T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

BAZI MAGNEZYUM BORATLI BİLEŞİKLERİN KATI-HAL KİMYASAL YÖNTEMLERLE SENTEZLENMESİ ve KARAKTERİZASYON ÇALIŞMALARI

YÜKSEK LİSANS TEZİ

Erdoğan AY

DANIŞMAN Yrd. Doç Dr. İmdat KADAN

Balıkesir, 2006

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

BAZI MAGNEZYUM BORATLI BİLEŞİKLERİN KATI-HAL KİMYASAL YÖNTEMLERLE SENTEZLENMESİ ve KARAKTERİZASYON ÇALIŞMALARI

YÜKSEK LİSANS TEZİ

Erdogan AY

DANIŞMAN Yrd. Doç Dr. İmdat <u>KAD</u>AN

Sınav Tarihi : 26.10.2006 Jüri Üyeleri : Doç. Dr. Halil GÜLER (BAÜ) M M Yrd. Doç. Dr. Abdülkerim PEKİN (BAÜ) M Yrd. Doç. Dr. İmdat KADAN (BAÜ) ÖZET

BAZI MAGNEZYUM BORATLI BİLEŞİKLERİN KATI-HAL KİMYASAL YÖNTEMLERLE SENTEZLENMESİ ve KARAKTERİZASYON CALISMALARI

Erdoğan AY

Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü Kimya Anabilim Dalı

> Yüksek Lisans Tezi / Tez Danışmanı Yrd. Doç Dr. İmdat KADAN Balıkesir, 2006

Bu çalışmada mikrodalga enerji ve termal sıcaklıktan yararlanarak bazı magnezyum borat tipli bileşiklerin sentezini katı-hal reaksiyonları ile gerçekleştirmeyi hedefledik. Deneysel reaksiyon ürünlerinin karakterizasyonunda X-ışınları kırınımı (XRD) başlıca yöntem olarak kullanılmış, bileşiklerdeki fonksiyonel grupların varlıkları da FTIR spektroskopik yöntemle desteklenmiştir.

Mikrodalga yardımlı sentezlerde, Mg(NO₃)₂.6H₂O, H₃BO₃ ve B₂O₃ başlangıç kimyasalları 1'molden 6 mole kadar değişen oranlarda katı-hal reaksiyonuna sokulmuştur. Deneyler, 2.45 GHz frekanslı 750 W'lık mikrodalga enerji altında 10 dakikalık reaksiyon süresiyle gerçekleştirilmiştir. Ürünlerin XRD analizleri incelendiğinde, amorf yapıya sahip oldukları ve kristal yapılı herhangi bir magnezyum boratlı bileşiğin oluşmadığı anlaşılmıştır.

Termal yoldan gerçekleştirilen katı-hal kimyasal raksiyonlarında ise 3 saatlik deneyler sonucunda 500 0 C'de başlangıç kimyasalları olarak MgO ve H₃BO₃'ün reaksiyona girmeden ortamda kaldıkları, 600 0 C'de ise reaksiyon ortamında bir miktar başlangıç kimyasallarının bulunmasına karşın Mg₂B₂O₅ bileşiğine ait kristallerin (JCPDS kart numaraları 15-537 ve 16-168) oluşmaya başladıkları anlaşılmıştır. H₃BO₃'ün mol oranı 2'den başlayarak 6 mole kadar arttırıldığında ise Mg₂B₂O₅ bileşiğinin yanında Mg₃(BO₃)₂ (JCPDS kart numarası 5–648) bileşiğinin oluştuğu gözlenmiştir.

Benzer deneyler 700, 800 ve 900 ⁰C de tekrarlandığında, önceki oluşumlara benzer sonuçlar gözlenirken 900 ⁰C de başlangıç kimyasallarının artık ortamda kalmadıklarını XRD çekimlerinden anlaşılmıştır.

ANAHTAR KELİMELER : Bor kimyası, magnezyum boratlar, X-ışınları kırınımı, Katı-hal sentezi

ABSTRACT

SYNTHESIS and CHARACTERIZATION of COMPOUNDS with SOME MAGNESIUM BORATE TYPES by SOLID-STATE REACTIONS

Erdoğan AY

Balıkesir University, Institute of Science Department of Chemistry

M.Sc. Thesis / Supervisor

Assoc. Prof. Dr. Imdat KADAN

Balıkesir, 2006

This study's principal goal was to synthesize some compounds with magnesium borate types by solid-state reactions using microwaves and thermal energy. The experimental products were characterisized by X-ray diffraction technique and the presence of functional groups in the products were supported using Fourier Transform Infra Red Spectroscopic (FTIR) method.

In the microwave-assisted syntheses, the initial reactant of $Mg(NO_3)_2.6H_2O$, was reacted individually with H_3BO_3 and B_2O_3 reactants in the various mole ratios increasing from 1mole to 6 moles. Experiments, were carried out in a domestic microwave oven under conditions of 2.45 GHz frequency and 750 W power, 10 minutes reaction times. Investigating the XRD diffractograms of experimental reaction products, it was concluded that all the microwave synthesized products were amorphous instead of crystalline phases.and there was no compound having magnesium borate composition.

In the solid-state reactions carried out by thermal energy, at 500 0 C we had found that the initial reactants of MgO and H₃BO₃ were not reacted. At 600 0 C, we had stil found some unreacted initial chemicals but the compound Mg₂B₂O₅ was started to crystallisize (JCPDS Card munbers : 15-537 and 16-168) at the end of 3 hours reaction times. When we increased the mole ratios of H₃BO₃ to 2 to 6 mole, in addition to Mg₂B₂O₅, a second type of magnesium borate compound, Mg₃(BO₃)₂ (JCPDS card no : 5-648) was crystallisized as a second phase. When we done similar experiments at 700, 800 and 900 0 C tempratures, we had found similar results as previous experiments, but for 900 0 C experiment we didn't find any initial chemical reactanats.

KEY WORDS : Boron chemistry, magnesium borates, X-ray diffraction, solid-state synthesis.

İÇİNDEKİLER

ÖZET ANAHTAR SÖZCÜKLER	ii
ABSTRACT	iii
KEY WORDS	iv
İÇİNDEKİLER	v
SEMBOL LİSTESİ	vii
ŞEKİL LİSTESİ	viii
TABLO LİSTESİ	xi
ÖNSÖZ	xiv
1. GİRİŞ	1
1.1 Bor	1
1.1.1 Elementel Borun Eldesi	3
1.1.2 Bor Mineralleri	4
1.1.3 Kullanım Alanlar	6
1.2 Magnezyum Borat Bileşikleri	12
1.3 Mikrodalga Enerji	14
1.3.1 Mikrodalga-Yardımlı İsıtma	15
1.4 X-Işınları Spektroskopisi	19
1.4.1 X-ışınlarının Genel Özellikleri	20
1.4.2 X-ışınlarının Elde Edilmesi	20
1.4.3 Difraksiyon	21
1.4.4 Difraktometre	23
1.4.5 Fotoğrafik Difraksiyon Kaydı	25
1.4.6 Difraktometrenin Avantajları	25
1.4.7 Toz Kırınım Yönteminin Başlıca Kullanım Alanları	26
1.4.8 X-ışını Floresansı	26

1.4.9 X-ışını Floresansı Kaynakları	26
1.4.10 Kullanım alanları	27
1.5.Tezin Amacı	28
2. MATERYAL VE YÖNTEM	29
2.1 Kullanılan Kimyasal Maddeler	29
2.2 Kullanılan Cihazlar	29
2.3 Yöntem	29
2.3.1 Termal Yöntem	29
2.3.2 Mikrodalga Enerji Yöntemi	30
3. BULGULAR	31
3.1 Mikrodalga Enerji Yöntemi ile Yapılan Deneyler	31
3.2 Termal Yöntem Kullanılarak Yapılan Deneyler	33
4.SONUÇLAR VE TARTIŞMA	36
4.1 Mikrodalga Enerji Yöntemiyle Yapılan Deneyler	36
4.2 Termal Yöntemle Yapılan Deneyler	44
$4.2.1 Mg(NO_3)_2.6H_2O - H_3BO_3$ Sisteminde Yapılan Deneyler	44
4.2.2 MgO – H ₃ BO ₃ Sisteminde Yapılan Deneyler	51
$4.2.2.1 \text{ MgO} + 1 \text{ H}_3 \text{BO}_3 (\text{EAD5-1})$	51
4.2.2.2 MgO + H ₃ BO ₃ (EAD6–1)	66
4.2.2.3 MgO + H ₃ BO ₃ (EAD7–1)	91
4.2.2.4 MgO + H ₃ BO ₃ (EAD8–1)	116
4.2.2.5 MgO + H ₃ BO ₃ (EAD9–3)	141
4.3 SONUÇ	145

EKLER

EK : A IR Spektrumu Titreşim Frekansları	149
EK : B Kullanılan Kimyasalların ve Ürünlerin JCPDS Kartları	150

5.KAYNAKÇA	158
------------	-----

SEMBOL LİSTESİ

Sembol	Adı
XRD	X-Işınları Toz Difraksiyonu
FTIR	Fourier Transform Infra Red Spektroscopy
JCPDS	The Joint Committee on Powder Diffraction Standarts

ŞEKİL LİSTESİ

Şekil <u>Numarası</u>	Adı	Sayfa <u>Numarası</u>
Şekil 1.1.	Bor bileşikleri ve kullanım alanları	7
Şekil 1.2	Elektromanyetik Spektrumda Mikrodalga Bölge	16
Şekil 1.3	Elektromanyetik Spektrum	19
Şekil 1.4	X-ışınının Bir Kristalden Kırınması	21
Şekil 1.5	X-ışını Difraktometresi	24
Şekil 4.1	EAD1-1MD'nin X-ışını Toz difraksiyon Deseni	39
Şekil 4.2	EAD1-2MD'nin X-ışını Toz difraksiyon Deseni	38
Şekil 4.3	EAD1-3MD'nin X-ışını Toz difraksiyon Deseni	39
Şekil 4.4	EAD1-4MD'nin X-ışını Toz difraksiyon Deseni	39
Şekil 4.5	EAD1-5MD'nin X-ışını Toz difraksiyon Deseni	40
Şekil 4.6	EAD1-6MD'nin X-ışını Toz difraksiyon Deseni	40
Şekil 4.7	EAD2-1MD'nin X-ışını Toz difraksiyon Deseni	41
Şekil 4.8	EAD2-2MD'nin X-ışını Toz difraksiyon Deseni	41
Şekil 4.9	EAD2-3MD'nin X-ışını Toz difraksiyon Deseni	42
Şekil 4.10	EAD2-4MD'nin X-ışını Toz difraksiyon Deseni	42
Şekil 4.11	EAD2-5MD'nin X-ışını Toz difraksiyon Deseni	43
Şekil 4.12	EAD2-6MD'nin X-ışını Toz difraksiyon Deseni	43
Şekil 4.13	EAD3-1'in X-Işını Toz Difraksiyon Deseni	45
Şekil 4.14	EAD3-2'nin X-Işını Toz Difraksiyon Deseni	46
Şekil 4.15	EAD3-3'ün X-Işını Toz Difraksiyon Deseni	47
Şekil 4.16	EAD3-4'ün X-Işını Toz Difraksiyon Deseni	48
Şekil 4.17	EAD3-5'in X-Işını Toz Difraksiyon Deseni	49
Şekil 4.18	EAD3-6'nın X-Işını Toz Difraksiyon Deseni	50
Şekil 4.19	EAD5-1'in X-Işını Toz Difraksiyon Deseni	52

Şekil 4.20	EAD5-2'nin X-Işını Toz Difraksiyon Deseni	54
Şekil 4.21	EAD5-3'ün X-Işını Toz Difraksiyon Deseni	56
Şekil 4.22	EAD5-4'ün X-Işını Toz Difraksiyon Deseni	58
Şekil 4.23	EAD5-5'in X-Işını Toz Difraksiyon Deseni	61
Şekil 4.24	EAD5-6'nın X-Işını Toz Difraksiyon Deseni	64
Şekil 4.25	EAD6-1'in X-ışın Toz Difraksiyon Deseni	68
Şekil 4.26	EAD6-1'in IR Spektrumu	69
Şekil 4.27	EAD6-2'nin X-ışın Toz Difraksiyon Deseni	71
Şekil 4.28	EAD6-2'nin IR Spektrumu	72
Şekil 4.29	EAD6-3'ün X-ışın Toz Difraksiyon Deseni	75
Şekil 4.30	EAD6-3'ün IR Spektrumu	76
Şekil 4.31	EAD6-4'ün X-ışın Toz Difraksiyon Deseni	79
Şekil 4.32	EAD6-4'ün IR Spektrumu	80
Şekil 4.33	EAD6-5'in X-ışın Toz Difraksiyon Deseni	83
Şekil 4.34	EAD6-5'in IR Spektrumu	84
Şekil 4.35	EAD6-6'nın X-ışın Toz Difraksiyon Deseni	87
Şekil 4.36	EAD6-6'nın IR Spektrumu	88
Şekil 4.37	EAD7-1'in X-ışın Toz Difraksiyon Deseni	92
Şekil 4.38	EAD7-1'in IR Spektrumu	93
Şekil 4.39	EAD7-2'nin X-ışın Toz Difraksiyon Deseni	96
Şekil 4.40	EAD7-2'nin IR Spektrumu	97
Şekil 4.41	EAD7-3'ün X-ışın Toz Difraksiyon Deseni	100
Şekil 4.42	EAD7-3'ün IR Spektrumu	101
Şekil 4.43	EAD7-4'ün X-ışın Toz Difraksiyon Deseni	104
Şekil 4.44	EAD7-4'ün IR Spektrumu	105
Şekil 4.45	EAD7-5'in X-ışın Toz Difraksiyon Deseni	108
Şekil 4.46	EAD7-5'in IR Spektrumu	109
Şekil 4.47	EAD7-6'nın X-ışın Toz Difraksiyon Deseni	112
Şekil 4.48	EAD7-6'nın IR Spektrumu	113
Şekil 4.49	EAD8-1'in X-ışın Toz Difraksiyon Deseni	117
Şekil 4.50	EAD8-1'in IR Spektrumu	118
Şekil 4.51	EAD8-2'nin X-ışın Toz Difraksiyon Deseni	121
Şekil 4.52	EAD8-2'nin IR Spektrumu	122

Şekil 4.53	EAD8-3'ün X-ışın Toz Difraksiyon Deseni	125
Şekil 4.54	EAD8-3'ün IR Spektrumu	126
Şekil 4.54	EAD8-4'ün X-ışın Toz Difraksiyon Deseni	129
Şekil 4.55	EAD8-4'ün IR Spektrumu	130
Şekil 4.56	EAD8-5'in X-ışın Toz Difraksiyon Deseni	133
Şekil 4.57	EAD8-5'in IR Spektrumu	134
Şekil 4.58	EAD8-6'nın X-ışın Toz Difraksiyon Deseni	137
Şekil 4.59	EAD8-6'nın IR Spektrumu	138
Şekil 4.60	EAD9-3'ün X-ışın Toz Difraksiyon Deseni	142
Şekil 4.61	EAD9-3'ün IR Spektrumu	143

TABLO LÍSTESÍ

Tablo Numarası	<u>Adı</u>	Sayfa Numarası
Tablo 1.1	Bazı Bor Mineralleri	5
Tablo 1.2	Eti Holding Bor Rezervleri	6
Tablo 1.3	Anorganik borat bileşikleri ve kullanım alanları.	8
Tablo 1.4	Bor halojenleri ve kullanım alanları.	9
Tablo 1.5	Refrakter bor bileşikleri ve kullanım alanları	10
Tablo 1.6	Elementel bor ve kullanım alanları	10
Tablo 1.7	Bor alaşımları ve kullanım anaları	10
Tablo 1.8	Bor hidrürler ve kullanım alanları	11
Tablo 1.9	Borik asit esterleri ve kullanım alanları	11
Tablo 1.10	Boranlar ve kullanım alanları	12
Tablo 1.11	Bilinen Mg-borat Mineralleri	12
Tablo 1.12	Mikrodalga Aktif Element, Mineral ve Bileşikler	18
Tablo 1.13	XRF uygulamalarında yaygın olarak kullanılan	77
	radyoizotoplar	21
Tablo 3.1	Mikrodalga Enerji Yöntemiyle Yapılan Deneyler ve	31
	Gözlemleri	51
Tablo 3.2	Termal Yöntem Kullanılarak Yapılan Deneyler ve	22
	Gözlemler	55
Tablo 4.1	Mikrodalga Enerji Yöntemiyle Yapılan Deneyler	36
Tablo 4.2	EAD1-1MD'nin X-ışını Toz Difraksiyon Verileri	37
Tablo 4.3	Mg(NO ₃) ₂ .6H ₂ O kullanılarak yapılan deneyler	44
Tablo 4.4	EAD5-1'in X-Işını Toz Difraksiyon Verileri	53
Tablo 4.5	EAD5-2'nin X-Işını Toz Difraksiyon Verileri	55
Tablo 4.6	EAD5-3'ün X-Işını Toz Difraksiyon Verileri	57
Tablo 4.7	EAD5-4'ün X-ışını Toz Difraksiyon Verileri	59

Tablo 4.8	EAD5-5'in X-ışını Toz Difraksiyon Verileri	62
Tablo 4.9	EAD5-6'nın X-ışını Toz Difraksiyon Verileri	65
Tablo 4.10	EAD6-1'in IR Spektrum Verileri	70
Tablo 4.11	EAD6-1'in X-ışını Toz Difraksiyon Verileri	70
Tablo 4.12	EAD6-2'nin IR Spektrum Verileri	73
Tablo 4.13	EAD6-2'nin X-ışını Toz Difraksiyon Verileri	73
Tablo 4.14	EAD6-3'ün IR Spektrum Verileri	77
Tablo 4.15	EAD6-3'ün X-ışını Toz Difraksiyon Verileri	77
Tablo 4.16	EAD6-4'ün IR Spektrum Verileri	81
Tablo 4.17	EAD6-4'ün X-ışını Toz Difraksiyon Verileri	81
Tablo 4.18	EAD6-5'in IR Spektrum Verileri	82
Tablo 4.19	EAD6-5'in X-ışını Toz Difraksiyon Verileri	85
Tablo 4.20	EAD6-6'nın IR Spektrum Verileri	89
Tablo 4.21	EAD6-6'nın X-ışını Toz Difraksiyon Verileri	89
Tablo 4.22	EAD7-1'in IR Spektrum Verileri	94
Tablo 4.23	EAD7-1'in X-ışını Toz Difraksiyon Verileri	94
Tablo 4.24	EAD7-2'nin IR Spektrum Verileri	98
Tablo 4.25	EAD7-2'nin X-ışını Toz Difraksiyon Verileri	98
Tablo 4.26	EAD7-3'ün IR Spektrum Verileri	102
Tablo 4.27	EAD7-3'ün X-ışını Toz Difraksiyon Verileri	102
Tablo 4.28	EAD7-4'ün IR Spektrum Verileri	106
Tablo 4.29	EAD7-4'ün X-ışını Toz Difraksiyon Verileri	106
Tablo 4.30	EAD7-5'in IR Spektrum Verileri	110
Tablo 4.31	EAD7-5'in X-ışını Toz Difraksiyon Verileri	110
Tablo 4.32	EAD7-6'nın IR Spektrum Verileri	114
Tablo 4.33	EAD7-6'nın X-ışını Toz Difraksiyon Verileri	114
Tablo 4.34	EAD8-1'in IR Spektrum Verileri	119
Tablo 4.35	EAD8-1'in X-ışını Toz Difraksiyon Verileri	119
Tablo 4.36	EAD8-2'nin IR Spektrum Verileri	123
Tablo 4.37	EAD8-2'nin X-ışını Toz Difraksiyon Verileri	123
Tablo 4.38	EAD8-3'ün IR Spektrum Verileri	127
Tablo 4.39	EAD8-3'ün X-ışını Toz Difraksiyon Verileri	127
Tablo 4.40	EAD8-4'ün IR spektrum Verileri	131

Tablo 4.41	EAD8-4'ün X-ışını Toz difraksiyon Verileri	131
Tablo 4.42	EAD8-5'in IR Spektrum Verileri	135
Tablo 4.43	EAD8-5'in X-ışını Toz Difraksiyon Verileri	135
Tablo 4.44	EAD8-6'nın IR Spektrum Verileri	139
Tablo 4.45	EAD8-6'nın X-ışını Toz difraksiyon Verileri	139
Tablo 4.46	EAD9-3'ün IR Spektrum Verilerli	141
Tablo 4.47	EAD9-3'ün X-ışını Toz Difraksiyon Verileri	144

ÖNSÖZ

Yüksek lisans tezi olarak sunduğum bu çalışma, Fen – Edebiyat Fakültesi Kimya Bölümü Anorganik Kimya Anabilim Öğretim Üyelerinden Yrd. Doç. Dr. İmdat KADAN yönetiminde, Fen – Edebiyat Fakültesi Anorganik Kimya Laboratuarında gerçekleşmiştir.

Yüksek lisans tezimin hazırlanmasında ilgi ve yardımlarını gördüğüm tez hocam Yrd. Doç. Dr. İmdat KADAN' a ve her konuda yardımlarını esirgemeyen Yrd. Doç. Dr. Halil GÜLER' e teşekkürlerimi sunarım

Bu tez çalışması Devlet Planlama Teşkilatı Kurumunca desteklenen DPT 2003-K-120-230 kodlu proje imkanlarıyla gerçekleştiğinden DPT Kurumuna verdiği destekten dolayı teşekkür ederiz.

Ayrıca her zaman yanımda olan, her konuda desteklerini esirgemeyen aileme sonsuz teşekkürler.

Balıkesir - 2006

Erdoğan AY

1. GİRİŞ

1.1 Bor ve Bileşikleri

Tarihsel bakımdan ilk tanınan ve kullanılan bor bileşiği *tinkal'dir*. Bazı uygarlıklarda tinkal bileşiğinin çok eski zamanlardan beri kullanıldığı bilinmektedir. Sümerler ve Etiler zamanında metallerin yüzeyindeki oksit tabakasını çözme işlevinden dolayı altın/gümüş işlemede ve lehim yapımında, yine antiseptik işlevinden dolayı Mezopotamya ve Mısır uygarlıklarında, seramik ve cam üretimi amacıyla eski Çin uygarlığında tinkal kullanılmıştır, Romalılar arenaların tabanını dezenfekte etmek ve cam üretmek için, Arap doktorlar ise çeşitli hastalıkları iyileştirmek için boraks bileşiğini kullanmışlardır [1].

Eski dönemlerde kullanılan bor bileşikleri esas olarak Tibet kaynaklıydı, ancak Romalılar büyük bir olasılıkla Anadolu kaynaklarını da kullanıyorlardı [1]. İki bin yıl öncesinden gelen Arapça ve Farsça yazıtlarda borakstan söz edilmekte ve Sanskritçe yazıtlar tinkal deyimini "tincanaé" sözcüğü ile karşılamaktadır. Elementel haldeki bor nispeten yakın bir dönemde (1808 yılında) elektroliz tekniği kullanılarak İngiliz kimyacı Humpery Davy tarafından bulunmuştur. Thenard ve Gay-Lussac ise elementel bor elde etmek için bor trioksidi potasyum ile indirgemişlerdir. İlk ürün %50 saflık derecesi ile elde edilmiştir [2].

Elementel bor, biri amorf ve altısı kristalin polimorf olmak üzere, çeşitli allotropik formlarda bulunur. Üzerinde en çok çalışma yapılan polimorf bor kristalleri alfa- ve beta-rombohedral formlardır. Alfa-rombohedral kristal yapı 1200 °C sıcaklığın üstünde bozunmaya uğrar ve 1500 °C'de beta-rombohedral forma dönüşür. Amorf form ise yaklaşık 1000 °C'nin üzerinde beta-rombohedrale dönüşür. Saf bor allotroplarının tümü ergime noktasının üzerine ısıtılıp tekrar kristallendirildiğinde beta-rombohedral forma dönüşür [2].

Bor elementi periyodik çizelgede III A grubunun ilk elementidir. Atom numarası 5, atom ağırlığı 10.811'dir. İzotoplarının kütle numarası 10 ve 11, oksidasyon sayısı +3 ve elektron düzeni $1s^22s^22p^1$ 'dir. 8, 12, 13 kütle numaralı bor izotopları kısa ömürlüdür [3].

Elmastan sonraki en sert materyal olan kristal yapılı bor elementinin özgül ağırlığı 2.34 g/cm³, tür. Gri renkli bir toz olan amorf yapılı borun özgül ağırlığı 1.73 g/cm³, erime noktası 2300 °C, kaynama noktası 2550 °C'dir. Elektrik akımını çok az ileten amorf bor, oksijenli ortamda ısıtıldığında 700 °C'de tutuşur ve B₂O₃ oluşur. Yüksek sıcaklık koşullarında Cl₂, Br₂ ve S ile birleşerek BCl₃, BBr₃ ve B₂S₃ bileşiklerini oluşturur. 900 ⁰C'den sonra azot gazı ile reaksiyona girerek bor nitrür polimerini verir [3].

Bor elementi doğada serbest olarak bulunmaz; volkanik kökenli kaynak sularında ortoborik asit gibi bileşikler yada yüzeye yakın yataklarda kolemanit türünden borat mineralleri halinde bulunur. Bor tuzlarının birlikte bulunduğu bileşikler çoğu zaman silikatlar ve diğer elementlerin oksijenli bileşiklerdir. Na, Ca ve Mg ile oluşturduğu bileşikleri en yaygın bulunanlarıdır. Na-, Na-Ca-, Mg-, Mg-Ca-, Sr-borat minerallerinin sayısı yüzü aşkındır [2].

Bor elementinin kimyasal özellikleri kristal morfolojisi ve tane büyüklüğü ile yakından ilgilidir. Mikron boyutundaki amorf yapılı borun reaksiyonları genellikle kolay gerçekleşir ve şiddetlidir, oysaki kristal yapılı bor kolayca reaksiyona girmez. Elementel bor yüksek sıcaklıkta su ile reaksiyona girerek borik asit ve türevlerini oluşturur. Mineral asitleri ile elementel borun reaksiyonundan ana ürün olarak borik asit ele geçer. Bu reaksiyon konsantrasyona ve sıcaklığa bağlı olarak yavaş veya patlama şeklinde olabilir [2].

Bor elementinin yerküredeki bolluğu düşük olmakla birlikte toprak, kayalar ve sudaki dağılım bakımından yaygın bir elementtir. Toprağın bor içeriği genelde ortalama 10–20 ppm'dir. ABD'nin batı bölgeleri ve Akdeniz'den Kazakistan'a kadar uzanan coğrafyada nispeten yüksek konsantrasyonlarda bulunur. Deniz suyunda 0.5–9.6 ppm, tatlı sularda ise 0.01 – 1.5 ppm aralığında bir dağılım gösterir. Yüksek konsantrasyonda ve ekonomik boyutlardaki bor yatakları, genelde oksijenli bor

bileşikleri içerir ve daha çok Türkiye ile ABD'nin kurak, volkanik ve hidrotermal aktiviteli bölgelerinde bulunur [2].

1.1.1 Elementel Borun Eldesi

i) Elementel bor 1808 yılında Gay-Lucssac ve Thenard tarafından B₂O₃'in potasyum ile indirgenmesiyle elde edilmiştir.

ii) Davy, elektrolizle elementel bor elde etmiştir.

iii) Weintraub, 1909'da, iki bakır elektrot arasında oluşturulan bir elektrik arkı içinden $BC1_3$ 'ü geçirmiş ve oluşan ürünü H_2 ile indirgeyerek, % 99,8 saflıkta bor elde etmiştir. Bu prosesten ele geçen elementel bor toz ve erimiş paletler halindedir.

$$2BC1_3 + 3H_2 \rightarrow 2B + 6HC1$$

iv) Van Arkel, 1930 yılında, BBr₃'ü volfram tel üzerinde 1300 °C' ye ısıtarak hidrojen akımında ayrıştırmış ve siyah renkte kristalize saf bor elde etmiştir.

v) Bor hidrür ve bor triklorür içeren bir karışım, wolfram-tantal alaşımından yada titanyum elementinden yapılmış ısıtılmakta olan bir tel üzerinden geçirilerek kristal halde bor elde etmek mümkündür.

vi) Hugh S.Cooper iki farklı yöntemle endüstriyel ölçekte saf bor üretmektedir:

a) Potasyum fluoroborat (KBF₄), erimiş potasyum klorür banyosu içinde elektroliz edilir. Burada anot, ısıya dayanıklı alaşımdan yapılmış grafit astarlı bir pota, katot ise düşük karbonlu demirden yapılmış plaka veya silindir şeklinde bir elektrottur. Elektirik akımı etkisiyle ayrışma ve bozunmayı önlemek için anodun grafit astarı su ile soğutulur. Akım gerilimi 6–12 volt, akım şiddeti 3000 amper, akım verimi % 75'dir. Anot üzerinde klor açığa çıkar. Potasyum klorürden ayrışan potasyum, potasyum tetrafluoboratı indirgeyerek elementel bora dönüştürür. Katot

üzerinde bor ayrışır ve potada sürekli olarak KF birikir. Ele geçen elementel bor yıkanıp kurutulduktan sonra koklaşmış kömürü andıran kaba kristalli bir görünü alır ve % 99.41 B,% 0.29 C, % 0.20 Fe içerir.

b) Erimiş haldeki KBF₄ ve B_2O_3 karışımı elektroliz edilir. Anot üzerinde oksijen açığa çıkar ve karbonla birleşir. Ele geçen ürün ince kristallidir. 325 meşlik (44 mikron) eleğin altına geçebilir. % 99.7 B, % 0.05 C, % 0.15 Fe içerir.

vii) Elementel bor;

 $KBF_4+3 Na \rightarrow KF + 3 NaF + B$

reaksiyonuyla da elde edilebilir.

viii) Amorf Bor, B₂O₃'in Mg ile indirgenmesiyle elde edilebilir.

 $B_2O_3 + 3Mg \rightarrow 2B + 3MgO$

İşlem borakstan başlayarak şöyle özetlenebilir:

 $Na_{2}B_{4}O_{7} \xrightarrow{HCl (sulu)} H_{3}BO_{3} \xrightarrow{Mg} B_{2}O_{3} \xrightarrow{Isi} B$

1.1.2 Bor Mineralleri

İyonik yarıçapının dört değerli silisyumdan daha küçük olmasından dolayı magma oluşumundaki ilk kristalleşme esnasında oluşan minerallerin kristal kafeslerinde üç değerli bor atomu bulunmaz. Üç değerli bor içeren mineraller turmalin, danburit, dumortiyerit gibi borosilikat mineralleri, granit pegmatitleri ve granit dokulu pnömatolitik cevherlerdir [4].

Volkanik gazlar içinde ve sıcak kaynak sularında bor konsantrasyonunun yüksek olduğu, hatta bazı yerlerde ekonomik seviyelere ulaştığı bilinmektedir. Türkiye'de ve Amerika'daki bor yataklarının bulunduğu bölgelerdeki sıcak kaynak sularında bor konsantrasyonu 100 ppm'in üzerindedir. Çoğu araştırmacı yerkürenin çeşitli bölge ve katmanlarındaki borun magma kaynaklı olduğunu öne sürmektedir. Buna karşılık Goldschmidt, sedimenter kaysların magmatik kökenli kayslardan daha çok bor içerdiğini belirtmektedir[4]. Borun çeşitli kayaçlardaki dağılımına bakıldığında, deniz dibi tortularındaki bor içeriğinin magmatik kayaçlardakilerden daha fazla olduğu görülmektedir. Üstelik deniz tortularının sudan aldıkları bor miktarı, karalardan denize taşınan miktardan daha fazladır[4].

Ticari ve endüstriyel öneme sahip bazı bor mineralleri Tablo1.1 de gösterilmektedir.

Adı	Formü	lü	%B ₂ O ₃
Tinkal (ham boraks)	Na ₂ O.2B ₂ O ₃ .10H ₂ O	$(Na_2B_4O_7.10H_2O)$	36.6
Tinkalkonit	Na ₂ O.2B ₂ O ₃ .5H ₂ O	$(Na_2B_4O_7.5H_2O)$	47.8
Kernit	Na ₂ O.2B2O3.4H2O	$(Na_2B_4O_7.4H_2O)$	51.0
Üleksit	Na ₂ O.2CaO.5B ₂ O ₃ .16H ₂ O	$(Na_2Ca_2B_{10}O_{18}.16H_2O)$	43.0
Kolemanit	2Ca0.3B ₂ 0 ₃ .5H ₂ 0	(Ca ₂ B ₆ O ₁₁ .5H ₂ O)	50.9
Moyerhofferit	2Ca0.3B ₂ O ₃ .7H ₂ 0	(Ca ₂ B ₆ O ₁₁ .7H ₂ 0)	46.7
İnyoit	2CaO.3B ₂ 0 ₃ .13 H ₂ 0	$(Ca_2B_6O_{11}.13H_20)$	37.6
Panderimit	4CaO.5B2O3 7H ₂ 0	(Ca ₄ B ₁₀ O ₁₉ .7H ₂ O)	50.0
Kurnakovit	2MgO.3B ₂ 0 ₃ .15H ₂ O	(Mg ₂ B ₆ O ₁₁ .15H ₂ O)	37.3
Borasit (Stasfurit)	6MgO.MgCl ₂ 8B ₂ 0 ₃	(2Mg ₃ B ₈ O ₁₅ . MgCl ₂)	62.6
Datolit	CaBSiO ₄ (OH)		21.8
Sassolit (doğal borik asit)	B (OH) ₃		56.3

Tablo 1.1 Önemli Bor Mineralleri

Dünya bor rezervlerinin yaklaşık %63'ünü içeren Türkiye'de bor madenlerini işleme, işletme ve değerlendirme Eti Holding'in tekelindedir. Bir kamu tekeli olan bu kuruluşun bünyesindeki yerel işletmelerin, ticari mineral, rezerv, tenör, kapasite ve üretim miktarları Tablo 1.2'de verilmektedir. Dünyadaki en büyük üretici durumundaki ABD'de ise US-Borax'ın kontrolü altındaki bor rezervleri yaklaşık %10 seviyesindedir [4].

Üretim	Cevher	Rezerv	Tenör	Kapasite	Üretim
yeri		Milyon ton	%B ₂ O ₃	(Ton/Yıl)	(Ton/Yıl)
Kırka	Tinkal	605,5	25,8	200.000	558
Bigadiç	Üleksit	49,2	29,1	200.000	200
	Kolemanit	576,4	29,4	200.000	90
Emet	kolemanit	835,6	27,5-28,5	500.000	300
Kestelek	Kolemait	7,7	25,0-33,2	100.000	60
Toplam		2.074,4		1.200.000	1208

Tablo 1.2 Eti Holding Bor Rezervleri

1.1.3 Bor Mineral ve Ürünlerinin Kullanım Alanları

Ülkemizin geleceği açısından enerji sektöründe stratejik öneme sahip bir potansiyel taşıyan bor mineralleri güncel olarak da çok çeşitli kullanım alanlarına sahiptir. Bor mineral ve bor ürünleri ham madde, yarı mamul ve mamul madde olarak; cam, porselen, seramik, tekstil, deterjan, ağartıcı, tarım, refrakter, metalurji, yangın önleyici, nükleer yakıt teknolojisi ve tıp gibi çeşitli endüstriyel alanlarda ve sektörlerde kullanılmaktadır. Güncel pratikte yaklaşık 250 çeşit bor ürünü ticari olarak tüketilmektedir[4]. Bu ürünlerin büyük çoğunluğu ikamesi olmayan alternatifsiz bir girdi konumundadır[1]. Bor mineral ve ürünlerinin çeşitli sektörlerdeki kullanım ve uygulama alanları Şekil 1.1'de sistematize ve şematize bir halde verilmektedir[4].

Tüm bor bileşik ve ürünlerinin güncel ve potansiyel uygulama alanlarını tek tek ele alıp bir dökümünü çıkarmak pratik açıdan hem mümkün değildir hem de bu yöndeki bir girişim dağınıklığa yol açacağından dolayı ergonomik de olmayacaktır. Bu bakımdan bor bileşik ve ürünlerinin kullanım alanları belli kategorilere ayrılarak tablolar halinde aşağıda verilmiştir.

Şekil 1.1 Bor mineral ve bileşiklerinin kullanım alanları

An	organik Boratlar	Kullanım Alanları
1.	Alüminyum Borat Al ₂ B ₄ O ₁₂ .3H ₂ O	Cam ve seramik endüstrileri
2.	Amonyumbitetraborat (NH ₄)HB ₄ O ₇ .3H ₂ O	Araștırma
3.	Amonyum pentaborat $(NH_4)_4B_{10}O_{16}.8H_2O$	Bor kimyasallarında ara ürün, atom denizatlılarında "kontrol" işleri. Elektrolitik yoğunlaştırıcı kâğıt kaplama
4.	Amonyum tetraborat (NH ₄) ₂ B ₄ O ₇ .4H ₂ O	Üre-formaldehit reçine üretimi, yanmaz eşya üretimi
5.	Baryum metaborat (BaB ₂ O ₄ .2H ₂ O)	Boya, plastik, tekstil ve kâğıt endüstrileri
6.	Kadmiyum metaborat CdB ₂ O ₃ .xH ₂ O	Araștırma
7.	Kobalt tetraborat CoB ₄ O ₇ .xH ₂ O	Sentetik reçinelerin tuzlanmasında katalizör olarak
8.	Bakır metaborat CuB ₂ O ₄	Yağ pigmentleri, böcek ilaçları
9.	Disodyum oktaborat Na ₂ B ₈ O ₁₃ .4H ₂ O	Kereste ve diğer selülozik maddelerde yanma önleyici; püskürtme etkin gübresi; kerestelerin korunması
10.	Kurşun metaborat PbB ₂ O ₄ .H ₂ O	Bilgi yok
11.	Lityum metaborat LiBO ₂	Araștırma
12	Lityum tetraborat LiB ₄ O ₇	X-ışınları yayılımı analizi, Cam yapma uygulamalar, araştırma
13.	Magnezyum metaborat MgB ₂ O ₄	Koruyucu, antiseptik, mantar ilacı
14.	Manganez tetraborat MnB ₄ O ₇ ,xH ₂ O	Tutucu ve matbaa mürekkebi kurutucusu olarak
15.	Nikel metaborat NiB ₂ O ₄ .xH ₂ O	Araștırma
16.	Potasyum pentaborat $K_2B_{10}O_{16},8H_2O$	Paslanmaz çelik de demir dışı metaller için kaynak ve lehim flaksı
17.	Potasyum tetraborat $K_2B_4O_6.4H_2O$	Lehim ve özel kaynak flaksı, kazein için çözücü ve diyazo tip çözeltilerde
18.	Gümüş metaborat Ag ₂ B ₂ O ₄	Bilgi yok
19.	Sodyum metaborat Na ₂ B ₂ O ₄ .xH ₂ O; x: 0, 4 ve 8	Tutucu, fotoğraf kimyasalları, yapıştırıcılar, tekstil işleme bileşikleri, deterjan ve temizleyiciler ve tarım ilaçları
20.	Sodyum pentaborat $Na_2B_{10}O_{16}10H_2O$	Bilgi yok
21.	Sodyum perborat NaBO ₃	Yüzey aktif maddeler bidon boyaları, tekstil beyazlaştırıcısı, mikrop öldürücü, elektrolitik kaplama, deodorant, oksitleyiciler, dişçilik malzemesi ve çamaşırhane deterjanları, bidon boyası oksidasyonu, saç yapımı maddeleri, diş tozu takma diş temizleyicisi, leke çıkarıcı maddeler
22.	Sodyum tetraborat Na ₂ B ₄ O ₇	Araștırma
23.		Tutuşma sıcaklığını yükseltici Araştırma

Tablo 1.	3 Anorganik	borat	bileşikleri	ve	kullanım	alanları.

	Bor Halojenleri	Kullanım Alanları
1.	Bor tiribromür	Geliştirme, araştırma ve elektronik
	BBr ₃	endüstrisi
2.	Bor triklorür	Bilgi yok
	BCl ₃	
3.	Bor triflorür	Katalizör
	BF ₃	
4.	Bor triiyodür	Araștırma
	BI ₃	
5.	Amonyum fluoborat	Alüminyum ve magnezyum döküm flaksı,
	NH ₄ BF ₄	araștırma
6.	Antimuan Fluoborat	Kaplama çözeltileri
_	$Sb(BF_4)_2$	
7.	Kadmiyum fluoborat	Kaplama çözeltileri
0	$Cd(BF_4)_2$	
8.	Kalsiyum fluoborat	Araștirma
0	Ca(BF ₄) ₂	Konlomo ojizeltilori
9.	$C_{r}(\mathbf{PE})$	Kapiama çözenneri
10	CI(DF ₄) ₃ Kobalt fluoborat	Arastirma va kanlama gözaltilari
10	C(BF ₁) ₂	rașuluia ve kapialilă çozeitileli
11	Bakır fluoborat	Arastırma ve kanlama cözeltileri
11.	Cu(BE.).	Araştırma ve kapıama çözetmen
12	Di-n-Bütlamonyum fluoborat	Bilgi vok
12.	$(n-C_4H_0)$ NH ₂ BE ₄	Digiyok
13.	Fluoborikast	Metal temizleme, kaplama cözeltileri.
101	HBF ₄	Alüminyumun elektrolizle parlatılmazı
14.	İndiyum fluoborat	Kaplama cözeltileri
	$In(BF_4)_3$	1 3
15.	Demir fluoborat	Kaplama çözeltileri
	$Fe(BF_4)_2$	
16.	Kurşun fluoborat	Kaplama çözeltileri
	$Pb(BF_4)_2$	
17.	Lityum fluoborat	Pil elektrolitleri ve araştırma
	LiBF ₄	
18.	Magnezyum fluoborat	Bilgi yok
1.0	$Mg(BF_4)_2$	
19.	Magnezyum bor florür	Metal flaks
20.	Manganez fluoborat	Bilgi yok
21	MII(BF ₄) ₂ .0H ₂ U	A mosturmo vo kontorno ožestkilori
21.	Nikel Huodorat	Araştırma ve kapıama çözettileri
22	NI(BF ₄) ₂ Nikal hakzamanyafluaharat	A rostromo vo kotolizön
22.	Ni(NH _a) _c (BE _a) _a	rașulillă ve kalalizul
23	Nitronyum (nitril) fluoborat	Aractirma
23.	NO ₂ BF ₄	¹ Maşul Illa
24	Nitrozonyum (nitrozil) fluoborat	Arastırma
2	NOBF ₄	
25.	Potasyum fluoborat	Öğütme carkları, indirgevici, flaks.
	KBF_4	köpürtücü ve kimyasal temizlevici
26.	%20 Potasyum fluoborat ve %80 Potasyum	Titanyum ve flaks yapımında alaşım
	Titanyum florür karışımı	maddesi
27.	Rubidyum fluoborat	Araștırma
	RbBF ₄	

Tablo 1.4 Bor halojenleri ve kullanım alanları.

28.	Gümüş fluoborat	Kaplama çözeltileri
	AgBF ₄	
29.	Sodyum fluoborat	Flaks, indirgeyici, köpürtücü kimyasal
	NaBF ₄	temizleyici ve araştırma
30.	Kalay fluoborat	Kaplama çözeltileri
	$Sn(BF_4)_2$	
31	Çinko fluoborat	Boya ve kaplama çözeltileri, tekstil
	$Zn(BF_4)_2$	endüstrisi ve araştırma
32.	Çinko tetramin fluoborat	Araştırma ve katalizör
	$Zn(NH_3)_4(BF_4)_2$	

Tablo 1.5 Refrakter bor bileşikleri ve kullanım alanları

	Refrakter Bor Bileşikleri	Kullanım Alanları
1.	Bor karbür	Araştırma, nükleer zır, aşındırıcı, kimyasal
	(B_4C)	maddeler ve takviye edici
2.	Bor nitrür	Geliştirme-aşındırıcı olarak
	(BN)	
3.	Bor fosfür	Araștırma
	(BP)	
4.	Dibor fosfür	Araștırma
	(B_2P)	

Tablo 1.6 Elementel bor ve kullanım alanları

	Bor	Kullanım Alanları
1.	Elementel Bor, B	Araştırma, piroteknikler
2.	Bor-10 izotopu	Nükleer savunma

Tablo 1.7 Bor alaşımları ve kullanım anaları

	Bor Aalaşımları	Kullanım Alanları
1.	Bor-Alüminyum	Bilgi yok.
	B-A1	
2.	Bor-Nikel	Bilgi yok.
	B-Ni	
3.	Titanyum-Bor-Alüminyum	Bilgi yok.
	Ti-B-Al	
4.	Bor-Kobalt	Bilgi yok.
	B-Co	
5.	Bor-Manganez	Bilgi yok.
	B-Mn	
6.	Ferrobor	Dökümhanelerde ve çelik yapımında katkı
	Fe-B	maddesi pik demi, yumuşak (sünek) demir
		yapımında

	Bor Hidrürler	Kullanım Alanları
1.	Lityum borhidrür LiBH4	Roket yakı, organik tepkimelerde katalizör organik indirgeyici, hidrojen kaynağı ve araştırma
2.	Potasyum borhidrür KBH ₄	Araştırma, hidrojen kaynağı, organik indirgeyici
3.	Rubidyum borhidrür RbBH ₄	Araştırma
4.	Sodyum bordöterür NaBD4	Araștırma
5.	Sodyum borhidrür NaBH ₄	Organik sentezde indirgeyici, polimerizasyon katalzörü, plastik ve lastik için köpürtücü, proses akımlarının arıtılması, hidrojen oluşumu, metal kaplama
6.	Tetrametil Amonyum borhidrür (CH ₃) ₄ NBH ₄	Araştırma, organik sentezde indirgeyici, polimerizasyon katalzörü, plastik ve lastik için köpürtücü, proses akımlarının arıtılması, yüksek hidrojen yoğunluğu gerektiren nükleer uygulamalar
7.	Tetraetil Amonyum borhidrür $(C_2H_5)_4NBH_4$	Araştırma, organik sentezde indirgeyici emülsiyon, polimerizasyon katalzörü, proses akımlarının arıtılması, yüksek hidrojen yoğunluğu gerektiren nükleer uygulamalar

Tablo 1.8 Bor hidrürler ve kullanım alanları

Tablo 1.9 Borik asit esterleri ve kullanım alanları

	Borik Asit Esterleri	Kullanım Alanları
1.	Metil (Trimetoksiboroksin)	Metal alevler için söndürücü
	$(CH_3OBO)_3$	
2.	Tri-m, p-krezil borat	Bilgi yok.
	$C_{21}H_{21}BO_3$	
3.	Trietanolamin borat	Bilgi yok.
4.	Tri (Hekzilen Glikol) Diborat	Bilgi yok.
	$C_{18}H_{36}O_6B_2$	
5.	Triisopropil Borat	Araştırma ve geliştirme
	$(C_3H_7O)_3B$	
6.	Trimetil borat (Trimetoksibor)	Kaynak flaksı, elektronik endüstrisi
	$(CH_3O)_3B$	uygulamaları, araştırma, tutucu, (yağ, reçine ve
		vakslar için çözücü, yüksek bor esterinin
		hazırlanması ve polimerizasyon katalizörü
		olarak
7.	Trimetil borat-Metanol Azeotropu	Tutucu (uçucu sert lehim flaksı)
	%70 (CH ₃ O) ₃ B	
	%30 CH ₃ OH	
8.	Tri-n propil borat	Bilgi yok.

	Boranlar	Kullanım Alanları
1.	Amin Boranlar	İndirgeyici, fotoğrafçılık, ilaç ve kaplama
	(Belirsiz)	endüstrileri
2.	t-Bütilaminboran	Araștırma
	$(CH_3)_3CNH_2:BH_3$	
3.	Diboran	Yüksek ve amin boranlar, bor karbürler ve
	B_2H_6	borhidrürler yapımı için ilk madde, jet ve roket
		yakıtları için ilk madde
4.	Yüksek Boranlar	Araştırma (katalizör, jet ve roket yakıtı, çürüme
	Pentaboran B ₅ H ₉	önleyicisi, flaks maddesi)
	Dekaboran $B_{10}H_{14}$	
	Polihidroborat tuzları	
5.	Oktadekaboran	Araștırma
	$B_{18}H_{22}$	
6.	Morfolin boran	Araştırma, indirgeyici, hassas kimyasal madde
	$O(C_2H_4)_2NH:BH_3$	sentezleri, ilaç endüstrisi ve proses akımlarının
		saflaştırılması
7.	Tetrahidrofuran	İlaç ve hassas kimyasal madde sentezleri,
	$O(CH_2)_4.BH_3$	Hidrokarbon tepkimeleri için diboranın uygun
		şekli
8.	Tiretil boran	Bilgi yok.
	$(C_2H_5)_3B$	

Tablo 1.10 Boranlar ve kullanım alanları

1.2 Magnezyum Borat Bileşikleri

Doğal olarak bulunan ya da çeşitli sentez yöntemleriyle elde edilen farklı bileşimlerde çok sayıda magnezyum borat bileşiği mevcuttur ve çeşitli alanlarda kullanılmaktadır. Hidroborasit (CaMgB₆O₁₁.6H₂O) ve szaybelyt (Mg₂B₂O₅.H₂O) ticari bakımdan önemli iki magnezyum borat mineralidir. Bilinen magnezyum borat mineralleri Tablo 1.11' de liste halinde verilmektedir.

Tablo 1.11 Bilinen Mg-borat Mineralleri

Mineral Adı	Kimyasal Formülü	Molekül	% B
		Ağırlığı	
Admontit	MgB ₆ O ₁₀ .7(H ₂ O)	375,27	17,28
Aksait	$MgB_6O_7(OH)_62(H_2O)$	339,24	19,12
Borasit	Mg ₃ B ₇ O ₁₃ Cl	392,03	19,30
Floroborit	Mg ₃ (BO ₃)(F,OH) ₃	168,72	6,41
Halugrit	$Mg_{2}[B_{4}O_{5}(OH)_{4}]_{2}.(H_{2}O)$	449,16	19,25

Hungchaoit	MgB ₄ O ₅ (OH) ₄ .7(H ₂ O)	341,68	12,66
İnderit	MgB ₃ O ₃ (OH) ₅ .5(H ₂ O)	279,85	11,59
Kanavesit	Mg ₂ (CO ₃)(HBO ₃).5(H ₂ O)	258,51	4,18
Kotoit	Mg ₃ B ₂ O ₆	190,53	11,35
Kurnakovit	MgB ₃ O ₃ (OH) ₅ .5(H ₂ O)	279,85	11,59
Mcallisterit	$Mg_2B_{12}O_{14}(OH)_{12}.9(H_2O)$	768,55	16,88
Pinnoit	MgB ₂ O ₄ .3(H ₂ O)	163,97	13,19
Preobrazhenskit	Mg ₃ B ₁₁ O ₁₅ (OH) ₉	584,88	20,33
Shabinit	Mg5(BO3)Cl2(OH)5.4(H2O)	408,34	2,65
Suanit	$Mg_2B_2O_5$	150,23	14,39
Sülfoborit	$Mg_3B_2(SO_4)(OH)_8(OH,F)_2$	361,67	5,98
Szaybelyt	MgBO ₂ (OH)	84,12	12,85
Wightmanit	Mg ₅ (BO ₃)O(OH) ₅ .2(H ₂ O)	317,40	3,41

Yapay olarak üretilen magnezyum boratlar $MgO.B_2O_3.nH_2O$, $MgO.3B_2O_3.nH_2O$, $2MgO.B_2O_3.nH_2O$, $2MgO.3B_2O_3.nH_2O$ gibi çok çeşitli bileşimlerde sentezlenmekte ve kullanılmaktadır [9].

Literatüre göre magnezyum boratlar çeşitli yöntemlerle sentezlenmektedir. Örnek olarak termal yöntem [5], kısmı çöktürme [6], çift tuz faz transformasyonu [7], hidrotermal sentez ve faz etkileşimi[8] gibi birçok sulu ve susuz ortam tekniklerini sayabiliriz.

Magnezyum borat bileşik ve mineralleri hem magnezyum hem de bor kaynağı olarak, başka rafine boratlar ve metal boratlar yerine sıkça kullanılmaktadır. Genel olarak; magnezyum ve bor içeriğinden dolayı toprağın pestisitlerden arındırılmasında, süper iletken magnezyum diborür üretiminde, aşınma ve sürtünmeyi azaltıcı olarak yağ katkılamada, metal yüzeyleri için yalıtkan kaplama üretiminde, ısıya duyarlı renk değiştirici mürekkep yapımında, korozyon önleyici katkı olarak boyalarda, kontak lens yıkama sularında, deterjan bileşimlerinde ve alev geciktiricilerde kullanılmaktadır [9]. Ayrıca sentez yoluyla magnezyum boratlar dozimetrelerde termolüminesans malzeme olarak kullanılmaktadır [9], Mg₃B₂O₆, Mg₂B₂O₅ ve MgB₂O₄ bileşikleri hidrokarbon çevirimlerinin katalizinde, lüminesans malzeme olarak fluoresans boşalım lambalarında, fluoresans malzeme olarak katot ışını tüplerinde ve X-ışını ekranlarında, elektro-indirgen ya da destek malzemesi olarak plastik üretiminde güncel yada potansiyel uygulama alanları bulunmaktadır[6].

Magnezyum borat bileşikleri, borik asit içeren radyoaktif atıkların giderilmesinde de kullanılmaktadır. Eski dönemlerde bu amaçla sadece çimento kullanılmasına karşın güncel olarak çimentonun yerini yavaş yavaş magnezyum borat bileşikleri almaktadır. Yeni yöntemde, atık çözeltilerine MgO veya Mg(OH)₂ bileşikleri eklenince bileşimi tam olarak bilinmeyen jelimsi bir magnezyum borat oluşmakta ve karıştırılan bu jele sırasıyla çimento, CaO veya Ca(OH)₂ eklenerek ürünün katılaşması sağlanmaktadır. Sonuç olarak, çözünen radyoaktif atıkların miktarı azalmakta ve katı atığın her hangi bir depolama bölgesine nakliyesi kolaylaşmaktadır [9].

1.3 Mikrodalga Enerji

Katı-hal kimyası alanında bileşiklerin sentezi amacıyla değişik teknikler kullanılmaktadır. Çözelti reaksiyonları, katı-katı ve katı-gaz reaksiyonları, hidrotermal reaksiyonlar ilk akla gelen tekniklerdir. Bir reaksiyon yöntemi olarak mikrodalgalar ise 1986'dan buyana kullanılmaktadır [10].

Bir ısıtma ve reaksiyon yöntemi olarak mikrodalgalar basit, hızlı ve çevreye dost oluşu nedeniyle kimyasal işlemlerde yaygın olarak kullanılmaktadır [11].

Mikrodalgalar, magnetron tarafından üretilen elektromanyetik dalgalardır. Dalga boyları 1 mm ile 1m arasında, frekansları ise 0,3-300 GHz aralığındadır. Mikrodalga spektrumunun büyük bir kısmı iletişim amaçlı kullanılmakta, 0,9–2,45 GHz frekans aralığındaki dar bir bant ise ısıtma amacıyla kullanılmaktadır [12].

Mikrodalga ısıtmada, mikrodalga ışıması ile materyal arasında doğrudan bir etkileşme gerçekleşir. Mikrodalga radyasyon önce materyal ile etkileşir, daha sonra

materyal tarafından soğurulur. Böylece elektriksel enerji termal enerjiye dönüşür. Isının dışarıdan içeriye doğru transfer edildiği yaygın ısıtma yöntemlerinin aksine, bu teknikte ısı materyalin bizzat içerisinde üretilir. Bu içsel ısınma reaksiyon sürelerinin kısalmasını ve enerji maliyetlerinin düşmesini sağladığı gibi yeni materyallerin sentezini de mümkün kılar. Bu nedenle mikrodalga ışıtma tekniği bir ısıtma yöntemi olarak geleneksel yöntemlere kıyasla daha hızlı, basit ve enerji açısından da daha verimlidir [12].

Sentez reaksiyonlarının seyri boyunca reaktanlar ile mikrodalgaların nasıl etkileştiği tam olarak bilinmemekte ve dolayısıyla söz konusu etkileşmelerin doğası bir miktar spekülatif kalmaktadır. Bununla birlikte, mikrodalgalar yoluyla materyale enerji transferi hızlı bir şekilde gerçekleştiği ve ısınmanın hem rezonanstan hem de relaksasyondan kaynaklandığı sanılmaktadır. Reaksiyon mekanizmaları ile ilgili tartışmalarda temel olarak bu bilgi kullanılmaktadır [13].

Nitekim mikrodalga sentez yöntemi moleküler filtre hazırlanmasında, anorganik komplekslerin ve oksitlerin sentezinde, organik reaksiyonlarının gerçekleştirilmesinde, plazma kimyası, analitik kimya ve kataliz gibi farklı alanlarda yaygın olarak kullanılmaktadır [10]. Kısa reaksiyon süresi, küçük tanecik boyutu, dar tanecik boyut dağılımı ve yüksek saflık gibi avantajlarından dolayı nano-boyutlu materyal sentezinde de yaygın şekilde kullanılmaktadır [10, 11, 12, 14, 15, 16].

1.3.1 Mikrodalga-Yardımlı İsıtma

Mikrodalgalar, iyonik türlerin göçü ve/veya dipolar türlerin rotasyonu üzerinden moleküler harekete neden olurlar. Artan moleküler hareketler sonucu sürtünmede bir artış meydana gelir ve sonuç olarak ısı açığa çıkar.

Bir malzemenin mikrodalga yardımıyla ısıtılmasında, malzemenin dağıtma yada harcama faktörü büyük oranda etkilidir. Dağıtma faktörü, mikrodalgaya maruz kalan malzemedeki dielektrik kaybının malzemenin dielektrik sabitine oranı olarak ifade edilir [17]. Dielektrik sabiti, içerisinden mikrodalga enerjisi geçerken malzemenin bu enerjiyi alıkoyma yeteneğinin bir ölçüsüdür. Kayıp faktörü ise, malzemenin enerjiyi dağıtma, tüketme ya da harcama yeteneğinin bir ölçüsüdür. Diğer bir ifadeyle, "kayıp faktörü" giren mikrodalga enerjinin malzeme içinde ısı olarak tüketilip kaybolan miktarını vermektedir. Dolayısıyla kayıp faktörü yüksek olan bir malzeme mikrodalga enerjisiyle kolaylıkla ısıtılabilmektedir. Demek oluyor ki mikrodalga enerjisindeki kayıp iyonik iletim ve dipolar rotasyon mekanizmalarıyla gerçekleşmektedir.

Mikrodalga enerji 300 MHz ile 300 GHz frekans aralığını kapsayan bir elektromanyetik enerjidir. Mikrodalga frekansları üç ayrı bölgeye ayrılmaktadır. Bunlar sırasıyla;

Düşük Frekans (300 MHz –3GHz) Orta Frekans (3GHz–30 GHz) Yüksek Frekans (30GHz–300 GHz) bölgeleridir.

Şekil 1.2 Elektromanyetik spektrumda mikrodalga bölge

Bu geniş mikrodalga spektrumunun yalnızca 0,9–2,45 GHz frekans aralığı ısıtma amacıyla kullanılmaktadır. Güncel olarak en çok kullanılan mikrodalga frekansı ise 2450 MHz (2,45 GHz)' dir. Yaklaşık 50 yıl önce Pecy L. Spencer tarafından geliştirilmiş olan ev tipi mikrodalga fırınlar çoğunlukla bu frekansta çalışmaktadır. Literatürde 28, 30, 60 ve 83 GHz frekanslı mikrodalgayla gerçekleştirilen bazı uygulamalara da rastlanmaktadır [17].

Malzemeler mikrodalgayla olan etkileşimine göre üç farklı kategoriye ayrılmaktadır:

i) Mikrodalga yansıtıcılar. Bu tür malzemeler mikrodalga enerjinin üretilmesinde genellikle kılavuz olarak kullanılan metaller ve alaşımlar gibi malzemelerdir.

ii) Mikrodalga iletkenler. Bu tip malzemeler mikrodalgaya karşı geçirgen özellik gösteren teflon, seramik [geçiş elementi içermeyen], bazı cam türleri, zirkon ve erimiş kuvars gibi malzemelerdir. Bunlar mikrodalga yardımlı kimyasal reaksiyonların meydana geldiği kaplar ile pişirme kaplarının yapımında kullanılır.

iii) Mikrodalga soğurucular. Bu tip malzemeler mikrodalga yardımlı sentezler için en önemli malzeme sınıfını oluşturmaktadır. Mikrodalgalarla çok hızlı etkileşerek hızla ısınırlar [17].

Anorganik materyallerin büyük bir kısmı normal sıcaklıklarda mikrodalgalar ile oldukça iyi bir etkileşim göstermektedir. Bu bağlamda ev tipi bir mikrodalga fırında bazı mineral ve anorganik bileşiklerin ısınma süreleri ve ulaştıkları sıcaklıklar Tablo 1.12'de liste halinde verilmektedir. Mikrodalgalar ile etkileştiği halde çok hızlı ısınmayan (HgS, MoS ve bazı kalgonitler) ve çok hızlı ısınan bazı materyaller (oksijen ve hidrür içeren geçiş metalleri) bu listeye dahil edilmemiştir.

Element / Mineral / Bileşik	Isınma Süresi (dak)	Sıcaklık (T, K)
Al	6	850
C(amorf, <1µm)	1	1556
C(grafit, 200mesh)	6	1053
C(grafit,< 1µm)	1,75	1346
Со	3	970
Fe	7	1041
Мо	4	933
V	1	830
W	6,25	963
Zn	3	854
TiB ₂	7	1116
Co ₂ O ₃	3	1563
CuO	6,25	1285
Fe ₃ O ₄	2,75	1531
MnO ₂	6	1560
NiO	6,25	1578
V ₂ O ₅	11	987
WO ₃	6	1543
Ag ₂ S	5,25	925
Cu ₂ S	7	1019
CuFeS ₂	1	1193
Fe _{1-x} S	1,75	1159
FeS ₂	6,75	1292
MoS ₂	7	1379
PbS	1,25	1297

Tablo 1.12 Mikrodalga aktif element, mineral ve bileşikler

Karbon türlerinin büyük çoğunluğu toz formunda mikrodalgalar ile etkileşirler. Özellikle toz formundaki amorf karbon 1 kW'lık mikrodalga enerjiyle 1 dakika süre içinde 1550 ⁰K' dereceye yükselerek kuvvetli bir etkileşim göstermektedir [18].

1.4 X-Işınları Spektroskopisi

X-ışınları 1895 yılında Alman Fizikçi W.C. Rontgen tarafından keşfedilmiştir. Röntgen, X-ışınlarının, kristaller içindeki atomlar tarafından yansıtılabilecek dalga boyunda olduğunu düşünmüş ve yaptığı deneylerle kristallografi biliminin ilerlemesine büyük bir katkı yapmıştır [19].

X-ışınları yeterince yüksek kinetik enerjili elektronların genellikle metal bir hedefe çarpmasıyla oluşur. Yüksek hızlarla (büyük kinetik enerjiyle) metal hedefe çarpan elektronlar enerjilerinin bir kısmını veya tamamını çarptıkları atoma aktarırlar. Düşük enerji düzeyinden kopan elektronların yerine, hızla bir şekilde üst yörüngedeki elektronlar geçer. Bu durumda, elektronlar yüksek enerji düzeyinden alçak enerji düzeyine geçerken çok küçük dalga boylu (yüksek frekanslı) elektromanyetik dalga yahut ışımaların salınmasına neden olurlar. Salınan bu dalgalara *X-ışınları* denir. X-ışınlarının dalga boyları çok küçük olup yaklaşık 0.1 Å - 100 Å arasındadır. Dolayısıyla enerjileri çok büyüktür.

Şekil 1.3 Elektromanyetik spektrum

1.4.1 X-ışınlarının Genel Özellikleri

X- ışınlarının genel özelliklerini şöyle sıralayabiliriz:

1. Fotoğraf filmini etkiler

2. ZnS, CdS, NaI gibi materyaller X-ışınlarının etkisiyle floresans özellik sergilerler. Bu özellik yardımıyla sintilatör tipi algılayıcılar yapılabilir.

3. X-ışınları gazları iyonlaştırır.

4. X-ışınlarının kırılma indisi yaklaşık 1'dir. Bu nedenle mercek sistemlerinde görüntü vermezler.

5. X-ışınları uygun şartlarda kristal yapılı malzemelerde kırınıma uğrarlar.

6.X-ışınları madde içine nüfuz edebilirler.

7. X-ışınları elektrik ve manyetik alandan etkilenmezler.

8.Gözle görülmezler.

9.Işık hızında ilerlerler.

10. Normal ışıktan farklı olarak maddenin yalnız yüzeyinden yansımakla kalmayıp şiddete bağlı olarak daha derinlere inerler ve kırınıma uğrarlar.

1.4.2 X-ışınlarının Elde Edilmesi

X-ışını kaynakları, sonradan gazı boşaltılarak kapatılan cam tüp içine yerleştirilmiş güç ergiyebilir bir anot materyalinden ibarettir. Bu kaynakların katot elektrotundan fırlayan elektronlara uygulanmakta olan potansiyel farkı yaklaşık $2.10^4 - 2.10^5$ volt mertebesindedir. Uygulanan bu potansiyel farkından dolayı anot üzerine yönelen elektron demetinin hızı yahut kinetik enerjisi çok yüksektir. Katottan çıkan elektronların çoğu kinetik enerjilerini elektrostatik alan içinde kazandıkları için tüpün boş olması gerekir. Flaman ile hedef materyal arasındaki 20–50 kV' luk gerilim farkından dolayı elektronlar hedef anot materyale doğru yönelirler. Anoda doğru hızlanarak hareket eden elektronlar sonunda materyale çarparlar. Bu çarpma sırasında hedef metalin atomlarındaki iç kabuk elektronları dışarı atılır. Dış seviyelerdeki elektronların, boşalmış olan bu iç seviyelere düşmeleri sonucunda X-ışınları oluşur. Genellikle hedef materyale çarpan elektron enerjilerinin % 98 - % 99'u ısıya çevrilir [19].

1.4.3 Kırınım (Difraksiyon)

Kırınım ya da difraksiyon, çok sayıda atomun rol aldığı bir saçılma olayıdır. Difraksiyon olayı iki veya daha fazla dalga arasındaki faz ilişkisinden kaynaklanır. Bu bağlamda bir kristalin X-ışınlarından nasıl etkilendiğini Şekil 1.4. üzerinde şematik olarak açıklamaya çalışalım. Şekil 1.4.3.1'de kristali oluşturan atomların A, B, C, D gibi eşit 'd' mesafeli paralel düzlemler üzerine sıralandığı bir kesit görülmektedir. Burada ideal olarak monokromatik ve λ dalga boylu X-ışınlarının kristal üzerine paralel bir konumda θ açısıyla geldiği düşünülür. Kırınıma uğramış ışın demeti birbirini güçlendiren çok sayıda saçılmış ışından oluşmaktadır. Örnek olarak Şekil 1.4.3.1' de ki *l* ve *la ışınlarını* göz önüne alalım. Bunlar A düzlemindeki K ve *P* atomlarına çarparak bütün doğrultularda saçılırlar. Ancak yalnız *l'* ve *la'* doğrultularında saçılan ışınlar aynı fazdadır ve ancak bunlar birbirlerini güçlendirirler. Çünkü *l'* ve *la'* 'nün aldıkları yol farkı;

Şekil 1.4. X-ışınının Bir Kristalden Kırınması

$$QK - PR = PK. \cos \theta - PK. \cos \theta = 0 \text{ dur.}$$
(1.1)
l ve 2 ışınları ise *K* ve *L* atomları tarafından saçılacaktır. Burada da *lKl*' ve 2L2' ışınlarının aldıkları yol farkı,

$$ML+NL = d' \sin \theta + d' \sin \theta = 2d' \sin \theta$$
(1.2)

bağıntısına eşittir. Eğer yol farkı dalga boyunun tam katına eşit yani $n\lambda = 2dSin\theta$ ise *1*' ve 2' saçılmış ışınlarının tamamen aynı fazda olduğu söylenir.

Bu düşünce aynı zamanda S ve P' nin saçtığı üst üste binmiş ışınlar için de doğrudur:

$$n\lambda = 2dSin\theta \tag{1.3}$$

Böylece *1*' ve 2' saçılmış ışınları aynı fazda olacaktır. Eşitlik 1.3 ile verilen bağıntıyı bu şekilde formüle eden kişi W. L. Bragg' dır ve bu nedenle *Bragg yasası* olarak bilinir.

Bu yasa, x-ışınlarının bir kristalde kırınıma uğrayabilmesi için gerekli koşulları tanımlar. İfadedeki n yansıma derecesidir. *Sinθ* 'nın 1' den büyük olmaması koşuluyla herhangi bir tam değeri alabilir. Böylece λ ve d' sabit değerleri için n=1,2,3,...., değerlerine karşılık gelen θ_1 , θ_2 , θ_3 ,...., gibi çeşitli açılar için difraksiyon oluşabilir. Birinci dereceden yansımada n=1, Şekil 1.4'de ki 1' ve 2' saçılmış ışınlar birbirlerinden 1λ mesafesi kadar farklıdırlar ve aynı fazdadırlar. Bu durum n = 2 ve n = 3 için de böyledir. Şu halde kristalin bütün düzlemlerdeki atomlar tarafından kırınıma uğratılan X-ışınları aynı fazdadır ve birbirlerini kuvvetlendirirler.

Burada iki önemli geometrik özellik vardır:

1) Gelen ışın, yansıtıcı düzlemin normali ve kırınıma uğrayan ışın aynı düzlem içindedir

2) Kırınıma uğrayan ışın ile, sapmadan giden ışın arasındaki açı her zaman 2θ dır. Buna *kırınım açısı* denir ve uygulamada bu açı ölçülür.

Bragg eşitliği iki yönlü kullanılır:

1) Bilinen dalga boyundaki X-ışını bilinmeyen bir kristalden kırındığı zaman θ açıları ölçülür ve bilinmeyen kristalin çeşitli düzlemleri arasındaki 'd' uzaklıkları hesap yoluyla bulunur. Hesaplanan "d" uzaklıklarından giderek bilinmeyen kristallerin kimlikleri saptanabilir. Bu uygulamada θ açılarını ölçülmek için

- a- Toz fotoğrafları
- b- Difraktometreler kullanılır.

2) 'd' uzaklığı bilinen bir kristalden kırınıma uğrayan ve dalga boyu bilinmeyen x-ışınlarının dalga boyu θ açıları ölçülmek suretiyle bulunur. Her elementin karakteristik radyasyonunun dalga boyu belli olduğu için buradan element tayini yapılabilir. Bu amaçla X-ışını spektrometreleri kullanılır. Mineral tayininde en çok kullanılan yöntem X-ışınları kırınım yöntemidir [19].

1.4.4 Difraktometre

Difraktometrenin geometrisi Şekil 1.5' de gösterilmektedir. İnce bir tabaka haline getirilmiş olan öğütülmüş örnek, yarıçapı r olan bir dairenin merkezine yerleştirilir. X-ışınları kaynağı (daire düzlemine dik dar bir slit ile sabitlenmiştir) ve alıcı slit, daire çemberi üzerinde bulunurlar. Çemberin hemen arkasında Geiger veya sintilasyon sayaçlar bulunur. Sıfır konumunda θ açısı sıfırdır ve alıcı slit ile doğrudan gelen ışın aynı çizgi üzerinde bulunur. Örnekle sayaç daire ekseni etrafında el veya motor yardımıyla döndürülürler. Örneğin açısal hızını sayaç hızının yarısı olacak şekilde ayarlayan dişliler vardır. Böylece herhangi bir pozisyonda Bragg eşitliğini sağlayan 'd' değerine sahip kristal düzlemleri örnek yüzeyine paralel konumda bulunur.

Şekil 1.5 X-ışını difraktometresi

Difraktometrelerde jeneratör voltaj çıkışının kararlı halde tutulması çok önemlidir. X-ışınları kaynağı, goniyometre eksenine, paralel konumda doğrusal bir odakta hazır bulunmalıdır. Başlangıç açısı genelde 6 derece kadardır. Çıkış slit açıklığı genelde 1 derece, alıcı yarık açıklığı ise 0.1 derecedir. Daha büyük açıklıklar da kullanılabilir. Olağan prosedürde küçük açılardan büyük açılara doğru sürekli olarak Bragg açıları taranır. Goniyometre farklı kafes düzlemleri için Bragg açılarını taradıkça yansıyan X-ışını şiddetleri bir kâğıt kaydedici ve elektronik devreler yardımı ile grafik formunda çizilir. Kayıt edici doğrusal veya logaritmik ölçekte çalışabilir.[19]

1.4.5 Fotoğrafik Difraksiyon Kaydı

Toz kırınım desenlerinin kaydedilmesi için, özellikle örnek miktarı az olduğunda başvurulan ve güncel olarak da kullanılan klasik yöntem fotoğrafik kayıttır. Bu amaçla kullanılan en yaygın cihaz, Debye-Scherrer toz kamerasıdır. Bur uygulamada X-ışınları tüpünden gelen ışın demeti monokromatik denebilecek (genellikle bakır veya molibden K_{α} çizgisi) bir demet elde edilmek üzere filtrelenir ve dar bir tüpten geçirilerek paralel hale getirilir ve örnek üzerine yönlendirilir. Daha sonra kırınıma uğramamış ışınlar, dar bir çıkış tüpünden geçerek doğrudan kameranın dışına ulaşırlar. Kameranın kendisi silindirik olup, iç çeperi etrafına bir film şeridi yerleştirecek şekilde tasarlanmıştır. Silindirin iç çapı çoğunlukla 5.73 veya 11.46 cm olup, seçilen çapa göre filmin her bir milimetresi sırasıyla 1.0 veya 0.5 derecelik θ açısına karşılık gelmektedir. Örnek, ayarlanabilir bir sistem yardımıyla ışın demetinin merkezine yerleştirilir.

1.4.6 Difraktometrenin Üstünlükleri

a) Difraktometrelerin açısal ayırım gücü (çözünürlük) kameralara göre daha iyidir. Küçük açı sınırı daha düşüktür. Uygun slit sistemi yardımıyla büyük 'd' değerlerine sahip düzlemlerden gelen yansımalar kaydedilebilir. Soğurması büyük olan numunelerden kaymış veya çiftleşmiş yansımalar elde edilmez.

b) Difraktometreler daha kullanışlıdır. Sözgelimi X-ışını deseninin kısmı bir parçası gerekiyorsa kısa bir sürede çekim yapılabilir. Bundan başka düşük duyarlılık için yüksek hız da, yüksek duyarlılık için yavaş hız da çekim yapılabilir.

c) Difraktometrede elde edilen grafikten yansıma şiddetleri doğrudan doğruya görülebilir. İleri geri tarama sureti ile seçilen bir yansımanın zamanla, sıcaklıkla veya başka bir değişkenle değişimi incelenebilir.

d) Difraktometreler yansıma profillerini doğrudan doğruya çizer. Şiddet ölçümleri için başka bir araca gerek yoktur.

1.4.7 Toz Kırınım Yönteminin Başlıca Kullanım Alanları

- Bilinmeyen kristal yapılı bir maddenin saptanması.
- Bir karışım içindeki bileşen miktarlarının kestirimi.
- Katı çözeltilerin kimyasal bileşenlerinin tayini.
- Yüksek sıcaklık dönüşümlerinin gözlenmesi.
- Kristal yapı tayini [19].

1.4.8 X-ışını Fluoresansı

Bir X-ışını tüpünden yada bir radyoaktif kaynaktan gelen X-ışınları bir örneğe çarpacak olursa bu ışınlar materyal tarafından, hem soğurulabilir hem de saçılabilir, X-ışınlarının enerjilerinin tamamını en iç kabuk elektronlarına aktararak soğurulması 'fotoelektrik etki' olarak adlandırılır. Eğer materyale gelen Xışınlarının enerjileri yeterli ise iç kabuklardan elektron koparılır ve boşluklar oluşur. Kararlı hale gelebilmek için dış kabuklardaki elektronlar boşalan iç kabuklara geçerler bu esnada kabuklar arasındaki enerji farkına eşit enerjili karakteristik x-ışını yayarlar. Bu şekilde X-ışınları yayınlanmasına X-ışınları fluoresansı, ışınların analizine de X-ışınları fluoresans analizi denir [20].

1.4.9 X-ışını Fluoresans Kaynakları

Örneklerin ışınlamasında çoğunlukla radyoizotop kaynakları ya da X-ışını tüpleri kullanılmaktadır. En yaygın radyoizotop kaynakları Fe–55, Co–57, Cd–109 ve Am–241 içerir. Bu kaynaklar belirli enerjilerde X-ışınları yayarlar ve sınırlı sayıda atomla etkileşirler. Bundan dolayı çok sayıda elementin analizi için radyoizotop kaynaklarının kombinasyonu gerekir.

Alternatif olarak X-ışını tüpleri de kullanılmaktadır. Tüpün anot metali analiz edilecek elementlere göre seçilir [21].

İzotop	Yarı-Ömür	Radyasyon	Enerji (keV)	Elementler
Fe-55	2.7 yıl	Mn K	5.9	Al-Cr
Co-57	270 gün	Fe K	6.4	<cf< td=""></cf<>
		V	14.4	
		v	122	
		V	136	
Cd-109	1.3 yıl	Ag K	22.2	Ca-Tc
		V	88	W-U
Am-241	470 yıl	Np K	14–21	Sn-Tm
		v	26	

Tablo 1 13 XRF uygulamalarında yaygın olarak kullanılan radyoizotoplar

1.4.10 Fluoresans Analizinin Kullanım Alanları

X-ışınları fluoresans analizi, Ekoloji ve çevre yönetiminde: toprakta, tortularda, suda ve ayresollerde ağır metal tayini. Jeoloji ve mineralojide: toprak, mineral, kaya gibi örneklerin nitel ve nicel analizin. Metalürji ve kimya endüstrisinde: proses ürünü, son ürün ve işlenmemiş ürün kalite kontrolünde. Boya endüstrisinde: kurşun-bazlı boyaların analizinde. Benzin endüstrisinde: benzindeki kirleticilerin denetiminde. Yiyecek kimyasında: yiyeceklerdeki zehirli metallerin tayininde. Tarımda: toprakta ve tarım ürünlerinde eser metallerin analizinde. Sanat bilimlerinde: boyama ve heykel çalışmalarının bilirkişi raporlarının hazırlanmasında yaygın olarak kullanılmaktadır [21].

1.5.Tezin Amacı

Bu çalışmada, mikrodalga ve termal enerjiden yararlanarak bazı magnezyum boratlı bileşiklerin sentezlenmesi hedeflenmiştir. Seçilen sentez yöntemi kapsamında başlangıç kimyasalları arasında katı-hal reaksiyonları gerçekleştirilecek ve elde edilen ürünler X-ışınları kırınımı ve FTIR spektroskopisi yöntemleriyle karakterize edilecektir..

Ülkemizin bor mineralleri yönünden çok zengin olması bağlamında, endüstride kullanımı olan ve katma değerli uç ürün olarak nitelendirilen bor bileşiklerinin sentezini amaçlamış olan bu tez çalışması, ekonomik yönden yol açıcı bir katkı sağlayabileceği gibi magnezyum boratların sentezi bağlamında da bilimsel bir katkı sağlayacaktır

2 MATERYAL VE YÖNTEM

2.1 Kullanılan Kimyasal Maddeler

Deneysel çalışmalarda, B_2O_3 , H_3BO_3 , $Mg(NO_3)_2.6H_2O$, MgO ve aktif karbon kimyasalları kullanılmıştır. Bu bileşikler analitik saflıkta olup Acros Organics, Merck ve Riedel-de Haen firmalarından temin edilmiştir.

2.2 Kullanılan Cihazlar

Mikrodalga sentezlerde, 700 W maksimum güç ve 2.45 GHz frekansla çalışan Vestel MD 17 model ev tipi mikrodalga fırın kullanılmıştır, Yüksek sıcaklık deneyleri Barnstead / Thermolyne 47900 model kül fırınında gerçekleştirilmiştir. X-Işını toz difraksiyon çekimleri, CuK α = 1,54056 Å, 40 mA , 50 kV radyasyonunda PANanalytic X'Pert PRO marka X-Işını toz difraktometresi ile elde edilmiştir. FTIR spektrumları Perkin Emler BX 2 FT-IR spektrometresiyle 4000 – 400 cm⁻¹ aralığında alınmıştır.

2.3 Yöntem

2.3.1 Termal Yöntem

Termal yöntemde; katı-katı kimyasal tepkimelerinin gerçekleştirilebilmesi amacı ile yüksek sıcaklık kül fırınlarından yararlanılmıştır. Reaksiyon denklemine göre başlangıç kimyasalları mol oranlarına uygun olarak tartılmış, tartılan reaktanlar havanda öğütülerek homojen hale getirilmiştir. Öğütülen karışımdan 3 gram tam tartım alınmış ve seramik krozeye konulmuştur. Karışımlar deneyin gerçekleştirileceği sıcaklık koşuluna göre 500, 600, 700, ve 800 0 C'de 3 saat süreyle ısıtılmıştır. Bu sıcaklık serilerine ilave olarak 900 0 C'de bir deney yapılmıştır, Mg(NO₃)₂.6H₂O ile 500 0 C'de yapılan termal deneyde yapıdaki nitrat grubunun yüksek sıcaklık etkisiyle bozunması sonucu solunumu insan sağlığı için tehlikeli olan azot oksitlerin açığa çıkması ve laboratuarımızdaki yetersiz havalandırma sistemi sebebiyle, diğer termal deneylerde Mg kaynağı olarak MgO bileşiği tercih edilmiştir.

Termal işlem sonrası elde edilen ürünler havanda öğütülmek suretiyle homojenize edilmiş ve IR spektrumları ile X-ışını toz difraktomlarının alınması için desikatörde saklanmıştır. Termal yöntemle yapılan deneylerin tümünde aynı işlemler uygulanmıştır.

2.3.2 Mikrodalga Enerji Yöntemi

Reaksiyon denklemine göre katı haldeki reaktanlarr mol oranlarına uygun olarak tartılmış, havanda öğütülmüş ve homojenize edilmiştir. Öğütülen karışımdan 3 gram tam tartım alınmış ve seramik krozeye konulmuştur. Karışım 10 dakika süreyle 700 W gücündeki mikrodalga fırına konularak mikrodalga enerjiye maruz bırakılmıştır.

Mikrodalga etkileşim sonucu oluşan ürünler havanda öğütülmek suretiyle homojenize edilmiş, IR spektrumlarının ve X-ışını toz difraktomlarının alınması amacıyla desikatörde saklanmıştır.

3. BULGULAR

3.1 Mikrodalga Enerji Yöntemi ile Yapılan Deneyler

Tablo 3.1 Mikrodalga enerji yöntemiyle yapılan deneyler ve gözlemleri

Deney	Reaksiyonda Kullanılan	Mol	Gözlemler
kodu	Bileşikler	Oranları	
EAD1-1MD	$Mg(NO_3)_2.6H_2O + 1B_2O_3$	1:1	3. dakikada gaz çıkışı başladı
			reaksiyon sonunda dış kabuk
			kristalimsi beyaz kroze
			dibinde ise macun kıvamında
EAD1-2MD	$Mg(NO_3)_2.6H_2O + 2B_2O_3$	1:2	5. dakikada gaz çıkışı başladı
			krozeye temas eden kısımlar
			uçuk kahverengi dış katman
			kristalimsi beyaz
EAD1-3MD	$Mg(NO_3)_2.6H_2O + 3B_2O_3$	1:3	6. dakikada gaz çıkışı başladı
			kroze kenarları uçuk
			kahverengi dış katma
			kristalimsi beyaz
EAD1-4MD	$Mg(NO_3)_2.6H_2O + 4B_2O_3$	1:4	5. dakikada kuvvetli gaz
			çıkışı başladı dış yüzey uçuk
			sarı kristalimsi görünümde
EAD1-5MD	$Mg(NO_3)_2.6H_2O + 5B_2O_3$	1 :5	4. dakikada gaz çıkışı başladı
			dış yüzey uçuk sarı
			kristalimsi görünümde
EAD1-6MD	$Mg(NO_3)_2.6H_2O + 6B_2O_3$	1:6	6. dakikada gaz çıkışı başladı
			dış yüzey uçuk sarı
			kristalimsi görünümde

Tablo	3.1	'n	devamı

EAD2-1MD	$Mg(NO_3)_2.6H_2O + 1H_3BO_3 +$	1:1:1/3	Kuvvetli gaz çıkışı 2.
	1/3C		dakika sonunda reaksiyon
			durdu açık siyah süngerimsi
			madde elde edildi
EAD2-2MD	$Mg(NO_3)_2.6H_2O + 2H_3BO_3 +$	1:2:2/3	Kuvvetli gaz çıkışı 2.
	2/3C		dakika sonunda reaksiyon
			durdu açık siyah süngerimsi
			madde elde edildi
EAD2-3MD	$Mg(NO_3)_2.6H_2O + 3H_3BO_3 +$	1:3:1	1. dakikada kuvvetli gaz
	1C		çıkışı başladı 2. dakika
			sonunda reaksiyon durdu
			açık siyah süngerimsi
			madde elde edildi
EAD2-4MD	$Mg(NO_3)_2.6H_2O + 4H_3BO_3 +$	1:4:4/3	2. dakika başında kuvvetli
	4/3C		gaz çıkışı 3. dakikada
			reaksiyon durdu açık siyah
			süngerimsi madde elde
			edildi
EAD2-5MD	$Mg(NO_3)_2.6H_2O + 5H_3BO_3 +$	1:5:5/3	kuvvetli gaz çıkışı 3.
	5/3C		dakikada reaksiyon
			sonlandı açık siyah
			süngerimsi madde elde
			edildi
EAD2-6MD	$Mg(NO_3)_2.6H_2O + 6H_3BO_3 +$	1:6:2	1. dakikanın sonlarında
	2C		kuvvetli gaz çıkışı başladı
			3. dakikada reaksiyon
			sonlandı açık siyah
			süngerimsi madde elde
			edildi

3.2 Termal Yöntem Kullanılarak Yapılan Deneyler

Deney	Reaksiyonda Kullanılan	Mol	Sıcaklık	Gözlemler
Kodu	bileşikler	Oranları	(°C)	
EAD3-1	$Mg(NO_3)_2.6H_2O + 1H_3BO_3$	1:1	500	380 °C'de
				kahverengi gaz
				çıkışı başladı
				yaklaşık 7 dakika
				sürdü beyaz renkte
				sert bir ürün elde
				edildi
EAD3-2	$Mg(NO_3)_2.6H_2O + 2H_3BO_3$	1:2	500	380 °C'de
				kahverengi gaz
				çıkışı başladı
				yaklaşık 7 dakika
				sürdü uçuk sarı
				renkte sert bir ürün
				elde edildi
EAD3-3	$Mg(NO_3)_2.6H_2O + 3H_3BO_3$	1:3	500	380 °C'de
				kahverengi gaz
				çıkışı başladı
				yaklaşık 7 dakika
				sürdü açık sarı
				renkte sert bir ürün
				elde edildi
EAD3-4	$Mg(NO_3)_2.6H_2O + 4H_3BO_3$	1:4	500	380 °C'de
				kahverengi gaz
				çıkışı başladı
				yaklaşık 7 dakika
				sürdü daha koyu
				sarı renkte sert bir
				ürün elde edildi

Tablo 3.2. Termal yöntem kullanılarak yapılan deneyler ve gözlemler

EAD3-5	$Mg(NO_3)_2.6H_2O + 5H_3BO_3$	1:5	500	380 °C'de kahverengi gaz
				çıkışı başladı yaklaşık 7
				dakika sürdü daha koyu
				renkte sert bir ürün elde
				edildi
EAD3-6	$Mg(NO_3)_2.6H_2O + 6H_3BO_3$	1:6	500	380 °C' de kahverengi gaz
				çıkışı başladı yaklaşık 7
				dakika sürdü koyu sarı
				renkte sert bir ürün elde
				edildi
EAD5-1	$MgO + 1H_3BO_3$	1:1	500	beyaz renkte sert bir ürün
				elde edildi
EAD5-2	$MgO + 2H_3BO_3$	1:2	500	beyaz renkte sert bir ürün
				elde edildi
EAD5-3	$MgO + 3H_3BO_3$	1:3	500	beyaz renkte sert bir ürün
				elde edildi
EAD5-4	$MgO + 4H_3BO_3$	1:4	500	beyaz renkte sert bir ürün
				elde edildi
EAD5-5	$MgO + 5H_3BO_3$	1:5	500	beyaz renkte sert bir ürün
				elde edildi
EAD5-6	$MgO + 6H_3BO_3$	1:6	500	beyaz renkte sert bir ürün
				elde edildi
EAD6-1	$MgO + 1H_3BO_3$	1:1	600	beyaz renkte sert bir ürün
				elde edildi
EAD6-2	$MgO + 2H_3BO_3$	1:2	600	beyaz renkte sert bir ürün
				elde edildi
EAD6-3	$MgO + 3H_3BO_3$	1:3	600	beyaz renkte sert bir ürün
				elde edildi
EAD6-4	$MgO + 4H_3BO_3$	1:4	600	beyaz renkte sert bir ürün
				elde edildi
EAD6-5	$MgO + 5H_3BO_3$	1:5	600	beyaz renkte sert bir ürün
				elde edildi
EAD6-6	$MgO + 6H_3BO_3$	1:6	600	beyaz renkte sert bir ürün
				elde edildi

Tablo 3.2'nin devamı

EAD7-1	$MgO + 1H_3BO_3$	1:1	700	beyaz renkte sert
				bir ürün elde edildi
EAD7-2	$MgO + 2H_3BO_3$	1:2	700	beyaz renkte sert
				bir ürün elde edildi
EAD7-3	$MgO + 3H_3BO_3$	1:3	700	beyaz renkte sert
				bir ürün elde edildi
EAD7-4	$MgO + 4H_3BO_3$	1:4	700	beyaz renkte sert
				bir ürün elde edildi
EAD7-5	$MgO + 5H_3BO_3$	1:5	700	beyaz renkte sert
				bir ürün elde edildi
EAD7-6	$MgO + 6H_3BO_3$	1:6	700	beyaz renkte sert
				bir ürün elde edildi
EAD8-1	$MgO + 1H_3BO_3$	1:1	800	beyaz renkte sert
				bir ürün elde edildi
EAD8-2	$MgO + 2H_3BO_3$	1:2	800	beyaz renkte sert
				bir ürün elde edildi
EAD8-3	$MgO + 3H_3BO_3$	1:3	800	beyaz renkte sert
				bir ürün elde edildi
EAD8-4	$MgO + 4H_3BO_3$	1:4	800	beyaz renkte sert
				bir ürün elde edildi
EAD8-5	$MgO + 5H_3BO_3$	1:5	800	beyaz renkte sert
				bir ürün elde edildi
EAD8-6	$MgO + 6H_3BO_3$	1:6	800	beyaz renkte sert
				bir ürün elde edildi
EAD9-3	$MgO + 3H_3BO_3$	1:3	900	beyaz renkte sert
				bir ürün elde edildi

Tablo 3.2'nin devamı

4.SONUÇLAR VE TARTIŞMA

4.1 Mikrodalga Enerji Yöntemiyle Yapılan Deneyler

Deney Kodu	Reaksiyonda Kullanılan Bileşikler
EAD1-1MD	$Mg(NO_3)_2.6H_2O + 1B_2O_3$
EAD1-2MD	$Mg(NO_3)_2.6H_2O + 2B_2O_3$
EAD1-3MD	$Mg(NO_3)_2.6H_2O + 3B_2O_3$
EAD1-4MD	$Mg(NO_3)_2.6H_2O + 4B_2O_3$
EAD1-5MD	$Mg(NO_3)_2.6H_2O + 5B_2O_3$
EAD1-6MD	$Mg(NO_3)_2.6H_2O + 6B_2O_3$
EAD2-1MD	$Mg(NO_3)_2.6H_2O + 1H_3BO_3 + 1/3C$
EAD2-2MD	$Mg(NO_3)_2.6H_2O + 2H_3BO_3 + 2/3C$
EAD2-3MD	$Mg(NO_3)_2.6H_2O + 3H_3BO_3 + 1C$
EAD2-4MD	$Mg(NO_3)_2.6H_2O + 4H_3BO_3 + 4/3C$
EAD2-5MD	$Mg(NO_3)_2.6H_2O + 5H_3BO_3 + 5/3C$
EAD2-6MD	$Mg(NO_3)_2.6H_2O + 6H_3BO_3 + 2C$

Tablo 4.1 Mikrodalga enerji yöntemiyle yapılan deneyler

NOT : X-ışını toz difraksiyon desenleri incelendiğinde $2\theta = 44,7155$, d = 2,02503 pikinin numune kabından kaynaklanan bir gürültü olduğu kanaatine varılmış ve bütün deney sonuçlarının yorumlanmasında dikkate alınmamıştır.

Yukarıda verilen deneyler sonucunda elde edilen ürünlerin alınan X-ışını toz difraksiyon desenlerine göre EAD1-1 kodlu deney hariç olmak üzere amorf yapıda oldukları ve kristalleşmenin gerçekleşmediği gözlenmemiştir (Şekil 4.1., 4.2, 4.3 ,4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12) EAD1-1'de Mg(NO₃)₂.6H₂O (JCPDS Kart No : 14-0101) bileşiğinin reaksiyon sonunda etkileşimde girmeden kaldığı söylenebilir

Şekil 4.1 EAD1-1MD'nin X-ışını toz difraksiyon deseni

20	d (Å)	I / I _o	Mg(NO ₃) ₂ .6H ₂ O
(deneysel)	(deneysel)	(deneysel)	(JCPDS Kart No :
			14-0101)
14.4558	6.12240	10.42	
15.2226	5.81567	25.04	5.84
16.1156	5.49537	33.35	
20.1936	4.39388	100.00	
20.5588	4.31664	37.63	4.35
21.5348	4.12317	32.74	4.12
24.9812	3.56159	38.32	3.56
27.1645	3.28009	67.32	3.295
28.0361	3.18006	47.28	3.19
30.6864	2.91118	50.14	2.925
31.3098	2.85463	26.16	2.848
32.3044	2.76897	24.91	2.781
33.4133	2.67957	63.60	2.688

Tablo 4.2 EAD1-1MD'nin X-ışını toz difraksiyon verileri

Tabl	lo 4.2	'nin	Dev	amı

38.0913	2.36055	23.35	2.368
42.7519	2.11338	11.11	2.118
43.6634	2.07136	16.21	2.077
44.7317	2.02433	88.35	
48.4931	1.87574	4.46	1885
65.1889	1.42995	8.00	
76.9720	1.23778	3.18	

Şekil 4.2 EAD1-2MD'nin X-ışını toz difraksiyon deseni

Şekil 4.3 EAD1-3MD'nin X-ışını toz difraksiyon deseni

Şekil 4.4 EAD1-4MD'nin X-ışını toz difraksiyon deseni

Şekil 4.5 EAD1-5MD'nin X-ışını toz difraksiyon deseni

Şekil 4.6 EAD1-6MD'nin X-ışını toz difraksiyon deseni

Şekil 4.7 EAD2-1MD'nin X-ışını toz difraksiyon deseni

Şekil 4.8 EAD2-2MD'nin X-ışını toz difraksiyon deseni

Şekil 4.9 EAD2-3MD'nin X-ışını toz difraksiyon deseni

Şekil 4.10 EAD2-4MD'nin X-ışını toz difraksiyon deseni

Şekil 4.11 EAD2-5MD'nin X-ışını toz difraksiyon deseni

Şekil 4.12 EAD2-6MD'nin X-ışını toz difraksiyon deseni

4.2 Termal Yöntemle Yapılan Deneyler

4.2.1 Mg(NO₃)₂.6H₂O – H₃BO₃ Sisteminde Yapılan Deneyler

Deney Kodu	Reaksiyonda kullanılan Kimyasallar
EAD3-1	$Mg(NO_3)_2.6H_2O + 1H_3BO_3$
EAD3-2	$Mg(NO_3)_2.6H_2O + 2H_3BO_3$
EAD3-3	$Mg(NO_3)_2.6H_2O + 3H_3BO_3$
EAD3-4	$Mg(NO_3)_2.6H_2O + 4H_3BO_3$
EAD3-5	$Mg(NO_3)_2.6H_2O + 5H_3BO_3$
EAD3-6	$Mg(NO_3)_2.6H_2O + 6H_3BO_3$

Tablo 4.3 Mg(NO₃)₂.6H₂O kullanılarak yapılan deneyler.

Tablo 4.3' de kimyasal reaksiyonları verilen ve stokiyometrik oranlar uyarınca hazırlanan deneyler kül fırınında 500°C'de üç saat süreyle ısıtılmak suretiyle gerçekleştirilmiştir, elde edilen ürünlerin X-ışını toz kırınım çekimlerine (Şekil 4.13, Şekil 4.14, Şekil 4.15, Şekil 4.16, Şekil 4.17, Şekil 4.18) göre amorf özellikte oldukları ve kristalleşmenin gerçekleşmediği gözlenmiştir.

Şekil 4.13 EAD3-1'in X-ışını toz difraksiyon deseni

Şekil 4.14 EAD3-2'nin X-ışını Toz Difraksiyon Deseni

46

Şekil 4.15 EAD3-3'ün X-ışını toz difraksiyon deseni

Şekil 4.16 EAD3-4'ün X-ışını toz difraksiyon deseni

Şekil 4.17 EAD3-5'in X-ışını toz difraksiyon deseni

Şekil 4.18 EAD3-6'nın X-ışını toz difraksiyon deseni

4.2.2 MgO – H₃BO₃ Sisteminde Yapılan Deneyler

4.2.2.1 MgO + 1 H₃BO₃ (EAD5-1)

Stokiyometrik oranlarda hazırlanan ve kül fırınında 500 °C'de üç saat süreyle 1sıtılan deneyin sonucunda elde edilen ürünün Şekil 4.19'da verilen X-ışını toz difraksiyon desenlerinde bulunan 'd' değerlerine göre MgO (JCPDS Kart No : 45-0946) ve H₃BO₃'ün (JCPDS Kart No : 30-0199) reaksiyon sonunda etkileşime girmeden kaldığı görülmektedir (Şekil 4.19, Tablo 4.4).

Benzer deneyler H₃BO₃ miktarı 2, 3, 4, 5 ve 6 mol oranlarında arttırılarak MgO ile 500 °C'de gerçekleştirilmiştir (EAD5-2, EAD5-3, EAD5-4, EAD5-5, EAD5-6). Elde edilen ürünlerin X-ışını toz difraksiyon desenlerinde bulunan 'd' değerlerine göre (sırasıyla Şekil 4.20, Şekil 4.21, Şekil 4.22, Şekil 4.23, Şekil 4.24) EAD5-1 ile benzer şekilde MgO (JCPDS Kart No : 45-0946) ve H₃BO₃'ün (JCPDS Kart No : 30-0199) reaksiyon sonunda etkileşime girmeden kaldığı görülmektedir (Tablo 4.5, Tablo 4.6, Tablo 4.7, Tablo 4.8, Tablo 4.9).

Bu veriler ışığında 500 °C'nin MgO ve H₃BO₃ kullanılarak katı-hal kimyasal reaksiyonları ile magnezyum borat tipindeki bileşiklerin oluşumu için yeterli bir sıcaklık olmadığı gözlemlenmiştir.

20	d (Å)	I / I _o	d (Å)	d (Å)
(deneysel)	(deneysel)	(deneysel)	MgO (JCPDS	H ₃ BO ₃
			Kart No : 45-	(JCPDS Kart
			0946)	No : 30-0199
19.9091	4.45601	1.01		
36.9156	2.43299	9.22	2.4316	
38.5312	2.33461	5.56		
42.9102	2.10595	100.00	2.1056	2.1000
44.3795	2.03958	4.68		
44.7339	2.02424	24.42		
57.2570	1.60771	0.80		
60.0403	1.53966	0.42		
62.3441	1.48818	43.43	1.4890	1.4840
65.1997	1.42974	1.22		
72.2230	1.30701	0.58		
74.5308	1.27215	3.24	1.2698	
76.8100	1.23999	1.05		
78.6485	1.21554	11.78	1.2157	
79.0627	1.21021	0.98		
79.3054	1.20712	0.56		

Tablo 4.4 EAD5-1'in X-ışını toz difraksiyon verileri

20	d (Å)	I / I _o	d (Å)	d (Å)
(deneysel)	(deneysel)	(deneysel)	MgO (JCPDS	H ₃ BO ₃
			Kart No : 45-	(JCPDS Kart
			0946)	No : 30-0199
18.3748	4.82449	3.26		
36.9782	2.42901	8.67	2.4316	
38.4761	2.33782	10.07		
43.0077	2.10140	100.00	2.1056	2.1000
44.7217	2.02477	33.28		
47.2478	1.92223	0.89		1.9370
48.0890	1.89055	0.67		
55.8216	1.64560	1.08		1.6420
62.3365	1.48835	41.39	1.4890	1.4840
65.1049	1.43159	3.84		
70.1655	1.34021	1.20		
70.4894	1.33485	1.09		
73.2563	1.29111	1.62		
74.8562	1.26743	5.21	1.2698	
78.6858	1.21506	11.71	1.2157	

Tablo 4.5 EAD5-2'nin X-ışını toz difraksiyon verileri

20	d (Å)	I / I _o	d (Å)	d (Å)
(deneysel)	(deneysel)	(deneysel)	MgO (JCPDS	H ₃ BO ₃
			Kart No : 45-	(JCPDS Kart
			0946)	No : 30-0199
19.6988	4.50311	6.25		
36.9768	2.42911	10.39	2.4316	
38.4762	2.33782	12.75		
40.5491	2.22296	4.68		2.2350
42.9500	2.10409	100.00	2.1056	2.1000
44.7094	2.02530	22.66		
50.2348	1.81471	1.47		
62.2463	1.49029	29.71	1.4890	1.4840
74.6415	1.27054	2.87	1.2698	
78.6567	1.21544	9.86	1.2157	

Tablo 4.6 EAD5-3'ün X-ışını toz difraksiyon verileri

20	d (Å)	I / I _o	d (Å)	d (Å)
(deneysel)	(deneysel)	(deneysel)	MgO (JCPDS	H ₃ BO ₃
			Kart No : 45-	(JCPDS Kart
			0946)	No : 30-0199
14.6089	6.05860	14.60		6.0500
16.5621	5.34823	8.43		
18.5382	4.78234	5.05		4,7900
19.8709	4.46451	7.78		
20.9241	4.24211	8.66		4.2100
22.4068	3.96463	6.75		
24.3677	3.64985	9.58		
26.7756	3.32684	7.47		3.3140
28.0626	3.17712	55.23		3.1810
31.7832	2.81317	3.05		2.8400
35.2646	2.54302	7.19		2.,5490
36.8952	2.43429	10.20	2.4316	
37.8257	2.37652	2.63		
38.0573	2.36258	5.68		
41.0303	2.19800	12.85		
41.8232	2.15814	10.23		2.1680
42.8690	2.10788	100.00	2.1056	
43.0152	2.10106	96.36		2.1000
44.7135	2.02512	96.47		
47.0070	1.93152	8.90		1.9370
47.6113	1.90840	9.08		
50.5698	1.80348	3.76		
56.8706	1.61771	5.02		
57.4974	1.60156	3.75		
57.7690	1.59467	2.74		1.5910

Tablo 4.7 EAD5-4'ün X-ışını toz difraksiyon verileri

57.9813	1.58934	2.39		1.5750
60.7385	1.52362	4.24		
60.9372	1.51913	4.29		
61.2663	1.51176	7.50		
62.2984	1.48917	50.96	1.4890	1.4840
63.5437	1.46295	2.16		
63.8280	1.45712	2.31		
65.1187	1.43132	9.87		
68.6657	1.36578	3.12		
73.7338	1.28392	1.60		
74.4031	1.27402	4.79	1.2698	
74.8689	1.26724	5.89		
76.5447	1.24362	2.05		
79.0563	1.21029	4.63	1.2157	

Tablo 4.7'nin Devamı

20	d (Å)	I / I _o	d (Å)	d (Å)
(deneysel)	(deneysel)	(deneysel)	MgO (JCPDS	H ₃ BO ₃
			Kart No : 45-	(JCPDS Kart
			0946)	No : 30-0199
11.2927	7.82918	9.09		
14.0330	6.30590	4.82		6.0500
22.4241	3.96161	7.91		
24.4342	3.64008	2.59		
25.7149	3.46161	9.75		
31.8455	2.80781	7.58		
36.9971	2.42782	8.74	2.4316	
40.9969	2.19971	3.26		
41.2363	2.18749	3.25		
41.9412	2.15234	7.16		2.1680
42.9710	2.10312	100.00	2.1056	2.1000
44.7421	2.02389	24.73		
47.1946	1.92427	4.60		1.9370
48.9735	1.85846	4.47		
50.6564	1.80059	3.69		
51.7914	1.76377	1.31		
54.2321	1.69002	2.44		1.6910
57.6648	1.59731	1.12		1.5910
59.5466	1.55124	3.62		
60.6637	1.52532	1.04		
62.3173	1.48876	38.35	1.4890	1.4840
63.6511	1.46074	3.95		
65.3197	1.42740	2.03		
69.0368	1.35934	2.30		
69.3619	1.35376	1.22		

Tablo 4.8 EAD5-5'in X-ışını toz difraksiyon verileri

Tablo 4.8'in Devamı

69.7163	1.34775	1.35		
69.9953	1.34305	1.19		
71.0021	1.32646	2.08		
74.7533	1.26892	5.12	1.2698	
78.8426	1.21304	6.78	1.2157	
79.6258	1.20306	3.28		

20	d (Å)	I / I _o	d (Å)	d (Å)
(deneysel)	(deneysel)	(deneysel)	MgO (JCPDS	H ₃ BO ₃
			Kart No : 45-	(JCPDS Kart
			0946)	No : 30-0199
20.0684	4.42102	2.39		
20.6611	4.29551	7.40		
24.8777	3.57617	7.02		
27.9084	3.19432	5.91		3.1810
29.7432	3.00132	4.68		
30.2756	2.94974	5.27		2.9570
30.5100	2.92761	2.44		2.9210
38.5271	2.33485	11.46		2.2560
40.3156	2.23530	5.82		2.2350
42.5100	2.12485	9.40		
42.9758	2.10289	60.61	2.1056	2.1000
44.7115	2.02520	100.00		
45.5066	1.99165	6.17		
45.8870	1.97602	5.45		
46.5673	1.94873	2.57		1.9480
59.9117	1.54266	1.69		1.5750
62.3358	1.48836	28.11	1.4890	
64.4483	1.44458	1.90		
65.0799	1.43208	5.88		
66.2067	1.41041	1.11		
66.5640	1.40371	3.42		
67.6586	1.38364	4.02		
70.3321	1.33745	2.70		
71.4248	1.31964	3.40		
72.0068	1.31040	3.32		

Tablo 4.9 EAD5-6'nın X-ışını toz difraksiyon verileri

Tablo 4.9'un Devamı

72.2868	1.30602	2.68		
73.2578	1.29108	1.80		
73.7860	1.28314	2.52		
75.6835	1.25562	1.57	1.2698	
76.0938	1.24986	2.80		
76.8763	1.23908	2.94		
78.5787	1.21645	6.11	1.1.2157	
79.6968	1.20217	4.22		

4.2.2.2 MgO + H₃BO₃ (EAD6-1)

Stokiyometrik oranlarda hazırlanan ve kül fırınında 600 °C'de üç saat süreyle ısıtılan deneyin sonucunda elde edilen ürünün Şekil 4.25'de verilen X-ışını toz difraksiyon desenlerinde bulunan 'd' değerleri incelendiğinde (Tablo 4.11) MgO'in (JCPDS Kart No : 45-0946) büyük oranda reaksiyona girmeden kaldığı 'd' değerlerinden ve pik şiddetlerinden anlaşılmaktadır, aynı şekilde pik şiddetleri düşük olmakla beraber H₃BO₃ (JCPDS Kart No : 30-0199) de reaksiyona girmeden kaldığı görülmektedir.

Bununla beraber reaksiyon sonunda Mg₂B₂O₅ bileşiğine ait iki farklı kristal yapılı bir fazın oluştuğu görülmektedir (JCPDS Kart No : 16-0168), (JCPDS Kart No : 15-0537), bu fazın oluşumu aşağıdaki kimyasal eşitlikle açıklanabilir.

$$2MgO + 2H_3BO_3 \quad \rightarrow \quad Mg_2B_2O_5 + 3H_2O \tag{4.1}$$

Tablo 4.10'da verilen IR spektrum verileri, literatürde verilen değerlerdeki fonksiyonel grupların varlığını desteklemektedir (Şekil 4.26, EKA)

Benzer deneyler H_3BO_3 miktarı 2,3,4,5, ve 6 mol oranlarında arttırılarak MgO ile 600 °C'de gerçekleştirilmiştir (EAD6-2, EAD6-3, EAD6-4, EAD6-5, EAD6-6). Elde edilen ürünlerin X-ışını toz difraksiyon desenlerinde bulunan 'd' değerlerine göre (sırasıyla Şekil 4.27, Şekil 4.29, Şekil 4.31, Şekil 4.33, Şekil 4.35) EAD6-1'den farklı olarak Mg₂B₂O₅ (JCPDS Kart No : 16-0168), (JCPDS Kart No : 15-0537) ve Mg₃(BO₃)₂ (JCPDS Kart No : 05-0648), (JCPDS Kart No :33-0858) fazlarının bir arada oluştuğu ve pik şiddetleri incelendiğinde Mg₂B₂O₅ fazının Mg₃(BO₃)₂ fazına göre daha iyi kristallendiği görülmektedir (Tablo 4.13, Tablo 4.15, Tablo 4.17, Tablo 4.19, Tablo 4.21)

Bu iki fazın bir arada oluşumu aşağıda verilen kimyasal eşitlikle açıklayabiliriz;

$$5MgO + 4H_3BO_3 \rightarrow Mg_2B_2O_5 + Mg_3(BO_3)_2 + 6H_2O \qquad (4.2)$$

Bu deneyler ait IR spektrumları sırasıyla Şekil 4.28, Şekil 4.30, Şekil 4.32, Şekil 4.34, Şekil 4.36 ve Tablo 4.12, Tablo 4.14, Tablo 4.16, Tablo 4.18, Tablo 4.20'de verilmiş olup $Mg_3(BO_3)_2$ ve $Mg_2B_2O_5$ bileşiklerine ait fonksiyonel grupların varlığı da bu yöntemle desteklenmiştir.

Tablo 4.10 EAD6-1'in IR spektrum verileri

Titreşim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1102,60-1024,99-926
$v_{s}(BO_{4})$	840
B ₂ O ₇	821
v ₃ (BO ₃)	1250,45
v ₂ (BO ₃)	783,12
$v_s(BO_3)$	888,63
$v_{as}(BO_3)$	1363,33
v ₃ (H ₃ BO ₃)	1438

Tablo 4.11 EAD6-1'in X-ışını toz difraksiyon verileri

20	d (Å)	I / I _o	d (Å)	d (Å)	d (Å)	d (Å)
(deneysel)	(deneysel)	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$
			(JCPDS	(JCPDS	(JCPDS	(JCPDS
			Kart No :	Kart No :	Kart No :	Kart No :
			45-0946)	30-0199	16-0168)	15-0537)
18.8186	4.71171	2.83				
31.5180	2.83624	2.65		2.840	2.823	2.824
33.4472	2.67693	1.58				
36.9156	2.43299	8.91	2.4316		2.430	2.431
40.6676	2.21676	4.19		2.235	2.227	
42.9123	2.10586	100.00	2.1056	2.100	2.100	2.111
44.7021	2.02561	20.89				
47.2212	1.92325	1.97		1.937	1.916	1.948
49.6148	1.83593	0.47			1.843	1.842
62.2956	1.48923	44.47	1.4890	1.484		
66.4402	1.40602	0.60				
67.2091	1.39179	1.06				
71.5076	1.31832	0.67				
74.6527	1.27038	4.52	1.2698			
78.6817	1.21511	13.22	1.2157			

Titreșim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1103,78-1025,21
$\nu_s(BO_4)$	839,87
v ₃ (BO ₃)	1250,54
v ₂ (BO ₃)	782,95
$v_{s}(BO_{3})$	886,78
$v_{as}(BO_3)$	1439,71-1363,35
$v_4(H_3BO_3)$	545,39
v ₂ (H ₃ BO ₃)	699,77

Tablo 4.12 EAD6-2'nin IR spektrum verileri

Tablo 4.13 EAD6-2'nin X-ışını toz difraksiyon verileri

I/I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	Mg ₃ (BO ₃) ₂	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No :	Kart No :
		45-0946)	30-0199)	16-0168)	15-0537)	05-0648)	33-0858)
7.48	5.18172						
8.40	4.42260						
10.87	3.95303						
4.99	3.59101						3.57
11.50	3.43083						
8.86	3.12449				3.121		
5.69	2.91506			2.917	2.928		2.903
9.50	2.82839		2.840	2.823	2.824		
8.26	2.67891					2.67	2.652
3.32	2.46817			2.468			
8.96	2.42582	2.4316		2.430	2.431		
1.58	2.29237		2.290	2.281	2.287		
11.38	2.21817		2.235	2.227	2.232		2.238
100.0	2.10344	2.1056	2.100	2.100	2.111	2.08	
19.52	2.02517						

Tablo 4.13'ün Devamı

5.08	1.92172		1.937	1.916	1.948		1.938
2.63	1.88055			1.884	1.888		
3.70	1.78273			1.783	1.783	1.78	1.798
3.34	1.67747		1.672	1.675	1.667	1.67	1.689
42.61	1.48816	1.4890	1.484			1.480	
1.18	1.38419						
1.52	1.35948					1.350	
3.24	1.26723	1.2698				1.256	
10.33	1.21464	1.2157					

Titreșim	Frekans (cm ⁻¹)
$v_3(BO_4)$	1104,64-1025,55
$v_1(BO_4)$	885,71
$\nu_4(\mathrm{BO}_4)$	635,53
$\nu_b(BO_4)$	454,31
v ₃ (BO ₃)	1251,35
v ₂ (BO ₃)	783,09
$v_{s}(BO_{3})$	926,35
$v_{as}(BO_3)$	1442,54-1361,81
$v_4(H_3BO_3)$	544,59
$v_2(H_3BO_3)$	699,77

Tablo 4.14 EAD6-3'ün IR spektrum verileri

Tablo 4.15 EAD6-3'ün X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No :	Kart No :
		45-0946)	30-0199	16-0168)	15-0537)	05-0648)	33-0858)
3.41	5.95458			5.96	5.96		
10.90	5.18523						
15.22	4.43829						
21.36	3.97055						
8.26	3.61945						
17.15	3.44210						
18.69	3.19020		3.181				
12.96	3.12787		3.142		3.121		
12.55	2.90916		2.921	2.917	2.928		2.903
17.05	2.83041		2.840	2.823	2.824		
12.42	2.67680					2.67	
7.47	2.46853			2.468			
7.84	2.42869	2.4316		2.430	2.431		
18.96	2.21994		2.235	2.227	2.232	2.23	2.238
3.84	2.16773		2.168	2.151	2.155	2.18	2.163
100.0	2.10501	2.1056	2.100	2.100	2.111	2.08	

Tablo 4.15'in Devamı

24.10	2.02039						
3.68	2.00985				2.009		
9.01	1.92121		1.937	1.916			1.938
5.08	1.78234			1.783	1.783	1.78	1.798
6.24	1.67362		1.672	1.675	1.683	1.67	1.689
3.02	1.53344			1.531		1.536	
43.86	1.48780	1.4890	1.484			1.480	
1.88	1.44312					1.435	
3.50	1.26982	1.2698				1.278	
10.70	1.21500	1.2157					

Titreșim	Frekans (cm ⁻¹)
$v_3(BO_4)$	1103,65-1024,99
$v_1(BO_4)$	886,04
$v_4(BO_4)$	645,29
$v_b(BO_4)$	454,78
v ₂ (BO ₃)	782,99
$v_s(BO_3)$	926,12
$v_{as}(BO_3)$	1445,73
$v_4(H_3BO_3)$	546,67

Tablo 4.16 EAD6-4'ün IR spektrum verileri

Tablo 4.17 EAD6-4'ün X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No	Kart No :
		45-0946)	30-0199)	16-0168)	15-0537)	:05-0648)	33-0858)
11.97	8.58275						
23.79	4.42772						
15.52	3.94165						3.92
10.38	3.59883						3.57
21.52	3.42986						
15.09	3.19863		3.181				
12.80	2.90885		2.921	2.917	2.928		2.903
19.26	2.82449		2.840	2.823	2.824		
13.48	2.67295					2.67	2.652
4.75	2.56054		2.564	2.557	2.579		
8.08	2.47047			2.468		2.49	
9.99	2.43123	2.4316		2.430			
22.77	2.22049			2.227	2.232	2.23	2.238
3.15	2.15631		2.168	2.151	2.155	2.18	2.163
100.0	2.10221	2.1056	2.100	2.100	2.111	2.08	
57.06	2.02502						
11.43	1.92173		1.937	1.916	1.948		1.907
5.16	1.78421			1.783	1.783	1.78	1.798

Tablo 4.17'nin Devamı

10.26	1.67565		1.672	1.675	1.683	1.67	1.689
46.73	1.48883	1.4890	1.484			1.480	
8.88	1.43101					1.435	
2.14	1.28629					1.283	
5.63	1.26879	1.2698				1.268	
3.33	1.22863					1.235	
9.90	1.21653	1.2157					
2.48	1.20245						

Table 4.10 LADO-J III IK Spektrulli verher
--

Titreșim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1024,28
$v_1(BO_4)$	885,52
$v_4(BO_4)$	644,38
v ₂ (BO ₃)	783,37
$v_{s}(BO_{3})$	926,06
$v_{as}(BO_3)$	1455,02
$v_4(H_3BO_3)$	546,27
(B-O-H)	1195,01

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS Kart	(JCPDS
		Kart No :	Kart No :	Kart No :	No: 15-0537)	Kart No :
		45-0946)	30-0199)	16-0168)		05-0648)
8.47	6.87192					
11.34	6.01245					
13.95	5.19522					
24.09	4.43822					
12.65	4.36788					
11.04	4.09857		4.06	4.091		
23.03	3.95864					
6.46	3.82754					
14.20	3.64029					
17.84	3.58946					
24.19	3.42314					
24.10	3.18591		3.181			
9.55	3.11707				3.121	
16.79	2.90328		2.921	2.917	2.928	
22.41	2.82546			2.823	2.824	
20.40	2.67665					2.67
9.32	2.47225			2.468		2.49
9.64	2.42494	2.4316		2.430	2.431	
12.80	2.33835					2.31
5.78	2.26931					2.27
5.74	2.24549		2.235		2.232	2.23
20.84	2.21689			2.227		
9.80	2.14468		2.168	2.151	2.134	
93.09	2.10344	2.1056	2.100	2.100	2.111	
5.17	2.06814		2.094	2.051	2.066	2.08
100.0	2.02632					
12.93	1.98200					1.98
5.62	1.97325				1.973	
7.42	1.92435		1.937	1.916		
6.42	1.78393			1.783	1.783	1.78
4.79	1.70431			1.710	1.719	

Tablo 4.19 EAD6-5'in X-ışını toz difraksiyon verileri

Tablo 4.19'	un Devamı
-------------	-----------

5.06	1.67857		1.672	1.675	1.667	1.67
3.33	1.62876			1.626	1.624	
3.14	1.62193					1.61
2.72	1.53481			1.531		1.536
3.13	1.52563					1.510
37.36	1.48764	1.4890	1.484			1.480
8.97	1.43240					1.435
2.18	1.41633					1.405
1.95	1.39584					
1.77	1.37173					
1.89	1.35095					1.350
1.92	1.31660					1.310
4.41	1.26949	1.2698				1.256
5.90	1.22154					1.235
5.65	1.21169	1.2157				

Tablo 4.20 EAD6-6'nın IR spektrum verileri

Titreșim	Frekans (cm ⁻¹)
$\nu_3(BO_4)$	1023,64
$\nu_1(BO_4)$	884,69
$\nu_4(BO_4)$	643,94
$v_2(BO_3)$	783,99
$\nu_s(BO_3)$	925,82
$v_{as}(BO_3)$	1455,19
v ₄ (H ₃ BO ₃)-(B-O-H)	546,11-1194,67

Tablo 4.21 EAD6-6'nın X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H ₃ BO ₃	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No :
		45-0946)	30-0199)	16-0168)	15-0537)	05-0648)
23.49	8.15213					
8.12	6.77674					
8.16	6.59004					
7.19	4.33829					
28.71	3.97735					
6.20	3.77612					
10.97	3.60703					
7.40	3.51909					
13.68	3.42886					
6.15	3.36516					
12.72	3.20703			3.214	3.211	3.21
11.39	2.92518		2.921	2.917	2.928	
15.05	2.83270		2.840	2.823	2.824	
12.53	2.68136					2.67
3.42	2.59083					
5.10	2.45826	2.4316		2.430	2.431	
15.65	2.33715					
5.58	2.31656					2.31

Tablo 4.21'in Devamı

4.62	2.28665		2.284	2.281	2.287	
6.27	2.27410					
18.86	2.22224		2.168	2.227	2.232	2.23
61.79	2.10574	2.1056	2.100	2.100	2.111	
4.61	2.07572		2.094	2.051	2.066	2.08
100.00	2.02421					
6.37	1.98627				1.973	1.98
10.48	1.93738		1.937	1.916	1.948	
4.87	1.86249			1.884	1.850	
2.55	1.82638			1.817	1.842	
1.44	1.78764			1.783	1.783	1.78
3.54	1.67835		1.672	1.675	1.667	1.67
3.60	1.63015		1.642	1.626	1.624	1.64
2.20	1.57657		1.575			1.58
3.74	1.56696			1.562		1.55
27.21	1.48911	1.4890	1.484			1.480
1.71	1.47032					
14.46	1.43075					1.435
4.68	1.32541					1.322
2.58	1.30870					1.310
2.54	1.29678					1.293
3.61	1.27509	1.2698				1.278
2.38	1.23782					1.235
2.34	1.23164					
8.93	1.22118	1.2157				
2.52	1.20051					

4.2.2.3 MgO + H₃BO₃ (EAD7-1)

Stokiyometrik oranlarında hazırlanan ve kül fırınında 700 °C'de üç saat süreyle ısıtılan deneyin sonucunda elde edilen ürünün şekil 4.37'de verilen X-ışını toz difraksiyon desenlerinde bulunan 'd' değerleri incelendiğinde (Tablo 4.23) artan sıcaklıkla beraber reaksiyona giren MgO (JCPDS Kart No : 45-0946) miktarının arttığı 'd' değerlerinden ve azalan pik şiddetlerinden anlaşılmaktadır, aynı durum H₃BO₃ (JCPDS Kart No : 30-0199) için de geçerlidir. Bununla beraber Mg₂B₂O₅ (JCPDS Kart No : 16-0168),(JCPDS Kart No : 15-0537) ve Mg₃(BO₃)₂ (JCPDS Kart No : 05-0648), (JCPDS Kart No :33-0858) fazlarının bir arada oluştuğu ve pik şiddetlerinin arttığı görülmektedir. Pik şiddetleri incelendiğinde Mg₂B₂O₅ fazının Mg₃(BO₃)₂ fazına öre daha iyi kristallendiği görülmektedir.

Bu bilgilerin ışığında 700 °C'de, 600 °C'ye göre kristalleşmenin daha iyi olduğu söylenebilir. Benzer deneyler H_3BO_3 miktarı 2, 3, 4, 5 ve 6 mol oranlarında arttırılarak MgO ile 700 °C'de gerçekleştirilmiş (EAD7-2, EAD7-3, EAD7-4, EAD7-5, EAD7-6) ve benzer sonuçlar elde edilmiştir (Şekil 4.39, Şekil 4.41, Şekil 4.43, Şekil 4.45, Şekil 4.47) (Tablo 4.25, Tablo 4.27, Tablo 4.29, Tablo 4.31, Tablo 4.33).

Bu deneyler ait IR spektrumları sırasıyla Şekil 4.38, Şekil 4.40, Şekil 4.42, Şekil 4.44, Şekil 4.46, Şekil 4.48 ve Tablo 4.22, Tablo 4.24, Tablo 4.26, Tablo 4.28, Tablo 4.30, Tablo 4.32'de verilmiş olup $Mg_3(BO_3)_2$ ve $Mg_2B_2O_5$ bileşiklerine ait fonksiyonel grupların varlığı da bu yöntemle desteklenmiştir.

Tablo 4.22 EAD7-1'in IR spektrum verileri

Titreșim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1025,26
$\nu_1(BO_4)$	889,20
$\nu_4(BO_4)$	574,22
v ₂ (BO ₃)	783,19
$v_s(BO_3)$	925,88
$v_{as}(BO_3)$	1433,87
$v_{st}(B-O)$	1138,41

Tablo 4.23 EAD7-1'in X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H ₃ BO ₃	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No :	Kart No :
		45-0946)	30-0199	16-0168)	15-0537)	05-0648)	33-0858)
33.27	8.63273						
25.83	6.87742						
17.98	5.72761						
19.45	5.19287						
19.03	4.44653			4.47	4.473		
18.34	3.96883						
8.77	3.62081						
10.55	3.42772						
8.95	3.19902		3.181				3.21
8.36	2.91066		2.921	2.917	2.928	2.903	
13.84	2.81808			2.823	2.824		
6.46	2.71160		2.722	2.732	2.717	2.702	
14.18	2.56650		2.564	2.557	2.579		
7.83	2.42025	2.4316		2.430	2.431		
2.55	2.39819						2.39
1.78	2.38475						
1.56	2.36919						

Tablo 4.23'ün Devamı

2.76	2.33981					2.324	2.31
1.80	2.25579		2.256		2.287	2.261	2.27
7.85	2.21415			2.227	2.232	2.238	2.23
6.12	2.14851		2.168	2.151	2.155	2.163	
87.54	2.10874		2.100		2.134		
100.00	2.10119	2.1056	2.094	2.100	2.111		2.08
18.52	2.02516						
5.67	1.92420		1.934	1.916	1.948		
3.82	1.77709			1.783	1.783		1.78
1.90	1.73119			1.730	1.719	1.725	
1.40	1.71068			1.710	1.706		
0.46	1.61971			1.626	1.616		
51.66	1.48736	1.4890	1.484				1.480
0.89	1.46051						
1.66	1.45626						
2.79	1.43034						1.435
2.01	1.36733						1.366
1.60	1.36105						1.361
1.69	1.32018						1.322
1.51	1.30316						1.310
1.48	1.27841						1.278
7.08	1.26959	1.2698					1.256
12.30	1.21458	1.2157					

Titreșim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1025,71
$v_1(BO_4)$	888,39
$v_4(BO_4)$	686,21
v ₂ (BO ₃)	783,01
$v_{s}(BO_{3})$	925,87
$v_{as}(BO_3)$	1434,09
$v_4(H_3BO_3)$	545,84
$v_{st}(B-O)$	1137,30
В-О-Н	1194,71

Tablo 4.24 EAD7-2'nin IR spektrum verileri

Tablo 4.25 EAD7-2'nin X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No :	Kart No :
		45-0946)	30-0199	16-0168)	15-0537)	05-0648)	33-0858)
5.00	6.05002		6.05				
21.68	5.18249						
28.98	4.42228						
8.85	4.08051		4.06	4.091	4.099	4.00	
32.56	3.97136						
20.77	3.59949						3.57
19.60	3.42868						
3.83	3.26238						
14.12	3.11837		3.142		3.121		
17.87	2.90886		2.921	2.917	2.928		2.903
28.83	2.83114		2.840	2.823	2.824		
5.66	2.72389		2.722	2.732	2.717		
25.23	2.68052					2.67	
14.08	2.64010		2.641	2.637	2.635		2.652
16.63	2.58594			2.557	2.579		

Tablo 4.25'in Devamı

11.42	2.47098			2.468		2.49	
10.36	2.42690	2.4316		2.430	2.431		
2.20	2.37510					2.39	2.396
7.54	2.32881					2.31	2.324
29.56	2.22065			2.227	2.232	2.23	2.163
100.00	2.10282	2.1056	2.100	2.100	2.111	2.08	
12.32	2.04007		2.094	2.051	2.05	2.03	
59.59	2.02573						
11.11	1.99866					2.01	
11.30	1.98099					1.98	
5.39	1.96597				1.973		
5.52	1.95762		1.948		1.948		
15.96	1.92161		1.937	1.916			1.907
5.22	1.84922				1.850		1.851
5.32	1.84109			1.841	1.842		
5.80	1.82000			1.817			
7.06	1.77862			1.783	1.783	1.78	1.798
3.67	1.76905			1.761			
7.15	1.74319			1.730		1.73	
6.68	1.71532			1.710	1.719		1.725
4.86	1.69412		1.691		1.683		
7.59	1.67786		1.672	1.675	1.667	1.67	
2.62	1.65583		1.642	1.660	1.640	1.64	
7.37	1.62982			1.626	1.624	1.61	
4.01	1.57491		1.575	1.585		1.58	
7.51	1.56021			1.562			
5.12	1.55353			1.549		1.55	
5.16	1.52845			1.531		1.536	
47.70	1.48729	1.4890	1.484			1.480	
8.07	1.43191					1.435	
2.00	1.40854					1.405	
2.72	1.36175					1.361	
2.16	1.34564					1.350	
3.03	1.31093					1.310	
3.97	1.28555					1.283	

Tablo 4.26 EAD7-3'ün IR spektrum verileri

Titreșim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1026,28
v ₁ (BO ₄)	886,48
$v_4(BO_4)$	644,77
v ₂ (BO ₃)	783,58
$v_s(BO_3)$	925,58
$v_{as}(BO_3)$	1470,18
$v_4(H_3BO_3)$	545,84
v _{st} (B-O)	1137,67
В-О-Н	1194,98

Tablo 4.27 EAD7-3'ün X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No :	Kart No :
		45-0946)	30-0199)	16-0168)	15-0537)	05-0648)	33-0858)
24.25	8.51498						
13.06	6.07829		6.05				
22.80	5.16914						
13.10	4.58242		4.60				
30.48	4.44176			4.47	4.47		
14.90	4.14940						
15.27	4.11343						
11.59	4.06408		4.06	4.099	4.091		
40.76	3.96443						
21.58	3.60101						
38.66	3.43259						
22.55	3.12271		3.142	3.121			
26.79	2.91141		2.921	2.928	2.917		2.903
47.09	2.82686			2.824	2.823		
24.27	2.67405					2.67	

Tablo 4.27'nin Devamı

20.89	2.46826	2.4316		2.431	2.468	2.49	
37.39	2.22004			2.232	2.227	2.23	2.238
11.57	2.14856		2.168	2.155	2.151		2.163
100.00	2.10252	2.1056	2.100	2.111	2.100	2.08	
9.70	2.06146		2.094	2.066	2.051		
13.66	2.04117			2.050		2.03	
45.97	2.02653						
12.86	2.00790			2.009	2.010	2.01	
9.58	1.98315					1.98	
12.55	1.97758			1.973			
12.40	1.95043		1.948	1.948			
13.04	1.94011		1.937				1.938
18.94	1.91944				1.916		
13.48	1.91095						1.907
7.67	1.82454				1.843		
4.95	1.80095					1.80	
15.01	1.78302			1.783	1.783	1.78	
7.61	1.74382				1.730	1.73	
14.14	1.68030			1.683	1.675	1.67	1.689
6.05	1.62909		1.642	1.640	1.626	1.64	
6.45	1.62324			1.624		1.61	
4.83	1.59667		1.591		1.585	1.58	
2.88	1.57507		1.575		1.562	1.55	
43.92	1.48944	1.4890	1.484			1.480	
2.44	1.45007						
9.01	1.43295					1.435	
3.60	1.36825					1.366	
7.58	1.36081					1.361	
2.03	1.33596					1.322	
5.91	1.29148					1.293	
6.61	1.27033	1.2698				1.278	
8.47	1.25391					1.256	
12.57	1.21473	1.2157				1.235	

	1
Titreșim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1025,19
v ₁ (BO ₄)	886,20
v ₄ (BO ₄)	647,75
$\nu_b(BO_4)$	454,61
v ₂ (BO ₃)	784,31
$v_{s}(BO_{3})$	925,84
$v_{as}(BO_3)$	1469,89
$v_4(H_3BO_3)$	547,07
v _{st} (B-O)	1137,67
В-О-Н	1194,93

Tablo 4.28 EAD7-4'ün IR spektrum verileri

Tablo 4.29 EAD7-4'ün X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No :	Kart No :
		45-0946)	30-0199)	16-0168)	15-0537)	05-0648)	33-0858)
7.32	6.08101		6.05				
5.61	5.52530						
31.34	5.16714						
33.78	4.44561			4.47	4.473		
37.23	3.95803						
21.25	3.60829						
15.83	3.41782						
17.08	3.12423		3.142		3.121		
19.54	2.90557		2.921	2.917	2.928		2.903
42.54	2.82969		2.840	2.823	2.824		
25.76	2.67819					2.67	
14.05	2.62871		2.641	2.637	2.635		
10.57	2.56206		2.564	2.557	2.579		
12.40	2.47975	2.4316		2.468		2.49	

Tablo 4.29'un Devamı

4.77	2.39800					2.39	2.396
5.17	2.33304					2.31	2.324
6.95	2.29452		2.290	2.281	2.287	2.27	
37.09	2.21960		2.235	2.227	2.232		2.163
66.63	2.10610	2.1056	2.100	2.100	2.111	2.08	
100.00	2.02423						
14.61	2.00664			2.010	2.009	2.01	
10.72	1.98638				1.973	1.98	
23.24	1.92188		1.934	1.916	1.948		1.938
10.15	1.90403						1.907
11.75	1.89705						
10.82	1.88434			1.884	1.888		1.851
7.63	1.82171			1.817	1.842		
9.29	1.78271			1.783	1.783	1.78	1.798
8.47	1.74630			1.730		1.73	
12.51	1.71508			1.710	1.719		1.725
20.15	1.67831		1.672	1.675	1.683	1.67	1.689
4.43	1.66574			1.660	1.667		
8.25	1.62872		1.643	1.626	1.624	1.61	
5.13	1.58964		1.591				
1.91	1.58324			1.585		1.58	
7.22	1.53665			1.531		1.536	
31.32	1.49063	1.4890	1.484			1.490	
7.86	1.44664						
11.43	1.43116					1.435	
2.89	1.41528					1.405	
6.43	1.37948					1.366	
4.58	1.32843					1.322	
2.20	1.31065					1.310	
2.96	1.27829					1.278	
6.53	1.27108						
5.70	1.25293	1.2698				1.256	
8.34	1.21483	1.2157				1.235	

Titreșim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1025,44
$v_1(BO_4)$	885,85
$v_4(BO_4)$	642,69
v ₂ (BO ₃)	783,93
$v_{s}(BO_{3})$	925,31
$v_{as}(BO_3)$	1470,33
$v_4(H_3BO_3)$	546,35
В-О-Н	1194,81

Tablo 4.30 EAD7-5'in IR spektrum verileri

Tablo 4.31 EAD7-5'in X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No :	Kart No :
		45-0946)	30-0199)	16-0168)	15-0537)	05-0648)	33-0858)
13.11	8.40268						
13.02	6.20213						
12.91	5.47982						
30.08	5.18460						
14.72	5.05474		5.00				
32.81	4.43609						
41.29	3.97263						
24.87	3.59803						3.57
38.13	3.43549						
27.24	3.19430		3.194		3.211		
31.47	3.12763		3.142		3.121		
4.10	2.98770			2.983	2.978		
23.46	2.91619		2.921	2.917	2.928		2.903
31.78	2.82477			2.823	2.824		
26.53	2.67616					2.67	
9.10	2.63905		2.641	2.637	2.635		2.652

Tablo 4.31'in Devamı

16.81	2.53966		2.549	2.557	2.536		
18.20	2.46802	2.4316		2.468			
9.66	2.33028					2.31	2.324
7.58	2.28195			2.281			
7.79	2.26594					2.27	2.261
42.19	2.22194		2.235	2.227	2.232	2.23	2.238
11.18	2.14864		2.168	2.151	2.155		2.163
49.64	2.10383	2.1056	2.100	2.100	2.111	2.08	
11.83	2.04995		2.094	2.051	2.050	2.03	
100.00	2.02410						
17.13	1.98283				1.973	1.98	
21.11	1.92033		1.937	1.916			1.93
12.54	1.86863			1.884	1.850		1.851
5.30	1.82647			1.817	1.842		
8.71	1.78039			1.783	1.783	1.78	1.798
6.27	1.76369			1.761			
7.69	1.74523						
4.93	1.73212			1.730		1.73	1.725
8.93	1.71039			1.710	1.706		
9.02	1.68667				1.683		1.689
13.32	1.67688		1.672	1.675	1.667	1.67	
5.72	1.52936			1.531		1.536	
4.19	1.51926						
8.43	1.51309					1.510	
28.56	1.48898	1.4890	1.484			1.480	
11.46	1.43228					1.435	
3.32	1.39054						
2.60	1.38487					1.366	
5.16	1.35961					1.361	
4.73	1.24319	1.2698				1.244	
3.41	1.22408					1.235	
6.94	1.21367	1.2157					

Titreşim	Frekans (cm ⁻¹)
$v_3(BO_4)$	1026,07
$v_1(BO_4)$	885,34
$v_4(BO_4)$	646,62
v ₂ (BO ₃)	791,72
$v_s(BO_3)$	925,18
$v_{as}(BO_3)$	1455,54
v ₄ (H ₃ BO ₃)	546,74
В-О-Н	1194,83

Tablo 4.32 EAD7-6'nın IR spektrum verileri

Tablo 4.33 EAD7-6'nın X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No	Kart No :
		45-0946)	30-0199)	16-0168)	15-0537)	:05-0648)	33-0858)
3.59	5.57528						
5.30	5.46663						
23.26	5.18735						
27.28	4.44111			4.47	4.473		
18.33	4.09912		4.06	4.091	4.099	4.00	
37.77	3.96377						
8.46	3.70857						
15.20	3.59471						3.57
28.72	3.43759						
21.10	3.19001		3.181			3.21	
22.55	3.12849		3.142		3.121		
14.09	2.90191		2.921	2.917	2.928		2.903
32.67	2.83124		2.840	2.823	2.824		
4.09	2.78602			2.765			
9.09	2.70882		2.722	2.732	2.700		2.702
24.42	2.67971					2.67	2.652
8.77	2.52073			2.557	2.513		

Tablo 4.33'ün Devamı

6.78	2.46937			2.468			
8.33	2.33899						
3.12	2.29346				2.287	2.27	
31.12	2.22146		2.235	2.227	2.231	2.23	2.238
4.39	2.14751		2.168	2.151	2.155		2.163
33.49	2.11163		2.100		2.111		
29.03	2.10012	2.1056	2.094	2.100		2.08	
100.00	2.02592						
16.67	1.92418		1.937	1.916	1.948		1.938
7.29	1.90831						1.907
9.63	1.78448			1.783	1.783	1.78	1.798
4.62	1.74930			1.761			
4.80	1.72848			1.730	1.719	1.73	1.725
5.03	1.67219		1.672	1.675		1.67	
3.05	1.64852		1.642	1.645	1.640	1.64	
3.15	1.58641		1.591	1.585		1.58	
2.42	1.56523		1.575	1.562			
6.36	1.56024					1.55	
5.20	1.54595			1.549		1.536	
4.09	1.52387			1.531			
17.08	1.48944	1.4890	1.484			1.480	
3.31	1.45966						
11.59	1.43149					1.435	
2.20	1.39733						
3.13	1.32736					1.322	
2.46	1.30343					1.310	
3.63	1.26120	1.2698				1.256	
6.34	1.22044						
11.77	1.21791	1.2157					

4.2.2.4 MgO + H₃BO₃ (EAD8-1)

Stokiyometrik oranlarında hazırlanan ve kül fırınında 800 °C'de üç saat süreyle ısıtılan deneyin sonucunda elde edilen ürünün şekil 4.49'de verilen X-ışını toz difraksiyon desenlerinde bulunan 'd' değerleri incelendiğinde (Tablo 4.35) artan sıcaklıkla beraber reaksiyona giren MgO (JCPDS Kart No : 45-0946) miktarının arttığı 'd' değerlerinden ve azalan pik şiddetlerinden anlaşılmaktadır. Bununla beraber Mg₂B₂O₅ (JCPDS Kart No : 16-0168),(JCPDS Kart No : 15-0537) ve Mg₃(BO₃)₂ (JCPDS Kart No : 05-0648), (JCPDS Kart No :33-0858) fazlarının bir arada oluştuğu ve pik şiddetlerinin arttığı görülmektedir. Pik şiddetleri incelendiğinde Mg₂B₂O₅ fazının Mg₃(BO₃)₂ fazına öre daha iyi kristallendiği görülmektedir.

Bu bilgilerin ışığında 800 °C'de ,700 °C'ye göre kristalleşmenin daha iyi olduğu söylenebilir. Benzer deneyler H₃BO₃ miktarı 2, 3, 4, 5, ve 6 mol oranlarında arttırılarak MgO ile 800 °C'de gerçekleştirilmiş (EAD8-2, EAD8-3, EAD8-4, EAD8-5, EAD8-6) bunlardan borik asit miktarının iki mol olduğu deneyde (EAD8-2) benzer sonuçlar elde edilmiştir, borik asit miktarının 3, 4, 5 ve 6 olduğu deneylerin sonuçları incelendiğinde artan borik asit miktarı sebebiyle bir miktar borik asidin reaksiyona girmeden kaldığı 'd' değerlerinden anlaşılmaktadır (Şekil 4.51, Şekil 4.53, Şekil 4.55, Şekil 4.57, Şekil 4.59) (Tablo 4.37, Tablo 4.39, Tablo 4.41, Tablo 4.43, Tablo 4.45).

Bu deneyler ait IR spektrumları sırasıyla Şekil 4.50, Şekil 4.52, Şekil 4.54, Şekil 4.56, Şekil 4.58, Şekil 4.60 ve Tablo 4.34, Tablo 4.36, Tablo 4.38, Tablo 4.40, Tablo 4.42, Tablo 4.44'de verilmiş olup $Mg_3(BO_3)_2$ ve $Mg_2B_2O_5$ bileşiklerine ait fonksiyonel grupların varlığı da bu yöntemle desteklenmiştir.

Titreşim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1023,90
$\nu_1(BO_4)$	888,80
$v_4(BO_4)$	497,69
$v_{as}(BO_4)$	839,99
v ₃ (BO ₃)	1293,63
$v_b(BO_3)$	710,91
$v_{as}(BO_3)$	1403,54
$v_{st}(B-O)$	1133,91

Tablo 4.34 EAD8-1'in IR spektrum verileri

Tablo 4.35 EAD8-1'in X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	$Mg_2B_2O_5$	$Mg_2B_2O_5$	Mg ₃ (BO ₃) ₂	Mg ₃ (BO ₃) ₂
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No	Kart No :
		45-0946)	16-0168)	15-0537)	:05-0648)	33-0858)
8.03	7.26834					
12.67	6.19431					
40.40	4.45075		4.47	4.473		
7.61	4.08165		4.091	4.099		
9.05	3.05089		3.020	3.065		
10.81	2.97304		2.983	2.979		
49.69	2.82679		2.823	2.824		
16.46	2.71140		2.732	2.717		2.702
18.62	2.64407		2.637	2.700		2.652
37.50	2.61497			2.635		2.601
100.00	2.58766		2.557	2.579		
12.57	2.46718		2.468			
9.62	2.42729	2.4316	2.430	2.431		
11.35	2.14625		2.151	2.155		2.163
12.64	2.12978			2.134		
50.27	2.10779	2.1056	2.100	2.111		
35.66	2.02692					
53.69	2.00629		2.010	2.009	2.01	

Tablo 4.35'in Devamı

20.02	1.92607		1.916	1.948		1.938
18.24	1.88594		1.884	1.888		
15.61	1.84189		1.843	1.842		1.851
13.55	1.78509		1.783	1.783	1.78	1.798
15.64	1.71181		1.710	1.706	1.73	1.725
5.38	1.69926		1.675	1.683	1.67	1.689
7.01	1.61487		1.626	1.616	1.61	
9.17	1.59830		1.585		1.58	
31.76	1.56355		1.562		1.55	
24.17	1.51205				1.510	
28.82	1.48674	1.4890			1.480	
5.31	1.43035				1.435	
4.36	1.41265					
7.73	1.37689					
4.47	1.37025				1.366	
4.21	1.30516				1.310	
3.14	1.29682				1.293	
5.98	1.24475	1.2698			1.244	
19.22	1.21583	1.2157			1.235	
5.21	1.20490					

Titreșim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1024,70
$v_1(BO_4)$	888,22
$\nu_4(BO_4)$	574,01
$v_{as}(BO_4)$	824
$\nu_{s}(BO_{4})$	840,34
v ₃ (BO ₃)	1300,16
v ₂ (BO ₃)	783,22
$v_b(BO_3)$	705,06
$v_{as}(BO_3)$	1392,59
$v_s(BO_3)$	925,40
$v_{st}(B-O)$	1136,42
В-О-Н	1196,04

Tablo 4.36 EAD8-2'nin IR spektrum verileri

Tablo 4.37 EAD8-2'nin X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No	Kart No :
		45-0946)	16-0168)	15-0537)	:05-0648)	33-0858)
14.77	8.57947					
9.46	7.72641					
3.24	5.88932					
7.45	5.16572					
15.79	4.47993		4.47	4.473		
11.24	4.00136				4.00	
6.40	3.61702					
12.21	3.44885				3.47	
8.85	3.15062					
7.82	2.93178		2.917	2.928		2.943
12.80	2.84800		2.823	2.824		
10.14	2.69050					
14.90	2.60550					2.601

1 auto 4.57 mm Dev

17.05	2.56323		2.556	2.579		
4.78	2.46109		2.468			
3.03	2.40698			2.431		
2.03	2.39245					2.396
13.30	2.33732					2.324
11.31	2.22692		2.227	2.232	2.23	
5.03	2.20097				2.18	2.163
17.05	2.10988	2.1056	2.100	2.111	2.08	
12.71	2.03881		2.051	2.050	2.03	
100.00	2.02536					
5.60	1.98819			1.973	1.98	
5.73	1.92697		1.916	1.948		1.938
5.35	1.78749		1.783	1.783	1.78	1.798
2.68	1.77338		1.761			
6.76	1.71419		1.710		1.73	1.725
3.18	1.67869		1.675		1.67	1.689
3.79	1.63290		1.626		1.64	
4.66	1.61613		1.604		1.61	
8.66	1.56554		1.562		1.55	
3.15	1.54227		1.549		1.536	
6.98	1.51144				1.510	
8.10	1.49011				1.480	
1.82	1.44657					
7.57	1.43220				1.435	
2.03	1.28796				1.293	
2.96	1.28519	1.2698			1.283	
10.61	1.22094	1.2157			1.235	

Titreșim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1025,30
$v_1(BO_4)$	887,17
$v_4(BO_4)$	573,53
$\nu_b(BO_4)$	454,92
$\nu_{s}(BO_{4})$	840,10
v ₂ (BO ₃)	783,14
$v_{as}(BO_3)$	1478,54
$\nu_s(BO_3)$	925,22
v ₄ (H ₃ BO ₃)	547,11
v ₂ (H ₃ BO ₃)	685,63
$v_{st}(B-O)$	1136,42
В-О-Н	1196,04

Tablo 4.38 EAD8-3'ün IR spektrum verileri

Tablo 4.39 EAD8-3'ün X-ışını toz difraksiyon verileri

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No	Kart No :
		45-0946)	30-0199)	16-0168)	15-0537)	:05-0648)	33-0858)
25.09	5.94952		5.91	5.96	5.96		
66.85	5.17616						
95.24	4.44397			4.47	4.47		
97.28	3.95610						3.92
66.53	3.58986						3.57
0.90	3.51213						
76.31	3.42726						
100.0	3.17662		3.181				
60.67	3.12459		3.142		3.121		
42.69	2.90712		2.921	2.917	2.928		2.903
99.17	2.81804			2.823	2.824		
10.72	2.74944		2.722	2.732			
48.26	2.66769					2.67	2.652

Tablo 4.39'un Devamı

50.29	2.58387		2.569		2.579		
66.36	2.54879		2.549	2.557	2.536		
18.15	2.46549			2.468		2.49	
5.84	2.31213					2.31	2.324
86.27	2.21666		2.235	2.227	2.232	2.23	
10.17	2.16708		2.168	2.187	2.155	2.18	2.163
23.32	2.13444			2.151	2.134		
66.54	2.10097	2.1056	2.100	2.100	2.111	2.08	
41.43	2.00510		2.094	2.010	2.050	2.03	
65.62	1.91995		1.937	1.916			1.907
13.88	1.81648			1.817		1.80	
21.23	1.78270			1.783	1.783	1.78	1.798
8.43	1.74095			1.730		1.73	
32.84	1.71035			1.710	1.706		1.725
28.08	1.67498		1.672		1.667	1.67	1.689
16.83	1.57432		1.575	1.585		1.58	
20.00	1.56225			1.562		1.55	
41.91	1.48749		1.484			1.480	
10.18	1.43228					1.435	
4.58	1.42575						
8.42	1.36249					1.361	
10.45	1.32383		1.672			1.322	
6.11	1.31825		1.642			1.310	
5.97	1.30560		1.581				
8.51	1.25207	1.2698	1.575			1.256	
1.54	1.21419	1.2157				1.235	

Titreşim	Frekans (cm ⁻¹)
$v_3(BO_4)$	1025,24
$v_1(BO_4)$	887,50
$\nu_4(BO_4)$	649,60
v ₂ (BO ₃)	783,16
$v_{as}(BO_3)$	1474,06
$v_{s}(BO_{3})$	925,20
$v_4(H_3BO_3)$	547,35
$v_{st}(B-O)$	1137,28
B-O-H	1195,45

Tablo 4.40 EAD8-4'ün IR spektrum verileri

Tablo 4.41 EAD8-4'ün X-ışını toz difraksiyon verileri

I/I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No	Kart No :
		45-0946)	30-0199)	16-0168)	15-0537)	:05-0648)	33-0858)
13.32	6.01482		6.05				
9.09	5.37118						
27.05	5.15101						
8.31	4.95423						
36.94	4.44158						
10.39	4.34502						
11.04	4.15025						
57.50	3.96392						
9.95	3.86759						
21.69	3.58987						3.57
44.93	3.43365						
8.09	3.26695						
45.20	3.19444		3.181				
27.07	3.13326		3.142		3.121		
31.03	2.90773		2.921	2.917	2.928		2.903
53.43	2.82676			2.823	2.824		
37.18	2.67840					2.67	

Tablo 4.41'in Devamı

21.54	2.55358		2.549	2.557	2.579		
18.89	2.47116			2.468		2.49	
7.85	2.41687	2.4316		2.430	2.431		
3.57	2.36140						
14.79	2.33173					2.31	2.324
47.47	2.21721		2.235	2.227			
11.60	2.15017		2.168	2.151	2.155	2.18	2.163
23.94	2.10711	2.1056	2.100	2.100	2.111		
10.03	2.08626		2.094	2.051	2.066	2.08	
100.0	2.02333						
13.04	1.98298				1.973	1.98	
33.34	1.92275		1.937	1.916			1.938
13.59	1.82108			1.817			
16.07	1.78265			1.783	1.783	1.78	1.798
4.21	1.76464			1.761			
7.77	1.74346			1.730		1.73	
11.11	1.71821			1.710	1.719		1.725
16.28	1.67495		1.672	1.675	1.683	1.67	1.689
5.40	1.64463		1.642	1.645	1.640	1.64	
5.78	1.62462			1.626	1.624		
8.21	1.61750				1.616	1.61	
6.63	1.58784		1.591	1.585		1.58	
7.50	1.56292		1.575	1.562			
3.56	1.54921			1.549		1.55	
5.13	1.54258					1.536	
20.62	1.48775	1.4890	1.484			1.480	
4.36	1.46900						
9.92	1.43228					1.435	
3.88	1.36416					1.366	
4.79	1.35259					1.350	
2.71	1.32960					1.322	
6.13	1.30150					1.310	
4.58	1.27196	1.2698				1.278	
5.26	1.25865					1.256	
13.06	1.22110					1.235	
2.60	1.20671	1.2157					

Titreșim	Frekans (cm ⁻¹)
$v_3(BO_4)$	1028,30
$\nu_1(BO_4)$	886,08
$\nu_4(BO_4)$	647,69
$v_2(BO_3)$	784,69
$v_{as}(BO_3)$	1471,22
$\nu_{s}(BO_{3})$	924,55
$\nu_4(H_3BO_3)$	547,04
$v_{st}(B-O)$	1137,62
В-О-Н	1194,96

Tablo 4.42 EAD8-5'in IR spektrum verileri

Tablo 4.43 EAD8-5'in X-ışını toz difraksiyon verileri

I/I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No	Kart No :
		45-0946)	30-0199)	16-0168)	15-0537)	:05-0648)	33-0858)
15.87	5.96335		5.91		5.96		
36.98	5.18755						
34.98	4.45101				4.473		
37.32	3.96823						
19.96	3.59773						3.57
9.79	3.49843					3.47	
31.29	3.44464						
5.77	3.29624		3.314				
41.86	3.18899		3.181				
21.76	3.12965		3.142		3.121		
17.22	2.91503		2.921		2.928		2.903
38.84	2.83221		2.840	2.823	2.824		
31.71	2.68308					2.67	
24.61	2.58620		2.564	2.557	2.579		
15.38	2.46036			2.468			
10.32	2.43462	2.4316		2.430	2.431		
25.02	2.33777					2.31	2.324

Tablo 4.43'ün Devamı

8.77	2.28396		2.284	2.281	2.287	2.27	2.261
45.80	2.22290		2.235	2.227	2.232	2.23	2.238
17.90	2.11381		2.100		2.111		
18.30	2.10050	2.1056	2.094	2.100	2.066	2.08	
16.57	2.05141			2.051	2.050	2.03	
100.0	2.02420						
21.76	1.92352		1.937	1.916	1.948		1.93
7.42	1.82022			1.817			
7.66	1.78277			1.783	1.783	1.78	1.798
5.53	1.71718			1.710	1.719	1.73	1.725
5.24	1.69790		1.691		1.683		1.689
14.87	1.67742		1.672	1.675	1.667	1.67	
6.64	1.56395		1.575	1.562		1.55	
6.30	1.51805					1.510	
19.92	1.49124	1.4890	1.484			1.480	
2.53	1.47423						
4.31	1.44937						
4.87	1.43751					1.435	
8.74	1.43290						
3.13	1.35815					1.350	
5.08	1.33964					1.322	
4.60	1.28054					1.283	
3.75	1.26377	1.2698				1.256	
3.51	1.24917					1.244	
3.90	1.23220					1.235	
6.19	1.21869	1.2157					

Titreșim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1031,37
$v_1(BO_4)$	886,33
$v_4(BO_4)$	647,71
v ₂ (BO ₃)	784,63
$v_{as}(BO_3)$	1455,52
v _s (BO ₃)	925,30
$v_4(H_3BO_3)$	547,14
В-О-Н	1195,14

Tablo 4.44 EAD8-6'nın IR spektrum verileri

Tablo 4.45 EAD8-6'nın X-ışını toz difraksiyon verileri

I/I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	MgO	H ₃ BO ₃	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No :	Kart No	Kart No :
		45-0946)	30-0199)	16-0168)	15-0537)	:05-0648)	33-0858)
19.25	8.50897						
16.95	6.09097		6.05				
19.36	5.23832						
32.37	4.44988			4.47	4.473		
40.65	3.98223						
24.85	3.60276						
19.57	3.44439					3.47	
49.86	3.20817			3.214	3.211	3.21	
25.17	3.13239		3.142		3.121		
16.70	2.92578		2.921	2.917	2.928		2.943
38.43	2.83829		2.840	2.823	2.824		
20.68	2.68690					2.67	
14.75	2.60084						2.601
12.64	2.57301		2.564	2.557	2.579		
11.57	2.53327		2.549		2.536		
7.83	2.51737				2.513		
17.28	2.48556			2.468		2.49	
7.34	2.24030		2.256			2.23	2.238

Tablo 4.45'in Devamı

39.37	2.22158		2.235	2.227	2.232		
15.48	2.14989		2.168	2.151	2.155		2.163
11.86	2.10806	2.1056	2.100	2.100	2.111		
6.68	2.07729		2.094	2.051	2.066	2.08	
100.0	2.02267						
16.44	1.92648		1.937	1.916	1.948		1.938
6.54	1.85813			1.843	1.850		1.851
17.33	1.78637			1.783	1.783	1.78	1.798
8.66	1.77850			1.761			
2.70	1.73266			1.730	1.719	1.73	1.725
9.65	1.69403		1.691				
6.07	1.68819			1.675			1.689
8.31	1.68227		1.672	1.660	1.683	1.67	
8.90	1.60220			1.604	1.604	1.61	
5.32	1.58680		1.591	1.585		1.58	
9.31	1.58052		1.575	1.562			
5.42	1.53534			1.531		1.536	
5.94	1.50558					1.510	
10.25	1.50063						
12.43	1.48791	1.4890	1.484				
8.33	1.48117					1.480	
4.36	1.46519						
4.22	1.44461						
7.97	1.43123					1.435	
4.48	1.37779					1.366	
10.11	1.36003					1.361	
4.74	1.34486					1.350	
5.12	1.34074						
2.51	1.23434					1.232	
8.80	1.22126	1.2157					

4.2.2.5 MgO + H₃BO₃ (EAD9-3)

Stokiyometrik oranlarında hazırlanan ve kül fırınında 900 ⁰C'de üç saatte gerçekleştirilen deneyin sonucunda elde edilen ürünün şekil 4.2.2.5.1'de verilen Xışını toz difraksiyon deseninde bulunan 'd' değerlerine göre bir miktar H₃BO₃'ün reaksiyona girmeden kaldığı (JCPDS Kart No : 30-0199) ve Mg₂B₂O₅ (JCPDS Kart No : 16-0168),(JCPDS Kart No : 15-0537) ve Mg₃(BO₃)₂ (JCPDS Kart No : 05-0648), (JCPDS Kart No : 33-0858) fazlarının bir arada oluştuğu ve pik şiddetlerinin arttığı görülmektedir. Pik şiddetleri incelendiğinde Mg₂B₂O₅ fazının Mg₃(BO₃)₂ fazına öre daha iyi kristallendiği görülmektedir(Tablo 4.2.2.5.2)

Bu deneye ait IR spektrumu Şekil 4.2.2.5.2 ve Tablo4.2.2.5.1'de verilmiş olup $Mg_3(BO_3)_2$ ve $Mg_2B_2O_5$ bileşiklerine ait fonksiyonel grupların varlığı da bu yöntemle desteklenmiştir.

Titreșim	Frekans (cm ⁻¹)
v ₃ (BO ₄)	1023,90
$v_1(BO_4)$	887,24
$v_{s}(BO_{4})$	839,95
v ₂ (BO ₃)	782,49
$v_{as}(BO_3)$	1434,24
$v_{s}(BO_{3})$	924,96
$v_4(H_3BO_3)$	545,70
$v_2(H_3BO_3)$	685,38
$v_{st}(B-O)$	1136,35
В-О-Н	1195,16

Tablo 4.46 EAD9-3'ün IR spektrum verilerli

I / I _o	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)	d (Å)
	(deneysel)	H_3BO_3	$Mg_2B_2O_5$	$Mg_2B_2O_5$	$Mg_3(BO_3)_2$	$Mg_3(BO_3)_2$
		(JCPDS	(JCPDS	(JCPDS	(JCPDS	(JCPDS
		Kart No :	Kart No :	Kart No :	Kart No	Kart No :
		30-0199)	16-0168)	15-0537)	:05-0648)	33-0858)
69.69	5.14846					
73.94	4.40864					
28.74	4.07714	4.06	4.091	4.099	4.00	
72.54	3.96038					3.92
29.14	3.60051					3.57
27.12	3.48410				3.47	
71.74	3.42232					
49.15	3.11906	3.142		3.121		
30.76	2.90561		2.917			2.903
100.0	2.81471	2.840	2.823	2.824		
62.67	2.67181				2.67	
89.49	2.58787					
80.23	2.55616	2.549	2.557	2.536		
35.98	2.45899		2.468	2.431	2.49	
95.94	2.21753	2.168	2.227	2.232	2.18	
8.14	2.13964		2.151	2.134		
45.86	2.00132	2.094	2.010	2.009	2.01	
11.82	1.97693			1.973	1.98	
51.97	1.91737	1.937	1.916			1.907
10.78	1.88051		1.884	1.888		
12.83	1.81537		1.817		1.80	
35.94	1.77872		1.783		1.78	
25.71	1.71239		1.710	1.719	1.73	
35.27	1.67580	1.672	1.675	1.683	1.67	1.689
13.92	1.56022	1.575	1.562		1.55	
19.05	1.52955		1.531		1.536	
32.84	1.50835				1.510	
23.88	1.48922	1.484			1.480	
10.78	1.44743					
12.29	1.43223				1.435	
9.44	1.39922					

Tablo 4.47 EAD9-3'ün X-ışını toz difraksiyon verileri

Tablo 4.47'nin Devamı

6.87	1.21472		1.235	
4.95	1.16457			
4.10	1.16066			
7.86	1.12922			

4.3 SONUÇ

Bu tez çalışmasında, bazı magnezyum borat tipli bileşiklerin sentezlenmesi, katı-hal kimyasal yöntemler kullanılarak hedeflenmiştir. Bu bileşiklerin ekonomik yönden üretimi için, mikrodalga enerji yardımlı ve direkt termal ısıdan yararlanarak katı-katı reaksiyonların başlangıç kimyasalları arasında gerçekleşmesine çalışılmıştır. Elde edilen ürünlerin karakterizasyon çalışmalarında X-ışınları kırınımı (XRD) yöntemi kullanılarak kristal yapılı bileşikler tanımlanmıştır. Infra Red Spektroskopisi yöntemiyle de bileşikte bulunan bir çok fonksiyonel grupların varlığı tanımlanarak bileşik formülünün yapısı desteklenmiştir.

Özetle bu çalışmada aşağıdaki sonuçlara ulaşılmıştır;

i) Mikrodalga enerji yardımıyla gerçekleştirilen katı-hal kimyasal reaksiyonlarda , başlangıç kimyasalları olarak Mg(NO₃)₂.6H₂O ile sırasıyla B₂O₃ ve H₃BO₃ bileşikleri 1'den 6 mol oranına kadar arttırılarak, 10 dakika süreyle fırında mikrodalga enerjisine maruz bırakılmışlardır. Daha sonra elde edilen ürünlerin XRD analizlerinde, tamamının amorf yapıda oldukları anlaşılmıştır. Mg(NO₃)₂.6H₂O bileşiğinin yapısında NO₃⁻ ve H₂O gruplarının olması bu bileşiğin mikrodalga ile etkileşimini arttırmaktadır. Deney sırasında da, yoğun bir şekilde kahverengi renkli NO₂ gaz çıkışı gözlemlenmesine rağmen, seramik krozede herhangi bir kızıllık ve akkorlaşma gözlemlenmemiştir. Bu olay bize 500 ⁰C'nin yukarı değerlerine çıkamadığımızı göstermektedir. Bu yüzden kristal yapılı bazı magnezyum borat tipli bileşiklerinin sentezinin mikrodalga enerji yardımıyla gerçekleşemeyeceği anlaşılmıştır.

ii) Katı-hal kimyasal tepkimelerin gerçekleşmesi için diğer çok kullanılan bir yöntemde direkt olarak termal ısıdan yararlanmaktır. Bu amaçla benzer deneyler kül-fırın yardımıyla 500 ⁰C sıcaklığından başlanarak sırasıyla 600, 700, 800 ve 900 ⁰C'ye kadar denenmiş ve elde edilen ürünler XRD analizleri ile karakterize edilmiştir:

a) 500 ⁰C'de gerçekleştirilen deneylerde MgO'in reaksiyona girmeden kaldığı görülmüştür. Sonuç olarak bu sıcaklığın MgO ile H₃BO₃ arasında bir katı-hal kimyasal tepkimesinin oluşumu için yetersiz kaldığı anlaşılmaktadır.

b) $600 \, {}^{0}$ C'de yapılan deneylerde ise, reaksiyon sonunda bir miktar MgO ile H₃BO₃'ün kaldığı görülmekle beraber bu sıcaklıkta bazı magnezyum boratlı bileşiklere ait fazların oluşmaya başladığı görülmektedir.

XRD analizleri bu fazların $Mg_2B_2O_5$ bileşiğine ait iki farklı kristal yapısının aynı anda oluştuğunu göstermektedir. Bu kimyasal etkileşimi aşağıdaki reaksiyonla açıklayabiliriz;

$$2MgO + 2H_3BO_3 \rightarrow Mg_2B_2O_5 + 3H_2O$$
(4.1)

 H_3BO_3 miktarı 2'den 6 mole kadar sırasıyla arttırılan deneylerde ise $Mg_2B_2O_5$ ' in yanında $Mg_3(BO_3)$ bileşiğinin de oluştuğunu göstermektedir. Bu katıhal kimyasal reaksiyonu da aşağıdaki kimyasal eşitlikler ifade edebiliriz;

$$5MgO + 4H_3BO_3 \rightarrow Mg_2B_2O_5 + Mg_3(BO_3)_2 + 6H_2O$$
 (4.2)

Buradan çıkarılan sonuca göre , H_3BO_3 'ün mol oranı 1 molden fazla arttırılması durumunda 600 ^{0}C sıcaklıkta $Mg_2B_2O_5$ 'in yanında $Mg_3(BO_3)_2$ 'ninde kristalleşmeye başladığı görülmektedir.

c) 700 ⁰C de yapılan deneylerde ise 600 ⁰C'deki XRD çekimlerinden farklı olarak pik şiddetlerinin arttığını dolayısıyla bu sıcaklıkta kristalleşmenin daha iyi gerçekleştiğini söyleyebiliriz.

XRD desenleri incelendiğinde $Mg_3(BO_3)_2$ 'ye ait fazın pik şiddetlerinin $Mg_2B_2O_5$ 'e göre daha düşük kaldığı gözlemlenmiştir. Buradan $Mg_3(BO_3)_2$ 'nin kristalleşmesinin $Mg_2B_2O_5$ 'e göre daha düşük düzeyde kaldığını söyleyebiliriz.

d) 800 0 C ile 900 0 C de yapılan deneyler karşılaştırıldığında ise 800 0 C'de halen bir miktar MgO reaksiyona girmeden kalırken 900 0 C'de MgO'in reaksiyona tamamen girdiği gözlemlenmektedir. Borik asidin 3, 4, 5 ve 6 mol oranlarında yapılan deneylerinde reaksiyon ortamında H₃BO₃'ün kaldığı görülmektedir.

Buradan ise daha yüksek mol oranlarında H₃BO₃'ün kullanımının bu tür magnezyum boratlı bileşiklerin sentezinde gerekmediği anlaşılmıştır.

iii) Bu çalışmada elde edilen magnezyum boratlı bileşikler sırasıyla $Mg_2B_2O_5$ (iki farklı kristal sisteminde, JCPDS kart numaraları sırasıyla 16-168 ve 15-537) ve $Mg_3(BO_3)_2$ 'dir (JCPDS kart numarası: 5-648). İlgili kartta verilen bilgilere göre $Mg_2B_2O_5$ bileşiğinin $MgCO_3$ ve H_3BO_3 karışımlarının 1150 0 C'de elde edilen ürünün birkaç kez homojen bir şekilde öğütülüp tekrara fırınlanmasıyla elde edildiği rapor edilmektedir.

Mg₂B₂O₅'in 15-357 numaralı JCPDS kartında belirtilen kristal sisteminin triklinik olduğu ve hücre parametrelerinin de a = 6,155, b = 9,220, c = 3,122 Å α = 90,47⁰, β = 92,15⁰ ve γ = 104,4⁰, Z = 2 ve uzay grubu PĪ olduğu belirtilmektedir. 16-168 numaralı kartta ise Mg₂B₂O₅'in monoklinik kristal sisteme ait olduğu, birim hücre parametrelerinin de a = 12,31, b = 3,120, c = 9,205 Å, β = 104,3, Z = 4 ve uzay grubunun P2₁/a olduğu rapor edilmektedir. Kartta verilen bilgiye göre Mg₂B₂O₅'e ait monoklinik sistem 1050 ^oC de bir süre ısıtıldığında triklinik sisteme dönüştüğü bilinmektedir. $Mg_3(BO_3)_2$ bileşiğinin ise JCPDS kart numarası 5-648 olan kartta, bu bileşiğin ortorombik sisteme at oluğunu ve hücre boyutlarının da a = 5,398, b = 8,416, c = 4,497 Å, Z = 2 ve uzay grubunun Pnmn olduğu bildirilmektedir.

Bizim elde ettiğimiz bileşiklerin literatürde verilen bu bilgilere oldukça iyi uyuştuğunu elde edilen XRD çekimlerinin karşılaştırılması ile anlamaktayız.

iv) Sonuç olarak elde edilen $Mg_2B_2O_5$ ve $Mg_3(BO_3)_2$ bileşikleri bu tez çalışmasında literatürde rapor edilenden daha düşük sıcaklıklarda (600 ⁰C'den sonra) ve 3 saat gibi kısa bir sürede katı-hal sentezinin mümkün olabileceğini göstermiş olduk.

Başlangıç kimyasalı olarak termal yöntemde literatürden farklı olarak MgCO₃ yerine MgO ile H₃BO₃'ün katı-hal reaksiyonları sonucunda, Mg₂B₂O₅ ve Mg₃(BO₃)₂ bileşiklerinin sentezinin mümkün olabileceğini bu tez çalışmasında göstermiş olduk.

EK : A IR Spektrumu Titreşim Frekansları

Titreşimler	Frekans	Frekans	Frekans	Frekans
	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
	[13]	[13]	[13]	[13]
$v_3(BO_4)$		1117	1103-1024	1037,918
V ₃ (BO ₃)	1200-1245			
v_1 (BO ₃)	1040			
v_1 (BO ₄)		882	882	
$v_2(BO_3)$	785-750			
$v_4(BO_4)$	662-623	519-466	576	623

Borat Gruplarının IR Titreşim Frekansları

Bazı Grupların IR Titreşim Frekansları

Titreşimler	H ₃ BO ₃	BO ₂	B ₂ O ₃	H ₂ O
	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
	[13]	[13]	[13]	[13]
V ₁	1060	994-1070	862	3450
V ₂	668-648	505-502-464		1640
V ₃	1490-1428	2357-1322		3615
V ₄	545			

Serbest suyun , güçlü geniş absorpsiyon bandı yaklaşık 3200-3400 cm⁻¹ civarında ; H-O-H titreşim hareketi genellikle 1650 cm⁻¹ civarında meydana gelmektedir.

$$B_{(3)}$$
-O $V_{as} = 1300-1430$ ve $B_{(3)}$ -O $V_{s} = 870-970$ [22]

$$B_{(4)}-O V_{as} = 1000-1100 \text{ ve } 824-900 [7, 24]$$

$$B_{(4)}-O V_{s} = 740-870 \text{ ve } 463-545 [7, 24]$$

$$B_{(4)}-O V_{b} = 450-475 \text{ ve } 399 [22, 7]$$

$$B_{(3)}-O V_{b} = 715 [23]$$

$$B-O-H V_{b} = 1100-1200 [22]$$

$$B-O V_{st} = 1131, 1002, 946 [24]$$

EK : B Kullanılan Kimyasalların ve Ürünlerin JCPDS Kartları

Bu kısımda kullanılan kimyasalların ve ürünlerin orijinal JCPDS kartları bulunmaktadır, orijinal kartlar üzerinde oynama yapılamadığından aşağıdaki sırayı takip edecek şekilde bu kısma konuluştur.

i) MgO (JCPDS Kart numarası : 45-946)

ii) Mg(NO₃)₂.6H₂O (JCPDS Kart numarası : 14-101)

iii) H₃BO₃ (JCPDS Kart numarası : 30-199)

iv) Mg₂B₂O₅ (JCPDS Kart numarası : 15-537)

v) Mg₂B₂O₅ (JCPDS Kart numarası : 16-168)

vi) Mg₃(BO₃)₂ (JCPDS Kart numarası : 33-858)

vii) Mg₃(BO₃)₂ (JCPDS Kart numarası : 05-648)

5.KAYNAKÇA

[1] Üncü, Ü.R., Yerlikayalar, C., "Küreselleşme Sürecinde, Küresel Baronların Göz Diktiği Ulusal Maden Varlığımız", 2.Uluslar Arası Bor Sempozyumu Bildiriler Kitabı, 2004, 3

[2] Yılmaz, O., AY, E., "Hidrotermal ve Mikrodalga Enerji Yöntemiyle Lityum ve Borca Zengin Boratlı ve Borofosfatlı Bileşiklerin Sentezlenmesi", Lisans Bitirme Tezi, Balıkesir Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü (2003).

[3] Taşçıoğlu, S., "*Bor ve Silisyum Kimyası*", Marmara Üniversitesi Fen Edebiyat Fakültesi, İstanbul, 19..., Marmara Üniversitesi Yayın No: 515, Fen Edebiyat Fakültesi Yayın No: 27

[4] SÜMER, G., "Bor Bileşikleri", 2.Uluslar Arası Bor Sempozyumu Bildiriler Kitabı, 2004, 153

[5] Zhang, J., Li, Z., Zhang, B., "Formation and Structure of Single Crystalline Magnesium Borate (Mg₃B₂O₆) Nanobelts", *Materials Chemstry and Physics*, 98, (2006), 195-197

[6] Qasrawi, A.F., Kayed, T.S., Mergen, A., Gürü, M., "Synthesis and Caracterizations of Mg₂B₂O₅", *Materials Research Bulletin*, 40, (2005), 583-589

[7] Zhihong, L., Mancheng, H., "Synthesis and Thermochemistry of MgO.3B₂O₃.3.5H₂O", *Thermochimica Acta*, 403, (2003), 181-184

[8] Wu, L., Shiyang, G., Shoping, X., Vlayashko, V.M., Urusova, M.A., "Sunthesis of Chloropinnoite and Phase Interaction with Water at High Temparatures", *Thermochimica Acta*, 308, (1998), 183-188

[9] Obut, A., Girgin, İ., "Magnezyum Boratların Sentezlenmesi ve Tanımlanması", 2.Uluslar Arası Bor Sempozyumu Bildiriler Kitabı, 2004, 133

[10] Chen, D., Shen, G., Tang, K., Lei, S., Zhemg, H, Qian, Y., "Microwaveassisted Polyol Synthesis of Nanoscale SnS_x (x = 1, 2) Flakes", *Journal of Crystal Growth*, 260, (2004), 469–474

[11] Chen, D., Shen, G., Tang, K., Jiang, X., Huang, L., Jin, Y, Qian, Y, "Microwave Synthesis of AgBiS₂ Dendrites in Aqueous Solution", *Inorganic Chemistry Communications*, 6, (2003), 710–712 [12] Chen, D., Tang, K., Shen, G, Sheng, J., Fang, Z., Liu, X., Zheng, H., Qian, Y., "Microwave-assisted Synthesis of Metal Sulfides in Ethylene Glycol", *Materials Chemistry and Physics*, 82, (2003), 206–209

[13] Kurtuluş, Figen D., "Bazı Metal Borfosfatların ve Borkarbürlerin Katı-Hal Yöntemiyle Sentezlenmesi ve Malzemelerin Karakterizasyon Çalışmaları", Doktora Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Balıkesir, (2003).

[14] Zhao, Y., Hong, J.M. Zhu, J.J., "Microwave-assisted self-assembled ZnS Nanoballs", *Journal of Crystal Growth*, 270, (2004), 438–445

[15] Nia, Y., Mab, X., Hongb, J., Xua, Z., "Microwave-assisted Template Synthesis of an Array of CdS Nanotubes", *Materials Letters*, xx, (2004), xxx– xxx

[16] Murugan, A.V., Sonawane, R.S., Kale, B.B., Apte, S.K., A.V.KILKARNİ, "Microwave–solvothermal Synthesis of Nanocrystalline Cadmium Sulfide", *Materials Chemistry and Physics*, 71, (2001), 98–102

[17] Rao, K.J., Vaidhyanathan, B., Ganguli, M., and Ramakrishnan, P.A., Chem. Mater., 1999, 11, 882-895.

[18] Byrappa, K., *Progress in Crystal Growth and Characterization Materials*, Pergamon Press, Frankfurt, (1991), Vol. 21,

[19] Cullity, B. D., (Çeviri Prof.Dr Ali Sümer), "X-Işınları Difraksiyonu", İ.T.Ü, (1966).

[20] http://www.panalytical.com/index.cfm?pid=227&itemID=152& contentItemID=22

[21] http://omega.physics.uoi.gr/xrf/english/the_xfr_tchnique.htm

[22] Yongzhon, G, J., Shiyang, G., Shuping, X., Jun, L., "FT-IR Spectroscopy of Supersaturated Aqueous Solutions of Magnesium Borate", *Spectrochimica Acta*, Part A 56, (2000), 1291–1297

[23] Zhihong, L., ChuanfenG, Z., Mandheng, H., "Hydrothermal Synthesis, Characterization and Thermochemistry of Ca₂[B₂O₄(OH)₂]·0.5H₂O", *Thermochimica Acta*, 435, (2005), 168–171

[24] Bhat, S.I., Rao, P.M., Upayyaya, V., Nagaraja, H.S., "Growth and Characterization of a new Nonlinear Optical Mixed borate Crystal", *Journal of Crystal Growth*, 236, (2002), 318–322