T.C. BALIKESIR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

BAZI ÇİNKO BORATLI BİLEŞİKLERİN SENTEZİ VE KARAKTERİZASYONU

YÜKSEK LİSANS TEZİ

Ayşe VURAL

DANIŞMAN Yrd.Doç. Dr. Halil GÜLER

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

BAZI ÇİNKO BORATLI BİLEŞİKLERİN SENTEZİ VE KARAKTERİZASYONU

YÜKSEK LİSANS TEZİ

Ayşe VURAL

DANISMAN Yrd.Doc. Dr. Halil GÜLER

Sinav Tarihi : 20.09.2006

Jüri Üyeleri : Yrd. Doç. Dr. Sibel GÖKDEN (BAÜ) 👄 Yrd. Doç. Dr. Figen KURTULUŞ (BAÜ) Yrd. Doç. Dr. Halil GÜLER (BAÜ)

Balikesir, 2006

ÖZET

ÇİNKO BORATLI BİLEŞİKLERİN SENTZİ ve KARAKTERİZASYONU

Ayşe VURAL Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü Kimya Anabilim Dalı

> Yüksek Lisans Tezi / Tez Danışmanı Yrd. Doç. Dr. Halil GÜLER Balıkesir , 2006

Bu tez çalışmasında, bazı çinko boratlı bileşiklerin, mikrodalga enerji ve termal ısıdan yararlanarak katı-hal kimyasal reaksiyonlar yardımıyla sentezlenmesine çalışılmıştır.

Mikrodalga enerji kullanarak yapılan sentezlerde başlangıç kimyasalları olarak Zn(NO₃)₂.6H₂O bileşiği, ayrı ayrı B₂O₃ ve H₃BO₃ ile 1' den 6' ya kadar değişen mol oranlarında karıştırılarak 10 dakika süreyle 2.45 GHz' lik mikrodalga enerjiye maruz bırakılmıştır. Bu etkileşimde NO₂ gaz çıkışı gözlenmiştir. Mikrodalga enerjinin soğurulmasının çok güçlü olmadığı deneysel gözlemlerde herhangi bir akkorlaşma olayının görülmemesi ile açıklanabilir. Ürünlerin X-Işınları Kırınımı (XRD) desenleri incelendiğinde amorf özellikte olduğu ve kristal yapılı herhangi bir çinko boratlı bileşiğin oluşumuna yeterli sıcaklığa ulaşılamadığı anlaşılmıştır.

Termal yöntemde ise, çinko kaynağı olarak ZnO bileşiği kullanılmıştır. ZnO bileşiği B_2O_3 ve H_3BO_3 ile ayrı ayrı 1' den 6' ya kadar değişen mol oranlarında karıştırılarak kül fırınında 700°C de 4 saat süreyle katı-hal kimyasal tepkimeye sokulmuşlardır. Elde edilen ürünlerin XRD analizleri tahlil edildiğinde, ürünlerin iki fazlı bir sisteme ait olduğu bu bileşiklerinde, ZnB₄O₇ ve Zn₃ (BO₃)₂' ye ait oldukları kanıtlanmıştır. H₃BO₃ ile 4, 5 ve 6 mol oranlarında yapılan deneylerde Zn B₄O₇' nin diğer durumlarda ise Zn₃ (BO₃)₂' nin daha iyi kristalleştiğini elde edilen XRD desen şiddetlerinden anlaşılmıştır. Zn₃ (BO₃)₂ bileşiğinin JCPDS kart numarası 74-1099 olup, kristal yapısı monoklinik sisteme aittir. Zn B₄O₇ bileşiğinin jCPDS kart numarası ise 73-1275 olup bu bileşikte ortorombik kristal geometrisine aittir. Deneysel değerler literatürde verilen bu kart bilgileriyle uyum içerisindedir.

Çinko boratlı bileşiklerin yanmayı geciktirici özellikleri nedeniyle, deneysel çalışmalar sonucunda elde edilen iki ürün için yanma testi uygulanmıştır. Elde edilen çinko boratlı fazlarla bir çözelti hazırlanmıştır. Belirli kesitlerde kesilen kumaş parçalarına sulu çözelti halinde hazırlanan çinko borat emdirilerek etüvde kurutulmuştur. Daha sonra yanma testi uygulandığında herhangi bir işlem görmeyen kumaşın tamamen yandığı, çinko borat emdirilen kumaşlarda ise yanmanın ilerlemeden söndüğü yapılan testte gözlemlenmiştir.

ANAHTAR KELİMELER: Bor kimyası , çinko boratlar , X-Işınları Kırınımı, yanmazlık testi

ABSTRACT

THE SYNTHESIZE and CHARACTERIZATION OF SOME ZINCBORATE COMPOUNDS Avse VURAL

Balıkesir University, Institute of Science Department of Chemistry

> M.S Thesis / Supervisors Halil GÜLER Balıkesir , 2006

In this study, some types of the zinc borate compounds have been tried to synthesize by using solid-state reactions. Solid-state reactions between the reactants were taken placed by using microwave and thermal energy.

For the microwave synthesis, the compound $Zn(NO_3)_2.6H_2O$ was mixed separately with the B_2O_3 or H_3BO_3 with the mole ratio from 1 to 6. These mixtures were exposed to 2.45 GHz microwave energy for 10 minutes. During this period of time, while NO_2 gas evolution from the mixture was observed, there was no incandescence on the mixture. These observations may give us an assumption that the applied energy is not enough for solid-state reaction. All the XRD patterns of the resulting showed that the obtained products have the amorphous structure instead of a crystalline phase.

For the thermal energy solid-state reactions, ZnO had used for Zn source and this compound was again mixed separately with the B_2O_3 or H_3BO_3 with the mole ratios from 1 to 6. These mixtures were put to oven for 4 hours periods of time at the 700 °C. The XRD pattern of the other products showed two different phases which were belong to the compounds ZnB_4O_7 and Zn_3 (BO₃)₂. For the experiments with H_3BO_3 , the mole ratio of 4, 5 and 6 we had observed ZnB_4O_7 was well crystallized but for the other cases the better crystals of compound, Zn_3 (BO₃)₂ was obtained. The compound Zn_3 (BO₃)₂ has a monoclinic crystal structure and its JCPDS card number is 74-1099. The compound ZnB_4O_7 has orthorhombic crystal structure and its JCPDS card number is 73-1275. The experimental XRD results were in a quite excellent agreement with the card information given above.

While it is well known that the zinc borates have the flame retardant properties the synthesized products has been tried on the cloth pieces. The aqueous solutions of the products have been prepared. A piece of the cloth was dipped for first and other piece was dipped in the second solution, while the third one was untreated. After drying by oven, the flammability test was applied. It was observed that the untreated one almost burned but the others stop burning.

KEY WORDS: Boron chemistry, zinc borates, X-ray diffraction, inflammable test.

İÇİNDEKİLER

IÇII(DERILER	0 0
ÖZET, ANAHTAR SÖZCÜKLER	ii Sayfa
ABSTRACT, KEY WORDS	iii
İÇİNDEKİLER	iv
SEMBOL LİSTESİ	vi
ŞEKİL LİSTESİ	vii
TABLO LİSTESİ	ix
ÖNSÖZ	Х
 GİRİŞ 1.1 Elementel Bor 1.2 Borun Atomik ve Fiziksel Özellikleri 1.3 Borun İzolasyonu ve Soflaqtırılmaşı 	1 2 3
1.4 Bor Minerallerinin Tanıtımı	3 4
1.5 Bor Urünlerinin Uretimi 1.6 Borik Asit	5 7
1.7 Bor Oksit	8
1.8 Bor Cevherinin Başınca Kunanım Alanıarı 1.8.1 Cam ve Seramik Sanayisinde Bor Cevherleri	10
1.8.2 Yanmayı Önleyici Maddelerde Bor Cevherleri	11
1.8.3 Sabun ve Deterjan Sanayisinde Bor Cevherleri	11
1.8.4 Metalürji Sanayisinde Bor Cevherleri	12
1.8.5 Tarım Sektöründe Bor Cevheri	12
1.8.6 Nükleer Sanayisinde Bor Cevheri	13
1.8.7 Bor Cevherinin Diğer Bazı Kullanım Alanları	15
1.9 Ağaç Türü ve Kompozit Malzemelerde Bor Bileşiklerinin Kullanım	u 18
1.10 Bor İçerikli Maddelerin Çevre Açısından İncelenmesi	24
1.11 Mikrodalga Enerjiyle Gerçekleştirilen Sentezler	25
1.12 Mikrodalga Isıtmanın Prensibi	26
1.13 Mikrodalga ile Materyalin Etkileşimi	26
1.14 X-Işını Spektroskopisi ve Kırınımının Teorisi	28
1.15 X-Işınları Kırınımı	29
1.15.1 Bragg Yasası	29
1.146 X-Işını Kırınım Yöntemi	31
1.17 Çalışmanın Amacı	31

2. MATERYAL VE YÖNTEM

 2.1 Kullanılan Kimyasal Maddeler 2.2 Kullanılan Cihazlar 2.3 Yöntem 2.3.1 Termal Yöntem 2.3.2 Mikrodalga Enerji Yöntemi 	32 32 32 32 32 33
3. BULGULAR	
3.1 Mikrodalga Enerji Yöntemi ile Yapılan Deneyler3.2 Termal Yöntem Kullanılarak Yapılan Deneyler	34 38
4. SONUÇLAR	
4.1 Mikrodalga Enerji Yöntemi ile Yapılan Deneyler 4.2 Termal Yöntem ile Yapılan Deneyler 4.2.1 ZnO – B_2O_3 Sisteminde Yapılan Deneyler 4.2.1.1 ZnO + $1B_2O_3$ (F1) 4.2.1.2 ZnO + $2B_2O_3$ (F2) 4.2.2 ZnO – H_3BO_3 Sisteminde Yapılan Deneyler 4.2.2.1 ZnO + $1H_3BO_3$ (F7) 4.3 Yanma Testi 4.4 Sonuçlar	39 52 52 52 57 82 82 82 113 114

EKLER

EK : A IR Spektrumu Titreşim Frekansları	116
EK : B Sorun giderilmiş - giderilmemiş X-Işını Kırınım desenleri	117
$EK : C Zn B_4O_7 ve Zn_3 (BO_3)_2$ ' nin X-Işınları Kırınım Verileri	119

5. KAYNAKÇA	122
3	

SEMBOL LİSTESİ	
Sembol	Adı
XRD	X-Işınları Kırınımı (X-Ray Diffraction)
IR	Kızıl Ötesi Spektroskopisi (Infrared Spectroscopy)
JCPDS	The Joint Committe on Powder Diffraction Standarts

ŞEKİL LİSTESİ

Şekil		Sayfa
Numarası	Adı	Numarası
Şekil 1.7	$B_2O_3 - H_2O$ sistemi faz diyagramı	9
Şekil 1.15	Bir Kristal Tarafından Oluşturulan X-Işınları Kırını	mı 30
Şekil 3.1	MD7-8-9-10-11-12 Kodlu Deneylerin Fotoğrafı	37
Şekil 3.2	F5 ve F6 Kodlu Deneylerin Fotoğrafı	38
Şekil 4.1	MD1' in X-Işınları Kırınım Desenleri	40
Şekil 4.2	MD1' in IR Spektrumu	40
Şekil 4.3	MD2' nin X-Işınları Kırınım Desenleri	41
Şekil 4.4	MD2' nin IR Spektrumu	41
Şekil 4.5	MD3' ün X-Işınları Kırınım Desenleri	42
Şekil 4.6	MD3' ün IR Spektrumu	42
Şekil 4.7	MD4' ün X-Işinları Kırınım Desenleri	43
Şekil 4.8	MD4' ün IR Spektrumu	43
Şekil 4.9	MD5' in X-Işinları Kırınım Desenleri	44
Şekil 4.10	MD5' in IR Spektrumu	44
Şekil 4.11	MD6' nın X-İşınları Kırınım Desenleri	45
Şekil 4.12	MD6' nın IR Spektrumu	45
Şekil 4.13	MD7' nin X-Işinları Kırınım Desenleri	46
Şekil 4.14	MD7' nin IR Spektrumu	46
Şekil 4.15	MD8' in X-Işınları Kırınım Desenleri	47
Şekil 4.16	MD8' in IR Spektrumu	47
Şekil 4.17	MD9' un X-Işınları Kırınım Desenleri	48
Şekil 4.18	MD9' un IR Spektrumu	48
Şekil 4.19	MD10' un X-Işınları Kırınım Desenleri	49
Şekil 4.20	MD10' un IR Spektrumu	49
Şekil 4.21	MD11'in X-Işınları Kırınım Desenleri	50
Şekil 4.22	MD11' in IR Spektrumu	50
Şekil 4.23	MD12'nin X-Işınları Kırınım Desenleri	51
Şekil 4.24	MD12' nin IR Spektrumu	51
Şekil 4.25	F1' in X-Işınları Kırınım Desenleri	55
Şekil 4.26	F1' in IR Spektrumu	56
Şekil 4.27	F2' nin X-İşınları Kırınım Desenleri	60
Şekil 4.28	F2' nin IR Spektrumu	61
Şekil 4.29	F3' ün X-Işınları Kırınım Desenleri	65
Şekil 4.30	F3' ün IR Spektrumu	66
Sekil 4.31	F4' ün X-Işinları Kırınım Desenleri	70
Sekil 4.32	F4' ün IR Spektrumu	71
Sekil 4.33	F5' in X-Işinları Kırınım Desenleri	75
Sekil 4.34	F5' in IR Spektrumu	76
Şekil 4.35	F6' nın X-İşınları Kırınım Desenleri	80
, Sekil 4.36	F6' nın IR Spektrumu	81
, Şekil 4.37	F7' nin X-Işinları Kırınım Desenleri	86
Şekil 4.38	F7' nin IR Spektrumu	87
•	*	

Şekil 4.39	F8' in X-Işınları Kırınım Desenleri	91
Şekil 4.40	F8' in IR Spektrumu	92
Şekil 4.41	F9' un X-Işınları Kırınım Desenleri	96
Şekil 4.42	F9' un IR Spektrumu	97
Şekil 4.43	F10' un X-İşınları Kırınım Desenleri	101
Şekil 4.44	F10' un IR Spektrumu	102
Şekil 4.45	F11' in X-Işinları Kırınım Desenleri	106
Şekil 4.46	F11' in IR Spektrumu	107
Şekil 4.47	F12' nin X-İşınları Kırınım Desenleri	111
Şekil 4.48	F12' nin IR Spektrumu	112
Şekil 4.49	Yanma Testi	113

TABLO LÍSTESÍ

Tablo		Sayfa
Numarası	Adı	<u>Numarası</u>
Tablo 1.4	Ticari Önemi Olan Bazı Bor Mineralleri ve Bileşikleri	4
Tablo 1.8.7	Bazı Anorganik Boratlar ve Kullanım Alanları	17
Tablo 1.13	Mikrodalga Aktif Element, Doğal Mineral ve Bileşikleri	27
Tablo 3.1	Mikrodalga Enerji Yöntemi ile Yapılan Deneyler	34
Tablo 3.2	Mikrodalga Enerji Yöntemi ile Yapılan Deneyler ve Gözlen	nler 35
Tablo 3.3	Termal Yöntem Kullanılarak Yapılan Deneyler ve Gözlemle	er 38
Tablo 4.1	Mikrodalga Enerji Yöntem Deneylerinde Kullanılan Bileşik	der 39
Tablo 4.2	F1' in IR Spektrum Verileri	52
Tablo 4.3	F1' in X-Işınları Kırınım Verileri (JCPDS Kart No: 73-127	75) 53
Tablo 4.4	F1' in X-Işınları Kırınım Verileri (JCPDS Kart No: 74-10	99) 54
Tablo 4.5	F2' nin IR Spektrum Verileri	57
Tablo 4.6	F2' nin X-Işınları Kırınım Verileri (JCPDS Kart No: 73-12	275) 58
Tablo 4.7	F2' nin X-Işınları Kırınım Verileri (JCPDS Kart No: 74-1	099) 59
Tablo 4.8	F3' ün IR Spektrum Verileri	62
Tablo 4.9	F3' ün X-Işinları Kırınım Verileri (JCPDS Kart No: 73-12'	75) 63
Tablo 4.10	F3' ün X-Işınları Kırınım Verileri (JCPDS Kart No: 74-10)99) 64
Tablo 4.11	F4' ün IR Spektrum Verileri	67
Tablo 4.12	F4' ün X-Işinları Kırınım Verileri (JCPDS Kart No: 73-12'	75) 68
Tablo 4.13	F4' ün X-Işınları Kırınım Verileri (JCPDS Kart No: 74-10)99) 69
Tablo 4.14	F5 'in IR Spektrum Verileri	72
Tablo 4.15	F5' in X-Işinları Kırınım Verileri (JCPDS Kart No: 73-127	75) 73
Tablo 4.16	F5' in X-Işınları Kırınım Verileri (JCPDS Kart No: 74-10	99) 74
Tablo 4.17	F6 'nın IR Spektrum Verileri	77
Tablo 4.18	F6' nın X-Işınları Kırınım Verileri (JCPDS Kart No: 73-12	275) 78
Tablo 4.19	F6' nın X-Işınları Kırınım Verileri (JCPDS Kart No: 74–1	099) 79
Tablo 4.20	F7'nin IR Spektrum Verileri	83
Tablo 4.21	F7' nin X-Işınları Kırınım Verileri (JCPDS Kart No: 73-12	275) 84
Tablo 4.22	F7' nin X-Işınları Kırınım Verileri (JCPDS Kart No: 74–1	099) 85
Tablo 4.23	F8' in IR Spektrum Verileri	88
Tablo 4.24	F8' in X-Işınları Kırınım Verileri (JCPDS Kart No: 73-127	75) 89
Tablo 4.25	F8' in X-Işınları Kırınım Verileri (JCPDS Kart No: 74–10)	99) 90
Tablo 4.26	F9 'un IR Spektrum Verileri	93
Tablo 4.27	F9' un X-Işınları Kırınım Verileri (JCPDS Kart No: 73-12'	75) 94
Tablo 4.28	F9' un X-Işınları Kırınım Verileri (JCPDS Kart No: 74-10)99) 95
Tablo 4.29	F10' un IR Spektrum Verileri	98
Tablo 4.30	F10' un X-Işınları Kırınım Verileri (JCPDS Kart No: 73-12	275) 99
Tablo 4.31	F10' un X-Işınları Kırınım Verileri (JCPDS Kart No: 74-1	.099) 100
Tablo 4.32	F11' in IR Spektrum Verileri	103
Tablo 4.33	F11' in X-Işınları Kırınım Verileri (JCPDS Kart No: 73-12	275) 104
Tablo 4.34	F11' in X-Işınları Kırınım Verileri (JCPDS Kart No: 74-1	099) 105
Tablo 4.35	F12' nin IR Spektrum Verileri	108
Tablo 4.36	F12' nin X-Işınları Kırınım Verileri (JCPDS Kart No: 73-1	275)109
Tablo 4.37	F12' nin X-Işınları Kırınım Verileri (JCPDS Kart No: 74-	1099)110

ÖNSÖZ

Yüksek lisans tezi olarak sunduğum bu çalışma, Fen – Edebiyat Fakültesi Kimya Bölümü Anorganik Kimya Anabilim Öğretim Üyelerinden Yrd. Doç. Dr. Halil GÜLER yönetiminde, Fen–Edebiyat Fakültesi Anorganik Kimya Laboratuarında gerçekleşmiştir.

Yüksek lisans tezimin hazırlanmasında ilgi ve yardımlarını gördüğüm tez hocam Yrd. Doç. Dr. Halil GÜLER' e teşekkürlerimi sunarım.

Bu tez çalışması Devlet Planlama Teşkilatı Kurumunca desteklenen DPT 2003-K-120-230 kodlu proje imkanlarıyla gerçekleştiğinden DPT Kurumuna verdiği destekten dolayı teşekkür ederiz.

Fen Bilimleri Enstitüsü Müdürü Prof. Dr. Mahir ALKAN nezdinde bütün enstitü çalışanlarına ve özellikle yardımlarından dolayı Yrd. Doç. Dr. Hilmi NAMLI' ya teşekkürler.

X-Işınları Kırınım ve IR çekimlerinin alınmasında yardımcı olan Araştırma Görevlisi Sedat KARABULUT ve Erdoğan AY' a teşekkür ederim.

Yardımlarını esirgemeyip kimi zaman bana katlanan, varlıklarıyla beni ödüllendirip yaşamıma renk katan ablalarım, Nurgül DİNÇ ve Ülkü SUNGUR' a ve sonsuz desteğini hep yanımda hissettiğim sevgili arkadaşım Aziz DİNÇER ve Nurdan GÜMÜŞKANAT' a teşekkür ederim.

Beni ben yapan dünyanın en güzel insanları anneme, babama ve abime sonsuz teşekkürler, iyi ki varsınız....

Balıkesir - 2006

Ayşe VURAL

1. GİRİŞ

1.1 Elementel Bor

Boraks eski zamanlarda sırların ve sert camların hazırlanmasında kullanılmasıyla bilinirdi. 18. yüzyıl boyunca, yapılan az sayıda araştırmalar, 1808' de H. Davy, J.L. Gay Lussac ve L.J. Thenard' ın safsızlık içeren borun saflaştırılması çalışmalarına öncülük etmiştir. H. Moisson, Mg' nin indirgenmesiyle % 95-98 saflıkta örnekler elde etti. Yüksek saflıktaki bor (% 99) geçen yüzyılın bir ürünüdür. Çeşitli kristal yapılarının yüksek sıcaklıklarda oksijen, azot ve metallerin çoğuyla reaksiyon vermesi ve elementel doğasının kolay bozulmaması, geçen bir kaç on yıl içinde bulunmuştur. Bor ismi elementin kaynağını göstermek için Davy tarafından önerilmiştir [1].

Volkanik gazlar içinde ve sıcak kaynak sularında bor miktarının yüksek olduğu, hatta bazı yerlerde ekonomik derişimlere ulaştığı bilinmektedir. Türkiye' de ve Amerika' da bor yataklarının bulunduğu bölgelerdeki sıcak kaynak sularında bor miktarı 100 ppm üzerindedir. Araştırmacıların çoğu, borun kaynağını mağmaya bağlamaktadır [2].

Borun çeşitli kayaçlardaki dağılımına bakıldığında, denizel tortulardaki bor içeriğinin mağmatik kayaçlardakinden daha fazla olduğu görülmektedir. Denizsel tortuların deniz suyundan aldıkları bor miktarı, denize karalardan taşınandan daha fazla olmaktadır [2].

1.2 Borun Atomik ve Fiziksel Özellikleri

Bor, periyodik tablonun 5. ve (III A) grubunun ilk elementidir. Atom numarası 5, atom ağırlığı 10.811' dir. İzotoplarının kütle numarası 10 ve 11 olup, elektron düzeni $(1s^2 2s^2 2p^1)$ dir. İlk üç iyonlaşma enerjisi 800.6, 2427.1 ve 3659.7 kJmol⁻¹ ve grup III A'nın diğer elementlerinin iyonlaşma enerjisinden büyüktür. Borun elektronegatifliği 2.0' dır [3].

Bor, derişik nitrat asidi veya altın suyu ile bor asidi vermek üzere reaksiyona girer. Oysa derişik sülfat asidi ve fosfat asidi boru yüksek sıcaklıklarda etkiler [4].

Elementel borun karmaşık polimorfizimi ve uzaklaştırılamayan safsızlıklar içermesi, kesin fiziksel özelliklerinin belirlenmesini zorlaştırmaktadır. Bor düşük yoğunluk, çok düşük elektrik iletkenliği ve yüksek erime noktasına sahip bir elementtir. Kristal yapıda bor, geçirgen ışıkta kırmızı, toz formda siyahtır. En kararlı kristal yapısının (β -rombohedral), erime noktası 2092 °C ve kaynama noktası ~4000°C, yoğunluğu 2.35 g/cm³ tür. Amorf bor ise, gri renkli bir toz olup özgül ağırlığı 1.73 g/cm³, erime noktası 2300 °C, kaynama noktası 2550 °C' dir. Elektrik akımını çok az iletir. Amorf bor havada ısıtıldığında 700 °C' de tutuşur ve B₂0₃ oluşur. Sıcakta C1₂, Br₂ ve S ile birleşerek BC1₃, BBr₃ ve B₂S₃ verir. 900 °C' den sonra azotla bornitrür verir [3-4].

1.3 Borun İzolasyonu ve Saflaştırılması

Borun bileşiklerden izolasyonu için 4 temel metot vardır.

i) Yüksek sıcaklıkta metallerle indirgenen, kuvvetli ekzotermik reaksiyonla: B₂O₃ + 3Mg \rightarrow 2B + 3MgO

Diğer elektro pozitif elementlerde (Li, Na, K, Be, Ca, Al, Fe) kullanılmıştır fakat ürüne genellikle amorf ve metal boratlar gibi giderilmeyen kirlilikler bulaşmıştır. Ağır kristal bor (% 96) 900 °C' de bir akıntı sisteminde çinkoyla BCl₃' ün reaksiyonundan hazırlanmıştır.

ii) 800 °C' de eritilmiş KCl/KF' de KBF₄ tetrafloraborat veya karıştırılıp eritildiği elektrolitik indirgenmeyle:

Bu kimyasal işlem nispeten ucuzdur fakat toz bor ancak % 95 saflıkta elde edilir.

iii) Buharlaşan bor bileşiklerinin ısıtılmış tantal metal telinde senteziyle: BBr₃ + H₂ reaksiyonundaki gibi H₂ ile indirgenmesiyle 1922' de açıklanan bu metotla kilogram seviyesinde çalışılabilir. Yüksek saflıkta borun (% 99) hazırlanması için çok etkili genel bir hazırlanmadır. Kristallenme sıcaklık artışıyla iyileşir, amorf ürün 1000 °C' nin altında, α ve β -rombohedral yapıları 1000–1200 °C arasında, tetragonal kristal yapı ise bu sıcaklıkların üzerinde elde edilir. BCl₃, BBr₃' ün yerine kullanılabilir. Fakat BI₃ pahalı ve saflaştırılması zor olduğundan kullanılamaz. Serbest enerji hesaplamaları, BF₃' ün yüksek sıcaklık gerektirdiğinden kullanılmayacağını göstermiştir.

iv) Borhidrürlerin ve halojenlerin termal ayrıştırılmasıyla:

Boranlar 900 °C' ye kadar ısıtıldığında amorf bora ayrışırlar ve kristal ürünler BI₃' ün termal ayrışmasıyla elde edilebilir. Gerçekten α -rombohedral borun tanımlanmış ilk örneği (1960' ta) 800–1000 °C' de BI₃' ün ayrıştırılmasıyla hazırlandı ve hala bu allotropun hazırlanmasında mükemmel bir yöntemdir [5].

1.4 Bor Minerallerinin Tanıtımı

Dünyadaki bor cevherleri yataklarının yaklaşık % 53' ünün (1980), Türkiye'de bulunduğu ve dünya üretiminin % 42' sinin (1978) Türkiye' de gerçekleştirildiği düşünüldüğünde bor ve bileşikleri teknolojisinin önemi açıktır.

Bor mineralleri, değişik oranlarda bor oksit (B_2O_3) içeren mineraller olup, ülkemizde yaygın olarak bulunan bor mineralleri, tinkal, kolemanit ve üleksittir. Bor minerali rezervleri dünyada üç kuşakta oluşmuştur.

-ABD' nin Güneybatı bölgesi Mojave Çölü

-Güney-Orta Asya Alp Kuşağı

-Güney Amerika And Kuşağı [6].

Ticari önemi olan bor mineralleri ve bileşikleri Tablo 1.4' de belirtilmiştir [4].

Mineral	Formülü	% B ₂ O ₃	Bulunduğu yer
Boraks (Tinkal)	Na ₂ B ₄ O ₇ .10H ₂ O	36.6	Kırka, Emet, Bigadiç,A.B.D
Kernit(Razorit)	Na ₂ B ₄ O ₇ .4H ₂ O	51.0	Kırka, A.B.D., Arjantin
Üleksit	NaCaB ₅ O ₉ . 8H ₂ O	43.0	Bigadiç, Kırka, Emet, Arjantin
Propertit	NaCaB ₅ O ₉ .5H ₂ O	49.6	Kestelek, Emet, A.B.D
Kolemanit	Ca ₂ B ₆ O ₁₁ .5H ₂ O	50.8	Emet, Bigadiç, Küçükler, A.B.D
Pandermit(Priseit)	Ca ₄ B ₁₀ O ₁₉ .7H ₂ O	49.8	Sultançayır, Bigadiç
Borasit	Mg ₃ B ₇ O ₁₃ Cl	62.2	Almanya
Hidroborasit	CaMgB ₆ O ₁₁ .6H ₂ O	50.5	Emet

Tablo 1.4 Ticari Önemi Olan Bazı Bor Mineralleri ve Bileşikleri

Bor mineralleri ve bunlardan elde edilen ticari ürünlerin gruplandırılması konusunda literatürde kesin bir sınıflandırma bulunmamaktadır. Ancak kaynaklarca yapılan sınıflandırma genel olarak değerlendirildiğinde;

- Rezervler söz konusu ise bor mineralleri rezervleri;

- Konsantre cevher ürünleri söz konusu ise **ham bor ürünleri** (Üleksit, Kolemanit, Tinkal);

- Konsantre cevherlerden rafinasyon ya da reaksiyon sonucu birincil olarak üretilen boraks pentahidrat, boraks dekahidrat, susuz boraks, sodyum perborat, borik asit ve susuz borik asit söz konusu ise **rafine bor ürünleri**;

- Rafine bor ürünlerinden üretilen; çinko borat, sodyum bor hidrür, bor karbür, bor nitrür, disodyum oktaborat tetrahidrat, amonyum pentaborat, boranlar gibi ürünler söz konusu ise **özel bor ürünleri** terminolojisini kullanmak daha doğru görünmektedir.

1.5 Bor Ürünlerinin Üretimi

Genellikle açık ocak madenciliği ile yapılan ham bor ürünleri üretimi basit olarak:

```
AÇIK OCAK MADENCİLİĞİ
↓
Kırma
↓
Yıkama
↓
Eleme
↓
Konsantre cevher
```

aşamaları ile ifade edilir.

Rafine ürün üretimi için ise temel olarak aşağıdaki işlemler uygulanır:

KONSANTRE CEVHER

↓ Çözme (Borik asit ve sodyum perborat üretimleri için reaksiyon) ↓ Filtrasyon ↓ Kristalizasyon ↓ Santrifüj ↓ Kurutma ↓ (Torbalama) Rafine ürün

Herhangi bir rafine bor ürünü, aşağıdaki basit şematik anlatımda da görüleceği gibi elde etmekte mümkündür.

<u>Göl Suları (BRİNES), TİNKAL, KERNİT</u>
\downarrow
Rafine Sodyum Boratlar \rightarrow + NaOH \rightarrow Perboratlar
\downarrow
Ergitme
\downarrow
Susuz Boraks

TİNKAL, KERNİT, ÜLEKSİT, KOLEMANİT, ASHARİT, DATOLİT

1.6 Borik Asit (H₃BO₃)

Doğada ılıcalarda bulunur. Beyaz ve parlak olan yaprakcıklar şeklinde kristallenir. Sıcak suda çözünürlüğü daha fazladır ve su buharıyla sürüklenebilir. Özgül ağırlığı 1.46 g/cm³, dür.

Isıtıldığında su kaybederek, önce metaborik asit sonra bortrioksit oluşur [4].

 $2H_{3}BO_{3} \xrightarrow[-H,O]{} 2HBO_{2} \xrightarrow[-H,O]{} B_{2}0_{3}$

Metaborik asidin 3 ayrı kristal modifikasyonu vardır:

Ortorombik metaborik asit	(HBO ₂ -III, erime noktası : 176 °C)
Monoklinik metaborik asit	(HBO ₂ -II, erime noktası : 200.9 °C)
Kübik metaborik asit	(HBO ₂ –I, erime noktası : 236 °C)

Sıcaklık 150 °C' nin üzerine çıkmadığı sürece dehidrasyon HBO₂ formunda kalır. Daha yüksek sıcaklıklarda borik asit bünyesindeki tüm su uzaklaştırılarak susuz borik asit elde edilir. Kristal susuz borik asit 450 °C' de erir. Amorf susuz borik asit belli bir erime derecesine sahip değildir. Yaklaşık 325 °C' de yumuşamaya başlar ve yaklaşık 500 °C' de tamamen akışkan hale gelir. Borik asidin (H₃BO₃) tamamen ayrışması sonucunda bor oksit oluşur [7-8].

Bortrioksid ve sudan çeşitli borik asitlerin oluşumu reaksiyonları şunlardır :

$H_2O + B_2O_3$	\rightarrow 2HBO ₂ (Metaborik asit)
$3H_2O + B_2O_3$	\rightarrow 2H ₃ BO ₃ (Ortoborik asit)
$H_2O + 2B_2O_3$	\rightarrow H ₂ B ₄ O ₇ (Tetraborik asit)
$3H_2O + 5B_2O_3$	$\rightarrow 2H_3B_5O_9$ (Pentaborik asit)
$2H_2O + 3B_2O_3$	\rightarrow H ₄ B ₆ O ₁₁ (Hekzaborik asit)

Isıya dayanıklı camlar (borosilikat camları), cam elyaf, porselen, emaye, bor bileşikleri üretiminde, metallurjide, boya endüstrisinde, ateşe dayanıklı malzemelerde, dıştan kullanılan ilaçlarda, kozmetiklerde v.b. kullanılmaktadır [4].

1.7 Bor Oksit

Borun temel oksidi bor oksittir (B_2O_3 E.N: 450 °C, KN: 2250 °C). Kristallenmesi en zor olan maddelerden biridir ve 1937' ye kadar yalnızca camsı hali bilinirdi. Genellikle borik asidin dikkatlice dehidrasyonuyla hazırlanır [8].

Normal kristal yapısı (d=2.56 g /cm³) oksijen atomlarının içerisine katılmış BO₃ gruplarının üç boyutlu ağını içerir, fakat 525 °C' de 35 kbar basınç altında yoğun bir formu vardır ve düzensiz iç bağlantılı tetrahedral BO₄' den yapılanır. B₂O₃' ün (d=1.83 g/cm³) camsı halinde muhtemelen 6 üyeli (BO)₃ halkasının hakim olduğu sıralı trigonal BO₃ birimlerinin ağını içerir, yapı yüksek sıcaklıklara gittikçe düzensizleşmeye başlar ve 450 °C' nin üzerinde polar –B=O grupları oluşur [8].

Şekil 1.7 B₂O₃ – H₂O sistemi faz diyagramı

Erimiş B_2O_3 karakteristik olarak borat camlarına renk vermek üzere metal oksitlerin çoğunu çözer. En önemli uygulamaları, kolay uygulanabilirlikleri ve termal genleşme katsayısının küçüklüğü sebebiyle, bor silikat camlarının yaygın olarak kullanıldığı cam endüstrisindedir [8].

1.8 Bor Cevherinin Başlıca Kullanım Alanları

Çok çeşitli sektörlerde kullanılan bor mineralleri ve ürünlerinin kullanım alanları giderek artmaktadır. Üretilen bor minerallerinin % 10' a yakın bölümü doğrudan mineral olarak tüketilirken geriye kalan kısmı bor ürünleri elde etmek için kullanılmaktadır [9].

1.8.1 Cam ve Seramik Sanayisinde Bor Cevherleri

Cam Elyaf Yapımında Bor Ürünleri: Erimiş cama % 7 bor oksit verecek şekilde bor pentahidrat veya üleksit-probertit katılmaktadır. Maliyetine bağlı olarak sulu veya susuz tipleri kullanılmakta, bazen borik asitten yararlanılmaktadır. İstenilen yalıtkanlık derecesine göre çeşitli spesifikasyonlar tanımlanır. Binalarda asbestin yerine ısı ve ses yalıtımında kullanılmaktadır. Cam elyafları kullanıldığı malzemelere sertlik ve dayanıklılık kazandırmakta ayrıca malzemenin hafif olmasını sağlamaktadır. Bu nedenle plastiklerde, lastiklerde, sanayi elyaflarda, otomotiv, uçak ve diğer sanayi sektörlerinde, çelik ve diğer metallerin yerine kullanılmaktadır. İngiltere' de otomobil başına 70–75 kg cam yünü tüketilmektedir. Bu gibi ürünlerde rafine kolemanit tercih edilmektedir. Fiber optik sanayinde, lifler % 6 borik asit ihtiva etmektedir [10–13].

Bor Cam Yapımında: Camın ısıya dayanımının artması ve cam imalatı sırasında çabuk erimesini ve devitlikasyonun önlenmesini sağlayan bor, aynı zamanda camın yansıtma, kırma, parlama gibi özelliklerini arttırmaktadır. Bor camı asite ve çizilmeye karşı korur. Cam eriğinin % 0.5–23' ü bor oksitten oluşmaktadır. Ateşe dayanıklı olan Pyreks camlarda % 13.5 bor oksit vardır.

Genellikle cama boraks, kolemanit, borik asit halinde karma olarak ilave edilerek bor cam elde edilir. Otolar, fırınlar, çamaşır makinesi vb. makinalarda bu tür camlar tercih edilir [10–13].

Emaye ve Seramik Sır Yapımında: Bor, pencere camı, şişe camı v.b. gibi malzemelerde emaye akışkanlığı ve doygunlaşma ısısını azaltan borik asit % 20' ye kadar kullanılmaktadır. Sulu boraks ve bazı hallerde borik asit veya susuz boraksta kullanılır. Mutfak aletleri, banyolarda, kimya sanayin teçhizatı, su tankları, silahlar vb. alanlarda da emaye kullanılır [10–13].

Seramiği çizilmeye karşı dayanıklı kılan bor % 3–24 oranında kolemanit halinde sırlara katılmaktadır. Avrupa'nın en önde gelen seramik üreticisi olan Türkiye seramiklerinde, İngiltere ve İspanya'da kaolenden mamul eşyaları sırla kaplanır. Tuğlalara da bu sırdan sürülmektedir [10–13].

1.8.2 Yanmayı Önleyici Maddelerde Bor Cevherleri

Bor kendisinin oksit olması, erime ısısının 2300 °C olması nedeniyle yanma-ya karşı oldukça dayanıklıdır. Bu özelliğinden dolayı yanmayı önleyici madde olarak kullanılır veya bu özellikteki maddeler içerisine değişik oranlarda katılır. Özellikle çinko borat, boraks gibi borat ürünü olan yangın önleyiciler, antimontri-oksit ile birlikte kullanılmakta olup dumanın emilme hızını uzattığı, kor halindeki ateşi çabuk bastırdığı için daha üstün mamullerdir. Ancak maliyetleri, alümina trihidrat, mağnezyum hidroksit bileşimli olan yangın önleyicilere nazaran daha yüksektir [10–13].

1.8.3 Sabun ve Deterjan Sanayisinde Bor Cevheri

Temizleyici maddeler klorlu veya peroksitli bileşiklerdir. Deterjanlarının ağırlığının % 20–25' i sodyum perborattır. Perborat ürününün % 90' ı deterjan imalatında kullanılmaktadır. En önemli rakip mallar sodyum hidroksit, sodyum hipoklorit ve hidrojen peroksittir. Bulaşıktan çok çamaşırda tercih edilmektedir. Ancak bilinçsiz ve aşırı deterjan kullanımı nedeniyle atık sular içerisindeki bor oranı yüksel-diğinde çevre kirlenmesine sebep olmakta ve günümüzde bu konuda yoğun tartış-malar yapılmaktadır. Özellikle balıklarda mankafa hastalığı olarak bilinen bir hastalığın bordan kaynaklandığı bilinmektedir [10–13].

1.8.4 Metalurji Sanayisinde Bor Cevheri

Kolemanit ve borik asit en çok kullanılan ürünlerdir. Çelik alaşımda kulanılan bor bileşiği ferro boron sulandırılmış bor alaşımıdır. Ferro boron borat derişiminin alümino termik indirgenmesi ile elde edilir. Yüksek borlu (% 5) çelikler nükleer reaktörlerde nötron emilmesini sağlayan önemli bir alaşımdır. Borlu çelikler enerji tasarrufu sağlar. Yeni geliştirilen bazı borlu çelikler mekanik basınca karşı dayanımları nedeniyle soğuk çekme, inşaat, tarım makineleri, vinçler, yaylar, grayder bıçakları, vites dişlileri gibi yerlerde tercih edilen çelik türleridir. Alimünyum izabesinde, titan ile birlikte borlu bileşikler kullanılır. Diğer bir kullanım alanı da çelik yapımında florit yerine kolemanit veya üleksitin kullanılmasıdır. Elektro kaplama sanayinde kaplama banyosuna borik asit veya serbest flor borat ilave edilir. Demir, bor, karbon ve silikon ile yapılan deneysel camsı metal üretimlerinde başarılı olunmuştur. Transformatörlerdeki enerji kaybını 1/3' e indiren bu metaller gelecekte hızlı bir gelişme gösterecektir [10–13].

1.8.5 Tarım Sektöründe Bor Cevheri

Bor topraktan köklerle pasif soğurulmayla alınır ve bu alınımda toprak pH' ı, nemi ve sıcaklığı da etkilidir [14] .Bor bitki gelişimi için 16 temel bitki besininden biridir. Toprağın üst tabakalarındaki borun çokluğu çürümüş bitki dokularından kaynaklanmaktadır. Bor, bitkilerde şekerin hormon faaliyeti üzerindeki etkisini, fotosentez miktarını, köklerin büyümesini ve havadan emilen karbondioksit miktarını artırır. Borun bir diğer işlevi hücre büyümesi ve yapısı olup, bor eksikliği hücre duvarlarını inceltici etki yapmaktadır. Ancak borun çok yüksek derişiminde bulunması toksit etki de yapabilmektedir [15]. Bor eksikliği görülen bitkilerde susuz boraks ve boraks pentahidrattan mamul bir gübre kullanılmaktadır. Ayrıca suda eriyebilen sodyum pentaborat veya disodyum oktaborattan mahsulün üzerine püskürtülmek suretiyle faydanılmaktadır. Bor sodyum klorat ve bromosol gibi bileşiklerle birlikte yabani otların yok edilmesi veya toprağın sterilleştirilmesi gereken durumlarda kullanılmaktadır [10–13].

Yeni imal edilen keresteyi böceklerden korumak için borik asit veya boraks pentahidrat banyosu kullanılmaktadır. Dizel ve uçak yakıtlarında gelişen fungilerin önlenmesi için borik asit esteri kullanılmaktadır. Karınca ve hamam böceği içinde etkili bir öldürücüdür [15].

1.8.6 Nükleer Sanayisinde Bor Cevheri

Tüketim miktarı yönünden önemli olmamasına rağmen teknolojik ilerleme açısından büyük önemi olan bir kullanım alanıdır [10–13].

Bor mineral ve bileşikleri ¹⁰B ve ¹¹B izotoplarını içerirler. Borun nötron emme gücü çok yüksektir. Bor izotopları nükleer reaksiyon sırasında denetim kurulmasına olanak verdiği gibi, dimetil eter, elementel bor, zenginleştirilmiş bor oksit veya ferro boron haline dönüştürüldüğünde nükleer reaktörün kontrol çubuklarının yapımında da kullanılır. Bu çubuklar % 2 bor içeren çelik/alüminyum alaşımlarıdır. ¹⁰B nükleer reaktörlerde koruyucu kabuk olarak işe yaramaktadır. Bor karbürler Phenix reaktörlerinde koruyucu kabuk olarak kullanılmaktadır. Bor 304 adı verilen yeni bir paslanmaz çelik, atık nükleer yakıt taşımada kullanılan kapların yapımında kullanılır. Nükleer sanayinde borun en yakın rakibi gadolinyum ve samaryumdur [10–13].

Kaliforniya Üniversitesindeki ¹¹B araştırmalarında ¹¹B' nin proton fizyonlanması sırasında radyoaktivitesiz enerji açığa çıkmıştır. Böylece temiz nükleer enerji elde edilmektedir [10–13]. Japon bilim adamlarınca, 2001 yılı Şubat ayında, magnezyum diboridin geleceğin süper iletkeni olabileceği keşfedildi. Süper iletkenlik, sıcaklığın belli bir noktanın altına düşürülmesiyle (kritik sıcaklığın altına) her türlü elektriksel direncin kaybolması durumudur. Süper iletkenliğin genellikle -273 °C olan mutlak sıfır noktasına yakın sıcaklıkta gerçekleşmesi ve bu derece düşük sıcaklığı gerçekleştirmenin pahalı oluşu, çok daha yüksek kritik sıcaklığa sahip olan magnezyum diboridi ucuz ve verimli bir alternatif haline getirmektedir. Süper iletkenler, çok yüksek akım yoğunluklarını hiç bir enerji kaybına neden olmadan taşıyabildikleri için santrallerden şehirlere verimli enerji iletimi, güçlü mıknatıs isteyen uygulamalar (manyetik rezonans, maglev trenleri vs.), büyük miktarlarda enerjinin manyetik alan depolanması ya da mikro elektronikte istenmeyen ısının önlenmesi gibi bir çok uygulama alanına sahiptir [15].

Dizüstü bilgisayarlar, cep telefonları, avuç içi bilgisayarları ve diğer mobil iletişim araçlarında kullanılan akım levhalarının vazgeçilmez hammaddelerinden biri de bordur [16].

Bor bileşikleri ve bor lifleri (fiber) plastiklerde veya metallerde yüksek dayanıklılığa ve esnekliğe sahiptir. Bu gelişmiş bileşikler askeri alanda, özellikle hava ve uzay araçlarında kullanılmaktadır. Plastiklerde borlu lifler, alüminyum ve titanyumun 6 katı kadar sertlik/yoğunluk oranına sahiptir. Yüksek ısıya dayanıklılığı, esnekliği, hafifliği, güç ve üretim kolaylığı ile birleştirmektedir. Bu özellikleri sebebiyle jet motorlarının kompresör bıçaklarında, kanatçıklarında, dümenlerinde kullanılmaktadır. Bor bileşiklerinin kullanılması, titanyumla karşılaştırıldığında F14, Tomcat, F15 Eagle ve B1 bombardıman uçakların ağırlığını 91 kg azaltmaktadır. Uzay mekiklerinde 137 kg'a kadar ağırlık tasarrufu sağlanabilmektedir [16]. Piyade tüfeği, tabanca, top, tank üretiminde, zırhlı personel taşıyıcıların zırhlarını güçlendirici seramik plaklarda da bor kullanılmaktadır. Borla güçlendirilmiş cam malzemelerin iletken olmayan ve düşük dielektrik özelliği onları radara karşı görünmez kıldığı için askeri teçhizat yapımında önemlidir [16].

Bor karbür ve fiber camın bir bileşimi 30 kalibre kurşunu durduracak şekilde geliştirilmiş olup, AH-10 Kobra helikopterlerinin koltuklarında kullanılmaktadır [16].

1.8.7 Bor Cevherinin Diğer Bazı Kullanım Alanları

Borun diğer alanlardaki kullanımlarının giderek gelişeceği yönünde genel bir eğilim olduğu herkes tarafından kabul edilmektedir. Diğer bazı kullanım alanları aşağıdadır;

i) BNCT (Boron Neutron Capture Therapy) kanser tedavisinde kullanılmakta dır. Özellikle beyin kanserinin tedavisinde hasta hücrelerin seçilerek imha edilmesine yaraması ve sağlıklı hücrelere zararının minimum düzeyde olması nedeniyle tercih sebebi olabilmektedir [15].

ii) Oto antifrizlerinde kullanılan boraks demirli metallerin eriyikte korozyona uğramasını önlemektedir.

iii) Boron katalizör olarak kullanımı oldukça yaygındır. Hidrokarbonların havadan oksitlenmesindeki katalizör borik asittir.

iv) Bor triflorür gaz halinde asidik bir katalizördür. Alkol, asit ve ketonların sudan arındırılmasında, halojenasyonda, aromatik hidrokarbonların sülfürden kurtarılmasında, karbonmonoksidin katıldığı reaksiyonlarda, polyesterin boyanmasın da kullanılır.

v) TiB₂, ZrB₂ gibi metal borürler jet motoru parçaları, roket motoru parçaları, elektrik ileticileri ve kesici alet yapımında kullanılır.

vi) Silisyum borür, oksitlenmeye karşı çok dirençli, ısıya karşı aşırı dayanımı ve kolay işlenebilir olduğundan bor nitrürle, bor karbürün kullanılmadığı oksijenli ortamlarda refrakter olarak kullanılır.

vii) Lantan ve seryum hekza borürler katot yapımında; Lantan borür elektron mikroskobun termiyonik katoduna elverişli olup, elektron ışınımında istikrarlıdır.

viii) Jet ve roket motorlarının iç parçalarında, askeri zırhlı teçhizatta seramik zırhlı olarak kullanılır. Bor nitrür yüksek ısıda elektrik ve ısı izolasyonunun sağlanması için kullanılır. Hekzagonal bor nitrür 3500 °C ısıya dayanır, ıslanmaz ve dielektrik sabiti alüminyum metalinin dört katıdır.

ix) Anisotropik pirolitik bor nitrür mikrodalga lambalarında kullanılır.

x) Lazer hücumunda ısıyı belirli bir noktadan uzaklaştırdığı için askeri amaçlı kullanılır.

xi) Talk pudrasında, bebe pudrasında, traş pudrasında borik asit %5–10 arasında antiseptik olarak tüketilir. Kozmetik ve ilaç sanayinde bor bileşikleri yaygın olarak kullanılmaktadır.

xii) Sodyum borhidrür, jet ve bomba uçaklarının yakıtlarında ve indirgen eleman olarak kullanılır [10–13].

Al ₄ B ₄ O ₁₂ . 3H ₂ O (Alüminyum borat)	Cam ve seramik endüstrileri
$(NH_4)_2B_{10}0_{16}$. $8H_20$ (Amonyum pentaborat)	Bor kimyasallarında ara ürün, atom denizaltılarında kontrol işleri, elektrolitik yoğunlaştırıcı, kağıt kaplama
(NH ₄) ₂ B ₄ O ₇ . 4H ₂ 0 (Amonyum tetraborat)	Üre-formaldehit reçineleri üretimi, yanmaz eşya üretimi
BaB ₂ O ₄ . 2H ₂ O (Baryum metaborat)	Yağlı boya, plastik, tekstil ve kağıt endüstrisi
CoB ₄ O ₇ .xH ₂ O (Kobalt tetraborat)	Sentetik reçinelerde katalizör
CuB ₂ O ₄ (Bakır metaborat)	Yağ pigmentleri, böcek ilaçları
Na ₂ B ₈ O ₁₃ . 4H ₂ 0 (disodyum oktaborat)	Kereste ve diğer selülozik maddelerde yanmaya karşı koruyucu, püskürtme ekin gübresi
Li ₂ B ₄ O ₇ (Lityum tetraborat)	Araştırmalarda, cam üretiminde, X-ışınları kırınımı analizinde
MgB ₂ 0 ₄ (Magnezyum metaborat)	Antiseptik, fungusidlerde
MnB ₄ O ₇ .xH ₂ O (Mangan tetraborat)	Adsorban ve matbaa mürekkebi kurutucusu olarak
K ₂ B ₁₀ O ₁₆ .8H ₂ O (Potasyum pentaborat)	Paslanmaz çelik ve demir dışı metaller için kaynak ve lehim flaksı
K ₂ B ₄ O ₇ .4H ₂ 0 (Potasyum tetraborat)	Lehim ve özel kaynak flaksı, kazein çözücü, diazo tipi çözeltilerde
Na ₂ B ₂ O ₄ .xH ₂ O (Sodyum metaborat)	Fotoğraf kimyasalları, yapıştırıcılar, tekstil işleme bileşikleri, deterjan temizleyiciler, tarım ilaçları
Na ₂ B ₁₀ O ₁₆ .10H ₂ O (Sodyum pentaborat)	Tarımda ve yanmayı geciktirici olarak
$\begin{array}{l} ZnB_{2}O_{4}.2H_{2}O\ ,\\ Zn_{2}B_{6}O_{11}.7H_{2}O,\\ Zn_{3}B_{4}O_{9}.5H_{2}O\end{array}$	(Çinko boratlar) Araştırmalarda, yangın geciktirici olarak
HBF ₄ , (Fluoborik asit)	Alüminyumun elektrolitik parlatılması, metallerin temizlenmesi
NH ₄ BF ₄ (Amonyum fluoborat)	Al ve Mg kalıp dökümünde flaks, araştırma

Tablo 1.8.7 Bazı Anorganik Boratlar ve Kullanım Alanları [2].

LiBF ₄	Araştırmalar, pil elektrolitleri
(lityum fluoborat)	
Ni (NH ₃) ₆ (BF ₄) ₂	Araştırmalar ve katalizör
(Nikelhekzaminfluoborat)	
KBF ₄	indirgen, flaks, öğütme çarkları, köpürtücü,
(Potasyum fluoborat)	kimyasal temizleyici
NaBF ₄	indirgen, flaks,köpürtücü, kimyasal temizleyici
(Sodyum fluoborat)	
$Zn (BF_4)_2$	Boya, kaplama çözeltileri, tekstil endüstrisi
(Çinko fluoborat)	

1.9 Ağaç Türü ve Kompozit Malzemelerde Bor Bileşiklerinin Kullanımı

Herhangi bir koruyucu işlem görmemiş doğal haldeki ağaç türü malzemenin kullanım yerinde mantarlar ve böcekler tarafından tahrip edilerek çürütülmesi sonucu her yıl büyük maddi kayıplar söz konusudur [17] . Bunun yanında ağaç türü malzeme yanıcı özellikte olup yüksek sıcaklıklarda yanmaya eğilim göstermektedir. Ağaç türü malzemenin sahip olduğu bu olumsuz özellikler bazı koruyucu önlemler ve koruma teknikleri ile azaltılabilmektedir. Ağaç türü malzemeler kimyasal maddeler kullanmadan da alınabilecek önlemlerle bu etkilere karşı bir dereceye kadar dirençli hale gelebilmekte fakat risk faktörlerinin şiddetli ve sürekli olması durumunda kimyasal önlemlere gereksinim duyulmaktadır.

Ağaç türü malzemenin korunması, odunun çeşitli koruyucu özelliklere sahip kimyasal maddelerle işleme sokulması anlamına gelmekte olup, bu amaçla yüzyıllardır çok amaçlı ve çeşitli sistemler geliştirilmiştir. Bu maddeler genel olarak organik çözücülerde çözünen, suda çözünen ve yağlı emprenye maddeleri olarak sınıflandırılmaktadır [18].

Ağaç türü malzemenin dayanma süresini artırmak için kullanılan kimyasal maddeler, çeşitli metodlarla uygulanmaktadır. Uygulama şekilleri bakımından koruma metodları 5 tipte toplanmaktadır:

i) Basınç uygulanmayan metodlar: Bu gruba ; fırça ile sürülme, püskürtme, daldırma, batırma ve açık kazanda sıcak-soğuk koruma metodları girmektedir.
 Koruma maddesinin tutunması ve nüfuz derinliği az olmaktadır.

ii) **Basınç uygulanan metodlar**: Ağaç türü malzeme, çelik bir kazan içerisine yerleştirilmekte, koruma maddesi vakum ve basınç etkisiyle odun hücreleri içerisine sevk edilmektedir. İşlemin amacı, ağaç türü malzemenin hücrelerini tamamen koruma maddesi ile doldurarak, maksimum soğurma sağlamaktadır. Genellikle suda çözünen tuzlar kullanılır.

iii) **Besi suyu çıkarma metodu**: Metodun esası, yeni kesilmiş taze haldeki kabuğu soyulmamış ağaç gövdelerinde besi suyunun koruma maddeleri ile yer değiştirmesi esasına dayanmaktadır.

iv) **Difüzyon metodu**: Ağaç türü malzeme yüksek derişimdeki koruma maddesi içerisine batırılmakta veya bulamaç halindeki madde yüzeylere sürülmektedir. Çok rutubetli haldeki ağaç türü malzemeye, derişik halde tatbik edilen koruma maddesinin difüzyonu ilkesine dayanır.

v) **Yerinde bakım metodları**: Açık havada kullanılan ağaç türü malzemenin bazı kısımları, diğer kısımlarına göre daha fazla tahrip edilmekte veya böyle yerlerde koruma maddelerinin koruyucu etkileri daha kısa zamanda kaybolmaktadır. Tehlikeli kısımların korunmasında bu kısımların etrafına veya içerisine derişik halde koruma tuzları tatbik edilerek, tuzların zaman içinde yayınım yolu ile malzemeye nüfuz etmesi sağlanmaktadır [19].

Son yıllarda bazı emprenye maddelerinin, emprenye edilmiş ağaç türü malzemenin ve aynı zamanda hizmet ömrünü tamamlamış emprenyeli ağaç türü malzeme atıklarının oluşturacağı çevre problemleri nedeniyle yeni emprenye maddelerinin geliştirilmesi ve çevreye zararı en az olanlarının kullanımının artırılmasına yönelik çalışmalar yoğunlaştırılmış bulunmaktadır [18].

Bugün koruyucu emprenye maddesi olarak borlu bileşikler en güvenli kimyasallardan biri olarak kabul edilmekte ve insan ve çevreye olan etkisi minimum düzeylerde kaldığından kullanımı gittikçe önem kazanmaktadır. Borlu bileşikler, geleneksel emprenye maddesinin yerini almaya başlamış ve çeşitli emprenye maddesi karışımlarının aktif maddesi olmuştur. Borlu bileşikler sadece mantar ve termit gibi zararlılara karşı etkinliğinden değil, aynı zamanda yanmaya karşı direncinden dolayı da ağaç malzemenin yanmaya karşı korunmasında 1930' lu yıllardan itibaren kullanılmaya başlanmıştır [20].

Borlu bileşiklerin yüksek oranda çözünebilir olması, bu bileşiklere aynı zamanda bir dezavantaj kazandırmakta ve emprenye edilen ağaç türü malzemeden kolaylıkla yıkanabilmektedir. Bu nedenle emprenye edilen malzemenin genellikle toprakla ve suyla temas etmeyen yerlerde kullanılması önerilmektedir. Borlu emprenye maddelerinin ağaç türü malzemelerden yıkanmasını önlemek ve zor yıkanan yeni borlu emprenye maddeleri ve sistemleri geliştirmek üzere son yıllarda yoğun şekilde araştırmalar yapılmaktadır. Bor, ağaç türü malzemedeki kimyasal yapılara doğrudan bağlanamamakta ve fiksasyon gerçekleşmemektedir. Bunun sonucu olarak borlu bileşikler yüksek rutubet şartlarında kullanımlarında yıkanma ile karşı karşıya kalmaktadır [21].

Yıkanmaya karşı dirençli bor bileşikleri içeren emprenye maddelerinin geliştirilmesiyle yapılan araştırmaların bir kısmı, borun formülasyonunda aktif bileşen olarak kaldığı ve bunun yanında bir veya daha çok farklı elementin bulunduğu kompleks karışımlara doğru yönelmiştir [22].

Ornek olarak, borlu bakır bileşikleri (bakır bor azole-CBA) ve diğer organik esaslı borlu bileşikler verilebilir. Bunun yanında **çinko boratlar** gibi suda zor çözünen bor bileşikleri de bir çok araştırmaya konu olmuştur. Fakat bu tür bileşikler daha çok kompozit malzemelerin emprenyesinde önem kazanmıştır. Boraks, borik asit, borik oksit, **çinko borat**, kalsiyum borat, metaboratlar, tetra, penta ve okta boratlar uzun yıllardır hem biyosit hem de yanmayı geciktirici / önleyici olarak masif ve kompozit malzemelerde kullanılan önemli borlu bileşiklerdir [23].

Borlu bileşiklerin yıkanma problemleri nedeniyle en önemli kullanım yeri kompozit malzemelerin hem biyolojik zararlılara hem de yanma gibi etkenlere karşı korunmasında olacaktır. Bugün endüstriyel anlamda odun esaslı kompozit malzemelerin kullanımı büyük oranda artış göstermekte ve bu tür malzemeler hem iç hem de dış ortamlarda yoğun olarak kullanılmaktadır. Aynı masif ağaç türü malzeme gibi kompozitlerde degradasyon riskinin yüksek olduğu yerlerde emprenye işlemlerine gereksinim duymaktadır. Çoğu kompozit malzeme için özellikle anorganik boratlar uygun emprenye maddelerdir. Borlu bileşikler kompozit üretimi sırasında katı küçük parçacıklar olarak doğrudan hammadde oduna veya tutkala katılmaktadır. Çinko borat gibi anorganik borat bileşikleri bu amaçla daha çok kullanılmakta ve bu bileşiğin daha düşük çözünürlüğünden dolayı yıkanma riski de azalmaktadır. Bunun sonucu olarak bu tip kompozit malzemeler dış şartlarda kullanım için daha uygun hale gelmekte ve dayanıklılık artmaktadır [24].

Kompozit malzemelerin borlu bileşiklerle emprenyesinde dikkat edilecek en önemli konu malzemenin fiziksel ve mekanik özellikleri üzerine olabilecek etkilerdir. Burada kullanılan tutkal ile ağaç malzeme arasında gerçekleşen bağlanma etkisi en önemli husustur. Genel olarak borlu bileşiklerin etkileri az olmakla birlikte, kullanılacak tutkal tipinin borlu bileşiklerle uyumlu olması gerekmektedir.

Bazı durumlarda borik asit veya sodyum boratlar fenol formaldehit tutkalı ile uyumsuzluklar göstermektedir. Bununla birlikte **çinko boratlar** veya susuz boraks başarılı bir şekilde fenol formaldehit tutkalı ile kullanılabilmektedir [25]. Borlu bileşikler kompozit malzeme üretiminde doğrudan ağaç türü malzemeye spreyleme ya da daldırma şeklinde uygulanmakta ve ardından malzeme tutkal ile preslenmektedir. Diğer bir metod ise borlu bileşiklerin tutkal ile önce karıştırılması ve daha sonra ağaç türü malzemeye uygulanarak presleme aşamasına geçilmesidir. Üretilen kompozit malzemeye üretimden sonra borlu bileşik uygulaması ise tercih edilen bir uygulama olmamaktadır [26].

Yangın komplekstir, onun gelişim ve şiddeti, ilgili bir kaç değişkene bağlıdır. Kontrolsüz yangında büyük oranda farklı evrelerle karşılaşılır:

i) Başlama (1sı, bozunma ve tutuşma veya gazın tutuşması)

- ii) Gelişme (yayılma veya alt katmanın yanmasına neden olan çoğalma)
- iii) Yatışkan durum (yangının tamamen büyümesi)
- iv) Bozulma (yangının kendi kendini söndürmesi)

Verimli alev geciktirici kaplama kullanıldığında büyüme evresi çok kolaylıkla kontrol edilebilir. Alev geciktirici kaplamalar, yanıcı veya yanmaz yüzeylerin büyük bir çoğunluğuna uygulanmak için tasarlanmış ve estetik açıdan geliştirilmiştir. İnce filmlerle kaplama alev yayılmasını ve duman oluşmasını geciktirebileceği için onlar sıklıkla güvenliğin hayati olduğu yaşam ve çalışma alanlarında kullanılır. Bir diğer açıdan, eğer sıradan bir boya, herhangi bir odanın duvarına ve tavanına uygulanır ve bu yerdeki bir nesne alev alırsa, alevler duvar yüzeyine ulaşabilir ve daha fazla ısı ve yanıcı gaz oluşur. Alevlerin tavana ulaşmasından sonra büyük miktarda ısı tekrardan yayılır. Alevlenebilir buharlar aniden tutuştuğunda bir patlama oluşur. Bu geri dönüşümü olmayan bir noktadır.

Alev geciktirici kaplamalar alevle temas ettikleri ya da ısı oluştuğu zaman alev almayan gaz yayma yeteneklerine göre farklılıklar gösterirler. Bu gazlar alevin yayılma hızını engeller ve aynı zamanda şiddetinin azalmasını sağlar. Alev geciktiricinin etkisi, bileşimine bir halojen kaynak eklemek veya film oluşturulmuş polimerlerin içerisine kimyasal olarak yerleştirerek elde edilebilir. Alev geciktiricileri geliştirmek için genellikle antimon trioksit (Sb₂O₃) bir katkı maddesi olarak kullanılır. Son zamanlarda, karbonlaşma analizinde antimon oranının % 80–95 olduğunu gösterdiğinden beri, kısmen veya tamamen, antimon trioksidin yerine geçebilecek çalışmalar yapılmıştır. Bu yenilik için diğer bir neden çok iyi bir performans/maliyet dengesini elde etmek ve antimon oksidin olası toksitesi için ilgiyi arttırmaktadır [27].

Yangına dayanıklı malzemeler kablo endüstrisinde geniş kullanım alanına sahiptir. Elektriksel yalıtım aynı kabloya ait olan komşu teller arasında kısa devreyi önler. Isıl bozunma süresince minimum düzeyde zehirli gaz ve duman üretilmektedir. Telin katı yapısı, gerekli olan durumlarda (yangın) belirli süre esnasında kablonun işlevsel olabilmesi için, iyi kalitede mekanik malzemeden elde edilmiş olmalıdır. Böyle yangın davranışları organik ve/veya anorganik dolgu maddelerin yükseltgenmesiyle değişik formülasyon içeren polimer bileşiklerin geliştirilmesiyle elde edilir.

i) Endotermik su salınım (dehidrasyon) işlemleri bir miktar ısı soğururlar ve gazlar üretir.

ii) Kablo ile alev arasında üretilen inert gaz katmanı, oksijenin yanan polimere doğru yayılımını engeller.

iii) Katı atıkların oluşumu alev ve altta bulunan yanmamış polimer arasında bir engel gibi davranır.

Maalesef, bazı alev geciktiriciler sistemdeki diğer bileşenlerle istenmeyen kimyasal tepkimeler sergilemekte ve bu yüzden yangın koşullarındaki davranışları iyi anlaşılmaksızın kullanılmaktadır. Yangın geciktiricilerle ilgili yaygın yaklaşımlardan biri 350 °C civarında yanma boyunca endotermik su çıkışına neden olabilmek için yüksek miktarda alümina trihidrat (ATH, Al₂O₃.3H₂O) yükleyerek bir

23

halojensiz polimer oluşturmaktır. Son zamanlarda, dolgu maddesi ATH' a **hidrate çinko borat** alternatif hale gelmektedir. Bu yeni ürün, 300-400 °C sıcaklık arasında su molekülleri kendi ağırlığının %10' dan daha fazlasını kaybedebilir. Üstelik termal etki esnasında, **çinko borat** yanmaya karşı geçici izole edici bir engel gibi davranan camsı bir faza dönüşmektedir. **Çinko borat** ve alümina trihidrat bileşimi, oldukça yüksek sıcaklıkta iyi mekaniksel ve elektriksel özellikler sunmaktadır [28].

1.10 Bor İçerikli Maddelerin Çevre Açısından İncelenmesi

Ağaç türü malzemelerinin kullanım ömrünün mümkün olduğunca uzun olması ve ekonomiklik sağlaması, kimyasal yoldan hammaddenin korunmasını kaçınılmaz kılar. Fakat kimyasal yolla ağaç malzemenin korunmasında çevre sağlığı bakımından bazı sakıncalar ortaya çıkmış bulunmaktadır. Bu sakıncalar koruma maddesinin tipini ve yöntemine göre de farklılık göstermektedir.

Ahşap koruma maddeleri üzerinde yapılan araştırmalar; özellikle çevreyi kirletmeyen kimyasallar tercih edilmekte, diğerlerinden ise vazgeçilmektedir. Ancak, mantarlar ve böcekler için yüksek zehirlilik derecesine sahip kimyasal maddelere karşı alternatif bulunmasında hala güçlük çekilmektedir. Bu araştırmalar, canlılar için zehirli etkisi olmayan bor bileşiklerini ön plana çıkarmaktadır [29].

Koruma maddesi olarak kullanılan bor bileşikleri katı ve derişik bir halde taşınabilmekte ve ucuz çözücü olan su ile kullanım yerinde hazırlanabilmektedir. Düşük derişimlerde dahi zehirli etkiye sahip olduklarından böcek ve mantarlara karşı eşit etkinlikte kimyasal madde formülleri kolayca hazırlanabilmektedir. İnsanlar için zehirli etkiye sahip değildir.

Kalite ve analitik yöntem bakımından kontrol edilmesi basit ve kolaydır. Etkin nüfuz derinliğine sahiptirler. Metaller, cam, mermer, seramik ve plastik gibi maddelerle etki yapmazlar. Koruma sonrası yapışabilmekte ve bünyelerindeki kimyasallar ağaç malzemede renk değişikliği yapmamaktadır [30].

1.11 Mikrodalga Enerjiyle Gerçekleştirilen Sentezler

Katıların sentezlenmesi için yeni yöntemlerin geliştirilmesi, malzeme kimyasında sürekli araştırılan bir konudur. Son zamanlarda sol-jel tekniği ve hidrotermal yöntem gibi kimyasal metotların gelişmesi yeni tür malzemelerin hazırlanmasına olanak sağlar [31-35]. Mikrodalga enerji yöntemi, sentezde yeni metottur ve araştırmalarda hızlıca gelişen bir alandır [36-40]. Clark ve Sutton, çeşitli durumlar için mikrodalga uygulamaları açıklamışlardır [41]. Son zamanlarda yapılan araştırmalar, geleneksel tekniklerin mikrodalga yöntemi ile yer değiştirdiğini göstermiştir. Mikrodalga yöntem, bir süredir hızlandırılmış organik reaksiyonlar için de kullanılmaktadır [37, 39, 42, 43]. Mikrodalga yardımlı sentezler, geleneksel metotlardan daha ekonomik, daha hızlı, daha temizdir ve enerji etkilidir. Malzemelerin sentezi boyunca reaktantlarla mikrodalga etkileşiminin kesin doğası bilinmemektedir ve bir çok konu tam olarak anlaşılmamıştır. Bununla beraber mikrodalgadan materyale, enerji transferinin hızlı ısınmadan kaynaklanan hem rezonans hem de relaksasyon (geri salınım) oluşturduğu zannedilmektedir. Bu bilgi, reaksiyon mekanizmaları tartışmalarında bilgi olarak kullanılmaktadır.

Mikrodalga, dalga boyları 1mm - 1m aralığında uzanan elektromanyetik radyasyondur (frekans 0.3 – 300 GHz aralığında). Mikrodalga spektrumun büyük bir bölümü iletişim işlemleri için ve yalnızca 900 MHz merkezinde dar frekans pencereleri için ve 2.45 GHz mikrodalga ısınma işlemlerine izin verir. Mikrodalga ısınma uygulaması için 28, 30, 60 ve 83 MHz frekansları kimyasal reaksiyonlarda kullanılmaktadır [44-47] . Metalik bir levha benzeri basit bir aynadan yansıma yapabilen mikrodalgalar, bir dielektrik ara yüzeyde kırılır ve parabolik bir reflektör (yansıtıcı) ya da boynuz antenle odaklanabilir. Mikrodalga enerjisi 2450 MHz için yaklaşık %50'lik, 915 MHz için yaklaşık %85'lik bir dönüşüm verimiyle elektrik enerjisinden elde edilebilmektedir. Mikrodalgalar; görünür, ultraviyole ya da infrared ışık gibi diğer elektromanyetik enerji şekillerinden daha yüksek dalga boylarına ve daha düşük enerjiye sahiptir [48].
Literatürde mikrodalga uygulamaların çoğunda, laboratuvarda birkaç gramlık numunenin kullanıldığı belirtilöiştir. Bu uygulamalarda 250–1000 kW aralığı gücünde ve genellikle 2.45 GHz frekansında çalışan mikrodalga fırınlar kullanılmıştır [45, 47, 49].

1.12 Mikrodalga Isitmanın Prensibi

Mikrodalgalar, iyonik parçaların göçü ve/veya dipolar parçaların dönüşü ile moleküler harekete sebep olurlar. Bir malzemeyi mikrodalga ile ısıtma, malzemenin harcama (dissipation) faktörüne büyük oranda bağlıdır. Bu faktör malzemenin dielektrik sabitine, dielektrik kaybının oranı olarak ifade edilir. Dielektrik sabiti, malzemenin mikrodalga enerjisinin içerisinden geçmesi esnasında alıkoyma yeteneğinin bir ölçüsüdür. Kayıp faktörü ise malzemenin enerjiyi tüketmesi yeteneğinin bir ölçüsüdür. Diğer bir değişle, "kayıp faktörü" giren mikrodalga enerjisinin malzeme içinde ısı olarak tükenmesiyle kayıp olma miktarını vermektedir. Bu nedenle yüksek kayıp faktörlü bir malzeme mikrodalga enerjisi ile kolaylıkla ısıtılabilmektedir. Gerçekte iyonik iletim ve dipolar rotasyon mikrodalga enerjisi kaybının iki önemli mekanizmasıdır.

Mikrodalga ısıtma sistemi dört temel kısım ile yapılmaktadır. Bunlar güç uygulayıcı, magnetron, hedef malzemenin ısıtılması için aplikator (örn. fırın) ve jenaratörden gelen mikrodalgaları aplikatöre ileten dalga-rehberidir [48].

1.13 Mikrodalga ile Materyallerin Etkileşimi

Malzemelerin mikrodalga ile olan etkileşimi, genellikle üç farklı kategoriye ayrılır:

 i) Mikrodalga yansıtıcılar, mikrodalga enerjinin üretilmesinde kullanılan pirinç gibi maden alaşımları ve hacimli metaller en tipik örneğidir.

 ii) Mikrodalgayı geçiren mikrodalga iletkenler, teflon, seramikler (geçiş elementi içermeyen) bazı camlar, zirkon ve erimiş kuvars en tipik örneklerdir.
 Bunlar mikrodalgada kimyasal reaksiyonların meydana geldiği kapların ve yemek pişirme kaplarının yapılmasında kullanılır. iii) Mikrodalga sentezler için en önemli sınıfı oluşturan mikrodalga soğurucular, mikrodalgayla çok hızlı bir iletişim göstererek çok hızlı bir şekilde ısı alırlar [50].

Element/Mineral/Bileşik	Mikrodalgaya maruz kalma	Sıcaklık (K)
	süresi (dak.)	
Al	6	850
$C(Amorf, < 1\mu m)$	1	1556
C(grafit, 200 mesh)	6	1053
C(grafit, < 1µm)	1.75	1346
Со	3	970
Fe	7	1041
Мо	4	933
V	1	830
W	6.25	963
Zn	3	854
TiB_2	7	1116
Co ₂ O ₃	3	1563
CuO	6.25	1285
Fe ₃ O ₄	2.75	1531
MnO ₂	6	1560
NiO	6.25	1578
V ₂ O ₅	11	987
WO ₃	6	1543
Ag_2S	5.25	925
Cu ₂ S	7	1019
CuFeSe ₂	1	1193
Fe _{1-x} S	1.75	1159
FeS ₂	6.75	1292
MoS_2	7	1379
PbS	1.25	1297
PbS(galena)	7	956
CuBr	11	995
CuCl	13	892
ZnBr ₂	7	847
ZnCl ₂	7	882

Tablo 1.13 Mikrodalga Aktif Element, Doğal Mineral ve Bileşikler

Anorganik materyallerin çoğunun normal sıcaklıklarda mikrodalga ile oldukça iyi bir şekilde etkileşim gösterdiği bilinmektedir. Tablo 1.11' te bazı mineral ve anorganik bileşikler sıralanmıştır. Ev tipi bir mikrodalga fırında mikrodalga yayınlanırken malzemelerin maruz kaldıkları zamana ulaştıkları sıcaklıklarda, Tablo 1.11' te verilmiştir. Tablo 1.11' in içermediği HgS, MoS₂, As, ZnS ve diğerleri gibi bazı kalgonitler mikrodalga ile etkileşir fakat Tablo 1.11' de verilen maddeler gibi çok hızlı ısınmazlar. Çok hızlı ısınan, oksijen ve hidrür içeren geçiş metalleri de Tablo 1.11' te verilmemiştir. Karbonun çoğu formu toz halinde mikrodalga ile etkileşir. Özellikle toz amorf karbon 1 kW uygulanan mikrodalga ile 1 dakikada, sıcaklığını çok hızlı bir şekilde 1550 K 'e yükselmesini sağlayarak, mikrodalga enerjisi ile güçlü bir etkileşim gösterdiği gözlenmişti [50].

1.14 X-Işını Spektroskopisi ve Kırınımının Teorisi

X-ışını spektroskopisi, diğer optik spektroskopiler gibi elektromanyetik ışınım, yayınım, soğurma, saçılma, floresans ve kırınımın ölçümüne dayanır. X-ışını soğurma yöntemleri periyodik çizelgedeki atom numarası sodyumdan büyük bütün elementlerin nitel ve nicel tayini için yaygın olarak kullanılmaktadır. Özel donanımlarla atom numarası 5–10 arasındaki elementler de tayin edilebilmektedir [51].

X-ışınları, yüksek-enerjili elektronların yavaşlamasıyla hedef metale çarpıp, sahip oldukları yüksek kinetik enerjiyle metalin iç yörüngedeki elektronun kopmasına ve üst enerji düzeylerinde bu elektron boşluğunun doldurulması esnasında oluşan kısa dalga boylu elektromanyetik ışınlardır. X-ışınlarının dalga boyu aralığı yaklaşık 10^{-5} Å' dan 100 Å' kadardır. Ancak klasik X-ışınları spektroskopisi yaklaşık 0.1 Å ile 25 Å (1 Å = 0.1 nm = 10^{-10} m) arasındaki bölgeyi kapsar [51].

1.15 X-Işınları Kırınımı

Diğer elektromanyetik ışın türlerinde olduğu gibi, X-ışının elektik vektörüyle, ışının içinden geçtiği madde elektronları arasındaki etkileşme sonucu saçılma meydana gelir. X-ışınları bir kristaldeki düzenli ortam tarafından saçıldığında, saçılmayı yapan merkezler arasındaki mesafe, ışın dalga boyu ile (X-ışını dalga boyu) aynı mertebede olduğu için saçılan ışınlar girişim (yapıcı ve sönücü) etkisi yaparlar. Bu durumda kırınım meydana gelir [51].

1.15.1 Bragg Yasası

Bir X-ışını demeti bir kristal yüzeyine θ açısıyla çarptığında, bir kısmı yüzeydeki atom tabakası tarafından saçılır. Işın demetinin saçılmayan kısmı ikinci atom tabakasına ulaşır. Bu tabakada yine bir kısmı saçılırken geriye kalan ışın üçüncü tabakaya geçer. Kristalin düzenli örgü yapısı içinde yer alan merkezler tarafından yapılan bu saçılmanın net etkisi, görünür bölge ışınının yansımalı optik ağ ile uğradığı kırınım ile aynı olan kırınımdır. X-ışınımı kırınımı için (i) atom tabakaları arasındaki mesafe yaklaşık olarak ışının dalga boyu ile aynı olmalıdır ve (ii) saçılma yapan merkezler çok düzgün ve tekrarlanır bir düzende bulunmalıdır [51].

Şekil 1.15 Bir Kristal Tarafından Oluşturulan X-Işınları Kırınımı

W. L. Bragg, 1912' de Şekil 1.13 'de görüldüğü gibi kristallerin X-ışını kırınımını incelemiştir. Burada ince bir ışın demeti kristal yüzeye θ açısıyla çarpmaktadır. Işının O, P ve R' deki atomlarla etkileşimi sonucu saçılma olmaktadır. Eğer

$$AP + PC = n\lambda \tag{1.1}$$

ise (burada n bir tamsayıdır), saçılan ışın OCD'de aynı fazdadır ve kristal X-ışınını yansıtacaktır.

$$AP = PC = d\sin\theta \tag{1.2}$$

Burada **'d'** kristaldeki düzlemler arası mesafedir. Bu durumda kristal yüzeyine θ açısı ile gelen ışın demeti için yapıcı girişim şartı;

$$n\lambda = 2d\sin\theta \tag{1.3}$$

olur. Eşitlik 1.3' e Bragg eşitliği denir ve çok önemli bir işleve sahiptir.

Bragg Yasasını sağlamayan diğer bütün açılarda sönücü girişim meydana gelir [51].

1.16 X-Işını Kırınım Yöntemleri

1912 yılında Van Laue tarafından keşfedildikten sonra, X-ışınları kırınımı bugüne kadar endüstri ve bilime çok önemli bilgi akışı sağlamıştır. Örneğin; kristal malzemelerin atomlarının geometrik düzeni (örgü yapısı) ve atomlar arasındaki mesafe hakkındaki bilgilerin çoğu doğrudan kırınım çalışmalarıyla tayin edilmiştir. Ayrıca bu çalışmalar, metallerin, polimerik malzemelerin ve diğer katıların fiziksel özelliklerinin çok daha iyi anlaşılmasına katkıda bulunmuştur. X- ışınları kırınımı son zamanlarda stereoidler, vitaminler ve antibiyotikler gibi karmaşık doğal maddelerin yapılarının aydınlatılmasında çok önemli bir rol oynamaktadır.

1.17 Çalışmanın Amacı

Bu çalışmanın amacı, özellikle endüstride çinko boratlı bileşiklerin gerek selülozik maddelerde fungisitler ve termisitlere karşı koruyucu özellik göstermesi gerekse de selülozik maddelere ilaveten diğer bazı malzemelerde yanmayı önleyici ve geciktirici özellik göstermesinden dolayı bu bileşiklerin ekonomik yönden sentezi büyük önem kazanmaktadır. Bu çalışmada mikrodalga yardımlı ve yüksek sıcaklık ortamında gerçekleşen katı-hal kimyasal etkileşimleri kullanarak, çinko boratların sentezlenmesi ve elde edilen ürünlerin X-ışınları kırınımı yöntemiyle kristal yapılarının ve oluşan fazların detaylı bir şekilde belirlenmesi amaçlanmıştır.

2. MATERYAL VE YÖNTEMLER

2.1 Kullanılan Kimyasal Maddeler

Deneysel çalışmalarda, B_2O_3 , H_3BO_3 , $Zn(NO_3)_2.6H_2O$ ve ZnO kimyasal maddeleri kullanılmıştır. Bu bileşikler analitik saflıkta olup Carlo Erba, Fluka ve Merck firmalarından sağlanmıştır.

2.2 Kullanılan Cihazlar

Sentezler, Vestel MD 17 model, 2.45 GHz, mikrodalga fırında gerçekleştirilmiştir. X-Işını kırınım çekimleri, CuK α = 1.54056 Å, 30 mA , 45 kV radyasyonunda PANanalytic X'Pert PRO marka X-Işını difraktometre ile elde edilmiştir. IR spektrumları Perkin Emler BX 2 FT-IR spektrometresiyle 4000 – 400 cm⁻¹ aralığında çekilmiştir.

2.3 Yöntem

2.3.1 Termal Yöntem

Tablo 3.3' de verilen denklemleregöre maddeler, mol oranlarına uygun olarak tartılmıştır. Tartılan maddeler havanda ezilerek öğütülmüştür. Öğütülen karışımlardan yaklaşık 2.5 gram tartım alınarak krozelere konulmuştur. 4 saat 700°C' de ısıtılmıştır. Elde edilen malzeme öğütülerek, IR spektrumlarının ve Xışınları kırınım desenlerinin alınması için desikatöre konulmuştur. Bundan sonra Xışınları kırınımı (X-Ray Diffraction, XRD) desenlerine kısaca XRD desenleri denecektir.

2.3.2 Mikrodalga Enerji Yöntemi

Tablo 3.1'de verilen denklemlere göre maddeler, mol oranlarına uygun olarak tartılmıştır. Tartılan maddeler havanda ezilerek öğütülmüştür. Homojen olarak öğütülen karışımlardan, yaklaşık 2.5 gram tartım alınarak krozelere konulmuştur. Karışım, 700 W güçte 10 dakika süreyle mikrodalga fırında bekletilmiştir. Mikrodalga etkileşim sonucunda oluşan malzemeler havanda homojen olarak öğütülerek, IR spektrumlarının ve XRD desenlerinin alınması için desikatöre konulmuştur.

3. BULGULAR

3.1 Mikrodalga Enerji Yöntemi ile Yapılan Deneyler

Tablo 3.1 Mikrodalga Enerji Yöntemi ile Yapılan Deneyler

Deneyin Kodu	Reaksiyonda Kullanılan	Mol
	Bileşikler	Oranları
MD1	$Zn(NO_3)_2.6H_2O + 1H_3BO_3$	1:1
MD2	$Zn(NO_3)_2.6H_2O + 2H_3BO_3$	1:2
MD3	$Zn(NO_3)_2.6H_2O + 3H_3BO_3$	1:3
MD4	$Zn(NO_3)_2.6H_2O + 4H_3BO_3$	1:4
MD5	$Zn(NO_3)_2.6H_2O + 5H_3BO_3$	1:5
MD6	$Zn(NO_3)_2.6H_2O + 6H_3BO_3$	1:6
MD7	$Zn(NO_3)_2.6H_2O + 1B_2O_3$	1:1
MD8	$Zn(NO_3)_2.6H_2O + 2B_2O_3$	1:2
MD9	$Zn(NO_3)_2.6H_2O + 3B_2O_3$	1:3
MD10	$Zn(NO_3)_2.6H_2O + 4B_2O_3$	1:4
MD11	$Zn(NO_3)_2.6H_2O + 5B_2O_3$	1:5
MD12	$Zn(NO_3)_2.6H_2O + 6B_2O_3$	1:6

Tablo 3.2 Mikrodalga Enerji Yöntemi ile Yapılan Deneyler ve Gözlemler

Deneyin Kodu	Reaksiyonda Kullanılan Bileşikler	Mol Oranları	Gözlemler	
MD1	$Zn(NO_3)_2.6H_2O + 1H_3BO_3$	1:1	1. dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme	
			meydana geldi. Iç kısmı süngerimsi beyaz ürün oluştu.	
MD2	$Zn(NO_3)_2.6H_2O + 2H_3BO_3$	1:2	1.dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme	
			meydana geldi. Krozenin kenarlarında açık sarı nokta şeklinde	
			ürün oluştu, fırından çıktıktan 2 dakika sonra ürünün rengi	
			beyazladı. İç kısmı süngerimsi, beyaz renkte bir ürün oluştu.	
MD3	$Zn(NO_3)_2.6H_2O + 3H_3BO_3$	1:3	1.dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme	
			meydana geldi. İlk başta sarı renkli ürün oluştu, fırından çıktıktan 2	
			dakika sonra;iç kısmı süngerimsi, beyaz renkli bir ürün oluştu.	
MD4	$Zn(NO_3)_2.6H_2O + 4H_3BO_3$	1:4	1.dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme	
			meydana geldi. İlk başta sarı renkli ürün oluştu, fırından çıktıktan 2	
			dakika sonra;iç kısmı süngerimsi, beyaz renkli bir ürün oluştu.	
MD5	$Zn(NO_3)_2.6H_2O + 5H_3BO_3$	1:5	1.dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme	
			meydana geldi. İlk başta açık kahverengi renkli ürün oluştu,	
			fırından çıktıktan 2 dakika sonra; iç kısmı süngerimsi, beyaz ürün	
			renkli bir oluştu.	
MD6	$Zn(NO_3)_2.6H_2O + 6H_3BO_3$	1:6	1.dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme	
			meydana geldi. İlk başta açık kahverengi renkli ürün oluştu,	
			fırından çıktıktan 2 dakika sonra;iç kısmı süngerimsi,beyaz renkli	
			bir ürün oluştu.	

Deneyin Kodu	Reaksiyonda Kullanılan Bileşikler	Mol Oranları	Gözlemler
MD7	$Zn(NO_3)_2.6H_2O + 1B_2O_3$	1:1	1.dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme meydana geldi. İlk başta alt kısmında kirli beyaz renkte bir ürün oluştu, fırından çıktıktan 20 dakika sonra ise ürünün rengi beyazladı. İçi süngerimsi, dışı beyaz renkli bir ürün elde edildi.
MD8	$Zn(NO_3)_2.6H_2O + 2B_2O_3$	1:2	1.dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme meydana geldi. İlk başta alt kısmında açık kahverengi ürün oluştu, fırından çıktıktan 20 dakika sonra ise ürünün rengi beyazladı.İçi süngerimsi, dışı beyaz renkli bir ürün elde edildi.
MD9	$Zn(NO_3)_2.6H_2O + 3B_2O_3$	1:3	1.dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme meydana geldi. İlk başta alt kısmında kirli beyaz ürün oluştu, fırından çıktıktan 20 dakika sonra ürünün rengi beyazladı.İçi süngerimsi, dışı beyaz renkli bir ürün elde edildi.
MD10	$Zn(NO_3)_2.6H_2O + 4B_2O_3$	1:4	1.dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme meydana geldi. İlk başta alt kısmında açık kahverengi ürün oluştu, fırından çıktıktan 20 dakika sonra ürün beyazladı.İçi süngerimsi, dışı beyaz renkli bir ürün elde edildi.
MD11	$Zn(NO_3)_2.6H_2O + 5B_2O_3$	1:5	1.dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme meydana geldi. İlk başta alt kısmında açık kahverengi ürün oluştu, fırından çıktıktan 20 dakika sonra ürün beyazladı.İçi süngerimsi, dışı beyaz renkli bir ürün elde edildi.
MD12	$Zn(NO_3)_2.6H_2O + 6B_2O_3$	1:6	1.dakikada gaz çıkışı ve sıvılaşma, sıvılaşmanın ardından köpürme meydana geldi. İlk başta alt kısmında kahverengi ürün oluştu, fırından çıktıktan 20 dakika sonra ürün beyazladı.İçi süngerimsi, dışı beyaz renkli bir ürün elde edildi.

Şekil 3.1 MD7-8-9-10-11-12 Kodlu Deneylerin Fotoğrafı

3.2 Termal Yöntem Kullanılarak Yapılan Deneyler

	Reaksiyonda		
Deneyin	Kullanılan	Mol	Gözlemler
Kodu	Bileşikler	Oranları	
F1	$ZnO + 1B_2O_3$	1:1	Beyaz renkli ürün elde edildi.
F2	$ZnO + 2B_2O_3$	1:2	Beyaz renkli ürün elde edildi.
F3	$ZnO + 3B_2O_3$	1:3	Beyaz renkli ürün elde edildi.
F4	$ZnO + 4B_2O_3$	1:4	Beyaz renkli ürün elde edildi.
F5	$ZnO + 5B_2O_3$	1:5	Beyaz renkli ürün elde edildi.
F6	$ZnO + 6B_2O_3$	1:6	Beyaz renkli ürün elde edildi.
F7	$ZnO + 1H_3BO_3$	1:1	Beyaz renkli ürün elde edildi.
F8	$ZnO + 2H_3BO_3$	1:2	Beyaz renkli ürün elde edildi.
F9	$ZnO + 3H_3BO_3$	1:3	Beyaz renkli ürün elde edildi.
F10	$ZnO + 4H_3BO_3$	1:4	Beyaz renkli ürün elde edildi.
F11	$ZnO + 5H_3BO_3$	1:5	Beyaz renkli ürün elde edildi.
F12	$ZnO + 6H_3BO_3$	1:6	Beyaz renkli ürün elde edildi.

Tablo 3.3 Termal Yöntem Kullanılarak Yapılan Deneyler ve Gözlemler

Şekil 3.2 F5 ve F6 Kodlu Deneylerin Fotoğrafı

4. SONUÇLAR

4.1 Mikrodalga Enerji Yöntemi ile Yapılan Deneyler

Tablo 4.1 Mikrodalga Enerji Yöntem Deneylerinde Kullanılan Bileşikler

Deneyin Kodu	Bileşikler ve Mol Sayıları
MD1	$Zn(NO_3)_2.6H_2O + 1H_3BO_3$
MD2	$Zn(NO_3)_2.6H_2O + 2H_3BO_3$
MD3	$Zn(NO_3)_2.6H_2O + 3H_3BO_3$
MD4	$Zn(NO_3)_2.6H_2O + 4H_3BO_3$
MD5	$Zn(NO_3)_2.6H_2O + 5H_3BO_3$
MD6	$Zn(NO_3)_2.6H_2O + 6H_3BO_3$
MD7	$Zn(NO_3)_2.6H_2O + 1B_2O_3$
MD8	$Zn(NO_3)_2.6H_2O + 2B_2O_3$
MD9	$Zn(NO_3)_2.6H_2O + 3B_2O_3$
MD10	$Zn(NO_3)_2.6H_2O + 4B_2O_3$
MD11	$Zn(NO_3)_2.6H_2O + 5B_2O_3$
MD12	$Zn(NO_3)_2.6H_2O + 6B_2O_3$

Yukarıda kimyasal reaksiyonları verilen deneyler sonucunda elde edilen ürünlerin X-Işınları kırınımı (XRD) çekimlerine (Şekil 4.1, 4.3, 4.5, 4.7, 4.9, 4.11, 4.13, 4.15, 4.17, 4.19, 4.21, 4.23) göre, amorf özellikte oldukları ve kristallenmenin gerçekleşemediği gözlenmiştir (X-Işını Kırınım desenlerinde 20 değeri 44. 75 (d=2.02) olan pikler, numune kabından kaynaklanan bir piktir. Bu sorun daha sonraki çalışmalarda düzeltilmiştir. Ek : B) Bu ürünlerin IR spektrumlarının incelenmesinde , BO_4 , BO_3 , BOH, $B_2O_7^{-2}$, $B(OH)_4^{-1}$ bantlarının varlığı görülmüştür (Şekil 4.2, 4.4, 4.6, 4.8, 4.10, 4.12, 4.14, 4.16, 4.18, 4.20, 4.22, 4.24; Ek : A).

Şekil 4.2 MD1' in IR Spektrumu

Şekil 4.4 MD2' nin IR Spektrumu

Şekil 4.6 MD3' ün IR Spektrumu

Şekil 4.8 MD4' ün IR Spektrumu

Şekil 4.10 MD5' in IR Spektrumu

Şekil 4.12 MD6' nın IR Spektrumu

Şekil 4.14 MD7' nin IR Spektrumu

Şekil 4.16 MD8' in IR Spektrumu

Şekil 4.18 MD9' un IR Spektrumu

Şekil 4.20 MD10' un IR Spektrumu

Şekil 4.22 MD11' in IR Spektrumu

Şekil 4.24 MD12' nin IR Spektrumu

4.2 Termal Yöntem ile Yapılan Deneyler
4.2.1 ZnO – B₂O₃ Sisteminde Yapılan Deneyler
4.2.1.1 ZnO + 1B₂O₃ (F1)

Deneyin sonucunda, oluşan ürünün XRD sonuçları (Tablo 4.3, Tablo 4.4) incelendiğinde, Zn B_4O_7 (JCPDS Kart No: 73–1275) ve Zn₃ (BO₃)₂ (JCPDS Kart No: 74–1099) bileşiklerinin ikisinin bir arada elde edildiği görülmüştür. XRD deseni şiddetleri (Şekil 4.25) incelendiğinde ise Zn₃(BO₃)₂ fazının daha iyi kristallendiğini anlamaktayız.

Zn B_4O_7 ve Zn₃ (BO₃)₂ bileşiklerinin ikili faz olarak oluşumunu aşağıda verilen kimyasal eşitlikle (Eşitlik 4.2) rahatlıkla açıklayabiliriz. Kimyasal eşitlikte 1 mol B_2O_3 ' ün reaksiyona girmeden kaldığı görülmektedir.

$$4ZnO + 4B_2O_3 \longrightarrow ZnB_4O_7 + Zn_3(BO_3)_2 + B_2O_3 \quad (4.2)$$

Tablo 4.2' de verilen IR spektrum verilerinin , literatürde verilen değerlerdeki fonksiyonel gruplarının varlığını desteklemektedir (Şekil 4.26 ; Ek:A).

Titreșim	Frekans (cm ⁻¹)
$BO_{2}(v_{3})$	2360
$BO_{3}(v_{3})$	1236
$B_{(4)} - O(v_{as})$	1057
$B_{(4)} - O(v_{as})$	909
$BO_4(v_1)$	886
B_2O_3	862
$BO_{3}(v_{2})$	716
$BO_{3}(v_{2})$	670
$BO_3(v_4)$	645
H ₃ BO ₃	547

Tablo 4.2 F1' in IR Spektrum Verileri

Tablo 4.3 F1' in X-Işınları Kırınım Verileri

(JCPDS Kart No: 73–1275)

		d (Å)			d (Å)
I/I _o	d deneysel	$Zn B_4O_7$	I/I _o	d deneysel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73-1275)			73–1275)
3	8.3313		44	2.5359	2.5478
		6.857	63	2.5150	2.5209
4	6.37072				2.5098
8	6.0645				2.5031
13	5.4367	5.4219			2.4873
		5.2311	54	2.4748	2.4795
51	5.2111		28	2.4330	
3	5.0261		24	2.4206	2.4100
		4.4735	18	2.3903	
1	4.4193				2.3445
		4.3155	47	2.3345	2.3316
31	4.2102				2.3110
68	4.1061	4.1165	10	2.2931	2.2856
26	4.0351	4.0455			2.2559
5	3.8466				2.2430
		3.6630			2.2367
21	3.6492		18	2.2239	2.2255
		3.6142	18	2.2014	2.1995
28	3.5703				2.1955
		3.5390	21	2.1570	2.1577
12	3.4739	3.4842	20	2.1444	2.1314
		3.4285	8	2.1180	2.1263
37	3.3726		15	2.0907	2.0861
62	3.3436		9	2.0624	2.0585
		3.3289			2.0453
100	3.1826		75	2.0239	2.0227
31	3.1263	3.1380	28	1.9942	1.9947
14	3.0737				1.9900
23	3.0272		23	1.9755	1.9693
32	2.9797				1.9597
		2.9514			1.9513
26	2.9237	2.9257	36	1.9376	1.9353
40	2.8589	2.8585	14	1.9098	1.9026
26	2.8096				1.8969
29	2.7642				1.8913
		2.7109	5	1.8858	1.8857
10	2.6778	2.6844	5	1.8744	
6	2.6462	2.6592	10	1.8472	1.8594
18	2.6008	2.6155			

Tablo 4.4 F1' in X-Işınları Kırınım Verileri

(JCPDS Kart No: 74–1099)

		d (Å)			d (Å)
I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$	I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		74–1099)			74–1099)
		11.6021	29	2.7642	2.7732
3	8.3313		10	2.6778	2.6620
4	6.3707		6	2.6462	
8	6.0645		18	2.6008	
		5.8010	44	2.5359	2.5395
13	5.4367		63	2.5150	2.5240
51	5.2111		54	2.4748	2.4867
3	5.0261		28	2.4330	
		4.9326	24	2.4206	2.4281
1	4.4193				2.4115
		4.3141	18	2.3903	2.3926
31	4.2102	4.2273	47	2.3345	2.3375
		4.1366			2.3346
68	4.1061				2.3306
		4.0847	10	2.2931	2.2960
26	4.0351				2.2806
		3.9566			2.2441
		3.8673	18	2.2239	
5	3.8466		18	2.2014	2.1967
		3.7580			2.1765
21	3.6492				2.1771
		3.6088	21	2.1570	
28	3.5703	3.5804	20	2.1444	2.1471
12	3.4739		8	2.1180	2.1096
		3.4164			2.1041
37	3.3726		15	2.0907	2.0928
62	3.3436	3.3542			2.0771
100	3.1826	3.1857	9	2.0624	2.0693
31	3.1263				2.0423
14	3.0737	3.0752	75	2.0239	
23	3.0272	3.0360	28	1.9942	1.9997
32	2.9797	2.9823	1		1.9879
26	2.9237		23	1.9755	1.9783
-		2.9005			1.9576
39	2.8589	2.8623			1.9408
26	2.8096		36	1.9376	1.9336
_		2.7869			1.9214
	1	1 I I I I I I I I I I I I I I I I I I I			i i

$4.2.1.2 \text{ ZnO} + 2B_2O_3(F2)$

Deneyin sonucunda, oluşan ürünün XRD sonuçları incelendiğinde (Tablo 4.6 , Tablo 4.7) , Zn B₄O₇ (JCPDS Kart No: 73–1275) ve Zn₃ (BO₃)₂ (JCPDS Kart No: 74–1099) bileşiklerinin ikisinin bir arada olarak elde edildiği görülmüştür. XRD desen şiddetlerinden (Şekil 4.27) Zn₃(BO₃)₂ fazının daha iyi bir şekilde kristallendiği gözükmektedir. Bu deneyde B₂O₃ miktarı F1 kodlu deneye göre iki kat artırılmasına rağmen oluşan ürünlerde bir farklılık gözlenmemiştir.

Benzer deneyler, B_2O_3 miktarlarının 3, 4, 5 ve 6 mol oranlarında arttırılarak, ZnO ile 700°C['] de katı-hal kimyasal tepkimeye girdiğinde ise (F3, F4, F5 ve F6) bu ürünlerin XRD analizleri incelendiğinde, tekrar, ZnB₄O₇ ve Zn₃(BO₃)₂ bileşiklerinin ikili bir faz oluşturdukları gözlemlenmiştir. XRD desenlerine ait (Şekiller 4.29, 4.31, 4.33, 4.35) pik şiddetleri analiz edildiğinde, Zn₃(BO₃)₂ bileşiğine ait 'd' değerlerinin pik şiddetlerinin, ZnB₄O₇ ' ye göre daha yüksek değerlere sahip olduğu görülmektedir.

Ilk deneyde verilen kimyasal eşitlik göz önüne alındığında (Eşitlik 4.2) ZnB₄O₇ ve Zn₃(BO₃)₂ bileşiklerinin birer mol olarak oluştuğu göz önüne alınırsa, XRD desen şiddetlerinden Zn₃(BO₃)₂ bileşiğine ait fazın ZnB₄O₇ 'ye göre daha iyi kristallendiğini yorumlayabiliriz. Yapılan deneylere ait XRD desenlerinin değerleri Tablo 4.9, 4.10, 4.12, 4.13, 4.15, 4.16, 4.18 ve 4.19' da verilmektedir. Bu deneylere ait IR spektrum bilgileride sırasıyla Tablo 4.5, 4.8, 4.11, 4.14 ve 4.17' de verilmektedir. Tablo 4.5, 4.8, 4.11, 4.14 ve 4.17' 'de verilen IR spektrum verilerinin, literatürde verilen değerlerdeki fonksiyonel gruplarının varlığını desteklemektedir (Şekil 4.28,4.30, 4.32, 4.34 ve 4.36 ; Ek:A).

rubio no r2 mint spendum venien						
Titreșim	Frekans (cm ⁻¹)					
$BO_2(v_3)$	2361					
$B_{(4)} - O(v_{as})$	1056					
$B_{(4)} - O(v_{as})$	908					
$BO_4(v_1)$	884					
$BO_3(v_2)$	718					
$BO_3(v_2)$	670					
$BO_3(v_4)$	643					
H ₃ BO ₃	547					

Tablo 4.5 F2' in IR Spektrum Verileri

Tablo 4.6 F2' nin X-Işınları Kırınım Verileri

(JCPDS Kart No: 73–1275)

		d (Å)			d (Å)
I/I _o	d deneysel	$Zn B_4O_7$	I/I _o	d deneysel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73–1275)			73–1275)
3	8.5580		17	2.7673	
4	7.2492		4	2.7161	2.7109
4	6.8626	6.857	10	2.6841	2.6844
16	6.0578		12	2.6636	2.6592
20	5.4265	5.4219			2.6155
49	5.2212	5.2311	14	2.5981	
3	5.0655		7	2.5841	
3	4.8693		20	2.5376	2.5478
4	4.6730		37	2.5228	2.5209
4	4.5058				2.5098
		4.4735			2.5031
3	4.3934		40	2.4804	2.4873
5	4.3520				2.4795
		4.3155	18	2.4321	
24	4.2184				2.4100
53	4.1284	4.1165	15	2.3843	
30	4.0482	4.0455			2.3445
5	3.9174		30	2.3336	2.3316
5	3.8423		10	2.3151	2.3110
4	3.7686		10	2.2898	2.2856
25	3.6696	3.6630	9	2.2682	
		3.6142	15	2.2547	2.2559
19	3.5810				2.2430
		3.5390			2.2367
15	3.4880	3.4842	22	2.2256	2.2255
13	3.4307	3.4285			2.2184
40	3.3568		10	2.1960	2.1995
		3.3289			2.1955
		3.2309	5	2.1727	
100	3.1869		12	2.1606	2.1577
37	3.1341	3.1380	11	2,1421	2.1314
9	3.0686				2.1263
16	3.0358		8	2.1044	
19	2.9852		11	2.0911	2.0861
-		2.9514			2.0585
28	2,9309	2.9257	6	2.0424	2.0453
41	2.8597	2.8585	49	2.0228	2.0227
24	2.8158		14	1.9983	1.9947
<u> </u>	2.0150	1	11	1.7705	1.// 1/

Tablo 4.7 F2' nin X-Işınları Kırınım Verileri

(JCPDS Kart No: 74–1099)

		d (Å)			d (Å)
I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$	I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		74–1099)			74–1099)
		11.6021	28	2.9309	
3	8.5580				2.9005
4	7.2492		41	2.8597	2.8623
4	6.8626		24	2.8158	
16	6.0578				2.7869
		5.8010	17	2.7673	2.7732
20	5.4265		4	2.7161	
49	5.2212		10	2.6841	
3	5.0655		12	2.6636	2.6620
		4.9326	14	2.5981	
3	4.8693		7	2.5841	
4	4.6730		20	2.5376	2.5395
4	4.5058		37	2.5228	2.5240
3	4.3934		40	2.4804	2.4867
5	4.3520		18	2.4321	2.4281
		4.3141			2.4115
24	4.2184	4.2273	15	2.3843	2.3926
53	4.1274	4.1366	30	2.3336	2.3346
		4.0847	10	2.3151	
30	4.0482				2.2960
		3.9566	10	2.2898	2.2806
5	3.9174		9	2.2682	
		3.8673	15	2.2547	2.2441
5	3.8423		22	2.2256	
4	3.7686	3.7580	10	2.1960	2.1967
25	3.6696		5	2.1727	2.1765
		3.6088			2.1718
19	3.5810	3.5804	12	2.1606	
15	3.4880		11	2.1421	2.1471
13	3.4307		8	2.1044	2.1096
		3.4164			2.1041
40	3.3568	3.3542	11	2.0911	2.0928
100	3.1869	3.1857			2.07714
37	3.1341				2.0683
9	3.0686	3.0752	6	2.0424	2.0423
16	3.0358	3.0360	49	2.0228	
19	2.9852	2.9823	14	1.9983	1.9997

Şekil 4.28 F2' nin IR Spektrumu
Tablo 4.8 F3' ün IR Spektrum Verileri

Titreșim	Frekans (cm ⁻¹)
$BO_2(v_3)$	2361
$B_{(4)} - O(v_{as})$	1058
$BO_4(v_1)$	884
$BO_3(v_2)$	716
$BO_3(v_4)$	641
H ₃ BO ₃	547

Tablo 4.9 F3' ün X-Işınları Kırınım Verileri

		d (Å)			d (Å)
I/I _o	d deneysel	$Zn B_4O_7$	I/I _o	d deneysel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73-1275)			73–1275)
8	8.2127		49	2.8723	
6	8.0538				2.8585
7	7.1919		25	2.8270	
		6.857	22	2.7773	
5	6.3785				2.7109
19	6.1170		22	2.6894	2.6844
11	5.8902		19	2.6736	
20	5.4227	5.4219			2.6592
49	5.2347	5.2311	13	2.6063	2.6155
11	4.6533				2.5478
		4.4735	48	2.5301	2.5209
11	4.3931				2.5098
		4.3155			2.5031
29	4.2413				2.4873
65	4.1383		41	2.4797	2.4795
		4.1165	23	2,4309	
46	4.0644				2.4100
		4.0455	16	2.3949	
16	3.7397				2.3445
35	3.6850		44	2.3336	2.3316
		3.6630	17	2.3138	2.3110
		3.6142			2.2856
23	3.5980				2.2529
_		3.5390			2.2430
		3.4842	33	2.2315	2.2367
19	3.4489				2.2255
		3.4285	18	2.2051	2.2184
46	3.3685				2.1995
		3.3289			2.1955
11	3.2926		23	2.1607	2.1577
	0.2720	2 2309	11	2.1353	2.1314
100	3.1969		9	2.1135	2.1263
46	3.1535		12	2.0996	2.0861
38	3.1390	3.1380			2.0585
14	3.0787				2.0453
21	3 0465		83	2.0234	2.0227
19	2,9836		22	1 9987	1 9947
32	2.9423	2.9514		1.7707	1 9900
52	2.7723	2.9257			1.7700
		2.7231			

Tablo 4.10 F3' ün X-Işınları Kırınım Verileri

		d (Å)			d (Å)
I/I _o	d _{deneysel}	$Zn_{3}(BO_{3})_{2}$	I/I _o	d _{deneysel}	$Zn_{3}(BO_{3})_{2}$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		74–1099)			74–1099)
		11.6021	25	2.8270	
8	8.2127				2.7869
6	8.0538		22	2.7773	2.7732
7	7.1919		22	2.6894	
5	6.3785		19	2.6736	2.6620
19	6.1170		13	2.6063	
11	5.8902		48	2.5301	2.5395
		5.8010			2.5240
20	5.4227		41	2.4797	2.4867
49	5.2347		23	2.4309	2.4281
		4.9326			2.4115
11	4.6533		16	2.3949	2.3926
11	4.3931		44	2.3336	2.3375
		4.3141			2.3346
29	4.2413				2.3306
		4.2273	17	2.3138	
65	4.1383	4.1366			2.2960
		4.0847			2.2806
46	4.0644		33	2.2315	2.2441
		3.9566	18	2.2051	2.1967
		3.8673	23	2.1607	2.1765
		3.7580			2.1718
16	3.7397		11	2.1353	2.1471
35	3.6850		9	2.1135	2.1096
23	3.5980	3.6088			2.1041
		3.5804	12	2.0996	2.0928
19	3.4489				2.0771
		3.4164			2.0683
46	3.3685	3.3542			2.0423
11	3.2926		83	2.0234	
100	3.1969	3.1857	22	1.9987	1.9997
46	3.1535				1.9879
38	3.1390				1.9783
14	3.0787	3.0752			1.9576
21	3.0465	3.0360			1.9408
19	2.9836	2.9823	25	1.9348	1.9336
32	2.9423			1.2010	1.9214
		2.9005			1.9174
49	2,8723	2.8623	11	1 9084	1.9040
17	2.0723	2.0025	11	1.7004	1.70 10

Sekil 4.29 F3' ün X-Işınları Kırınım Desenleri

Şekil 4.30 F3' ün IR Spektrumu

Titreșim	Frekans (cm ⁻¹)
$BO_{2}(v_{3})$	2361
$B_{(4)} - O(v_{as})$	1057
$B_{(4)} - O(v_{as})$	910
$BO_4(v_1)$	884
$BO_3(v_2)$	718
$BO_3(v_4)$	643
H ₃ BO ₃	547

Tablo 4.11 F4' ün IR Spektrum Verileri

Tablo 4.12 F4' ün X-Işınları Kırınım Verileri

		d (Å)			d (Å)
I/I _o	d deneysel	$Zn B_4O_7$	I/I _o	d deneysel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73-1275)			73–1275)
3	8.3239				2.7109
4	6.8906		13	2.6821	2.6892
		6.857	18	2.6099	2.6155
35	6.0896				2.5478
21	5.9580		33	2.5140	2.5209
8	5.5789				2.5098
19	5.4802				2.5031
		5.4219	29	2.4896	2.4873
40	5.2354	5.2311			2.4795
6	4.9322		13	2.4354	
8	4.7998		13	2.4203	2.4100
			8	2.3762	
		4.4735			2.3445
6	4.4250		25	2.3358	2.3316
		4.3155	11	2.3032	2.3110
17	4.2597				2.2856
44	4.1445		16	2.2690	2.2559
		4.1165			2.2430
31	4.0767		27	2.2376	2.2367
		4.0455			2.2255
10	3.8929				2.2184
25	3.6746	3.6630	10	2.1903	2.1995
		3.6142			2.1955
18	3.5784		13	2.1652	2.1577
		3.5390	8	2.1318	2.1314
		3.4842	9	2.1230	2.1263
15	3.4455		11	2.0881	2.0861
		3.4285			2.0585
33	3.3688		9	2.0421	2.0453
10	3.3224	3.3289	31	2.0251	2.0227
		3.2380	11	2.0089	
100	3.1808		16	1.9954	1.9947
26	3.1364	3.1380			1.9900
21	3.0026		15	1.9850	
		2.9513			1.9693
36	2.9309	2.9257			1.9597
47	2.8674	2.8585	22	1.9408	1.9513
18	2.7907		22	1.9335	1.9353
L					-

Tablo 4.13 F4' ün X-Işınları Kırınım Verileri

		d (Å)			d (Å)
I/I _o	d _{deneysel}	$Zn_{3}(BO_{3})_{2}$	I/I _o	d _{deneysel}	$Zn_{3}(BO_{3})_{2}$
	(Å)	(JCPDS		(Å)	(JCPDS Kart
		Kart No:			No: 74–
		74–1099)			1099)
		11.6021	13	2.6821	
3	8.3239				2.6620
4	6.8906		18	2.6099	
35	6.0896				2.5395
21	5.9580		33	2.5140	2.5240
		5.8010	29	2.4896	2.4867
8	5.5789		13	2.4354	
19	5.4802		13	2.4203	2.4281
40	5.2354				2.4115
6	4.9322	4.9326			2.3926
8	4.7998		8	2.3762	
6	4.4250		25	2.3358	2.3375
		4.3141			2.3346
17	4.2597				2.3306
		4.2273	11	2.3032	2.2960
44	4.1445	4.1366			2.2806
31	4.0767	4.0847	16	2.2690	
		3.9566	27	2.2376	2.2441
10	3.8929		10	2.1903	2.1967
		3.8673	13	2.1652	2.1765
		3.7580			2.1718
25	3.6746		8	2.1318	2.1471
		3.6088	9	2.1230	
18	3.5784	3.5804			2.1096
15	3.4455				2.1041
		3.4164	11	2.0881	2.0928
33	3.3688	3.3542			2.0771
10	3.3224				2.0683
100	3.1808	3.1857	9	2.0421	2.0423
26	3.1364		31	2.0251	
21	3.0026		11	2.0089	
		2.9823	16	1.9954	1.9997
36	2.9309		15	1.9850	1.9879
		2.9005			1.9783
47	2.8674	2.8623			1.9576
18	2.7907	2.7869	22	1.9408	1.9408
		2.7732	22	1.9335	1.9336
h		1			

Sekil 4.31 F4' ün X-Isınları Kırınım Desenleri

Sekil 4.32 F4' ün IR Spektrumu

Titreşim	Frekans (cm ⁻¹)
$BO_2(v_3)$	2361
$B_{(4)} - O(v_{as})$	1057
$B_{(4)} - O(v_{as})$	911
$BO_4(v_1)$	884
$BO_3(v_2)$	782
$BO_3(v_2)$	718
$BO_3(v_4)$	643
H ₃ BO ₃	547

Tablo 4.14 F5' in IR Spektrum Verileri

		d (Å)			d (Å)
I/I _o	d denevsel	$Zn B_4O_7$	I/I _o	d denevsel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73-1275)			73–1275)
2	7.5190		8	2.6056	2.6155
2	6.8873		6	2.5636	
		6.857	11	2.5488	2.5478
1	6.7047		18	2.5176	2.5209
28	6.1134		11	2.4957	2.5098
6	5.8070				2.4873
12	5.4575		13	2.4794	2.4795
		5.4219	6	2.4300	
29	5.2469	5.2311			2.4100
4	5.1361		5	2.3945	
		4.4735			3.3445
		4.3155	11	2.3363	2.3316
4	4.6710				2.3110
5	4.5648				2.2856
8	4.2341				2.2559
26	4.1299	4.1165	15	2.2469	2.2430
15	4.0570	4.0455	18	2.2360	2.2367
5	3.7521				2.2255
12	3.6836		7	2.2027	2.2184
		3.6630			2.1995
		3.6142			2.1955
7	3.5929		8	2.1598	2.1577
		3.5390			2.1314
8	3.4919	3.4842	7	2.0973	2.0861
		3.4285			2.0585
19	3.3609				2.0453
		3.3289	20	2.0261	2.0227
		3.2309	5	2.0082	
100	3.1898		6	1.9915	1.9947
18	3.1452	3.1380			1.9900
8	3.0390		8	1.9801	
		2.9514	4	1.9690	1.9693
17	2.9289	2.9257			1.9597
22	2.8704				1.9513
		2.8585	11	1.9389	1.9353
10	2.8249				1.9026
6	2.7760				1.8969
		2.7109			1.8913
		2.6844			1.8857
8	2.6675	2.6592	4	1.8601	1.8594

Tablo 4.15 F5' in X-Işınları Kırınım Verileri (JCPDS Kart No: 73–1275)

Tablo 4.16 F5' in X-Işınları Kırınım Verileri

		d (Å)			d (Å)
I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$	I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		74–1099)			74–1099)
		11.6021	6	2.5636	
2	7.5190		11	2.5488	2.5395
2	6.8873		18	2.5176	2.5240
1	6.7047		11	2.4957	
28	6.1134		14	2.4794	2.4867
6	5.8070	5.8010	6	2.4300	2.4281
12	5.4575				2.4115
29	5.2469		5	2.3945	2.3926
4	5.1361		11	2.3363	2.3375
		4.9326			2.3346
4	4.6710				2.2960
5	4.5648				2.2806
		4.3141	15	2.2469	2.2441
8	4.2341	4.2273	18	2.2360	
26	4.1299	4.1366	7	2.2027	2.1967
		4.0847			2.1765
15	4.0570				2.1718
		3.9566	8	2.1598	2.1471
		3.8673			2.1098
5	3.7521	3.7580			2.1041
12	3.6836		7	2.0973	2.0928
7	3.5929	3.6088			2.0771
		3.5804			2.0683
8	3.4919				2.0423
		3.4164	20	2.0261	
19	3.3609	3.3542	5	2.0082	
100	3.1898	3.1857	6	1.9915	1.9997
18	3.1452		8	1.9801	1.9879
		3.0752	4	1.9690	1.9783
8	3.0390	3.0360			1.9576
		2.9823			1.9408
17	2.9289		11	1.9389	1.9336
		2.9005			1.9214
22	2.8704	2.8623			1.9174
10	2.8249				1.9040
		2.7869			1.8955
6	2.7760	2.7732	4	1.8601	1.8790
8	2.6675	2.6620			1.8727
8	2.6056		4	1.8522	1.8511
				•	

Şekil 4.33 F5' in X-Işınları Kırınım Desenleri

Şekil 4.34 F5' in IR Spektrumu

Titreșim	Frekans (cm ⁻¹)
$BO_2(v_3)$	2361
$B_{(4)} - O(v_{as})$	1057
$BO_4(v_1)$	884
$BO_3(v_2)$	792
$BO_3(v_2)$	718
$BO_3(v_4)$	639
H ₃ BO ₃	546

Tablo 4.17 F6' nın IR Spektrum Verileri

Tablo 4.18 F6' nın X-Işınları Kırınım Verileri

		d (Å)			d (Å)
I/I _o	d deneysel	$Zn B_4O_7$	I/I _o	d deneysel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73–1275)			73–1275)
4	8.3786		14	2.7723	
3	7.9787				2.7109
4	7.7188		12	2.6721	2.6844
5	6.8460	6.857			2.6592
4	6.5674		12	2.6000	2.6155
26	6.1070		12	2.5496	2.5478
35	6.0497		25	2.5112	2.5209
17	5.4479				2.5098
		5.4219			2.5031
14	5.3856				2.4843
		5.2311	22	2.4799	2.4795
36	5.1961		12	2.4210	2.4100
10	4.4714	4.4735	12	2.3891	
		4.3155			2.3445
18	4.2217		25	2.3375	2.3316
33	4.1382		11	2.3025	2.3110
41	4.1122	4.1165	9	2.2759	2.2856
26	4.0374	4.0455	17	2.2540	2.2559
10	3.7937				2.2430
21	3.6638	3.6630			2.2367
		3.6142	21	2.2241	2.2255
14	3.5954		12	2.2039	2.2184
16	3.5569		12	2.1926	2.1995
17	3.4917	3.4842			2.1955
13	3.4039		8	2.1765	
23	3.3646		7	2.1688	2.1577
25	3.3423		10	2.1326	2.1314
		3.3289			3.1263
11	2.2624			1	2.0861
		2.2309	9	2.0561	2.0585
73	3.2002		8	2.0472	2.0453
100	3.1753		38	2.0252	2.0227
29	3.1353	3.1380	12	1.9937	1.9947
17	2.9823				1.9900
		2.9514			1.9693
27	2.9226	2.9257			1.9597
32	2.8627	2.8585	18	1.9342	1.9353
13	2.8137		5	1.9001	1.9026

Tablo 4.19 F6' nın X-Işınları Kırınım Verileri

		d (Å)			d (Å)
I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$	I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		74–1099)			74–1099)
		11.6021			3.0752
4	8.3786				3.0360
3	7.9787		17	2.9823	2.9823
4	7.7188		27	2.9226	
5	6.8460				2.9005
4	6.5674		32	2.8627	2.8623
26	6.1070		13	2.8137	
35	6.0497				2.7869
		5.8010	14	2.7723	2.7732
17	5.4479		12	2.6721	2.6620
14	5.3856		12	2.6000	
36	5.1961		12	2.5496	2.5395
		4.9326	25	2.5112	2.5240
10	4.4714		22	2.4799	2.4867
		4.3141	12	2.4210	2.4281
18	4.2217	4.2273			2.4115
33	4.1382	4.1366	12	2.3891	2.3926
41	4.1122		25	2.3375	2.3346
		4.0847			2.3306
26	4.0374		11	2.3025	2.2960
		3.9566	9	2.2759	2.2806
		3.8673	17	2.2540	2.2441
10	3.7937		21	2.2241	
		3.7580	12	2.2039	
21	3.6638		12	2.1926	2.1967
14	3.5954	3.6088	8	2.1765	2.1765
		3.5804			2.1718
16	3.5569		7	2.1688	
17	3.4917		10	2.1326	2.1471
13	3.4039	3.4164			2.1096
23	3.3646	3.3542			2.0928
25	3.3423				2.0771
11	3.2624		9	2.0561	2.0683
73	3.2002		8	2.0472	2.0423
100	3.1753	3.1857	38	2.0252	
29	3.1353		12	1.9937	1.9997
			-		

Sekil 4.35 F6' nın X-Işınları Kırınım Desenleri

Şekil 4.36 F6' nın IR Spektrumu

4.2.2 ZnO – H₃BO₃ Sisteminde Yapılan Deneyler 4.2.2.1 ZnO + 1H₃BO₃ (F7)

ZnO ve B_2O_3 bileşiklerinin 700°C de yapılan katı-hal tepkimelerine bor kaynağına alternatif olarak, borik asit, H_3BO_3 seçilmiştir. Benzer deneyler H_3BO_3 miktarı 1 molden başlanarak sırasıyla 6 mole kadar arttırılarak çıkarılmıştır. H_3BO_3 mol oranlarının 1, 2, 3 değerleri alınarak gerçekleşen deneylerde B_2O_3 kullanılarak yapılan deneylere benzer sonuçlar elde edilmiştir (Şekiller 4.37, 4.39, 4.41 ve Tablolar 4.21, 4.22, 4.24, 4,25, 4.27, 4.28). Yalnız 4, 5 ve 6 mol oranlarında kullanılarak, H_3BO_3 ile yapılan deneylerin XRD sonuçlarında (Şekiller 4.43, 4.45, 4,47 ve Tablolar 4.30, 4.31, 4.33, 4.34, 4.36, 4.37) daha önceki sonuçlardan farklı olarak, Zn B_4O_7 bileşiğine ait 'd' değerlerinin pik şiddetlerinin Zn₃ (BO₃)₂ bileşiğine göre daha yüksek olduğu gözlemlenmiştir. Bu fazın daha iyi kristallenmesinin etkisinde borik asitin mol değerlerinin bir etkisinin bulunduğu gözükmektedir. Borik asitle ilgili katı-hal kimyasal tepkime için aşağıdaki kimyasal eşitliği yazabiliriz.

$$4ZnO + 6H_3BO_3 \rightarrow Zn_3 (BO_3)_2 + Zn B_4O_7 + 9H_2O (4.3)$$

Kimyasal eşitlik (Eşitlik 4.3) incelendiğinde $Zn_3(BO_3)_2$ ve ZnB_4O_7 bileşiklerinin ikili bir faz oluşturabilmeleri için ZnO ve H₃BO₃' ün en az 1:1.5 mol oranlarında hazırlanması gerektiği anlaşılmaktadır. XRD analizlarinden sürekli olarak Zn₃(BO₃)₂ bileşiğinin daha iyi kristallendiği göz önüne miktarının, ZnB_4O_7 bilesiğince alındığında bor ortamdan yeterince karşılanamaması sonucu bu bileşiğin kristallenme oranının azaldığı görülmektedir. H₃BO₃ için bor miktarının 4, 5 ve 6 mol oranlarında yapılan (F10, F11, F12) deneylerinde ise ortamdan daha fazla bor elementi bulabildiği için ZnB₄O₇ bileşiğinin daha iyi kristallenme imkanı bulabildiği anlaşılmaktadır.

Bu deneylere ait IR spektrumları sırasıyla Şekiller 4.38, 4.40, 4.42, 4.44, 4.46, 4.48 ve Tablolar 4.20, 4.23, 4.26, 4.29, 4.32, 4.35' de verilmiş olup $Zn_3(BO_3)_2$ ve ZnB_4O_7 bileşiklerine ait fonksiyonel grupların varlığıda bu yöntemle desteklenmiştir.

Tablo 4.20 F7' nin IR Spektrum Veriler	ri
--	----

Titreșim	Frekans (cm ⁻¹)
$BO_2(v_3)$	2360
$BO_3(v_3)$	1237
$B_{(4)} - O(v_{as})$	1059
$B_{(4)} - O(v_{as})$	906
B_2O_3	862
$BO_3(v_2)$	762
$BO_3(v_2)$	715
$BO_3(v_2)$	670
$BO_4(v_4)$	596-564

Tablo 4.21 F7' nin X-Işınları Kırınım Verileri

		d (Å)			d (Å)
I/I _o	d deneysel	$Zn B_4O_7$	I/I _o	d deneysel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73–1275)			73–1275)
3	13.0776		19	2.8975	
2	11.7777		24	2.8680	2.8585
4	11.0411		35	2.8147	
3	8.37619		22	2.7920	
		6.857	35	2.7707	
3	6.5876		2	2.7486	
1	6.2506				2.7109
3	5.8968		6	2.6840	2.6844
2	5.6953		9	2.6669	2.6592
10	5.4292	5.4219	6	2.6279	2.6155
24	5.2284	5.2311	36	2.6034	
2	5.0168		30	2.5442	2.5478
		4.4735	64	2.5229	2.5209
2	4.3562				2.5098
		4.3155			2.4873
37	4.2289		64	2.4760	2.4795
72	4.1344		46	2.4303	
13	4.0495	4.0455			2.4100
4	3.9071		27	2.3921	
6	3.8774				2.3445
2	3.7711		36	2.3390	2.3316
14	3.6682	3.6630	13	2.3015	2.3110
		3.6142			2.2856
29	3.5729				2.2559
7	3.5451	3.5390	7	2.2406	2.2430
		3.4842			2.2367
		3.4285	10	2.2782	2.2255
88	3.3538		13	2.2008	2.2184
		3.3289			2.1995
		3.2309			2.1955
100	3.1878		22	2.1472	2.1577
13	3.1350	3.1380			2.1314
15	3.0754		10	2.1146	2.1263
23	3.0421		15	2.0908	2.0861
26	2.9922		6	2.0712	
19	2.9740				2.0585
		2.9514	4	2.0460	2.0453
14	2.9314	2.9257	54	2.0241	2.0227

Tablo 4.22 F7' nin X-Işınları Kırınım Verileri

		d (Å)			d (Å)
I/I _o	d_deneysel	$Zn_3(BO_3)_2$	I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		74–1099)			74–1099)
3	13.0776		19	2.8975	2.9005
2	11.7777		24	2.8680	2.8623
		11.6021	35	2.8147	
4	11.0411		22	2.7920	2.7869
3	8.3761		35	2.7707	2.7732
3	6.5876		2	2.7486	
1	6.2506				
3	5.8968		6	2.6840	
		5.8010	9	2.6669	2.6620
2	5.6953		6	2.6279	
10	5.4292		36	2.6034	
24	5.2284		30	2.5442	2.5395
2	5.0168		64	2.5229	2.5240
		4.9326	64	2.4760	2.4867
2	4.3562		46	2.4303	2.4281
		4.3141			2.4115
37	4.2289	4.2273	27	2.3921	2.3926
72	4.1344	4.1366	36	2.3390	2.3375
		4.0847			2.3346
13	4.0495				2.3306
		3.9566	13	2.3015	2.2960
4	3.9071				2.2806
6	3.8774	3.8673	7	2.2406	2.2441
2	3.7711		10	2.2278	
		3.7580	13	2.2008	2.1967
14	3.6682				2.1765
		3.6088			21718
29	3.5729	3.5804	22	2.1472	2.1471
7	3.5451		10	2.1146	2.1096
		3.4164			2.1041
88	3.3538	3.3542	15	2.0908	2.0928
100	3.1878	3.1857	6	2.0712	2.0771
13	3.1350				2.0683
15	3.0754	3.0752	4	2.0460	2.0423
23	3.0421	3.0360	54	2.0241	
26	2.9921	2.9823	18	1.9980	1.9997
19	2.9740		16	1.9892	1.9879
14	2.9314		26	1.9794	1.9783
L	1		1	1	-

Sekil 4.37 F7' nin X-Işınları Kırınım Desenleri

Sekil 4.38 F7' nin IR Spektrumu

Titreșim	Frekans (cm ⁻¹)
$BO_2(v_3)$	2360
$BO_3(v_3)$	1240
$B_{(4)} - O(v_{as})$	1098
$B_{(4)} - O(v_{as})$	911
B_2O_3	863
$BO_3(v_2)$	783
$BO_3(v_2)$	716
$BO_3(v_2)$	675
$BO_4(v_4)$	595-564
H ₃ BO ₃	548

Tablo 4.23 F8' in IR Spektrum Verileri

Tablo 4.24 F8' in X-Işınları Kırınım Verileri

		d (Å)			d (Å)
I/I _o	d deneysel	$Zn B_4O_7$	I/I _o	d deneysel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73–1275)			73–1275)
25	8.3830		11	2.6562	2.6592
14	7.9574				2.6155
12	7.3911		7	2.5933	
		6.857			2.5478
		5.4219	38	2.5281	2.5209
18	5.4047		57	2.5116	2.5098
37	5.2037				2.5031
3	4.8558		34	2.4827	2.4873
3	4.5793		18	2.4660	2.4795
		4.4735	3	2.4500	
5	4.4408		22	2.4267	
		4.3155	16	2.4155	2.4100
22	4.1984		21	2.3869	
57	4.1051	4.1165			2.3445
20	4.0339	4.0455	39	2.3346	2.3316
12	3.8443				2.3110
27	3.6634	3.6630	14	2.2890	2.2856
		3.6142	9	2.2568	2.2559
19	3.5696				2.2430
		3.5390	12	2.2339	2.2367
15	3.4789	3.4842	18	2.2211	2.2255
9	3.4223	3.4285			2.2184
44	3.3419		8	2.1940	2.1995
		3.3289			2.1955
		3.2309	12	2.1547	2.1577
100	3.1772				2.1314
31	3.1259	3.1380			2.1263
15	3.0615		9	2.0855	2.0891
13	3.0289		6	2.0614	2.0585
22	2.9731		10	2.0348	2.0453
		2.9514	43	2.0253	2.0227
19	2.9255	2.9257	20	1.9908	1.9947
16	2.9009				1.9900
42	2.8529	2.8585	14	1.9717	1.9693
26	2.8187				1.9597
26	2.7612				1.9513
		2.7109	26	1.9345	1.9353
6	2.6858	2.6844			
					1

Tablo 4.25 F8' in X-Işınları Kırınım Verileri

		d (Å)			d (Å)
I/I _o	d _{_deneysel}	$Zn_{3}(BO_{3})_{2}$	I/I _o	d_deneysel	$Zn_3(BO_3)_2$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		74–1099)			74–1099)
		11.6021			2.7869
25	8.3830		26	2.7612	2.7732
14	7.9574		6	2.6858	
12	7.3911		11	2.3656	2.6620
		5.8010	7	2.5933	
18	5.4047		38	2.5281	2.5395
37	5.2037		57	2.5116	2.5240
		4.9326	34	2.4827	2.4867
3	4.8558		18	2.4660	
3	4.5793		3	2.4500	
5	4.4408		22	2.4267	2.4281
		4.3141	16	2.4155	2.4115
		4.2273	21	2.3869	2.3926
22	4.1984		39	2.3346	2.3375
		4.1366			2.3346
57	4.1051				2.3306
		4.0847			2.2960
20	4.0339		14	2.2890	2.2806
		3.9566	9	2.2568	
		3.8673	12	2.2339	2.2441
12	3.8443		18	2.2211	
		3.7580	8	2.1940	2.1967
27	3.6634				2.1765
		3.6088			2.1718
		3.5804	12	2.1546	2.1471
19	3.5696				2.1096
15	3.4789				2.1041
9	3.4223	3.4164	9	2.0855	2.0928
44	3.3419	3.3542			2.0771
100	3.1772	3.1857	6	2.0614	2.0683
31	3.1259		10	2.0348	2.0423
15	3.0615	3.0752	43	2.0253	
13	3.0289	3.0360	20	1.9908	1.9997
22	2.9731	2.9523			1.9879
19	2.9255		14	1.9717	1.9783
16	2.9009	2.9005			1.9576
42	2.8529	2.8623	1		1.9408
26	2.8187		26	1.9345	1.9336
L			1	-	

Şekil 4.40 F8' in IR Spektrumu

Titreșim	Frekans (cm ⁻¹)
$BO_2(v_3)$	2360
$BO_3(v_3)$	1247
$B_{(4)} - O(v_{as})$	1026
$B_{(4)} - O(v_{as})$	925
B_2O_3	863
$BO_{3}(v_{2})$	782
BO ₃ (v ₂)	716
$BO_{3}(v_{2})$	677
$BO_4(v_4)$	596-564
H ₃ BO ₃	547

Tablo 4.26 F9' un IR Spektrum Verileri

,		d (Å)			d (Å)
I/I _o	d denevsel	$Zn B_4O_7$	I/I _o	d denevsel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73-1275)			73–1275)
15	15.4553				3.4285
13	14.8563		17	3.3969	
10	11.4039		67	3.3262	3.3289
8	10.4389				3.2309
9	10.1607		80	3.1605	
5	8.0645				3.1380
5	7.7206		69	3.1176	
4	7.2392		18	3.0524	
		6.857	23	3.0144	
7	6.7577		27	2.9655	2.9514
3	6.4185				2.9257
4	6.3251		43	2.9090	
9	6.1136		60	2.8405	2.8585
8	5.7421		37	2.8099	
-		5.4219	31	2.7932	
33	5.3639		32	2.7519	
		5 2311			2 7109
00	5 16/10	5.2511	15	2 6707	2.710
0	1 0383		13	2.6767	2.0044
3	4.9383		10	2.0409	2.0392
3	4.0001		14	2 5027	2.0133
5	4.0080		14	2.3937	2 5478
5	4.4979	1 1735			2.5478
7	1 1559	4.4733	50	2 5006	2.5209
7	4.4336		39	2.3090	2.3098
1	4.3607	4 2155			2.3031
26	4 1779	4.3133	50	2 4655	2.4873
30	4.1778	4 1165	32	2.4033	2.4793
100	4.0924	4.1103	31	2.4177	2.4100
100	4.0834	4.0455	22	2.3731	2 2 4 4 5
10	4.0091	4.0433	22	2 22 4 4	2.3443
48	4.0081		33	2.3344	2.3316
22	3.826/		25	2.514/	2.3110
1/	3.7213	2 ((2))	19	2.2824	2.2856
50	2 (2(0	3.0030	14	2.2504	2.2559
50	5.6360		14	2.2404	2.2430
30	3.5551	2,5200			0.00/7
10	0.5000	3.5390			2.2367
19	3.5098		1.0.7		2.2255
		3.4842	35	2.2151	2.2184
25	3.4537				

Tablo 4.27 F9' un X-Işınları Kırınım Verileri (JCPDS Kart No: 73–1275)

		d (Å)			d (Å)
I/I _o	d _{deneysel}	$Zn_{3}(BO_{3})_{2}$	I/I _o	d _{deneysel}	$Zn_{3}(BO_{3})_{2}$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		74–1099)			74–1099)
15	15.4553		17	3.3969	
13	14.8563				3.3542
		11.6021	67	3.3262	
10	11.4039				3.1857
8	10.4389		80	3.1605	
9	10.1607		69	3.1176	
5	8.0645				3.0752
5	7.7206		18	3.0524	
4	7.2392				3.0360
7	6.7577		23	3.0144	
3	6.4185				2.9823
4	6.3251		27	2.9655	
9	6.1136		43	2.9090	2.9005
		5.8010			2.8623
8	5.7421		60	2.8405	
33	5.3639		37	2.8099	
99	5.1649		31	2.7932	2.7869
9	4.9383	4.9326			2.7732
3	4.6661		32	2.7519	
4	4.6080		15	2.6707	2.6620
5	4.4979		18	2.6469	
7	4.4558		14	2.5937	
7	4.3807				2.5395
		4.3141			2.5240
		4.2273	59	2.5096	
36	4.1778				2.4867
		4.1366	52	2.4622	
100	4.0834	4.0847			2.4281
48	4.0081		31	2.4177	2.4115
		3.9566			2.3926
		3.8673	22	2.3751	
22	3.8267		33	2.3344	2.3375
		3.7580			2.3346
17	3.7213				2.3306
50	3.6360	3.6088	23	2.3147	
		3.5804	1		2.2960
30	3.5551		19	2.2824	2.2806
19	3.5098		14	2.2504	
25	3.4537		14	2.2404	2.2441
		3.4164	35	2.2151	
I	1		1		

Tablo 4.28 F9' un X-Işınları Kırınım Verileri (JCPDS Kart No: 74–1099)

Şekil 4.42 F9' un IR Spektrumu
Titreșim	Frekans (cm ⁻¹)
$BO_2(v_3)$	2360
$BO_3(v_3)$	1244
$B_{(4)} - O(v_{as})$	1026
$B_{(4)} - O(v_{as})$	924
B_2O_3	863
$BO_3(v_2)$	782
$BO_3(v_2)$	717
$BO_3(v_2)$	677
$BO_4(v_4)$	596-564
H ₃ BO ₃	547

Tablo 4.29 F10' un IR Spektrum Verileri

Tablo 4.30 F10' un X-Işınları Kırınım Verileri

(JCPDS Kart No: 73–1275)

		d (Å)			d (Å)
I/I _o	d deneysel	Zn B ₄ O ₇	I/I _o	d deneysel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73–1275)			73–1275)
8	14.6606		44	2.9224	2.9257
5	12.4930		72	2.8528	2.8585
4	11.8704		47	2.8049	
3	11.0079		26	2.7621	
1	7.8160		6	2.7121	2.7109
		6.857	17	2.6799	2.6844
4	6.8243		17	2.6536	2.6592
7	6.1648				2.6155
6	5.7947		27	2.5963	
5	5.7271				2.5478
5	5.6097		69	2.5133	2.5209
31	5.4188	5.4219			2.5098
100	5.2347	5.2311			2.5031
7	5.0040				2.4873
		4.4735	71	2.4712	2.4795
6	4.3656		31	2.4206	2.4100
		4.3155	19	2.3811	
35	4.2188				2.3445
87	4.1200	4.1165	35	2.3325	2.3316
49	4.0455	4.03680			2.3110
21	3.8525		20	2.2903	2.2856
12	3.7452				2.2559
49	3.6590	3.6630			2.2430
		3.6142			2.2367
29	3.5808				2.2255
		3.5390	25	2.2178	2.2184
23	3.4857	3.4842	15	2.1897	2.1995
16	3.4224	3.4285			2.1955
59	3.3420		24	2.1577	2.15497
		3.3289	19	2.1447	2.1314
5	3.2844				2.1263
		3.2309	12	2.1057	
92	3.1777		12	2.0892	2.0861
77	3.1326	3.1380	6	2.0551	2.0585
17	3.0616		8	2.0406	2.0453
16	3.0234		29	2.0244	2.0227
26	2.9774		24	1.9952	1.9947
		2.9514			1.9900
L					1

Tablo 4.31 F10' un X-Işınları Kırınım Verileri

(JCPDS Kart No: 74–1099)

		d (Å)			d (Å)
I/I _o	d_deneysel	$Zn_3(BO_3)_2$	I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		74–1099)			74–1099)
8	14.6606		47	2.8049	
5	12.4930				2.7869
4	11.8704		26	2.7621	2.7732
		11.6021	6	2.7121	
3	11.0079		17	2.6799	2.6620
1	7.8160		17	2.6536	
4	6.8243		27	2.5963	
7	6.1648				2.5395
6	5.7947	5.8010	69	2.5133	2.5240
5	5.7271		71	2.4712	2.4867
5	5.6097		31	2.4206	2.4281
31	5.4188				2.4115
100	5.2347		19	2.3811	2.3926
7	5.0004		35	2.3325	2.3375
		4.9326			2.3346
6	4.3656				2.3306
35	4.2188	4.2273	20	2.2903	2.2960
87	4.1200	4.1366			2.2806
		4.0847			2.2441
49	4.0368		25	2.2178	
		3.9566	15	2.1897	2.1967
21	3.8525	3.8673			2.1765
12	3.7452	3.7580			2.1718
49	3.6590		24	2.1549	
		3.6088	19	2.1447	2.1471
29	3.5808	3.5804	12	2.1057	2.1096
23	3.4857				2.1041
16	3.4224	3.4164	12	2.0892	2.0928
59	3.3420	3.3542			2.0771
5	3.2844		6	2.0683	2.05519
92	3.1777	3.1857	8	2.0406	2.0423
77	3.1326	1	29	2.0244	
17	3.0616	3.0752	24	1.9952	1.9997
16	3.0234	3.0360			1.9879
26	2.9774	2.9823	23	1.9768	1.9783
44	2.9224	1			1.9576
		2.9005			1.9408
72	2.8528	2.8623	43	1.9344	1.9336
					1

Sekil 4.43 F10' un X-Isınları Kırınım Desenleri

Sekil 4.44 F10' un IR Spektrumu

Titreșim	Frekans (cm ⁻¹)
$BO_2(v_3)$	2360
$BO_3(v_3)$	1238
$B_{(4)} - O(v_{as})$	1052
$B_{(4)} - O(v_{as})$	911
B_2O_3	863
$BO_3(v_2)$	782
$BO_3(v_2)$	718
$BO_3(v_2)$	677
$BO_4(v_4)$	563
H ₃ BO ₃	547

Tablo 4.32 F11' in IR Spektrum Verileri

Tablo 4.33 F11' in X-Işınları Kırınım Verileri

(JCPDS Kart No: 73–1275)

		d (Å)			d (Å)
I/I _o	d deneysel	$Zn B_4O_7$	I/I _o	d deneysel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73-1275)			73–1275)
1	8.2122		18	2.6553	2.6592
		6.857			2.6155
19	6.0319		9	2.5991	
		5.4219	21	2.5491	2.5478
35	5.3916		63	2.5180	2.5209
99	5.1975				2.5098
7	4.9771				2.5031
4	4.8730				2.4873
4	4.7676		33	2.4764	2.4795
		4.4735	13	2.4200	2.4100
		4.3155	8	2.3950	
		4.1165			2.3445
81	4.0979		32	2.3325	2.3316
53	4.0428	4.0455	17	2.3146	2.3110
11	3.8898		14	2.2894	2.2859
14	3.8452		20	2.2574	2.2559
7	3.7765				2.2430
11	3.7464				2.2367
53	3.6552	3.6630	37	2.2211	2.2255
		3.6142			2.2184
25	3.5392	3.5390			2.1995
27	3.4873	3.4842	26	2.1560	2.1577
14	3.4261	3.4285	11	2.1395	2.1314
24	3.3424		10	2.1308	
		3.3289	11	2.1128	2.1263
		3.2309			2.0861
100	3.1804				2.0585
68	3.1293	3.1380			2.0453
15	3.0610		62	2.0264	2.0227
22	2.9614	2.9514	47	2.0187	
40	2.9334	2.9257	20	1.9958	1.9947
38	2.9126	1			1.9900
71	2.8548	2.8585		1	1.9693
30	2.8229				1.9597
16	2.7674				1.9513
		2.7109	40	1.9361	1.9353
15	2.6833	2.6844	7	1.9046	1.9026

Tablo 4.34 F11' in X-Işınları Kırınım Verileri

(JCPDS Kart No: 74–1099)

		d (Å)			d (Å)
I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$	I/I _o	d_deneysel	$Zn_3(BO_3)_2$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		74–1099)			74–1099)
		11.6021	71	2.8548	2.8623
1	8.2122		30	2.8229	
19	6.0319				2.7869
		5.8010	16	2.7674	2.7732
35	5.3916		15	2.6833	
99	5.1975		18	2.6553	2.6620
7	4.9771		9	2.5991	
		4.9326	21	2.5491	2.5395
4	4.8730		63	2.5180	2.5240
4	4.7676		33	2.4764	2.4867
		4.3141	13	2.4200	2.4281
		4.2273			2.4115
		4.1366	8	2.3950	2.3926
81	4.0979	4.0847	32	2.3325	2.3375
53	4.0428				2.3346
		3.9566			2.3306
11	3.8898		17	2.3146	
		3.8673			2.2960
14	3.8452		14	2.2894	2.2806
7	3.7765		20	2.2574	2.2441
11	3.7464	3.7580	37	2.2211	
53	3.6552				2.1967
		3.6088			2.1765
		3.5804			2.1718
25	3.5392		26	2.1560	2.1471
27	3.4873		11	2.1396	
14	3.4261		10	2.1308	
24	3.3424	3.3542	11	2.1128	2.1096
100	3.1804	3.1857			2.1041
68	3.1293				2.0928
15	3.0610	3.0752			2.0771
		3.0360			2.06836
		3.98236			2.0423
22	3.9614		62	2.0264	
40	3.9334		47	2.0187	
38	3.9126	3.9005	11	1.9958	1.9997
		1			1

Sekil 4.45 F11' in X-Işınları Kırınım Desenleri

Şekil 4.46 F11' in IR Spektrumu

Titreșim	Frekans (cm ⁻¹)
$BO_2(v_3)$	2360
$BO_3(v_3)$	1235
$B_{(4)} - O(v_{as})$	1051
$B_{(4)} - O(v_{as})$	909
B_2O_3	862
$BO_3(v_2)$	783
$BO_3(v_2)$	718
$BO_3(v_2)$	676
$BO_4(v_4)$	562
H ₃ BO ₃	547

Tablo 4.35 F12' nin IR Spektrum Verileri

Tablo 4.36 F12' nin X-Işınları Kırınım Verileri

(JCPDS Kart No: 73–1275)

		d (Å)			d (Å)
I/I _o	d deneysel	$Zn B_4O_7$	I/I _o	d deneysel	$Zn B_4O_7$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		73–1275)			73–1275)
5	6.8497	6.857			2.7109
2	6.4684				2.6844
8	6.0039		18	2.6629	2.6592
		5.4219	5	2.6015	2.6155
27	5.4062		2	2.5847	
100	5.2225	5.2311	3	2.5707	
4	5.0129				2.5478
3	4.8246		32	2.5156	2.5209
3	4.7848				2.5098
		4.4735			2.5031
7	4.4011		25	2.4904	2.4873
		4.3155	17	2.4769	2.4795
16	4.2195				2.47100
54	4.1176	4.1165	8	2.4262	
32	4.0387	4.0455	4	2.4142	2.4100
7	3.9262		3	2.3910	
10	3.8464				2.3445
9	3.7561		21	2.3367	2.3316
38	3.6620	3.6630			2.3110
		3.6142			2.2856
13	3.5857		9	2.2597	2.2559
16	3.5448	3.5390			2.2430
22	3.4854	3.4842			2.2367
15	3.4249	3.4285	23	2.2262	2.2255
17	3.3648				2.2184
		3.3289			2.1995
4	3.2751				2.1955
		2.2309	13	2.1601	2.1577
36	3.1814				2.1314
50	3.1334	3.1380			2.1263
9	2.9739				2.0861
	1	2.9514	3	2.0607	2.0585
26	2.9338	2.9257			2.0453
23	2.9179		52	2.0227	2.0227
39	2.8730		16	1.9959	1.9947
51	2.8585	2.8585			1.9900
15	2.8273		11	1.9757	1.9693
10	2.7702		1	ľ	
					1

Tablo 4.37 F12' nin X-Işınları Kırınım Verileri

(JCPDS Kart No: 74–1099)

		d (Å)			d (Å)
I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$	I/I _o	d_deneysel	$Zn_{3}(BO_{3})_{2}$
	(Å)	(JCPDS		(Å)	(JCPDS
		Kart No:			Kart No:
		74–1099)			74–1099)
		11.6021	39	2.8730	2.8623
5	6.8497		51	2.8585	
2	6.4684		15	2.8273	
8	6.0039				2.7869
		5.8010	10	2.7702	2.7732
27	5.4062		18	2.6629	2.6620
100	5.2225		5	2.6015	
4	5.0129		2	2.5847	
		4.9326	3	2.5707	
3	4.8246				2.5395
3	4.7848		32	2.5156	2.5240
7	4.4011		25	2.4904	
		4.3141	17	2.4769	
16	4.2195	4.2273	8	2.4262	2.4281
		4.1366	4	2.4142	2.4115
54	4.1176		3	2.3910	2.3926
		4.0873	21	2.3367	2.3375
32	4.0387				2.3346
		3.9566			2.3306
7	3.9262				2.2960
		3.8673			2.2806
10	3.8464		9	2.2597	2.2441
9	3.7561	3.7580	23	2.2262	
38	3.6620				2.1967
		3.6088	13	2.1601	2.1765
13	3.5857	3.5804			2.1718
16	3.5448				2.1471
22	3.4854				2.1096
15	3.4249	3.4164			2.1041
17	3.3648	3.3542			2.0928
4	3.2751				2.0771
36	3.1814	3.1857	3	2.0607	2.0683
50	3.1334			1	2.0423
		3.0752	52	2.0227	
		3.0360	16	1.9957	1.9997
9	2.9739	2.9823		1	1.9879
26	2.9338		11	1.9757	1.9783
23	2.9179	2.9005		-	_
-				1	1

Sekil 4.47 F12' nin X-Isınları Kırınım Desenleri

Sekil 4.48 F12' nın IR Spektrumu

4.3 Yanma testi

Çinko boratlı bileşiklerin yanmayı geciktirici özellikleri nedeniyle, deneysel çalışmalar sonucunda elde edilen iki ürün için (F4 ve F10) yanma testi uygulanmıştır.

Öncelikle aynı ebatlarda kesilen kumaş parçalarından iki tanesi, sulu çözelti halinde hazırlanan çinkoborat emdirilerek, etüvde kurutulmuşlardır. Daha sonra herhengi bir işleme tabi tutulmayan kumaş parçasıyla beraber bu üç kumaş yanma testine tabi tutulmuşlardır. Bir uçtan yakılan kumaşlardan çinko borata emdirilenlerin yanmayı çok fazla ilerlemeden durdurduğu, sade kumaşın ise yanma testinde neredeyse tamamen yandığı gözlemlenmiştir (Şekil 4.49).

Şekil 4.49 Yanma Testi

Bu testten çıkarılan sonuç ise çinko boratlı bileşiklerin yanmayı geciktirici özellikleri dolayısıyla endüstride değişik uygulama alanlarında kullanılabileceğini anlamaktayız.

4.4 Sonuç

Bu tez çalışmasında özetle aşağıdaki sonuçlar elde edilmiştir:

i) Mikrodalga enerji kullanarak yapılan deneylerde Zn(NO₃)₂.6H₂O bileşiği çinko kaynağı olarak kullanılmıştır. Bir çok nitratlı bileşiğin (ayrıca bünyesinde su bulundurursa) mikrodalga enerjiyle kuvvetli bir etkilesme göstererek mikrodalga enerjisini soğurduğu gözlemlenmiştir. Bor kaynağı olarakta B₂O₃ ve H₃BO₃ bileşikleri seçilmiş olup bu bileşikler 1 molden sırasıyla 6 mol değerine kadar arttırılarak mikrodalga deneyler denenmiştir. Elde edilen ürünlerin XRD sonuçları incelendiğinde ürünlerin kristal yapılı olmadığı ve amorf özellikte bulunduğu anlaşılmaktadır. Yapılan mikrodalga akkorlaşma deneylerin gözlemlerinde ayrıca herhengi bir olayının gerçekleşmemesi, çinko borat bileşiklerin oluşması için, yeterli sıcaklığa çıkılamadığını göstermektedir.

ii) Katı-hal kimyasal tepkimelerin oluşumu için termal yöntem kullanılarak başlangıç ürünleri, kül fırınında 700 °C' de 4 saat süreyle kimyasal tepkimeye sokulmuşlardır.

Bu deneylerde başlangıç malzemeleri , çinko kaynağı olarak, ZnO, bor kaynağı olarak ise B_2O_3 ile H_3BO_3 kullanılmıştır. B_2O_3 ve H_3BO_3 bileşikleri sırasıyla birden, altıya kadar olan mol değerlerinde alınarak flux yöntemi kullanılarak, ZnO ile 700 °C' de 4 saat süreyle katı-hal kimyasal tepkimelerine sokulmuşlardır. Deneylerde elde edilen XRD sonuçlarına göre, ürünlerin iki fazlı bir sistem oluşturdukları gözlemlenmiştir. Bu fazların Zn B_4O_7 (JCPDS Kart No: 73–1275) ile Zn₃ (BO₃)₂ (JCPDS Kart No: 74–1099) bileşiklerine ait oldukları XRD analizleri ile kesinleşmiştir. B_2O_3 ün değişik mol oranlarında ve H_3BO_3 , ün ise 1, 2 ve 3 mol oranlarında Zn₃ (BO₃)₂ bileşiğinin daha iyi kristallendiği gözlemlenirken, H_3BO_3 ile 4, 5 ve 6 mol oranlarında yapılan deneylerde ise Zn B_4O_7 , 'nin daha iyi kristallendiği XRD çekimlerinden anlaşılmaktadır. Buradaki farkın Zn B_4O_7 bileşiğindeki bor elementi ihtiyacı için daha fazla bor elementine ihtiyaç duyduğu, bununda H_3BO_3 ile yapılan deneylerde yüksek mol oranlarında oluşabileceğini bu deneysel çalışmalarla ispatladık.

Elde edilen Zn₃ (BO₃)₂ ve Zn B₄O₇ bileşiklerinin kristal yapılı oldukları, yapılan XRD sonuçlarıyla desteklenmektedir. Bu bileşiklere ait kristal örgü parametreleri sırasıyla, Zn₃ (BO₃)₂' nin monoklinik sisteme ait olduğu , örgü geometresinin a = 23,406 (1), b = 5,048 ve c = 8,381 (5) Å olduğu, Zn B₄O₇ bileşiği ortorombik sistemde kristallendiği ve birim hücre boyutlarının a =13,714, b = 8,091 ve c = 8,631 Å olduğu, yapılan deneysel XRD ölçümlerinin literatür bilgileriyle karşılaştırılarak, bu kristal yapıların bu sistemlerde oluştuğu yapılan deneysel çalışmalarla kanıtlanmıştır.

iii) Çinko boratlı bileşiklerin yanmayı engelleyici özellikleri nedeni ile kendi elde ettiğimiz deneysel ürünleri kullanarak belli bir kesitte hazırlanan kumaş parçaları üzerinde basit bir yanma testi uygulanmıştır. Kumaşlardan iki tanesi hazırlanan çinko boratlı çözeltiye emdirilerek kurutulmuştur. Daha sonra yapılan yanma testinde çinko boratlı çözelti emdirilen kumaşlarda yanmanın fazla ilerlemeden durduğunu, herhangi bir işlem yapılmadan teste tutulan kumaşın ise tamamen yandığını yapılan testte gözlemledik.

Bu sonuç bize, katı-hal yöntemi ile hazırlanan bu çinko boratlı ürünlerin, endüstride değişik amaçlı yanmayı geciktirici işlemlerde kullanılabileceğini göstermektedir.

Titreşimler	Frekans	Frekans	Frekans	Frekans
	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
	[3]	[3]	[3]	[3]
V ₃ (BO ₄)		1117	1103-1024	1037,918
V ₃ (BO ₃)	1200-1245			
V ₁ (BO ₃)	1040			
V ₁ (BO ₄)		882	882	
$V_2(BO_3)$	785-750			
V ₄ (BO ₄)	662-623	519-466	576	623

EK : A IR Spektrumu Titreşim Frekansları Borat Gruplarının IR Titireşim Frekansları

Bazı Grupların IR Titreşim Frekansları

Titreşimler	H ₃ BO ₃	BO ₂	B ₂ O ₃	H ₂ O
	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
	[3]	[3]	[3]	[3]
V ₁	1060	994-1070	862	3450
V_2	668-648	505-502-464		1640
V ₃	1490-1428	2357-1322		3615
V_4	545			

 $Zn_3\,(\,BO_3\,)_2\,\,\text{`nin düzlem üçgen}\,(\,BO_3\,)\,grubunu\,3\,tane\,karakterizasyon \label{eq:solution}$ bandı vardır. Bunlar ;

 $V_2 \rightarrow 717,2$, 671,7 cm⁻¹ $V_3 \rightarrow 1305,2$, 1267 cm⁻¹ $V_4 \rightarrow 623,8$ cm⁻¹

Serbest suyun , güçlü geniş absorpsiyon bandı yaklaşık 3200-3400 cm⁻¹ civarında ; H-O-H titreşim hareketi genellikle 1650 cm⁻¹ civarında meydana gelmektedir.

$$B_{(4)}$$
-O V_S = 1000-1100 ve 824-900 [52]

EK : B Sorun giderilmiş - giderilmemiş X-Işını Kırınım desenleri

Numune kabından kaynaklanan sorun giderilmeden önceki MD1 deneyi için X-Işını Kırınım deseni

Numune kabından kaynaklanan sorun giderilmeden sonraki MD1 deneyi için X-Işını Kırınım deseni

Numune kabından kaynaklanan sorun giderilmeden sonraki MD7 deneyi için X-Işını Kırınım deseni

EK : C Zn B₄O₇ ve Zn₃ (BO₃)₂ ' nin X-Işınları Kırınım Verileri

Zn B₄O₇

Rad : CuK_a1 $\lambda = 1,54060$ Sistem : Ortorombik a = 13,714b = 8,091c = 8,631A = 1,6950C : 1,0667 $\alpha =$ $\beta =$ $\gamma =$ Z = 8mp =

$Zn_3(BO_3)_2$

Rad : CuK_a1 $\lambda = 1,54060$ Sistem : Monoklinik a = 23,406 (1)b = 5,048 (5)c = 8,381 (5)A = 4,6367C : 1,6603 $\alpha =$ $\beta = 97,530 (5)$ $\gamma =$ Z = 8mp =

	d (Å)		d (Å)		d (Å)
I/I _o	$Zn B_4O_7$	I/I _o	$Zn B_4O_7$	I/I _o	$Zn B_4O_7$
	(JCPDS		(JCPDS		(JCPDS
	Kart No:		Kart No:		Kart No:
	73-1275)		73–1275)		73–1275)
50	6.857	127	2.2184	54	1.7275
310	5.4219	42	2.1995	70	1.7142
999 *	5.2311	50	2.1955	44	1.7091
1	4.4735	93	2.1577	127	1.7001
3	4.3155	45	2.1314	69	1.6958
393	4.1165		2.1314	26	1.6755
386	4.0455	31	2.1263		1.6755
300	3.6630	10	2.0861	15	1.6723
300	3,6630	18	2,0585	25	1,6644
13	3,6142	18	2,0585	14	1,6598
143	3,5390	18	2,0453	3	1,6547
158	3,4842	53	2,0227	8	1,6462
110	3,4285	94	1,9947	15	1,6427
15	3,3289	54	1,9900	107	1,6362
2	3,2309	39	1,9693		1,6362
389	3,1380	15	1,9597	58	1,6322
18	2,9514	17	1.9513	5	1.6167
243	2.9257		1.9513		1.6167
460	2.8585	172	1.9353	6	1.5997
7	2.7109	16	1.9026		1.5997
87	2.6844		1.9026	2	1.5931
105	2.6592	13	1.8969	2	1.5878
2	2.6155	39	1.8913		1.5878
18	2.5478		1.8913	15	1.5836
29	2.5209	23	1.8857	15	1.5809
215	2.5098	32	1.8594		1.5809
144	2.5031	27	1.8344	22	1.5771
68	2.4873	24	1.8315		1.5771
41	2.4795	74	1.8261	2	1.5690
18	2.4100	57	1.8154	2	1.5631
85	2.3445	36	1.8086		1.5631
49	2.3316	84	1.7839	6	1.5590
49	2.3110		1.7839	32	1.5526
3	2.2856	10	1.7695	43	1.5493
84	2.2559	49	1.7565	39	1.5403
24	2.2430		1.7565	29	1.5231
89	2.2367	82	1.7421	6	1.5147
208	2.2255	82	1.7421		1.5147

Zn B₄O₇' nin X-Işınları Kırınım Verileri

	d (Å)		d (Å)		d (Å)
I/I _o	$Zn_3(BO_3)_2$	I/I _o	$Zn_3(BO_3)_2$	I/I _o	$Zn_3(BO_3)_2$
0	(JCPDS	0	(JCPDS	Ū	(JCPDS
	Kart No:		Kart No:		Kart No:
	74–1099)		74–1099)		74–1099)
47	11.6021	81	2.1967	29	1.7781
40	5.8010	10	2.1765	99	1.7647
3	4.9326	17	2.1718	3	1.7374
8	4.3141	158	2.1471	18	1.7299
337	4.2273		2.1471	7	1.7213
544	4.1366	57	2.1096	2	1.7082
196	4.0847	42	2.1041	2	1.7034
8	3.956	19	2.0928	40	1.6908
23	3.8673		2.0928	32	1.6859
17	3.7580	24	2.0771	48	1.6803
39	3.6088	35	2.0683	44	1.6771
245	3.5804	25	2.0423		1.6771
18	3.4164	117	1.9997	23	1.6712
784	3.3542	111	1.9879	47	1.6595
999 *	3.1857		1.9879	132	1.6442
89	3.0752	187	1.9783	76	1.6387
190	3.0360		1.9783	52	1.6363
292	2.9823	16	1.9576	30	1.6314
167	2.9005	28	1.9408	9	1.6268
68	2.8623	288	1.9336	97	1.6196
179	2.7869		1.9336	73	1.6139
309	2.7732	38	1.9214	74	1.6110
	2.7732		1.9214	76	1.6051
26	2.6620	25	1.9174		1.6051
267	2.5395		1.9174	37	1.5928
450	2.5240	9	1.9040	70	1.5888
	2.5240	25	1.8955		1.5888
366	2.4867	24	1.8790	79	1.5836
303	2.4281	27	1.8727	77	1.5784
	2.4281	40	1.8511		1.5784
42	2.4115		1.8511	52	1.5755
203	2.3926	59	1.8465		1.5755
215	2.3375		1.8465	51	1.5674
215	2.3346	11	1.8135		1.5674
193	2.3306	33	1.8044	15	1.5595
105	2.2960	26	1.7970	13	1.5509
12	2.2806	60	1.7902	24	1.5436
42	2.2441	35	1.7863	51	1.5386

Zn3 (BO3)2' nin X-Işınları Kırınım Verileri

5.KAYNAKÇA

[1] Greenwood, N.N, Chemistry of The elements, Butterworth Heinemann, Oxford, (1972).

[2] Sümer, G., "Bor Bileşikleri", II.Uluslararası Bor Sempozyumu, Anadolu Üni., Güzel Sanatlar Fak., Seramik Bölümü, Eskişehir, (2004).

[3] Kurtuluş, F., "Bazı Metal Borfosfatların ve Borkarbürlerin Katı-Hal Yöntemiyle Sentezlenmesi ve Malzemelerin Karakterizasyon Çalışmaları", Doktora Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Balıkesir, (2003).

[4] Taşçıoğlu, S., Bor ve Silisyum Kimyası, Marmara Üniversitesi Yayınları, (1992), 515.

[5] Greenwood, N.N, Boron, Oergamon Press, Oxford, (1975), 327 ; also as Chap.11 in Comphrehensive Inorganic Chemistry, vol. 1, Pergamon Press, Oxford, (1973).

[6] http://www.boren.gov.tr, (16.02.2006).

[7] Kirk-Othmer, "Encyclopedia of Chemical Technology", Smith, R.,Boric Oxide, "Boric Acid, and Borates", Vol 1, No:4, (1990).

[8] Kocakuşak, S., Akçay, K., Ayok, T., Köroğlu, J., Savaşçı, T. ve Tolun, R., "Akışkan Yatakta Bor Oksit Üretim Teknolojisinin Geliştirilmesi", Tübitak Araştırma Merkezi, Rapor No:KM 323, (1998).

[9] http://www.boraxtr.com.tr, (12.01.2006).

[10] T.C. Devlet Planlama Teşkilatı Özel İhtisas Komisyon Raporu, (1988).

[11] Kavuşan, G., "Endüstriyel Hammaddeler", (1985).

[12] Seyler, B., "Industrial Minerals and Rocks", Mudd Series, (1978).

[13] Eti bor Pazarlama Katalogları (www.etimaden.gov.tr), (15.02.2006).

[14] Akçamoluk, E., Demiray, H., "Bor Elementinin Sambro No: 3 Ayçiçeği çeşidinin Büyümesi Üzerine Etkileri", *Ege Üniversitesi Ziraat Fakültesi Derg.*, (2004), 181-190.

[15] Yılmaz, A., "Her Derde Deva Hazinemiz Bor", *TUBİTAK-Bilim ve Teknik Dergisi*, Ankara, (2002).

[16] www.foreigntrade.gov.tr, (08.04.2006).

[17] Bozkurt, A.Y., Göker, Y., Erdin, N., "Emprenye tekniği", İ.Ü. Yayın No: 3779, Orman Fak. Yayın: 425, İstanbul, (1993).

[18] Kartal, S.N., Dorau, B., Lebow, S.T., Gren, F., "Effects of Inorganic Ions on Leachability of Wood Preserving N'N-hydroxynaphtalimide (NHA)", *Forest Products Journel*, 54(1), (2004), 80-84.

[19] Bilici, U., "Solubor (Disodyum Oktaborat Tetrahidrat) Üretimi", TMMOB Maden Mühendisleri Odası, Madencilik Bülteni, Sayı: 65, Ankara, (2004).

 [20] Lloyd, J.D., "Borates and their biologinal applications.", The International Research Group on Wood Preservation 29th Annual Meeting, Maastricht, Netherlands, (1998), 24.

[21] Kartal, S.N., Green, F., "Development and application of colorimetric microassay for determining boron-containing compounds", *Forest Products Journal*, 52(6), (2002), 75-79.

123

[22] Kartal, S.N., Hwang, W.J., Shinoda, K., Imamura, Y., "Decay and termite resistance of wood treated with boron-containing quaternary ammonia compound, didecyl dimethyl ammonium tetrafluoroborate (DBF) incorporated with acryl-silicon type resin", The International Research Group on Wood Preservation 35th Annual Meeting, Lyublijana, Slovenia, (2004).

[23] Vinden, P., Romeo, J., "Developments in the application of organic boron compounds", The Second International Conference on Wood Protection with Diffusible Preservatives and Perticides, Madison, (1997), 119-126.

[24] Kartal, S.N., Ayrılmış, N., "Blackboard made from boron-treated veneers: Laboratory evaluation of decay and termite resistance", International Biodeterioration and Biodegradation (in press), (2004).

[25] Laks, P.E., "Properties and process considerations for preservativecontaining waterboards", International Union of Foresty Research Organizations (IUFRO) Symposium on the Protection of Wood-Based Composite Products, Orlando, (1993), 12-17.

[26] Manning, M.J., Lloyd, J., Schoeman, M., "The future of diffusible preservative and pesticide systems", The Second International Conference on Wood Protection with Diffusible Preservatives and Pesticides, Madison, (1997), 157-168.

[27] Giudice, C.A., Bentez, J.C., "Zinc Borates as Flame-Retardant Pigments in Chlorine-Containing Coating", *Progress in Organic Coatings*, **42**, (2001), 82-88.

[28] Henrist, C., Rulmont, A, Cloots, R., Gilbert. B., Bernard, A., Beyer, G., "Toward the understanding of the thermal degradation of commercially available fire-resistant cable", *Materials Letters*, **46**, (2000), 160-168. [29] Bozkurt, A.Y., "Emprenye Fabrika ve Tesislerinde Emniyet ve Sağlık Sorunları", *İ.Ü. Orman Fak. Dergisi Seri B*, **32**, 2, İstanbul, (1982).

[30] Sivrikaya, H., Saraçbaşı, A., "Bor Madeninin Ahşap Koruma Endüstrisinde Değerlendirilmesi",II. Uluslararası Bor Sempozyumu, (2004).

[31] Rao, C.N.R., "Chemical Approaches to the Synthesis Of Inorganic Materials", Wiley Eastern Limited, New Delhi, India, (1994).

[32] Livage, J., Henry, M., Sanchez, J., Prog. Solid State Chem., 18, (1988), 259.

[33] Schöllhorn, R., "In Inclusion Compounds", Atwood, J.L., Davies, J.E.D., Mac Nicol, D.D., Ed., Academic Pres., London, (1986), 249.

[34] Rouxel, J., "In Intercolated Layered Materials", Levy, F., Ed., Reidel Publishing, Dordrecht, Holand, (1979), 201.

[35] Gapolakrishnan, J., Chem. Mater., 7, (1995), 1296.

[36] Sheppard, L.M., Ceram Bull., 67, (1988), 1656.

[37] Mingas, D.M.P., Baghurst, D.R., Chem. Sac. Rev., (1991), 20.

[38] Mingas, D.M.P., Baghurst, D.R.Br., Carem. Trans.J., 91, (1992), 124.

[39] Mingas, D.M.P., Chem. Ind., (1994), 596.

[40] Rao, K.J., Ramesh, P.D., Bull. Mater. Sci., 18, (1995), 447.

[41] Clark, D.F., Sutton, W.H., Annu. Rew. Mater. Sci., 26, (1996), 299.

[42] Dagani, R., Chem. Eng. News, (1997), 26.

[43] Sridar, V., Curr. Sci., 74, (1998), 446.

[44] Janner, M.A., Kimrey, H.D., Ceram. Trans., (1988), 919.

[45] Link, G., Ivanov, V., Paranin, S., Khrustov, V., Böhme, R., Müler, G., Schumacher, G., Thumm, M., Weisenburger, A., *Mater. Res. Sac.Symp. Proc.*, 157, (1996), 430.

[46] Meek, T.T., Blake, R.D., Petrovic, J.J., *Ceram. Eng. Sci. Proc.*, **8**, (1987), 861.

[47] Bykov, Y.V., Eremeev, A.G., Holoptsev, V.V., Odemer, C., Rachkovski,A.I., Kleissi, H.J., *Ceram. Trans.*, 80, (1997), 321.

[48] Haque, K.E., "Microwave Energy for Mineral Treatment Processes-a Brief Review", *International Journal of Mineral Processing*, (1999), 1-24.

[49] Nightingale, S.A., Worner, H.K., Dunne, D.P., J. Am. Ceram. Soc., 80, (1997), 394.

[50] Rao, K.J., Vaidhyanathan, B., Ganguli, M., Ramakrishnan, P.A., *Chem. Mater.*, (1999), 882-895.

[51] Skoog, D.A., Holer, F.J., Niema, T.A., *Enstrümantal Analiz İlkeleri*, Harcourt Brace College, Publishers, New York, (1992), 272-279.

[52] Chen, X., Xue, H., Chang, X., Zhang, L., Zhao, Y., Zuo, J., Zang, H., Xiao,
W., "Syntheses and crystal structures of the α- and β- forms of zinc orthoborate,
Zn₃B₂O₆", *Journal of Alloys and Compounds*, (2006), 4.