid search algorithm is utilized to 

determine the optimal values of the free parameters ( ,   ). Range of the parameter 

  is set to {     to    } and range of the parameter    is set to {     to   } both 

with step-sizes of    . Results of the analysis showed that the novel SVR model 

suggested in the study, which use technical indicators as inputs, has considerable 

predictive ability and performed better than the benchmark models. 
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4. EMPIRICAL RESULTS 

In this section; classical models (ARIMA, GARCH, VAR, ECM) and artificial 

intelligence based models (MLFNN, RNN, SVR) are applied to forecast Turkish 

Lira/U.S. Dollar (TL/USD), Turkish Lira/Euro (TL/EUR), Turkish Lira/British 

Pound (TL/GBP) exchange rates. One step ahead, in-sample and out-of-sample 

forecasting accuracy of each model analyzed comparatively. 

 

Following statistical measures are utilized throughout the analysis for model 

selection and forecast evaluation purposes: (i) Root Mean Squared Error (RMSE): it 

measures how well the forecast outcomes of a specific model fit the actual data, 

lower values mean better fit and a value of zero mean perfect fit. It can be calculated 

by following equation: 

     √
 

 
∑(    ̂ ) 
 

   

 

 (4.1) 

where    is the actual value of the variable at time t,  ̂  is the fitted value of the 

variable at time t and   is the number of observations. 

 

(ii) Correlation Coefficient ( ): which measure the strength of linear 

dependency between actual and fitted values of a model. Higher values indicate 

strong linear relationship and lower values indicate weak linear relationship. It can be 

calculated by following equation: 
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(4.2) 

where;  ̅ is the mean of the actual values and  ̅̂ is mean of the fitted values (Pai and 

Hong, 2007; Fang et al. 2009; Samsudin et al. 2011). 
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(iii) Diebold-Mariano Test: it aims to test forecasting accuracy of two 

competing models under the null hypothesis of equal forecast accuracy by using 

following test statistic (  ) which follows a standard normal distribution: 

   
 ̅

√   ̂ ( )
 

 
(4.3) 

where  ̅ is the mean of the loss differential (  ) which can be defined in the form of 

absolute deviation of errors (   ,    ):             or in the form of squared 

deviation of errors:    
     

 ;  ̂ ( ) is a consistent estimator of spectral density of 

the loss differential function ( ) with a frequency zero and   is the number of 

observations (Fernandez-Rodriguez et al., 1999; Chung, 2006; Preminger and 

Franck, 2007) 

 

Applications of classical models are carried out by software package Eviews 

and applications of artificial intelligence based models are carried out by software 

package Matlab. 

4.1. Data 

Dataset is comprised of monthly period data from January 2004 to December 

2013 with 120 observations. TL/USD, TL/EUR, TL/GBP exchange rate series, 

monetary aggregates (M3) of the relevant currencies and the one year interbank 

borrowing rate of the relevant currencies are utilized throughout the analysis. 

 

First 96 observations (80% of the dataset) are used for estimation and model 

specification purposes and remaining 24 observations (20% of the dataset) are 

retained for out-of-sample forecast comparison. Monthly exchange rate series are 

generated from daily closing rate of the first working day of each month. Variables 

and sources are reported in Table 4.1. 
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Table 4.1: Variables and Sources 2 

Table 4.1: Variables and Sources 

  
Variables Sources 

TL/USD Exchange rate 
Central Bank of the Republic of 

Turkey 

TL/EUR Exchange Rate 
Central Bank of the Republic of 

Turkey 

TL/GBP Exchange Rate 
Central Bank of the Republic of 

Turkey 

TL One Year Interbank Borrowing 

Rate 
The Banks Association of Turkey 

EUR One Year Interbank Borrowing 

Rate 
European Banking Federation 

TL Monetary Aggregates (M3) 
Central Bank of the Republic of 

Turkey 

USD Monetary Aggregates (M3) Federal Reserve Bank of St. Louis 

EUR Monetary Aggregates (M3) European Central Bank 

GBP Monetary Aggregates (M3) Bank of England 

4.2. ARIMA Models 

Box-Jenkins methodology implemented in order to determine ARIMA 

specification of all three exchange rate series. Initially unit root tests (Philips-Perron 

and Augmented Dickey Fuller tests) are applied to each serie in order to asses 

stationarity. If it is conferred that the serie is nonstationary in level form; it is 

differenced until stationarity is ensured. After that, patterns of autocorrelation 

functions and partial autocorrelation functions are examined to determine the 

ARIMA specification. 

Table 4.2: Augmented Dickey-Fuller Unit Root Test Results of Exchange Rate Series 3 

Table 4.2: Augmented Dickey-Fuller Unit Root Test Results of Exchange 

Rate Series 

  

 

TL/USD TL/EUR TL/GBP 

 

Level Difference Level Difference Level Difference 

Test Statistic -2,10 -8,85 -2,80 -8,94 -2,55 -8,68 

Critical Value -3,46 -3,46 -3,46 -3,46 -2,89 -2,89 

P-Value 0,54 0,00 0,20 0,00 0,11 0,00 
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Table 4.3: Phillips-Perron Unit Root Test Results of Exchange Rate Series 4 

Table 4.3: Phillips-Perron Unit Root Test Results of Exchange Rate Series 

  

 

TL/USD TL/EUR TL/GBP 

 

Level Difference Level Difference Level Difference 

Test Statistic -2,25 -8,82 -2,98 -8,94 -2,49 -9,68 

Critical Value -3,46 -3,46 -3,46 -3,46 -2,89 -2,89 

P-Value 0,45 0,00 0,14 0,00 0,12 0,00 

Augmented Dickey-Fuller and Phillips-Perron unit root test results for each of 

three series are presented in tables 4.2 and 4.3 both in level and first difference 

forms. Since including trend and intercept terms to regression; reduce degrees of 

freedom and power of the test (ie., increase the probability of failing to reject a false 

null hypothesis); three different regression specifications are estimated consecutively 

when applying unit root tests; (i) none (with no trend and intercept term), (ii) 

intercept (with intercept term), (iii) trend and intercept (including both trend and 

intercept terms). Trend and intercept specification for TL/USD and TL/EUR series 

and intercept specification for TL/GBP series are seen to be adequate. Unit root test 

results, proposed that the series are nonstationary in level form but they become 

stationary in first difference form; for a 1% significance level. Hence all three series 

are integrated of order one; I (1). 

Figure 4.1: ACF and PACF Pattern of TL/USD Exchange Rate 8 

Figure 4.1: ACF and PACF Pattern of TL/USD Exchange Rate 
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Figure 4.2: ACF and PACF Pattern of TL/EUR Exchange Rate 9 

Figure 4.2: ACF and PACF Pattern of TL/EUR Exchange Rate 

 

 

 

Figure 4.3: ACF and PACF Pattern of TL/GBP Exchange Rate 10 

Figure 4.3: ACF and PACF Pattern of TL/GBP Exchange Rate 

 

 

Autocorrelation functions (ACF) and partial autocorrelation functions (PACF) 

of the series are presented in figures 4.1, 4.2 and 4.3. As can be seen from the 

figures, living aside the TL/GBP exchange rate, autocorrelation functions and partial 

auto correlation functions of exchange rate series do not follow typical patterns of 

autoregressive and moving average processes; hence autocorrelation functions and 

partial autocorrelation functions of the series do not reveal the ARIMA specifications 

of the series clearly. For each of the series 24 different ARIMA specification is 

estimated and among these an ARIMA (2, 1, 2) model for TL/USD exchange rate, an 

ARIMA (2, 1, 1) model for TL/EUR exchange rate and an ARIMA (1, 1, 1) model 

for TL/GBP exchange rate proven to be the best in terms of statistical significance of 

the coefficients, specification criterion (Akaike and Schwarz information criterion) 

and residual diagnostics. ARIMA model regression results are summarized in tables 
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4.4, 4.5 and 4.6 where      represent lagged values of exchange rate series (AR 

terms),      represent lagged values of error terms (MA terms) and   .is the constant 

term. 

Table 4.4: ARIMA Model Regression Results of TL/USD Exchange Rate 5 

Table 4.4: ARIMA Model Regression Results of TL/USD Exchange Rate 

     Variable Coefficient Std. Error t-Statistic P-Value 

     0,506 0,035 14,418 0,000 

     -0,919 0,034 -26,763 0,000 

     -0,511 0,025 -20,159 0,000 

     0,955 0,017 56,617 0,000 

 

Table 4.5: ARIMA Model Regression Results of TL/EUR Exchange Rate 6 

Table 4.5: ARIMA Model Regression Results of TL/EUR Exchange Rate 

     Variable Coefficient Std. Error t-Statistic P-Value 

   -0,004 0,001 -3,946 0,000 

     0,984 0,105 9,410 0,000 

     -0,158 0,107 -1,479 0,143 

     -0,985 0,017 -57,410 0,000 

 

Table 4.6: ARIMA Model Regression Results of TL/GBP Exchange Rate 7 

Table 4.6: ARIMA Model Regression Results of TL/GBP Exchange Rate 

     Variable Coefficient Std. Error t-Statistic P-Value 

     -0,863 0,058 -14,909 0,000 

     0,979 0,014 68,217 0,000 

4.3. ARCH Models 

When applying ARCH models to exchange rate series, returns are calculated 

by the logarithm-difference of the exchange rate series. Monthly return series (  ) are 

presented in equation 4.4 where    is the exchange rate between two currencies and 

    is the natural logarithm of the relevant data. 

       (
  
    

)                (4.4) 
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Descriptive statistics of the return series are summarized in table 4.7. Jarque-

Berra statistic for testing whether the return series follow a normal distribution shows 

that a null hypothesis of normal distribution can be strongly rejected. Besides each of 

the series are skewed, kurtosis values largely exceed three (which is the value 

corresponding to normal distribution) and standard deviations are significantly 

different from zero. Combining all these; it can be traced that exchange rate series 

are volatile and they are suitable for ARCH or GARCH presentation. 

Table 4.7: Descriptive Statistics of the Exchange Rate Return Series 8 

Table 4.7: Descriptive Statistics of the Exchange Rate Return Series 

       

Exchange 

Rate 

Sample 

Size 

Mean     

(%) 

Standard 

Deviation 
Skewness Kurtosis 

Jarque-Berra 

Test         

(P-Value) 

TL/USD 95 -0,293 0,045 -2,092 11,075 0,000 

TL/EUR 95 -0,351 0,040 -1,429 7,905 0,000 

TL/GBP 95 -0,151 0,041 -1,513 8,834 0,000 

In order to model volatility, initially ARIMA specification of the each return 

series is determined. Estimation results for various ARIMA specifications of each 

return series proposed that an ARIMA (2, 1, 2) specification for TL/USD return 

series, an ARIMA (3, 1, 2) model for TL/EUR and an ARIMA (1, 1, 1) model for 

TL/GBP fit the data best. 

Table 4.8: ARCH Model Regression Results of TL/USD Exchange Rate 9 

Table 4.8: ARCH Model Regression Results of TL/USD Exchange Rate 

     
Variable Coefficient Std. Error z-Statistic P-Value 

   0,002 0,000 14,891 0,000 

    
  -0,033 0,015 -2,260 0,024 

 

Table 4.9: GARCH Model Regression Results of TL/EUR Exchange Rate 10 

Table 4.9: GARCH Model Regression Results of TL/EUR Exchange Rate 

     
Variable Coefficient Std. Error z-Statistic P-Value 

    
  0,398 0,257 1,548 0,122 

    
  0,461 0,236 1,953 0,051 
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Table 4.10: GARCH Model Regression Results of TL/GBP Exchange Rate 11 

Table 4.10: GARCH Model Regression Results of TL/GBP Exchange Rate 

     
Variable Coefficient Std. Error z-Statistic P-Value 

    
  -0,046 0,010 -4,811 0,000 

    
  1,081 0,043 25,407 0,000 

Afterwards, square of residuals from these regressions are used as an estimator 

to conditional variance (volatility) of the series. A number of alternative 

ARCH/GARCH specifications are estimated. Estimation results showed that the 

volatility of TL/EUR and TL/GBP exchange rates are best identified by a GARCH 

(1, 1) model and the volatility of TL/USD exchange rate by an ARCH (1) model. 

Regression results are summarized in tables 4.8, 4.9 and 4.10 where;     
  represent 

ARCH term and     
  represent GARCH term and    represent the constant term. 

4.4. VAR Models 

In literature, empirical studies regarding the forecasting performance of VAR 

models such as; Bikker (1998) and Joseph (2001) proposed that a VAR model 

performs better in non-stationary form than in differenced, stationary, form when 

applied to cointegrated variables with same degree of integration. In this respect; 

candidate determinant variables that are suggested by economic fundamentals based 

models and previous empirical studies such as; Hoque and Latif (1993), Botha and 

Pretorius (2009) are examined in order to specify determinant variables of TL/USD, 

TL/EUR, TL/GBP; Turkish Lira exchange rates ( ). 

             (4.5) 

 

             (4.6) 

After examining a number of variables with subject to Granger causality tests, 

cointegration relationships and unit root structure; monetary differential ( ) which is 

the log difference of domestic country’s money supply ( ) and foreign country’s 

money supply (  ) and interest rate differential ( ) which is the difference of one 
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year interbank borrowing rates of domestic currency ( ) and foreign currency (  ) 

are picked as determinant variables among alternatives (see equation 4.5 and 4.6). 

Table: 4.11: Unit Root Test Results of Determinant Variables 12 

Table: 4.11: Unit Root Test Results of Determinant Variables 

        
Variable Specification 

TL/USD TL/EUR TL/GBP 

Level Difference Level Difference Level Difference 

  
Trend and 

Intercept 
0,768 0,000 0,742 0,000 0,889 0,000 

  Intercept 0,152 0,000 0,271 0,000 0,271 0,000 

Augmented Dickey-Fuller unit root test results with P-Values corresponding to 

each entry are presented in table 4.11. Results suggest that; both variables are non-

stationary in level form and become stationary in first difference form with same 

degree of integration; I (1) for each of three exchange rates. 

Table 4.12: Cointegration Test Results of Determinant Variables 13 

Table 4.12: Cointegration Test Results of Determinant Variables 

     Dependent 

Variable 

Independent 

Variable 

TL/USD        

(P-Value) 

TL/EUR        

(P-Value) 

TL/GBP        

(P-Value) 

    0,012 0,003 0,008 

    0,041 0,003 0,012 

   ,   0,015 0,001 0,000 

    0,043 0,011 0,018 

    0,033 0,011 0,041 

   ,   0,042 0,010 0,018 

    0,072
*
 0,087

*
 0,184

*
 

    0,006 0,050 0,057 

   ,   0,004 0,042 0,045 

Table 4.12 summarizes Engle-Granger cointegration test results for 

determinant variables. Results reveal that except three results, that are highlighted by 

asterisk in the table, all of the determinant variables are cointegrated at about 5% 

significance level for each of the three different Turkish Lira exchange rates. It is 

conferred that a VAR (2) model is the best specification for each of the three Turkish 

Lira exchange rates according to residual diagnostics and specification criterion such 

as Akaike and Schwarz information criteria. VAR model regression results are 

presented in tables 4.13, 4.14 and 4.15. 
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Table 4.13: VAR Model Regression Equation of TL/USD Exchange Rate 14 

Table 4.13: VAR Model Regression Equation of TL/USD Exchange Rate 

       
 Independent 

Variables 
                                     

Coefficient 1,065 -0,105 -2,033 1,960 0,0002 -0,003 -0,182 

Standard Error 0,098 0,101 0,298 0,294 0,004 0,004 0,068 

t-statistic 10,863 -1,032 -6,829 6,679 0,063 -0,807 -2,671 

 

Table 4.14: VAR Model Regression Equation of TL/EUR Exchange Rate 15 

Table 4.14: VAR Model Regression Equation of TL/EUR Exchange Rate 

       
 Independent 

Variables 
                                     

Coefficient 0,990 -0,139 -1,930 1,807 -0,0008 -0,003 -0,413 

Standard Error 0,082 0,080 0,201 0,206 0,003 0,003 0,135 

t-statistic 12,099 -1,745 -9,607 8,757 -0,300 -1,165 -3,055 

 

Table 4.15: VAR Model Regression Equation of TL/GBP Exchange Rate 16 

Table 4.15: VAR Model Regression Equation of TL/GBP Exchange Rate 

       
 Independent 

Variables 
                                     

Coefficient 0,766 0,039 -0,603 0,514 -0,009 0,006 -0,278 

Standard Error 0,128 0,127 0,245 0,250 0,004 0,004 0,115 

t-statistic 6,000 0,309 -2,459 2,059 -2,111 1,378 -2,419 

4.5. ECM Models 

Cointegration relations and unit root structures of exchange rate series and 

determinant variables were examined in previous sections. Since all variables are 

cointegrated and integrated of same order I (1); following cointegration equation can 

be estimated by ordinary least squares technique for each of the exchange rate series: 

 ̂   ̂   ̂  ̂   ̂  ̂   ̂     ̂ (4.7) 
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where  ̂ ,  ̂ ,  ̂ ,   and   ̂ are estimated values of exchange rate at time t, monetary 

differential at time t, interest rate differential at time t, trend term and residuals or 

errors from regression, respectively. Cointegration equation regression results for all 

three are presented in tables 4.16, 4.17 and 4.18.  

Table 4.16: Cointegration Regression Equation of TL/USD Exchange Rate 17 

Table 4.16: Cointegration Regression Equation of TL/USD Exchange Rate 

     Variable Coefficient Std. Error t-Statistic P-Value 

  0,823 0,152 5,403 0,000 

  -0,004 0,002 -1,695 0,093 

   2,698 0,512 5,273 0,000 

  -0,011 0,001 -8,411 0,000 

 

Table 4.17: Cointegration Regression Equation of TL/EUR Exchange Rate 18 

Table 4.17: Cointegration Regression Equation of TL/EUR Exchange Rate 

     Variable Coefficient Std. Error t-Statistic P-Value 

  -0,549 0,028 -19,443 0,000 

  -0,013 0,002 -7,318 0,000 

   -2,178 0,067 -32,497 0,000 

 

Table 4.18: Cointegration Regression Equation of TL/GBP Exchange Rate 19 

Table 4.18: Cointegration Regression Equation of TL/GBP Exchange Rate 

     Variable Coefficient Std. Error t-Statistic P-Value 

  -0,913 0,086 -10,655 0,000 

  -0,012 0,002 -7,228 0,000 

   -2,401 0,179 -13,414 0,000 

  0,004 0,001 5,421 0,000 

Residuals or error terms (  ̂) from cointegration regressions of each exchange rate 

series are derived through following equation: 

  ̂   ̂   ̂   ̂  ̂   ̂  ̂   ̂   (4.8) 

Unit root test results of the residual series proved that the series are stationary 

and consecutively these residual series are used for estimating following error 

correction model: 
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                     ̂      (4.9) 

where   ̂   represents the lagged values of the residuals that are derived from 

equation 4.8 and    is the error term of error correction model equation. Error 

correction model regression results for each of the exchange rate series are delivered 

in tables 4.19, 4.20 and 4.21. 

Table 4.19: ECM Regression Equation of TL/USD Exchange Rate 20 

Table 4.19: ECM Regression Equation of TL/USD Exchange Rate 

     Variable Coefficient Std. Error t-Statistic P-Value 

    -0,258 0,251 -1,029 0,306 

    -0,018 0,003 -5,511 0,000 

  ̂   -0,057 0,049 1,170 0,245 

 

Table 4.20: ECM Regression Equation of TL/EUR Exchange Rate 21 

Table 4.20: ECM Regression Equation of TL/EUR Exchange Rate 

     Variable Coefficient Std. Error t-Statistic P-Value 

    -0,206 0,208 -0,989 0,325 

    -0,013 0,003 -4,371 0,000 

  ̂   -0,212 0,063 -3,379 0,001 

 

Table 4.21: ECM Regression Equation of TL/GBP Exchange Rate 22 

Table 4.21: ECM Regression Equation of TL/GBP Exchange Rate 

     Variable Coefficient Std. Error t-Statistic P-Value 

    -0,102 0,174 -0,586 0,559 

    -0,017 0,003 -5,936 0,000 

  ̂   -0,275 0,065 -4,241 0,000 

Regression results imply that; roughly 6% of error (deviation from long run 

equilibrium) is corrected in one period (a month) for TL/USD exchange rate series, 

%21 percent is corrected for TL/EUR exchange rate series and %27 percent is 

corrected for TL/GBP series. 
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4.6. MLFFNN Models 

While being so crucial for the performance of a MLFFNN there is no 

universally accepted methodology to determine optimal number of hidden nodes of a 

MLFFNN. Training, in-sample part of the dataset can be used to determine most 

accurate and precise neural network structure for forecasting exchange rates by using 

a trial-error process (Zhang et al., 2001; Palmer et al., 2006). 

 

Number of input nodes of the MLFFNN is determined by outcomes of the 

VAR and cointegration analyses that are carried out in previous sections. MLFFNN 

structures each with six input nodes in input layer that represent variables:     ,     , 

    ,     ,     ,     , one hidden layer with 2, 4, 6, 8, 10, 12 hidden nodes and an 

output layer with one output node that represents one-step-ahead predicted value of 

the relevant exchange rate series, are estimated.  

 

Optimization of weights is achieved by Levenberg-Marquardt back-

propagation algorithm, a sigmoid transfer function utilized in hidden layer and linear 

transfer function utilized in output layer. Among these 6 different MLFFNN 

structures, the one that produces lowest in-sample RMSE value and correlation 

coefficient ( ) value is selected and out-of-sample predictions are based on these 

MLFFNN structures.  

 

Regression results indicated that a MLFFNN structure with 6 hidden nodes for 

USD and EUR exchange rates and 10 hidden nodes for GBP series came up to be fit 

the data best by revealing lowest in-sample RMSE values and highest   values. 

RMSE and   values for each exchange rate series are summarized in table 4.22. 

Table 4.22: Optimal MLFFNN Structures 23 

Table 4.22: Optimal MLFFNN Structures 

    

Exchange Rate 
Number of 

Hidden Nodes 
In-Sample RMSE   

TL/USD 6 0,0209 0,9895 

TL/EUR 6 0,0198 0,9903 

TL/GBP 10 0,0271 0,9510 
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4.7. RNN Models 

A recurrent neural network structure in which the output errors are looped back 

to input layer is estimated by using inputs;     ,     ,     ,     ,     ,      with 2, 

4, 5, 6, 8, 10, 12 hidden nodes on hidden layer. As in MLFFNN application, 

optimization of weights is achieved by Levenberg-Marquardt back-propagation 

algorithm, a sigmoid transfer function utilized in hidden layer and linear transfer 

function utilized in output layer. 

 (  )   (                                            ) (4.10) 

Functional form of the recurrent neural network is presented in equation 4.10 

where   represent the output error. Among these 7 different RNN structures, the one 

that produces lowest in-sample RMSE value and   value is selected and out-of-

sample predictions are based on these RNN structures. 

 

Regression results indicated that a RNN structure with 10 hidden nodes for 

TL/USD exchange rate and 12 hidden nodes for TL/EUR and TL/GBP exchange 

rates came up to be fit the data best by revealing lowest in-sample RMSE values and 

highest   values. RMSE and   values for each exchange rate series are summarized 

in table 4.23. 

Table 4.23: Optimal RNN Structures 24 

Table 4.23: Optimal RNN Structures 

    

Exchange Rate 
Number of 

Hidden Nodes 
In-Sample RMSE   

TL/USD 10 0,0248 0,9842 

TL/EUR 12 0,0172 0,9925 

TL/GBP 12 0,0218 0,9705 

4.8. SVR Models 

Least squares support vector regression (LSSVR) methodology is employed to 

forecast each of the exchange rate series. Optimal selection of kernel function (linear, 

polynomial or radial basis function) and free parameters such as;   and    is crucial 
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for the forecasting accuracy and the stability of the LSSVM model. However, there 

exist no analytical, universal way to determine kernel function and parameters 

optimally (Kamurazzaman et al., 2003; Ince and Trafalis, 2005; Samsudin et al., 

2011; Shabri and Suhartono, 2012). Based on VAR and cointegration analysis (as in 

MLFFNN and RNN applications) input set:     ,     ,     ,     ,     ,      is 

employed. Kernel function is arbitrarily chosen to be radial basis function. A 10-fold 

cross-validation with grid search algorithm for each of the predetermined differing 

ranges of the parameters is employed in order to determine optimal parameters and 

LSSVM structure. 

 

For TL/USD and TL/GBP  exchange rates; range of the parameter   is fixed to 

range (0,01 10000); lower bound of the range of the parameter    is fixed to 1, upper 

bound of the parameter is alternated between from 5 to 100 with a step size of 5. For 

TL/EUR exchange rate; range of the parameter   is fixed to range (0,01 10000); 

lower bound of the range of the parameter    is fixed to 0,01, upper bound of the 

parameter is alternated between from 100 to 2000 with a step size of 100. Therefore 

a 10-fold cross-validation is employed 20 times for each of the exchange rate series. 

Table 4.24: Optimal SVR Structures 25 

Table 4.24: Optimal SVR Structures 

     

 
     RMSE   

TL/USD 1192,1 152,5758 0,0325 0,9506 

TL/EUR 2329 718,6 0,0246 0,9559 

TL/GBP 8,1796 57,0765 0,0368 0,7414 

After determining LSSVM structure with optimal parameters through cross-

validation for each range of the parameters; in-sample RMSE and   values are 

calculated consecutively and out-of-sample predictions are based on the LSSVR 

structure that produces best in-sample fit, i.e. the one that produces lowest in-sample 

RMSE value and highest in-sample   value. Values of the parameters, in-sample 

RMSE and   values are presented in table 4.24. 
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4.9. Forecast Evaluation 

Root mean squared error (RMSE) statistic corresponding to in-sample and out-

of-sample TL/USD, TL/EUR and TL/GBP exchange rate forecasts of all seven 

models and their ranks are tabulated in tables 4.25, 4.26, 4.27. 

Table 4.25: RMSE Statistics for TL/USD Exchange Rate 26 

Table 4.25: RMSE Statistics for TL/USD Exchange Rate 

     

Model 
In-Sample 

RMSE 
Rank 

Out-of-Sample 

RMSE 
Rank 

ARIMA (2, 1, 2) 0,0433 6 0,0261 2 

GARCH (1, 0) 0,0445 7 0,0265 3 

VAR (2) 0,0342 4 0,0420 7 

ECM 0,0380 5 0,0221 1 

MLFFNN (6-6-1) 0,0209 1 0,0305 4 

RNN (6-10-1) 0,0248 2 0,0318 5 

SVR (1192,1 152,6) 0,0325 3 0,0363 6 

Regarding the in-sample forecasts of TL/USD exchange rate; among classical 

models VAR model performed best and among artificial intelligence based models 

MLFFNN model performed best. Furthermore; MLFFNN model produced lowest in-

sample RMSE value among all seven models. For out-of-sample forecasts; among 

classical models ECM performed best and among artificial intelligence based models 

MLFFNN model performed best. Among all seven models; ECM produced 

significantly lower out-of-sample RMSE than remaining six models. 

Table 4.26: RMSE Statistics for TL/EUR Exchange Rate 27 

Table 4.26: RMSE Statistics for TL/EUR Exchange Rate 

     

Model 
In-Sample 

RMSE 
Rank 

Out-of-Sample 

RMSE 
Rank 

ARIMA (2, 1, 1) 0,0384 6 0,0226 2 

GARCH (1, 1) 0,0391 7 0,0235 3 

VAR (2) 0,0258 4 0,0289 7 

ECM 0,0344 5 0,0199 1 

MLFFNN (6-6-1) 0,0198 2 0,0279 4 

RNN (6-12-1) 0,0172 1 0,0283 5 

SVR (2329 718,6) 0,0246 3 0,0288 6 
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For the in-sample forecasts of TL/EUR exchange rates; among classical models 

VAR model performed best and among artificial intelligence based models RNN 

model performed best. Besides; lowest in-sample RMSE value among all seven 

models is achieved by RNN model. Regarding out-of-sample forecasts; among 

classical models ECM performed best and among artificial intelligence based models 

MLFFNN model performed best. As with the out-of-sample forecast results for 

TL/USD exchange rate ECM performed significantly better than remaining models. 

Another salient feature of the out-of-sample forecasts of TL/EUR exchange rate is 

that; its ranks are exactly the same as the out-of-sample forecasts of the TL/USD 

exchange rate. 

Table 4.27: RMSE Statistics for TL/GBP Exchange Rate 28 

Table 4.27: RMSE Statistics for TL/GBP Exchange Rate 

     

Model 
In-Sample 

RMSE 
Rank 

Out-of-Sample 

RMSE 
Rank 

ARIMA (1, 1, 1) 0,0403 6 0,0249 2 

GARCH (1, 1) 0,0409 7 0,0257 3 

VAR (2) 0,0374 5 0,0318 6 

ECM 0,0305 3 0,0233 1 

MLFFNN (6-10-1) 0,0271 2 0,0297 5 

RNN (6-12-1) 0,0218 1 0,0370 7 

SVR (8,18 57,1) 0,0368 4 0,0284 4 

In terms of in-sample forecasting ability of TL/GBP exchange rate; ECM 

performed best among classical models and among artificial intelligence based 

models RNN model performed best. In addition, lowest in-sample RMSE value 

among all seven models is achieved by RNN model. Regarding out-of-sample 

forecasts; among classical models ECM performed best and among artificial 

intelligence based models SVR model performed best. As in TL/USD and TL/EUR 

exchange rates ECM produced lowest out-of-sample RMSE among all seven models. 

 

Combining all these results regarding the in-sample and out-of sample 

forecasting performances of seven different models for TL/USD, TL/EUR, TL/GBP 

exchange rates; it can be traced that; in-sample forecasting performance of artificial 

intelligence based models is significantly better than classical models. Besides, 

classical models produced lower out-of-sample RMSE values than artificial 
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intelligence based models in most instances. Among all seven models; ECM 

performed best in out-of-sample forecasts of all three exchange rates. 

Table 4.28: Diebold-Mariano Test Results of TL/USD Exchange Rate 29 

Table 4.28: Diebold-Mariano Test Results of TL/USD Exchange Rate 

       

Model 

DMTEST1 DMTEST2 DMTEST3 

MSE    

Ratio 
DM Stat. 

MSE    

Ratio 
DM Stat. 

MSE    

Ratio 
DM Stat. 

ARIMA 0,7323 -1,4916 0,6736 -2,0400
**

 0,5170 -2,7941
**

 

GARCH 0,7549 -1,3125 0,6944 -1,7830 0,5329 -2,5404
**

 

VAR 1,8963 4,5960
*
 1,7444 2,2737

*
 1,3387 1,5066 

ECM 0,5250 -2,8050
**

 0,4830 -2,6561
**

 0,3707 -3,3083
**

 

 

Table 4.29: Diebold-Mariano Test Results of TL/EUR Exchange Rate 30 

Table 4.29: Diebold-Mariano Test Results of TL/EUR Exchange Rate 

       

Model 

DMTEST1 DMTEST2 DMTEST3 

MSE    

Ratio 
DM Stat. 

MSE    

Ratio 
DM Stat. 

MSE    

Ratio 
DM Stat. 

ARIMA 0,6562 -1,2760 0,6377 -1,6015 0,6158 -1,4038 

GARCH 0,7095 -1,1178 0,6895 -1,3708 0,6658 -1,3159 

VAR 1,0730 0,7995 1,0429 0,3784 1,0070 0,0681 

ECM 0,5087 -1,9091 0,4945 -2,2613
**

 0,4774 -2,0865
**

 

 

Table 4.30: Diebold-Mariano Test Results of TL/GBP Exchange Rate 31 

Table 4.30: Diebold-Mariano Test Results of TL/GBP Exchange Rate 

       

Model 

DMTEST1 DMTEST2 DMTEST3 

MSE    

Ratio 
DM Stat. 

MSE    

Ratio 
DM Stat. 

MSE    

Ratio 
DM Stat. 

ARIMA 0,7029 -1,5038 0,4529 -2,0729
**

 0,7687 -1,3763 

GARCH 0,7488 -1,3331 0,4825 -2,0140
**

 0,8189 -1,2089 

VAR 1,1464 0,7638 0,7387 -1,1833 1,2538 1,8119 

ECM 0,6155 -1,5988 0,3966 -2,2605
**

 0,6731 -1,2660 

In order to assess; statistical significance of differences between out-of-sample 

forecasts of classical models and artificial intelligence based models, i.e. to test 

whether the RMSE differences among models are statistically significant; Diebold-

Mariano (DM) test is employed for all three exchange rates. MSE ratios (ratio of 

MSE of classical model to MSE of benchmark model), calculated Diebold-Mariano 
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test statistics, for each of the three exchange rates are presented in tables 4.28, 4.29 

and 4.30. DMTEST1, DMTEST2 and DMTEST3 panels represent corresponding 

outcomes when MLFFNN model is chosen to be as benchmark, RNN model is 

chosen to be as benchmark and SVR model is chosen to be as benchmark 

respectively. In tables, test results suggesting that; for a %5 significance level 

benchmark model statistically significantly outperform classical model are 

highlighted by an asterisk at the corresponding model’s Diebold-Mariano test 

statistic entry and test results suggesting that for a %5 significance level the classical 

model statistically significantly outperform benchmark model are highlighted by two 

asterisks at the corresponding model’s Diebold-Mariano test statistic entry. 

 

As can be seen from tables; among thirteen statistically significant results, i.e. 

Diebold-Mariano test results that suggest rejection of the null hypothesis of equal 

forecast accuracy, only two outcomes (for TL/USD exchange rate, VAR model when 

MLFFNN model is the benchmark and again for TL/USD exchange rate, VAR 

model when RNN model is the benchmark) are in favor of artificial intelligence 

based models. For TL/USD exchange rate; classical models statistically significantly 

outperformed artificial intelligence based models in six instances (for ECM when 

MLFFNN model is the benchmark; for ARIMA model and ECM when RNN model 

is the benchmark; for ARIMA, GARCH and ECM models when SVR model is the 

benchmark). For TL/EUR exchange rate; classical models statistically significantly 

outperformed artificial intelligence based models in two instances (for ECM when 

RNN and SVR models are the benchmarks). For TL/GBP exchange rate classical 

models statistically significantly outperformed artificial intelligence based models in 

three instances (for ARIMA, GARCH and ECM models when RNN model is the 

benchmark). 

 

To sum up; according to DM test results that are represented in tables 4.28, 

4.29 and 4.30 for three different exchange rates, among thirty-six instances, thirteen 

are statistically significant and among these statistically significant results eleven are 

in favor of classical models and only two are in favor of artificial intelligence based 

models. 
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Table 4.31: Diebold-Mariano Test Results for RW as Benchmark Model 32 

Table 4.31: Diebold-Mariano Test Results for RW as Benchmark Model 

       

Model 

TL/USD TL/EUR TL/GBP 

MSE    

Ratio 
DM Stat. 

MSE    

Ratio 
DM Stat. 

MSE    

Ratio 
DM Stat. 

ARIMA 0,4215 -3,4426
**

 0,5869 -1,4187 0,5061 -2,3352
**

 

GARCH 0,4345 -3,3055
**

 0,6346 -1,3818 0,5392 -2,2826
**

 

VAR 1,0916 0,5127 0,9597 -0,1570 0,8255 -1,0695 

ECM 0,3022 -3,6333
**

 0,4551 -1,9677
**

 0,4432 -2,1360
**

 

MLFFNN 0,5756 -2,6842
**

 0,8945 -0,5492 0,7201 -1,2355 

RNN 0,6258 -2,4456
**

 0,9203 -0,2735 1,1176 0,8013 

SVR 0,8154 -1,3958 0,9531 -0,2177 0,6584 -2,2163
**

 

In addition to these findings; following ongoing debates in exchange rate 

forecasting literature related with finding a model that is capable of beating random 

walk model; forecasts of all seven models in consideration are compared with the 

forecasts of a pure random walk model on the basis of Diebold-Mariano test. Test 

results, which are represented in table 4.31, suggest that; models in consideration are 

capable of beating random walk model in ten out of twenty-one instances which are 

highlighted by two asterisks in the corresponding Diebold-Mariano test entry while 

random walk model is not capable of statistically significantly beating any of the 

models in consideration. 
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5. CONCLUDING REMARKS 

This paper investigated predictive ability of several classical models and 

artificial intelligence based models in forecasting; TL/USD, TL/EUR and TL/GBP 

exchange rates. Both in-sample and out-of-sample forecasts of each model are 

evaluated by root mean squared error statistic and statistical significance of the 

forecast accuracy differences among the models are assessed by Diebold-Mariano 

test. 

 

Empirical analysis aimed to contribute the exchange rate forecasting literature 

in a number of ways. First, several classical, pure time series models and artificial 

intelligence based models are employed to three different Turkish Lira exchange 

rates (TL/USD, TL/EUR and TL/GBP) and their predictive ability is analyzed 

comparatively. Second, candidate determinant variables suggested by the theories 

and previous empirical studies are examined for Turkish Lira exchange rates through 

causality and cointegration analyses. Third, after identifying determinant variables of 

Turkish Lira exchange rates, two models are estimated (a model in VAR 

representation and a model ECM representation) using these variables and their 

forecasting accuracy is compared by those of artificial intelligence based models. 

Fourth; predictive ability of all of the seven models in consideration (ARIMA, 

GARCH, VAR, ECM, MLFFNN, RNN, SVR) is investigated by comparing their 

forecasts with forecasts from a pure random walk model.  

 

Comparative analysis of root mean squared error (RMSE) statistic 

corresponding to in-sample and out-of-sample TL/USD, TL/EUR, TL/GBP exchange 

rate forecasts of all models proposed that; artificial intelligence based models 

performed significantly better than classical models for in-sample forecasts. Besides, 

classical models produced lower out-of-sample RMSE values than artificial 

intelligence based models in most instances. Among all seven models; ECM model 

performed best in out-of-sample forecasts for all three exchange rates.  
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According to Diebold-Mariano test results for out-of-sample forecasts of 

classical and artificial intelligence based models, among thirteen statistically 

significant results only two of them were in favor of artificial intelligence based 

models and remaining eleven results were in favor of classical models. Forecasting 

models in consideration were capable of beating random walk model in ten out of 

twenty-one instances while random walk model was not capable of statistically 

significantly beating any of the models in consideration. 

 

Such dismal performance of artificial intelligence based models may be due to 

relatively low frequency data (monthly) employed for the analysis. Hence, 

conducting a comparative analysis for forecasting Turkish Lira exchange rates by 

making use of higher frequency data, daily for instance, and also proposing a hybrid 

model by combining classical models and artificial intelligence based models or 

enhancing accuracy of the structures of the artificial intelligence based models 

through optimization algorithms remain as future research subjects. 
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