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SUMMARY

In this dissertation, the structure and stability of bimodal systems in R3? are
investigated. As a first step, it is shown that one of the assumptions being used
reduces the stability problem in R3 to the stability problem in R?. Afterwards, this
assumption is removed and apart from the results in R?, some interesting conclusions
are obtained. However, structural analysis shows that the behavior of the trajectories
changes radically upon the change of the parameters of individual subsystems (i.e.
eigenvalues, system matrices entries,...). The approach taken is based on the

classification of the trajectories of bimodal systems as

1) the trajectories which change mode finite number of times as t — oo,

i) the trajectories which change mode infinite number of times as t — oo.

With the help of this classification, it is shown that the effect of mode changes
strongly influence the global asymptotic stability of bimodal systems in R3. It is also
shown that the trajectories which change mode infinite number of times converge to

fixed directions (which may be attractive or repulsive) and stability cones.

Key Words: Switched Mode Systems, Bimodal Systems, Global Asymptotic
Stability, Fixed Directions, Stability Cones.



OZET

Bu tezde, R3teki iki modlu sistemlerin yapis1 ve kararliligi incelenmistir. ilk
asamada, yapilan bir kabulle R3’teki kararlilik probleminin R?’ye indirgenebildigi
gosterilmistir. Sonrasinda bu kabul kaldirilmis ve daha genel kosullar altinda, R?’den
farkli olarak ilging sonuglar elde edilmistir. Elde edilen sonuglar, sistem
yoriingesinin davranisinin bagimsiz alt sistemlerdeki parametrelerin (alt sistem
matrislerinin 6zdegerlerinin ve bazi matris bilesenlerinin ) degisikliklerine bagh
olarak hareket ettigini gostermistir. Kullanilan yaklasim ikili sistemin yoriingelerinin

asagidaki sekilde siniflandirilmasiyla sekillenmistir:

1) t = oo i¢in, sonlu defa mod degistiren yoriingeler,

Il) t = oo i¢in, sonsuz defa mod degistiren yoriingeler.

Bu yaklasim yardimu ile, sonlu ya da sonsuz mod degisikliginin R3’teki iki
modlu sistemlerin global asimptotik kararlilig1 tizerinde etkili oldugu ve bu davranis
ile yoriingeleri ¢ceken ya da iten sabit dogrultularin ya da konilerin olustugu

kanitlanmustir.

Anahtar Kelimeler: Anahtarlamal Sistemler, iki Modlu Sistemler, Global

Asimptotik Kararhhk, Sabit Dogrultular, Kararhhk Konileri.
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1. INTRODUCTION

Switched systems consists of a finite number of subsystem and a switching
signal which organizes the transition of the trajectories from one subsystem to the
other. Subsystems may be linear or nonlinear; continuous or discrete depending on
the choice of the model. Switching signal may be time dependent or autonomous
(state dependent). Since Linear Time Invariant (LTI) systems are well known in the
literature, most of the research done on switched systems are on LTI switched
systems. The reader may refer to books [Johansson, 2002], [Liberzon, 2003] recent
survey papers [Shorten et al., 2007], [Lin and Antsaklis, 2009], [Sun, 2010] for the
details of the research on switched systems.

Bimodal Systems is a subclass of switched linear systems where the switching
is autonomous and there are only two subsystems. One of the important issues in
bimodal systems is the existence and uniqueness of solutions. This issue, often called
well-posedness, have been addressed by [Imura and Schaft, 2000] and necessary and
sufficient conditions for bimodal systems to be well-posed have been derived.
Another essential issue for bimodal systems is global asymptotic stability GAS. GAS
of bimodal systems have been investigated both using direct methods and Lyapunov
methods. Using direct methods, the necessary and sufficient conditions for global
asymptotic stability of bimodal systems in R? is provided by [Camlibel et al., 2003]
and [lwatani and Hara, 2006]. Closely related to bimodal systems in R? are planar
systems, which consist of more than two subsystems all in R2. The reader may refer
to [Lin and Antsaklis, 2009], [Sun, 2010], [lwatani and Hara, 2006], [Xu and
Antsaklis, 2000] for the stability results on planar systems. Stability of bimodal
systems have also been investigated via Lyapunov methods in [Mori et al., 1997],
[Shorten et al., 2004], [Shorten and Narendra, 2002].

Bimodal systems exhibit a rich dynamic behavior which is demonstrated in
[Iwatani and Hara, 2006] via various examples of bimodal systems in R2. In R3, their
behavior becomes more complex and surprising. For instance, both modes could be
stable but the bimodal system may be unstable. Conversely, both modes could be
unstable, but the bimodal system may be stable. As pointed out in [Carmona et al.,
2005], capturing such properties is a nontrivial problem. The following example

demonstrates the complexity of the behavior of bimodal systems. Let



. {A,x(r) if  cTx@®)>0

= where A, and A, are such 3x3 matrices
* Ax(D) if ch(t)SO} ! 2

2 13 0 0 0 -3.616
that 4,=|1 -4 0| 4=|1 0 -92 |, c=[0 0 Il
0 I -08 0 1 -08

Note that A; is in observable canonical form with the spectrum {-A,, 65, W} =
{-0.4, -0.2, 3} and the spectrum of A; is {-A1, 01, W1}={-0.8, -1, 2}. This system is

unstable. However, if we keep A, as the same but change some of the entries of A;

as follows,
1 -8 0
o A1: 1 -3 0
0 [ -08

Then the spectrum of A; is still {-A4, o1, w;}={-0.8, -1, 2}. However, bimodal
system with this new A; is globally asymptotically stable. This implies that
eigenvalues of individual subsystems can not determine global asymptotic stability
by themselves and other tools are necessary. We will elaborate more on this example
towards the end of the thesis.

[Carmona et al., 2005] have also considered the stability of bimodal systems in
R? by transforming the system to the surface of the unit sphere in R* centered at the
origin. In this framework, they checked for periodic solutions which would be
equivalent to the search for invariant cones for the original bimodal system. The
main result of this paper (Theorem 2 in [Carmona et al., 2005]) gives sufficient
conditions (in terms of the eigenvalues of both modes) for the existence of invariant
cones and the stability of the trajectories dwelling in these cones. [Iwatani and Hara,
2006] provided separate necessary and sufficient conditions (Theorem 19 in [lwatani
and Hara, 2006]) for bimodal systems in R where n>2. The necessary conditions
given in [lwatani and Hara, 2006] are trivial. However, the sufficient conditions are
very restrictive as they require that the observability index of one of the subsystems
to be < 2. This result can not be used in our case as we assume that the observable

index is three for both subsystems. As far as we know, conditions which are both



necessary and sufficient for global asymptotic stability of bimodal systems in R»
where n > 2 are not known yet.

Our objective in this dissertation is to investigate the structure and global
asymptotic stability of bimodal systems in R* and provide the conditions which are
both necessary and sufficient for global asymptotic stability. Along this line, we first
study the geometric structure induced by eigenvalues and eigenvectors of individual
subsystems on the plane separating two subsystems. This dissertation also yields an
alternative (to the conditions given by [Imura and Schaft, 2000]) set of necessary and
sufficient conditions for bimodal systems to be well-posed in our setup. Next, we
investigate the behavior of trajectories as they start and evolve in one of the modes.
We classify these trajectories as the ones which change mode in a finite time and the
ones which do not change mode. The behavior of the trajectories which change mode
in a finite time are further investigated after mode change. Firstly, this is made under
an assumption which simplifies the geometric structure of the bimodal system and as
a following step, this condition is relaxed. This yields a final classification of the

trajectories as

i) the trajectories which change mode finite number of times as t—oo,

i) the trajectories which change mode infinite number of times as t—oo.

Then, we show that the trajectories which change mode infinite number of
times (as t—o0), converges to fixed directions on the switching plane and the
trajectories which change mode finite number of times (as t—o0) are stable in our
setup when the real eigenvalues are negative. Finally, we prove that bimodal system
is globally asymptotically stable if and only if the trajectories starting from the fixed
directions are stable (decay to the origin as t—o0). The stability of the trajectories
starting from fixed directions depend on the rate of convergence defined later in the
dissertation and can be calculated easily in our setup. It turns out that one of the
assumptions which simplifies the structure of bimodal systems in R3, reduces the
stability condition in R* to the stability condition of bimodal systems in R2.
However, the classification of the trajectories and attractiveness of the fixed

directions changes substantially as subsystem parameters change.



An incomplete preliminary version of this paper with both modes stable, was
presented at [Eldem and Sahan, 2009]. GAS, location and attractiveness of fixed
directions for a special case (B1=0) is accepted for publication [Eldem and Sahan, to
appear]. This case reduces the stability conditions of R? to R? which is known well in

the literature, [Camlibel et al., 2003], [Iwatani and Hara, 2006].



2. STRUCTURAL PROPERTIES

A bimodal LTI system in R? can be defined as

Aix@) if ()20 } 2.1)

Zo::x(t):{Azx(t) if cTx(H)<0

where X, ¢ € R® and A, and A, are matrices in R**. Furthermore, X(t):zi(x(t)).

This system is said to be globally asymptotically stable (GAS) if every possible

trajectory Xx(t) decays to the origin as t—oo.

2.1. Geometry of Initial Conditions in R*® and Well-
Posedness

Note that the plane H:={x | ¢'x = 0 } divides R into two open half-spaces, H*
and H™ defined as H*:={x | ¢'x >0}, H:={x | ¢'x < 0 }. Then, for any initial
condition x, € H* (H”) only mode 1 (mode 2) is active, i.e., x(t)=Aix(t)
(x(t)=Azx(t)). In view of the theory of differential equations, for any initial
condition xo € H* (H"), there exists €>0 and a local solution x(t,x,) such that c'x
(t,Xo) > 0 (c'x(t,Xo) < 0) for all t € [0,e]. Since only one of the modes is active, the
solution is unique and this is smooth continuation in H* (H") as defined in [Imura
and Schaft, 2000]. However, for trajectories starting from H, we can not claim
uniqueness of solutions because both modes are allowed to be active on H.
Furthermore, if one of the pairs is unobservable, there will be trajectories which start
on H and stay on H for all t > 0. In order to eliminate this case, we assume that

e Al: the pairs (c", A;) and (c', A,) are observable.

Observability of the pair (c', Aj) implies that dim(ker(c')Nker(c'Aj) = 1.
Thus, L : = ker(c")Nker(c'A)) is a line passing through the origin which divides H
into two open half planes, P;* and P;~. On one side of this line c’Aix > 0 (P;*) and on
the other side c'Aix < 0 (P;"). Similarly, the origin ker(c")Nker(c'Aj)Nker(c'A?))



divides L; into two open half lines Li* and Li~, where c'A® x > 0 if x is on L;* and
c'A?x <0 ifxison L.

Let S; denote the set of initial conditions x, where the solution x(t,X,) is unique
and x(t,Xo)€ S; for all t € [0,¢] for some € > 0. In view of Definition 2.3 and Lemma
2.1 given in [Imura and Schaft, 2000], S; ( or S; ) is the set of initial conditions
where smooth continuation is possible only in 1 (or 2" ) mode. It is easy to see that
ifc™x>0(c'x<0),then x €S, (X € S,). Hence, S; and S, are nonempty. In order
to complete the characterization of the sets S; and S,, we have to determine what
happens on H. Towards this end, we first recall that well-posedness simply means the
existence and the uniqueness of solutions for a given dynamical system. By
existence, we mean existence of a solution in the sense of Carathéodory which is

defined as
xW=xg* /| [(x@) Jdz (2.2)

where x(t)=f(x(t)) and x(t,)=x,. This leads to the following definitions of well-

posedness given in [Imura, 2002].

Definition 2.1: If, for a given initial state x(ty), x(?) satisfies Carathéodory equation
given above on [t,t;) and there is no left-accumulation point of event times on
[to,t;), then x(t) is said to be a continuous-state solution (simply called a C-solution)

of 00N [ty,ty) in the sense of Carathéodory.

Definition 2.2: Bimodal system given by equation (2.1) is said to be well-posed in the
continuous-state sense (simply, C-well-posed) if for every initial state x(0) € R *

there exists a unique C-solution of Y.y on [0,0).

Lemma 2.1: Suppose that Al hold, (c’, A,) is in observable canonical form and, A;,

A and c' are as given below

app dp a3 0 0 my
Ay =ax ax ax|, A,=|1 0 m|,c’=[0 0 1I]. (2.3)
az; dzy as; 0 I m




Then, bimodal system given by equation (2.3) is C-well-posed if and only if

eker c" N ker(c'A;) = ker ¢ N ker(c'A,) (or equivalently az;=0) and

®a3,,a,,>0.

Proof 2.1: (Necessity) Suppose that Y, is C-well-posed. Then, for any initial

condition in H, %(CTX) , must have the same sign for both modes. Otherwise, either
[:

there will be two solutions (4% (ch)| 0>0 for the first mode and d%(ch)| 0<0 for
t= =
the second mode) or there will be no solutions in the sense of Carathéodory
d%(ch) 0<0 for the first mode and dit(ch)| , >() for the second mode). In view of
t= t=

this observation let x(0) = [ y; y» 0] " where y,y. are arbitrary real numbers.

Calculating the derivative of ¢'x for both modes, we get

cTAIx(O)} _ {aml +a32y2} 2.4)

T -
df(c x)|t=0 {CTAZX(O) 72

Note that the sign of az;y;+aszzy, can be changed arbitrarily by appropriate
choice of the real number y;. This contradicts well-posedness. Thus, it is necessary

that a;;,=0, or equivalently
kerc' N ker(c'A,) cker c' N ker(c'A; ) (2.5)

Since both modes are observable, it follows that dim(kerc'Nker(c'Az))=
dim(kerc” Nker(c'A;)). Consequently, we get kerc’ Nker(c'A,)= kerc™ Nker(c'A;). In

. . d .
view of this result, d—t(ch)| can be written as follows
t=0

cTAIx(O)} _ {0323’2}' 2.6)

<er -
df(c X)|t:0 {CTAZX(O) V>

Note that if a;,=0, then the sign of cTA,x(0) is fixed and the sign of cT A,x(0)
can be changed arbitrarily by an appropriate choice of y,. On the other hand, if



a3,<0 and y,>0, then ¢T A;x(0)<0 and ¢T 4,x(0)>0 which implies that there are no
solutions in the sense of Carathéodory. Thus, ¢T A;x(0) and ¢ A,x(0) has the same
sign if and only if a;3,>0.

The above results guarantees well-posedness for every initial condition in H
except in Hz:=kerc' N ker(c'A,). It is clear that for any initial condition in H, we

have to check the sign of second derivative. Towards this end, let

x(0)=[y, 00 ]" (2.7)
In this case, we have
T A2
da _ [T ATx(0)| _ (az1a32V1
dt? (C x)|t=0 - {CTA%x(O) - { )/1 } (26)

If we set a,,=0, then as in the previous case, the sign of cTA%x(0) is fixed and
the sign of cTA3x(0) can be changed arbitrarily. Similarly, if a,;<0 and y,;>0, then
cTA%2x(0)<0 and ¢T A3x(0)>0 which again implies that there are no solutions in the
sense of Carathéodory. Thus, cTA2x(0) and cTA3x(0) have the same sign if and
only if a,,>0. Since both of the pairs (c', A;) and (c', A,) are observable, it follows
that kerc’ N ker (c'A2) N ker (c'A?) = ker ¢" N ker (c'A;) N ker (c"A;?) = {0}.

The proof of sufficiency essentially follows similar lines in reverse order and

therefore will be omitted here.
In view of the preceding Lemma, our next assumption is as follows.
e A2: kerc” Nker(c'A;) = kerc” Nker(c'A,) (or equivalently a;1=0) and as,, a,,>0.

The geometry induced after the assumptions Al and A2 and without the

assumptions Al and A2 are depicted in Fig.1 and 2 below.
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Figure 2.1: Plane geometry for half spaces.
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Figure 2.2 : Plane geometry without assumption 2.

Remark 2.1: The necessary and sufficient conditions for C-well-posedness of bimodal
LTI systems is first given by [Imura and Schaft, 2000]. The conditions given above
are equivalent to conditions given in [Imura and Schaft, 2000] and constitutes an
alternative way of expressing the conditions of C-well-posedness. Furthermore, the
above result is first proven for bimodal LTI systems in R® in [Eldem and Sahan, to

appear] and its extension to bimodal systems in R is given as follows.
Theorem 2.1: [Eldem and Sahan, to appear] A bimodal system in R " where both of

the pairs (c', A;) and (c', A,) are observable and the pair (c', A,) is in observable

canonical form, is well posed if and only if
N, ker (CTAI;I) =Nk, ker (CTA;-]) for k=1,2,...n (2.9)

and aj+1;>0for i1=1,2, ..., n-1where A;:={a;}.

Theorem 2.1 was given as a conjecture in [Eldem and Sahan, to appear] but the

validity of this conjecture for bimodal systems in R® is shown in [Sahan and Eldem,



submitted]. The subspaces given in the equation above have also been used by
[Ferrer et al., 2002] in obtaining reduced forms of bimodal systems.

Remark 2.2: We should also remark here that bimodal systems where both
subsystems are in observable canonical form are also investigated in the literature.
Assuming that both subsystems are in observable canonical form (as given above by
A_) is equivalent to assuming that the vector field is continuous on H. In our case,

the vector field is not necessarily continuous on H.

In R3, each mode has at least one real eigenvalue. If this eigenvalue is positive,
then any trajectory that starts with an initial condition equal to the eigenvector of the
real eigenvalue, will stay in the same mode for all t=0 and go to infinity. Such
bimodal systems are, thus not GAS. Therefore, our investigation in R? is restricted to
the cases where the real eigenvalues are negative. We further exclude the case where
all the eigenvalues are real, because in this case there will be a cone of initial
conditions (generated by nonnegative linear combinations of the eigenvectors) such
that any trajectory starting with an initial condition in this cone will decay to the
origin without changing mode. Since our aim is to focus on the effect of mode
changes on the dynamic behavior of the system, we leave this case for future work
and consider the case where there is only one real eigenvalue and a conjugate pair of

imaginary eigenvalues in both modes. Thus, we assume that

¢ A3: the eigenvalues of Aj's are {-Aj, 6i £ jw; } where A, o; and w; are real

numbers with Aj, w; > 0 for i=1,2.

In the remaining part of this thesis, it will be assumed that A1 - A3 always hold

and (c', A;) is in observable canonical form. In this case, system matrices are

0 0 —A, (02 +w3)
Ay =1 0 20,4, — (62 4+wH)|.cT=[0 0 1](2.10)
0 1 20'2 —_ A’Z

a1 412 Qg3
a1 dpz dAzz
0 as as;

A1=

where a3, and a,;>0.

10



2.2. Behavior of the Trajectories in One Mode

In this section, we investigate the behavior of the trajectories as they start and

smoothly continue in one mode until they change mode.

Lemma 2.2: Let {r;} and {x; £ jyi} (1=1,2 ) denote the real and complex eigenvectors

of A;. Then, the eigenvectors can be uniquely chosen such that

cxi=cri= (1) " c'yi= 0, c'Ay,>0and c"ALy,<0, (i=1,2) (2.11)

where
[(a11—01)2+wf+a12a21'| (a11+A)(a11—01)+a2a,1  wilag1+44)
| Aaz20z1 | Qzz0zq a32021
n = —Ay—ds3 , [*1 )= 017033 w1
l as; J aszz asz
1 1 0
(2.12)
—(05 +w3) 024, —wy4,
1 1 0

Proof 2.2: Since the second mode is in observable canonical form as given in
equation (2.10), using straightforward calculations, it can be easily shown that

A2r2: '/12r2 and Az[xz }’2] = [xZ yZ]

At (2.14)

—W, 0Oy
and equations (2.11) and (2.13) hold for i=2. Similarly, using the following equality
Arlr; X Yil =[-A4r7 01X7-Wzys WiXz+ozys ] (2.15)
where A; is as given in equation (2.10) and also recalling that detA;= - 1;(o6;?+w;?)
and trace(A;) = 20 - 44, it can also be easily shown that equations (2.11) and (2.12)

hold for i=1.

11



In view of the preceding result, it is clear that any initial condition in R?* can be
expressed as a linear combination of the eigenvectors of each mode as §; r; + BiX; +
viyi where &, Bi and vy; are real numbers. Thus, we can use two different bases for R>.
The set of trajectories that start out with initial conditions &; ri where &; > 0, will decay
to the origin without going into the other mode. Since these are already stable
trajectories in our setup, we need to investigate only the trajectories with nontrivial
sinusoidal parts. More specifically, let zj(t) ( i=1,2 ) denote the trajectories starting
from S; and smoothly continuing into S; with initial conditions such that either Bj# O

and/or y; # 0. Then, the behavior of such trajectories in the i mode can be written as

Zi(t) =K; {aiexp(-xit)ri + exp(cit) [ Sin(6i+Wit)Xi + cos(6i+wit)yi ]}, (2.16)

for i=1,2 where K;:=(B?+y)Y?*>0, a;:= % —L—=> >0, sin¥;

(BE+v?)

i 7z > 0, cos 6,

— > 0. This implies that,
(BZ+v?)

c'zi(t) = K; {ai exp (-Ait) + exp(oit) sin(@i+wit)} = K exp(-Ait){Fi(t)} (2.17)
{fi()} := ai + exp((Ai + oi) t) sin(Oi+wit) (2.18)

Lemma 2.3: Consider the trajectories given by equation (2.16). Let

X; ;= x;-r; and b;==cot ¢, := ’;” for i=1,2. (2.19)
Suppose that x, € H and zj(0) = X,. Then, z;(t) smoothly continues into H *for i=1
(H ~for i=2) if and only if z(0) = K; ( sin(@;)xi + cos(8;)y; ) where K; > 0 as defined
in equation (2.16) and -¢; < 6; <7 - ¢i.

Proof 2.3: Since x, € H, it follows that c¢'zj(0) = 0. Then equations (2.17) and (2.18)
imply that a; = - sin(6;). Consequently, we get zi(0) = K ( sin(@)x; + cos(8;)yi ) where
Xi IS as defined in equation (2.19). If i = 1, then the trajectory smoothly continues

into the first mode if c'A;z,(0) > 0. Calculating c'A;z,(0) we get

12



0 <c'A;z4(0) = K; [(Ar+ay)sin(07)+Wcos(0,)] = K;Mysin(@;+¢;) (2.20)

where ¢4 is defined as in equation (2.12) and
My:=[(h1+02)*+w 52, (2.21)

Consequently, ¢'A;z;(0) > 0 & -¢ < 0; < 1 - ¢. Note that at 6; = - ¢ we have
c'A;z,(0) = 0. In this case we have to check the sign of c¢TA2z,(0) for smooth

continuation into H *. Calculating ¢ A%z, (0), we obtain
2
2 (cTz1(0) = cTA22,(0) = (a1 (01 + A)) — 012y — (67 + wD)) sy (2.22)

+w;(ay; + A4)cos(0,) + My (20 — ayq — A1)sin(0; + ¢1)

This implies that at 0; = - ¢ We have

cTA%2,(0) = (a11(01 + 1) — oA, — (o + W12))5in(—¢1) (2.23)
+w; (a1 + A1)cos(—¢p4)
= (—ay; (o1 + 4) + o34, + (0f + Wf))Sin(—d)ﬂ
+w;(ay; + A1)cos(¢1)
A +witol) +204; (A + o)’ +wi

CETT

>0

and hence, cTA%z,(0) > 0. Using similar reasoning with mode 2, it can be easily
shown that

cTA,2,(0) = —=K,[(A, + 0,)sin(6,) + wocos(6,)] (2.24)
= —K,[(4; + 02)2 + sz]l/ZSin(Qz + ¢2)

and cT4,2,(0) < 0 & -¢,<O,<n-¢,. It can also be shown that cTA3z,(0) < 0 at 6,

= -¢,. Consequently, we have —¢, <0,<r-¢, and this concludes the proof.
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In view of preceding Lemma, any initial condition X, € H can be written as Xq
= K;Vi(0;) where K; > 0 and V;(8;): = sin(8;)x; + cos(6;)y;. This follows from the fact

that x; and y; are linearly independent and they are two different bases of H for i=1,2.

Definition 2.3: In the sequel, we refer to V;(8;) as directions. It is clear that if V;(,)

is a direction, then there exists 6, and a constant 112(07)>0 such that

V1(01)=n12(01)V 2(02). (2.25)

We shall refer to V;(8;) and V,(0) as equivalent directions and use the notation
V;(0;)=V5(8,). Furthermore, we shall also use the terminology a trajectory starting
from direction Vi(@i)in order to refer to a trajectory starting on H with initial

condition zj(0) = K;Vi(8;) where K; > 0 is a real constant.

2.3. Classification of Trajectories

In this section, we use the following definition in order to classify the
trajectories as transitive and nontransitive. A slightly different version of this
definition is originally given in [lwatani and Hara, 2006] as transitive and weakly

transitive. Here, we prefer to use transitive and nontransitive.

Definition 2.4: Let zj(t) be a trajectory as given by equation (2.16). If there exists
finite time 7i > 0 where ¢'zj(r;) = 0 and the trajectory changes mode at t = 7, then
such trajectories are called transitive. Otherwise, they are called nontransitive.

Figure 3: Transitive and nontranstive trajectories.
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Lemma 2.4: Consider the bimodal system (2.10) and its trajectories given by
equation (2.16). Then the following hold.

i) If Ai+ai > 0, then all possible trajectories zj(t) are transitive. More precisely, there
exists a finite t;>0 such that c'zj(z;)=0 and the trajectory changes mode at

=r.

i) If Aitai <0, then there exists a unique angle ¢;i € (0, ¢;) such that

e If0; €] - ¢i, -4i], then the trajectories starting from V;(®;) are nontransitive.

e If0; €(- ¢i, m-¢i ) and ai > ajo, then the trajectories starting from V;@,;) are
nontransitive and

lim o)’ [6,+w,7;(0,)]=27-¢ (2.26)

it

e lf 0 €( - ¢i, m-¢i ) and ai < ajp then the trajectories starting from V;j(#;) are

transitive, where ojo : =sin (@i ) exp [ bi (27 - ¢i- 6;) ].

Proof 2.4: i) We only give the proof for trajectories starting from S;. The proof for
trajectories starting from S, follows similar lines. Using equation (2.18), the time

derivatives of f,(t) are

LMy exp((y+o)0)sin(0,+w,i+4), (2.27)
&f, .
—7 =M; exp((A;+0)t)sin(0;+wt+24,), (2.28)

where M; is as given in equation (2.16). Since ¢; < g the equations above imply

that local minimums of f,(t) occur at time instances

=200 =1 2, ... where —) 5 0, (2.29)

w1 dt?

tk:

Since z,(t) smoothly continues into S;, there exists &€ > 0 such that ¢'z4(t) > 0

for (0,&]. Let k* be the minimum integer such that f,(ti«) < 0. Existence of ty« directly
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follows from the fact that f,(t) is a sinusoidal function with an exponentially

increasing amplitude. Since f;(t) > 0 for k < k~, it follows that f;()> 0 over the

is the local maximum

217:(k*—1)+7r—¢1—91) Where Zn(k*—1)+7'[—¢1—91
wq ’ wq

interval (0,
2k ¢176 Consequently, f;(t) decreases over the interval

hearest to
Wi

wq ! wq

[Zn(k*—1)+n—¢1—91 an*—¢1—91] (2.30)

and there exists a unique ;>0 in the same interval such that f;(z;)=0 and. % <0.

Thus, the trajectory changes mode at t = ;. If K = I and 0; <« - ¢,, the same

argument still holds. If K" = 1 and 0; > = - ¢,, then f,(t) decreases over the interval
[8’ 27‘[—$1—91
1

dfi(zq1)
dt

| and there exists a unique t; > 0 in the same interval such that f;(z;)=0

and ——= < 0. Thus, the trajectory changes mode at t = z;.

i) Note that since b; < 0, this time f,(t) is a sinusoidal function with an
exponentially nonincreasing amplitude. However, local minimums are still at the

same points as in the previous case. Let r;(6;) be defined as
r1(01) := sin(2x - ¢;) exp[ b1 (27 - ¢ - 01) ] - sin(6;) (2.31)

where 0; €[ - ¢;,0]. Since b, <0and ¢, > =, we have r;(0;) = 0 for 6; €[ -¢1, ¢

- | where - sin(0;) >sin(¢;). On the other hand, r;(9;) < 0 at 6,=0. Hence, since
r;(0;) is a continuous function, there exists ¢; € (0, ¢;] such that r;(- ¢;) = 0. In
order to prove uniqueness, we show that r;(0;) is a decreasing function of 0, over

the interval [-g, 0]. Towards this end, note that since b; = cot(¢;), we have

d”_(ei) =-b, sin(2n-¢,) exp|b;(2m-¢ ,-0,)] -cos(6;) (2.32)

=cos(¢1) exp|b; (27r—¢1—(9,)] -cos(0;)

Since t > ¢; > g, it follows that cos(¢;) < 0. Furthermore, as cos(6;) >0 over

dry(61)

the interval [ - g 0], it follows that < 0 where the equality holds only for ¢,
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=0, = % This implies that r;(8,) is a decreasing function of 6, over the interval [-
g, 0]. Consequently, there exists a unique ¢; € (0, m-¢;) such that r;(¢;) = 0 or

equivalently
sin(2r - $1)exp bz (2x - ¢1 + ¢1)] = sin(-¢1), (2.33)

lim 0i+WiTi(9[)] :277:'¢l. . (234)

o) L

If A; + 6, =0, then b;=0 and ¢,=(=/2). Hence, ¢;= g For the rest of the proof,

it is enough to check if the first local minimum of ¢'z,(t) is negative or not. Towards
this end, let z,(t) be a trajectory starting from S; with initial condition z;(0) = K; (a4
+ Xgsin(6;) + yscos(@;) ). Since z,(t) smoothly continues into S;, it follows that a; >

sin(-8;). Furthermore, using equation (2.29) at the first local minimum, we have
C'z,(t;) = Kyexp(-Ast; ) (o7 +Sin( 2z - ¢; ) exp [ b2 - ¢; - 601) 1). (2.35)

elf0; €[ -¢;, -9 ], then since r;(0;) >0, we have c'z,(t;) > 0. Furthermore, since

d?f;(t1)

dt? >

f;(t) has an exponentially decreasing (or constant if b;=0 ) amplitude and

0, it follows that c'z;(t;}) > 0 for all >0 or equivalently the trajectory is
nontransitive.

e [fa; >sin(¢@;) exp[ b;(2n - ¢; - 6:) ] (=az0 ), then similar to the previous case, the
trajectory is nontransitive.

e If oz <sin(¢;) exp[ bs(27 - ¢1 - 0:) ] (=as0 ), then c'z,(t;) < 0 and there exists 0
< 7, < t; such that c'z,(t;) = 0 and the trajectory changes mode or equivalently it is

transitive.

Remark 2.3: Note that when A +o; < 0, we have oi < 0 and consequently
corresponding mode is stable. Thus, any trajectory which starts with initial condition
KiVi(@) where 6; €[ -&, -@i] and K; > 0 will stay in the same mode and decay to the

origin. Also note that the set of such initial conditions constitute a cone in H bounded
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by the rays along the directions Vi( -¢ ) and Vi( -¢; ). We formalize this observation

via the following definition.

Definition 2.5: If 4; +6; < 0 for a mode i, then the closed convex cone in HNS;
bounded by the rays along the directions Vi( -¢ ) and Vi( -¢i ) will be called a
stability cone. The stability cones are denoted by C *and C 7, for i=1,2, respectively.
A stability cone is said to be attractive on an interval | which includes the cone ([ -4,
-pi] c 1), if for any trajectory starting from direction Vi) where 6; € 1, enters the

cone after some finite time or if T;“( 6 )— - ¢ as k—oo. Otherwise, the stability cone

is called repulsive.

In order to simplify the notation, we use 7; instead of 7; ( 8;) to denote the time

at which the trajectories change mode, in the rest of the work.
Lemma 2.5 Consider the bimodal system (2.10) and let z;j(t) be a transitive trajectory
with zj(0)€ SiNH. Then, the following hold for the time t; at which the trajectory
changes mode.
1) 7i and 6;+ Wi t; are functions of 0; implicitly given as
exp((Ai+ oi) i) sin( 6 + w; z; )= sin () (2.36)
i) If 4 +oi >0and -4 <6,<0, then
T<Oi+witi <m+ ¢. (2.37)
i) If i +oi <0and -¢g <6; <0, then
T< Oi+Wit <21- . (2.38)

V) If0<é#i<z- ¢, then

T-¢<0i+w5 <7 (2.39)
18



for both 4; +¢; > 0 and 4; +a; <0.

V) 7j and 6; + w; 7; are decreasing functions of ; and

d(eia;l/“}iri) =-exp(-b;x) (240)

hm@i—ﬂr-rb,- ;=0 limg_o7

Proof 2.5: We only give the proof for a trajectory starting from HNS;. The proof for

a trajectory starting from HNS follows similar lines.
i) Let z;(2) be a transitive trajectory which starts from HNS;. Then, it follows that
¢'2,(0) = K; { a;s + sin(@,) } =0 = a; = - sin ;) . (2.41)
Suppose that the trajectory changes mode at t=t;. Then ¢'z;(z;)=0 and we get
exp((o1+1)t7) sin(0;+W;t;) = sin(6;). (2.42)

Note that this equation is satisfied trivially for ;=0 as 0;+W7,=n.

i) If 1;+0; >0 and -¢,<6; <0, then since sin(0;) <0, equation (2.42) implies that
T < O;+W;t4. Since exp((61+11)t7) > 1, it also follows that |sin(0;+W;t4)| < |sind,].
Consequently, we get Tt < 0;+W;7; < T+ ¢;.

i) If ;10,50 and -9;<0:<0, then as in the previous case, we again have w <
O;+W;t;. In this case exp((o;+A1)t1)<I and therefore |sin(@;+W;t;)| > |[sinb;].
Consequently, it follows that & <0;+W;t; < 27-;.

iv) If 0; €0, m-¢;), then since sin(0;) > 0, equation (2.42) implies that 6;+W;t; <7
both for A;+0;>0 and A;+0;<0. On the other hand, the function f;(t) defined by

equation (2.11) has a maximum at 0;+Wt = 7-¢, andf/%/w. Consequently, m-
1

¢1< 01+W1T1 <

V) Using the relation between sin(6;+W;t;) and sin(6;) given by equation (2.42)

)

sin(0))

_ sin(61)
I exp((;+o)7;) = In(

sin(61+w1T1)

above and assuming that 6,#0, we have

= (A1toq) T4
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= (A1104) (Z_;i )= cot(B;) - cot(01+Wyt; )(1+W; Z_z (2.43)

dry _ cot(0))-cot(0;+wt))
= 1 do; o 601(01+W]1'1)+b] ' (244)
This also implies that
d(91+ WlTl) _ ﬂ _ b1+COt(91)
d@l - 1 + Wl d91 - b1+C0t(91+W1T1). (2.45)
For 6;,=0, we calculate the limit
. by+cot(61) . sin(61)bq + cos (641)
llmel_)o b1+C0t(91+W1T1) - llmel_)o Sin(@l)bl +eXp(b1W1T1)COS(91+W1T1) (246)
and so
. b1+COt(91) — _
llm91_>0 —b1+COt(91+W1T1)_ eXp( b17'[ ) (247)

Note that if 0; €0, 7 - ¢;), we have b;+cot(@;) > 0 and b;+cot@,;+w;t;) < 0 as -

@1 < (07 +Wyt;) <z This implies that

d(01+wyt)  d(wqty)
dé, " de,

<0 (2.48)

elf A;+0;,>0andf; €[ - ¢;,0) we get b; + cot(0;) <0 (equality holds only at 0,
=- ¢;) and b; + cot@;+wit;) > 0 as © < 6;+wW;t; < n+¢;. Hence, the inequality
above still holds.

elf1; +0; <0and-p; < 6; <0, then again we have b;+cot@;) < 0 as both by,
cot(@;) < 0. Since ¢;> (/2) and © < 0;+W;z; < 27 - ¢;, We again get b, +

cot(0,+W;t4) > 0. Thus, the inequality above still holds. Consequently, it follows that

d(zq) and w, d(tq)

both 1+ w, 26, 26,

are negative. Therefore, (0;4+W;t;) and t; are

decreasing functions of 0.
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In order to complete the proof, we now show that  lim (w;z;) = 0. Towards
1

6,-nt—¢

this end, note that the function f,(t) defined by equation (2.11) has a maximum at

O+w, it = 7 - ¢, and f,(ty) > 0, where t, := "_fvl_el . This implies that t, < z; and
—dfdlt(t) < 0 over the interval (t,, z; ). This implies that

f1(t)) > f2() >0 (2.49)

it tEy, o). Since, | lim fity) = £,(0) =0, it follows that  lim f,(t)=

1 1-T—¢
f;(0) = 0 for any t € [ty z;]. Consequently, since f;(t) is a continuous function, as

0,—m-¢; we get 1;—0 and this completes the proof-

Note that the movement of transitive trajectories on H is controlled by the
following functions F;: 6; — 6; + w;ti and D;: Vi(8;)—Vi(0i + w; tj). These functions
are well-defined on the interval 6; € [ - ¢i, 7 - ¢i) if Aj + 6;> 0 and on the interval 6; €

(- o, - ¢i) if A + o; < 0. Further note that, since  lim w; tj = 0, we can

Oi->Tt—d;

continuously extend these functions as follows
Fi(TE-(I)i) D=1 - O and Di(Vi(n-d)i)) . :Vi(T[- (1).) (2.50)

In view of this extension F; (6;) and D; (V; (6; )) are well-defined functions on the
compact interval [ - ¢, m- ¢ Jif A + o; > 0. If Aj + 6; < 0, then they are well-

defined on (- @i, @ - ¢i].

Lemma 2.6: Given the bimodal system (2.10), then the following hold for the

trajectories starting from H.
i) If Ai+0;> 0, then F; is a nonexpansive map i.e., for any 6;,0; € [—¢;, m — ¢;]
|F:(9,)-F.(0)] <|0:-6/] (2.51)

and dzi—g") is a strictly decreasing function of 6; over the interval [—¢;, T — ¢;]
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dFi(6) _

0;=mt—¢;

ii) If 2i + o; <0, then F; is an expansive map i.e., for any 6;,0; € [—¢;, T — ¢;]

where

=0 and & (9‘)|

Oi lg=—g;

|F.(8,)-F;(0)| > |6-6,] (2.52)

dri(6 L)

and ——=is a strictly increasing function of 8; over the interval (—¢;, ™ — ¢;]

dF; (91) —00 and dFi(ei) — _1

O i lo=n-¢;

—1forall §; ¢ [73[ 7r-¢i] and lim

where limg, _,_p )+

dF;(9; ) dri(0) _

o(3)

iV) DL(VL(HL)) = exp(airi)(Vi(Hi + WiTi)) for any Bi € [—(l)i,T[ - ¢l] if ﬂ,i + 0 > 0

i) If Ai+oi =0, then —+ -1.

and for any 6; € (—¢;, ™ — ¢;] if 4i+0i <O0.

Proof 2.6: i) The proof of this item has two stages. We first show that if 8; € [—¢;, 0],

dFd"S")| <1 where the equality holds only at 6; = 0. Then, we

then [exp(b;w;T;)

dF; (el)

show that if 8; € [0, T — ¢;] = |exp(b Wi T;) > 1 where the equality hold

only at 6; = 0 and at 6; = m — ¢;. Towards this end, note that in view of equations

(2.42) and (2.45) above exp(b;w;T;) ‘( l) can be expressed as follows

exp(b w,T; ) dF;j (9 ) _ _ sin(0;)b; + cos (6;) _ sin(0;+¢;) (2.53)

sin(0;+w;ti)b; +cos(B;+w;t;)  sin(O;+w;T;+¢;)

If 6, € [—¢;,0), then sincer < i+ witi<zm+ ¢ and ¢ < g, it follows that cos(8; +

w;t;), sin(8; + w;t;), sin(8;)) < 0 and cos(8;) > 0. Furthermore, since
sin(6;)
sin(@;+w;t;)

> 1 by equation (2.42), it also follows that cos(6;) < cos(6; + w;T;).

Finally, since sin(6; + ¢;) > 0 we also have |sin(8;)|b; < cos(8;). Consequently,
equation (2.53) implies that if 9; € [—¢;,0), we have

sin(6;+¢;) cos (6;)- |sin(6;)|b;
sin(8;+w;t;+¢;) - |cos(9i+wiri)|+ |sin(0;+w;t;)|b;

<1 (2.54)
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sin(9i+¢>i)
sin(9i+wiri+¢i)

Furthermore, since 6; + w;t; = m at 6; = 0, we get =1atg; =0.

On the other hand, if 6; € [0, — ¢;], then 7 < 6; + Wi 7 + 4 < © + ¢ . This implies
that sin( 6 + w; 7i + ¢ ) < - sin(¢) for any 6; € [0, T — ¢;], whereas sin(8; + ¢;) >
sin(¢;) if 6; € [0, — 2¢;]. Consequently, it follows that

sin(9i+¢>i) < O (255)

sin(9i+wiri+¢i) -

over the interval 0 <6;<x - 2¢ and the equality holds only at 6; = 0. We claim that

4 sinOitd) (2.56)

sin(9i+wiri+¢i)

over the interval (0, — ¢;). If the claim is not true, then there exists 8, € (0, T —

¢;) such that

sin(9i+¢i)
sin(9i+wiri+¢i)

=0= sin(@i + (pl) = —Sin(Bi + W;T; + (Pl) (257)

which is possible only for 6; = - ¢; or 6;=0. Consequently,

+ sin(6i+¢i) < O (258)

sin(9i+wiri+¢i) -

for any 6; € [0,m — ¢;] where the equality holds only at the end points of the

interval. Thus, we have

sin(0i+¢;) _ sin(0;+¢;)
sin(0j+w;Ti+¢;) = sin(8+w;Ti+;) =1 (2.59)

where the equality holds only at the end points of the interval [0, 7 — ¢;]. Since

sin(0;+¢;)
sin(0;+w;ti+¢;)

= exp(b;w;t;) —diiié?i) (2.60)

and limg,__g,(w;T;) = 0 by Lemma 2.5.v, the result given above also implies that
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dF; (9)

llmg iST—d; =-1 (261)

For the second stage of the proof let us assume that sin(9;) # 0 and calculate the

second derivative

2
bi+C0t(9i+WL'TL') . (bi+C0t(9L’)) i dF;(6;)
@ri6) _ T sito) e bpreotrmn) _ S| (w5 1| (2.62)
d9i2 (bj+cot(8;+w;t;))? sin(0;)exp(byw;t;)sin(0;+w;t;+P;) '

If 6 €[ - ¢, 0), then the term in the numerator of the above equation is <0 as

dF;(6

|exp(b WiT;) ‘)| < 1. Since both sin(6) and sin( i+wizi+¢ ) are < 0, the term in

d*F; (91)

the denominator is > 0. Consequently, —=— < 0. Similarly, if 6; € (0, = - ¢ ) then

then the term in the numerator of the above equation is > 0 whereas the term in the

denominator is < 0 since sin(@; + w; 7; + ¢ ) is < 0. Therefore, we again have

CFO) ) This implies that 2722 j

267 0 is a monotone decreasing function over [-¢, 0)
i

dF; (91) dF; (91)

i

U (0, z¢ ). Since —exp(-b;z) at 6; = 0 and —latbi=n-¢hby

dF;(6;)

i

Lemma 2.5.v and Lemma 2.6.i, it follows that is a monotone decreasing

function over [-¢, 7 ]. Consequently, we have

dr;(6;)

SUPy, 130y || =1 (2.63)

or equivalently |F;(8;) — F;(6))| < |8; — 6;| for any pair 6;,8; € [—¢;, m — ;).

sin(9i+¢i)

i) In this case, we first show that If 6; € (-¢;, 0], then g ——

| > 1 where the

equality holds only at 6; = 0. Then, we prove that if 6; € [0, = - ¢ ], then

sin(9i+¢i)
Sin(9i+WiTi+¢)i)

< 1 where the equality holds at 0; = 0 and at 6; = n-¢. Towards this
end, note that ¢ >§ and b; < 0. Therefore, if 6; € ( -¢;, 0], then by Lemma 2.5.3, it
follows that 1 < i+ Witi< 21 - ¢ < %ﬂ and this mplies that cos(6; + w; 7)) < 0. Since
|sin(@; + Wi 7 )| > |sin(@)| and sin(6; + w; 7 + @) < 0, we also have bjsin(6; + wiz;) <
|cos(6i + Wi ti)| < cos(#) . Then, for any 0 € (-¢, 0), we get
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sin(0;+¢;) . b;sin(0;)+cos (8;)
sin(@+witi+d)l — lcos(@;4+w;t))|- bisin(0;+w;T;)

(2.64)

which follows from the fact that b;sin(6;), b;sin(8; + w;t;), cos (6;) > 0. Thus, it

follows that |S Sin(t bi)

m| > 1. Note that 6;+w;r; =m at 6; =0 and we get

M| =1 at 6; = 0. Furthermore, in view of Lemma 2.4.2.ii, we have
Sln(9i+W,:Ti+¢i)
lim, (-w-)+(9i+w"r") =2m-¢.,which implies that

dr;(0;) _ b;+cot (6;)

lim b(o) limﬁi_) (o) rcor Gromr) =-00 (2.65)
; cos(6i+¢i) TN _ ;
Now we will show that P —— >1if 6 €[0, = -4 ], where the equality

holds only at 0;= 0 and at 0;= & -¢  Towards this end, note that since sin(0;) exp(-b;

Wi i) = sin(@; + w; z; ), it follows that

d ( cos(By+ ;) ) = Sn(Bi+ $pcos(éy) [cos(8;) exp(—b;w;t;) — cos(8; + w;T;)].  (2.66)

d_Bi cos(8;+w;T;+d;) cos2(0;+w;Ti+d;)

Furthermore, since 6; € [0, = -¢ ], we have 7 -¢ <6+ Wit <x and since ¢ > g this

implies  that |cos(8; + w;t;)| < cos(8;) < cos(8;) exp(—b;w;t;).  Consequently,

cos(0i+¢;)

0@ twitit ) is a decreasing function over the interval [0 ,z-#] except across

discontinuity at 6; + w;t; + ¢i:37” where

li cos(04) (2.67)

m I T
6i+WiTi+¢,~_’7” cos(0;+witi+¢;)

However, this does not change the fact that |%m| > 1, because cos(6; +

w;T; + ¢;) < cos(¢;) for 37” < 0; + wit;+< m+ ¢; whereas cos(8;) = cos(¢;)
for any 6; € [0, = - ¢ ]. Consequently, Py a— ¢i)| < 1 over the interval /0, =

@] and the equality holds only at ;= 0 and at ;= -¢ . Since Wi ;=0 at 6= - ¢

we also get
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limy, gy f) — 1 (2.68)

d*F; (91)

The rest of the proof is similar to the previous case and we conclude that

l

dF;(6

over the interval (¢, = —¢ ]. Hence, we have | ‘)| > 1 where the equality holds

only at ;= r - ¢ . Equivalently, F;(@;) is an expansive map.
iii) Note that if 4; + 0, =0, then ¢ = % and in view of equation (2.42) we have sin(6;
+ W tj) = sin(6; ). This implies that 6; + Wi ;= & - 6;. Thus, we have

dFi(6;)) _ cot(0) _ cos(6;)
do; COI(Hj+WiTi) COS(H—HZ‘)

—] (2.69)

for all 0; € (-4 =m-¢]. Note that the trajectories starting from V; (-¢ ) are

nontransitive. Hence, Fi ( 6;) is not defined at 0; = - ¢. However,

dF;(é),-) _ . (,05‘(0)
do;

— lim ws(ﬁ)
xt cos(n’ 9) 0i— 7:* -cos(6;)
2

lim, . =-] (2.70)

0;—-

2 0;—-=

ari(0y) _
ae;

and by continuous extension at 0;= - ¢ we have -1.

iv) Since ¢’ zi (i) = 0, it follows that O0=exp(oi 7 )sin(Gi+W; 7i )-sin(0)exp (-4 i ).

Then, as
Zi (ti) = -sin(6;)exp(-4i @) ri + exp(oi ti) {sin( Gi+w;z; ) Xi+cos( Oi+w; i)y} (2.71)

we get zj () = exp(oi ti) { sin( Gi+w; 7 )X;+cos(fi+w; 7 ) yi } and this concludes the

proof.

2.4. Mode Change

A transitive trajectory z,(t) starting from S; changes mode at t=t4. From this
point on the trajectory smoothly continues into S,. In order to follow this change, we

set z,(0):=z4(t1) and determine z,(0). This requires a change of basis from { X;, y1 }
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to { 5, Y2 }. Towards this end, let [[ 0]7 :== [X; y;]. Then using the results of
Lemma 2.3, we get

a11(0y +A1)—U1A1_(U12+W%) wy(ag;+44)

111 _ az,0a51 Q32021 ,['2 — [0-2/12 + (0-22 + WZZ) _WZAZ]_ (272)
Aitoy w1 —(A; +03) —W3
as; asz

where I'; and T are clearly nonsingular. Let us now define B, as follows

Aitai1—azi14;
az1w2(1+b2%)

B, = (2.73)

Suppose that that B;>0. It can be easily seen that geometric meaning of this
expression is that the angle between y; and L,* is strictly less than the angle between
y, and L. If we consider the case Ai+a;1-821A,=0 ( B;=0 ) , then the geometric
meaning of this expression is that the vectors y,; and y, are on the same line.

We can now state and prove the following result.

Lemma 2.7: Let V;(0;) be a direction where 8; €[ - ¢;, 2 - ¢;) and b; be as defined

w1(1+b4?)
a1Wo(1+b3%) °

¢2) and n12(0;)>0 such that V;(0,)=n,2(0,)V2(62) where

in equation (2.19) and C;:= Then, there exists a unique 6, € [- ¢, 21 -

cos61+b,sinf,

0, = cot™*
2 { C15in61—B4(cos0,+b;sinb,)

— by} (2.74)

-w;sin(601+¢,) sing;
a3,W,LSin(6,+¢,) sing,

’712(61) = Cl

n,,(0;) = Jor ;1 € (-p1,7- 1) U(m- $1, 27~ §1) (2.79)

w, Mfor 01= - ¢1, T-¢.

az,Wr Sin¢2

Proof 2.7: Let Q; == 10 . The equation V;(0;) = n12(01) V2(8;) has to be solved
b, 1

for #;2(0,) and 6. Note that both n;2(01) and 6, are functions of 0; and in view of
equation (2.19) and the structure of [£;  y;] (equations (2.12) and (2.13)), we get
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sin6,

sinb,;
cost,+b,sinb, ] (2.76)

cos;+b;sinb,

112002 | |=Q:r7r0|
Using straightforward calculations, it can be shown that equations (2.74) and (2.75)
hold. Note that in view of our condition on well-posedness, L; and L, are on the
same line. Therefore, for any 0;€[-¢;, n-¢;] it must hold that 0, € [7-¢,, 27- $,] and
this implies that sin(0;+¢;) > 0 and sin(02+¢2) < 0 where the equalities hold at the
end points of the intervals. Similarly, for any 0; € [n-¢;, 2n-$;] We have 0, € [-¢2,
- @2/, which implies that sin(0;+¢;) < 0 and sin(0,+¢;) > 0. Consequently, it holds
that n12(8;) > 0.

Remark 2.4: In view of the above result, it is clear that for a given direction V(6y)
where 05 € [-¢2, 2n-@2), there exists a unique 0; € [-¢;, 2n-¢1) and 124(02) > 0 such

that V(0,) = 124(82) V1(0;). In fact, following the same lines as in the proof Lemma

2.7, we get
_ -1 cos0,+b,sinb, _
61 = cot {Czsiné)z+Bz(cosez+bzsin92) bl} (2'77)
Ny1(6;) = “ZEBOA D 0 ) € (-, 1) U (- 21-45),  (2.78)

wisin(0:+¢,)  sing,’

32W2 i ((p ) —_
n21(02) = G, %% for O,=- ¢, .

where Cz::(C;l) “and BZ::CzB1. Let

cosO;+bsinby cosOr+b,sind
hi(07):= . bz, hy(0,):= L, (2.79)

Cysinf4-B1(cosO;1+bsin6y) Cysinfy+B(cosOr+bysind,) )
Remark 2.5: Let us define G; (8;), coty and coty, as follows.
Gi (65) : = cot 7{h; (6;)} and coty, :=B; 7+ by, coty; :==B,7-b;. (2.80)

Note that limg, 4y, h1(61) = Foo. Since cot () is multi-valued function, we

define G, (w+y,)=0. Similarly, limg __y, h,(6;) = oo and we define G(z-

28



w2)=0. With these definitions G; (4;) is well-defined and continuous over the real
line. Using the definitions of h; (¢;) and G; (8;), the following equivalent directions
can be obtained easily

Vi(-¢1) =Va(m-¢2), Y1=V1(0) N 2(m-y12), Y2 = V(1) SN 2(m), (2.81)
Vi(m-$1) N 2(-2), <Y1 = V(1) N (-y2), Vi(m+y1) 2V 2(0)=Y;

The geometries for cases B;>0 and B,=0 are depicted in the following pictures.

FI
LA,
G4 Y

F,

Figure 2.4: The functions which drive the trajectory.

Yz, Bi=wy

- B=7
-

Figure 2.5: Plane geometry for B;>0.
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V1, 8:=0

/ Bom

Hi= 1t-¢1 / - _q)l

2= -0z Y= T-02
-

Figure 2.6: Plane geometry for B;=0.

Before continuing further, we summarize the domain and the range of the

composite functions G; (F; (6;)) by the following Corollary.

Corollary 2.1: Suppose that B;>0. Then, the following hold for the domain and range
of Gi (Fi (Qi)).

1) If A;+0; > 0, then the domain of G; (F(@;) ) is [-¢1, 7-¢4].
¢ G; (F4(6;) ) maps [0, z-¢,] onto [-¢, -y].

¢ G; (F4(6;) ) maps [-¢;, 0] into [-yz, 7-¢2).

i) If A2+02 > 0, then the domain of G, (F»(8>) ) is [-¢2, n-¢»].
¢ G2 (F2(62) ) maps [0, z-¢.] onto [-¢;, y4].

Gz (F2(02) ) maps [-¢2,0] into [y1,7-¢1).

iii) If A;+0; <0, then the domain of G; ( F4(6;) ) is (-¢s, 7-¢,] where ¢,= = if

i
A1+t0,=0.

¢ G; (F1(61) ) maps [0, z-¢;] onto [-¢z, -y].

e G; (F1(8;) ) maps (-1, 0] onto [-y2, 7-¢2).

IvV) If A,+02 <0, then the domain of G, ( F»(6y) ) is (- @2, n-¢2] where @, = g if
Azto5,=0.

e Gz (Fz(62) ) maps [0, z-¢.] onto [-¢;, y4].

oG (F2(02) ) maps (-¢2, 0] into [y, m-¢;).
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3. STABILITY AND FIXED DIRECTIONS

In the previous chapter we have investigated the properties of the trajectories as
they start and evolve in one mode until they change mode. In this chapter we will
focus on the properties as they change mode and afterwards. Along these lines we

give a final classification of the trajectories of bimodal systems in R3. Namely,

i) the trajectories which change mode finite number of times as t—oo,

i) the trajectories which change mode infinite number of times as t—oo0.

The set of nontransitive trajectories in both modes are clearly in the class of
trajectories which change mode finite number of times (namely zero times).
Characterization of such trajectories are given in Lemma 2.4.2. Some of the
transitive trajectories of both modes may also be in the class of trajectories which
change mode finite number of times. This could happen if some trajectories change
mode finite number of times and end up in [ -¢i, -¢i ] (if A+ i <0 ) and always stay
in the i mode as t—oo.

Since i + o <0, it follows that o; < -A; < 0 and consequently i mode is stable.
Thus, the class of trajectories which change mode finite number of times decay to the
origin as t—oo, in our set up. In other words, such trajectories necessarily end up
(after a finite period of time) in a stability cone of Definition 2.5.

In view of the above observations and Definition 2.5, we need to investigate
only the stability of the class of trajectories which change mode infinite number of
times as t—oo. Since such trajectories change mode at H, we can restrict our
investigation to trajectories which start from H without loss of any generality.

In order to formalize what we have explained in the previous paragraph, let

T:(0;)=GCG2(F2(G;(F:(01)))). (3.1)

Since Fi's and G;'s are continuous, it follows that T, is also continuous. Thus

we have

61—> 01+W1T1 — 02 — 02+W2T2 — T1(91) (32)
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T, is defined for trajectories which change mode at least two times. Furthermore, let
T.X(0,) denote

TX02) 1 = T1(... To(T1(02)).....) (k times). (3.3)

It is clear that T,(0,) is defined for trajectories which change mode at least 2k times.
We can also define Ty i [ =02, m- 2] = [-d2s -2 ] (0r To: (-9, -2 ] — [ - do,

-0y ] forkyto, <0 ) as

T2(02):=G; (F:(G2(F2(62)))), (3.4)

which is again a continuous function and use the notation T,%(8,) in a completely

similar way.

Definition 3.1: A direction V; (6;) in H is called a fixed direction if 8; is a fixed point
of Ti(@), or equivalently T;i(6;)= 6;". A fixed direction V;(6;) is called attractive on
the interval | which includes 6/, if for any 6; € 1 and any € > 0 there exists a positive

< ¢. If a fixed direction is not attractive

integer k such that we have |T/(8,) — 6;

for any interval | which includes 6;, then it is called repulsive.

If V1(07) is a fixed direction in HNS;, then there exists 8;:=G;(F1(87)) such
that V,(6;) is a fixed direction in HNS,. Hence, fixed directions exist in pairs. In
view of this observation, we shall also use the notation V(6;, 85) to denote a pair of
fixed directions in the sequel. Furthermore, if all the trajectories starting from a fixed
direction are stable (decays to the origin as t—o0), then the fixed direction is called

stable, or equivalently, fixed direction pair will be called stable.
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2

=%
AN/
F,

Figure 3.1: Fixed direction pairs.

3.1. Stability of fixed directions

Let 0, be a fixed point of T4(.), i.e., T1(01)=0,. Suppose that a trajectory starts

with initial condition equal to V1(0,). Then, in view of Lemma 2.6.iv, we have
D;(V:(01))=exp(o11,)V1(01+W;T5). (3.5)
Since the trajectory changes mode at this point, by Lemma 2.7 it follows that
exp(o1t1)V1(01+W1t1)=exp(0171)n12(01+W1t1)V2(0y). (3.6)

From this point on, the trajectory smoothly continues into S, and by Lemma 2.6.iv

we get
D2(V2(02))=exp(o212)V 2(0+W2t2) 3.7)
where the trajectory changes mode again. Since T4(0,)=04, we have
exp(02t2)V 2(02FW12) =exp(0212)1 21(02HWT2)V 1 (0). (3.8

Thus, initial condition V1(01) is mapped to exp(c1T1+62T2)N12(01+W1T1)121(02

+W2T2)V1(91) . Let
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Yr(01):=exp(01T1+02T2)10 12(01FW 1T 1)121(02FW1). (3.9)

In the sequel, yz(61) will be called rate of convergence of the fixed direction
V1(64). It is clear that if yz(0,)<1, then the fixed direction is stable, if yz(61)>1 then
the fixed direction is unstable. If yz(61)=1, then bimodal system is marginally stable
and has infinite number of periodic solutions with period t,+1,. These periodic

solutions are closed space curves.

///)((ﬁé;/

Figure 3.2: Comparision of V1(6,) and yz(61)V1(04).
We summarize the stability result explained above as follows.

Lemma 3.1: A fixed direction V;(09;) where T;(0;)=0; is stable if and only if its
convergence rate yg(69;)<1.

Corollary 3.1: Let V;(8;) be a fixed direction. Then, yg can be expressed as

—A1T1-A2T2)
yp = ZRCLTATs) (3.10)

d61do,

Proof 3.1: Using equations (2.74)-(2.78), we get

sin(01++wT1 1) Sin(0,++w,To0,)
sin(62+¢2) sin(01+¢1)

1

= daF dF.
exp((A; + o1)71) d_giexl?((lz + 03)73) d_Bz

N12(01 + wit)N21 (02 + wat,) = (3.11)
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which implies that equation (3.10) holds.

Theorem 3.1: Let V;(67) be a fixed direction which is attractive on an interval | and
consider a trajectory with initial condition V;(@;) where 6; € 1. Then, the trajectory

is stable (decays to origin as t—x) if and only if the fixed direction V,(67) is stable.

Proof 3.1: Since V;(0;) is attractive on 1, it follows that for any >0 there exists an

integer k such that |T1"(61) — 07| < €. In the proof we only consider the case where

Tk (6,) converges to 6; from right. The case where T (6;) converges to 6; from left
can be treated in a completely similar way. In view of this fact, we can assume
without loss of generality that the initial condition is K;V;(6;+¢y) where
TX(6,):= 6;+¢, and ¢, can be made arbitrarily small by increasing k. Then, in view

of Lemma 2.6.iv, D,(-) maps V(81 +¢,) to

D (V:(601 +e0))=exp(os(t1-¢61)) Vi (0] +eo+tws(t1-61)) (312)

for some £,>0, as 0;+W;t; is a decreasing function of 6;. Here, F;(67):=0;+w;t7.

Since the trajectory changes mode at this point, Lemma 2.7 implies that

V(07 +eo+Wi(t1-61))=012(67 €0 +W; (T1-67) ) V2 (65 -¢2) (3.13)

for some ;>0 because 0, decreases as 6 increases. Similarly, D,(-) maps V(05 -

82) to

D2(Vz(02-¢2))=exp (o2(75+63))V2(60;-e2+Wz (73 +¢3)) (3.14)
for some £3>0, as O0,+Wyt5 is a decreasing function of 6,. Here, F, ( 8;) : = 6;
+w,T5. Since the trajectory changes mode again at this point, Lemma 2.7 implies
that

V2(03-e2+W2(T3+ €3)) = n21( 02-62FW2( 75 +€3))V1(07 +es) (3.15)

for some €,>0. Hence, V(07 +¢y) is mapped to y(0; +ep)V (07 +e4) Where
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P(01+eo):=exp(01(T1-61)T02( T3 +e3)112(01 +eot W1 (T1-61))121(02-62HW2(T3 Te3)).

(3.16)

Since D;(-) and D_(-) are continuous functions and change of basis is also
continuous, it follows that y(0; +ey)—ye(01) as ep—0. Hence, there exists >0 such
that y(01+e)<lI if and only if ye(67)<1. Consequently, the trajectory decays to the
origin if and only if ye(67)<1.

Lemma 3.2: Let 0,70 be in the domain of T4(.) and define 0;,:=T ;(0;). Then

cot (91)+b1 _ ﬂdﬁ
ot (Bu1)tbs a0, dez|-1(91+W111)|—2(92+W212) (3.17)

where 05:=G;(F;(0;)) is a decreasing function of 6; and

L1(01+W1T1) : :[1'Bz(COt(91+W1T1)+b1)] (318)
L2(02+W2T2) : :[1+B1(C0t(02+W2T2)+b2)].

(i) If 6,>0, then

cot (61)+b1

coroyrey - =000 e

oityen, < 1 =0 TH0) 0 20
ii) If 0,;<0, then

—f:ttcffl)):lz <1 & 0;,<T4(0,)=011, (3.21)

cot 0)+by 4 & 0,5T1(0)=0,1, (3.22)

cot (911)+b1

cot (91)+b1 _

iii) For both cases above 0, is a fixed direction if and only if ot 0.t
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V1 (6]
Vi (613)

e
P

Figure 3.3: A sample trajectory for 0,>0 ; 6:>T1(01)=01;.

Proof 3.2: Suppose that a trajectory starts from V;(@;) in HNS; and hits the plane at
time t; along the direction V(@,) in HNS,. Then we have G;(F;(0,))=6. In view of

Lemma 2.7, we have

—_ 91 1¢t1 bl
G1(0,+Wt;)=cot 1{ LG - 2}

Cl—Bl(COt(01+W1T1)+b1)

(3.23)

Cot(91+W1T1)+b1

+b.,=
= COt(Hz) bZ C1—B(cot(81+w;T)+by)

In order to show that 0,:=G;(F;(0;)) is a decreasing function of 04, We
calculate the derivative of both sides of the above equation with respect to 6; and we

get

-1 do, _ -G dF,
sin2(0;) d6;  sin2(814+w1T1)[Ci—B1(cot(014+w.T1)+b1)]2 d6y

(3.24)

R dF- .
since ﬁ < 0, the claim holds.

1

Also suppose that, the same trajectory hits back HNS; at time 7, along the

direction V;(@;;). Then, in view of Remark 2.4, we have

GZ(QZ+W2‘L'2):COt_1{ cot(Bz +wpTz) +by —bl} (3.25)

CZ +BZ (COt(eZ +W2T2)+b2)

cot(6,+w,13)+b,

+pi=
= COt(Hll) bl C2+Bz(C0t(92 +W2T2)+b2).
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Solving the equations above for the ratio of cot(0;)+b; to cot(@;;)+b;, we get

cot (91)+b1 _ dFl sz

cot (6s)+0; — a6, ap, 101 WiT1)L2(02+Wzt2) (3.26)

1) In order to simplify the notation we use L; instead of L; ( 6; + wiz; ) here. Since the

dF, dF. . .
t ——2L,L, is a function of 0;. If 0; €
46, d6,

trajectory starts from HNS;, it follows tha
[0.7-¢;], then we have cot0;+b;>0 where the equality holds at 0;=n-¢,.
Furthermore, since B;>0, it also follows that 0;; € [0,7-¢;] and cot8;;+0b;>0.

Hence, we have

cot (91)+b1

cot (911)+b1<1 & cotl; < cotb;; < 01> 014 (3.27)

This means that 0;>T ;(61)=07;. Continuing along the same lines we also have

cot (91)+b1

cot (911)+b1>1 & cotl; > cotl;; & 07 <014 (3.28)

and 01<T1(01):911.
i) Similarly, if 6;<0, then it follows that cot0;+b;<0. Furthermore, if cotf;;+b;<0

also holds, then

cot (91)+b1
cot (911)+b1

>1 & |cot (0,)| > |cot (0;)| & 0>0,>01; (3.29)

so 0;>T;(0;,)=0;,. Under the same conditions, it also holds that

cot (91)+b1

cot Giyip, 1 [cotts] < |cotbs;] & 0> 011> 0, (3.30)

cot (91)+b1

PCRITS < 0. For this

and 0,<T ;(6,)=0,;.Note that, there is also the possibility of

case, we must have cot@;+0b;<0 but cot0;;+b;>0, because cotf;+b;<0 for 0; € [-
$1,0] or 0; €[-04,0]. This implies that 0,;>0>6; or equivalently 6,<T ;(0,)=6,; and

this concludes the proof.

38



It is clear by the above result that the behavior of the function %%Lle
1 2

plays a crucial role in determining the attractive regions for fixed directions. In the
remaining part of this dissertation, our investigation is based on the trajectories
starting from HNS;. Therefore, we need to specify the domain of T,(-) for various

combination of subsystem parameters.

Corollary 3.1: If B;>0, then the following hold for the domain of T,(-).

i) If Ai + oi > 0 for both modes, then the domain of T;(-) is [- ¢, 7-¢1].

i) If A;+t07>0 and A,+0,<0, there exists Oy, in the domain of G;(F;(+)) such that
G;(F1(01r))=-¢2. Then, the domain of T,(-) is [-¢1,61r) Or empty if - ¢; = b4r.

i) If 1;+0,>0 and 1,+0,=0, then the domain of T;(-) is [- ¢z, 7-¢1).

V) If 21+0:<0 and A,+0,>0, then the domain of T(-) is (-4, 7-¢;], where (plzg if
As+o,=0.

V) If 21+0:<0 and 1,+0,<0, then the domain of T;(-) is (-¢z,010). If A2+0,=0, then
the domain of T4(-) is (-7, 7-¢1).

1

The analysis of the behavior of the function Z—ZZ%LlLZ over the domain of
1 2

T1(-) becomes simpler when B;=0. This is due to the fact that if B;=0, then y; and y,
are on the same line and consequently, L;L,=1 over the entire domain of T,(:). If
B1>0, then L1(0;+wW1t4)L2(0,+W515)#£]. Therefore, in order to determine the location
of fixed directions, the behavior of this function over the domain of T(6,) has to be

investigated first. The behavior of L, L is given in the following Lemma.
Lemma 3.3: Suppose that B;>0. Then, the following hold.

i) If B; > 0, then there exists 62, >0 such that G,(F(62,))=0. Furthermore, if
G;(F1(-¢7))> 0o, (in the case 2;+0; > 0), then there exist 6;,>61,>0 such that G,(
F1(-010))=0>, and G;(F;(-61,))=0. If B;=0, then 6,,=0 and 6;,=61,=0.

i) Let 6, be in the domain of T;(+). Then, the following hold.

e L, is a decreasing function of 0 if 0;>0 or if 0; € [-d1,-010].

e ;L <0 over the interval (-04,,0) and limgl_)oi LiL, = oo,
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e At the end points of the domain of T,(+), LL takes the following values.

limg g, LiL; =1 or L;Lz<O0and LiL;|g,-_¢,<1 (3.31)
for A;+6,>0 and 1.5+6,<0,
Lilzlg,=n—g, > 1 andlimg, ,_yy+ Lilz = 1
for A;+o; <0 and Ay+0,>0,
limg, 9,)- L1L2 = 1 or L;L»<0 and limg )+ Lilz =1

fOl” i1+0'1 SO and iz"’(fzfo,

where the equalities hold at the limit as 1,+0,—0, in which case 01— 7- ;.

e I1f B;>0, then 6,<T ;(0;)=60;, over the interval [-0;,v4].

iii) If A;+0,<0 and J.;+05,>0, then %T is a strictly decreasing function of 04
1

over the interval (-¢4,7- ¢,] and

dF; dF,
d6, db,

dFy dF, _

=0 and llmgl_)( o)t

N o (3.32)

dF; dF,

ou-(-2) a0 a0,

]]ri1+0'1:0 and /12+O'2>0, then we have lim

V) If A;+07>0, and A,+05<0, then 2122 ;o strictly increasing function of 6; over

91 92
the interval [-¢;, 61r). Furthermore,
limgl_)(elr)— 2—22—2 = oo and dFl dFZ =0 lfiz+0-2<0- (333)

d91 d92 2] __(l)l

dFy dF, _
6, do,

Proof 3.3: 1) Suppose that B;>0. Then G(F2(.)) maps [0, 7-¢.] onto [-¢;, w,] if
Arto>0. If 2;+0:<0, then G(F5(.)) maps [0, n-¢,) onto (-¢4, w4/ as m-¢@, iS not in

If A2+02=0, then we have limg, ;_¢, —

the domain of G,(F2(.)). Since G;(F2(.)) is a continuous function, the existence of 0,
> 0 such that G,(F(6,;)) = 0 is clear. In view of the hypothesis G;(F;(-¢.) > 0, if
Az+t0,>0. Then, G;(F;(.)) maps [-¢#;,0] onto [-y., G;(F:(-#.))] which implies that

there exists 05, such that G;(F;(-6;4))=62; > 0. Furthermore, in view of Lemma 3.2,
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0, decreases as 0; increases which implies the existence of 01; < 05, such that
G(F1(-01,))=0. On the other hand, if A;+0,<0, then G(F;(.)) maps (-¢;,0] onto [-
wa,m-¢7). Since G;(F(.)) is a continuous function the existence of 6;,>61,>0 with the
given properties follows directly. Finally, if B;=0, then y, and y_, are on the same
line. This implies that, 60;0=601,=0 and 6,,=0.

i) Since L;=[1-Bx(cot(6;+wW;z;)+b,)], it follows that

TR (334
Since Z—Z <0and B, >0, L, is a decreasing function of 6; over the entire domain of
T,(+). Similarly, since L,=[1+B;(cot(0,+W,t,)+b_)], it also follows that

e = Ty a6 (3.35)
Since Z—Z <0 and Z—Zj < 0, the equation above implies that L is also a decreasing

function of 6 over the entire domain of T,(-).

e Hence, if 0;>0, then m-¢; < 0;+W;r; < m and by Lemma 2.5, we have
(cot(0;+W;t,)+b;) <O0. Since G;(F;(0;)) € (-¢2,-w2], it also follows that T < 0,+W 1,
< nt+¢, by Lemma 2.5 that (cot(6,+wt5)+b,) > 0. Consequently, L;>1, L,>1 and
L;Lz is a decreasing function of ;. In fact, limgy o+ Ly = o0 as limgy _+(6; +

w;T,) = & Thus, we have

Zl.mal_)oi LILZZOO (336)

On the other hand, if 0; € [-¢;,-014], then (cot(0;+W;t;)+b;) >0and 0 <L; <1as
0;+wt; > wtyy. Similarly, since G;(F;(0:0)=6, > 0, it follows that
(cot(0,+W,t5)+b,) <0 and 0 <L, <1 as cot(0,+Wt;) > -coty,. Consequently, we
again get L; >0, L, >0 and L,L, is a decreasing function of 6;. In fact, since
G1(F1(010))=62;, it follows that cot(0;+Wt,)=cot(m-y2) at 8;=0;0 and L(m-y5)=0.
This implies that L;L,=0 at 6,=60;,.
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e If0; € (010, -6h1], then G;(F;(0;)) € [0, 02,) which implies that cot(0,+W,t5) < -
cotyz. Thus, L<0.

Since 0;+W;t; > mty; it follows that L, is still nonnegative. Consequently,
L,L,<0. In fact, since G;(F;(-61,)):=0, it turns out that F;(-61)=n+w; and this
implies that L;=0 at 6,=-6,,. However,since V;(m+y;) =V,(0), we have 0,+W,t,=x.

This implies that

lim91+W1T1_)”+¢1 LZ = —0 and lim91+W1T1—)7T+l,[)1 Ll = 0 (337)

Using L'Hopital's Rule, the limit of L,L, as 8;+w;z;—n+w; can be calculated

easily as follows.

1—32 (COt(91+W1T1)+b1)
Sin(92 +W2T2)

(3.38)

lim01+w111—>7r+y/1 L1L2 = Zim61+w1rl—m+l//1{
sin(0, + w,t,) (1 + B;b,) + By cos(6, + w,T,)}

dF, do, [_Bl] € (‘(D,O),

SinZ(6,+w4Ty) cos(02+w2T2) 35" rwiry)

By

= hm91+w11'1—>7r+1//1{

o,

m are both > 0.

which is a finite negative number as cos(8, + w,1,) Z—Z and
Thus, L;L,<0if0; €(-010, -611].

If 0; € (-01, 0], since 0;+Wit; is a decreasing function of 6;, we have
0:+W;t; < mty;. This implies that L;<0. On the other hand, since G;(F;(-61,)) =0
and 0,+Wyt5 is an increasing function of 0y, it follows that (cot(6,+Wytz)+bz) > 0.
Thus, L, > 0. Consequently, L;L> < 0 again. In fact, limgy, - Ly = — as
limg, o~ 61 + w1y =m. Thus, we have limg, _,o- L1L, = —.

e Let us first consider the case L;+06:>0 and 1;+0,<0. In this case, the domain of
T:() is [- @4, 61r) where G;(F;(61r))=-@.. Since -g; is in the stability cone C 7 it is not

in the domain of T,(.). However, the following limits exists
limg, ,,)~ G1(F1(6,)) = — ¢, and limgﬁ(_%)* (Fz(gz)) = 21 — ¢, (3.39)

Th|S Imp|IeS that limgz_,(_<p2)+ LZ =1. If‘elr > 0, then COt(le+W1T1(91r))+b1 <
0 which implies that L,>1 or equivalently limg _,g,,)- L1Lz >1. If 61 < 0, (this is
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equivalent to the fact that -y ,<-@.) then by item 2.ii of this Lemma L; < 0 which
implies that limg, _,g,,)- L1L2 < 0. Finally, irrespective of the sign of 6, O1—m-¢;
as @,— g (equivalently A;+0,—0). This implies that limg @, )~ L1 = 1.
Consequently, we have limg, _g,,)- LiL> = 1. For the other end point of the
domain of T,(.), note that by the proof of item 2.i of this Lemma 0 <L; <1 and
0<L,<1 as G;(F;(-¢;)) > 6., > 0 by the hypothesis. Thus, we get 0 <L,L, < 1.

For the case where A;+to; <0 and l,+c, > 0, the domain of T;() is (-¢;, 7-
$41]. At 0;=mn-¢;, we have cot(@;+wW;t;)+b;=0 which implies that L,=1 and
cot(O0,+W3t2)+h,>0 as w<O,+W,r,<nt+¢, at 6,=-¢,. Consequently, we get
LiLz|g,=r-4, > 1. For the other end of the interval, note that similar to the previous
case we have

lim 0=(o)’ (FL(61)) = 2w — ¢y = lim L, =1. (3.40)

0,-(0,)
Since  Vi(2n-¢p1)>V(n-¢p,), this also implies that limg )+ Lo =1.
Consequently, we have limg _,_,,)+ LiL, =1. This result also holds for the case
where 1;+0,;=0 and golzg.

Finally, for the case 2.;+0:<0 and J;+0,<0 the domain of T4(.) IS (-1,

01r). Similar to the previous case, we have limg _,_, )+ L1L, =1 which also holds
for <p1:§. For the other end point of the domain, the results of the case where

A1t0:>0 and 15+0,<0 again holds and we have
limg, 0,,)~ G1(F1(61)) = — ¢, and lim@;—»(-q)zf (Fz (92)) =2n—¢, (341)

This implies that limg, _,p,,)- L1 = 1 and limgy, ,g,,)- L1 > 1if 61> 0. Thus,
limg, 9,9~ Lily > 1if 01> 0. On the other hand, if 61, <0, then it follows that (as
in the first case) L, <0 and we get limg, _,(g,,)- L1L,<0. Furthermore, irrespective of
the sign of 61, Oy—rm-¢; as (pz—% (equivalently Ar+o,—0). This implies that
limg, ,9,)- L1 =1. Consequently, we have limg g, )- LiL, =1 and this

concludes the proof for part 2.
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e If [-65,0) is in the domain of T,(.), then by the item 2.ii of this Lemma L;L,<0 over

dF;

the interval [-6;,0). Slnce 292 > 0 over the entire domain of T,(.), Lemma 2.5
2

cot (91)+b1

implies that oL (6.1,

< 0. Since 6; < 0, we have cot(0;)+b; < 0. Consequently,

cot(011)+b;>0 which implies that 0,;=T 1(0;) > 0;. If [0,w,] is also in the domain of
T:(), then G;(F;(+) maps [0,;] into [-@2, -w2]. Since for any 0, € [-¢2, -w2], We

have O,+Wyt, > 7, it follows that Gz(F;(-) maps into (yi,m-¢;). Consequently,
611:T1(01)>91f07' any 61 E[‘010,I)U1].

i) If A;+0;<0 and A,+0,>0, then by Lemma 2.6, we get E =0 and
2102=—¢,
limg, n_g, 35 = — 1. Since V(- ¢;) =V (- 42), it follows that dZZ—Z s =0. If
1=T—=Pq

A1+0,<0, then limgl_,(_q,lyr % =-0 by Lemma 2.6. Thus, as 0 increases over the

interval (-¢4,7- ¢ 1) mcreases from

o to 1. Furthermore, 0, decreases from n- ¢, t0 - ¢, and Lemma 2.6 implies that #
2

increases from -1 to zero or equivalently

Consequently, 2% decreases from o to zero. If A;+0;=0, then 222 dacreases
de o, d61d92
F dF; dF,
from 1 to zero as — =-1 by Lemma 2.6.iii. Consequently, ——=is a
1 =7 — d61 d92
01=t—¢1
d ing function of 6; over the entire domain of T,(-) and lim B w0
ecreasing junciion of Uy 1 01—, 46, do, =00,

V) If 1;+067>0 and A,+0,<0, then by Lemma 2.6.1, it follows that Z% decreases from
1

zero to -1 over the interval [-¢1, 7m-¢]. Furthermore, if J;+0,<0, then 2 92 decreases

2

from -1 to - as 6, decreases over the interval [-¢,, 7- ¢-] again by Lemma 2.6. If

Azt0o,=0, then 29 = -1 over the entire domain of T,(.). Consequently, d—& IS an

2

increasing function of 6; over the domain of T,(.) and using Lemma 2.6 again we get

. dF; dF, dFy dFy
- —— =00 =
limg, (6, 26, 20, an TR P 0 (3.42)
. _ , dF; dF, _
if 22+02<0. If A;+0,=0 then we have limg, _(g,,)- 20, 20,
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Remark 3.1: The results given above are derived under the assumption that G;(F,(-
$1)) > Oy in the case A;+0,>0. If G1(F1(-#1))< 02, then G4 (F;()) maps [- ¢, 7-¢;]
iNto [-¢@2,-wz]. Therefore, ;9 and 61, do not exist. Since w<O,+W,1,<27m-¢@,, it
follows that T,(-) maps [-¢@;,7-¢@;] into (w1, 7-¢;). Consequently, we get T,(0,)>60; for

all 8; € [-¢1,w;]. This simplifies the analysis for every case because we have to

consider the behavior of the functions L,L, and — dF d

26, 26, only over the interval (y, 7-

¢;). Thus, our assumption does not cause any loss of generality.

3.2. The Case B;=0

In this case y; and y, are on the same line and therefore V(0,0) is a natural fixed

cot (91)+b1 _ dF1 dFZ

cot (0o tb, — a0, a0, & L,L,=1, the other fixed directions occur if

direction. Since

dF; dF

—==1. We formalize this observation as follows.
de, do,

Theorem 3.2: Consider bimodal system (2.10) and suppose that Ai+o;i has the same
sign for both modes. Then, V(0,0) is a unique pair of fixed directions if Ai+a; #0.

Furthermore, we have

i) If 2i+o; >0 for both modes, then the fixed direction V;(0) is attractive on the

interval [-&, 7- 4] for i=1,2 and all possible trajectories z;(t) change mode infinite

number of times as t—oo. Furthermore, bimodal system is GAS if and only if
%+%<a (3.43)

i) If Zi+o; <O for both modes, then the fixed direction V;(0) is repulsive (stability

cones are attractive on the intervals [-¢,0), respectively) and bimodal system is

GAS.

i) If Xitoi=0, then every direction is a fixed direction. More precisely, for every 04

€ (-¢1, m-¢1), V(01,02) is a pair of fixed directions where 0,:=G;(F;(0;))and

bimodal system is GAS.
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_¢2 ¢2
1
/y2

Figure 3.4: Theorem 10, Case 1.

Proof 3.2: Suppose that z,(t) starts from the direction V;(0). Then, in view of Lemma
2.4.1 and Lemma 2.5.i, z;(1) changes mode at ,;+W;t;=n. Since Vy(m)=V(0) we set
Z1(t1)=22(0). Thus, z,(t) starts from the direction V(0) and changes mode again at
O,+Wot=m, where V(0,+Wyt2)=V,;(0). Hence, V,(0) is a fixed direction or

equivalently V(0,0) is a pair of fixed directions. Note that in this case, we have
e(0):=exp(Z N1 ()exp (Z7) 0y () (3.44)

Using Lemma 2.7 and Remark 2.4 we get 112(m)n21(m)=1. Consequently, ye(0)<1 if

and only if =+ 22 < 0.
w w»

1

i) Note that, if 2;+0; >0 for both modes, then using Corollary(3.1) we have

T:([0,7-44]) € [0,7-$1] 5 Ta([-41,0]) < [-44,0]. (3.45)
Recall that in view of Lemma 2.6.i, we have 1 > %Z% > 0 where the equality holds
1 2

cot (61)+bq
cot (911)+b1

(since L;L,=1 ) that if 0;>0, then 6;>T;(0;). Furthermore, if 6;<0, then
0,<T;(0,)=0,;. Hence, it follows that T,*@,)—0 as k—o for any 0; € [-¢,7-¢;] .
Thus, since G;(F;(0))=0, it follows that V(0,0) is a unique pair of fixed directions

only at ;= m-¢;. Then, we have < 1. Therefore, Lemma 3.2.i-ii implies
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and V,(0) is attractive on [-¢;,7-¢;]. (This also means that all the trajectories
change mode infinite number of times as t—x). Then, in view of Theorem 3.1
bimodal system is GAS if and only if the trajectories starting from the fixed
directions are stable or equivalently if and only if equation (3.10) holds.

ii) Similar to the first case, we have T;/0,6:)c/0,7-¢;) and T;((-¢;,0]) (- ¢;,0].

Since  Ai+0i<0 in view of Lemma 2.6.i and Lemma 3.2, we get

<dF1 sz_ cot (91)+b1
dgl dez cot (911)+b1

. Hence, if 0;>0, we have 0:<T ;(0;)=01; and if 6;<0, we have
0,>T4(0,)=011. This implies that if 6,>0, then there exists a finite integer k>0 such
that G;(F(T:0,))) € [-¢2-02] for any 0,607 ¢]. Similarly, if 6;<0, then there
exists a finite integer | such that T,'(8;) € [-¢1,-¢.]. Therefore, all the trajectories
change mode finite number of times as t— and enter stability cones. Consequently,
fixed direction pair V(0,0) is repulsive and the stability cones [-¢i,-pi]are attractive
over the intervals [-#,0). This means that bimodal system is GAS. Note that equation

(3.10) is satisfied automatically as o; < -4; <0, for i=1,2.

cot (91)+b1

iii) If 4i+o; =0 for i=1,2, then we have ot (011)4bs

:] fOV 01 € (‘¢1,77."¢1).
Consequently, every direction is a fixed direction. Since ¢i = ¢i = % in this case, the

directions Vi(-¢) are stability cones, i=1,2. Thus, every trajectory (except the ones

starting along Vi(-&) change mode infinite number of times as t—x. At a fixed

direction V;(0;) where 0,70, we have Z%Z%:l. Then, Corollary 3.1 implies that
1 2

ve(01)<1. Since 0i<0 for i=1,2 as in the previous case, the fixed direction V,(0) is

also stable. Consequently, bimodal system is GAS.

Theorem 3.3: Let us consider bimodal system (2.10) where A;+0:<0 and A,+0,>0.

Then, the following hold.

1) If b,=|b,|, then V;(0) is a unique fixed direction which is attractive on [0,7- ¢ ;]
and the stability cone [-¢4,-¢,] is attractive on [-¢,0).

i) If b,>|b,|, then V;(0) is a fixed direction and there exists another fixed
direction V,(6;7) where 6; € (-¢4,0). Moreover, V,(0) is attractive on (6,7- ¢],
V(67) is repulsive and the stability cone [-¢4,-¢,] is attractive on [-¢, 67).

i) If b,<|b,|, then V;(0) is a fixed direction and there exists another fixed
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direction V,(6;) where 8; € (0,n- ¢,] . Moreover, V,(8;) is attractive on (0,7- ¢,],
V;(0) is repulsive and the stability cone [-¢;,-¢,] is attractive on [-¢1,0). For all the

cases considered above, bimodal system is GAS if and only if + < 0.

: IR : . .
Proof 3.3 : In view of Lemma 2.6.i-ii, |$ is a nonincreasing function of 6; as

1

A1

dry | . . . . ;
Ll'is an increasing function of 0, as J,+0,>0. However, since
2

0,=G;(F;(0,)), it follows that 6, decreases as 6; increases over the interval (-¢;,7-

#:]. Ths, [ 322

is a decreasing function of 0. Since & e d |s continuous on (-¢4,7-
1

aF, dF,

#4], it follows that — 20, a5,

is a decreasing function of 6;. Consequently, there exists a

unique 65 € (-pz,m-¢] such that,

dF; dF,

i) If b,=|b,|, then since b,>0 and b;<0 we get

dF; dF, _ _ _ _

d_Hld_Bz o,=6 = exp( b17'[ bzﬂ) =1 (347)

Thus, V;(0)=V,(67) is a unique fixed direction. Moreover, since dgl Z:Z is a
1 2

decreasing function of 07, Lemma 3.2 implies that 6;>T ;(6;) over the intervals [0,7-
#4] and (-¢4,0). Consequently, V;(0) is attractive on [0,7- ¢;] and the stability cone
[-#1,-04] is attractive on the interval [-¢;,0). This also implies that the trajectories
starting from the direction V;(0,) where 6; € [0,n- ¢,;] change mode infinite number
of times as t—x. The trajectories starting along the direction V1(0;) where 0; € (-
¢1,0) change mode finite number of times as t— and enter the stability cone [-¢;,-
01] if 11+0:<0. If 1;+0,=0, then The trajectories starting along the direction V;(8,)
where 0; € (-¢;,0) also change mode infinite number of times and converge to the
stability cone along the direction of V1(-§) (In this case the stability cone behaves as
a degenerate fixed direction). Since 6,<-1;<0, such trajectories decay to the origin.

Thus, it follows that bimodal system is GAS if and only if % + ;—2 < 0.

1
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ii) If b,>|b,, then

d6, db,

=exp(—bm—b,r) =1 (3.48)
91=0

dFy dF, . . . . . .
Tlﬁ is a decreasing function on (-¢4,7-¢,], there exists a unique 6; €[-
1 2

dF; dF,

Thus, as

¢4,0) such that

=1. Therefore, there are two fixed directions, V,(0) and
91=6I

dF, dF,

(0,7-¢;] and 6:<T;(0;) on (61,0). Consequently, V,(0) is attractive on (8;,7-¢;].

V(67). Since <1 on (01,7-¢;], by Lemma 3.2 it follows that 6,>T ;(6;) on

Since Z%Z%ﬂ on [-¢;,07) Lemma 3.2 implies that 0:>T;@;) on [-¢;,07).
1 2

Consequently, the stability cone [-¢,,-¢,] is attractive on the interval [-¢;,67). This
implies that V;(67) is repulsive. Also note that Corollary 3.1 implies that ye(67)<1 or
equivalently V;(67) is a stable fixed direction. Then it follows that bimodal system is

GAS if and only if 2 4+ 22 < 0, again.
w1 W»o

iii) If by<|b,|, then

dF, dF,
d6, db,

=exp(—b;m —b,m) > 1 (3.49)
91=0

Thus, there exists a unique 8; € [0,z-¢,] such that

dF; dF,
de, db,

= exp(—b;m — bym) > 1 (3.50)
91=9;

Therefore, there are two fixed directions, V;(0) and V,(67). Since %%d on
1 2

(01,7~ ¢,] and Z%%>l on (-41,07), Lemma 3.2 implies that 0;>T 1(0;) on (0,7-¢,]
1 2

and 0,<T4(0;) on (0, 87). This implies that V;(6;) is attractive on (0,7-¢;] and since

%%ﬂ on [-¢;,0) again by Lemma 3.2 it follows that 6,>T;(@;) on (-¢;,0).
1 2

Consequently, the stability cone [-¢4,-¢,] Is attractive on the interval [-¢;,0). This

implies that V;(0) is repulsive. Also note that by Corollary 3.1 we have ye(67)<1 or
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equivalently V,( 6;) is a stable fixed direction. This implies that bimodal system is

GAS if and only if X+ =2 < 0, again.

Remark 3.2: The trajectories for bimodal systems (2.4) behave in a similar manner in

case of A;+0;>0 and A,+0,<0, that is,

1) If b;=|b_|, then V;(0) is a unique fixed direction which is attractive on [-¢;,0)
and the stability cone [-¢,-¢2] is attractive on (0,7-¢].

i) If b;<|b_| then V;(0) is a fixed direction and there exists another fixed direction
V;(07) where 6; €(-¢;,0). Moreover, V;( 67) is attractive on [-¢,,0), V;(0) is
repulsive and the stability cone [-¢2,-¢] is attractive on (0,7- ¢;].

iii) If b;>|b;|, then V;(0) is a fixed direction and there exists another fixed
direction V,( 67) where 65 € (0,7-¢;] . Moreover, V,(0) is attractive on [-¢;, 67),
V;( 67) is repulsive and the stability cone [-¢.,-¢] is attractive on (01,7-¢,].

For all the cases considered above, bimodal system is GAS & 2* ;—2 <0.

wq 2

3.3. The Case B;>0

In this case, recall that by Lemma 3.3.ii L;L,>1 and it is a decreasing function
of 0, for 6;>0. If 06,<0, then in view of Lemma 3.3.ii we have L;L,<0 over the
interval [-010,0) and 0<L;L,<1 for 6; € (-@1,-010]. Furthermore, limg ot Lily =

+o0. In this framework, we have the following results for the variants of this case.

Case 3.1: 1;+0;<0, A,+t0,>0:

Recall from Lemma 3.3.iii that 2222 5 4 strictly decreasing function of 04

de, db,
over the interval (-¢4,7-¢ ] where

dF1 dFZ . dFl dFZ

—_— ] —_— = 00

26,30,y s 0 and limg gy )+ TR (3.51)
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dF; dF,

if Aat07<0. If J1+0,=0, then limg, )+ Zo-22"

= 1. These facts imply that

1

FTTN L is a decreasing function of 6; over both of the intervals (-¢;,-6;,] and
1 2

(0,7- ¢;] and there are two versions of this case.

dF1 dFZL
1

e [f 1;+0,<0, then equations (3.51) hold. Thus, L decreases from « to zero

dFy dFy)
-, L1

over the interval (-g,-6,] and 22t 22

L, decreases from « to 0 over the interval

[0.7-¢,]. Therefore, there exist unique 8;1 € [0,7-¢,] and unique —0;? € (-¢;,-0;0]
such that

dF; dF, _ dF dF,

d91 d92 |91=9 *1 d91 d92 2 |91=9I2

=1 (3.52)

This implies that V(8;1,— ;1) and V(—6;2, 6;%) are two pairs of fixed directions
where — 0;1:=G,(F;(8;1)) and 6,2:=G,(F;(—6;?2)). Furthermore, Lemma 2.5 and
the equations above imply that V(6;1,— 8,) is an attractive pair and V(—6;2, 6,2%)
is a repulsive pair. Thus, V(8;1,—8,1) is attractive in the interval (—6;2z-
#;1 cHNS; and [-p2, 6;2)cHNS>; where as the stability cone [-¢,,-¢,] is attractive
for the regions [-¢;,—0;%)cHNS;. Further note that since limg Lo+ Lila =1

dF, dF,

> 1. Consequently,
d91 d92 91=—6;2 q y

and decreases as 0; increases, it follows that

equation (3.4) implies that V(—6;2,65%) is a repulsive stable pair of fixed
directions. But there is no guarantee for the stability of V(8;,— 6;1). Consequently,
the overall system is stable if and only if the trajectories starting from the fixed

directions V(0;1,— ;1) are stable or equivalently y«(0;1, — 6;1) < 1.

......

¥z
Figure 3.5: Geometry for A;+c,>0.
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Figure 3.6: Attr./Rep. of fixed directions for A;+c,>0.

e If J;+0,=0, then the fixed directions V(—6;2, 6;%) merge into the stability cone

dF1 sz

26, d—92|—1 L

which becomes a single line along the direction V;(-(3)) =V(x-¢5). Since
2

decreases from 1 to -co over the interval (-¢;,0) and from o« to zero over the

interval(0,7-¢;], Lemma 2.5 implies that the stability cone V1(-§)) is repulsive and

consequently V(8;1,— 651) s attractive for the whole H. Consequently, the overall
system is GAS if and only if the trajectories starting from the fixed directions
V(6;1,— 6,1) are stable.

Case 3.2: 114’0'150, /12"‘0'250.'

. dF, dF . .
In view of Lemma 2.6, we have d—;ﬁzl over the entire domain of T,(").
1 2

Therefore, equation (3.10) implies that for any fixed direction that may exist, the
convergence rate yg < 1. Then, the trajectories starting from this fixed direction will
be stable. Consequently, for this case, the overall system is always GAS. Some of the

variants of this case are itemized below.

dF, dF,

e [f 1,+0,=0 and J.;+5;<0, then TR

L;L > decreases monotonically from « to zero

over the interval (-¢;,-05,]. Therefore, there exists a —0; € (-@z,-6;,] such that

dF; dF, _
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d

dF, dF;
Slnced —L 2L1

it dF2L1L2>1 for 6; < —6; and 20, 20

o L.<I for 6; > —67, it follows

that V(—6;, 05) (where 0;5:=G;(F;(—67))) is a repulsive pair of fixed directions.

Consequently, the stability cone represented by V (— g) is attractive for the region

(—01,7-¢;] in HNS;, whereas the stability cone [-¢;,-@,] is attractive for the region

[-#,,—67) in HNS;. Furthermore, the overall system GAS.

‘]f‘2,1+0'1—/12+0'2 O then — 46, 40,

—==1 over the domain of T,(-). Therefore, Lemma 2.6

1

and Lemma 3.3.ii implies that — FTITN

L~ decreases monotonically from one to zero

over the interval [-@;,-010] and decreases from « to 1 over the interval [0,7-¢,].
Consequently, the stability cone V;(— %) is repulsive and the stability cone V,(— %) IS

attractive for the whole HNS,. Consequently, overall system is GAS.

e If J,+02<0 and 1;+0,<0, then in view of Lemma 3.3.ii, we get I>L;L,>0 and

dF Ay
1

decreasing for 0; € (-¢1,-010], but — 26, 29,

L is no longer a monotone (increasing

or decreasing) function. This i

2| is an increasing function of 6, over the domain of T,(-). For instance,
2

ar by
1

T Lo=w0 at 6;=-¢; and at 6;=-0,, it is equal to zero. Thus, there exists at the

least one fixed direction. But, depending on the existence and the values of the local

dF,

minima and maxima of the function — 20, ar: 2L1L2 there may be more. Furthermore, by
2

dF1 dFZL
1

Lemma 3.3.ii, it follows that L;L ;<0 for 6; € [-010,0) if 61, > 0. Thus, L.<1

or equivalently T,(@,)>6; over the interval [-0;,,0). Similarly, in view of Lemma

dF1 dFZL
1

2.6.ii and Lemma 3.3.ii, we get —= Lo>1 over the interval [0,60:;) and this also

implies that T;(6;)>6; over the interval [0,6:). Therefore, the stability cone [-¢z,-
@-] Is attractive at least for the region [-¢,,0:,] in HNS,. If 61 < 0, then since

G1(F;(61r))=-¢4, the stability cone [-¢.,-¢-] is again attractive for the region [-
¢21022]-

Case 3.3: 1;+0:>0, A5+02<0 :
In this case, Lemma 3.3.iv implies that %% is strictly increasing function of
1 2

6, over the domain of T;(@;). Since L;L; is strictly decreasing for both ;>0 and 0,
53



dF, dF,

€ (-¢1,-010] by Lemma 3.3.iv, it follows that the function

is no longer

monotone (decreasing or increasing) over these intervals. As in the previous case,

this is left for future study.

Remark 3.3: In view of observations we get so far, one can write an algorithm which
calculates both fixed directions and convergence rate ye(—607), numerically, with the
help of a computer algorithm. For this purpose, the equation sin(6;+W;t;)=exp(-
b, (W;z))sin(@;) can be used for a trajectory that starts from the 1% mode. This
equation gives us the relation between the angle that we start at P; * (i.e. the angle
0;) and the angle at the moment the trajectory hits P; ™ (i.e. the angle 6;+w;t;). But,
since this is a nonlinear equation, we need an estimated angle for 0;+W;t;:=60;. TO
this end, we use m-¢;. Estimation can be improved constructing a loop and iteratively
modifying with a command as follows 0; = = —sin ™" (sin(@,) exp (- b; (81 -0;)))
Applying the same procedure also for the 2" mode, the corresponding fixed
direction angle 6, and afterwards the convergence rate ye(6;) can also be

calculated. The followings are examples which are evaluated in this way.

Example 3.1: Consider bimodal system (2.10) with the following spectrum

{-As,01,W;} ={-08,-1, 2}, {-1,0.W_,} = {-0.4,0.2, 3} (3.54)
where
2 )
2 4
=1 -3 0 (3.55)
0 1 -0.8

Note that 1.;+0;<0, A+0,>0, and B;=0.2885 > 0. The fixed direction is
01 =38° with the rate of convergence yg(67)=0.9120. Therefore, the system is GAS.
We can change the entries of the system matrix A; without changing its spectrum A;

as follows.
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1 -8 0
A=1 -3 0 (3.56)
0 1 -08

Thus, we still have {-1;,0;,w;}={-0.8, -1, 2}. However, B;=0.4487 and the
fixed direction is 87 =46° with convergence rate ye(6;)=1.2637. Consequently, the

system is not GAS. Further change of the entries of A; yields

2 -13 0
A=l1 -4 0 (3.57)
0 1 -08
where the spectrum is again
{'/11, 0y, W1}:{‘0.8, ‘1, 2} (358)

But B,=0.7692 and the fixed direction is 687 =55.5° the rate of convergence
ye(67)=2.0111. Therefore, the system is unstable again.

Thus, it's clear that not only the spectrum of the system matrices but also the
coupling condition B; is also very important for determining GAS. The graph of the

unstable trajectory is as follows. It starts in red line and goes toward to infinity as

—00,
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Figure 3.7: Unstable trajectory for Example 1.

This time let's assign both of the modes as stable, i.e. both o; < 0 for i=1,2. For
this purpose, let's change only o, and investigate the effects of the coupling

condition.

Example 3.2: Consider the bimodal system (2.10) and assume that the spectrum of

the system matrices as

{-2,0:,W;}={-038, -1, 2}, {-12,0-.,W,} ={-0.4,-0.2, 3} (3.59)
where
2 =13 0
A;=1 -4 0 (3.60)
0o 1 -08

So J1+0:<0, A;+0,>0, B;=0.7965>0 and rate of convergence ys(6;)=1.1065

which means the system is unstable. Also, fixed direction is 6; ~62,6°. If we change
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the entries of the system matrix A;, remaining the spectrum same, rate of

convergence changes. That is, choose the system matrix A; as

1 -8 0
A=1 -3 0 (3.61)
0 1 -08

so the spectrum is same : {-1;,07,,W;}={-0.8, -1, 2}. But, we changed also a;; € A;
which is efficient in B;. Therefore, B; changed as 0.4646, so the rate of convergence
changes : ye(07)=0.7908, that is, the system is stable, fixed direction is 6 =56,6°.
Note that 8 is decreasing as B; decreases. Remember that 8;=0 for B;=0.

Thus, it's clear that not only the spectrum of the system matrices but also the

coupling condition B; is also very important on the stability analysis.

Example 3.3: Let's consider the bimodal system (2.10) and assume that the spectrum

of the system matrices as

{-4.1,061W7} = {-0.4429, -0.5286, 2.9585}, {-15,0,,W,} = {-0.5, -0.4887, 5}  (3.62)

where

1 -6 I
A=|2 -2 1 (3.63)
0 1 -0.5

So A;+t0;<0, A,+0,>0 , B;=0.0426>0 and rate of convergence yr(6;)=1, that
is the system is marginally stable. If 0,=-0.4887 becomes to 0.5, yr also increases
and reaches to the value 1.0061, then the system is unstable. Conversely, decreasing
oz 10 0.4, ye also decreases and reaches to the value 0.9538, then the system is
stable. Similar analysis should be made using the eigenvalue 1, but taking into

account that marginal changing in 1, should make B;<0.
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4. CONCLUSIONS AND FUTURE WORKS

In this thesis, the structure and stability of bimodal systems in R*® are
investigated under the assumptions (A1-A3). It is shown that the trajectories which
change mode infinite number of times eventually converge to fixed directions or
stability cones on H. Consequently, GAS is determined by the stability of the
trajectories starting from the fixed directions. Thus, the existence of trajectories
which change mode infinite number of times (as t—o0) is a crucial property in
bimodal systems.

It's also shown that for the case B;=0 conditions for GAS in R? is reduced to
the conditions in R2?, which is well known in the literature [Iwatani and Hara, 2006],

[Camlibel et.al., 2003]. That is, the necessary and sufficient condition for GAS is

%+ %2 < 0 when B,=0. However, as shown above, the behavior of trajectories

wi o wy
change radically as the parameters of the subsystems change. There may be one, two
or infinite number of fixed directions and one or two stability cones. Furthermore,
attractiveness of the fixed directions and the stability cones also changes
substantially.

It is also shown that the stability of the trajectories which change mode only a
finite number of times as t—oo is guaranteed in our setup. Since the negativity of the
real eigenvalues is a necessary condition for GAS for any bimodal system, it follows
that the necessary and sufficient condition for the stability of the trajectories which
change mode only a finite number of times as t—oo is the negativity of the real
eigenvalues of both modes. On the other hand, it is also proved that the trajectories
which change mode an infinite number of times as t—oo are stable if and only if the
rate of convergence yr Of each fixed direction satisfies the inequality ye<1. With

these observations we present the following conjecture.

Conjecture 4.1: Consider the bimodal system (2.4) under the assumptions Al-A3.
Then, the following hold.

1) If all the trajectories change mode only finite number of times as t—w, then
bimodal system is GAS if and only if all the real eigenvalues of both modes are

negative.
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i) If there are trajectories which change mode infinite number of times as t—x,
then bimodal system is GAS if and only if all the real eigenvalues of both modes

are negative and all the trajectories starting from the fixed directions are stable.

The validity of the conjecture is shown for the class of bimodal systems
considered in this thesis. In our future work, we plan to prove the validity of this
conjecture for all bimodal systems under A1-A2 (both modes are observable and
bimodal system is well-posed). If the conjecture is still valid under A1 and A2, then
bimodal systems in R» can be investigated by classifying the trajectories as in the

above conjecture.
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