## ÖZET

1

Bu çalışmada paralel plaka dalga kılavuzunda band-durduran işlevi gören asimetrik, dielektrik yüklü oyuklardan  $H_z$ -polarize (TEM) dalgaların yansıması ve iletimi, Wiener-Hopf tekniği ile incelenmektedir. Problem Fourier dönüşümü ile "Matris Modifive Wiener-Hopf" problemine indirgenmekte, matris komütatif olmadığından çekirdek matrisin faktorizasyonu yapılamamaktadır. Katsayıları henüz belli olmayan bir takım sonsuz toplamlar işin içine katılarak üçüncü tip Modifiye Wiener-Hopf denklemleri dekuple edilmiştir. Elde edilen denklem sistemleri nümerik olarak çözülmüş, olukların derinliklerinin ve dielektrik malzemenin özelliklerinin yansıyan ve iletilen alana etkisi incelenmiştir. Band -durduran filtre olarak kullanılabilecek bu düzenekde asimetrik oyuklar sayesinde iki adet band-durduran merkez frekans değeri elde edilmiştir. Daha sonra kılavuzun plakalarında bulunan oluklar birinci mertebeden empedans koşulu ile modellenip, problem tekrar çözülmüş ve sonuçlar karşılaştırılmıştır. Oyuklu dalga kılavuzunda oyuk derinlikleri çok küçük seçildiğinde sonuçlar empedans ile modellenen dalga kılavuzundaki sonuçlar ile uyumlu olarak elde edilmiştir. Uygulamalarda genellikle nümerik metodlarla çözülmüş bu tip problemler için bu çalışma, yöntem olarak bir test imkanı da verecektir.

#### **SUMMARY**

In this study, a parallel plate waveguide with two opposing rectangular grooves with different depths and filled with different dielectric materials. The solution is developed for the problem of reflection of TEM polarized waves by asymptric grooves. The representation of the solution to the three -part mixed boundry- value problem in terms of Fourier integrals leads to a couple of simultaneous modified Wiener Hopf equations. By using the analytical properties of functions that occur, the simultaneous modified Wiener-Hopf equations are reduced to the solution of four infinite systems of linear algebraic equations. These systems are solved numerically and the bandstop filter characteristics of the reflection coefficient are studied in terms of frequency, groove sizes and the parameters of the filling dielectric material. The results are compared with the second problem where the electric filled grooves are modelled with first-order impedance boundry conditions. The band-stop filter characteristics of a parallel plate waveguide with finite length impedance loading is investigated rigorously through the Wiener Hopf tecnique. In order to obtain the explicit expressions of the reflection coefficient the problem is first reduced into two coupled modified Wiener-Hopf equations and solved rigorously by using the pole removal method. It is observed that when the one of the impedances is capacitive and takes large values, full reflection occurs. This configuration may be used as a band stop filter if one of the impedances is inductive.

0.1

# 1 GİRİŞ

### 1.1 Konu ve Önemi

Mikrodalga frekanslarında (300 MHz-300 GHz) dalga kılavuzları, sinyalleri iletmede bir filtre gibi davranır. Bu özellik dolayısıyla mikrodalga teknolojilerinde banddurduran ve band-geçiren filtreler olarak sinyallerin ayrıştırılmasında kullanılırlar. Bu filtre sistemleri bir çok araştırmacı tarafından değişik yöntemlerle incelenmiştir. Daha önceki klasik çözümlerde genellikle izole edilmiş süreksizliklerin mevcut olması nedeni ile çözüm kolaylıkla yapılabiliyordu. Birden fazla süreksizlik oluşması halinde ve özellikle birbirlerine yakın oldukları pozisyonlarda etkileşmeleri kolaylaşmakta, bu durum problemin analizini oldukça güçleştirmektedir. Örneğin Verbitski [1] ve Veselov [2] tarafından dikdörtgen kesitli dalga kılavuzuna N sayıda dikdörtgen kesitli, birbirine eş oyuk yerleştirilmiş ve problem Floquet-mode teoremi aracılığı ile çözülmüştür. Lee ve Eom [5] benzer problemi bu kez paralel levha dalga kılavuzu için Fourier dönüşümü ve mode-uydurma yöntemi ile incelemişler, çözümü nümerik olarak elde etmişlerdir. Buna göre oyuk sayısı beşe kadar arttırıldığında iletim alanın katsayısı, merkez frekansı değerine göre band-durduran filtre özelliği göstermiştir. N=20 lerde ise alanın iletim katsayısı keskin düşüşler göstermiş, iki adet band durduran merkez frekans oluşmuştur. Leo ve Eom [6] alt ve üst plakada birer oyuk bulunan paralel plakalı dalga kılavuzundan yansıyan ve iletilen alanı Fourier dönüşümü ve mod uydurma yöntemlerini kullanarak analitik olarak hesaplamışlardır. Oyukların derinliklerine göre band-durduran frekansa bakılmış, derinlik arttıkça band-durduran frekansa

küçülmüştür. Yansıyan alanın genliğinin 0.1 olduğu civarlarda band genişliği daralmış yani Q (kalite faktörü) değeri artmıştır. Hwang ve Eom [7] paralel plakalı dalga kılavuzunun alt levhasında N adet ferrite-dolgulu oyuk bulunduran yapıyı hem analitik hem de deneysel olarak incelemişlerdir. Analitik incelemeyi Fourier dönüşümü ve mode-uydurma yöntemini kullanarak gerçekleştirmişler ve böyle bir yapının band-durduran filtre olarak kullanılabileceğini göstermişlerdir. Bu sonuca göre oyuktaki malzeme, merkez frekans değerlerini etkilerken oyuğun boyutları filtrenin özelliklerini belirlemiştir.

Mikrodalga iletişim sistemlerinin hızla gelişmesi askeri uygulamalarda da kendisini göstermiş ve geliştirilen sistemlerde birden çok istenmeyen sinyalin bastırılması gereksinimini doğurmuştur. Çoğu band-durduran filtre düzeneği yalnızca tek band aralığı için tasarlanmıştır [8], [9]. Bu nedenle birden çok band aralığında band-durduran filtre tasarımı konusu giderek önem kazanmaktadır. İkili banddurduran filtre tasarımıyla ilgili ilk çalışmalardan birisi Uchida [10] ve arkadaşları tarafından RF vericilerinde gürültü azaltmaya yönelik yapılmıştır. Geniş bandlı sistemlerde iki ve daha fazla band-durduran filtre tasarımına ilişkin diğer bir çalışmada [11] mikroşerit yapılı düzenekte denenmiş ve sinyallerdeki girişimlerin bastırılması amaçlanmıştır.

Paralel plaka dalga kılavuzunda asimetrik oyuk tipi süreksizliklerin incelendiği bu çalışmada, dominant TEM modunun, farklı dielektrik malzeme ile doldurulmuş dikdörtgen kesitli oyuk süreksizliğinden ardışık olarak yansıma ve iletimi incelenecektir. Dielektrik malzemenin parametrik özelliklerinin, oyuk derinliğinin, oyuk sayısının ve genişliğinin band-durduran filtre tasarımına etkisi gözlemlenecektir.

Ikinci problemde, oyuklar dielektrik malzeme yerine sonlu empedans sınır koşulu ile modellenmiştir. Her iki problemde dalga kılavuzunda, süreksizlik yüzeyleri dışındaki kısımlar mükemmel iletken malzemeden oluşmuştur. Paralel plakalı dalga kılavuzlarında yüzey empedansının yansıyan alan katsayısına etkisi bir çok araştırmacı tarafından incelenmiştir. Örneğin Johansen [23] x > 0 bölgesinde mükemmel iletken, x < 0 bölgesinde ise yüzey empedansına sahip paralel plaka dalga kılavuzundan saçılım, Heins and Feshbach [26] empedans süreksizliğinden saçılma, Karajala ve Mitra [15], yarı sonsuz paralel plaka dalga kılavuzundan kırınımın "mod uydurma" yöntemi ile çözümü ve *Büyükaksoy* [21], yarısonsuz dalga kılavuzunda birbirinden farklı iki empedans sınır koşulu ile modellenmiş dalga kılavuzundan ışınımı incelemişlerdir.

### 1.2 Tezin Amacı ve İçeriği

Bu çalışmada amaç, paralel plakalı dalga kılavuzunda alt ve üst plakalarda farklı derinliğe ve dielektrik malzemeye sahip iki dikdörtgen kesitli oyuk yapısının TEM modu yayılımına etkisinin incelenmesidir. Oyukları dolduran malzemelerin dielektrik sabiti, oyuk derinlik ve uzunluğunun değişen değerlerinin dalga yayılımına etkisi incelenecek, ikinci olarak dalga kılavuzundaki dielektrik malzeme ile dolu oyuklar birinci mertebeden empedans sınır koşulu ile modellenerek elde edilen sonuçlar birbiri ile karşılaştırılacaktır. Buradaki beklenti oyuğun derinliği küçük alındığında iki sonucun birbirine çok yakın çıkmasıdır. Üst ve alt plakadaki oyukları dolduran malzemeler sırasıyla  $\varepsilon_{1,2}, \mu_{1,2}, k_{1,2}$ , olarak alınmıştır. Burada  $\varepsilon, \mu, k$  sırasıyla malzemenin elektriksel geçirgenliği, magnetik geçirgenliği ve dalga sayısını göstermektedir. Üç parçalı karışık sınır değer problemi, Fourier dönüşümü aracılığıyla bir Matris Modifiye Wiener-Hopf (*WH*) problemine indirgenmiştir. Matris çarpımı komutatif olmadığından çekirdek matrisin faktorizasyonu için geliştirilmiş genel bir yöntem yoktur. Burada, fonksiyonların analitik özellikleri kullanılarak, katsayıları başta bilinmeyen bazı sonsuz seriler işin içine katılmış ve üçüncü tip Modifiye Wiener-Hopf denklemleri eşleştirilmiştir. İlk problemin formülasyonu Jones yöntemi ile, ikinci problem ise dual integral denklemler yöntemi aracılığı ile formüle edilmiştir [12].

Dört takım sonsuz bilinmeyenli lineer denklem sistemine indirgenen problem, nümerik olarak  $C_{++}$  programlama dili ile çözülmüş, yansıma ve iletim katsayılarının frekans ile değişim grafikleri, farklı oluk derinliği,oluk uzunluğu ve dielektrik malzemeye bağlı olarak elde edilmiştir.

### 1.3 Kullanılan Notasyon

Bu çalışmada genel olarak yaygın kullanıma sahip notasyonlar kullanılmaktadır. Örneğin, kartezyen koordinatlar reel  $\mathbb{R}^3$  uzayının noktaları (x, y, z) ile, kompleks  $\mathbb{C}$  düzleminin noktaları da  $\alpha$  ile gösterilmiştir.  $\alpha$ 'nın reel ve sanal kısımları ısrasıyla Re ve  $\Im m$  ile belirlenmiştir.

$$\alpha = Re(\alpha) + i\Im m(\alpha) \tag{1.2}$$

 $c_1, c_2 \in \mathbb{R}$  verilmiş birer sayı olmak üzere,  $\alpha$  nın regüler fonksiyonu olan tüm fonksiyonlar  $\mathbb{C}$  nin  $\Im m(\alpha) > c_1$  ile tanımlı  $B^+$  üst yarıdüzleminde (+) indisi ile,  $\Im m(\alpha) < c_2$ ile tanımlı  $B^-$  alt yarıdüzleminde ise (-) indisi ile gösterilmiştir. Burada  $c_1$  ve  $c_2$  sayıları için karşılaşılan değerler

$$B = B^+ \cap B^- \tag{1.3}$$

ile tanımlı B bölgesinin boş kümeden farklı bir küme olmasına olanak vermiştir. Ele alınan Wiener- Hopf denklemleri bu sözü edilen B bölgesinde geçerlidir. Her iki problemin formülasyonunda da Fourier dönüşümü kullanılmıştır. Herhangi bir f(x) fonksiyonunun Fourier dönüşümü

$$F(\alpha) = \int_{-\infty}^{\infty} f(x)e^{i\alpha x}dx$$
(1.4)

olarak tanımlanmıştır. Ayrıca,  $\left|f(x)\right| < e^{c_1 x}$ olmak üzere

$$F_{+}(\alpha) = \int_{0}^{\infty} f(x)e^{i\alpha x}dx \qquad (1.5)$$

ile gösterilen  $F_+(\alpha);$ <br/> $\Im m(\alpha)>c_1$ ile belirli $B^+$ üst yarı-düzleminde, benzer şekild<br/>e $|f(x)|< e^{c_2x}$ iken

$$F_{-}(\alpha) = \int_{-\infty}^{0} f(x)e^{i\alpha x}dx \qquad (1.6)$$

ile tanımlı  $F_{-}(\alpha)$  ise  $\Im m(\alpha) < c_2$  ile belirli  $B^{-}$  alt yarı-düzleminde  $\alpha$ 'nın birer regüler fonksiyonu olurlar. Genel anlamda herhangi bir f(x) fonksiyonunun *Fourier* dönüsümü olan  $F(\alpha)$  fonksiyonu

$$F(\alpha) = F_{-}(\alpha) + F_{+}(\alpha) \tag{1.7}$$

olarak ifade edilmiştir.  $\mathcal{L}$ ;  $\Im m(\alpha) \in (c_1, c_2)$  ile belirli yatay band içinde bulunan herhangi bir yatay doğruyu göstermek üzere  $F(\alpha)$ 'nın ters Fourier dönüşümü

$$f(x) = \frac{1}{2\pi} \int_{\mathcal{L}} F(\alpha) e^{-i\alpha x} d\alpha$$
(1.8)

ile belirlenmiştir.

Bu çalışmada zamanla değişim sinüzoidaldir. Zaman çarpanı da,  $\omega$  açısal frekansı göstermek üzere  $e^{-i\omega t}$  olarak alınmıştır. k ile gösterilen dalga sayısının, iletkenliğin sıfırdan farklı olduğu bir ortamda, analitik uygunluk için ortamın biraz kayıplı, yani çok küçük pozitif bir sanal kısma sahip olduğu varsayılacak, bu da bize (1.3) ile tanımlı B bölgesinin genişliği sıfırdan farklı bir band olarak alınmasına olanak verecektir. k' > 0, k'' > 0 olmak üzere

$$k = k' + ik'' = \sqrt{\omega^2 \varepsilon \mu + i\omega \sigma \mu}$$
(1.9a)

olarak tanımlanmıştır. Kayıpsız bir ortam için geçerli çözüm analizin sonunda $k^{\prime\prime} \to 0 \ {\rm yapılarak \ bulunur}.$ 

Dalga ışınımı probleminin matematiksel analizinde kullanılan Wiener-Hopf yöntemi, Helmholtz denklemini içinde barındıran bir grup sınır değer probleminin çözümü olan tekil integral denkleminin Fourier dönüşümü alınarak kompleks tanımlı bir fonksiyon denklemine dönüştürülmesidir. Bu dönüşüme Wiener-Hopf denklemi denir. İkinci önemli adım ise bu dönüşümü alınan çekirdek fonksiyonunun faktorizasyon işlemidir [12]. 1952 de *Jones* prosedürü basitleştirmiş ve Helmholtz denkleminin direkt olarak Fourier dönüşümünü almış ve sınır koşullarını kompleks tanımlı kümede uygulamıştır. Bu yaklaşıma Jones metodu denir. Problem bu şekilde ele alındığında Wiener-Hopf yöntemi ile tam çözüm elde edebilmek için iki şart gerçekleşmelidir:

WH1: Geometrideki kırınıma sebep olan engel sonsuz ince ve yarı sonsuz uzunlukta olmalıdır.

WH2: Fourier dönüşüm ekseni saçıcı cismin içinden geçmemelidir.

daha sonra aynı tekniğin aşağıdaki tanımlara uygun gruptaki geometriler için de formal olarak uygun olduğunu göstermiştir:

WH1': Engel sonlu uzunlukta ve kalınlıklı olursa,

WH2': Fourer dönüşümü alınan eksen engel saçıcı cismin içinden geçerse.

WH1've WH2', WH1 ve WH2 nin modifiye olmuş halidir. Eğer geometri sınıfı WH1' ve WH2 durumunda ise problem birinci tip modifiye WH denklemine, WH1 ve WH2' durumu mevcut ise problem ikinci tip modifiye WH denklemine indirgenir. Birinci tip geometride çözüm dallanma noktasına sahip integral eğrisi ve bilinmeyen integrand, ikinci tip geometride ise çözüm sonsuz bilinmeyen içerir. Eğer geometri WH1' ve WH2' koşullarını sağlıyorsa problem üçüncü tip modifiye WH problemine indirgenir. Çözüm aşamasında ise bu kez karşımıza hem dallanma noktası hem de sonsuz bilinmeyen çıkar. Bu koşullarda problemin istenilen sonucu için iyi bir yaklaşım metodu Jones tarafından kullanılmıştır[10], [11].

### 2 OYUKLU DALGA KILAVUZUNDAN SAÇILMA

### 2.1 Problemin Formülasyonu

Her iki problemde ele alınan ışınım olayına kaynak teşkil eden TEM modu kılavuzlanmış dalgalar

$$H_z^i = u^i = \exp(ikx) \tag{2.1}$$

ile ifade edilmiş ve pozitif Ox yönünde yayıldığı kabul edilmiştir. Şekil 2.1'de gösterilen dalga kılavuzu  $S_1 = \{x, y, z : x \in (0, \ell), y \in (a, b), z \in (-\infty, \infty), S_2 = \{x, y, z : x \in (0, \ell), y \in (-a, -c), z \in (-\infty, \infty)\}, S_3 = \{x, y, z : x \in (-\infty, \infty), y \in (-a, a), z \in (-\infty, \infty)\}$  bölgeleri ile tanımlanmıştır.



#### Şekil 2.1. Problemin Geometrisi

 $z\in(-\infty,\infty)$ olmak üzere toplam alan

$$u^{T} = \begin{cases} u_{1}(x, y) &, a < y < b, \\ u^{i} + u_{3}(x, y) &, -a < y < a, \\ u_{2}(x, y) &, -c < y < -a, \\ \end{cases} \qquad \begin{array}{c} x \in (0, \ell) \\ x \in (-\infty, \infty) \\ x \in (0, \ell) \end{array}$$
(2.2)

olarak ifade edilebilir.  $u_j(x, y)$ , j = 1, 2, 3 için Helmholtz denklemini sağlayan bilinmeyen fonksiyonlardır. Bu fonksiyonlar aşağıdaki sınır ve süreklilik koşulları ile belirlenecektir.

Sınır koşulları:

$$\frac{\partial}{\partial y}u_1(x,b) = 0, \qquad 0 < x < \ell \qquad (2.3a)$$

$$\frac{\partial}{\partial x}u_1(0,y) = 0, \qquad a < y < b \qquad (2.3b)$$

$$\frac{\partial}{\partial x}u_1(\ell, y) = 0, \qquad a < y < b \qquad (2.3c)$$

$$\frac{\partial}{\partial y}u_3(x,a) = 0, \qquad x \in [(-\infty,0) \cup (\ell,\infty)]$$
(2.3d)

$$\frac{\partial}{\partial y}u_3(x,-a) = 0, \qquad x \in [(-\infty,0) \cup (\ell,\infty)]$$
(2.3e)

$$\frac{\partial}{\partial y}u_2(x,-c) = 0, \qquad 0 < x < \ell \qquad (2.3f)$$

$$\frac{\partial}{\partial x} u_2(0, y) = 0, \qquad -a < y < -c \qquad (2.3g)$$

$$\frac{\partial}{\partial x} u_2(\ell, y) = 0, \qquad -a < y < -c \qquad (2.3h)$$

Süreklilik koşulları:

$$e^{ikx} + u_3(x, a) = u_1(x, a),$$
  $0 < x < \ell$  (2.3i)

$$\frac{Z}{k}\frac{\partial}{\partial y}u_3(x,a) = \frac{Z_1}{k_1}\frac{\partial}{\partial y}u_1(x,a), \qquad 0 < x < \ell \qquad (2.3j)$$

$$e^{ikx} + u_3(x, -a) = u_2(x, -a),$$
  $0 < x < \ell$  (2.3k)

$$\frac{Z}{k}\frac{\partial}{\partial y}u_3(x,-a) = \frac{Z_2}{k_2}\frac{\partial}{\partial y}u_2(x,-a) \qquad 0 < x < \ell \qquad (2.31)$$

ile ifade edilmiştir. Burada  $Z_0 = \sqrt{\mu_0/\varepsilon_0}, Z_1 = \sqrt{\mu_1/\varepsilon_1}, \text{ ve } Z_2 = \sqrt{\mu_2/\varepsilon_2}$ 

sırasıyla boş uzayın, üst oyuktaki dielektrik malzemenin, ve alt oyuktaki dielektrik malzemenin karakteristik empedansıdır.

 $u_1$ alanı $y \in (a,b)$  bölgesinde $x \in (0,\ell)$ için Helmholtzdenklemini sağlar

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k_1^2\right) u_1(x, y) = 0.$$
(2.4)

(2.4) denkleminin sonlu aralık için Fourier dönüsümü alınırsa

$$\left(\frac{\partial^2}{\partial y^2} + k_1^2\right) G_1(\alpha, y) + \int_0^\ell \frac{\partial^2}{\partial x^2} u_1(\alpha, y) e^{i\alpha x} dx = 0$$
(2.5)

elde edilir. Yukarıdaki integrale iki kere kısmi integrasyon uygulandığında

$$\left(\frac{\partial^2}{\partial y^2} + K_1^2(\alpha)\right) G_1(\alpha, y) = -i\alpha u_1(0, y) + i\alpha e^{i\alpha\ell} u_1(\ell, y)$$
(2.6)

diferansiyel denklemi bulunur. Burada  $K_1(\alpha)$  şekil (2.2) de gösterildiği gibi  $K_1(0) = k_1$ olacak şekilde kesilmiş kompleks  $\alpha$ - düzleminde

$$K_1(\alpha) = \sqrt{k_1^2 - \alpha^2} \tag{2.7}$$

ile tanımlı karekök fonksiyonudur.

$$G_1(\alpha, y) = \int_0^\ell u_1(x, y) e^{i\alpha x} dx \qquad (2.8)$$

ile gösterilen  $G_1(\alpha, y)$  fonksiyonu ise  $\alpha$  nın bir tam fonksiyonudur. (2.6) deki sağ yanlı diferansiyel denklem için sabitlerin değişimi metodu kullanıldığında çözüm

$$G_{1}(\alpha, y) = A(\alpha) \cos [K_{1}(\alpha)(y-b)] + B(\alpha) \sin [K_{1}(\alpha)(y-b)] - \frac{i\alpha}{K_{1}(\alpha)} \times \int_{0}^{b-y} \left[ f(b-t) - e^{i\alpha\ell}g(b-t) \right] \sin [K_{1}(\alpha)(b-t-y)] dt$$
(2.9)

olarak bulunur. Burada  $A(\alpha)$  ve  $B(\alpha)$  henüz bilinmeyen spektral katsayılardır. (2.9) denklemine (2.2*a*) sınır koşulu uygulandığında  $B(\alpha) = 0$  elde edilir. Böylece denklem

$$G_1(\alpha, y) = A(\alpha) \cos \left[K_1(\alpha)(y-b)\right] - \frac{i\alpha}{K_1(\alpha)} \int_0^{b-y} \left[f(b-t) - e^{i\alpha\ell}g(b-t)\right] \sin \left[K_1(\alpha)(b-t-y)\right] dt \quad (2.10)$$

haline gelir. Burada f(y)ve g(y) fonksiyonları aşağıdaki gibi tanımlanmıştır:

$$f(y) = u_1(0, y) , \quad g(y) = u_1(\ell, y).$$
 (2.11)

(2.10) denklemine (2.2j) süreklilik koşulu uygulandığında

$$A(\alpha) = \frac{\frac{-\varepsilon_1}{\varepsilon}\dot{F}_1(\alpha, a) + i\alpha \int_0^{b-a} [f(b-t) - e^{i\alpha\ell}g(b-t)]\cos\left[K_1(\alpha)(b-t-a)\right]dt}{(a-b)K_1(\alpha)\sin[K_1(\alpha)(a-b)]}$$
(2.12)

ifadesine eşit olur. Böylece (2.10) ifadesi

$$G_{1}(\alpha, a) = \frac{\frac{-\varepsilon_{1}}{\varepsilon}\dot{F}_{1}(\alpha, a) + i\alpha\int_{0}^{b-a}[f(b-t) - e^{i\alpha\ell}g(b-t)]\cos\left[K_{1}(\alpha)(b-t-a)\right]dt}{(a-b)K_{1}(\alpha)\sin[K_{1}(\alpha)(a-b)]} \times \cos\left[K_{1}(\alpha)(a-b)\right] - \frac{i\alpha}{K_{1}(\alpha)}\int_{0}^{b-a}\left[f(b-t) - e^{i\alpha\ell}g(b-t)\right]\sin\left[K_{1}(\alpha)(b-t-a)\right]dt$$
(2.13)

olarak elde edilir. Burada  $F_1$  fonksiyonu -a < y < a ve  $x \in (-\infty, \infty)$  bölgesinde tanımlı  $u_3(x, y)$  fonksiyonunun *Fourier* dönüşümünden elde edilen fonksiyondur.  $\dot{F}_1(\alpha, a)$  ise  $F_1(\alpha, y)$  fonksiyonunun y ye göre alınmış türevi olup,

$$\dot{F}_1(\alpha, a) = \frac{\partial}{\partial y} F_1(\alpha, y)|_{y=a}$$
(2.14)

ile gösterilmiştir. (2.13) denkleminin sol yanı sonsuz hariç tüm  $\alpha$ -düzleminde regülerdir. Sağ tarafta ise regülerliği

$$K_1(\alpha)\sin[K_1(\alpha)(a-b)] \tag{2.15}$$

fonksiyonunun sıfırları bozmaktadır. Bu sıfırları<br/>  $\alpha=\pm\alpha_m$ ler ile gösterirsek

$$\alpha_m = \sqrt{k_1^2 - \left[\frac{m\pi}{b-a}\right]^2} \qquad \Im m(\alpha_m) > \Im m(k_1) \qquad m = 0, 1, 2, \dots \qquad (2.16)$$

basit kutupları bulunur. (2.13) deki kesir ifadesi tamamen birinci mertebeden kutuplardan oluştuğundan rezidüsü

$$Rez(G_1(\alpha_m, a)) = \lim_{\alpha \to \pm \alpha_m} \frac{\frac{-\varepsilon_1}{\varepsilon} \dot{F}_1(\alpha, a) \pm i\alpha_m \int_0^{b-a} [f(b-t) - e^{\pm i\alpha_m \ell} g(b-t)](-1)^m dt}{\left[\frac{\partial}{\partial \alpha} \left\{ (a-b) K_1(\alpha) \sin[K_1(\alpha)(a-b)] \right\} \right]}$$
(2.17)

işlemiyle hesaplanır ve

$$\frac{\varepsilon_1}{\varepsilon}\dot{F}_1(\pm\alpha_m, a) = \pm i\alpha_m(-1)^m(\frac{b-a}{2})[f_m - e^{\pm i\alpha_m\ell}g_m]$$
(2.18)

eşitiği elde edilir. Burada  $\ f_m, \ g_m, \ K_{1m}$ 

$$f_m = \frac{2}{b-a} \int_0^{b-a} f(b-t) \cos(K_{1m}t) dt$$
 (2.19)

$$g_m = \frac{2}{b-a} \int_0^{b-a} g(b-t) \cos(K_{1m}t) dt$$
 (2.20)

$$K_{1m} = K_1(\alpha_m) = K_1(\alpha) = \sqrt{k_1^2 - \alpha_m^2}$$
 (2.21)

eşitlikleri ile ifade edilmiştir. Böylece dalga kılavuzunun üst bölgesine ait  $u_1$  alan fonksiyonunun kompleks  $\alpha$  düzlemine göre dönüşümü en basit hale indirgenmiş olur.

 $u_3(x,y)$ alan fonksiyonu, -a < y < a ve $x \in (-\infty,\infty)$  bölgesinde Helmholtz denklemini sağlar:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k^2\right)u_3(x, y) = 0$$
(2.22)

(2.22) denkleminin sonsuz aralık için *Fourier* dönüşümü alınırsa

$$\left(\frac{\partial^2}{\partial y^2} + K^2(\alpha)\right)F(\alpha, y) = 0$$
(2.23)

bulunur. Burada  $K(\alpha)$ 

$$K(\alpha) = \sqrt{k^2 - \alpha^2}$$
 ,  $K(0) = k$  (2.24)

olarak tanımlanan karekök fonksiyonudur. (2.23) denklemindek<br/>i $F(\alpha,y)$  fonksiyonu

$$F_{-}(\alpha, y) = \int_{-\infty}^{0} u_3(x, y) e^{i\alpha x} dx$$
 (2.25a)

$$F_{+}(\alpha, y) = \int_{\ell}^{\infty} u_{3}(x, y) e^{i\alpha(x-\ell)} dx \qquad (2.25b)$$

$$F_1(\alpha, y) = \int_0^\ell u(x, y) e^{i\alpha x} dx \qquad (2.25c)$$

fonksiyonlarının toplamı olarak yazılırsa

$$F(\alpha, y) = F_{-}(\alpha, y) + F_{1}(\alpha, y) + e^{i\alpha\ell}F_{+}(\alpha, y)$$
(2.25d)

ifadesi elde edilir. Fourier integralinin analitik özelliklerine bağlı olarak (2.25a-b)ile tanımlanan ve henüz bilinmeyen  $F_{-}(\alpha, y)$  ve  $F_{+}(\alpha, y)$  fonksiyonları sırasıyla  $\Im m(\alpha) < \Im m(k)$  ve  $\Im m(\alpha) > \Im m(-k)$  bölgelerinde regüler, (2.25c) deki bilinmeyen  $F_{1}(\alpha, y)$  fonksiyonu ise aynı bölgede bir tam fonksiyondur. (2.23) homojen diferansiyel denkleminin çözümü olan

$$F_{-}(\alpha, y) + F_{1}(\alpha, y) + e^{i\alpha\ell}F_{+}(\alpha, y)$$
$$= B_{1}(\alpha)\cos(K(\alpha)y) + B_{2}(\alpha)\sin(K(\alpha)y) \quad (2.26)$$

ifadesine (2.2d) ve (2.2e) sınır koşulları uygulanırsa  $B_1(\alpha)$  ve  $B_2(\alpha)$  spektral katsayıları

$$B_1(\alpha) = -\frac{\dot{F}_1(\alpha, a) - \dot{F}_1(\alpha, -a)}{2K(\alpha)\sin Ka}, \qquad B_2(\alpha) = \frac{\dot{F}_1(\alpha, a) + \dot{F}_1(\alpha, -a)}{2K(\alpha)\sin Ka}$$
(2.27)

bulunmuş olur. Bu katsayılar (2.26) denkleminde yazıldığında alan fonksiyonunun  $\alpha$  ya bağlı ifadesi

$$F_{-}(\alpha, y) + F_{1}(\alpha, y) + e^{i\alpha\ell}F_{+}(\alpha, y) = -\frac{\dot{F}_{1}(\alpha, a) - \dot{F}_{1}(\alpha, -a)}{2K(\alpha)\sin Ka}\cos(K(\alpha)y) + \frac{\dot{F}_{1}(\alpha, a) + \dot{F}_{1}(\alpha, -a)}{2K(\alpha)\sin Ka}\sin(K(\alpha)y)$$
(2.28)

olarak elde edilir.

Ve son olarak -c < y < -a bölgesinde  $x \in (0, \ell)$  için Helmholtz denklemini sağlayan  $u_2(x, y)$  fonksiyonunun sonlu Fourier dönüşümü alındığında

$$\left(\frac{\partial^2}{\partial y^2} + K_2^2(\alpha)\right) H_1(\alpha, y) = -i\alpha u_2(0, y) + i\alpha e^{i\alpha\ell} u_2(\ell, y)$$
(2.29)

denklemi elde edilir. Burada $H_1(\alpha,y)$ fonksiyonu

$$H_1(\alpha, y) = \int_0^\ell u_2(x, y) e^{i\alpha x} dx$$
 (2.30)

olarak,  $K_2(\alpha)$  fonksiyonu ise

$$K_2(\alpha) = \sqrt{k_2^2 - \alpha^2}, \qquad K_2(0) = k_2, \quad \Im m(k_2) > \Im m(k)$$
 (2.31)

olarak tanımlanmıştır. (2.29) denkleminin çözümü ise

$$H_1(\alpha, y) = C(\alpha) \cos \left[K_2(\alpha)(y+c)\right] - \frac{i\alpha}{K_2(\alpha)} \int_0^{-y-c} \left[\tilde{f}\left(t-c\right) - e^{i\alpha\ell} \tilde{g}(t-c)\right] \sin \left[K_2(\alpha)(t-y-c)\right] dt$$
(2.32)

şeklindedir. Burada  $~~\widetilde{f}~(y)$ ve  $\widetilde{g}(y)$  fonksiyonları

$$\tilde{f}(y) = u_2(0, y), \quad \tilde{g}(y) = u_2(\ell, y)$$

fonksiyonlarını temsil etmektedir. (2.32) denkleminde (2.2 $\ell$ ) koşulunun Fourier dönüşümü uygulandığında

$$H_1(\alpha, -a) = \frac{\frac{\varepsilon_2}{\varepsilon} \dot{F}_1(\alpha, -a) + i\alpha \int_0^{a-c} [\tilde{f}(t-c) - e^{i\alpha\ell} \tilde{g}(t-c)] \cos \left[K_2(\alpha)(t+a-c)\right] dt}{K_2(\alpha) \sin[K_2(\alpha)(a-c)]} \times \\ \cos \left[K_2(\alpha)(a-c)\right] - \frac{i\alpha}{K_2(\alpha)} \times \\ \int_0^{a-c} \left[\tilde{f}(t-c) - e^{i\alpha\ell} \tilde{g}(t-c)\right] \sin \left[K_2(\alpha)(t+a-c)\right] dt \qquad (2.33)$$

denklemi elde edilir. (2.33) denkleminin sol yanı sonsuz hariç tüm  $\alpha$ -düzleminde regülerdir. Sağ tarafta ise

$$K_2(\alpha)\sin[K_2(\alpha)(c-a)] \tag{2.34}$$

fonksiyonunun sıfırlarından meydana gelen basit kutuplar regülerliği bozmaktadır. Üst ve alt yarı  $\alpha$ -düzleminde bulunan kutuplar

$$\tilde{\alpha}_m = \pm \sqrt{k_2^2 - \left[\frac{m\pi}{c-a}\right]^2} \quad m = 0, 1, 2....\Im m(\tilde{\alpha}_m) > \Im m(k_2) \qquad m = 0, 1, 2, ...$$
(2.35)

olarak bulunmuştur. (2.17) de yapılan işlemin tekrarı ile rezidü teoreminden

$$\frac{\varepsilon_2}{\varepsilon}\dot{F}_1(\pm\tilde{\alpha}_m, -a) = \pm i\tilde{\alpha}_m(-1)^m(\frac{c-a}{2})[\tilde{f}_m - e^{\pm i\tilde{\alpha}_m\ell}\tilde{g}_m]$$
(2.36)

koşulu elde edilir. Burada

$$\tilde{f}_m = \frac{2}{c-a} \int_0^{c-a} \tilde{f}(c-t) \cos(K_{2m}t) dt$$
(2.37)

$$\tilde{g}_m = \frac{2}{c-a} \int_0^{c-a} \tilde{g}(c-t) \cos(K_{2m}t) dt$$
(2.38)

$$K_{2m} = K_{2m}(\alpha) \tag{2.39}$$

olarak tanımlanmıştır. (2.2i) ve (2.2k) süreklilik koşullarının Fourier dönüşümleri alınır, (2.13) ifadesi (2.28) ve (2.33) denklemlerinde yerine yazılırsa

$$L_{1}(\alpha)\dot{F}_{1}(\alpha,a) - \frac{\dot{F}_{1}(\alpha,-a)}{K^{2}(\alpha)M(\alpha)} + F_{-}(\alpha,a) + e^{i\alpha\ell}F_{+}(\alpha,a) = \frac{e^{i\ell(\alpha+k)} - 1}{i(\alpha+k)} - \frac{i\alpha}{K_{1}(\alpha)\sin[K_{1}(\alpha)(a-b)]} \int_{0}^{b-a} [\tilde{f}(b-t) - e^{i\alpha\ell}\tilde{g}(b-t)]\cos[K_{1}(\alpha)t] dt$$
(2.40)

$$-\frac{\dot{F}_{1}(\alpha,a)}{K^{2}(\alpha)M(\alpha)} - L_{2}(\alpha)\dot{F}_{1}(\alpha,-a) + F_{-}(\alpha,+a) + e^{i\alpha\ell}F_{+}(\alpha,-a)$$
$$=\frac{e^{i\ell(\alpha+k)}-1}{i(\alpha+k)} - \frac{i\alpha}{K_{2}(\alpha)\sin[K_{2}(\alpha)(c-a)]} \times$$
$$\int_{0}^{a-c} \left[\tilde{f}(t-c) - e^{i\alpha\ell}\tilde{g}(t-c)\right]\cos[K_{2}(\alpha)t] dt \quad (2.41)$$

denklemleri elde edilir. (2.40) ve (2.41) denklemleri  $Im(-k) < Im(\alpha) < Im(-k)$ bölgesinde geçerli olan üçüncü tip modifiye Wiener-Hopf denklemleridir.  $L_{1,2}(\alpha)$ çekirdek fonksiyonları ve içerdiği fonksiyonlar

$$L_{1,2}(\alpha) = \frac{N_{1,2}(\alpha)}{K^2(\alpha)M(\alpha)K_{1,2}(\alpha)P_{1,2}(\alpha)}$$
(2.42)

$$N_{1}(\alpha) = K_{1}(\alpha) \sin[K_{1}(\alpha)(b-a)] \cos[2K(\alpha)a] + \frac{\varepsilon_{1}}{\varepsilon} K(\alpha) \sin[2K(\alpha)a] \cos[K_{1}(\alpha)(b-a)] \quad (2.43)$$

$$N_{2}(\alpha) = K_{2}(\alpha) \sin[K_{2}(\alpha)(c-a)] \cos[2K(\alpha)a] + \frac{\varepsilon_{2}}{\varepsilon} K(\alpha) \sin[2K(\alpha)a] \cos[K_{2}(\alpha)(c-a)] \quad (2.44)$$

$$M(\alpha) = \frac{\sin[2K(\alpha)a]}{K(\alpha)}, \ P_1(\alpha) = \frac{\sin[K_1(\alpha)(b-a)]}{K_1(\alpha)}, \ P_2(\alpha) = \frac{\sin[K_2(\alpha)(c-a)]}{K_2(\alpha)}$$
(2.45)

eşitlikleri ile belirlenmiştir.

(2.37-2.38) ve (2.40-2.41) denklemlerinde bulunan  $f(b-t), g(b-t), \tilde{f}(c-t)$ 

ve $\tilde{g}(c-t)$ fonksiyonları Fourier kosinüs serisine açıldığında fonksiyonlar

$$\begin{bmatrix} f(b-t) \\ g(b-t) \end{bmatrix} = \sum_{m=1}^{\infty} \begin{bmatrix} f_m \\ g_m \end{bmatrix} \cos K_{1m} t$$
(2.46)

$$\begin{bmatrix} \tilde{f}(c-t)\\ \tilde{g}(c-t) \end{bmatrix} = \sum_{m=1}^{\infty} \begin{bmatrix} \tilde{f}_m\\ \tilde{g}_m \end{bmatrix} \cos K_{2m} t$$
(2.47)

ifadelerine dönüşür. (2.46) ve (2.47) ifadeleri (2.40) ve (2.41) denklemlerinde yerine yazılır ve seriye açma ile integral alma işlemleri yer değiştirilirse

$$L_{1}(\alpha)\dot{F}_{1}(\alpha,a) - \frac{\dot{F}_{1}(\alpha,-a)}{K^{2}(\alpha)M(\alpha)} + F_{-}(\alpha,a) + e^{i\alpha\ell}F_{+}(\alpha,a)$$
$$= \frac{e^{i\ell(\alpha+k)}-1}{i(\alpha+k)} - \frac{i\alpha}{K_{1}(\alpha)\sin[K_{1}(\alpha)(a-b)]} \times$$
$$\sum_{m=1}^{\infty} \left[f_{m} - e^{i\alpha\ell}g_{m}\right] \int_{0}^{a-b}\cos K_{1m}t\cos\left[K_{1}(\alpha)t\right]dt \quad (2.48)$$

ve

\_

$$-\frac{\dot{F}_{1}(\alpha,a)}{K^{2}(\alpha)M(\alpha)} - L_{2}(\alpha)\dot{F}_{1}(\alpha,-a) + F_{-}(\alpha,+a) + e^{i\alpha\ell}F_{+}(\alpha,-a)$$

$$=\frac{e^{i\ell(\alpha+k)}-1}{i(\alpha+k)} - \frac{i\alpha}{K_{2}(\alpha)\sin[K_{2}(\alpha)(c-a)]} \times$$

$$\sum_{m=1}^{\infty} \left[\tilde{f}_{m} - e^{i\alpha\ell}\tilde{g}_{m}\right] \int_{0}^{a-c}\cos K_{2m}t\cos\left[K_{2}(\alpha)t\right]dt \quad (2.49)$$

eşitlikleri elde edilir. Trigonometrik fonksiyonların özellikleri kullanılarak integrallar hesaplandığında

$$L_{1}(\alpha)\dot{F}_{1}(\alpha,a) - \frac{\dot{F}_{1}(\alpha,-a)}{K^{2}(\alpha)M(\alpha)} + F_{-}(\alpha,a) + e^{i\alpha\ell}F_{+}(\alpha,a)$$
$$= \frac{e^{i\ell(\alpha+k)} - 1}{i(\alpha+k)} - i\alpha\sum_{m=1}^{\infty}(-1)^{m}\frac{[f_{m} - e^{i\alpha\ell}g_{m}]}{\alpha^{2} - \alpha_{m}^{2}} \quad (2.50)$$

ve

$$\frac{\dot{F}_1(\alpha, a)}{K^2(\alpha)M(\alpha)} - L_2(\alpha)\dot{F}_1(\alpha, -a) + F_-(\alpha, +a) + e^{i\alpha\ell}F_+(\alpha, -a)$$
$$= \frac{e^{i\ell(\alpha+k)} - 1}{i(\alpha+k)} - i\alpha\sum_{m=1}^{\infty}(-1)^m \left[\frac{\tilde{f}_m - e^{i\alpha\ell}\tilde{g}_m}{\alpha^2 - \tilde{\alpha}_m^2}\right]dt \quad (2.51)$$

olarak eşleştirilmiş Wiener-Hopf denklemi elde edilir. Bundan sonraki aşama bu denklemlerin çözülmesidir.

### 2.2 Modifiye Wiener -Hopf Denkleminin Çözümü

Bu bölümde (2.50) ve (2.51) de bulunan Modifiye Wiener-Hopf denklemlerinin çözümü klasik prosedür ile elde edilecektir. Öncelikle çok önemli bir basamak olan faktorizasyon işlemi ile başlanacak, sırasıyla (2.50) ve (2.51) denklemlerinde karmaşık türden olan bazı fonksiyonların çarpanları belirlenecektir. Faktorizasyonda amaç (2.48) ve (2.49) denklemlerinde ortaya çıkan  $L_j$  (j = 1, 2) çekirdek fonksiyonlarını

$$L_j(\alpha) = L_j^+(\alpha)L_j^-(\alpha) \tag{2.52}$$

biçiminde yazmaktır. Burada  $L_j^+(\alpha)$  üst yarıdüzlemde regüler olan ve bu bölgede sıfırı bulunmayan bir fonksiyonu,  $L_j^-(\alpha)$  ise alt yarı düzlemde regüler olan ve bu

bölgede sıfırı bulunmayan bir fonksiyonu göstermektedir.

$$L_{j}^{+}(\alpha) = \frac{N_{j}^{+}(\alpha)}{(k+\alpha)(k_{j}+\alpha)M^{+}(\alpha)P_{j}^{+}(\alpha)} \qquad j = 1,2$$
(2.53)

bulunur. Yukarıda belirtildiği gib<br/>i $M^+(\alpha),P_j^+(\alpha),N_j^+(\alpha)$ ve  $M^-(\alpha),P_j^-(\alpha),N_j^-(\alpha)$  fonksiyonları

$$\Im m(\alpha) > \Im m(-k)$$
 ve  $\Im m(\alpha) < \Im m(k)$ 

bölgesinde sıfırları olmayan ,regüler fonksiyonlardır. Faktorizasyon sonucunda artı fonksiyonların açık ifadesi aşağıdaki gibi belirlenmiştir [9].

$$N_{1}^{+}(\alpha) = [k_{1}\sin(k_{1}(b-a))\cos(2ka) + \varepsilon_{1r}k\sin(2ka)\cos(k_{1}(b-a))]^{\frac{1}{2}} \times \exp\{\frac{i\alpha(b+a)}{\pi}[1-C-\ln(\frac{|\alpha|(b+a)}{\pi})+i\frac{\pi}{2}]\}\prod_{m=0}^{\infty}(1+\frac{\alpha}{\beta_{m}})\exp(\frac{i\alpha(b+a)}{(m+1)\pi})$$
(2.54)

$$N_{2}^{+}(\alpha) = [k_{1}\sin(k_{1}(b-a))\cos(2ka) + \varepsilon_{1r}k\sin(2ka)\cos(k_{1}(b-a))]^{\frac{1}{2}} \times \exp\{\frac{i\alpha(c+a)}{\pi}[1-C-\ln(\frac{|\alpha|(c+a)}{\pi})+i\frac{\pi}{2}]\}\prod_{m=0}^{\infty}(1+\frac{\alpha}{\gamma_{m}})\exp(\frac{i\alpha(c+a)}{(m+1)\pi})$$
(2.55)

$$M^{+}(\alpha) = \left[\frac{\sin(2ka)}{k}\right]^{\frac{1}{2}} \times \exp\left\{\frac{i\alpha 2a}{\pi} \left[1 - C - \ln(\frac{\pi}{ka}) + i\frac{\pi}{2}\right]\right\} \prod_{m=0}^{\infty} (1 + \frac{\alpha}{\chi_{m}}) \exp\left(\frac{2i\alpha a}{(m+1)\pi}\right)$$
(2.56)

$$P_{1}(\alpha) = \left[\frac{\sin(k_{1}(b-a))}{k_{1}}\right]^{\frac{1}{2}} \times \exp\left\{\frac{i\alpha(b-a)}{\pi}\left[1 - C - \ln\left(\frac{|\alpha|(b-a)}{\pi}\right) + i\frac{\pi}{2}\right]\right\} \times \prod_{m=0}^{\infty} (1 + \frac{\alpha}{\alpha_{m+1}}) \exp\left(\frac{i\alpha(b-a)}{(m+1)\pi}\right)$$
(2.57)

$$P_{2}(\alpha) = \left[\frac{\sin(k_{2}(c-a))}{k_{2}}\right]^{\frac{1}{2}} \times \exp\left\{\frac{i\alpha(c-a)}{\pi}\left[1 - C - \ln\left(\frac{|\alpha|(c-a)}{\pi}\right) + i\frac{\pi}{2}\right]\right\} \times \prod_{m=0}^{\infty} (1 + \frac{\alpha}{\tilde{\alpha}_{m+1}}) \exp\left(\frac{i\alpha(c-a)}{(m+1)\pi}\right). \quad (2.58)$$

 $N_1(\alpha), N_2(\alpha), P_1(\alpha)$  ve  $P_2(\alpha), M(\alpha)$ çift fonksiyonlarının kökleri sırasıyla  $\beta_m$ ,  $\gamma_m, \alpha_m, \tilde{\alpha}_m$  ve  $\chi_m$  lerdir. (Şekil 2.2)

$$N_{1}(\beta_{m}) = 0, \ N_{2}(\gamma_{m}) = 0$$

$$M(\chi_{m}) = 0$$

$$P_{1}(\alpha_{m}) = 0, \ P_{2}(\tilde{\alpha}_{m}) = 0 \qquad m = 1, 2, 3... \qquad (2.59)$$

Çift fonksiyon özelliğinden

$$N_{j}^{-}(\alpha) = N_{j}^{+}(-\alpha)$$

$$M^{-}(\alpha) = M^{+}(-\alpha)$$

$$P_{j}^{-}(\alpha) = P_{j}^{+} - (\alpha) \qquad j = 1,2$$
(2.60)

ifadeleri kullanılabilir. (2.54 – 2.58) denklemlerindeki  $\varepsilon_{1r}$  ve  $\varepsilon_{2r}$  değerleri dalga kılavuzunda üst ve alt oyuğun doldurulduğu farklı dielektrik malzemelerin normalize iletkenliğidir. Aynı denklemlerde kullanılan C ise Euler sabiti olup değeri 0.57721...'e eşittir.

 $L_j^{\pm}(\alpha)$ fonksiyonlarının regüler oldukları bölgelerde  $|\alpha| \to \infty$ için davranışının

$$L_j^{\pm}(\alpha) = |\alpha|^{-\frac{1}{2}}, \qquad j = 1, 2$$
 (2.61)

olduğu kolaylıkla gösterilebilir [14].

(2.48) denklemi $1/L_1^-(\alpha)$ ile çarpıldığında

$$L_{1}^{+}(\alpha)\dot{F}_{1}(\alpha,a) + \frac{1}{iL_{1}^{+}(k)(k+\alpha)} + \frac{(k_{1}-\alpha)P_{1}^{-}(\alpha)\dot{F}_{1}(\alpha,-a)}{N_{1}^{-}(\alpha)(k+\alpha)M_{1}^{+}(\alpha)} + \frac{e^{i\alpha\ell}F_{+}(\alpha,a)}{L_{1}^{-}(\alpha)} - \frac{e^{i\alpha\ell+ikl}}{iL_{1}^{-}(\alpha)(\alpha+k)} + \sum_{m=1}^{\infty}(-1)^{m+1}\frac{(f_{m}-e^{i\alpha\ell}g_{m})i\alpha}{L_{1}^{-}(\alpha)(\alpha^{2}-\alpha_{m}^{2})} = -\frac{F_{-}(\alpha,a)}{L_{1}^{-}(\alpha)} + \frac{1}{iL_{1}^{+}(k)(k+\alpha)} - \frac{1}{i(k+\alpha)L_{1}^{-}(\alpha)} - \frac{(k_{1}-\alpha)P_{1}^{-}(\alpha)\dot{F}_{1}(\alpha,-a)}{N_{1}^{-}(\alpha)(k+\alpha)M_{1}^{+}(\alpha)} + \frac{e^{i\alpha\ell}F_{+}(\alpha,a)}{L_{1}^{-}(\alpha)} - \frac{e^{i\alpha\ell+ikl}}{iL_{1}^{-}(\alpha)(\alpha+k)} - \frac{(k_{1}-\alpha)P_{1}^{-}(\alpha)\dot{F}_{1}(\alpha,-a)}{N_{1}^{-}(\alpha)(k+\alpha)M_{1}^{+}(\alpha)}$$
(2.62)

ifadesi elde edilir. Yukarıdaki eşitliğin sol yanındaki ilk iki terim üst yarı düzlemde kesin regüler olan terimlerdir. Aynı şekilde ikinci yanın birinci terimi alt yarı düzlemde regülerdir. Sağ yandaki üçüncü terim karışık bir terimdir. Paydadaki  $(k + \alpha)$  çarpanının  $\alpha = -k$  da basit kutbu vardır. Bu kutbu ortadan kaldırmak için üst yarı düzlemde regüler olan ikinci terim eşitliğin her iki yanına eklenmiştir. Diğer karışık terimlerden gelen basit kutup katkılarının hesabı için rezidü teoremi kullanılacaktır. Buna göre aşağıdaki düzenlemeler yapıldığında

$$L_{1}^{+}(\alpha)\dot{F}_{1}(\alpha,a) + \frac{1}{iL_{1}^{+}(k)(k+\alpha)} + \sum_{j=1}^{4}I_{j}^{+}(\alpha)$$
  
=  $-\frac{F_{-}(\alpha,a)}{L_{1}^{-}(\alpha)} - \frac{1}{i(k+\alpha)L_{1}^{-}(\alpha)} + \frac{1}{i(k+\alpha)L_{1}^{+}(k)} + \sum_{j=1}^{4}I_{j}^{-}(\alpha)$   
 $(j = 1, 2, 3, 4)$  (2.63)

elde edilir. (2.63) eşitliğinde kutuplardan gelen katkılar toplam ifadesi ile gösterilmektedir. Sol taraftaki toplam işareti ile  $\mathcal{L}^+$  integral eğrisi boyunca hesaplanacak dört integral fonksiyonu, sağ taraftaki toplam işareti ile de  $\mathcal{L}^-$  integral eğrisi boyunca integrali alınacak olan diğer dört integral fonksiyonu gösterilmektedir. Bu fonksiyonlar  $I_j^{\pm}(\alpha)$  fonksiyonları olarak aşağıda tanımlanmıştır:

$$I_1^+(\alpha) = -\frac{1}{2\pi i} \int_{\mathcal{L}^+} \frac{(k_1 - \tau) P_1^-(\tau) \dot{F}_1(\tau, -a)}{N_1^-(\tau)(k + \tau) M_1^+(\tau)(\tau - \alpha)} d\tau$$
(2.64)

$$I_{2}^{+}(\alpha) = \frac{1}{2\pi i} \int_{\mathcal{L}^{+}} \frac{e^{i\tau\ell} F_{+}(\tau, a)}{L_{1}^{-}(\tau)(\tau - \alpha)} d\tau$$
(2.65)

$$I_{3}^{+}(\alpha) = -\frac{e^{ik\ell}}{2\pi i} \int_{\mathcal{L}^{+}} \frac{e^{i\tau\ell}}{iL_{1}^{-}(\tau)(\tau+k)(\tau-\alpha)} d\tau$$
(2.66)

$$I_4^+(\alpha) = \frac{1}{2\pi i} \sum_{m=1}^{\infty} (-1)^{m+1} \int_{\mathcal{L}^+} \frac{\left(f_m - e^{i\tau\ell}g_m\right)i\tau}{L_1^-(\tau)(\tau^2 - \alpha_m^2)(\tau - \alpha)} d\tau \qquad (2.67)$$

$$I_1^{-}(\alpha) = -\frac{1}{2\pi i} \int_{\mathcal{L}^-} \frac{(k_1 - \tau) P_1^{-}(\tau) \dot{F}_1(\tau, -a)}{N_1^{-}(\tau)(k + \tau) M_1^{+}(\tau)(\tau - \alpha)} d\tau$$
(2.68)

$$I_2^{-}(\alpha) = \frac{1}{2\pi i} \int_{\mathcal{L}^-} \frac{e^{i\tau\ell} F_+(\tau, a)}{L_1^{-}(\tau)(\tau - \alpha)} d\tau$$
(2.69)

$$I_{3}^{-}(\alpha) = -\frac{e^{ik\ell}}{2\pi i} \int_{\mathcal{L}^{-}} \frac{e^{i\tau\ell}}{iL_{1}^{-}(\tau)(\tau+k)(\tau-\alpha)} d\tau$$
(2.70)

$$I_4^-(\alpha) = \frac{1}{2\pi i} \sum_{m=1}^{\infty} (-1)^{m+1} \int_{\mathcal{L}^-} \frac{\left(f_m - e^{i\tau\ell}g_m\right)i\tau}{L_1^-(\tau)(\tau^2 - \alpha_m^2)(\tau - \alpha)} d\tau$$
(2.71)



(2.65 - 2.68) integralleri için analitik bölge uygun seçimlerle alttan ya da üstten kapatılarak *Cauchy* rezidü teoremi uygulanır. İntegral eğrileri  $\mathcal{L}^{\pm}$  (1.5) de tanımlanmıştı. Buradan gelen katkı (2.62) denklemini

$$L_{1}^{+}(\alpha)\dot{F}_{1}(\alpha,a) - \frac{(k_{1}-\alpha)P_{1}^{-}(\alpha)\dot{F}_{1}(\alpha,-a)}{N_{1}^{-}(\alpha)(k+\alpha)M^{+}(\alpha)} + \sum_{m=1}^{\infty}\frac{T_{1m}\dot{F}_{1}(\beta_{m},-a)}{\dot{N}_{1}(\beta_{m})(\alpha-\beta_{m})} + e^{i\alpha\ell}\frac{F_{+}(\alpha,a)}{L_{1}^{-}(\alpha)} - \sum_{m=1}^{\infty}\frac{e^{i\beta_{m}\ell}T_{2m}F_{+}(\beta_{m},a)}{\dot{N}_{1}(\beta_{m})(\alpha-\beta_{m})} - \sum_{m=1}^{\infty}\frac{i\alpha e^{i\alpha\ell}(-1)^{m}g_{m}}{L_{1}^{-}(\alpha)(\alpha^{2}-\alpha_{m}^{2})} + \sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{i(-1)^{m}g_{m}\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(\beta_{n})(\alpha-\beta_{n})(\beta_{n}^{2}-\alpha_{m}^{2})} + \sum_{m=1}^{\infty}\frac{i(-1)^{m}f_{m}}{2L_{1}^{+}(\alpha_{m})(\alpha+\alpha_{m})} = \frac{1}{iL_{1}^{+}(k)(k+\alpha)} - \frac{e^{i(\alpha+k)\ell}}{iL_{1}^{-}(\alpha)(k+\alpha)} + e^{ik\ell}\sum_{m=1}^{\infty}\frac{e^{i\beta_{m}\ell}T_{2m}}{i\dot{N}_{1}(\beta_{m})(k+\beta_{m})(\alpha-\beta_{m})}$$
(2.72)

ifadesine dönüştürür. Dekompoze işlemi tamamlanarak (2.72) denkleminin sağ yanı alt yarı düzlemde, sol yanı ise üst yarı düzlemde regüler olan fonksiyonların toplamı şeklinde yazılmıştır. Denkleminin sol yanı  $S_{+}(\alpha)$ , sağ yanı da  $S_{-}(\alpha)$ olarak adlandırılırsa, analitik devam ilkesi özelliğine göre bir tam fonksiyon olan  $S(\alpha)$ 

$$S(\alpha) = \left\{ \begin{array}{ll} S_{-}(\alpha), & Im(\alpha) < Im(k) \\ S_{+}(\alpha), & Im(\alpha) > Im(-k) \end{array} \right\}$$
(2.73)

olarak tanımlanabilir.  $S_{-}(\alpha)$  veya  $S_{+}(\alpha)$  fonksiyonlarının  $(\alpha \to \infty)$  için davranışı belirlenirse bu tam fonksiyonun eşit olduğu ifade bulunabilir. *Liouville* teoremi uyarınca, tüm düzlemde sınırlı bir tam fonksiyon bir sabitten ibarettir. Bu sabitin belirlenmesi için  $S_{+}(\alpha)$  seçilsin.

$$S_{+}(\alpha) = L_{1}^{+}(\alpha)\dot{F}_{1}(\alpha, a) - \frac{(k_{1} - \alpha)P_{1}^{-}(\alpha)\dot{F}_{1}(\alpha, -a)}{N_{1}^{-}(\alpha)(k + \alpha)M^{+}(\alpha)} + \sum_{m=1}^{\infty} \frac{T_{1m}\dot{F}_{1}(\beta_{m}, -a)}{\dot{N}_{1}(\beta_{m})(\alpha - \beta_{m})} + e^{i\alpha\ell}\frac{F_{+}(\alpha, a)}{L_{1}^{-}(\alpha)} - \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{2m}F_{+}(\beta_{m}, a)}{\dot{N}_{1}(\beta_{m})(\alpha - \beta_{m})} - \sum_{m=1}^{\infty} \frac{i\alpha e^{i\alpha\ell}(-1)^{m}g_{m}}{L_{1}^{-}(\alpha)(\alpha^{2} - \alpha_{m}^{2})} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{i(-1)^{m}g_{m}\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(\beta_{n})(\alpha - \beta_{n})(\beta_{n}^{2} - \alpha_{m}^{2})} + \sum_{m=1}^{\infty} \frac{i(-1)^{m}f_{m}}{2L_{1}^{+}(\alpha_{m})(\alpha + \alpha_{m})} + \frac{1}{iL_{1}^{+}(k)(k + \alpha)} - \frac{e^{i(\alpha + k)\ell}}{iL_{1}^{-}(\alpha)(k + \alpha)} + e^{ik\ell}\sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{2m}}{i\dot{N}_{1}(\beta_{m})(k + \beta_{m})(\alpha - \beta_{m})}$$
(2.74)

idi. Her terim tek tek incelediğinde  $L_1^+(\alpha)$ ,  $L_1^-(\alpha)$ , ve ikinci terimin  $1/\alpha^{1/2}$ , dördüncü terimin  $1/(e^{\alpha}\alpha^{1/2})$ , altıncı ve dokuzuncu terimlerin  $1/(e^{\alpha}\alpha^{3/2})$ , diğer terimlerin ise  $1/\alpha$  gibi davrandıkları görülür. Bu durumda  $S_+(\alpha)$ ,  $(|\alpha| \to \infty)$  için sıfır bulunur. Tam fonksiyonların özellikleri ve analitik devam ilkesi gereği

$$S_{+}(\alpha) = S_{-}(\alpha) = 0$$
 (2.75)

bulunur. Her iki denklem sıfıra eşitlenerek

$$L_{1}^{+}(\alpha)\dot{F}_{1}(\alpha,a) - \frac{(k_{1}-\alpha)P_{1}^{-}(\alpha)\dot{F}_{1}(\alpha,-a)}{N_{1}^{-}(\alpha)(k+\alpha)M^{+}(\alpha)} + \sum_{m=1}^{\infty} \frac{T_{1m}\dot{F}_{1}(\beta_{m},-a)}{\dot{N}_{1}(\beta_{m})(\alpha-\beta_{m})} + e^{i\alpha\ell}\frac{F_{+}(\alpha,a)}{L_{1}^{-}(\alpha)} - \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{2m}F_{+}(\beta_{m},a)}{\dot{N}_{1}(\beta_{m})(\alpha-\beta_{m})} - \sum_{m=1}^{\infty} \frac{i\alpha e^{i\alpha\ell}(-1)^{m}g_{m}}{L_{1}^{-}(\alpha)(\alpha^{2}-\alpha_{m}^{2})} + \sum_{m=1}^{\infty} \frac{i(-1)^{m}g_{m}}{L_{1}^{-}(\alpha)(\alpha^{2}-\alpha_{m}^{2})} + \sum_{m=1}^{\infty} \frac{i(-1)^{m}f_{m}}{2L_{1}^{+}(\alpha_{m})(\alpha+\alpha_{m})} = -\frac{1}{iL_{1}^{+}(k)(k+\alpha)} + \frac{e^{i(\alpha+k)\ell}}{iL_{1}^{-}(\alpha)(k+\alpha)} - e^{ik\ell}\sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{2m}}{i\dot{N}_{1}(\beta_{m})(k+\beta_{m})(\alpha-\beta_{m})}$$

$$(2.76)$$

ve

$$\frac{F_{-}(\alpha,a)}{L_{1}^{-}(\alpha)} - \sum_{m=1}^{\infty} \frac{T_{1m}\dot{F}_{1}(\beta_{m},-a)}{\dot{N}_{1}(\beta_{m})(\alpha-\beta_{m})} + \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{2m}F_{+}(\beta_{m},a)}{\dot{N}_{1}(\beta_{m})(\alpha-\beta_{m})} - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{i(-1)^{m}g_{m}\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(\beta_{n})(\beta_{n}^{2}-\alpha_{m}^{2})(\alpha-\beta_{n})} + \sum_{m=1}^{\infty} \frac{i\alpha(-1)^{m}f_{m}}{L_{1}^{-}(\alpha)(\alpha^{2}-\alpha_{m}^{2})} - \sum_{m=1}^{\infty} \frac{i(-1)^{m}f_{m}}{2L_{1}^{+}(\alpha_{m})(\alpha+\alpha_{m})} \\ = -\frac{1}{iL_{1}^{-}(\alpha)(k+\alpha)} + \frac{1}{iL_{1}^{+}(k)(k+\alpha)} + e^{ik\ell}\sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{2m}}{i\dot{N}_{1}(\beta_{m})(k+\beta_{m})(\alpha-\beta_{m})}$$
(2.77)

denklemleri elde edilir. (2.50) denklemi bu kez de $e^{i\alpha\ell}/L_1^+(\alpha)$ ile çarpılır ve yukarıdaki işlemlerin benzeri uygulanırsa

$$e^{-i\alpha\ell}L_{1}^{-}(\alpha)\dot{F}_{1}(\alpha,a) - \frac{e^{-i\alpha\ell}(k_{1}+\alpha)P_{1}^{+}(\alpha)\dot{F}_{1}(\alpha,-a)}{N_{1}^{+}(\alpha)(k-\alpha)M^{-}(\alpha)} + \sum_{m=1}^{\infty}\frac{e^{i\beta_{m}\ell}T_{1m}\dot{F}_{1}(-\beta_{m},-a)}{\dot{N}_{1}(-\beta_{m})(\alpha+\beta_{m})} + e^{-i\alpha\ell}\frac{F_{-}(\alpha,a)}{L_{1}^{+}(\alpha)} - \sum_{m=1}^{\infty}\frac{e^{i\beta_{m}\ell}T_{2m}F_{-}(-\beta_{m},a)}{\dot{N}_{1}(-\beta_{m})(\alpha+\beta_{m})} + \sum_{m=1}^{\infty}\frac{i\alpha e^{-i\alpha\ell}(-1)^{m}f_{m}}{L_{1}^{+}(\alpha)(\alpha^{2}-\alpha_{m}^{2})} - \sum_{m=1}^{\infty}\frac{i(-1)^{m}g_{m}}{2L_{1}^{+}(\alpha_{m})(\alpha-\alpha_{m})} + \sum_{m=1}^{\infty}\sum_{m=1}^{\infty}\frac{i(-1)^{m}f_{m}\beta_{m}e^{i\beta_{m}\ell}T_{2n}}{\dot{N}_{1}(-\beta_{m})(\alpha+\beta_{m})(\beta_{m}^{2}-\alpha_{m}^{2})} = -\frac{e^{-i\alpha\ell}}{L_{1}^{+}(\alpha)(k+\alpha)} + \sum_{m=1}^{\infty}\frac{e^{i\beta_{m}\ell}T_{2m}}{i\dot{N}_{1}(-\beta_{m})(k-\beta_{m})(\alpha+\beta_{m})} \quad (2.78)$$

$$\frac{F_{+}(\alpha,a)}{L_{1}^{+}(\alpha)} - \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{1m}\dot{F}_{1}(-\beta_{m},-a)}{\dot{N}_{1}(-\beta_{m})(\alpha+\beta_{m})} + \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{2m}F_{-}(-\beta_{m},a)}{\dot{N}_{1}(-\beta_{m})(\alpha+\beta_{m})} - \sum_{m=1}^{\infty} \frac{i\alpha(-1)^{m}g_{m}}{L_{1}^{+}(\alpha)(\alpha^{2}-\alpha_{m}^{2})} - \sum_{m=1}^{\infty} \frac{i(-1)^{m}g_{m}}{2L_{1}^{+}(\alpha_{m})(\alpha-\alpha_{m})} - \sum_{m=1}^{\infty} \frac{i(-1)^{m}f_{m}}{\sum_{n=1}^{\infty}} \frac{\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(-\beta_{n})(\alpha+\beta_{n})(\beta_{n}^{2}-\alpha_{m}^{2})} + \frac{e^{ik\ell}}{iL_{1}^{+}(\alpha)(k+\alpha)} - \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{2m}}{i\dot{N}_{1}(-\beta_{m})(k-\beta_{m})(\alpha+\beta_{m})} \quad (2.79)$$

eşitlikleri elde edilir. Burada ${\cal T}_{1m}$  ve ${\cal T}_{2m}$ 

$$T_{1m} = \frac{(k_1 - \beta_m) P_1^-(\beta_m) N_1^+(\beta_m)}{(k + \beta_m) M^+(\beta_m)}$$
(2.80a)

$$T_{2m} = (k - \beta_m)(k_1 - \beta_m)P_1^-(\beta_m)M^-(\beta_m)N_1^+(\beta_m)$$
(2.80b)

ile tanımlanmıştır.

(2.51) denklemi sırasıyla bir kez  $1/L_2^-(\alpha)$  ve bir kez de  $e^{-i\alpha\ell}/L_2^+(\alpha)$  ile çarpılır ve yine Wiener-Hopf prosedürü tekrar edilerek dekompozisyon işlemi gerçekleştirilirse analitik devam ilkesi gereğince fonksiyon alt ve üst yarı düzlemde regüler olan fonksiyonların toplamı şeklinde yazılmış olur. Liouville teoremine göre, bu artı ve eksi fonksiyonların sonsuzdaki davranışına bakıldığında herbirinin sıfır olduğu görülür. Böylece

$$-L_{2}^{+}(\alpha)\dot{F}_{1}(\alpha,-a) + \frac{(k_{2}-\alpha)P_{2}^{-}(\alpha)\dot{F}_{1}(\alpha,a)}{N_{2}^{-}(\alpha)(k+\alpha)M^{+}(\alpha)} - \sum_{m=1}^{\infty}\frac{Y_{1m}\dot{F}_{1}(\upsilon_{m},a)}{\dot{N}_{2}(\upsilon_{m})(\alpha-\upsilon_{m})} + e^{i\alpha\ell}\frac{F_{+}(\alpha,-a)}{L_{2}^{-}(\alpha)} - \sum_{m=1}^{\infty}\frac{e^{i\upsilon_{m}\ell}Y_{2m}F_{+}(\upsilon_{m},-a)}{\dot{N}_{2}(\upsilon_{m})(\alpha-\upsilon_{m})} - \sum_{m=1}^{\infty}\frac{i\alpha e^{i\alpha\ell}(-1)^{m}\tilde{g}_{m}}{L_{2}^{-}(\alpha)(\alpha^{2}-\tilde{\alpha}_{m}^{2})} + \sum_{m=1}^{\infty}(-1)^{m}\tilde{g}_{m}\sum_{n=1}^{\infty}\frac{i\upsilon_{n}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{2}(\upsilon_{n})(\alpha-\upsilon_{n})(\upsilon_{n}^{2}-\tilde{\alpha}_{n}^{2})} + \sum_{m=1}^{\infty}\frac{i(-1)^{m}\tilde{f}_{m}}{2L_{2}^{+}(\tilde{\alpha}_{m})(\alpha+\tilde{\alpha}_{m})} = -\frac{1}{iL_{2}^{+}(k)(k+\alpha)} + \frac{e^{i(\alpha+k)\ell}}{iL_{2}^{-}(\alpha)(k+\alpha)} - e^{ik\ell}\sum_{m=1}^{\infty}\frac{e^{i\upsilon_{m}\ell}Y_{2m}}{i\dot{N}_{2}(\upsilon_{m})(k+\upsilon_{m})(\alpha-\upsilon_{m})},$$

$$(2.81)$$

$$\frac{F_{-}(\alpha, -a)}{L_{2}^{-}(\alpha)} + \sum_{m=1}^{\infty} \frac{Y_{1m} \dot{F}_{1}(v_{m}, -a)}{\dot{N}_{2}(v_{m})(\alpha - v_{m})} + \sum_{m=1}^{\infty} \frac{e^{iv_{m}\ell}Y_{2m}F_{+}(v_{m}, -a)}{\dot{N}_{2}(v_{m})(\alpha - v_{m})} + \sum_{m=1}^{\infty} \frac{i\alpha(-1)^{m} \tilde{f}_{m}}{L_{2}^{-}(\alpha)(\alpha - v_{m})} - \sum_{m=1}^{\infty} \frac{i\alpha(-1)^{m} \tilde{f}_{m}}{2L_{2}^{+}(\tilde{\alpha}_{m})(\alpha + \tilde{\alpha}_{m})} - \sum_{m=1}^{\infty} \frac{i(-1)^{m} \tilde{g}_{m}}{\sum_{n=1}^{\infty} \frac{iv_{n}e^{iv_{n}\ell}Y_{2n}}{\dot{N}_{2}(v_{n})(v_{n}^{2} - \tilde{\alpha}_{n}^{2})(\alpha - v_{n})} = -\frac{1}{iL_{2}^{-}(\alpha)(k + \alpha)} + \frac{1}{iL_{2}^{+}(k)(k + \alpha)} + e^{ik\ell}\sum_{m=1}^{\infty} \frac{e^{iv_{m}\ell}Y_{2m}}{i\dot{N}_{2}(v_{m})(k + v_{m})(\alpha - v_{m})} \tag{2.82}$$

$$-e^{-i\alpha\ell}L_{2}^{-}(\alpha)\dot{F}_{1}(\alpha,-a) + \frac{e^{-i\alpha\ell}(k_{2}+\alpha)P_{2}^{+}(\alpha)\dot{F}_{1}(\alpha,a)}{N_{2}^{+}(\alpha)(k-\alpha)M^{-}(\alpha)} - \sum_{m=1}^{\infty}\frac{e^{i\upsilon_{m}\ell}Y_{1m}\dot{F}_{1}(-\upsilon_{m},a)}{\dot{N}_{2}(-\upsilon_{m})(\alpha+\upsilon_{m})} + e^{-i\alpha\ell}\frac{F_{-}(\alpha,-a)}{L_{2}^{+}(\alpha)} - \sum_{m=1}^{\infty}\frac{e^{i\upsilon_{m}\ell}Y_{2m}F_{-}(-\upsilon_{m},-a)}{\dot{N}_{2}(-\upsilon_{m})(\alpha+\upsilon_{m})} + \sum_{m=1}^{\infty}\frac{i\alpha e^{-i\alpha\ell}(-1)^{m}\tilde{f}_{m}}{L_{2}^{+}(\alpha)(\alpha^{2}-\tilde{\alpha}_{m}^{2})} - \sum_{m=1}^{\infty}\frac{i(-1)^{m}\tilde{g}_{m}}{2L_{2}^{+}(\tilde{\alpha}_{m})(\alpha-\tilde{\alpha}_{m})} + \sum_{m=1}^{\infty}i(-1)^{m}\tilde{f}_{m}\sum_{n=1}^{\infty}\frac{\upsilon_{n}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{2}(-\upsilon_{n})(\alpha+\upsilon_{n})(\omega^{2}-\tilde{\alpha}_{n}^{2})} = -\frac{e^{-i\alpha\ell}}{iL_{2}^{+}(\alpha)(k+\alpha)} + \sum_{m=1}^{\infty}\frac{e^{i\upsilon_{m}\ell}Y_{2m}}{i\dot{N}_{2}(-\upsilon_{m})(k-\upsilon_{m})(\alpha+\upsilon_{m})}$$
(2.83)

ve

$$\frac{F_{+}(\alpha,a)}{L_{2}^{+}(\alpha)} + \sum_{m=1}^{\infty} \frac{e^{i\upsilon_{m}\ell}Y_{1m}\dot{F}_{1}(-\upsilon_{m},a)}{\dot{N}_{2}(-\upsilon_{m})(\alpha+\upsilon_{m})} + \sum_{m=1}^{\infty} \frac{e^{i\upsilon_{m}\ell}Y_{2m}F_{-}(-\upsilon_{m},-a)}{\dot{N}_{2}(-\upsilon_{m})(\alpha+\upsilon_{m})} + \sum_{m=1}^{\infty} (-1)^{m}\tilde{f}_{m}\sum_{n=1}^{\infty} \frac{i\upsilon_{n}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{2}(-\upsilon_{n})(\alpha+\upsilon_{n})(\upsilon_{n}^{2}-\tilde{\alpha}_{n}^{2})} - \sum_{m=1}^{\infty} \frac{i\alpha(-1)^{m}\tilde{g}_{m}}{L_{2}^{+}(\alpha)(\alpha^{2}-\tilde{\alpha}_{m}^{2})} - \sum_{m=1}^{\infty} \frac{i(-1)^{m}\tilde{g}_{m}}{2L_{2}^{+}(\tilde{\alpha}_{m})(\alpha-\tilde{\alpha}_{m})} = \frac{e^{ik\ell}}{iL_{2}^{+}(\alpha)(k+\alpha)} - \sum_{m=1}^{\infty} \frac{e^{i\upsilon_{m}\ell}Y_{2m}}{i\dot{N}_{2}(-\upsilon_{m})(k-\upsilon_{m})(\alpha+\upsilon_{m})}$$
(2.84)

denklemleri elde edilir. Burada  $Y_{1m}$  ve $Y_{2m}\,$ ifadeleri

$$Y_{1m} = \frac{(k_2 - \upsilon_m)P_2^-(\upsilon_m)N_2^+(\upsilon_m)}{(k + \upsilon_m)M^+(\upsilon_m)}$$
(2.85a)

$$Y_{2m} = (k - \upsilon_m)(k_2 - \upsilon_m)P_2^-(\upsilon_m)M^-(\upsilon_m)N_2^+(\upsilon_m)$$
(2.85b)

olarak alınmıştır.

### 2.3 Katsayıların Elde Edilmesi

(2.18, 2.36, 2.76–2.84) denklemlerindeki bilinmeyen fonksiyonlar  $\dot{F}_1(\alpha, a), F_-(\alpha, a),$  $F_+(\alpha, -a), F_-(\alpha, -a)$  ve bu fonksiyonlara bağlı olarak ortaya çıkan bilinmeyen sabitler  $f_m, g_m, \tilde{f}_m, \tilde{g}_m$  ler (24N × 24N) lik lineer denklem sisteminin çözümü sonucunda elde edilirler. (2.76–2.84) denklemlerinde sırasıyla  $\alpha = \pm \beta_m, \alpha = \pm v_m$  kökleri yerlerine yazılarak aşağıdaki denklem sistemi elde edilir. Bu işlemler yapıldığında

$$L_{1}^{+}(\beta_{m})\dot{F}_{1}(\beta_{m},a) + \sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{T_{1n}\dot{F}_{1}(\beta_{n},-a)}{\dot{N}_{1}(\beta_{n})(\beta_{m}-\beta_{n})} - \sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}F_{+}(\beta_{n},a)}{\dot{N}_{1}(\beta_{n})(\beta_{m}-\beta_{n})} + \sum_{\substack{n=0\\m\neq n}}^{\infty} i(-1)^{p}g_{p}\sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(\beta_{n})(\beta_{m}-\beta_{n})(\beta_{n}^{2}-\alpha_{p}^{2})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}f_{n}}{2L_{1}^{+}(\alpha_{n})(\beta_{m}+\alpha_{n})} = -\frac{1}{iL_{1}^{+}(k)(k+\beta_{m})} - e^{ik\ell}\sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}}{i\dot{N}_{1}(\beta_{n})(k+\beta_{n})(\beta_{m}-\beta_{n})}$$
(2.86)

$$e^{i\beta_{m}\ell}L_{1}^{+}(\beta_{m})\dot{F}_{1}(-\beta_{m},a) + \sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{e^{i\beta_{n}\ell}T_{1n}\dot{F}_{1}(-\beta_{n},-a)}{\dot{N}_{1}(\beta_{n})(\beta_{m}-\beta_{n})} - \sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}F_{-}(-\beta_{n},a)}{\dot{N}_{1}(\beta_{n})(\beta_{m}-\beta_{n})} + \sum_{p=0}^{\infty} \frac{i(-1)^{p}f_{p}}{2L_{1}^{+}(\alpha_{n})(\beta_{m}+\alpha_{n})} + \sum_{p=0}^{\infty} i(-1)^{p}f_{p}\sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(\beta_{n})(\beta_{m}-\beta_{n})(\beta_{n}^{2}-\alpha_{p}^{2})} = \sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}}{i\dot{N}_{1}(\beta_{n})(\beta_{m}-\beta_{n})(k-\beta_{n})}$$
(2.87)

$$\frac{F_{+}(\beta_{m},a)}{L_{1}^{+}(\beta_{m})} - \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{1n}\dot{F}_{1}(-\beta_{n},-a)}{\dot{N}_{1}(-\beta_{n})(\beta_{m}+\beta_{n})} + \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}F_{-}(-\beta_{n},a)}{\dot{N}_{1}(-\beta_{n})(\beta_{m}+\beta_{n})} - \sum_{n=1}^{\infty} \frac{i\beta_{m}(-1)^{n}g_{n}}{L_{1}^{+}(\beta_{m})(\beta_{m}^{2}-\alpha_{n}^{2})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}g_{n}}{2L_{1}^{+}(\alpha_{n})(\beta_{m}-\alpha_{n})} - \sum_{p=0}^{\infty} i(-1)^{p}f_{p}\sum_{n=1}^{\infty} \frac{\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(-\beta_{n})(\beta_{m}+\beta_{n})(\beta_{n}^{2}-\alpha_{p}^{2})} = \frac{e^{ik\ell}}{iL_{1}^{+}(\beta_{m})(k+\beta_{m})} - \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}}{i\dot{N}_{1}(-\beta_{n})(k-\beta_{n})(\beta_{m}+\beta_{n})} \qquad (2.88)$$

$$\frac{F_{-}(-\beta_{m},a)}{L_{1}^{+}(\beta_{m})} + \sum_{n=1}^{\infty} \frac{T_{1n}\dot{F}_{1}(\beta_{n},-a)}{\dot{N}_{1}(\beta_{n})(\beta_{m}+\beta_{n})} - \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}F_{+}(\beta_{n},a)}{\dot{N}_{1}(\beta_{n})(\beta_{m}+\beta_{n})} + \sum_{p=0}^{\infty} i(-1)^{p}g_{p}\sum_{n=1}^{\infty} \frac{\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(\beta_{n})(\alpha_{p}^{2}-\beta_{n}^{2})(\beta_{m}+\beta_{n})} - \sum_{n=1}^{\infty} \frac{i\beta_{m}(-1)^{n}f_{n}}{L_{1}^{+}(\beta_{m})(\beta_{m}^{2}-\alpha_{n}^{2})} - \sum_{n=1}^{\infty} \frac{i(-1)^{n}f_{n}}{2L_{1}^{+}(\alpha_{n})(-\beta_{m}+\alpha_{n})} = -\frac{1}{iL_{1}^{+}(\beta_{m})(k-\beta_{m})} + \frac{1}{iL_{1}^{+}(k)(k-\beta_{m})} - e^{ik\ell}\sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}}{i\dot{N}_{1}(\beta_{n})(k+\beta_{n})(\beta_{m}+\beta_{n})},$$
(2.89)

$$-L_{2}^{+}(\upsilon_{m})\dot{F}_{1}(\upsilon_{m},-a) - \sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{Y_{1n}\dot{F}_{1}(\upsilon_{n},a)}{\dot{N}_{2}(\upsilon_{n})(\upsilon_{m}-\upsilon_{n})} - \sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{e^{i\upsilon_{n}\ell}Y_{2n}F_{+}(\upsilon_{n},-a)}{\dot{N}_{2}(\upsilon_{n})(\upsilon_{m}-\upsilon_{n})} + \sum_{\substack{p=0\\m\neq n}}^{\infty} i(-1)^{p}\tilde{g}_{p}\sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{\upsilon_{n}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{1}(\upsilon_{n})(\upsilon_{m}-\upsilon_{n})(\upsilon_{n}^{2}-\tilde{\alpha}_{p}^{2})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}\tilde{f}_{n}}{2L_{2}^{+}(\tilde{\alpha}_{n})(\upsilon_{m}+\tilde{\alpha}_{n})} = -\frac{1}{iL_{2}^{+}(k)(k+\upsilon_{m})} - e^{ik\ell}\sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{e^{i\upsilon_{n}\ell}Y_{2n}}{i\dot{N}_{2}(\upsilon_{n})(\upsilon_{m}-\upsilon_{n})(k+\upsilon_{n})}, \quad (2.90)$$

$$\frac{F_{+}(v_{m},a)}{L_{2}^{+}(v_{m})} + \sum_{n=1}^{\infty} \frac{e^{iv_{n}\ell}Y_{1n}\dot{F}_{1}(-v_{n},a)}{\dot{N}_{2}(-v_{n})(v_{m}+v_{n})} + \sum_{n=1}^{\infty} \frac{e^{iv_{n}\ell}Y_{2n}F_{-}(-v_{n},-a)}{\dot{N}_{2}(-v_{n})(v_{m}+v_{n})} - \sum_{n=1}^{\infty} \frac{iv_{m}(-1)^{n}\tilde{g}_{n}}{L_{2}^{+}(v_{m})(v_{m}^{2}-\tilde{\alpha}_{n}^{2})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}\tilde{g}_{n}}{2L_{2}^{+}(\tilde{\alpha}_{n})(v_{m}-\tilde{\alpha}_{n})} - \sum_{p=0}^{\infty} (-1)^{p}\tilde{f}_{p}\sum_{p=0}^{\infty} \frac{iv_{n}e^{iv_{n}\ell}Y_{2n}}{\dot{N}_{2}(-v_{n})(v_{m}+v_{n})(v_{n}^{2}-\tilde{\alpha}_{p}^{2})} = \frac{e^{ik\ell}}{iL_{2}^{+}(v_{m})(k+v_{m})} - \sum_{n=1}^{\infty} \frac{e^{iv_{n}\ell}Y_{2m}}{i\dot{N}_{2}(-v_{n})(k-v_{n})(v_{m}+v_{n})} \tag{2.91}$$

$$\frac{F_{-}(-\upsilon_{m},-a)}{L_{2}^{+}(\upsilon_{m})} - \sum_{n=1}^{\infty} \frac{Y_{1n}\dot{F}_{1}(\upsilon_{n},-a)}{\dot{N}_{2}(\upsilon_{n})(\upsilon_{m}+\upsilon_{n})} - \sum_{n=1}^{\infty} \frac{e^{i\upsilon_{n}\ell}Y_{2n}F_{+}(\upsilon_{n},-a)}{\dot{N}_{2}(\upsilon_{n})(\upsilon_{m}+\upsilon_{n})} + \sum_{p=0}^{\infty} (-1)^{p}\tilde{g}_{p}\sum_{n=1}^{\infty} \frac{i\upsilon_{n}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{2}(\upsilon_{n})(\upsilon_{n}^{2}-\tilde{\alpha}_{p}^{2})(\upsilon_{m}+\upsilon_{n})} - \sum_{n=1}^{\infty} \frac{i\upsilon_{m}(-1)^{n}\tilde{f}_{n}}{L_{2}^{+}(\upsilon_{m})(\upsilon_{m}^{2}+\tilde{\alpha}_{n}^{2})} - \sum_{n=1}^{\infty} \frac{i(-1)^{n}\tilde{f}_{n}}{2L_{2}^{+}(\tilde{\alpha}_{n})(-\upsilon_{m}+\tilde{\alpha}_{n})} = -\frac{1}{iL_{2}^{+}(\upsilon_{m})(k-\upsilon_{m})} + \frac{1}{iL_{2}^{+}(k)(k-\upsilon_{m})} - e^{ik\ell}\sum_{n=1}^{\infty} \frac{e^{i\upsilon_{n}\ell}Y_{2n}}{i\dot{N}_{2}(\upsilon_{n})(k+\upsilon_{n})(\upsilon_{m}+\upsilon_{n})} \tag{2.92}$$

$$L_{1}^{+}(\alpha_{m})\dot{F}_{1}(\alpha_{m},a) + \sum_{n=1}^{\infty} \frac{T_{1n}\dot{F}_{1}(\beta_{n},-a)}{\dot{N}_{1}(\beta_{n})(\alpha_{m}-\beta_{n})} - \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}F_{+}(\beta_{n},a)}{\dot{N}_{1}(\beta_{n})(\alpha_{m}-\beta_{n})} - \sum_{n=1}^{\infty} \frac{i\alpha_{m}e^{i\alpha_{m}\ell}(-1)^{n}g_{n}}{L_{1}^{-}(\alpha_{m})(\alpha_{m}^{2}-\alpha_{n}^{2})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}f_{n}}{2L_{1}^{+}(\alpha_{n})(\alpha_{m}+\alpha_{n})} + \sum_{p=0}^{\infty} i(-1)^{p}g_{p}\sum_{n=1}^{\infty} \frac{\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(\beta_{n})(\alpha_{m}-\beta_{n})(\beta_{n}^{2}-\alpha_{p}^{2})} = -\frac{1}{iL_{1}^{+}(k)(k+\alpha_{m})} + \frac{e^{i(\alpha_{m}+k)\ell}}{iL_{1}^{-}(\alpha_{m})(k+\alpha_{m})} - e^{ik\ell}\sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}}{i\dot{N}_{1}(\beta_{n})(k+\beta_{n})(\alpha_{m}-\beta_{n})}$$
(2.93)

$$e^{i\alpha_{m}\ell}L_{1}^{+}(\alpha_{m})\dot{F}_{1}(-\alpha_{m},a) + \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{1n}\dot{F}_{1}(-\beta_{n},-a)}{\dot{N}_{1}(-\beta_{n})(-\alpha_{m}+\beta_{n})} - \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}F_{-}(-\beta_{n},a)}{\dot{N}_{1}(-\beta_{n})(-\alpha_{m}+\beta_{n})} + \sum_{n=1}^{\infty} \frac{i\alpha_{m}e^{i\alpha_{m}\ell}(-1)^{n}f_{n}}{L_{1}^{-}(\alpha_{m})(\alpha_{m}^{2}-\alpha_{n}^{2})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}g_{n}}{2L_{1}^{+}(\alpha_{n})(\alpha_{m}+\alpha_{n})} + \sum_{p=0}^{\infty} i(-1)^{p}f_{p}\sum_{n=1}^{\infty} \frac{\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(-\beta_{n})(\beta_{n}-\alpha_{m})(\beta_{n}^{2}-\alpha_{p}^{2})} = \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}}{i\dot{N}_{1}(-\beta_{n})(k-\beta_{n})(-\alpha_{m}+\beta_{n})}$$
(2.94)

 $P_1(\pm \alpha_m) = 0$ olduğu bilindiğinden (2.93) ve (2.94) denklemlerinde  $L_1^-(\alpha_m)$ çarpanını bulunduran terimler sıfır olarak alınmıştır. Ancak heriki eşitliğin sol tarafındaki son terim m = n durumunda paydadaki  $(\alpha_m - \alpha_n)$  teriminden gelen sıfır değeri ile (0/0) belirsizliğine neden olmaktadır. Bu belirsizlik L'Hospital kuralına göre ortadan kaldırılıp,  $(\alpha = \pm \alpha_m)$  için limit alındığında

$$L_{1}^{+}(\alpha_{m})\dot{F}_{1}(\alpha_{m},a) + \frac{T_{1m}\dot{F}_{1}(\beta_{m},-a)}{\dot{N}_{1}(\beta_{m})(\alpha_{m}-\beta_{m})} - \frac{e^{i\beta_{m}\ell}T_{2m}F_{+}(\beta_{m},a)}{\dot{N}_{1}(\beta_{m})(\alpha_{m}-\beta_{m})} + \frac{i(b-a)\alpha_{m}\cos\left[K_{1}(\alpha_{m})(b-a)\right](k-\alpha_{m})e^{i\alpha_{m}\ell}(-1)^{m}g_{m}}{2N_{1}^{-}(\alpha_{m})(k_{1}+\alpha_{m})} - \sum_{p=1}^{\infty}i(-1)^{p}g_{p}\frac{\beta_{m}e^{i\beta_{m}\ell}T_{2m}}{\dot{N}_{1}(\beta_{m})(\alpha_{m}-\beta_{m})(\beta_{m}^{2}-\alpha_{p}^{2})} + \frac{i(-1)^{m}f_{m}}{4\alpha_{m}L_{1}^{+}(\alpha_{m})} = -\frac{1}{iL_{1}^{+}(k)(k+\alpha_{m})} - e^{ik\ell}\frac{e^{i\beta_{m}\ell}T_{2m}}{i\dot{N}_{1}(\beta_{m})(k+\beta_{m})(\alpha_{m}-\beta_{m})}$$
(2.95)

 $\mathrm{ile}$ 

$$e^{i\alpha_{m}\ell}L_{1}^{+}(\alpha_{m})\dot{F}_{1}(-\alpha_{m},a) + \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{1n}\dot{F}_{1}(-\beta_{n},-a)}{\dot{N}_{1}(-\beta_{n})(-\alpha_{m}+\beta_{n})} - \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}F_{-}(-\beta_{n},a)}{\dot{N}_{1}(-\beta_{n})(-\alpha_{m}+\beta_{n})} - \frac{i(b-a)\alpha_{m}\cos\left[K_{1}(\alpha_{m})(b-a)\right](k-\alpha_{m})e^{i\alpha_{m}\ell}(-1)^{m}f_{m}}{2N_{1}^{-}(\alpha_{m})(k_{1}+\alpha_{m})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}g_{n}}{2L_{1}^{+}(\alpha_{n})(\alpha_{m}+\alpha_{n})} + \sum_{p=0}^{\infty} i(-1)^{p}f_{p}\sum_{n=1}^{\infty} \frac{\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(-\beta_{n})(\beta_{n}-\alpha_{m})(\beta_{n}^{2}-\alpha_{p}^{2})} = \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}}{i\dot{N}_{1}(-\beta_{n})(k-\beta_{n})(-\alpha_{m}+\beta_{n})}$$
(2.96)

ifadelerine eşit olur. (2.18) ifadesinden

$$\frac{\varepsilon_1}{\varepsilon}\dot{F}_1(\alpha_m, a) = i\alpha_m(-1)^m(\frac{b-a}{2})[f_m - e^{i\alpha_m\ell}g_m]$$
(2.97)

ve

$$\frac{\varepsilon_1}{\varepsilon}\dot{F}_1(-\alpha_m, a) = -i\alpha_m(-1)^m(\frac{b-a}{2})[f_m - e^{-i\alpha_m\ell}g_m], \qquad (2.98)$$

(2.36) if a desinden ise

$$\frac{\varepsilon_2}{\varepsilon}\dot{F}_1(\tilde{\alpha}_m, -a) = i\tilde{\alpha}_m(-1)^m(\frac{c-a}{2})[\tilde{f}_m - e^{i\tilde{\alpha}_m\ell}\tilde{g}_m]$$
(2.99)

ve

$$\frac{\varepsilon_2}{\varepsilon}\dot{F}_1(-\tilde{\alpha}_m, -a) = -i\tilde{\alpha}_m(-1)^m(\frac{c-a}{2})[\tilde{f}_m - e^{-i\tilde{\alpha}_m\ell}\tilde{g}_m]$$
(2.100)

eşitlikleri elde edilir. Aynı şekilde yukarıdaki denklemler için  $\alpha$  yerine bu kez sırasıyla  $v_n, -v_n, \beta_n, -\beta_n, \tilde{\alpha}_m, -\tilde{\alpha}_m$  kökleri yazılır ve aşağıdaki denklemler bulunur:

$$L_{1}^{+}(v_{m})\dot{F}_{1}(v_{m},a) - \frac{(k_{1}-v_{m})P_{1}^{-}(v_{m})\dot{F}_{1}(v_{m},-a)}{N_{1}^{-}(v_{m})(k+v_{m})M^{+}(v_{m})} + \sum_{n=1}^{\infty} \frac{T_{1n}\dot{F}_{1}(\beta_{n},-a)}{\dot{N}_{1}(\beta_{n})(v_{m}-\beta_{n})} + e^{i\alpha\ell}\frac{F_{+}(v_{m},a)}{L_{1}^{-}(v_{m})} - \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}F_{+}(\beta_{n},a)}{\dot{N}_{1}(\beta_{n})(v_{m}-\beta_{n})} - \sum_{n=1}^{\infty} \frac{iv_{m}e^{iv_{m}\ell}(-1)^{n}g_{n}}{L_{1}^{-}(v_{m})(v_{m}^{2}-\alpha_{n}^{2})} + \sum_{p=0}^{\infty}\sum_{n=1}^{\infty} \frac{i(-1)^{p}g_{p}\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(\beta_{n})(v_{m}-\beta_{n})(\beta_{n}^{2}-\alpha_{p}^{2})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}f_{n}}{2L_{1}^{+}(\alpha_{n})(v_{m}+\alpha_{n})} = -\frac{1}{iL_{1}^{+}(k)(k+v_{m})} + \frac{e^{i(v_{m}+k)\ell}}{iL_{1}^{-}(v_{m})(k+v_{m})} - e^{ik\ell}\sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}}{i\dot{N}_{1}(\beta_{n})(k+\beta_{n})(v_{m}-\beta_{n})},$$

$$(2.101)$$

$$e^{i\upsilon_{m}\ell}L_{1}^{+}(\upsilon_{m})\dot{F}_{1}(-\upsilon_{m},a) - \frac{e^{i\upsilon_{m}\ell}(k_{1}-\upsilon_{m})P_{1}^{-}(\upsilon_{m})\dot{F}_{1}(-\upsilon_{m},-a)}{N_{1}^{-}(\upsilon_{m})(k+\upsilon_{m})M^{+}(\upsilon_{m})} + \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{1n}\dot{F}_{1}(-\beta_{n},-a)}{\dot{N}_{1}(\beta_{n})(-\upsilon_{m}+\beta_{n})} + \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}F_{-}(-\beta_{n},a)}{\dot{N}_{1}(\beta_{n})(\upsilon_{m}+\beta_{n})} + e^{i\upsilon_{m}\ell}\frac{F_{-}(-\upsilon_{m},a)}{L_{1}^{-}(\upsilon_{m})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}g_{n}}{2L_{1}^{+}(\alpha_{n})(-\upsilon_{m}+\alpha_{n})} - \sum_{p=0}^{\infty} (-1)^{p}f_{p}\sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{i\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(\beta_{n})(\upsilon_{m}+\beta_{n})(\beta_{n}^{2}-\alpha_{p}^{2})} = -\frac{e^{i\upsilon_{m}\ell}}{L_{1}^{-}(\upsilon_{m})(k-\upsilon_{m})} - \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}}{i\dot{N}_{1}(\beta_{n})(\upsilon_{m}+\beta_{n})(k-\beta_{n})}, \qquad (2.102)$$

$$\frac{F_{+}(\upsilon_{m},a)}{L_{1}^{+}(\upsilon_{m})} - \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{1n}\dot{F}_{1}(-\beta_{n},-a)}{\dot{N}_{1}(-\beta_{n})(\upsilon_{m}+\beta_{n})} + \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}F_{-}(-\beta_{n},a)}{\dot{N}_{1}(-\beta_{n})(\upsilon_{m}+\beta_{n})} - \sum_{n=1}^{\infty} \frac{i\upsilon_{m}(-1)^{n}g_{n}}{L_{1}^{+}(\upsilon_{m})(\upsilon_{m}-\alpha_{n}^{2})} - \sum_{p=0}^{\infty} i(-1)^{p}f_{p}\sum_{n=1}^{\infty} \frac{\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(-\beta_{n})(\upsilon_{m}+\beta_{n})(\beta_{n}^{2}-\alpha_{p}^{2})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}g_{n}}{2L_{1}^{+}(\alpha_{n})(\upsilon_{m}-\alpha_{n})} = \frac{e^{ik\ell}}{iL_{1}^{+}(\upsilon_{m})(k+\upsilon_{m})} - \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}}{i\dot{N}_{1}(-\beta_{n})(k-\beta_{n})(\upsilon_{m}+\beta_{n})}, \quad (2.103)$$

$$\frac{F_{-}(-\upsilon_{m},a)}{L_{1}^{+}(\upsilon_{m})} + \sum_{n=1}^{\infty} \frac{T_{1n}\dot{F}_{1}(\beta_{n},-a)}{\dot{N}_{1}(\beta_{n})(\upsilon_{m}+\beta_{n})} - \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}F_{+}(\beta_{n},a)}{\dot{N}_{1}(\beta_{n})(\upsilon_{m}+\beta_{n})} - \sum_{p=0}^{\infty} (-1)^{p}g_{p}\sum_{n=1}^{\infty} \frac{i\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(\beta_{n})(\alpha_{p}^{2}-\beta_{n}^{2})(\upsilon_{m}+\beta_{n})} - \sum_{n=1}^{\infty} \frac{i\upsilon_{m}(-1)^{n}f_{n}}{L_{1}^{+}(\upsilon_{m})(\upsilon_{m}^{2}-\alpha_{n}^{2})} - \sum_{n=1}^{\infty} \frac{i(-1)^{n}f_{n}}{2L_{1}^{+}(\alpha_{n})(-\upsilon_{m}+\alpha_{n})} = -\frac{1}{iL_{1}^{+}(\upsilon_{m})(k-\upsilon_{m})} + \frac{1}{iL_{1}^{+}(k)(k-\upsilon_{m})} - e^{ik\ell}\sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}T_{2n}}{i\dot{N}_{1}(\beta_{n})(k+\beta_{n})(\upsilon_{m}+\beta_{n})},$$
(2.104)

$$-e^{i\beta_{m}\ell}L_{2}^{+}(\beta_{m})\dot{F}_{1}(-\beta_{m},-a) + \frac{e^{i\beta_{m}\ell}(k_{2}-\beta_{m})P_{2}^{-}(\beta_{m})\dot{F}_{1}(-\beta_{m},a)}{N_{2}^{-}(\beta_{m})(k+\beta_{m})M^{+}(\beta_{m})} - \sum_{n=1}^{\infty}\frac{e^{i\upsilon_{n}\ell}Y_{1n}\dot{F}_{1}(-\upsilon_{n},a)}{\dot{N}_{1}(\upsilon_{n})(\upsilon_{n}-\beta_{m})} - \sum_{n=1}^{\infty}\frac{e^{i\upsilon_{n}\ell}Y_{2n}F_{-}(-\upsilon_{n},-a)}{\dot{N}_{1}(\upsilon_{n})(\beta_{m}-\upsilon_{n})} + e^{i\beta_{m}\ell}\frac{F_{-}(-\beta_{m},-a)}{L_{2}^{-}(\beta_{m})} + \sum_{n=1}^{\infty}\frac{i(-1)^{n}\tilde{g}_{n}}{2L_{2}^{+}(\tilde{\alpha}_{n})(\beta_{m}+\tilde{\alpha}_{n})} + \sum_{p=0}^{\infty}i(-1)^{p}\tilde{f}_{p}\sum_{n=1}^{\infty}\frac{\beta_{m}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{1}(\upsilon_{n})(\beta_{m}-\upsilon_{n})(\beta_{n}^{2}-\tilde{\alpha}_{p}^{2})} = -\frac{1}{iL_{2}^{+}(k)(k+\beta_{m})} - \frac{e^{i\beta_{m}\ell}}{iL_{2}^{-}(\beta_{m})(k-\beta_{m})} - e^{ik\ell}\sum_{n=1}^{\infty}\frac{e^{i\upsilon_{n}\ell}Y_{2n}}{i\dot{N}_{2}(\upsilon_{n})(\beta_{m}-\upsilon_{n})(k+\upsilon_{n})}$$
(2.105)
$$\frac{F_{+}(\beta_{m},-a)}{L_{2}^{+}(\beta_{m})} + \sum_{n=1}^{\infty} \frac{e^{i\upsilon_{n}\ell}Y_{1n}\dot{F}_{1}(-\upsilon_{n},a)}{\dot{N}_{2}(-\upsilon_{n})(\beta_{m}+\upsilon_{n})} + \sum_{n=1}^{\infty} \frac{e^{i\upsilon_{n}\ell}Y_{2n}F_{-}(-\upsilon_{n},-a)}{\dot{N}_{2}(-\upsilon_{n})(\beta_{m}+\upsilon_{n})} - \sum_{n=1}^{\infty} \frac{i\beta_{m}(-1)^{n}\tilde{g}_{n}}{L_{2}^{+}(\beta_{m})(\beta_{m}^{2}-\tilde{\alpha}_{n}^{2})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}\tilde{g}_{n}}{2L_{2}^{+}(\tilde{\alpha}_{n})(\beta_{m}-\tilde{\alpha}_{n})} + \sum_{p=0}^{\infty} (-1)^{p}\tilde{f}_{p}\sum_{n=1}^{\infty} \frac{i\upsilon_{n}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{2}(-\upsilon_{n})(\beta_{m}+\upsilon_{n})(\upsilon_{n}^{2}-\tilde{\alpha}_{p}^{2})} = \frac{e^{ik\ell}}{iL_{2}^{+}(\beta_{m})(k+\beta_{m})} - \sum_{n=1}^{\infty} \frac{e^{i\upsilon_{n}\ell}Y_{2n}}{i\dot{N}_{2}(-\upsilon_{n})(k-\upsilon_{n})(\beta_{m}+\upsilon_{n})} \quad (2.106)$$

$$-e^{i\tilde{\alpha}_{m}\ell}L_{2}^{+}(\tilde{\alpha}_{m})\dot{F}_{1}(-\tilde{\alpha}_{m},-a) + \sum_{n=1}^{\infty}\frac{e^{iv_{n}\ell}Y_{1n}\dot{F}_{1}(-v_{n},a)}{\dot{N}_{1}(v_{n})(\tilde{\alpha}_{m}-v_{n})} - \sum_{n=1}^{\infty}\frac{e^{iv_{n}\ell}Y_{2n}F_{-}(-v_{n},-a)}{\dot{N}_{1}(v_{n})(-\tilde{\alpha}_{m}+v_{n})} + \sum_{n=1}^{\infty}\frac{i(-1)^{n}\tilde{g}_{n}}{2L_{2}^{+}(\tilde{\alpha}_{n})(\tilde{\alpha}_{m}+\tilde{\alpha}_{n})} - \sum_{p=0}^{\infty}(-1)^{p}\tilde{f}_{p}\sum_{n=1}^{\infty}\frac{iv_{n}e^{iv_{n}\ell}Y_{2n}}{\dot{N}_{1}(v_{n})(v_{n}^{2}-\tilde{\alpha}_{p}^{2})(\tilde{\alpha}_{m}-v_{n})} - \sum_{n=1}^{\infty}\frac{i\tilde{\alpha}_{m}e^{i\tilde{\alpha}_{m}\ell}(-1)^{n}\tilde{f}_{n}}{L_{2}^{-}(\tilde{\alpha}_{m})(\tilde{\alpha}_{m}^{2}-\tilde{\alpha}_{n}^{2})} = -\sum_{n=1}^{\infty}\frac{e^{iv_{n}\ell}Y_{2n}}{i\dot{N}_{2}(v_{n})(k-v_{n})(\tilde{\alpha}_{m}-v_{n})}, \quad (2.107)$$

$$-L_{2}^{+}(\tilde{\alpha}_{m})\dot{F}_{1}(\tilde{\alpha}_{m},-a) - \sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{Y_{1n}\dot{F}_{1}(\upsilon_{n},a)}{\dot{N}_{2}(\upsilon_{n})(\tilde{\alpha}_{m}-\upsilon_{n})} - \sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{e^{i\upsilon_{n}\ell}Y_{2n}F_{+}(\upsilon_{n},-a)}{\dot{N}_{2}(\upsilon_{n})(\tilde{\alpha}_{m}-\upsilon_{n})} + \sum_{\substack{n=1\\m\neq n}}^{\infty} \frac{i(-1)^{n}\tilde{f}_{n}}{L_{2}^{-}(\tilde{\alpha}_{m})(\tilde{\alpha}_{m}^{2}-\tilde{\alpha}_{n}^{2})} \\ \sum_{p=0}^{\infty} i(-1)^{p}\tilde{g}_{p}\sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{\upsilon_{n}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{1}(\upsilon_{n})(\tilde{\alpha}_{m}-\upsilon_{n})(\upsilon_{n}^{2}-\tilde{\alpha}_{p}^{2})} + \\ = -\frac{1}{iL_{2}^{+}(k)(k+\tilde{\alpha}_{m})} - e^{ik\ell}\sum_{\substack{n=0\\m\neq n}}^{\infty} \frac{e^{i\upsilon_{n}\ell}Y_{2n}}{i\dot{N}_{2}(\upsilon_{n})(\tilde{\alpha}_{m}-\upsilon_{n})(k+\upsilon_{n})}. \quad (2.108)$$

 $\pm \tilde{\alpha}_m$ ler  $P_2(\alpha)$  fonksiyonunun kökleri olduğundan (2.107) ve (2.108) denklemlerindeki, paydasında (2.54) de tanımlı bulunan  $L_2^-(\tilde{\alpha}_m)$  çarpanını bulunduran terimler sıfır olarak alınmıştır. Ancak heriki eşitliğin sol tarafındaki son terim m = n durumunda daha önce (2.91) denkleminde karşımıza çıkan 0/0 belirsizliğine sahiptir. Yine aynı yöntemle  $\alpha = \pm \tilde{\alpha}_m$  için limit alındığında

$$-e^{i\tilde{\alpha}_{m}\ell}L_{2}^{+}(\tilde{\alpha}_{m})\dot{F}_{1}(-\tilde{\alpha}_{m},-a)+\sum_{n=1}^{\infty}\frac{e^{i\upsilon_{n}\ell}Y_{1n}\dot{F}_{1}(-\upsilon_{n},a)}{\dot{N}_{1}(\upsilon_{n})(\tilde{\alpha}_{m}-\upsilon_{n})}-\sum_{n=1}^{\infty}\frac{e^{i\upsilon_{n}\ell}Y_{2n}F_{-}(-\upsilon_{n},-a)}{\dot{N}_{1}(\upsilon_{n})(-\tilde{\alpha}_{m}+\upsilon_{n})}+\sum_{n=1}^{\infty}\frac{i(-1)^{n}\tilde{g}_{n}}{2L_{2}^{+}(\tilde{\alpha}_{n})(\tilde{\alpha}_{m}+\tilde{\alpha}_{n})}-\sum_{p=0}^{\infty}i(-1)^{p}\tilde{f}_{p}\sum_{n=1}^{\infty}\frac{\upsilon_{n}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{1}(\upsilon_{n})(\upsilon_{n}^{2}-\tilde{\alpha}_{p}^{2})(\tilde{\alpha}_{m}-\upsilon_{n})}-\frac{i(c-a)\tilde{\alpha}_{m}\cos\left[K_{2}(\tilde{\alpha}_{m})(c-a)\right](k-\tilde{\alpha}_{m})e^{i\tilde{\alpha}_{m}\ell}(-1)^{m}\tilde{f}_{m}}{2N_{2}^{-}(\tilde{\alpha}_{m})(k_{2}+\tilde{\alpha}_{m})}\\=-\sum_{n=1}^{\infty}\frac{e^{i\upsilon_{n}\ell}Y_{2n}}{i\dot{N}_{2}(\upsilon_{n})(k-\upsilon_{n})(\tilde{\alpha}_{m}-\upsilon_{n})} \quad (2.109)$$

ve

$$-L_{2}^{+}(\tilde{\alpha}_{m})\dot{F}_{1}(\tilde{\alpha}_{m},-a) - \sum_{n=1}^{\infty} \frac{Y_{1n}\dot{F}_{1}(\upsilon_{n},a)}{\dot{N}_{2}(\upsilon_{n})(\tilde{\alpha}_{m}-\upsilon_{n})} - \sum_{n=1}^{\infty} \frac{e^{i\upsilon_{n}\ell}Y_{2n}F_{+}(\upsilon_{n},-a)}{\dot{N}_{2}(\upsilon_{n})(\tilde{\alpha}_{m}-\upsilon_{n})} + \sum_{p=0}^{\infty} i(-1)^{p}\tilde{g}_{p}\sum_{n=1}^{\infty} \frac{\upsilon_{n}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{1}(\upsilon_{n})(\tilde{\alpha}_{m}-\upsilon_{n})(\upsilon_{n}^{2}-\tilde{\alpha}_{p}^{2})} + \sum_{n=1}^{\infty} \frac{i(-1)^{n}\tilde{f}_{n}}{2L_{2}^{+}(\tilde{\alpha}_{n})(\tilde{\alpha}_{m}-\tilde{\alpha}_{n})} + \frac{i(c-a)\tilde{\alpha}_{m}\cos\left[K_{2}(\tilde{\alpha}_{m})(c-a)\right](k-\tilde{\alpha}_{m})e^{i\tilde{\alpha}_{m}\ell}(-1)^{m}\tilde{g}_{m}}{2N_{2}^{-}(\tilde{\alpha}_{m})(k_{2}+\tilde{\alpha}_{m})} = -\frac{1}{iL_{2}^{+}(k)(k+\tilde{\alpha}_{m})} - e^{ik\ell}\sum_{n=1}^{\infty} \frac{e^{i\upsilon_{n}\ell}Y_{2n}}{i\dot{N}_{2}(\upsilon_{n})(\tilde{\alpha}_{m}-\upsilon_{n})(k+\upsilon_{n})} \quad (2.110)$$

denklemleri elde edilir. Böylece katsayıların bulunmasına ilişkin sonsuz bilinmeyenli sonsuz lineer cebirsel denklem sistemi elde edilir. Bu denklem sistemi nümerik olarak PivotluGaussEliminasyon yöntemi ile çözülmüştür.  $C_{++}$  programlama dili için Borland 5.0 derleyicisi kullanılmıştır. Uygun kesim sayısını bulmak için N ye göre değişen yansıyan alan değerlerine bakılmış, Şekil 2.3 de görülen parametreler için N > 6 olduğunda virgülden sonra üçüncü basamağa kadar hassasiyet kazandığı görülmüştür.



# 2.4 Alanın Analizi

#### 2.4.1 Yansıyan Alan

Bu problemde amaç  $u_3(x, y)$  ile gösterilen ve x < 0 bölgesinde tanımlı yansıyan alan ile  $x > \ell$  da tanımlı iletilen alanın incelenmesi idi. Bunun için önce  $u_3(x, y)$ fonksiyonunun Fourier dönüşümü olan  $F(\alpha, y)$  fonksiyonunun elde edilmesi ve daha sonra da ters Fourier dönüşümünün alınarak  $u_3(x, y)$  fonksiyonuna geçilmesi gereklidir. Böylece sözkonusu alan bulunmuş olur.  $\alpha$ -düzleminde tanımlı  $F(\alpha, y)$ fonksiyonu (2.26) da gösterildiği gibi  $B_1(\alpha)$  ve  $B_2(\alpha)$  spektral katsayılarına, bu katsayıların elde edilmesi ise (2.46) de belirtildiği gibi  $\dot{F}_1(\alpha, a)$  ve  $\dot{F}_1(\alpha, -a)$  fonksiyonlarına bağlıdır.  $F(\alpha,y)$  fonksiyonunun ters<br/> Fourier dönüşümü (1.5) deki tanımlamaya göre

$$u_3(x,y) = \frac{1}{2\pi} \int_{\mathcal{L}} \left[ B_1(\alpha) \cos(K(\alpha)y) + B_2(\alpha) \sin(K(\alpha)y) \right] e^{-i\alpha x} d\alpha, \qquad (2.111)$$

olarak alınır. (2.27) ifadesi (2.111) eşitliğinde kullanılırsa

$$u_3(x,y) = \frac{1}{2\pi} \int_{\mathcal{L}} \begin{bmatrix} \frac{-\dot{F}_1(\alpha,a) - \dot{F}_1(\alpha,-a)}{2K(\alpha)\sin Ka} \cos(K(\alpha)y) + \\ \frac{\dot{F}_1(\alpha,a) + \dot{F}_1(\alpha,-a)}{2K(\alpha)\sin Ka} \sin(K(\alpha)y) \end{bmatrix} e^{-i\alpha x} d\alpha$$
(2.112)

denklemi bulunur. Yansıyan alan x < 0 bölgesinde oluşacağından integral hesabında bölge Jordan lemmasına göre üstten kapatılır. (2.111) ifadesindeki

$$\alpha = \sqrt{k^2 - (m\pi/a)^2}$$

basit kutuplarından gelen katkı, temel mod için m=0dan sadece $\alpha=k$ olur. Buradan  ${\cal R}$ yansıma katsayısı:

$$\mathcal{R} = \frac{-i}{4ka} [\dot{F}_1(k,a) - \dot{F}_1(k,-a)]$$
(2.113)

olarak bulunur.  $\mathcal{R}$ 'nin değeri için (29a) ve (31) denklemlerinde  $\alpha = k$  değeri yazıldığında

$$\begin{split} \dot{F}_{1}(k,a) - \dot{F}_{1}(k,-a) &= -\frac{1}{2L_{1}^{+}(k)} \{ \frac{1}{2ikL_{1}^{+}(k)} - \sum_{m=1}^{\infty} \frac{T_{1m}\dot{F}_{1}(\beta_{m},-a)}{\dot{N}_{1}(\beta_{m})(k-\beta_{m})} - \\ &\sum_{m=1}^{\infty} \frac{i(-1)^{n}f_{m}}{2L_{1}^{+}(\alpha_{m})(k+\alpha_{m})} + \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{2m}F_{+}(\beta_{m},a)}{\dot{N}_{1}(\beta_{m})(k-\beta_{m})} - \\ &\sum_{m=1}^{\infty} \frac{e^{ik\ell}e^{i\beta_{m}\ell}T_{2m}}{i\dot{N}_{1}(\beta_{m})(k^{2}+\beta_{m}^{2})} - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{i(-1)^{m}g_{m}\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(\beta_{n})(k-\beta_{n})(\beta_{n}^{2}-\alpha_{m}^{2})} \} + \\ &\frac{1}{2L_{2}^{+}(k)} \{ \frac{-1}{2ikL_{2}^{+}(k)} + \sum_{m=1}^{\infty} \frac{Y_{1m}\dot{F}_{1}(\upsilon_{m},-a)}{\dot{N}_{1}(\upsilon_{m})(k-\upsilon_{m})} + \\ &\sum_{m=1}^{\infty} \frac{e^{i\upsilon_{m}\ell}Y_{2m}F_{+}(\upsilon_{m},-a)}{\dot{N}_{2}(\upsilon_{m})(k-\upsilon_{m})} - \sum_{m=1}^{\infty} \frac{e^{ik\ell}e^{i\upsilon_{m}\ell}Y_{2m}}{i\dot{N}_{1}(\upsilon_{m})(k^{2}+\upsilon_{m})} - \\ &\sum_{m=1}^{\infty} \frac{i(-1)^{n}\tilde{f}_{m}}{2L_{2}^{+}(\tilde{\alpha}_{m})(k+\tilde{\alpha}_{m})} - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{i(-1)^{m}\tilde{g}_{m}\upsilon_{n}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{1}(\upsilon_{n})(k-\upsilon_{n})(\upsilon_{n}^{2}-\tilde{\alpha}_{m}^{2})} \}$$
(2.114)

ifadesi elde edilir.

# 2.4.2 İletilen Alan

Benzer şekilde gelen dalga  $e^{ikx}$  ile aynı yönde yayılan iletilen alan, (3.2) integralinin bu kez  $x > \ell$  için hesaplanması ile bulunacaktır:

$$u_3(x,y) = \frac{1}{2\pi} \int_{\mathcal{L}} \frac{-\dot{F}_1(\alpha,a) - \dot{F}_1(\alpha,-a)}{2K(\alpha)\sin Ka} \cos(K(\alpha)y) + \frac{\dot{F}_1(\alpha,a) + \dot{F}_1(\alpha,-a)}{2K(\alpha)\sin Ka} \sin(K(\alpha)y) e^{-i\alpha x} d\alpha \quad (2.115)$$

Yine Jordan lemmasına göre $x>\ell$ olduğundan bölge aşağıdan kapatılır.  $\alpha=-k$ noktasından integrale gelen katkının hesabı ileTiletilen alan katsayısı

$$\mathcal{T} = \frac{i}{4ka} \left[ \dot{F}_1(-k,a) - \dot{F}_1(-k,-a) \right] e^{ikx}$$
(2.116)

olarak bulunur. (30a) ve (33) denklemler<br/>i $\alpha = -k$ için tekrar yazılır ve taraf tarafa toplanırsa

$$\begin{split} \dot{F}_{1}(-k,a) - \dot{F}_{1}(-k,-a) &= \frac{e^{-ik\ell}}{2L_{1}^{+}(k)} \{ \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{1m}\dot{F}_{1}(-\beta_{m},-a)}{\dot{N}_{1}(-\beta_{m})(k-\beta_{m})} - \\ \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}T_{2m}F_{-}(-\beta_{m},a)}{\dot{N}_{1}(-\beta_{m})(k-\beta_{m})} - \sum_{m=1}^{\infty} \frac{i(-1)^{m}g_{m}}{2L_{1}^{+}(\alpha_{m})(k+\alpha_{m})} - \sum_{m=1}^{\infty} \frac{e^{ik\ell}e^{i\beta_{m}\ell}T_{2m}}{i\dot{N}_{1}(-\beta_{m})(k^{2}-\beta_{m}^{2})} \\ &+ \sum_{m=1}^{\infty} i(-1)^{n}f_{m}\sum_{n=1}^{\infty} \frac{\beta_{n}e^{i\beta_{n}\ell}T_{2n}}{\dot{N}_{1}(-\beta_{n})(k-\beta_{n})(\beta_{n}^{2}-\alpha_{m}^{2})} \} + \\ &\frac{e^{-ik\ell}}{2L_{2}^{+}(k)} \{ -\sum_{m=1}^{\infty} \frac{e^{i\upsilon_{m}\ell}Y_{1m}\dot{F}_{1}(-\upsilon_{m},a)}{\dot{N}_{2}(-\upsilon_{m})(k-\upsilon_{m})} - \sum_{m=1}^{\infty} \frac{e^{i\upsilon_{m}\ell}Y_{2m}F_{-}(-\upsilon_{m},a)}{\dot{N}_{2}(-\upsilon_{m})(k-\upsilon_{m})} - \\ &\sum_{m=1}^{\infty} \frac{e^{i\upsilon_{m}\ell}Y_{2m}}{i\dot{N}_{1}(-\upsilon_{m})(k^{2}-\upsilon_{m}^{2})} - \sum_{m=1}^{\infty} \frac{i(-1)^{n}\tilde{g}_{m}}{2L_{2}^{+}(\tilde{\alpha}_{m})(k+\tilde{\alpha}_{m})} + \\ &\sum_{m=1}^{\infty} i(-1)^{n}\tilde{f}_{m}\sum_{n=1}^{\infty} \frac{\upsilon_{n}e^{i\upsilon_{n}\ell}Y_{2n}}{\dot{N}_{1}(-\upsilon_{n})(k-\upsilon_{n})(\upsilon_{n}^{2}-\tilde{\alpha}_{m}^{2})} \} - \frac{4ka}{i} \quad (2.117) \end{split}$$

ifadesi elde edilir. (3.7) denklemindeki son terim, gelen alan  $e^{ikx}$  terimini yok eder. İletilen alan katsayısı

$$\mathcal{T} = \frac{e^{-ik\ell}}{2L_1^+(k)} \{ \sum_{m=1}^{\infty} \frac{e^{i\beta_m\ell}T_{1m}\dot{F}_1(-\beta_m, -a)}{\dot{N}_1(-\beta_m)(k-\beta_m)} - \sum_{m=1}^{\infty} \frac{e^{i\beta_m\ell}T_{2m}F_-(-\beta_m, a)}{\dot{N}_1(-\beta_m)(k-\beta_m)} - \sum_{m=1}^{\infty} \frac{i(-1)^m g_m}{2L_1^+(\alpha_m)(k+\alpha_m)} + \sum_{m=1}^{\infty} i(-1)^n f_m \sum_{n=1}^{\infty} \frac{\beta_n e^{i\beta_n\ell}T_{2n}}{\dot{N}_1(-\beta_n)(k-\beta_n)(k-\beta_n)(\beta_n^2-\alpha_m^2)} - \sum_{m=1}^{\infty} \frac{e^{ik\ell}e^{i\beta_m\ell}T_{2m}}{i\dot{N}_1(-\beta_m)(k^2-\beta_m^2)} \} + \frac{e^{-ik\ell}}{2L_2^+(k)} \{ -\sum_{m=1}^{\infty} \frac{e^{i\nu_m\ell}Y_{1m}\dot{F}_1(-\nu_m, a)}{\dot{N}_2(-\nu_m)(k-\nu_m)} - \sum_{m=1}^{\infty} \frac{e^{i\nu_m\ell}Y_{2m}F_-(-\nu_m, a)}{\dot{N}_2(-\nu_m)(k-\nu_m)} - \sum_{m=1}^{\infty} \frac{e^{i\nu_m\ell}Y_{2m}}{i\dot{N}_1(-\nu_m)(k^2-\nu_m^2)} - \sum_{m=1}^{\infty} \frac{i(-1)^n\tilde{g}_m}{i\dot{N}_1(-\nu_m)(k^2-\nu_m^2)} \}$$
(2.118)

olarak bulunur.

# 2.5 Sayısal Uygulamalar ve Sonuçlar:

Bu bölümde, analitik olarak elde edilmiş bulunan yansıyan ve iletilen alanların sayısal analizi yapılmıştır. Aşağıdaki grafikler oyukların derinliklerine, dalga sayılarına ve dielektrik malzemelerin değişimine göre band-durduran filtre düzeneğinin yansıma katsayısını nasıl etkilediğini göstermektedir.



Şekil 2.4 Farklı derinlik değerleri için genliğin değişimi



Şekil 2.5. Dielektrik malzemenin farklı değerleri için yansıyan alan genliğinin

#### değişimi

Şekil 2.4 ve Şekil 2.5 de üst oyuğun derinliği sabit tutulurken alt oyuğun değeri arttırılmış, iki tane merkez band-durduran frekans b için aynı kalırken (k=3.46 GHz), c büyüdükçe sola doğru kaymış yani küçülmüştür. c=0.51 de band-durduran frekans 4.46 GHz iken, c=0.52 de 3.3 GHz olmuştur. Buna karşılık merkez frekans band genişliğinin (Q çarpanı) c ile doğru orantılı olarak değiştiği gözlenmiştir.



Şekil 2.6. Dielektrik malzemenin farklı değerleri için yansıyan alan genliğinin değişimi

Şekil 2.6 de  $\varepsilon_{r_2}$  nin farklı değerleri için merkez frekans değerlerine bakılmış, dielektrik sabiti arttıkça band-durduran frekanslardan c ye ait olan küçülmüştür. Her durumda çiftli merkez frekans elde edilmektedir. Q çarpanı değerinin ise çok fazla değişmediği ancak  $\varepsilon_{r_2}$  4.5 değerini aştığında genişlediği gözlenmiştir.



Şekil 2.7. Oyuğun değişen uzunluk değerlerinin yansıyan alan genliğine etkisi

Şekil 2.7 da oyuklar simetrik yani b=c alındığında  $\ell$  oyuk genişliği arttıkça merkez band-durduran frekansının değişmediği ve Q faktörünün değerinin arttığı gözlenmiştir.



Şekil 2.8. Farklı oyuk derinliği değerlerine göre iletilen alan genliğinin değişimi

Şekil 2.8 de ise dalga kılavuzundaki oyuklardan biri sabit tutularak diğer oyuk derinliği için farklı değerler alınmış, iletilen alan genliği hesaplandığında merkez frekans değerlerinin, yansıyan alan genliğine göre bulunan merkez frekans değerleri ile birbirini tamamlayacak şekilde bulunduğu görülmüştür.

# 3 Sonlu Uzunlukta Empedans süreksizliğinden Saçılma

Daha önce band-durduran filtre görevi gören asimetrik, iki oyuğu dielektrik malzeme yüklü paralel levhalı dalga kılavuzunu incelemiş ve parametrelerin değişen değerleri için band durduran frekanların nasıl oluştuğunu gözlemlemiştik. Şimdi de aynı tip dalga kılavuzunu dielektrik malzeme yerine sonlu uzunlukta empedans ile modelleyip sistemin yine aynı frekans aralığı için band-durduran filtre görevini yerine getirip getirmeyeceğini inceleyeceğiz. Problem, sonlu uzunlukta empedans yüklü paralel levhalı dalga kılavuzundan TEM modunda yayılan dalgayı inceleme problemidir. Paralel levhalar x < 0 ve  $x > \ell$  için y = 0 ve y = b de mükemmel iletken,  $0 < x < \ell$  aralığında ise sabit yüzey empedansına sahiptir. Üst y = byüzeyi  $Z_1$ , alt y = 0 yüzeyi ise  $Z_2$  empedansı ile modellenen düzenekte, normalize empeans değeri

$$\eta_j = \frac{Z_j}{Z_0}, \quad Z_0 = 120\pi, \qquad j = 1,2$$
(3.1a)

olarak alınmıştır. Burada $Z_0$ boş uzayın karakteristik empedansıdır.  $Z_{1,2}, Re(Z_{1,2}) > 0$ olacak şekilde gözönüne alınacaktır.  $\eta_j$  değerleri

$$\eta_1 = -i\sqrt{\frac{\mu_1}{\varepsilon_1}} \tan[k_1(b-a)] \tag{3.1b}$$

$$\eta_2 = -i\sqrt{\frac{\mu_2}{\varepsilon_2}} \tan[k_2(c-a)] \tag{3.1c}$$

formülleri ile hesaplanacaktır (EK-I).

#### 3.1 Problemin Formülasyonu



Şekil.3.1 Problemin geometrisi

Toplam alanın

$$u^{T}(x,y) = u^{i}(x,y) + u(x,y) \quad y \in (0,b) \ ve \ x \in (-\infty,\infty)$$
(3.2)

olarak ifade edildiği problemde, bilinmeyen u(x, y) fonksiyonu Helmholtz denklemini sağlar :

$$\Delta u(x,y) + k^2 u(x,y) = 0.$$
(3.3)

Bu ifadenin Fourier dönüşümü alınırsa (3.3) ün çözümü

$$u(x,y) = \int_{-\infty}^{\infty} \left\{ C(\alpha) \cos \left[ K(\alpha)y \right] + D(\alpha) \sin \left[ K(\alpha)y \right] \right\} e^{-i\alpha x} d\alpha$$
(3.4)

olarak elde edilir. (3.4) deki  $K(\alpha)$  fonksiyonunu (2.24) da tanımlanmıştı. Fonksiyonu tek değerli kılmak için düzlem, dallanma noktaları  $\alpha = k$  dan  $\alpha = k + i\infty$  a ve  $\alpha = -k$  dan  $\alpha = -k - i\infty$  a kesilmiştir. (3.4) de bulunan bilinmeyen spektral katsayılar  $C(\alpha)$  ve  $D(\alpha)$  aşağıdaki sınır koşulları yardımı ile belirlenecektir.

$$\frac{\partial}{\partial y} \left( u(x,0) + e^{ikx} \right) = 0 \qquad \qquad -\infty < x < 0 \quad \text{ve } \quad \ell < x < \infty \qquad (3.5a)$$

$$\frac{\partial}{\partial y} \left( u(x,b) + e^{ikx} \right) = 0 \qquad \qquad -\infty < x < 0 \quad \text{ve } \quad \ell < x < \infty \qquad (3.5b)$$

$$\left(1 + \frac{1}{ik\eta_1}\frac{\partial}{\partial y}\right)\left(u(x,0) + e^{ikx}\right) = 0 \qquad \qquad 0 < x < \ell \qquad (3.5c)$$

$$\left(1 - \frac{1}{ik\eta_2}\frac{\partial}{\partial y}\right)\left(u(x,b) + e^{ikx}\right) = 0 \qquad \qquad 0 < x < \ell \qquad (3.5d)$$

(3.2) ile tanımlanan karışık sınır değer probleminin tek çözümünün olması için

$$u^{T}(x,0) = \{O(|x|)^{\frac{1}{2}}, |x| \to 0$$

$$u^{T}(x,b) = \{O(|x-\ell|)^{\frac{1}{2}}, |x| \to \ell$$
(3.5e)

$$u(x,y) = \{O(e^{ikx}), |x| \to \infty$$
(3.5f)

ile belirtilen ayrıt ve radyasyon koşulları dikkate alınmalıdır. 14

(2.5a) ve (2.5b) sınır koşulları (2.4a) integral denklemine uygulanırsa

$$D(\alpha) = F_1(\alpha) / K(\alpha) \tag{3.6}$$

 $\mathrm{ile}$ 

$$C(\alpha) \sin [K(\alpha)y] + D(\alpha) \cos [K(\alpha)y] = F_2(\alpha)/K(\alpha)$$

$$C(\alpha) = \frac{F_1(\alpha) \cos \left[K(\alpha)b\right] - F_2(\alpha)}{K(\alpha) \sin \left[K(\alpha)b\right]}$$
(3.7)

elde edilir. $C(\alpha)$ ile $D(\alpha)$ ifadeleri

$$C(\alpha) + \frac{K(\alpha)}{ik\eta_1}D(\alpha) = \Phi_1^-(\alpha) + e^{i\alpha l}\Phi_1^+(\alpha) - \frac{1}{2\pi i}\frac{e^{il(\alpha+k)-1}}{\alpha+k}$$
(3.8)

$$\frac{C(\alpha)}{\eta_2} \left[ \eta_2 \cos\left[K(\alpha)b\right] + \frac{K(\alpha)}{ik} \sin\left[K(\alpha)b\right] \right] + \frac{D(\alpha)}{\eta_2} \left[ \eta_2 \sin\left[K(\alpha)b\right] - \frac{K(\alpha)}{ik} \cos\left[K(\alpha)b\right] \right] \\
= \Phi_2^-(\alpha) + e^{i\alpha l} \Phi_2^+(\alpha) - \frac{1}{2\pi i} \frac{e^{il(\alpha+k)-1}}{\alpha+k} \quad (3.9)$$

ifadeleri bulunur. Yukarıda kullanılan fonksiyonların açılımları

$$\Phi_1^-(\alpha) = \frac{1}{2\pi} \int_{-\infty}^0 \left(1 + \frac{1}{ik\eta_1} \frac{\partial}{\partial y}\right) u(x,0) e^{i\alpha x} dx, \qquad (3.10)$$

$$\Phi_2^-(\alpha) = \frac{1}{2\pi} \int_{-\infty}^0 (1 - \frac{1}{ik\eta_2} \frac{\partial}{\partial y}) u(x, b) e^{i\alpha x} dx, \qquad (3.11)$$

$$\Phi_1^+(\alpha) = \frac{1}{2\pi} \int_{\ell}^{\infty} (1 + \frac{1}{ik\eta_1} \frac{\partial}{\partial y}) u(x, 0) e^{i\alpha(x-\ell)} dx, \qquad (3.12)$$

$$\Phi_2^+(\alpha) = \frac{1}{2\pi} \int_{\ell}^{\infty} (1 - \frac{1}{ik\eta_2} \frac{\partial}{\partial y}) u(x, b) e^{i\alpha(x-\ell)} dx, \qquad (3.13)$$

$$F_1(\alpha) = \frac{1}{2\pi} \int_0^\ell \frac{\partial}{\partial y} u(x,0) e^{i\alpha x} dx, \qquad (3.14)$$

ve

$$F_2(\alpha) = \frac{1}{2\pi} \int_0^\ell \frac{\partial}{\partial y} u(x, b) e^{i\alpha x} dx$$
(3.15)

olarak alınmıştır.

Fourier integralinin analitik özelliklerine göre  $\Phi_{1,2}^+(\alpha)$  ve  $\Phi_{1,2}^-(\alpha)$   $\Im m(\alpha) >$  $\Im m(-k)$  ve  $\Im m(\alpha) < \Im m(k)$  bölgesinde regüler olan ve henüz bilimeyen fonksiyonlardır. (3.14) ve (3.15) de tanımlanmış olan  $F_{1,2}(\alpha)$  fonksiyonları ise bilinmeyen tam fonksiyonlardır. (3.6) ve (3.7) eşitlikleri (3.8) ve (3.9) denklemlerinde yerine yazılırsa aşağıda gösterilen  $\Im m(-k) < \Im m(\alpha) < \Im m(k)$  bölgesinde regüler, bir çift üçüncü tip modifiye Wiener-Hopf denklemi elde edilir:

$$\frac{M_1(\alpha)F_1(\alpha)}{\eta_1 K^2(\alpha)N(\alpha)} - \frac{F_2(\alpha)}{K^2(\alpha)N(\alpha)} + P^-(\alpha) = e^{i\alpha l}R^+(\alpha)$$
(3.16)

$$-\frac{M_2(\alpha)F_2(\alpha)}{\eta_2 K^2(\alpha)N(\alpha)} - \frac{F_1(\alpha)}{K^2(\alpha)N(\alpha)} + Q^-(\alpha) = e^{i\alpha l}S^+(\alpha)$$
(3.17)

Burada kullanılan fonksiyonların açılımları aşağıdaki gibidir.

$$M_{1,2}(\alpha) = \eta_{1,2} \cos[K(\alpha)b] + \frac{K(\alpha)}{ik} \sin[K(\alpha)b]$$
(3.18)

$$N(\alpha) = \frac{\sin[K(\alpha)b]}{K(\alpha)}$$
(3.19)

$$P^{-}(\alpha) = -\Phi_{1}^{-}(\alpha) - \frac{1}{2\pi i(k+\alpha)}$$
(3.20)

$$R^{+}(\alpha) = \Phi_{1}^{+}(\alpha) - \frac{e^{ikl}}{2\pi i(k+\alpha)}$$
(3.21)

$$Q^{-}(\alpha) = -\Phi_{2}^{-}(\alpha) - \frac{1}{2\pi i(k+\alpha)}$$
(3.22)

$$S^{+}(\alpha) = \Phi_{2}^{+}(\alpha) - \frac{e^{ikl}}{2\pi i(k+\alpha)}$$
(3.23)

Kolayca görülebileceği gibi  $P^{-}(\alpha)$  ve  $Q^{-}(\alpha)$  fonksiyonları  $\alpha = -k$  noktasındaki basit kutup dışında alt yarı-düzlemde regüler fonksiyonlardır.

# 3.2 Wiener-Hopf Denklemlerinin Çözümü:

Bu bölümde önceki bölümün sonunda elde edilmiş olan bir çift Wiener-Hopf denkleminin prosedüre uygun olarak çözümü incelenecektir. Öncelikle (3.18) ve (3.19) denklemlerinde ortaya çıkan  $M_{1,2}(\alpha)$  ve  $N(\alpha)$  çekirdek fonksiyonlarının faktörizasyonunu yapılır 8 :

$$M_{1,2}(\alpha) = M_{1,2}^+(\alpha) \cdot M_{1,2}^-(\alpha)$$
(3.24)

$$N(\alpha) = N^+(\alpha)N^-(\alpha) \tag{3.25}$$

Burada faktörler sırasıyla

$$M_1^+(\alpha) = \left[\eta_1 \cos(kb) + \frac{1}{i}\sin(kb)\right]^{\frac{1}{2}} \exp\left\{\frac{i\alpha b}{\pi}\left[1 - C - \ln\left(\frac{|\alpha|b}{\pi}\right) + i\frac{\pi}{2}\right]\right\} \times \prod_{m=1}^{\infty} (1 + \frac{\alpha}{v_m}) \exp\left(\frac{i\alpha b}{\pi m}\right) \quad (3.26)$$

$$M_2^+(\alpha) = \left[\eta_2 \cos(kb) + \frac{1}{i}\sin(kb)\right]^{\frac{1}{2}} \exp\left\{\frac{i\alpha b}{\pi}\left[1 - C - \ln\left(\frac{|\alpha|b}{\pi}\right) + i\frac{\pi}{2}\right]\right\} \times \prod_{m=1}^{\infty} (1 + \frac{\alpha}{v_m})\exp(\frac{i\alpha b}{\pi m}) \quad (3.27)$$

$$N^{+}(\alpha) = \left[\frac{\sin(kb)}{k}\right]^{\frac{1}{2}} \exp\left\{\frac{i\alpha b}{\pi}\left[1 - C - \ln\left(\frac{|\alpha|b}{\pi}\right) + i\frac{\pi}{2}\right]\right\} \times \prod_{m=1}^{\infty} (1 + \frac{\alpha}{\alpha_m}) \exp\left(\frac{i\alpha b}{\pi m}\right) \quad (3.28)$$

dir. BuradaC Euler sabiti olup $0,5771\ldots$ 'e eşittir.

$$M_1(\pm\beta_m) = 0, \ M_2(\pm\upsilon_m) = 0, \ N(\alpha_m) = 0, \ m = 1, 2, \dots$$
 (3.29)

Aynı zamanda bu fonksiyonlar çift fonksiyon özelliği gösterirler buradan

$$M_{1,2}^{-}(\alpha) = M_{1,2}^{+}(-\alpha), \qquad N^{-}(\alpha) = N^{+}(-\alpha)$$
(3.30)

ifadesi yazılabilir. (3.29) ve (3.30)eşitlikleri (3.24) ve (3.25) tam fonksiyonlarının (3.27) ve (3.28) faktorizasyonuna olanak verir.

Yukarıdaki eşitliklerde kullanılan  $\beta_m$ ,  $\upsilon_m$ ,  $\alpha_m$  ifadeleri sırasıyla  $M_{1,2}(\alpha)$  ve  $N(\alpha)$  fonksiyonlarının kökleridir. Bu köklerin hesabı nümerik olarak Newton



Figure 1: Şekil 3.2. Başlangıç kök değerleri için yaklaşım fonksiyonu

Metodu kullanılarak bulunacaktır. İyi bir yaklaşıklıkla hesap yapılabilmesi için kökler civarı iyi belirlenmelidir.  $M_1(\alpha)$  fonksiyonunda matematiksel kolaylık için

$$Ka = x, \qquad \eta_1 = i\eta, \quad A = \frac{1}{a\eta_1 k} \tag{3.31}$$

alınırsa (3.18) denklemi

$$cotx = Ax \tag{3.32}$$

denklemine dönüşür (Şekil 3.2). Buradan  $\boldsymbol{\beta}_m$ lerKaifadesinden çekilerek

$$\beta_m = \sqrt{k^2 - \left(\frac{x_m}{a}\right)^2} \qquad n = 0, 1, 2, \dots$$
 (3.33)

bağıntısı elde edilir.

 $x_m$ 'ler için ise (2.13*e*) eşitliğinin sağ yanındaki fonksiyonların eğimleri dikkate alınarak sol taraftaki fonksiyon ile kesim noktasına bakıldığında ilk kökler hakkında fikir sahibi olunur:

A > 0 ise  $\cot x = Ax$  denkleminin ilk kökü  $0 < x < \frac{\pi}{2}$  aralığındadır.  $ka < \frac{\pi}{2}$  ise tek reel kök bu ilk kök yani  $\beta_1$ olur (Şekil 4.3 de K noktası). Diğerleri reel kısmı çok küçük sayılar olan sanal köklerdir.

A < 0 ise  $\cot x = Ax$  denkleminin ilk kökü bu kez  $\frac{\pi}{2} < x < \pi$  aralığındadır (Şekil-4.3).  $ka < \frac{\pi}{2}$  ise bir reel kök,(m - 1) sanal kök, değilse sadece sanal kökler mevcuttur. Sadece baskın mod için hesap yapmak istersek  $\eta_1 ka < 1$ olmalı ve  $ka < \frac{\pi}{2}$  koşulu sağlanmalıdır. Örneğin  $M_1$  fonksiyonunun b = 0.5,  $\eta_1 = 0.1i$  ve  $\eta_2 = 0.2i$  parametreleri için önce k = 1 + i0.01daha sonra k = 2 + i0.01 değerlerine göre kökleri bulunduğunda ilk değerler dışında köklerin gittikçe sanal eksene yaklaşarak sırf sanal olduğu gözlenmiştir (Şekil-3.3).  $\beta_n$ ler ilk kdeğerine göre bulunan kökleri,  $v_n$ ler ikinci k değerine göre bulunan kökleri temsil etmektedir. Keyfi seçilen k değeri için kök değerleri aşağıdaki gibi hesaplanmıştır:

| $\beta_1 = 0.90634 + i0.01006$  | $v_1 = 0.80580 + i0.01031$        |
|---------------------------------|-----------------------------------|
| $\beta_2 = 0.00144 + i 5.65590$ | $\upsilon_2 = 0.00112 + i5.68768$ |
| $\beta_3 = 0.00071 + i 11.3960$ | $\upsilon_3 = 0.00037 + i11.4119$ |
| $\beta_4 = 0.00047 + i 17.1173$ | $\upsilon_4 = 0.00055 + i17.1279$ |
| $\beta_5 = 0.00035 + i22.8340$  | $\upsilon_5 = 0.00027 + i22.8419$ |

.

•

•

k=1+i0.01

k=2+i0.01

| $\beta_1 = 1.91031 + i0.1002$                 | $v_1 = 1.82292 + i0.01010$         |
|-----------------------------------------------|------------------------------------|
| $\beta_2 = 0.00336 + i 5.41755$               | $\upsilon_2 = 0.00300 + i 5.48303$ |
| $\boldsymbol{\beta}_3 = 0.000161 + i 11.2797$ | $v_3 = 0.00144 + i11.3118$         |
| $\beta_3 = 0.000161 + i 11.2797$              | $\upsilon_3 = 0.00144 + i11.3118$  |
| $\beta_4 = 0.00106 + i 17.0401$               | $\upsilon_4 = 0.00095 + i 17.0614$ |
| $\beta_5 = 0.00079 + i 22.7762$               | $\upsilon_5 = 0.00071 + i22.7921$  |

•

•

•



Şekil 3.3. Köklerin davranışı

(9a) denklemi bir ke<br/>z $(k-\alpha)N^-(\alpha)/M_1^-(\alpha)$ ile bir kez de $e^{-i\alpha l}(k+\alpha)N^+(\alpha)/M_1^+(\alpha)$ ile çarpıldığında

$$\frac{M_{1}^{+}(\alpha)F_{1}(\alpha)}{\eta_{1}(k+\alpha)N^{+}(\alpha)} - \frac{M_{1}^{+}(\alpha)F_{2}(\alpha)}{M_{1}(\alpha)(k+\alpha)N^{+}(\alpha)} + \frac{(k-\alpha)N^{-}(\alpha)}{M_{1}^{-}(\alpha)}P^{-}(\alpha) = e^{i\alpha l}\frac{(k-\alpha)N^{-}(\alpha)}{M_{1}^{-}(\alpha)}R^{+}(\alpha) \quad (3.34)$$

ve

$$e^{-i\alpha l} \frac{M_{1}^{-}(\alpha)F_{1}(\alpha)}{\eta_{1(k-\alpha)N^{-}(\alpha)}} - e^{-i\alpha l} \frac{M_{1}^{-}(\alpha)F_{2}(\alpha)}{M_{1}(\alpha)(k-\alpha)N^{-}(\alpha)} + e^{-i\alpha l} \frac{(k+\alpha)N^{+}(\alpha)}{M_{1}^{+}(\alpha)} P^{-}(\alpha) = \frac{(k+\alpha)N^{+}(\alpha)}{M_{1}^{+}(\alpha)} R^{+}(\alpha) \quad (3.35)$$

denklem takımı elde edilir. Benzer şekilde (3.17) denklemi de  $(k-\alpha)N^-(\alpha)/M_2^-(\alpha)$ ve  $e^{-i\alpha l}(k+\alpha)N^+(\alpha)/M_2^+(\alpha)$  ile çarpıldığında

$$-\frac{M_{2}^{+}(\alpha)F_{2}(\alpha)}{\eta_{2}(k+\alpha)N^{+}(\alpha)} + \frac{M_{2}^{+}(\alpha)F_{1}(\alpha)}{M_{2}(\alpha)(k+\alpha)N^{+}(\alpha)} + \frac{(k-\alpha)N^{-}(\alpha)}{M_{2}^{-}(\alpha)}Q^{-}(\alpha)$$
$$= e^{i\alpha l}\frac{(k-\alpha)N^{-}(\alpha)}{M_{2}^{-}(\alpha)}S^{+}(\alpha) \quad (3.36)$$

ve

$$e^{-i\alpha l} \frac{M_2^{-}(\alpha)F_2(\alpha)}{\eta_2(k-\alpha)N^{-}(\alpha)} - e^{-i\alpha l} \frac{M_2^{-}(\alpha)F_1(\alpha)}{M_2(\alpha)(k-\alpha)N^{-}(\alpha)} + e^{-i\alpha l} \frac{(k+\alpha)N^{+}(\alpha)}{M_2^{+}(\alpha)}Q^{-}(\alpha)$$
$$= \frac{(k+\alpha)N^{+}(\alpha)}{M_2^{+}(\alpha)}S^{+}(\alpha) \quad (3.37)$$

denklem çifti bulunur. (3.34) denklemindeki ilk terim üst yarı düzlemde regülerdir. Üçüncü terim ve sağ yandaki terim ise her iki yarı düzlemde de tekil noktalara sahiptir. Bu fonksiyonlar üst ve alt yarı düzlemlerde regüler olan fonksiyonların toplamları cinsinden yazılmalıdırlar. O halde bu terimler için Wiener-Hopf dekompozisyonu uygulanırsa

$$\frac{M_{1}^{+}(\alpha)F_{1}(\alpha)}{\eta_{1(k+\alpha)N^{+}(\alpha)}} - \frac{M_{1}^{+}(\alpha)F_{2}(\alpha)}{(k+\alpha)N^{+}(\alpha)M_{1}(\alpha)} - \frac{k}{\pi i}\frac{N^{+}(k)}{M_{1}^{+}(k)(k+\alpha)} - e^{i\alpha l}\frac{(k-\alpha)N^{-}(\alpha)}{M_{1}^{-}(\alpha)}R^{+}(\alpha) + \sum_{m=1}^{\infty}\frac{e^{-i\beta_{m}\ell}N(\upsilon_{m})M_{1}^{+}(\upsilon_{m})(k-\upsilon_{m})R^{+}(\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{1}(\upsilon_{m})(\alpha-\upsilon_{m})} \\
= \frac{(k-\alpha)N^{-}(\alpha)}{M_{1}^{-}(\alpha)}P^{-}(\alpha) - \frac{k}{\pi i}\frac{N^{+}(k)}{M_{1}^{+}(k)(k+\alpha)} + \sum_{m=1}^{\infty}\frac{e^{-i\beta_{m}\ell}N(\upsilon_{m})M_{1}^{+}(\upsilon_{m})(k-\upsilon_{m})R^{+}(\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{1}(\upsilon_{m})(\alpha-\upsilon_{m})} \quad (3.38)$$

ifadesi bulunur. Eşitliğin sol yanında ikinci terimde bulunan  $M_1(\alpha)$  fonksiyonunun her iki düzlemde  $\alpha = v_m$  deki sıfırlarından gelen basit kutup katkıları da gözönüne alındığında (m=1,2,3..) ,

$$\frac{M_{1}^{+}(\alpha)F_{1}(\alpha)}{\eta_{1(k+\alpha)N^{+}(\alpha)}} - \frac{M_{1}^{+}(\alpha)F_{2}(\alpha)}{(k+\alpha)N^{+}(\alpha)M_{1}(\alpha)} - \sum_{m=1}^{\infty} \frac{a_{m}}{(\alpha-\upsilon_{m})} - \frac{k}{\pi i} \frac{N^{+}(k)}{M_{1}^{+}(k)(k+\alpha)} - e^{i\alpha l} \frac{(k-\alpha)N^{-}(\alpha)}{M_{1}^{-}(\alpha)} R^{+}(\alpha) + \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}N(\upsilon_{m})M_{1}^{+}(\upsilon_{m})(k-\upsilon_{m})R^{+}(\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{1}(\upsilon_{m})(\alpha-\upsilon_{m})} = -\frac{(k-\alpha)N^{-}(\alpha)}{M_{1}^{-}(\alpha)} P^{-}(\alpha) - \frac{k}{\pi i} \frac{N^{+}(k)}{M_{1}^{+}(k)(k+\alpha)} + \sum_{m=1}^{\infty} \frac{e^{-i\beta_{m}\ell}N(\upsilon_{m})M_{1}^{+}(\upsilon_{m})(k-\upsilon_{m})R^{+}(\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{1}(\upsilon_{m})(\alpha-\upsilon_{m})} - \sum_{m=1}^{\infty} \frac{a_{m}}{(\alpha-\upsilon_{m})} \quad (3.39)$$

ifadesine ulaşılır. Burada  $\dot{M}_1(\alpha)$  fonksiyon<br/>u $M_1(\alpha)$  fonksiyonunun  $\alpha$  ya göre türevidir. Her iki taraftan çıkartılan<br/> $\sum_{m=1}^{\infty} a_m/(\alpha - \upsilon_m)$  terimi ise  $M_1(\alpha)$  fonksiyonunun<br/> $\alpha = \upsilon_m$  deki sıfırlarından gelen kutupların yokedilmesi ile elde edilmiştir.  $a_m$  ile ifade edilen terim taşınan kutupların katsayısı olan

$$a_m = -\frac{M_1^+(\upsilon_m)F_2(\upsilon_m)}{(k+\upsilon_m)N^+(\upsilon_m)\dot{M}_1(\upsilon_m)} \qquad m = 1, 2, 3.....$$
(3.40)

ifadesidir. (3.39) ifadesinin sol yanı üst yarı düzlemde yani  $(\Im m(\alpha) > \Im m(-k))$ bölgesinde regüler, sağ yanı da alt yarı düzlemde regülerdir. Denklemin sol yanı  $T_+(\alpha)$ , sağ yanı da  $T_-(\alpha)$  olarak adlandırılırsa, analitik devam ilkesinin özellikleri nedeniyle bir tam fonksiyon olan  $T(\alpha)$ 

$$T(\alpha) = \left\{ \begin{array}{c} T_{-}(\alpha), \Im m(\alpha) < \Im m(k) \\ T_{+}(\alpha), \Im m(\alpha) > \Im m(-k) \end{array} \right\}$$
(3.41)

olarak tanımlanabilir. Bu tam fonksiyonun neye eşit olduğunu bulabilmek için  $T_+(\alpha)$  veya  $T_-(\alpha)$  fonksiyonlarının  $|\alpha| \to \infty$  için davranışını bilmek yeterli olacaktır. Daha önce Liouville Teoremi tanımını yapmış ve fonksiyonun düzlemin tamamında bir sabite eşit olduğunu söylemiştik. Bu sabitin bulunabilmesi için önce  $T_+(\alpha)$  fonksiyonu ele alındığında

$$T^{+}(\alpha) = \frac{M_{1}^{+}(\alpha)F_{1}(\alpha)}{\eta_{1}(k+\alpha)N^{+}(\alpha)} - \frac{M_{1}^{+}(\alpha)F_{2}(\alpha)}{(k+\alpha)N^{+}(\alpha)M_{1}(\alpha)} - \sum_{m=1}^{\infty} \frac{a_{m}}{(\alpha-\beta_{m})} - \frac{k}{\pi i} \frac{N^{+}(k)}{M_{1}^{+}(k)(k+\alpha)} - e^{i\alpha l} \frac{(k-\alpha)N^{-}(\alpha)}{M_{1}^{-}(\alpha)}R^{+}(\alpha) + \sum_{m=1}^{\infty} \frac{e^{-i\beta_{m}\ell}N(\beta_{m})M_{1}^{+}(\beta_{m})(k-\beta_{m})R^{+}(\beta_{m})}{N^{+}(\beta_{m})\dot{M}_{1}(\beta_{m})(\alpha-\beta_{m})}$$
(3.42)

ifadesi yazılır. Kolayca gösterilebilir ki (3.42) denkleminde bulunan  $M_1^{\pm}(\alpha)$  ve $N^{\pm}(\alpha)$  çekirdek fonksiyonlarının  $|\alpha| \to \infty$  için davranışı

$$M_1^{\pm}(\alpha) = |\alpha|^{\frac{1}{2}}, \quad N^{\pm}(\alpha) = |\alpha|^{-\frac{1}{2}}$$
 (3.43)

olarak, üçüncü,dördüncü ve son terimlerin davranışı ise  $\alpha^{-1}$  olarak izlenebilir.  $R^+(\alpha)$  fonksiyonunun içinde bulunan  $\Phi_1(\alpha)$  fonksiyonu ise  $u_1(x, y)$  fonksiyonunun Fourier dönüşümüdür. Yani  $x \to 0$  için  $\alpha \to \infty$  demektir. Bütün bu hesaplamalar sonucunda görülebilir ki  $T^+(\alpha)$  fonksiyonunu,  $|\alpha| \to \infty$  için sıfıra eşit olur. Tam fonksiyonların özellikleri ve analitik devam ilkesi gereği

$$T^{+}(\alpha) = T^{-}(\alpha) = 0$$
 (3.44)

elde edilir. Buradan  $P^{-}(\alpha)$  fonksiyonu

$$\frac{(k-\alpha)N^{-}(\alpha)}{M_{1}^{-}(\alpha)}P^{-}(\alpha) = \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}N(\beta_{m})M_{1}^{+}(\beta_{m})(k-\beta_{m})R^{+}(\beta_{m})}{N^{+}(\beta_{m})\dot{M}_{1}(\beta_{m})(\alpha-\beta_{m})} - \frac{k}{\pi i}\frac{N^{+}(k)}{M_{1}^{+}(k)(k+\alpha)} - \sum_{m=1}^{\infty}\frac{a_{m}}{(\alpha-\beta_{m})} \quad (3.45)$$

şeklinde ifade edilebilir. (3.35), (3.36), (3.37) denklemleri için de aynı prosedür tekrarlanırsa

$$e^{-i\alpha l} \frac{M_{1}^{-}(\alpha)F_{1}(\alpha)}{\eta_{1}(k-\alpha)N^{-}(\alpha)} - e^{-i\alpha l} \frac{M_{1}^{-}(\alpha)F_{2}(\alpha)}{(k-\alpha)N^{-}(\alpha)M_{1}(\alpha)} - \sum_{m=1}^{\infty} \frac{b_{m}}{(\alpha+\upsilon_{m})} - e^{-i\alpha l} \frac{M_{1}^{-}(\alpha)F_{2}(\alpha)}{(k-\alpha)N^{-}(\alpha)M_{1}(\alpha)} - e^{-i\alpha l} \frac{N^{+}(\alpha)(k+\alpha)}{M_{1}^{+}(\alpha)}P^{-}(\alpha) = -\sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}N(-\upsilon_{m})M_{1}^{+}(\upsilon_{m})(k-\upsilon_{m})R^{+}(\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{1}(-\upsilon_{m})(\alpha+\upsilon_{m})}$$
(3.46)

$$\frac{(k+\alpha)N^{+}(\alpha)}{M_{1}^{+}(\alpha)}R^{+}(\alpha) = \sum_{m=1}^{\infty} \frac{b_{m}}{(\alpha+\upsilon_{m})} + \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}N(-\upsilon_{m})M_{1}^{+}(\upsilon_{m})(k-\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{1}(-\upsilon_{m})(\alpha+\upsilon_{m})}P^{-}(-\upsilon_{m}) \quad (3.47)$$

$$\frac{(k-\alpha)N^{-}(\alpha)}{M_{2}^{-}(\alpha)}Q^{-}(\alpha) = \sum_{m=1}^{\infty} \frac{e^{i\upsilon_{m}\ell}N(\upsilon_{m})M_{2}^{+}(\upsilon_{m})(k-\upsilon_{m})S^{+}(\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{2}(\upsilon_{m})(\alpha-\upsilon_{m})} - \frac{k}{\pi i}\frac{N^{+}(k)}{M_{2}^{+}(k)(k+\alpha)} - \sum_{m=1}^{\infty}\frac{c_{m}}{(\alpha-\upsilon_{m})} \quad (3.48)$$

$$\frac{-M_{2}^{+}(\alpha)F_{2}(\alpha)}{\eta_{2}(k+\alpha)N^{+}(\alpha)} + \frac{M_{2}^{+}(\alpha)F_{1}(\alpha)}{(k+\alpha)N^{+}(\alpha)M_{2}(\alpha)} - \sum_{m=1}^{\infty} \frac{c_{m}}{(\alpha-\upsilon_{m})}$$
$$= e^{ikl}\frac{(k-\alpha)M_{2}^{+}(\alpha)N(\alpha)F_{1}(\alpha)S^{+}(\alpha)}{N^{+}(\alpha)M_{2}(\alpha)} - \sum_{m=1}^{\infty} e^{i\upsilon_{m}\ell}\frac{(k-\upsilon_{m})M_{2}^{+}(\upsilon_{m})N(\upsilon_{m})F_{1}(\alpha)S^{+}(\upsilon_{m})}{N^{+}(\upsilon_{m})M_{2}(\upsilon_{m})(\alpha-\upsilon_{m})} - \frac{k}{\pi i}\frac{N^{+}(k)}{M_{2}^{+}(k)(k+\alpha)}$$
(3.49)

$$\frac{(k+\alpha)N^{+}(\alpha)}{M_{2}^{+}(\alpha)}S^{+}(\alpha)$$

$$=\sum_{m=1}^{\infty}\frac{e^{i\upsilon_{m}\ell}N(-\upsilon_{m})M_{2}^{+}(\upsilon_{m})(k-\upsilon_{m})Q^{-}(-\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{2}(-\upsilon_{m})(\alpha+\upsilon_{m})}+\sum_{m=1}^{\infty}\frac{d_{m}}{(\alpha+\upsilon_{m})}$$
(3.50)

$$-e^{-i\alpha l} \frac{M_{2}^{-}(\alpha)F_{2}(\alpha)}{\eta_{2}(k-\alpha)N^{-}(\alpha)} + e^{-i\alpha l} \frac{M_{2}^{-}(\alpha)F_{1}(\alpha)}{(k-\alpha)N^{-}(\alpha)M_{2}(\alpha)} - \sum_{m=1}^{\infty} \frac{d_{m}}{(\alpha+\upsilon_{m})}$$
$$= e^{-i\alpha l} \frac{(k+\alpha)M_{2}^{+}(\alpha)N(\alpha)Q^{-}(\alpha)}{M_{2}^{+}(\alpha)} + \sum_{m=1}^{\infty} e^{i\upsilon_{m}\ell} \frac{(k-\upsilon_{m})M_{2}^{+}(\upsilon_{m})N(-\upsilon_{m})Q^{-}(-\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{2}(-\upsilon_{m})(\alpha+\upsilon_{m})} - \frac{k}{\pi i} \frac{N^{+}(k)}{M_{2}^{+}(k)(k+\alpha)} \quad (3.51)$$

ifadeleri elde edilir. Burada bilinmeyen katsayılar  $b_m,\,c_m,\,d_m$ aşağıdaki gibi tanımlanmıştır:

$$b_m = -\frac{e^{i\beta_m \ell} M_1^+(\upsilon_m) F_2(-\upsilon_m)}{(k+\upsilon_m) N^+(\upsilon_m) \acute{M}_1(-\upsilon_m)}$$
(3.52)

$$c_m = \frac{M_2^+(\upsilon_m)F_1(\upsilon_m)}{(k+\upsilon_m)N^+(\upsilon_m)\acute{M}_1(\upsilon_m)}$$
(3.53)

$$d_m = \frac{e^{i\upsilon_m \ell} M_2^+(\upsilon_m) F_1(-\upsilon_m)}{(k+\upsilon_m) N^+(\upsilon_m) \dot{M}_1(-\upsilon_m)}$$
(3.54)

(2.21) ve (2.22b) eşitlikleri (2.14a) ve (2.14b), (2.23a) ve (2.24a) eşitlikleri de (2.14c) ve (2.14d) modifiye Wiener-Hopf denklemlerinde yerine yazılır:

$$\frac{M_{1}^{+}(\alpha)F_{1}(\alpha)}{\eta_{1}(k+\alpha)N^{+}(\alpha)} - \frac{M_{1}^{+}(\alpha)F_{2}(\alpha)}{(k+\alpha)N^{+}(\alpha)M_{1}(\alpha)} - \sum_{m=1}^{\infty} \frac{a_{m}}{(\alpha-\beta_{m})} + \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}N(\beta_{m})M_{1}^{+}(\beta_{m})(k-\beta_{m})R^{+}(\beta_{m})}{N^{+}(\beta_{m})\dot{M}_{1}(\beta_{m})(\alpha-\beta_{m})} - e^{i\alpha l}\frac{(k-\alpha)N^{-}(\alpha)M_{1}^{+}(\alpha)}{N^{+}(\alpha)M_{1}^{-}(\alpha)(k+\alpha)} \times \left[\sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}N(-\beta_{m})M_{1}^{+}(\beta_{m})(k-\beta_{m})P^{-}(-\beta_{m})}{N^{+}(\beta_{m})\dot{M}_{1}(-\beta_{m})(\alpha+\beta_{m})} + \sum_{m=1}^{\infty} \frac{b_{m}}{(\alpha+\beta_{m})}\right] \\ = \frac{k}{\pi i}\frac{N^{+}(k)}{M_{1}^{+}(k)(k+\alpha)} \quad (3.55)$$

$$e^{-i\alpha l} \frac{M_{1}^{-}(\alpha)F_{1}(\alpha)}{\eta_{1}(k-\alpha)N^{-}(\alpha)} - e^{-i\alpha l} \frac{M_{1}^{-}(\alpha)F_{2}(\alpha)}{M_{1}(\alpha)(k-\alpha)N^{-}(\alpha)} + e^{-i\alpha l} \frac{(k+\alpha)N^{+}(\alpha)M_{1}^{-}(\alpha)}{(k-\alpha)N^{-}(\alpha)M_{1}^{+}(\alpha)} \times \left[ \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}N(\beta_{m})M_{1}^{+}(\beta_{m})(k-\beta_{m})R^{+}(\beta_{m})}{N^{+}(\beta_{m})\dot{M}_{1}(\beta_{m})(\alpha-\beta_{m})} - \sum_{m=1}^{\infty} \frac{a_{m}}{(\alpha-\beta_{m})} \right] \\ - \sum_{m=1}^{\infty} \frac{b_{m}}{(\alpha+\beta_{m})} - \sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}N(-\beta_{m})M_{1}^{+}(\beta_{m})(k-\beta_{m})P^{-}(-\beta_{m})}{N^{+}(\beta_{m})\dot{M}_{1}(-\beta_{m})(\alpha+\beta_{m})} \\ = e^{-i\alpha l} \frac{N^{+}(\alpha)M_{1}^{-}(\alpha)}{(k-\alpha)N^{-}(\alpha)M_{1}^{+}(\alpha)} \frac{k}{\pi i} \frac{N^{+}(k)}{M_{1}^{+}(k)} \quad (3.56)$$

$$\frac{-M_{2}^{+}(\alpha)F_{2}(\alpha)}{\eta_{2}(k+\alpha)N^{+}(\alpha)} + \frac{M_{2}^{+}(\alpha)F_{1}(\alpha)}{(k+\alpha)N^{+}(\alpha)M_{2}(\alpha)} - \sum_{m=1}^{\infty} \frac{c_{m}}{(\alpha-v_{m})} + \sum_{m=1}^{\infty} e^{iv_{m}\ell} \frac{(k-v_{m})M_{2}^{+}(v_{m})N(v_{m})S^{+}(v_{m})}{N^{+}(v_{m})\dot{M}_{2}(v_{m})(\alpha-v_{m})} - e^{i\alpha l} \frac{(k-\alpha)N^{-}(\alpha)M_{2}^{+}(\alpha)}{(k+\alpha)N^{+}(\alpha)M_{2}^{-}(\alpha)} \times \left[ \sum_{m=1}^{\infty} \frac{e^{iv_{m}\ell}N(-v_{m})M_{2}^{+}(v_{m})(k-v_{m})Q^{-}(-v_{m})}{N^{+}(v_{m})\dot{M}_{2}(-v_{m})(\alpha+v_{m})} + \sum_{m=1}^{\infty} \frac{d_{m}}{(\alpha+v_{m})} \right] \\ = \frac{k}{\pi i} \frac{N^{+}(k)}{M_{2}^{+}(k)(k+\alpha)}$$
(3.57)

$$-\frac{e^{-i\alpha l}M_{2}^{-}(\alpha)F_{2}(\alpha)}{\eta_{2}(k-\alpha)N^{-}(\alpha)} + \frac{e^{-i\alpha l}M_{2}^{-}(\alpha)F_{1}(\alpha)}{(k-\alpha)N^{-}(\alpha)M_{2}(\alpha)} + e^{-i\alpha l}\frac{(k+\alpha)N^{+}(\alpha)M_{2}^{-}(\alpha)}{(k-\alpha)N^{-}(\alpha)M_{2}^{+}(\alpha)} \times \\ \left[\sum_{m=1}^{\infty}\frac{e^{i\beta_{m}\ell}N(\upsilon_{m})M_{2}^{+}(\upsilon_{m})(k-\upsilon_{m})S^{+}(\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{2}(\upsilon_{m})(\alpha-\upsilon_{m})} - \sum_{m=1}^{\infty}\frac{c_{m}}{(\alpha-\upsilon_{m})}\right] - \\ \sum_{m=1}^{\infty}\frac{e^{i\upsilon_{m}\ell}N(-\upsilon_{m})M_{2}^{+}(\upsilon_{m})(k-\upsilon_{m})Q^{-}(-\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{2}(-\upsilon_{m})(\alpha+\upsilon_{m})} - \sum_{m=1}^{\infty}\frac{d_{m}}{(\alpha+\upsilon_{m})} = 0 \quad (3.58)$$

Bulunan  $4N \times 4N$  lik sonsuz bilinmeyenli sonsuz lineer cebirsel denklem sisteminde  $a_m$ ,  $b_m$ ,  $c_m$ ,  $d_m$  katsayılarının içinde bulunan  $F_1(\alpha)$ ,  $F_2(\alpha)$  ler ve  $R^+(\alpha)$ ,  $P^-(\alpha)$ ,  $S^+(\alpha)$ ,  $Q^-(-v_m)$  ler bilinmeyenlerdir.

### 3.3 Katsayıların Elde Edilmesi

Yukarıda bahsedilen lineer denklem sistemi, (3.45), (3.47), (3.48), (3.50) denklemlerinde sırasıyla  $\alpha = -\beta_m, \beta_m, -\upsilon_m, \upsilon_m, (3.55)$  denkleminde  $\alpha = \beta_m, \upsilon_m, \upsilon_m, (3.56)$  denkleminde  $\alpha = -\beta_m, -\upsilon_m, (3.57)$  denkleminde  $\alpha = \beta_m, \upsilon_m$  ve (3.58) denkleminde  $\alpha = -\beta_m, -\upsilon_m$  kökleri yazılarak elde edilir:

$$\frac{(k+\beta_m)N^+(\beta_m)}{M_1^+(\beta_m)}P^-(-\beta_m) = -\sum_{n=1}^{\infty} \frac{e^{i\beta_n\ell}N(\beta_n)M_1^+(\beta_n)(k-\beta_n)R^+(\beta_n)}{N^+(\beta_n)\dot{M_1}(\beta_n)(\beta_m+\beta_n)} - \frac{k}{\pi i}\frac{N^+(k)}{M_1^+(k)(k+\alpha)} + \sum_{n=1}^{\infty}\frac{a_n}{(\beta_m+\beta_n)} \quad (3.59)$$

$$\frac{(k+\beta_m)N^+(\beta_m)}{M_1^+(\beta_m)}R^+(\beta_m) = \sum_{n=1}^{\infty} \frac{e^{i\beta_n\ell}N(-\beta_n)M_1^+(\beta_n)(k-\beta_n)P^-(-\beta_n)}{N^+(\beta_n)\dot{M}_1(\beta_n)(\beta_m+\beta_n)} + \sum_{n=1}^{\infty} \frac{b_n}{(\beta_m+\beta_n)}$$
(3.60)

$$\frac{(k+\upsilon_m)N^+(\upsilon_m)}{M_2^+(\upsilon_m)}Q^-(-\upsilon_n) = \sum_{n=1}^{\infty} \frac{e^{i\upsilon_n\ell}N(-\upsilon_n)M_2^+(\upsilon_n)(k-\upsilon_n)S^+(\upsilon_n)}{N^+(\upsilon_n)\dot{M_2}(\upsilon_n)(\upsilon_m+\upsilon_n)} + \sum_{n=1}^{\infty} \frac{c_n}{(\upsilon_m+\upsilon_n)} \quad (3.61)$$

$$\frac{(k+\upsilon_m)N^+(\upsilon_m)}{M_2^+(\upsilon_m)}S^+(\upsilon_n) = \sum_{n=1}^{\infty} \frac{e^{i\upsilon_n\ell}N(-\upsilon_n)M_2^+(\upsilon_n)(k-\upsilon_n)Q^-(-\upsilon_n)}{N^+(\upsilon_n)\dot{M}_2(-\upsilon_n)(\upsilon_m+\upsilon_n)} + \sum_{n=1}^{\infty} \frac{d_n}{(\upsilon_m+\upsilon_n)} \quad (3.62)$$

ifadeleri elde edilir. Aynı işlemler bu kez kalan denklemler için tekrarlanır.  $\left( 3.57\right)$ 

eşitliği $M_1^-(\boldsymbol{\beta}_m)$ ile çarpıldığında

$$-\frac{F_{2}(\beta_{m})}{(k+\beta_{m})N^{+}(\beta_{m})} + M_{1}^{-}(\beta_{m})\sum_{\substack{n=1\\m\neq n}}^{\infty} \frac{e^{i\beta_{n}\ell}N(\beta_{n})M_{1}^{+}(\beta_{n})(k-\beta_{n})R^{+}(\beta_{n})}{N^{+}(\beta_{n})\dot{M}_{1}(\beta_{n})(\beta_{m}-\beta_{n})} - M_{1}^{-}(\beta_{m})\sum_{\substack{n=1\\m\neq n}}^{\infty} \frac{a_{n}}{(\beta_{m}-\beta_{n})} - T(\beta_{m})\sum_{n=1}^{\infty} \frac{b_{n}}{(\beta_{m}+\beta_{n})} - T(\beta_{m})\sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}N(-\beta_{n})M_{1}^{+}(\beta_{n})(k-\beta_{n})P^{-}(-\beta_{n})}{N^{+}(\beta_{n})\dot{M}_{1}(-\beta_{n})(\beta_{m}+\beta_{n})} = 0 \quad (3.63)$$

elde edilir. $T(\boldsymbol{\beta}_m)$ fonksiyonu

$$T(\beta_m) = e^{i\alpha l} \frac{(k - \beta_m) N^-(\beta_m) M_1^+(\beta_m)}{N^+(\beta_m) M_1^-(\beta_m) (k + \beta_m)}$$
(3.64)

olarak alınmıştır. (3.63) dem=nolduğunda

$$\frac{1}{(k+\beta_m)N^+(\beta_m)} (\frac{1}{\dot{M}_1(\beta_m)} - 1)F_2(\beta_m) + \frac{e^{i\beta_m\ell}N(\beta_m)(k-\beta_m)}{N^+(\beta_m)\dot{M}_1(\beta_m)}R^+(\beta_m) - T(\beta_m)\frac{b_m}{2\beta_m} - T(\beta_m)\frac{e^{i\beta_m\ell}N(-\beta_m)M_1^+(\beta_m)(k-\beta_m)}{2\beta_mN^+(\beta_m)\dot{M}_1(-\beta_m)}P^-(-\beta_m) = 0 \quad (3.65)$$

denklemi elde edilir. $m\neq n$ olduğunda ise

$$\sum_{\substack{n=1\\m\neq n}}^{\infty} \frac{b_n}{(\beta_m + \beta_n)} - \sum_{\substack{n=1\\m\neq n}}^{\infty} \frac{e^{i\beta_n \ell} N(-\beta_n) M_1^+(\beta_n) (k - \beta_n) P^-(-\beta_n)}{N^+(\beta_n) \dot{M}_1(-\beta_n) (\beta_m + \beta_n)} = 0$$
(3.66)

bulunur. (3.56) denklem<br/>i $M_1^-(\beta_m)$ ile çarpıldığında

$$-\frac{e^{i\beta_{m}\ell}}{(k+\beta_{m})N^{+}(\beta_{m})}F_{2}(-\beta_{m})-T(\beta_{m})\sum_{n=1}^{\infty}\frac{e^{i\beta_{n}\ell}N(\beta_{n})M_{1}^{+}(\beta_{n})(k-\beta_{n})}{N^{+}(\beta_{n})\dot{M}_{1}(\beta_{n})(\beta_{m}+\beta_{n})}R^{+}(\beta_{n})+$$

$$T(\beta_{m})\sum_{n=1}^{\infty}\frac{a_{n}}{(\beta_{m}+\beta_{n})}-M_{1}^{-}(\beta_{m})\sum_{n=1}^{\infty}\frac{b_{n}}{(\beta_{n}-\beta_{m})}-$$

$$M_{1}^{-}(\beta_{m})\sum_{n=1}^{\infty}\frac{e^{i\beta_{n}\ell}N(-\beta_{n})M_{1}^{+}(\beta_{n})(k-\beta_{n})}{N^{+}(\beta_{n})\dot{M}_{1}(-\beta_{n})(\beta_{n}-\beta_{m})}P^{-}(-\beta_{n})$$

$$=T(\beta_{m})\frac{k}{\pi i}\frac{N^{+}(k)}{M_{1}^{+}(k)(k-\beta_{m})} \quad (3.67)$$

ifadesi elde edilir. (3.67) de m=nolduğunda denklem

$$-T(\beta_m)\frac{e^{i\beta_m\ell}N(\beta_m)M_1^+(\beta_m)(k-\beta_m)}{2\beta_mN^+(\beta_m)\acute{M_1}(\beta_m)}R^+(\beta_m)-T(\beta_m)\frac{a_m}{(\beta_m+\beta_m)}+$$

$$\frac{e^{i\beta_m\ell}}{(k+\beta_m)N^+(\beta_m)} [\frac{1}{\dot{M}_1(-\beta_m)} - 1]F_2(-\beta_m) -$$

$$\frac{e^{i\beta_m\ell}N(-\beta_m)(k-\beta_m)}{N^+(\beta_m)\acute{M}_1(-\beta_m)}P^-(-\beta_m)=$$

$$T(\beta_m) \frac{k}{\pi i} \frac{N^+(k)}{M_1^+(k)(k-\beta_m)},$$
(3.68)

 $m \neq n$ olduğunda ise denklem

$$\sum_{\substack{n=1\\m\neq n}}^{\infty} \frac{a_n}{(\beta_m + \beta_n)} + \sum_{\substack{n=1\\m\neq n}}^{\infty} \frac{e^{i\beta_n \ell} N(\beta_n) M_1^+(\beta_n) (k - \beta_n)}{N^+(\beta_n) \hat{M}_1(\beta_n) (\beta_m + \beta_n)} R^+(\beta_n) = -\frac{k}{\pi i} \frac{N^+(k)}{M_1^+(k)(k - \beta_m)} \quad (3.69)$$

ifadesine dönüşür. (3.57) de  $\alpha = v_m$  yazılır ve denklem  $M_2^-(v_m)$  ile çarpılırsa:

$$\frac{F_{1}(v_{m})}{(k+v_{m})N^{+}(v_{m})} - M_{2}^{-}(v_{m})\sum_{n=1}^{\infty} \frac{c_{n}}{(v_{m}-v_{n})} + M_{2}^{-}(v_{m})\sum_{n=1}^{\infty} e^{iv_{n}\ell} \frac{(k-v_{n})M_{2}^{+}(v_{n})N(v_{n})S^{+}(v_{n})}{N^{+}(v_{n})\dot{M}_{2}(v_{n})(v_{m}-v_{n})} - M_{2}^{-}(v_{m})\sum_{n=1}^{\infty} e^{iv_{n}\ell} \frac{(k-v_{n})M_{2}^{+}(v_{n})N(v_{n})S^{+}(v_{n})}{N^{+}(v_{n})\dot{M}_{2}(v_{n})(v_{m}-v_{n})} - Y_{1}(v_{m})\left[\sum_{n=1}^{\infty} \frac{e^{iv_{n}\ell}N(-v_{n})M_{2}^{+}(v_{n})(k-v_{n})Q^{-}(-v_{n})}{N^{+}(v_{n})\dot{M}_{2}(-v_{n})(v_{m}+v_{n})} + \sum_{n=1}^{\infty} \frac{d_{n}}{(v_{m}+v_{n})}\right] = \frac{k}{\pi i}\frac{N^{+}(k)}{M_{1}^{+}(k)(k+v_{m})} \quad (3.70)$$

ifadesi bulunur. Burada $Y(\upsilon_m)$ fonksiyonu

$$Y(v_m) = e^{i\alpha l} \frac{(k - v_m)N^-(v_m)M_2^+(v_m)}{(k + v_m)N^+(v_m)}$$
(3.71)

olarak alınmıştır. $\boldsymbol{m}=\boldsymbol{n}$  seçildiğinde denklem:

$$e^{i\upsilon_m \ell} \frac{(k-\upsilon_m)N(\upsilon_m)}{N^+(\upsilon_m)\dot{M}_2(\upsilon_m)} S^+(\upsilon_m) + \frac{F_1(\upsilon_m)}{(k+\upsilon_m)N^+(\upsilon_m)} \left[1 - \frac{1}{\dot{M}_2(\upsilon_n)}\right] -$$

$$Y(\upsilon_m)\frac{e^{i\upsilon_m\ell}N(-\upsilon_m)M_2^+(\upsilon_m)(k-\upsilon_m)}{2\upsilon_m N^+(\upsilon_m)\dot{M}_2(-\upsilon_m)}Q^-(-\upsilon_m) + Y(\upsilon_m)\frac{d_m}{2\upsilon_m} = 0, \qquad (3.72)$$

 $m \neq n$  seçildiğinde ise denklem:

$$\sum_{n=1}^{\infty} \frac{e^{i\upsilon_n \ell} N(-\upsilon_n) M_2^+(\upsilon_n) (k-\upsilon_n) Q^-(-\upsilon_n)}{N^+(\upsilon_n) \dot{M}_2(-\upsilon_n) (\upsilon_m+\upsilon_n)} + \sum_{n=1}^{\infty} \frac{d_n}{(\upsilon_m+\upsilon_n)} = 0$$
(3.73)

ifadesine dönüşür.

(3.58) de  $\alpha = -v_m$  yazılır ve denklem  $M_2^-(v_m)$  ile çarpılırsa:

$$\frac{e^{iv_m\ell}F_1(-v_m)}{(k+v_m)N^+(v_m)} + Y(v_m)\sum_{n=1}^{\infty} -e^{iv_n\ell}\frac{(k-v_n)M_2^+(v_n)N(v_n)}{N^+(v_n)\dot{M}_2(v_n)(v_m+v_n)}S^+(v_n) - M_2^-(v_m)\sum_{\substack{n=1\\m\neq n}}^{\infty} \frac{e^{iv_n\ell}N(-v_n)M_2^+(v_n)(k-v_n)}{N^+(v_n)\dot{M}_2(-v_n)(-v_m+v_n)}Q^-(-v_n) + Y(v_m)\sum_{n=1}^{\infty}\frac{c_n}{(v_m+v_n)} - M_2^-(v_m)\sum_{\substack{n=1\\m\neq n}}^{\infty}\frac{d_n}{(-v_m+v_n)} = Y(v_m)\frac{k}{\pi i}\frac{N^+(k)}{M_1^+(k)(k-v_m)}$$
(3.74)

ifadesi elde edilir. $\boldsymbol{m}=\boldsymbol{n}$ seçildiğinde denklem

$$-e^{i\upsilon_{m}\ell}\frac{(k-\upsilon_{m})N(-\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{2}(-\upsilon_{m})}Q^{-}(-\upsilon_{m})+e^{i\upsilon_{m}\ell}\frac{F_{1}(-\upsilon_{m})}{(k+\upsilon_{m})N^{+}(\upsilon_{m})}\left[1-\frac{1}{\dot{M}_{2}(-\upsilon_{n})}\right]-$$
$$(\beta_{m})\frac{e^{i\upsilon_{m}\ell}N(\upsilon_{m})M_{2}^{+}(\upsilon_{m})(k-\upsilon_{m})}{2\upsilon_{m}N^{+}(\upsilon_{m})\dot{M}_{2}(\upsilon_{m})}S^{+}(\upsilon_{m})+Y(\beta_{m})\frac{c_{m}}{2\upsilon_{m}}$$
$$=Y(\upsilon_{m})\frac{k}{\pi i}\frac{N^{+}(k)}{M_{1}^{+}(k)(k-\upsilon_{m})}$$
(3.75)

 $m \neq n$  seçildiğinde ise

$$\sum_{n=1}^{\infty} \frac{e^{i\upsilon_n \ell} N(\upsilon_n) M_2^+(\upsilon_n)(k-\upsilon_n)}{N^+(\upsilon_n) \dot{M}_2(-\upsilon_n)(\upsilon_m+\upsilon_n)} S^+(\upsilon_m) - \sum_{n=1}^{\infty} \frac{c_n}{(\upsilon_m+\upsilon_n)} = \frac{k}{\pi i} \frac{N^+(k)}{M_1^+(k)(k-\upsilon_m)}$$
(3.76)

olarak elde edilir.

Bu kez (3.55 – 3.58) denklemlerinde  $\alpha$  yerine sırasıyla  $v_m, -v_m, \beta_m, -\beta_m$  kökleri yazıldığında aşağıdaki ifadeler elde edilir:

$$\frac{M_{1}^{+}(\upsilon_{m})F_{1}(\upsilon_{m})}{\eta_{1}(k+\upsilon_{m})N^{+}(\upsilon_{m})} - \frac{M_{1}^{+}(\upsilon_{m})F_{2}(\upsilon_{m})}{(k+\upsilon_{m})N^{+}(\upsilon_{m})M_{1}(\upsilon_{m})} - \sum_{n=1}^{\infty} \frac{a_{n}}{(\upsilon_{m}-\beta_{n})} + \sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}N(\beta_{n})M_{1}^{+}(\beta_{n})(k-\beta_{n})R^{+}(\beta_{n})}{N^{+}(\beta_{n})\dot{M}_{1}(\beta_{n})(\upsilon_{m}-\beta_{n})} - e^{i\upsilon_{m}\ell}\frac{(k-\upsilon_{m})N^{-}(\upsilon_{m})M_{1}^{+}(\upsilon_{m})}{N^{+}(\upsilon_{m})M_{1}^{-}(\upsilon_{m})(k+\upsilon_{m})} \times \left[\sum_{n=1}^{\infty} \frac{e^{i\beta_{n}\ell}N(-\beta_{n})M_{1}^{+}(\beta_{n})(k-\beta_{n})P^{-}(-\beta_{n})}{N^{+}(\beta_{n})\dot{M}_{1}(-\beta_{n})(\upsilon_{m}+\beta_{n})} + \sum_{n=1}^{\infty} \frac{b_{n}}{(\upsilon_{m}+\beta_{n})}\right] \\ = \frac{k}{\pi i}\frac{N^{+}(k)}{M_{1}^{+}(k)(k+\upsilon_{m})} \quad (3.77)$$

$$e^{i\upsilon_{m}\ell} \frac{M_{1}^{+}(\upsilon_{m})F_{1}(-\upsilon_{m})}{\eta_{1}(k+\upsilon_{m})N^{+}(\upsilon_{m})} - e^{i\upsilon_{m}\ell} \frac{M_{1}^{+}(\upsilon_{m})F_{2}(-\upsilon_{m})}{M_{1}(-\upsilon_{m})(k+\upsilon_{m})N^{+}(\upsilon_{m})} + e^{i\upsilon_{m}\ell} \frac{(k-\upsilon_{m})N^{-}(\upsilon_{m})M_{1}^{+}(\upsilon_{m})}{(k+\upsilon_{m})N^{+}(\upsilon_{m})M_{1}^{-}(\upsilon_{m})} \\ \left[ -\sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}N(\beta_{m})M_{1}^{+}(\beta_{m})(k-\beta_{m})}{N^{+}(\beta_{m})(1-\beta_{m})}R^{+}(\beta_{m}) + \sum_{m=1}^{\infty} \frac{a_{m}}{(\upsilon_{m}+\beta_{m})} \right] - \sum_{m=1}^{\infty} \frac{b_{m}}{N^{+}(\beta_{m})M_{1}(\beta_{m})(\upsilon_{m}+\beta_{m})} R^{+}(\beta_{m})M_{1}^{+}(\beta_{m})(k-\beta_{m})}{N^{+}(\beta_{m})M_{1}(-\beta_{m})(-\upsilon_{m}+\beta_{m})}P^{-}(-\beta_{m}) \\ = e^{i\upsilon_{m}\ell}\frac{(k-\upsilon_{m})N^{-}(\upsilon_{m})M_{1}^{+}(\upsilon_{m})}{(k+\upsilon_{m})N^{+}(\upsilon_{m})M_{1}^{-}(\upsilon_{m})} \frac{k}{\pi i} \frac{N^{+}(k)}{M_{1}^{+}(k)(k-\upsilon_{m})}$$
(3.78)

$$\frac{-M_{2}^{+}(\beta_{m})F_{2}(\beta_{m})}{\eta_{2}(k+\beta_{m})N^{+}(\beta_{m})} + \frac{M_{2}^{+}(\beta_{m})F_{1}(\beta_{m})}{(k+\beta_{m})N^{+}(\beta_{m})M_{2}(\beta_{m})} - \sum_{n=1}^{\infty} \frac{c_{n}}{(\beta_{m}-\upsilon_{n})} + \sum_{n=1}^{\infty} e^{i\upsilon_{n}\ell} \frac{(k-\upsilon_{n})M_{2}^{+}(\upsilon_{n})N(\upsilon_{n})S^{+}(\upsilon_{n})}{N^{+}(\upsilon_{n})\dot{M}_{2}(\upsilon_{n})(\beta_{m}-\upsilon_{n})} - e^{i\beta_{m}\ell} \frac{(k-\beta_{m})N^{-}(\beta_{m})M_{2}^{+}(\beta_{m})}{(k+\beta_{m})N^{+}(\beta_{m})M_{2}^{-}(\beta_{m})} \times \left[\sum_{n=1}^{\infty} \frac{e^{i\upsilon_{n}\ell}N(-\upsilon_{n})M_{2}^{+}(\upsilon_{n})(k-\upsilon_{n})Q^{-}(-\upsilon_{n})}{N^{+}(\upsilon_{n})\dot{M}_{2}(-\upsilon_{n})(\beta_{m}+\upsilon_{n})} + \sum_{n=1}^{\infty} \frac{d_{n}}{(\beta_{m}+\upsilon_{n})}\right] \\ = \frac{k}{\pi i} \frac{N^{+}(k)}{M_{1}^{+}(k)(k+\beta_{m})} \quad (3.79)$$

$$-\frac{e^{i\beta_{m}\ell}M_{2}^{+}(\beta_{m})F_{2}(-\beta_{m})}{\eta_{2}(k+\beta_{m})N(-\beta_{m})} + \frac{e^{i\beta_{m}\ell}M_{2}^{+}(\beta_{m})F_{1}(-\beta_{m})}{(k+\beta_{m})N^{+}(\beta_{m})M_{2}(-\beta_{m})} + e^{-i\beta_{m}\ell}\frac{(k-\beta_{m})N^{-}(\beta_{m})M_{2}^{+}(\beta_{m})}{(k+\beta_{m})N^{+}(\beta_{m})M_{2}^{-}(\beta_{m})} \times \left[ -\sum_{n=1}^{\infty}\frac{e^{i\beta_{n}\ell}N(\upsilon_{n})M_{2}^{+}(\upsilon_{n})(k-\upsilon_{n})S^{+}(\upsilon_{n})}{N^{+}(\upsilon_{n})\dot{M}_{2}(\upsilon_{n})(\beta_{m}+\upsilon_{n})} + \sum_{n=1}^{\infty}\frac{c_{n}}{(\beta_{n}+\upsilon_{n})} \right] - \sum_{n=1}^{\infty}\frac{e^{i\upsilon_{n}\ell}N(-\upsilon_{n})M_{2}^{+}(\upsilon_{n})(k-\upsilon_{n})}{N^{+}(\upsilon_{n})\dot{M}_{2}(-\upsilon_{n})(-\beta_{m}+\upsilon_{n})}Q^{-}(-\upsilon_{n}) - \sum_{n=1}^{\infty}\frac{d_{n}}{(-\beta_{m}+\upsilon_{n})} \\ = e^{-i\beta_{m}\ell}\frac{(k-\beta_{m})N^{-}(\beta_{m})M_{2}^{+}(\beta_{m})}{(k+\beta_{m})N^{+}(\beta_{m})M_{2}^{-}(\beta_{m})}\frac{k}{\pi i}\frac{N^{+}(k)}{M_{1}^{+}(k)(k+\beta_{m})}$$
(3.80)

Bundan sonra  $4N \times 4N$  lik sonsuz denklem sisteminden nümerik metodla  $R^+(\beta_m), P^-(-\beta_m), S^+(\beta_m), Q^-(-\beta_m), F_1(\beta_m), F_2(\beta_m), F_1(-\beta_m), F_2(-\beta_m),$   $F_1(\upsilon_m), F_2(\upsilon_m), F_1(-\upsilon_m), F_2(-\upsilon_m)$  bilinmeyenleri bulunur. (m = 1, 2, ..N).Denklem sisteminin şekil 3.4 de görüleceği üzere seçilen parametrelere göre N > 6dan itibaren yakınsadığı gözlenmiştir.



Şekil 3.4. Denklem sisteminin yakınsaklığı

# 3.4 Alanın Analizi

Problemdeki amaç u(x, y) ile gösterilen x < 0'da tanımlı Yansıyan alan ile  $x > \ell$ da tanımlı *İletilen* alanın incelenmesi idi. Bunun için

$$u_3(x,y) = \frac{1}{2\pi} \int_{\mathcal{L}} \left[ C(\alpha) \cos(K(\alpha)y) + D(\alpha) \sin(K(\alpha)y) \right] e^{-i\alpha x} d\alpha$$
(3.81)

integrali hesaplanmalıdır.

#### 3.4.1 Yansıyan Alan

(3.81) de verilen  $C(\alpha)$  ve  $D(\alpha)$  spektral katsayılarına yani  $F_1(\alpha)$ ,  $F_2(\alpha)$  fonksiyonlarına bağlı integral x < 0 için hesaplandığında Yansıyan alan elde edilir. (3.6) ve (3.7) katsayıları yazıldığında

$$u(x,y) = \int_{\mathcal{L}} \left\{ \frac{F_1(\alpha) \cos\left[K(\alpha)b\right] - F_2(\alpha)}{K(\alpha) \sin\left[K(\alpha)b\right]} \cos\left[K(\alpha)y\right] + \frac{F_1(\alpha)}{K(\alpha)} \sin\left[K(\alpha)y\right] \right\} e^{-i\alpha x} d\alpha$$

buradan kısaltmalar yapıldığında

$$u(x,y) = \int_{\mathcal{L}} \left\{ \frac{F_1(\alpha) \cos\left[K(\alpha)(y-b)\right] - F_2(\alpha) \cos\left[K(\alpha)y\right]}{K(\alpha) \sin\left[K(\alpha)b\right]} \right\} e^{-i\alpha x} d\alpha \qquad (3.82)$$

ifadesi elde edilir. (1.10) da tanımlanan  $\mathcal{L}$  integral eğrisi üzerinden integral hesabı için bölge Jordan Lemması na göre üstten kapatılır.  $K(\alpha) \sin [K(\alpha)b]$  nın üst yarı düzlemdeki sıfırlarından gelen basit kutup katkısı Rezidü Teoremi ne göre hesaplandığında (3.82) integralinin değeri bulunmuş olur. Hesaplanmak istenen temel mod olduğundan gelen katkı sadece  $\alpha = k$  daki ilk kutup içindir. Buradan gelen katkı hesaplandığında  $\mathcal{R}$ , Yansıma katsayısı:

$$\mathcal{R} = \frac{\pi i}{kb} \left[ F_1(k) - F_2(k) \right] \tag{3.83}$$

olarak bulunur. Çözüm için (3.55) ve (3.57) denklemlerinde  $\alpha=k$ yazılırsa

$$\frac{M_1^+(k)F_1(k)}{2k\eta_1 N^+(k)} - \frac{M_1^+(k)F_2(k)}{2k\eta_1 N^+(k)} - \sum_{m=1}^{\infty} \frac{a_m}{(k-\beta_m)} + \sum_{m=1}^{\infty} \frac{e^{i\beta_m \ell} N(\beta_m) M_1^+(\beta_m)}{N^+(\beta_m) \dot{M}_1(\beta_m)} R^+(\beta_m) = \frac{1}{2\pi i} \frac{N^+(k)}{M_1^+(k)} \quad (3.84)$$

ve
$$\frac{-M_2^+(k)F_2(k)}{2k\eta_2 N^+(k)} + \frac{M_2^+(k)F_1(k)}{2k\eta_2 N^+(k)} - \sum_{m=1}^{\infty} \frac{c_m}{(k-\upsilon_m)} + \sum_{m=1}^{\infty} e^{i\upsilon_m \ell} \frac{N(\upsilon_m)M_2^+(\upsilon_m)}{N^+(\upsilon_m)\dot{M}_2(\upsilon_m)} S^+(\upsilon_m) = \frac{1}{2\pi i} \frac{N^+(k)}{M_2^+(k)} \quad (3.85)$$

eşitlikleri bulunur. Buradan

$$F_{1}(k) - F_{2}(k) = \frac{k\eta_{1}N^{+}(k)}{M_{1}^{+}(k)} \times \left[ -\sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}N(\beta_{m})M_{1}^{+}(\beta_{m})}{N^{+}(\beta_{m})\dot{M}_{1}(\beta_{m})} R^{+}(\beta_{m}) + \frac{1}{2\pi i} \frac{N^{+}(k)}{M_{1}^{+}(k)} + \sum_{m=1}^{\infty} \frac{a_{m}}{(k-\beta_{m})} \right] + \frac{k\eta_{2}N^{+}(k)}{M_{2}^{+}(k)} \times \left[ -\sum_{m=1}^{\infty} e^{i\upsilon_{m}\ell} \frac{N(\upsilon_{m})M_{2}^{+}(\upsilon_{m})}{N^{+}(\upsilon_{m})\dot{M}_{2}(\upsilon_{m})} S^{+}(\upsilon_{m}) + \frac{1}{2\pi i} \frac{N^{+}(k)}{M_{2}^{+}(k)} + \sum_{m=1}^{\infty} \frac{c_{m}}{(k-\upsilon_{m})} \right]$$
(3.86)

hesaplanarak yansıyan alan değeri bulunur.

## 3.4.2 İletilen Alan

(3.82) integralinin değeri bu kez  $x > \ell$  için hesaplandığında iletilen alan bulunur. Gelen dalga  $\exp(ikx)$  ile aynı yönde yayılan iletilen alanın katsayısı  $\mathcal{T}$  ile gösterilirse,  $\mathcal{T}$  değeri, istenilen yine temel mod olduğundan alt yarı düzlemin ilk kutbu  $\alpha = -k$  dan gelen katkı bulunarak hesaplanır. Bu kez (3.56) ve (3.58) denklemlerinde  $\alpha = -k$  yazılır ve taraf tarafa toplanırsa iletilen alan ifadesi

$$(-1+\mathcal{T})e^{ikx} \tag{3.87}$$

olarak bulunur.

$$e^{ikl} \frac{M_1^+(k)}{2k\eta_1 N^+(k)} \left[ F_1(-k) - F_2(-k) \right] - \sum_{m=1}^{\infty} \frac{b_m}{(-k+\beta_m)} + \sum_{m=1}^{\infty} \frac{e^{i\beta_m \ell} N(-\beta_m) M_1^+(\beta_m)}{N^+(\beta_m) \dot{M}_1(-\beta_m)} P^-(-\beta_m) = 0 \quad (3.88)$$

ve

$$-\frac{e^{ikl}M_2^+(k)F_2(-k)}{2k\eta_2N(-k)} + \frac{e^{ikl}M_2^+(k)F_1(-k)}{2k\eta_2N^+(k)} + \sum_{m=1}^{\infty} \frac{e^{i\upsilon_m\ell}N(-\upsilon_m)M_2^+(\upsilon_m)}{N^+(\upsilon_m)\dot{M}_2(-\upsilon_m)} - \sum_{m=1}^{\infty} \frac{d_m}{(-k+\upsilon_m)} = 0 \quad (3.89)$$

eşitlikleri taraf tarafa toplanırsa

$$\begin{split} \vec{\mathcal{T}} &= -\frac{\pi i}{kb} \left\{ \frac{k\eta_1 N^+(k)e^{-ikl}}{M_1^+(k)} \left[ -\sum_{m=1}^{\infty} \frac{b_m}{(-k+\beta_m)} - \sum_{m=1}^{\infty} \frac{e^{i\beta_m \ell} N(-\beta_m) M_1^+(\beta_m)}{N^+(\beta_m) \dot{M}_1(-\beta_m)} P^-(-\beta_m) \right] \right\} \\ &+ \left\{ \frac{k\eta_1 N^+(k)e^{-ikl}}{M_1^+(k)} \left[ -\sum_{m=1}^{\infty} \frac{d_m}{(-k+\upsilon_m)} - \sum_{m=1}^{\infty} \frac{e^{i\upsilon_m \ell} N(-\upsilon_m) M_2^+(\upsilon_m)}{N^+(\upsilon_m) \dot{M}_2(-\upsilon_m)} \right] \right\}$$
(3.90)

iletim katsayısı bulunur. (3.87) nin ilk terimindeki gelen TEM dalgası sadeleşmektedir. Bu beklenen bir sonuçtur. Gelen dalganın  $x \in (0, \ell)$  için verilen (3.2c, d) empedans sınır koşullarını sağlamadığı kolayca görülebilir.

## 3.5 Sayısal Uygulamalar ve Sonuçlar

Bu bölümde, analitik olarak elde edilmiş bulunan yansıyan ve iletilen alanların sayısal analizi, farklı empedans değerleri, empedans şerit uzunluğu için değişen dalga sayısına göre incelenmiştir. Şekil 3.5 de alt plakadaki farklı empedans değerlerinin band-durduran merkez frekansa çok etkisi olmadığı, ancak empedans değeri arttıkça Q faktörünün değerinin de arttığı gözlenmiştir.



Şekil 3.5. Farklı $\eta_2$  değerleri için yansıyan alan genliğinin değişimi

Şekil-3.6. da üst plakadaki sabit yüzey empedansının azalan değerleri için b, alt yüzey empedansı ve empedans uzunluğu sabit tutulmuş, merkez banddurduran frekans değişmemiş, buna karşılık Q çarpanı değeri azalmıştır.



Şekil 3.6. Farklı $\eta_1$ değerleri için yansıyan alanın genliği

Şekil 3.7 de bu kez pozitif değerli (kapasitif) üst yüzey empedansının değişen değerlerine karşılık negatif alt yüzey empedansı, empedans uzunluğu ve iki levha arası mesafe sabit tutulmuş, band-durduran merkez frekans sağa doğru kayarak artmıştır. Aynı zamanda kalite faktörünün küçüldüğü gözlenmiştir.



Şekil 3.7. Şerit uzunluğuna göre yansıyan alan genliği

Şekil 3.6 da ise yansıyan alan genliği,  $\eta_1$ in (-18i,+14i) aralığındaki değerleri için çizilmiş, pozitif değerler için yansıma katsayısı bir değerine yaklaşmış, neredeyde hiç alan iletilmediği gözlenmiştir. Negatif değerlerde ise tam iletim gerçekleştiği gözlenmiştir. Şekil 3.7 de  $\ell$ 'nin farklı değerleri için yansıyan alanın genliğine bakılmış ve  $\ell$  arttıkça alanın da arttığı gözlenmiştir.



Şekil 3.8. $\ell$ nin farklı değerleri için yansıyan alanın genliği



Şekil 3.8 b nin farklı değerleri için yansıyan alanın genliği

Normalize empedans değerleri $\eta_1=\eta_2=\eta$ olacak şekilde alınırs<br/>a $M_1(\alpha)$ ve

 $M_2(\alpha)$ çekirdek fonksiyonları

$$M_{1,2}(\alpha) = M(\alpha) = \eta \cos[K(\alpha)b] + \frac{K(\alpha)}{ik} \sin[K(\alpha)b]$$
(3.91)

ifadelerine indirgenir. Böylece

$$\upsilon_m = \beta_m, \ M(\beta_m) = 0 \tag{3.92}$$

elde edildiğinden yansıma katsayısı

$$\mathcal{R} = \frac{\pi i}{b} \frac{\eta N^{+}(k)}{M^{+}(k)} \times \left\{ -2\sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell}N(\beta_{m})M^{+}(\beta_{m})}{N^{+}(\beta_{m})\dot{M}_{1}(\beta_{m})} R^{+}(\beta_{m}) + \frac{1}{\pi i} \frac{N^{+}(k)}{M^{+}(k)} + \sum_{m=1}^{\infty} \frac{a_{m}}{(k-\beta_{m})} + \sum_{m=1}^{\infty} \frac{c_{m}}{(k-\beta_{m})} \right\} \quad (3.93)$$

ifadesine, iletim katsayısı ise

$$\mathcal{T} = \frac{\pi i}{kb} \frac{k\eta N^{+}(k)}{M^{+}(k)} \times \left\{ -\sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell} N(\beta_{m}) M^{+}(\beta_{m})}{N^{+}(\beta_{m}) M^{+}(\beta_{m})} R^{+}(\beta_{m}) + \frac{1}{2\pi i} \frac{N^{+}(k)}{M^{+}(k)} + \sum_{m=1}^{\infty} \frac{a_{m}}{(k-\beta_{m})} + \sum_{m=1}^{\infty} \frac{c_{m}}{(k-\beta_{m})} \right\} \quad (3.94)$$

ifadesine eşit olur.

Şekil 3.9 da bu problemde elde edilen sonuç, birinci problemdeki asimetrik oluklu, olukları farklı dielektrik malzeme ile doldurulmuş dalga kılavuzundaki sonuç ile karşılaştırılmıştır.

## 3.6 Sonuçlar ve Öneriler

Bu çalışmada, önce baskın TEM modunun, alt ve üst plakalarda farklı derinlikte ve farklı dielektrik malzeme ile doldurulmuş dikdörtgen kesitli iki oyuğu bulunan paralel plakalı dalga kılavuzundan saçılımı Wiener-Hopf tekniği ile incelenmiştir. Yansıyan ve iletilen alanın açık ifadelerini elde etmek için bilinmeyen saçılan alanın ve sınır koşullarının Fourier dönüşümü alınmış, problem "Matris Modifiye Wiener-Hopf " problemine indirgenmiştir. Matris çarpımı komütatif olmadığından, çekirdek matrisin faktorizasyonu için geliştirilmiş genel bir yöntem yoktur. Katsayıları bilinmeyen bir takım sonsuz toplamlar işin içine katılarak "Üçüncü Tip Modifiye Wiener-Hopf denklemleri" eşleştirilmiş, faktorizasyon ve dekompozisyon prosedürleri izlenerek çözülmüştür. Çözüm sonsuz bilinmeyenli sonsuz lineer denklem sistemine indirgenmiş, bu sistem nümerik olarak çözülmüştür. Çözüm, frekans, oyuk derinliği ve oyukları dolduran dielektrik malzemenin elektromagnetik parametreleri için farklı değerleri için iyi bir yaklaşıklıkla bulunmuştur.

Daha sonra ikinci problemde dielektrik malzeme ile doldurulmuş oyuklar yerine oyuk uzunluğunda farklı empedans sınır koşulu ile modellenmiş dalga kılavuzu gözönüne alınmış, elde edilen saçılan alan değerlerinin birinci problemdeki değerlerle oyuk derinliği çok küçük seçildiğinde örtüştüğü gözlenmiştir(Şekil3.9).



Şekil 3.9. İki problemin yansıyan alanın genliği için karşılaştırılması

Normalize empedans değerleri $\eta_1=\eta_2=\eta$ bir<br/>birine eşit alınırsa  $M_1(\alpha)$ ve  $M_2(\alpha)$ çekirdek fonksiyonları

$$M_{1,2}(\alpha) = M(\alpha) = \eta \cos[K(\alpha)b] + \frac{K(\alpha)}{ik} \sin[K(\alpha)b]$$
(3.95)

ifadelerine indirgenir. Böylece

$$\upsilon_m = \beta_m, \ M(\beta_m) = 0 \tag{3.96}$$

elde edildiğinden yansıma katsayısı

$$\mathcal{R} = \frac{\pi i}{b} \frac{\eta N^{+}(k)}{M^{+}(k)} \times \left\{ -2\sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell} N(\beta_{m}) M^{+}(\beta_{m})}{N^{+}(\beta_{m}) \dot{M}(\beta_{m})} R^{+}(\beta_{m}) + \frac{1}{\pi i} \frac{N^{+}(k)}{M^{+}(k)} + \sum_{m=1}^{\infty} \frac{a_{m}}{(k-\beta_{m})} + \sum_{m=1}^{\infty} \frac{c_{m}}{(k-\beta_{m})} \right\} \quad (3.97)$$

ifadesine, iletim katsayısı da

$$\mathcal{T} = \frac{\pi i}{kb} \frac{k\eta N^{+}(k)}{M^{+}(k)} \times \left\{ -\sum_{m=1}^{\infty} \frac{e^{i\beta_{m}\ell} N(\beta_{m}) M^{+}(\beta_{m})}{N^{+}(\beta_{m}) M^{+}(\beta_{m})} R^{+}(\beta_{m}) + \frac{1}{2\pi i} \frac{N^{+}(k)}{M^{+}(k)} + \sum_{m=1}^{\infty} \frac{a_{m}}{(k-\beta_{m})} + \sum_{m=1}^{\infty} \frac{c_{m}}{(k-\beta_{m})} \right\}$$
(3.98)

ifadesine eşit olur.

Şekil 9 da bu problemde elde edilen sonucun, birinci problemdeki asimetrik oluklu, olukları farklı dielektrik malzeme ile doldurulmuş dalga kılavuzundaki sonuç ile karşılaştırılmıştır.

Oyuklar

$$E_x = \eta Z_0 H_z \tag{3.99}$$

olacak şekilde standart empedans sınır koşulu ile modellenecek olursa, normalize empedans değeri oyuk parametrelerine bağlı olarak

$$\eta = -i\sqrt{\frac{\mu_r}{\varepsilon_r}}\tan(kt\sqrt{\mu_r\varepsilon_r}) \tag{3.100}$$

elde edilir. Burada $\mu_r$ ve  $\varepsilon_r$ oyuklardaki meteryalin iletim parametreleridir. t<br/> ise oyuk derinliğini göstermektedir. 18 Empedans sınır koşulu ile modellenen dalga kılavuzunda rezonans sayısınının değişimini incelemek için şerit uzunluğu önce arttırılmış daha sonra sonsuz büyütülmüştür.  $\ell \longrightarrow \infty$  yapıldığında yansıma katsayısı

$$\mathcal{R} = \frac{\pi i}{b} \left\{ \frac{\eta_1 N^+(k)}{M_1^+(k)} \left[ \frac{1}{2\pi i} \frac{N^+(k)}{M_1^+(k)} + \sum_{m=1}^{\infty} \frac{a_m}{(k-\beta_m)} \right] + \frac{\eta_2 N^+(k)}{M_2^+(k)} \left[ \frac{1}{2\pi i} \frac{N^+(k)}{M_2^+(k)} + \sum_{m=1}^{\infty} \frac{c_m}{(k-\upsilon_m)} \right] \right\} \quad (3.101)$$

olarak elde edilmiştir.

Frekans tutucu yada frekans geçirici filtre tasarımlarında kullanılan bu tip problemler yaygın olarak tamamı sayısal yöntemlerle çözülmektedir. Bu çalışmada problem analitik olarak kesin çözülmüş, sonuçta elde edilen sonsuz bilinmeyenli sonsuz denklem sisteminin çözümü de iyi bir yaklaşıklıkla elde edilmiştir. Bu nedenle çalışma iyi bir referans problemi olabilir.

Bundan sonraki çalışmalarda oyuklu dalga kılavuzunda oyuk sayısının arttırılarak, ardışık oyukların saçılması spektral iterasyon yöntemi ile incelenebilir.

## KAYNAKLAR

- L. Verbitskii, Dispersion relation for comp-type slow wave structures, *IEEE Trans. Microwave Theory Tech. MTT-28(1)*, 48-50, 1980
- G. I. Veselov, Yu. N. Alekhin, and V. V. Litvinovich, Diffraction in a periodic slow wave system of finite length, *Telecommun. Radio Eng. Engl. Trans.*, 38/39(11), 115-118, 1984
- T. Thumvongskul and T. Shiowaza, Maximum reflection conditions for metalic waveguide grating with rectangular grooves, *Proc. APMC 2001, Taipei*, *Taiwan, p. 59-62*
- 4. S. Kondoh, A. Hirata and T. Shiowaza, Analysis of a metallic reflector grating with the influence of the Joule loss taken into acount, *IEEE Transactions* on Plasma Science, vol. 31, 1070-1074. Oct. 2003
- J. H. Lee, H. J. Eom, J. W. Lee and K. Yoshitomi, Transverse electric mode scattering from rectangular grooves in parallel plate, *Radio Sci.* 29(5), 1215-1218, 1994
- J. H. Lee and H. J. Eom, TE-mode scattering from two junctions in the H-plane waveguide, *IEEE Trans. Microwave Theory Tecn. MTT-42(4)*, 601-606, 1994
- 7. K. C. Hwang and H. J. Eom, Tunable notch filter of ferrite-filled grooves in parallel plates, *IEEE Microwave and Wireless Comp. Lett.* 15(5),363-365,

- T. Suga, Y. Yanagawa and F. Ishihara, The mode conversation type bandstop filter in rectangular waveguide, Proc. 1992 IEICE Fall Conf. (part2), Tokyo Inst. Tech., Sept. 27-30 1992, p. 2-438
- T. J. Park, J. H. Eom and K. Yostihomi, An analysis of TE-scattering from finite rectangular grooves in a conducting plane, J. Opt. Soc. Am. A. Opt. Image Sci., 10(5), 905-911, 1993
- Mittra, R. and S. W. Lee (1971), Analytical Techniques in the Theory of Guided Waves, McMillan, NewYork.
- G. A. Kyriacou and J. N. Sahalos, Wiener-Hopf type analysis of microstrips printed on uniaxial substrates: Efects of the substrate thickness, *IEEE Trans. on Microwave Theory and Techniques. MTT-43(8)* 1967-1977, 1995
- Kobayashi, K. (2003), Some diffraction problems involving modified Wiener-Hopf Geometries.
- Jones, D. S. (1952), A Simplifying technique in the solution of a class of diffraction problems, *Quart. J. Math. Oxford (2), Vol.3, 189-196.*
- 14. Noble, B. (1958), Methods based on the Wiener-Hopf Technique for the solution of partial differential equations, *Pergamon Press, London*.
- Idemen, M. (1976), A new method to obtain exact solutions of vector Wiener-Hopf equations, Z. Angew. Math. Mech., 59,656-658.

- B. Noble, Methods Based on the Wiener-Hopf Technics, Pergamon Press, 1958
- 17. Tayyar, I. H., A. Büyükaksoy and A. Isikyer (2008), Wiener- Hopf analysis of the parallel plate waveguide with opposing rectangular dielectric filled grooves, *Can.J.Phys.*
- Senior, T. B. A. and J. L. Volakis (1995), Approximate Boundary Conditions in Electromagnetics, *Inst. of Electr. Eng.*, London.
- Abrahams, I. D. (1987), Scattering of sound by three semi infinite planes,
   J. Sound Vibration, 112, 396–398.
- 20. Arora, R. K. and S. Vijayaraghavan (1970), Scattering of ashielded surface wave by a wall impedance discontinuity, *IEEE Trans. Microwave Theory Tech.*, 19(8), 736–739.
- 21. Büyükaksoy, A., I. H. Tayyar and G. Uzgören (2006), Influence of the function of perfectly conducting and impedance with a parallel plate semiinfinite waveguides to the dominant mode propagation, paper presented at First European Conference on Antennas and Propagation, EuCAP, 2006, Nice France.
- Dos Santos, A. F. and F. S. Teixeira (1989), The Sommerfeld problem revisited: Solution spaces and the edge conditions, J. Math. Anal. Appl., 143, 341–357.

- Heins, A. E. and H. Feshbach (1947), The coupling of two acoustical ducts, J. Math. Phys., 26, 143–155.
- 24. Hwang, K. C. and H. J. Eom (2005), Tunable notch filter of ferrite-filled grooves in parallel plates, *IEEE Microwave Wireless Comp. Lett.*, 15 (5), 363–365.
- 25. Idemen, M. (2000), Confluent edge conditions for the electromagnetic wave at the edge of a wedge bounded by material sheets, *Wave Motion*, 32, 37– 55.
- Johansen, E. L. (1962), Scattering coefficients for wall impedance changes in waveguides, *IRE Trans. Microwave Theory*, 26–29.
- Karajala, D. S. and R. Mittra (1965), Scattering at the junction of two semi-infinite parallel impedance plane waveguides, *Can. J. Phys.*, 43, 849– 854.
- Lee, J. H., H. J. Eom, J. W. Lee and K. Yoshitomi (1994), Transverse electric mode scattering from rectangular grooves in parallel plate, *Radio Sci.*, 29(5), 1215–1218.
- Rawlins, A. D. (1978), Radiation of sound from an unflanged rigid cylindrical duct with an acoustically absorbing internal surface, *Proc.R. Soc.* London, Ser. A, 361, 65–91.
- 30. Tayyar, I. H., A. Büyükaksoy and A. Isikyer (2008), Wiener- Hopf analysis of the parallel plate waveguide with finite length impedance loading, *Radio*

 $Science, \ VOL. \ 43, \ RS5005, \ doi: \ 10. \ 1029/2007 \ RS003768, \ 2008.$ 

 Büyükaksoy, A. ve Uzgören, G., Kırınım problemleri, GYTE Yayın no:4, 2005. 4 Ek1. İnce Bir Dielektrik Tabaka İle Kaplanmış Bir Metal Yüzeyin Birinci Mertebeden Empedans Koşulu İle Modellenmesi:



Şekil E.1. Çok ince dielektrik malzeme ile kaplanmış d kalınlığındaki

mükemmel iletken



Şekil-E.2. Empedans sınır koşulu ile modellenmiş yüzey.

Bir yüzü mükemmel iletken bir levha ile kaplı d<br/> kalınlığında sonsuz geniş bir dielektrik levhanın diğer yüzüne boşluktan gelen düz<br/>lemsel dalga  $\phi_0$ açısı ile çarpmaktadır.<br/>  $k_0$ boşluğun dalga sayısı olmak üzere

$$H_z^i = e^{-ik_0(x\cos\phi_0 + y\sin\phi_0)}$$
(E.1)

olarak ifade edilen  $H_z$ -polarize gelen dalganın şekil (E.1) ve şekil (E.2) deki geometrilerden yansımasına ilişkin katsayılar hesaplanacaktır. Elektrik alan Maxwell denklemlerinden

$$\vec{E} = -\frac{1}{N\sqrt{\varepsilon}} rot \vec{H} = -\frac{1}{N\sqrt{\varepsilon}} \left[ \frac{\partial H_z}{\partial y} \vec{e}_x - \frac{\partial H_z}{\partial x} \vec{e}_y \right]$$
(E.2)

ile ifade edilirse, I. ortamdaki yansıyan magnetik ve elektrik alan bileşenleri

$$H_z^R = R e^{-ik_0(x\cos\phi_0 - y\sin\phi_0)}$$
(E.3)

$$E_x^R = -\frac{\sin\phi_0}{N\sqrt{\varepsilon_0}}e^{-ik_0(x\cos\phi_0 - y\sin\phi_0)}$$
(E.4)

$$E_y^R = -\frac{\sin\phi_0}{N\sqrt{\varepsilon_0}}e^{-ik_0(x\cos\phi_0 - y\sin\phi_0)}$$
(E.5)

dielektrik ortam (II) içindeki magnetik ve elektrik alan bileşenleri ise

$$H_z = A e^{-ik_1(x\cos\phi_1 + y\sin\phi_1)} + B e^{-ik_1(x\cos\phi_1 - y\sin\phi_1)}$$
(E.6)

$$E_x = -\frac{A\sin\phi_1}{N\sqrt{\varepsilon_1}}e^{-ik_1(x\cos\phi_1+y\sin\phi_1)} - \frac{B\sin\phi_1}{N\sqrt{\varepsilon_1}}e^{-ik_1(x\cos\phi_1-y\sin\phi_1)}$$
(E.7)

$$E_y = -\frac{A\sin\phi_1}{N\sqrt{\varepsilon_1}}e^{-ik_1(x\cos\phi_1+y\sin\phi_1)} + \frac{B\sin\phi_1}{N\sqrt{\varepsilon_1}}e^{-ik_1(x\cos\phi_1-y\sin\phi_1)}$$
(E.8)

şeklinde yazılabilir. Burada  $\varepsilon;$  dielektrik sabitini, N;

$$N = \sqrt{\frac{\varepsilon_1 \mu}{\varepsilon_0 \mu_0}} \tag{E.9}$$

eşitiğini göstermektedir. Geçiş ve sınır koşulları,

$$x = 0$$
 da  $\Delta\left[\overrightarrow{n} \times \overrightarrow{H}\right] = 0, \ \Delta\left[\overrightarrow{n} \times \overrightarrow{E}\right] = 0,$  (E.10.a)

$$x = -d \quad de \quad \Delta\left[\overrightarrow{n} \times \overrightarrow{H}\right] = 0$$
 (E.10.b)

olarak uygulandığında

$$e^{-ik_0(x\cos\phi_0)} + Re^{-ik_0(x\cos\phi_0)} = Ae^{-ik_1(x\cos\phi_1)} + Be^{-ik_1(x\cos\phi_1)}$$
(E.11)

yazılır ve Snell yasası gereğince

$$\frac{k_0}{k_1} = \frac{\cos\phi_1}{\cos\phi_0} \tag{E.12}$$

eşitliği ve

$$1 + R = A + B \tag{E.13}$$

$$-1 + R = \frac{k_1 \sin \phi_1}{k_0 \sin \phi_0} \sqrt{\frac{\varepsilon_0}{\varepsilon_1}} \left[ A - B \right]$$
(E.14)

denklemleri ile d nin çok küçük değeri için

$$e^{ik_0 d\sin\phi_0} + R e^{-ik_0 d\sin\phi_0} = A e^{-ik_1 d\sin\phi_1} + B e^{ik_1 d\sin\phi_1}$$
(E.15)

ifadesi elde edilir. Bu üç denklemden A,B veR bilinmeyenleri çözüldüğünde

$$R = \frac{\frac{k_0 \sin \phi_0}{k_1 \sin \phi_1} \sqrt{\frac{\varepsilon_1}{\varepsilon_0}} \left( e^{ik_1 d \sin \phi_1} - e^{-ik_1 d \sin \phi_1} \right) + e^{ik_1 d \sin \phi_1} + e^{-ik_1 d \sin \phi_1} - 2e^{ik_0 d \sin \phi_0}}{\frac{k_0 \sin \phi_0}{k_1 \sin \phi_1} \sqrt{\frac{\varepsilon_1}{\varepsilon_0}} \left( e^{ik_1 d \sin \phi_1} - e^{-ik_1 d \sin \phi_1} \right) - e^{ik_1 d \sin \phi_1} + e^{-ik_1 d \sin \phi_1} + 2e^{ik_0 d \sin \phi_0}}$$

yansıma katsayısı

$$R = \frac{i\frac{1}{N}\frac{\sin\phi_0}{\sin\phi_1}\frac{\varepsilon_1}{\varepsilon_0}\sin\left[k_1d\sin\phi_1\right] + \cos\left[k_1d\sin\phi_1\right] - e^{ik_0d\sin\phi_0}}{i\frac{1}{N}\frac{\sin\phi_0}{\sin\phi_1}\frac{\varepsilon_1}{\varepsilon_0}\sin\left[k_1d\sin\phi_1\right] - \cos\left[k_1d\sin\phi_1\right] + e^{ik_0d\sin\phi_0}}$$

olarak bulunur. Denklem düzenlenir ve $\sin\phi_1=\sqrt{1-N^{-2}\cos\phi_0}$ eşitliği kullanılırsa,<br/>d nin çok küçük değeri için

$$R = \frac{i\frac{1}{N}\frac{\varepsilon_1}{\varepsilon_0}\sin\phi_0\tan\left[k_0Nd\sqrt{1-N^{-2}\cos\phi_0}\right] + \sqrt{1-N^{-2}\cos\phi_0}}{i\frac{1}{N}\frac{\varepsilon_1}{\varepsilon_0}\sin\phi_0\tan\left[k_0Nd\sqrt{1-N^{-2}\cos\phi_0}\right] - \sqrt{1-N^{-2}\cos\phi_0}}$$
(E.16)

denklemi elde edilir. Burada $|N|\gg 1$ değeri için (E.16) ifadesi

$$R = \frac{i\frac{1}{N}\frac{\varepsilon_1}{\varepsilon_0}\sin\phi_0\tan\left[k_0Nd\right] + 1}{i\frac{1}{N}\frac{\varepsilon_1}{\varepsilon_0}\sin\phi_0\tan\left[k_0Nd\right] - 1}$$
(E.17)

ifadesine indirgenir.

Şekil E.2 de gösterilen problem ele alınırsa gelen dalganın alan bileşenleri

$$H_{z}^{i} = e^{-ik_{0}(x\cos\phi_{0}+y\sin\phi_{0})}$$

$$\vec{E}^{i} = -Z_{0}rot\vec{H} = -Z_{0}\left[\frac{\partial H_{z}^{i}}{\partial y}\vec{e}_{x} - \frac{\partial H_{z}^{i}}{\partial x}\vec{e}_{y}\right]$$
(E.18)

yansıyan alanın bileşenleri

$$H_z^R = R_1 e^{-ik_0(x\cos\phi_0 - y\sin\phi_0)}$$
(E.19)

$$E_x^R = -ik_0 Z_0 R_1 \sin \phi_0 H_z^R \tag{E.20}$$

$$E_y^R = ik_0 Z_0 R_1 \cos \phi_0 H_z^R \tag{E.21}$$

olarak alınır.

$$\frac{\partial}{\partial n}H_z - ik_0 \frac{Z_0}{\eta}H_z = 0 \tag{E.22}$$

empedans sınır koşulu uygulandığında yansıma katsayısı

$$R_{1} = \frac{Z_{0} - ikZ\sin\phi_{0}}{Z_{0} + ikZ\sin\phi_{0}}$$
(E.23)

elde edilir. Burada Z, Şekil- E.2 deki düzlemin yüzey empedansını,  $Z_0$ ,  $Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}}$  boşluğun karakteristik empedansını göstermektedir. E.23 ifadesini  $Z_0$  ile bölünürse elde edilen

$$R_{1} = \frac{1 - ik\frac{Z}{Z_{0}}\sin\phi_{0}}{1 + ik\frac{Z}{Z_{0}}\sin\phi_{0}}$$
(E.24)

ifadesi ile (E.17) ifasi karşılaştırıldığında Şekil-E.1 deki yapının yüzey empedansı

$$Z = iZ_0 \tan(Nk_0 d) \tag{E.25}$$

ile verilmiş olan empedans düzlemi ile modellene<br/>bileceği görülebilir $\left[ 31\right]$