GEBZE YÜKSEK TEKNOLOJİ ENSTİTÜSÜ MÜHENDİSLİK VE FEN BİLİMLERİ ENSTİTÜSÜ

T.C.

SÜNEKLİK DÜZEYİ YÜKSEK ALÇAK VE ORTA KATLI BETONARME ÇERÇEVELERDE TASARIM DEPREMİ ALTINDA EŞİT YER DEĞİŞTİRME KURALININ İNCELENMESİ

SERKAN GÖKALP YÜKSEK LİSANS TEZİ DEPREM VE YAPI MÜHENDİSLİĞİ ANABİLİM DALI

GEBZE 2014 GEBZE YÜKSEK TEKNOLOJİ ENSTİTÜSÜ MÜHENDİSLİK VE FEN BİLİMLERİ ENSTİTÜSÜ

SÜNEKLİK DÜZEYİ YÜKSEK ALÇAK VE ORTA KATLI BETONARME ÇERÇEVELERDE TASARIM DEPREMİ ALTINDA EŞİT YER DEĞİŞTİRME KURALININ İNCELENMESİ

SERKAN GÖKALP YÜKSEK LİSANS TEZİ DEPREM VE YAPI MÜHENDİSLİĞİ ANABİLİM DALI

DANIŞMANI PROF. DR. BÜLENT AKBAŞ

> GEBZE 2014

GEBZE INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF ENGINEERING AND SCIENCES

T.R.

EVALUATION OF DEFLECTION AMPLIFICATION FACTOR IN REINFORCED CONCRETE MOMENT RESISTING FRAMES

SERKAN GÖKALP A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF EARTHQUAKE AND STRUCTURE ENGINEERING

THESIS SUPERVISOR PROF. DR. BÜLENT AKBAŞ

> GEBZE 2014

YÜKSEK LİSANS JÜRİ ONAY FORMU

GYTE Mühendislik ve Fen Bilimleri Enstitüsü Yönetim Kurulu'nun 23.06.2014 tarih ve 2014/37 sayılı kararıyla oluşturulan jüri tarafından 23/10/2014 tarihinde tez savunma sınavı yapılan Serkan GÖKALP'in tez çalışması Deprem ve Yapı Mühendisliği Anabilim Dalında YÜKSEK LİSANS tezi olarak kabul edilmiştir.

JÜRİ

ÜYE (TEZ DANIŞMANI)	:	Prof. Dr. Bülent Akbaş
ÜYE	•	Prof Dr. Bilge Siyahi
ÜYE	:	Doç. Dr. Bilge Doran

+ ULL

3 dona

ONAY

GYTE Mühendislik ve Fen Bilimleri Enstitüsü Yönetim Kurulu'nun tarih ve sayılı kararı.

İMZA/MÜHÜR

ÖZET

Süneklik Düzeyi Yüksek Betonarme Çerçeveler, betonarme yapılarda en sık kullanılan taşıyıcı sistemlerden biridir. Bu çerçeveler oldukça sünek davranış gösterebilmektedir. Genel olarak bir yapıda dayanıma göre tasarım yapılarak eleman boyutlandırılır, göreli kat ötelemesi şartlarına göre kat yerdeğiştirmeleri kontrol edilir ve düğüm noktalarında güçlü kolon-zayıf kiriş ilkesi kontrol edilir.

Türk Deprem Yönetmeliği'nde ve ASCE'de göreli kat ötelemelerinin 0.02x (kat yüksekliği) şartını sağlamaları istenmektedir. Etkin göreli kat ötelemelerinin hesabında Türk Deprem Yönetmeliği 8x(azaltılmış göreli kat ötelemesi) yaklaşık bağlantısını (eşit yerdeğiştirme kuralı), ASCE ise 5.5x(azaltılmış göreli kat ötelemesi) bağıntısını önermektedir. Süneklik düzeyi yüksek betonarme çerçeveler için C_d ve R sayıları ASCE'de ve DBYBHY'de sırasıyla 5.5 ve 8 olarak belirlenmiştir. Bu çalışma, alçak ve orta katlı süneklik düzeyi yüksek betonarme çerçeveler üzerinde yapılacak statik itme ve doğrusal olmayan dinamik zaman geçmişi analizleriyle her iki yönetmelikteki etkin göreli kat ötelemesi şartlarının incelenmesini içermektedir. Bu amaçla, 3 ve 6 katlı süneklik düzeyi yüksek betonarme tabi tutularak, çerçevelerin eşit yerdeğiştirme ilkesine göre dayanım ve göreli kat ötelemeleri değerlendirilecektir.

Anahtar Kelimeler: Deprem Yönetmelikleri (DY), Yapısal Deprem Mühendisliği (YDM), Taşıyıcı Sistem Davranış Katsayısı (TSDK), Deplasman Arttırma Katsayısı (DAK), Eşit Yerdeğiştirme Kuralı (EYK).

SUMMARY

The design of a structural system has a three-step procedure which are strength design, drift design and strong column-weak beam design. Turkish Earthquake Code requires that story displacements (inelastic displacements) be calculated by multiplying the response modification factor (R) with the deflection determined by elastic analysis under earthquake forces. However, ASCE allows determining the story displacements (inelastic displacements) by multiplying the deflections determined by elastic analysis under earthquake forces with a deflection amplification factor (Cd). For special moment resisting frames, Cd is given as 5.5 in ASCE and R is given as 8 in TEC. This study aims at investigating the seismic displacements that low and medium Reinforced Concrete Special Moment Resisting Frames can experience under severe earthquake ground motions and evaluating the inelastic displacement of Special Moment Resisting Frames in a rational way. For this purpose, nonlinear dynamic time history and pushover analyses will be carried out on RCMRF's with 3 and 6 stories. The results obtained from this study are presented in terms of strength, story drift, and plastic hinge rotations.

Key Words: Seismic Design Codes (SDC), Structural Earthquake Engineering (SEE), Response Modification Factor (RMF), Deflection Amplification Factor (DAF).

TEŞEKKÜR

Başta, yüksek lisans eğitimimde ve akademik hayatımda desteğini ve yardımlarını hiçbir zaman esirgemeyip bilgisi ile bu çalışmanın oluşmasının yolunu açan danışmanım Prof. Dr. Bülent AKBAŞ'a,

Bütün çalışmam boyunca yanımda olan, bilgi ve tecrübelerini benimle paylaşan değerli arkadaşım Faruk KOÇAK'a,

ve göstermiş olduğu desteklerinden dolayı sevgili annem Nihal GÖKALP ve sevgili babam İzzet GÖKALP'e en içten teşekkürlerimi sunarım.

İÇİNDEKİLER

	<u>Sayfa</u>
ÖZET	iv
SUMMARY	v
TEŞEKKÜR	vi
İÇİNDEKİLER	vii
SİMGELER ve KISALTMALAR DİZİNİ	ix
ŞEKİLLER DİZİNİ	xii
TABLOLAR DİZİNİ	xiv
1. GİRİŞ	1
1.1. Tezin Amacı, Katkısı ve İçeriği	4
2. R ve Ca KATSAYILARININ GEÇMİŞİ ve TEORİSİ	6
2.1. Taşıyıcı Sistem Davranış Katsayısı ve Bileşenlerinin Tanımlanması	7
2.1.1. Süneklik Bileşeni	8
2.1.2. Fazla Dayanım Bileşeni (Overstrength Factor)	11
2.1.3. Süneklik ve Fazla Dayanım Bileşenlerinin Değerlendirilmesi	13
2.2. Cd Katsayısının Tanımlanması	14
3. TASARIM ESASLARI	17
3.1. Süneklik Düzeyi Yüksek Çelik Çerçevelerin Tasarım Esasları	17
3.2. Çerçevelerin Tasarımı	17
3.2.1. Üç Katlı (R=8) Binanın Doğrusal Elastik Analiz Sonuçları	20
3.2.2. Üç Katlı (C _d =5.5) Binanın Doğrusal Elastik Analiz Sonuçları	23
3.2.3. Altı Katlı (R=8) Binanın Doğrusal Elastik Analiz Sonuçları	26
3.2.4. Altı Katlı (Cd=5.5) Binanın Doğrusal Elastik Analiz Sonuçları	30
4. ANALİZ SONUÇLARI	35
4.1. Üç Katlı Yapıların Doğrusal Elastik Olmayan Analiz Sonuçları	37
4.1.1. (R=8) için Zaman Tanım Alanında Doğrusal Olmayan Elastik	37
Analiz Sonuçları	
4.1.2. (R=8) için Doğrusal Olmayan Statik İtme Analizi	39
4.1.3. (C _d =5.5) için Zaman Tanım Alanında Doğrusal Olmayan	42
Elastik Analiz Sonuçları	

4.1.4. (Cd =5.5) için Doğrusal Olmayan Statik İtme Analizi	44
4.2. Altı Katlı Yapıların Doğrusal Elastik Olmayan Analiz Sonuçları	46
4.2.1. (R=8) için Zaman Tanım Alanında Doğrusal Olmayan Elastik	46
Analiz Sonuçları	
4.2.2. (R=8) için Doğrusal Olmayan Statik İtme Analizi	48
4.2.3. (Cd=5.5) için Zaman Tanım Alanında Doğrusal Olmayan	51
Elastik Analiz Sonuçları	
4.2.4. (C _d =5.5) için Doğrusal Olmayan Statik İtme Analizi	53
4.2.5. Maksimum Plastik Mafsal Dönmeleri	55
5. SONUÇLAR VE YORUMLAR	
KAYNAKLAR	58
ÖZGEÇMİŞ	59

SİMGELER ve KISALTMALAR DİZİNİ

Simgeler ve Açıklamalar

<u>Kısaltmalar</u>	
b	: Kiriş kesitinin genişliği
h	: Kiriş kesitinin yüksekliği
C_{d}	· Yer değiştirme arttırma katsayısı
d_{I}	1. moda ait modal yer değiştirme
$d_{\scriptscriptstyle c}$: Kolon en kesit yüksekliği
d_{i}	: i'inci katın azaltılmış deprem yüklerine göre hesaplanan yer
	değiştirmesi
$d_{\scriptscriptstyle i\text{-}i}$: i-1'inci katın azaltılmış deprem yüklerine göre hesaplanan yer
	değiştirmesi
Fa	: Kısa periyot bölgesi için bölge çarpanı
F_{v}	: Uzun periyot bölgesi için bölge çarpanı
F_y	: Akma dayanımı
h_i	: i'inci katın yüksekliği
M_{I}	: Birinci moda ait etkin kütle
M_{vi} ,	: Kirişin i ve j uçlarındaki olası plastik mafsaldaki kesme
	kuvvetinden dolayı kolon yüzünde meydana gelen ek eğilme momenti
M_{pa}	: Kolonların alt ucunda hesaplanan moment kapasitesi
$M_{p\ddot{u}}$: Kolonların üst ucunda hesaplanan moment kapasitesi
M_{pi}	: Kirişlerin sol ucu i'de hesaplanan pozitif veya negatif moment
	kapasitesi
M_{pj}	: Kirişlerin sağ ucu jde hesaplanan pozitif veya negatif moment
	kapasitesi
M_p	: Eğilme momenti kapasitesi
PGA	: En büyük yer ivmesi
PSA	· Spektral sözde ivme
R	· Taşıyıcı sistem davranış katsayısı
$R_a(T)$: Deprem yükü azaltma katsayısı
R_n	: Nominal mukavemet
Rμ	: Taşıyıcı sistem davranış katsayısının süneklik bileşeni

S(T)	: Spektrum katsayısı
Sa	: Spektral ivme
Sae	: Elastik spektral İvme
Sde	: Doğrusal elastik spektral yer değiştirme
Sdi	: Doğrusal elastik olmayan spektral yer değiştirme
S_d	: Spektral yer değiştirme
S _{ds}	 %5 sönüm oranına sahip tepki spektrumunun kısa periyot ivme parametresi
S_{d1}	: %5 sönüm oranına sahip tepki spektrumunun 1 snlik periyoda
	karşılık gelen ivme parametresi
S_s	: Sismik tehlike eğrilerinden elde edilen %5 sönüm oranına sahip tepki
	spektrumunun kısa periyot ivme parametresi
<i>S</i> 1	: Sismik tehlike eğrilerinden elde edilen %5 sönüm oranına sahip tepki
	spektrumunun 1 snlik periyoda karşılık gelen ivme parametresi
S_{MS}	: %5 sönüm oranına sahip tepki spektrumunun zemin sınıfına bağlı kısa
	periyot ivme parametresi
S_{M1}	: %5 sönüm oranına sahip tepki spektrumunun zemin sınıfına bağlı 1
	snlik periyoda karşılık gelen ivme parametresi
V_d	: Tasarıma esas alınan taban kesme kuvveti
Ve	: Yapının elastik kalması durumunda sistemde oluşacak en büyük taban
	kesme kuvveti
V_t	: Taban kesme kuvveti
$V_{1(i)}$: İtme analizi esnasında yapının tepesinde (i)'inci itme adımı sonunda
	elde edilen birinci moda (hakim moda) ait taban kesme kuvveti değeri
Q_i	: Değişik yük etkileri
Т	: Yapının doğal titreşim periyodu
T_1	: Yapının 1. doğal titreşim periyodu
ТА, ТВ	: DBYBHY (2007)'de tanımlanan spektrum karakteristik periyotları
T_{0}, T_{s}	: ASCE 7-10'da tanımlanan spektrum karakteristik periyotları
T_L	: Uzun periyot bölgesi dönüşüm periyodu
φ	: Mukavemet azaltma katsayısı
ϕ_{n1}	: Binanın tepesinde birinci moda ait mod şekli genliği
Γ_1	: Birinci moda ait katkı çarpanı
$\Delta_{ m p}$: Plastik yer değiştirme

Δ tepe	: Çatı yer değiştirmesi
Δ_d	: Tasarıma esas alınan taban kesme kuvvetine karşılık gelen çatı yer
	değiştirmesi
Δ_y	: Akma dayanımına karşılık gelen çatı yer değiştirmesi
Δ_e	: Yapının elastik kalması durumunda sistemde oluşacak çatı yer
	değiştirmesi
∆max	: Yapıda elastik-ötesi durumda meydana en büyük çatı yer değiştirmesi
Δ_i	Binanın iinci katındaki azaltılmış göreli kat ötelemesi
μ	: Süneklik katsayısı
Ω	: Fazla dayanım katsayısı (Overstrength factor)
Y	: Yük arttırma katsayısı
δ_{i}	Binanın i'inci katındaki etkin göreli kat ötelemesi
ωn	: Yapının doğal frekansı
ξn	: Sönüm oranı
ADRS	Acceleration Displacement Response Spectrum
ACI	American Concrete Institute
AISC	American Institute of Steel Construction
ASCE	American Society of Civil Engineers
ASD	Allowable Stress Design
ATC	Applied Technology Council
DBYBHY	Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik
FEMA	Federal Emergency Management Agency
LRFD	Load and Resistance Factor Design
NEHRP	National Earthquake Hazards Reduction Program
RCMRF	Reinforced Concrete Moment Resisting Frames
SMRF	Special Moment Resisting Frame
UBC	Uniform Building Code

ŞEKİLLER DİZİNİ

Şekil 🛛	<u>No:</u>	<u>Sayfa</u>
1.1:	Kesit hasar sınırları ve hasar bölgeleri.	1
1.2:	Eşit yerdeğiştirme kuralı.	2
2.1:	Tipik bir betonarme elemanda dayanım-yerdeğiştirme ilişkisi.	6
2.2:	Genel yapı davranışı.	7
2.3:	Yer değiştirmeye dayalı tasarım.	8
2.4:	Sargılı ve sargısız betona ait gerilme ve şekil değiştirme bağıntısı.	9
2.5:	Donatı çeliği gerilme ve şekil değiştirme bağıntısı.	9
3.1:	Tipik kat planı.	18
3.2:	a) Kat planı, b) Bina kesiti.	20
3.3:	(R=8) için üç katlı binanın üç boyutlu matematiksel modeli.	21
3.4:	(R=8) x yönünde eşdeğer deprem yükü altında deforme olmuş şekli.	21
3.5:	(R=8) y yönünde eşdeğer deprem yükü altında deforme olmuş şekli.	22
3.6:	a) Kolon kesiti, b) Kiriş kesiti.	22
3.7:	a) Kat planı, b) Bina kesiti.	23
3.8:	$(C_d=5.5)$ için üç katlı binanın üç boyutlu matematiksel modeli.	24
3.9:	$(C_d=5.5)$ x yönünde eşdeğer deprem yükü altında deforme olmuş şekli.	24
3.10:	$(C_d=5.5)$ y yönünde eşdeğer deprem yükü altında deforme olmuş şekli.	25
3.11:	a) Kolon kesiti, b) Kiriş kesiti.	25
3.12:	a) Kat planı, b) Bina kesiti.	26
3.13:	(R=8) için altı katlı binanın üç boyutlu matematiksel modeli.	28
3.14:	(R=8) x yönünde eşdeğer deprem yükü altında deforme olmuş şekli.	28
3.15:	(R=8) y yönünde eşdeğer deprem yükü altında deforme olmuş şekli.	29
3.16:	a) Kolon kesiti, b) Kiriş kesiti.	29
3.17:	(C _d =5.5) için altı katlı binanın kat planı ve yükseklikleri.	31
3.18:	$(C_d=5.5)$ için altı katlı binanın üç boyutlu matematiksel modeli.	32
3.19:	$(C_d=5.5)$ x yönünde eşdeğer deprem yükü altında deforme olmuş şekli.	33
3.20:	$(C_d=5.5)$ y yönünde eşdeğer deprem yükü altında deforme olmuş şekli.	33
3.21:	a) Kolon kesiti, b) Kiriş kesiti.	34
4.1:	Ölçeklendirilmemiş spektrum diyagramı.	35
4.2:	Ölçeklendirilmiş spektrum diyagramı.	36

4.3:	a)"Italy" depremi x yönü plastik mafsal bölgeleri, b) "Italy" depremi y	37
	yönü plastik mafsal bölgeleri.	
4.4:	a)"Chi2714" depremi x yönü plastik mafsal bölgeleri, b)"Chi2714"	38
	depremi y yönü plastik mafsal bölgeleri.	
4.5:	a)"Chi2734"depremi x yönü plastik mafsal bölgeleri, b) "Chi2734"	38
	depremi y yönü plastik mafsal bölgeleri.	
4.6:	(R=8) için x yönü statik itme analizi kapasite diyagramı.	40
4.7:	(R=8) için y yönü statik itme analizi kapasite diyagramı.	41
4.8:	a)"Italy" depremi x yönü plastik mafsal bölgeleri, b) "Italy" depremi y	42
	yönü plastik mafsal bölgeleri.	
4.9:	a)"Chi2714" depremi x yönü plastik mafsal bölgeleri, b) "Chi2714"	42
	depremi y yönü plastik mafsal bölgeleri.	
4.10:	a)"Chi2734" depremi x yönü plastik mafsal bölgeleri, b) "Chi2734"	43
	depremi y yönü plastik mafsal bölgeleri.	
4.11:	(Cd=5.5) için x yönü statik itme analizi kapasite diyagramı.	44
4.12:	(Cd=5.5) için y yönü statik itme analizi kapasite diyagramı.	45
4.13:	a)"Italy" depremi x yönü plastik mafsal bölgeleri, b) "Italy" depremi y	46
	yönü plastik mafsal bölgeleri.	
4.14:	a)"Chi2714" depremi x yönü plastik mafsal bölgeleri, b) "Chi2714"	47
	depremi y yönü plastik mafsal bölgeleri.	
4.15:	a)"Chi2734" depremi x yönü plastik mafsal bölgeleri, b) "Chi2734"	47
	depremi y yönü plastik mafsal bölgeleri.	
4.16:	(R=8) için x yönü statik itme analizi kapasite diyagramı.	49
4.17:	(R=8) için y yönü statik itme analizi kapasite diyagramı.	50
4.18:	a)"Italy" depremi x plastik mafsal bölgeleri, b) "Italy" depremi y	51
	plastik mafsal bölgeleri.	
4.19:	a)"Chi2714" depremi x plastik mafsal bölgeleri, b) "Chi2714" depremi	51
	y plastik mafsal bölgeleri.	
4.20:	a)"Chi2734" depremi x plastik mafsal bölgeleri, b) "Chi2734" depremi	52
	y plastik mafsal bölgeleri.	
4.21:	(Cd=5.5) için x yönü statik itme analizi kapasite diyagramı.	53
4.22:	(C_d =5.5) için y yönü statik itme analizi kapasite diyagramı.	54

TABLOLAR DİZİNİ

<u>Tablo</u>	No:	<u>Sayfa</u>
1.1:	Deprem hareketleri.	4
2.1:	DBYBHY ve ASCE'nin önerdiği R, R $_{\mu}$, Ω katsayıları.	14
3.1:	Kombinasyonlar.	18
3.2:	3 ve 6 katlı binalara ait genel bilgiler.	19
3.3:	(R=8) için 3 katlı binaya ilişkin genel bilgiler.	21
3.4:	(R=8) için 3 katlı binanın x yönünde meydana gelen deplasmanları.	22
3.5:	(R=8) için 3 katlı binanın y yönünde meydana gelen deplasmanları.	23
3.6:	(C _d =5.5) için 3 katlı binaya ilişkin genel bilgiler.	24
3.7:	$(C_d=5.5)$ için 3 katlı binanın x yönünde meydana gelen deplasmanları.	25
3.8:	$(C_d=5.5)$ için 3 katlı binanın y yönünde meydana gelen deplasmanları.	26
3.9:	(R=8) için 6 katlı binaya ilişkin genel bilgiler.	27
3.10:	(R=8) için 6 katlı binanın x yönünde meydana gelen deplasmanları.	30
3.11:	(R=8) için 6 katlı binanın y yönünde meydana gelen deplasmanları.	30
3.12:	(C _d =5.5) için 6 katlı binaya ilişkin genel bilgiler.	32
3.13:	$(C_d=5.5)$ için 6 katlı binanın x yönünde meydana gelen deplasmanları.	34
3.14:	$(C_d=5.5)$ için 6 katlı binanın y yönünde meydana gelen deplasmanları.	34
4.1:	Kolon ve kiriş enkesitleri.	35
4.2:	Kullanılan deprem kayıtları ve ölçeklenme katsayıları.	36
4.3:	(R=8) için 3 katlı binaya ait çatı deplasmanları.	39
4.4:	(R=8) için 3 Katlı binaya ait çatı deplasmanları.	39
4.5:	(R=8) için 3 katlı binaya ait statik itme analiz sonuçları.	40
4.6:	(R=8) için 3 katlı binaya ait statik itme analiz sonuçları.	41
4.7:	(Cd=5.5) için 3 katlı binaya ait çatı deplasmanları.	43
4.8:	(Cd=5.5) için 3 katlı binaya ait çatı deplasmanları.	43
4.9:	$(C_d=5.5)$ için 3 katlı binaya ait statik itme analiz sonuçları.	44
4.10:	$(C_d=5.5)$ için 3 katlı binaya ait statik itme analiz sonuçları.	45
4.11:	(R=8) için 6 katlı binaya ait çatı deplasmanları.	48
4.12:	(R=8) için 6 katlı binaya ait çatı deplasmanları.	48
4.13:	(R=8) için 6 katlı binaya ait statik itme analiz sonuçları.	49
4.14:	(R=8) için 6 katlı binaya ait statik itme analiz sonuçları.	50

4.15:	(C _d =5.5) için 6 katlı binaya ait çatı deplasmanları.	52
4.16:	(Cd=5.5) için 6 katlı binaya ait çatı deplasmanları.	52
4.17:	(Cd=5.5) için 6 katlı binaya ait statik itme analiz sonuçları.	53
4.18:	(Cd=5.5) için 6 katlı binaya ait statik itme analiz sonuçları.	54
4.19:	Maksimum plastik mafsal dönmeleri.	55

1. GİRİŞ

Deprem mühendisliğindeki çalışmalar ve bilgisayar teknolojisindeki gelişmeler, depreme dayanıklı yapı tasarımı felsefesini önemli ölçüde etkilemiştir. 1900'lı yılların başında deprem için bir katsayı kullanılırken günümüzde yeni bir bina için hasar noktalarının belirlenmesi dahi söz konusudur.

Bilgisayar teknolojisinin olanak sağlamasıyla teorik temeli daha eskilere dayanan birtakım analizler (doğrusal elastik olmayan dinamik analiz ve statik itme analizleri) yapılabilir hale gelmiştir. Özellikle yapıların elastik ötesi davranışı hakkında bilgi edinilmesi, yapının henüz tasarım aşamasındayken ekonomik ve hedeflenen seviyede güvenli olmasını sağlamaktadır.

Şekil 1.1: Kesit hasar sınırları ve hasar bölgeleri.

Depreme dayanıklı yapı tasarımında, kullanıcıların can güvenliğini sağlamak kaydı ile, şiddetli depremlerde bina taşıyıcı sisteminde belirli düzeyde hasara bilerek izin verilir. Diğer deyişle, bina taşıyıcı sisteminin bazı elemanları doğrusal olmayan (nonlineer) davranış gösterecek biçimde tasarlanırlar [1]. Depremlerde meydana gelen yapısal hasarın, yönetmeliklerin tanımladığı eşdeğer deprem yükleri altında yapısal elemanların mevcut dayanım kapasitelerinin aşılması ile doğrudan ilgili olmadığı, hasarın temel nedeninin sünek davranması öngörülen yapı elemanlarının şekildeğiştirme kapasitelerinin aşılması olduğu uzun bir süredir bilinmektedir [1].

Eşit yerdeğiştirme kuralına göre, yapı yeterince esnekse, örneğin, doğal titreşim periyodu, ivme spektrumu köşe periyodundan büyükse, yapıda meydana gelecek elastik ötesi deplasmanlar, yapının tamamen elastik olması durumunda oluşacak deplasmana eşit olur [2].

Şekil 1.2: Eşit yerdeğiştirme kuralı.

Taşıyıcı sistemlerinin performansları belirlenirken kullanılan talep spektrumu (deprem istemi) bir yapının, deprem hareketine, deprem süresince verdiği maksimum karşılığı göstermektedir. Lineer olmayan analiz yöntemlerinin dayandığı temel varsayım; eğer yapı tamamen elastik davransaydı, yapacağı spektral deplasman, yapının elastik ötesi davranması durumunda yapacağı inelastik spektral deplasmana eşit olmasını öngören Eşit Yerdeğiştirme Kuralı'dır. Diğer bir ifade ile, belirli bir değerden daha yüksek periyoda sahip (esnek yapılar) elastoplastik sistemlerin maksimum deplasmanının, aynı periyot ve sönüme sahip elastik sistemlere yaklaşık olarak eşit olması "Eşit Yerdeğiştirme Kuralı" prensibi olarak bilinmektedir [2].

Eşit deplasman kuralı özellikle esnek yapılar için sözkonusudur ve geçerlidir. Daha küçük periyotlu veya rijit yapı sistemlerinde, elastik ötesi (inelastik) spektral deplasman değeri elastik spektral deplasmandan daha yüksek değere sahiptir. Bu tür sistemlerde, inelastik deplasmanın hesaplanmasında, spektral yerdeğiştirme oranı kullanılmaktadır [2].

Depremin yapıdan talep ettiği elastik dayanım uygulandığı takdirde bu durum mühendisleri ekonomik olmayan tasarımlara götürecektir. Bunun yerine kabul edilen yöntem yapının gelen yükleri bir noktaya kadar elastik şekilde taşır iken, devamında plastik (elastik ötesi) davranış göstererek, başka bir ifade ile elastik ötesi enerji tüketme kapasitesini kullanmasıdır [3].

Bu amaçla yapı, elastik tasarım spektrumlarından elde edilen ve taşıyıcı sistemin süneklik düzeyine, malzeme cinsine (betonarme, prefabrik, çelik), taşıyıcı sistemin yapısına (merkezi çaprazlı çerçeveler, moment aktaran çerçeveler vs.) ve yapının dinamik özelliklerine bağlı olarak değişen bir katsayıyla azaltılarak, doğrusal elastik olmayan deprem yüklerine göre boyutlandırılır. Şartnamelerde Taşıyıcı Sistem Davranış Katsayısına (R) bağlı olarak belirlenen "Deprem Yükü Azaltma Katsayısı (R_a)", bahsi geçen elastik deprem yüklerini azaltmak amacıyla kullanılmaktadır [3].

Öte yandan, "Etkin Göreli Kat Ötelemeleri" gibi bazı sınır şartlar kontrol edilirken, azaltılmış yükler kullanılarak elde edilen yer değiştirme değerleri büyütülerek yapının elastik ötesi davranışı esnasındaki yer değiştirme değerlerinin yaklaşık olarak elde edilmesi hedeflenmektedir. Bu işlevi yerine getirmek üzere ASCE'de *Deflection Amplification Factor* (Cd), DBYBHY'de ise Taşıyıcı Sistem Davranış Katsayısı (R) kullanılmaktadır [4],[5]. Taşıyıcı sistem bakımından aynı özelliklere sahip yapılara ait deprem yükü azaltma katsayıları her iki yönetmelik için farklılık göstermezken, azaltılmış göreli kat ötelemelerini, etkin göreli kat ötelemelerine dönüştüren katsayılar (R ve Cd) arasında büyük farklılıklar göze çarpmaktadır. Tasarım mühendisi, güvenlik konusunda temkinli olduğu kadar yapının maliyetini de göz önünde bulundurmalı, gereğinden büyük kesitler seçmemelidir. DBYBHY'ye göre tasarlanan süneklik düzeyi yüksek betonarme çerçevelerin kesitleri ASCE'ye göre daha yüksek ve ağır çıkmaktadır [3],[4],[5].

Deprem yüklerinin azaltılması tasarım felsefesi olarak ekonomik olmakla birlikte, yönetmeliklerin önerdiği katsayıların güvenilirliği tartışmaya açıktır. Önerilen katsayıların kendi içindeki ve daha önemlisi yönetmelikler arasındaki tutarsızlıkları birçok araştırmacının dikkatini çekmiş, farklı zamanlarda konuyla ilgili çeşitli çalışmalar yapılmıştır. Yönetmeliklerde halen geçerliliğini koruyan bu katsayıların güvenilirliği, sahip olunan bilgisayar teknolojisi sayesinde artık daha somut ve akılcı biçimde araştırılabilmekte ve dahası analitik ve/veya deneysel olarak sınanabilmektedir. Bu çalışmada R ve C_d katsayılarının bağlı olduğu değişkenler ve bu değişkenlerle ilgili yapılan eski çalışmalar hatırlatılarak, yapılan yeni çalışmadaki bulgular ve sonuçlar yorumlanacaktır. Böylece hangi yönetmeliğin kullandığı katsayının daha gerçekçi olduğuna dair bir fikir edinilmeye çalışılacaktır [3].

1.1. Tezin Amacı, Katkısı ve İçeriği

Süneklik düzeyi yüksek betonarme çerçeveler, betonarme taşıyıcı sistemler arasında yaygın olarak kullanılmaktadır. Yapının, tasarıma esas alınandan daha yüksek dayanıma sahip olması (fazla dayanım) depreme dayanıklı yapı tasarımı felsefesinin temel taşı olan Dayanım Azaltma Katsayısının farklı biçimde ele alınmasına sebep olmuştur. Dayanım fazlalığının yarattığı olumsuzlukların fark edilmesiyle deplasmana dayalı tasarımın gelişmesi hız kazanmıştır. FEMA, NEHRP, ATC, AISC gibi kurumların hazırladığı raporlar ve devamında yenilenen yönetmeliklerle desteklenen bu gelişim, Fazla Dayanım Faktörü (Overstrength Factor) kavramının önemini gündeme getirmiştir. Bu çalışmada güvenilirliği sorgulanan, sırasıyla DBYBHY ve ASCE'nin azaltılmış göreli kat ötelemelerini, etkin göreli kat ötelemelerine çevirmek için kullandığı R ve C_d katsayıları, doğrudan fazla dayanımı fonksiyonudur [4],[5]. R ve C_d katsayılarının bağlı olduğu fazla dayanım ve diğer kavramlar ilerleyen bölümlerde detaylı şekilde ele alınacaktır [3].

Tablo 1.1: Deprem hareketleri.

Deprem Türü	Deprem Etki Katsayısı	50 Yılda Aşılma Olasılığı	Ortalama dönüş Periyodu
Kullanım Depremi	0.50	%50	72 Yıl
Tasarım Depremi	1.00	%10	475 Yıl
En Büyük Deprem	1.50	%2	2475 Yıl

Bu kapsamda az ve orta katlı betonarme çerçeveler önce ASCE hükümlerine göre, ardından DBYBHY'nin hükümlerine göre tasarlanacaktır [4],[5]. Bahsi geçen farklı kat sayılarına sahip toplam 4 betonarme çerçevenin 50 yılda aşılma olasılığı %10 (frekansı 475 yıl) olan 3 farklı deprem kaydı kullanılarak elastik ötesi davranışları gözlenecektir. Bu çalışmanın temel amacı, azaltılmış göreli kat ötelemelerini, etkin göreli kat ötelemelerine dönüştürmek için ASCE'nin önerdiği C_d katsayısına ve DBYBHY'nin önerdiği R katsayısına göre tasarlanan süneklik düzeyi yüksek betonarme çerçevelerin, doğrusal elastik olmayan analizlerle yer değiştirme taleplerinin, plastik mafsal dönmelerinin, göreli kat ötelemelerinin belirlenmesi ve bu sayede yapıların deprem davranışı hakkında fikir edinerek, hangi yönetmeliğin önerisinin daha gerçekçi ve doğru sonuç verdiğinin belirlenmesidir [3],[4],[5].

2.R ve C_d KATSAYILARININ GEÇMİŞİ ve TEORİSİ

Bu bölümde, Taşıvıcı Sistem Davranış Katsavısı (R) ve etkin göreli kat ötelemelerinin elde edilmesinde kullanılan, Yer Değiştirme Arttırma Katsayısının (Cd) teorik anlamı, bu katsayılarla ilgili geçmişte yapılan çalışmalar ve elde edilen bulgular özetlenerek konunun daha sağlıklı ve anlaşılır bir biçimde ele alınması amaçlanmaktadır. Yapıların deprem hesabında, bütün sismik yönetmelikler temel olarak aynı yaklaşımı ele almaktadır. Bu yaklaşım, yapının deprem esnasındaki elastik ötesi davranışının, yapının elastik davranışına bakılarak elde edilebileceğidir. Deprem Yükü Azaltma Katsayıları yapıların elastik dayanım taleplerinden yola çıkarak yapıya gelen yatay deprem yüklerini azaltmak amacıyla kullanılmaktadır. Yapının taşıyıcı sistemine bağlı olarak verilen *Taşıyıcı Sistem Davranış Katsayısı* (R), elastik deprem yükünün ne oranda azaltılacağını belirleyen parametredir. Tasarımda kullanılacak deprem yükü sadece taşıyıcı sistemin türü göz önüne alınarak belirlenmekte, başka bir deyişle, deprem yükleri taşıyıcı sistemi aynı olan yapıların tümü için aynı oranda azaltılmaktadır. Yapılan çalışmalar göstermiştir ki, yapının deprem yüklerinin azaltılması taşıyıcı sistemin yapısı dışında birçok farklı değişkene bağlı olarak değişmektedir [6],[7],[8].

Şekil 2.1: Tipik bir betonarme elemanda dayanım - yerdeğiştirme ilişkisi.

2.1. Taşıyıcı Sistem Davranış Katsayısı ve Bileşenlerinin Tanımlanması

Taşıyıcı Sistem Davranış Katsayısının (R) bağlı olduğu parametrelerden bahsetmeden önce *R* katsayısının yapısal davranış açısından ne anlama geldiği daha açık şekilde ifade edilmelidir. Şekil 2.2'de şematize edilmiş olan genel yapı davranışına ait tipik taban kesme kuvveti (V_t) - yer değiştirme grafiği (Δ_{TEPE}) görülmektedir. Burada V_e yapının elastik kalması durumunda sistemde oluşacak taban kesme kuvveti, V_d tasarımda kullanılan taban kesme kuvveti olmak üzere, Denklem 2.1'de *R* katsayısının genel formülasyonu yer almaktadır [3].

$$R = \frac{V_d}{V_e}$$
(2.1)

Şekil 2.2: Genel yapı davranışı.

Yapı tasarlanırken kullanılan yatay yükler, sistemin elastik kalması durumunda elde edilecek olan yüklerin R katsayısına bölünmesiyle elde edilmektedir. Genel yapı davranışı ya da sistemin kapasite eğrisi, eşit alan kuralı kullanılarak Şekil 2.2'deki gibi idealleştirilebilir. Bu sayede, sistemdeki elasto-plastik davranış ve sistemin azaltılmış dayanımına karşılık, depremin sistemden yer değiştirme talebinin hangi mertebede olduğu daha net bir şekilde ifade edilebilir [3].

2.1.1. Süneklik Bileşeni

Taşıyıcı Sistem Davranış Katsayısı (R) tanımında iki temel bileşenden ilki *süneklik kavramıdır*. Deprem etkisi altında bir taşıycı sistemin veya sistem elemanının sünekliği, plastik şekildeğiştirme yapabilme yeteneğidir.

$$\mu = \frac{\Delta_{\text{maks}}}{\Delta_{\text{y}}} \tag{2.2}$$

Bu özellik, taşıyıcı sistem veya sistem elemanının süneklik kapasitesi olarak da adlandırılabilir. Süneklik katsayısı, bina (veya onun tasarımını yapan mühendis) tarafından sunulan dayanıma göre, depremin binadan talep ettiği (istemde bulunduğu) plastik şekildeğiştirmenin ölçüsüdür [1]. Şekil 2.3'de süneklik katsayısını gösteren grafik verilmiştir [1].

Şekil 2.3: Yer değiştirmeye dayalı tasarım.

Bina taşıyıcı sistemlerinde, özellikle betonarme sistemlerde sünek davranış, kirişlerde basit eğilme etkisi altında, kolon ve perdelerde ise eğilme ve eksenel kuvvet etkisi altında gerçekleşir. Betonarme yapılarda eğilme ve eğilme ve eksenel kuvvet durumları dışında depreme karşı davranış sünek değildir. Eksenel basınç ile özellikle kesme kuvveti ve burulma etkileri altında betonarme kesitlerin plastik şekildeğiştirme kapasiteleri hemen hemen hiç yoktur, diğer deyişle bu etkiler altında

betonarme kesitler gevrek davranış gösterirler [1]. Şekil 2.4'de betonarme bir kolon için etriye kullanılmasının (sargılı) sünekliği ne kadar arttırdığı gösterilmiştir [5].

Şekil 2.4: Sargılı ve sargısız betona ait gerilme ve şekil değiştirme bağıntısı.

Şekil 2.5: Donatı çeliği gerilme ve şekil değiştirme bağıntısı.

$$R_{\mu} = \frac{V_e}{V_y} \tag{2.3}$$

Özellikle uzun periyotlu yani "yer değiştirmeye duyarlı" yapılarda bu bileşen, sistemin sünekliğine eşit olarak alınmaktadır [9]. Süneklik Bileşeni ile süneklik arasındaki ilişkiyi keşfetmek adına araştırmacıların yaptığı çok sayıda çalışma ve sonucunda türetilmiş birçok bağıntı mevcuttur.

Newmark ve Hall, 1973 yılında El Centro-California deprem kaydından elde ettikleri spektrumu kullanarak yaptıkları çalışma sonucu yüksek ve orta uzunluktaki periyotlara sahip yapıların elastik yer değiştirme değerinin elastik ötesi durumdaki maksimum ver değiştirme değerine çok yakın olduğunu fark etmişlerdir ($\Delta_{max} \approx \Delta_e$) [10]. Literatürde Eşit Yer Değiştirme Kuralı olarak bilinen bu kural, depreme dayanıklı yapıların tasarım felsefesinin dayanak noktasını oluşturmaktadır. Yapının elastik ötesi davranışının, yaklaşık da olsa, elastik davranışına bakılarak tahmin edilebiliyor olması, sistemin ne kadar sünek tasarlanması gerektiğinin yani deprem enerjisinin ne kadarının elastik dayanımla ne kadarının elastik olmayan deformasyonlarla tüketilebileceğinin görülmesine imkân sağlamıştır. Aynı çalışmada çok düşük periyotlu yapıların elastik ve elastik ötesi durumda aynı kuvvete maruz kalacağı, orta periyotlu yapılarda ise enerjinin korunumu prensibi gereği, elastik sistemde monotonik yük etkisinde oluşan yük-deformasyon ilişkisinin, elastik ötesi durumda, pekleşmesiz elastoplastik davranıştakinin aynısı olacağı sonucuna varılmıştır. Özetle, sistemler periyotlarına bağlı olarak üç bölüme ayrılmıştır. Düşük periyotlu yapıların rijitliği çok yüksek olacağından, ivmeye dolayısıyla kuvvete, orta periyotlu yapıların hıza, uzun periyotlu yapıların ise yer değiştirmeye duyarlı olduğu sonucu ortaya çıkmıştır. Çalışma sonucu birçok periyot aralığı için farklı R_{μ} değerleri elde edilmiş ve görülmüştür ki belirli bir periyodun üzerindeki yapıların Süneklik Bileşeni (R_{μ}) değerleri eşit yer değiştirme kuralına uygun şekilde sünekliğe (μ) eşit çıkmaktadır [3],[9].

Bahsi geçen çalışmalar dışında da *süneklik bileşeniyle* ilgili pek çok çalışma yapılmış, farklı fakat benzer sonuçlar elde edilmiştir. Yapılan tüm çalışmalar sonucunda görülmüştür ki, R_{μ} katsayısı kullanılan deprem ivme kaydına bağlı olarak sistemin *doğal titreşim periyoduna, sönüm oranına ve yapının histeretik davranışına, dolayısıyla elastik ötesi deformasyon kapasitesine* göre değişmektedir. O halde *süneklik bileşini,* belirli bir deprem kaydı (zemin sınıfına bağlı olarak) ve sönüm oranı için Denklem 2.4'deki gibi ifade edilebilir [4].

$$\mathbf{R}_{\mu} = \mathbf{R}_{\mu} \left(\mathbf{T}, \, \mu_i \right) \tag{2.4}$$

Bütün çalışmalar istinasız şekilde "hıza duyarlı" ve "yer değiştirmeye duyarlı", yüksek periyotlu esnek yapılar için süneklik bileşenin (R_{μ}) , yapının sünekliğine eşit kabul edilebileceği sonucu elde edilmiştir. Çok esnek yapılarda periyot sonsuza yaklaşacağından $(T \rightarrow \infty)$ sistemdeki en büyük rölatif yer değiştirme, en büyük zemin yer değiştirmesine eşit olacaktır [3].

$$\mathbf{R}_{\mu} = \mu \tag{2.5}$$

"İvmeye duyarlı", çok rijit sistemlerde ise akma dayanımı sonsuza yaklaşırken, süneklik ve periyotta sıfıra yaklaşmakta ($T \rightarrow 0, \mu \rightarrow 0$) ve sistemin elastik dayanımı, elastik ötesi dayanımına eşit olmaktadır [3].

$$\mathbf{R}_{\mu} = 1 \tag{2.6}$$

Sonuç olarak, R_{μ} katsayısı için şunlar söylenebilir;

• R_{μ} katsayısı, zemin koşullarının, periyodun ve sünekliğin fonksiyonudur.

• Sistemdeki sönüm oranı R_{μ} katsayısı üzerinde etkilidir.

- Depremin büyüklüğünün, histeretik davranışın ve merkez üssüne olan mesafenin R_{μ} katsayısı üzerindeki etkileri ihmal edilebilir düzeydedir.
- "Hıza ve yer değiştirmeye duyarlı" esnek yapılar için R_{μ} katsayısı -yaklaşık olarak süneklik katsayısına eşit alınabilir.
- "İvmeye duyarlı" rijit yapılar için R_{μ} katsayısı, zemin koşullarına, periyoda ve sünekliğe bağlı olarak elde edilen bağıntılarla elde edilebilir.

2.1.2. Fazla Dayanım Bileşeni (Overstrength Factor)

Taşıyıcı Sistem Davranış Katsayısının ikinci bileşeni Fazla Dayanım Bileşenidir (Ω). Yapıların gerçek dayanımı, tasarım dayanımlarından çeşitli nedenlerden ötürü daha fazladır. Gerçek dayanımın, tasarım dayanımına oranı olarak tanımlanan fazla dayanım katsayısı (Ω), sistemin gerçek davranışının göz önüne alınabilmesi bakımından çok büyük önem taşımaktadır. Denklem 2.7'de fazla dayanım katsayısının (Ω) genel ifadesine yer verilmiştir [3].

$$\Omega = \frac{v_y}{v_d} \tag{2.7}$$

Sistemin tasarlanandan daha fazla dayanıma sahip olmasının sebeplerinden bazıları aşağıdaki gibi özetlenebilir:

• Malzemelerin gerçek dayanımının hesapta kullanılan dayanımdan daha yüksek olması.

•Hesap modellerinin emniyetli tarafta kalması (ASD'ye göre tasarlanmış bir yapının fazla dayanımı LRFD'ye göre hesaplanmış yapıdan daha büyük çıkmaktadır).

• Yönetmeliklerdeki sınır koşulları (Basınca çalışan elemanlarda narinlik şartı ve kolonların kirişlerden güçlü olması koşulu gibi).

- Tablo kullanımından gelen yuvarlatma hataları.
- Yükleme hızı.
- İç kuvvetlerin yeniden dağılımı (Redundancy Factor).
- Yük ve malzeme katsayıları.
- Kesit seçimlerinde güvenli tarafta kalınması.
- Yapısal olmayan elemanların katkısının göz ardı edilmesi (Dolgu duvarların yatay dayanıma katkısı).

• Yapısal elemanların katkısının göz ardı edilmesi (Döşemelerin yatay dayanıma katkısı).

• Tasarım esnasında pekleşmenin ihmal edilmesi.

• Şartnamelerin göreli kat ötelemelerini sınırlandırılması sebebiyle -özellikle moment aktaran çerçevelerde- dayanım için gerekenden büyük kesitler seçilmesi.

Fazla Dayanım Katsayısı (Ω) ile ilgili yapılmış eski çalışmalardan 1999 yılında A. J. Kappos'un yaptığı bir çalışmada, değişik yüksekliklerdeki betonarme binalar için elde edilen *fazla dayanım katsayılarını* değerlendiren Kappos, yüksek olmayan binalarda, orta ve yüksek binalara göre *fazla dayanım katsayısının* daha yüksek çıktığı fark etmiştir. Düşük periyotlu yapılarda fazla dayanım katsayısı 2.7'ye kadar çıkarken orta ve yüksek periyotlu yapılarda bu oranın 1.5'e kadar düştüğü görülmüştür [3]. Doğrusal elastik olmayan analizlere tabi tutulan çerçevelerin *fazla dayanım katsayıları* ve araştırmacıların önerdiği farklı bağıntılar kullanılarak R_{μ} *katsayıları* irdelenmiştir. Sonuç olarak, yapının yüksekliği azaldıkça ve açıklıklarının genişliği arttıkça *fazla dayanım katsayısının* arttığı gözlenmiştir. *Fazla Dayanım Katsayısı*(Ω) lokal ve global etkenler sebebiyle bir çerçeveden diğerine farklılık gösterebilmektedir. Bu değişim genel hatlarıyla aşağıdaki gibi özetlenebilir;

- Taşıyıcı sistem türü Ω katsayısı üzerinde etkilidir.
- Yapının tasarımında belirleyici (dayanım, göreli kat ötelemeleri vb.) tasarım kriteri Ω katsayısı üzerinde etkilidir.
- Yapıların kat sayısı azaldıkça Ω katsayısı genellikle artmaktadır.
- Yapıların açıklıkları büyüdükçe Ω katsayısı genellikle artmaktadır

2.1.3. Süneklik ve Fazla Dayanım Bileşenlerinin Değerlendirilmesi

Taşıyıcı Sistem Davranış Katsayısının (R) iki önemli parametresi olan Süneklik Bileşeni (R_{μ}) ve Fazla Dayanım Katsayısının (Ω) tanımlanması ile Şekil 2.2'de verilmiş olan genel yapı davranışı göz önüne alınırsa, Taşıyıcı Sistem Davranış Katsayısını (R), süneklik ve fazla dayanım bileşenleri cinsinden Denklem 2.8'deki gibi ifade edilebilir [4],[5].

$$R = \frac{v_e}{v_d} = \frac{v_e}{v_y} x \frac{v_y}{v_d}$$
(2.8)

$$\mathbf{R} = \mathbf{R}_{\mu} \mathbf{x} \, \Omega \tag{2.9}$$

DBYBHY ve ASCE tarafından betonarme yapılar için önerilen *Taşıyıcı Sistem* Davranış Katsayıları (R), Fazla Dayanım Katsayıları (Ω) ve bunlardan türetilmiş Süneklik Bileşeni Katsayıları (R_{μ}) Tablo 2.1'de özetlenmiştir [4]-[5].

Taguna Sistam Türü	DBYBHY (2007)			ASCE-07 (2010)		
Taşıyıcı Sisteni Turu	R	Rμ	Ω	R	R_{μ}	Ω
Süneklik Düzeyi Yüksek Çerçeveler	8	3.2	2.5	8	2.67	3
Süneklik Düzeyi Normal Çerçeveler	5	2.5	2.0	3.5	1.17	3
Süneklik Düzeyi Yüksek Merkezi	5	2.5	2.0	6	3.0	2
Süneklik Düzeyi Normal Merkezi	4	2.0	2.0	3.25	1.63	2
Dış Merkez Çaprazlı Çerçeveler	7	2.8	2.5	8	4.0	2

Tablo 2.1: DBYBHY ve ASCE'nin önerdiği R, R $_{\mu}$, Ω katsayıları.

Tablo 2.1'de görüldüğü gibi, süneklik düzeyi yüksek çerçeveler için *fazla* dayanım (Ω) ve süneklik bileşeni katsayıları (R) arasında farklılıklar olsa da taşıyıcı sistem davranış katsayıları açısından iki yönetmeliğin antat kaldığı görülmektedir. Her iki yönetmelik elastik deprem yüklerini eşit oranda azaltılmasını önermektedir [3],[4],[5].

2.2. Cd Katsayısının Tanımlanması

ASCE'de azaltılmış deprem yüklerine göre hesaplanan göreli kat ötelemelerinin, etkin göreli kat ötelemelerine dönüştürülmesi amacıyla kullanılan ve *Yer Değiştirme Arttırma Katsayısı* olarak isimlendirilen C_d katsayısı, yapının elastik ötesi davranış esnasında yaptığı en büyük yer değiştirme değerinin, tasarıma esas alınan yatay kuvvetler altında yapının yapmış olduğu yer değiştirme değerine oranı olarak tanımlanmaktadır [5]. Başka bir deyişle C_d Katsayısı, yapının elastik durumdaki yer değiştirme değerinden, elastik ötesi durumdaki yer değiştirme değerinin (deprem esnasında yapıda meydana gelen gerçek yer değiştirme değeri) elde edilmesi için kullanılmaktadır. C_d katsayısı, Şekil 2.2'de verilmiş olan genel yapı davranışına bağlı olarak Denklem 2.10'daki gibi ifade edilebilir [3],[4],[19].

$$C_{d} = \frac{\Delta_{maks}}{\Delta_{d}} = \frac{\Delta_{maks}}{\Delta_{y}} x \frac{\Delta_{y}}{\Delta_{d}}$$
(2.10)

$$\Omega = \frac{\Delta_{\rm y}}{\Delta_{\rm d}} \tag{2.11}$$

Fazla Dayanım Katsayısı (\Omega) Denklem 2.10'da verilen şekilde ifade edilirse ve Denklem 2.10 ile birlikte Denklem 2.11'de yerine yazılırsa, *C_d katsayısı* Denklem 2.12 şeklinde ifade edilebilir [3].

$$C_{d}=\mu \times \Omega \tag{2.12}$$

Göreli kat ötelemelerinin kontrolü, depremin yapıdan yer değiştirme talebi ve buna bağlı olarak yapının deformasyon kapasitesi, P- Δ etkilerinin doğru belirlenmesi gibi yapısal davranışın tanımlanması ve tasarım açısından bilinmesi zaruri bilgiler C_d *katsayısına* bağlı olarak değişmektedir [3],[8],[9]. Bilhassa deprem yüklerinin sadece çerçevelerle karşılandığı sistemlerde olduğu gibi, tasarımın göreli kat ötelemeleri tarafından belirlendiği sistemlerde bu katsayı daha da önem kazanmaktadır [4].

R ve C_d katsayıları tanımları gereği hıza ve yer değiştirmeye duyarlı bölgelerde $(R_{\mu}=\mu)$ birbirlerine eşit çıkmaktadırlar. DBYBHY'de birbirlerine eşit verilen bu iki katsayı ASCE'de birbirinden oldukça farklı tanımlanmıştır. ASCE'nin önerdiği R ve C_d katsayılarıyla R/C_d oranları Tablo 2.1'de verilmiştir [3],[4],[5].

R ve C_d arasında türetilen bağıntılar, eşit yer değiştirme kuralı kabulüyle elde edilmiştir. Bu kabule göre R ve C_d katsayıları, DBYBHY'nin önerisine uygun şekilde yer değiştirmeye duyarlı, uzun periyot bölgesinde birbirine eşit çıkmalıdır. Bu çalışmanın esas amacı, süneklik düzeyi yüksek betonarme çerçevelerde eşit yer değiştirme kuralının geçerliliğini sorgulamaktır [3],[4].

Eşit yer değiştirme kuralı çerçevesinde elde edilen ve Denklem 2.12'de görülen formülasyondan farklı olarak ASCE'de tanımlanan C_d katsayılarının elde edilişi Denklem 2.13 ve 2.14'de verilmiştir [3],[5].

$$\frac{\Delta_{\rm e}}{\Delta_{\rm y}} = \frac{V_{\rm e}}{V_{\rm y}} = \frac{V_{\rm d}}{V_{\rm y}} \times R \tag{2.13}$$

$$\frac{\Delta_{\rm i}}{\Delta_{\rm d}} = \frac{\Delta_{\rm e}}{\Delta_{\rm y}} \tag{2.14}$$

$$\frac{\Delta_{i}}{\Delta_{d}} = \frac{\Delta_{e}}{\Delta_{y}} = \frac{V_{d}}{V_{y}} \times R$$
(2.15)

Denklem 2.15'de verilen ifadeden elastik ötesi yer değiştirme talebini (Δ_i) elde etmek istersek Denklem 2.16'daki ifadeye ulaşırız. Yapılan dönüşümler sonucu elastik ötesi yer değiştirmeleri elde ederken kullanılan ve yapının R ve Fazla Dayanım Katsayılarının fonksiyonu olan C_d katsayısı elde edilir [3].

$$\Delta_{i} = \left(\frac{v_{d}}{v_{y}} \ge R\right) \ge \Delta_{d}$$
(2.16.a)

$$C_{d} = \frac{V_{d}}{V_{y}} \times R \tag{2.16.b}$$

3. TASARIM ESASLARI

3.1. Süneklik Düzeyi Yüksek Çerçevelerin Tasarım Esasları

Deprem yüklerinin tamamının çerçevelerle taşındığı binaların tasarımı üç temel adımdan oluşmaktadır. Bunlar; dayanım esaslı tasarım, etkin göreli kat ötelemelerinin kontrolü ve düğüm noktalarında kolonların kirişlerden daha güçlü olması koşuludur. Dayanıma göre kesitlerin boyutlandırılması için farklı hesap yöntemleri mevcuttur. Emniyet Gerilmeleri Yöntemi, Yük ve Mukavemet Faktörü Yöntemi, Plastik Hesap Yöntemi ve imit tasarım başlıca tasarım yöntemleri olmakla birlikte en yaygın olanları ASD ve LRFD'dir. ASD, yaklaşık yüzyıldır kullanılan elastik hesap yöntemidir ve hâlâ geçerliliğini korumaktadır. ASD yönteminde bütün yüklerin aynı ortalama değişkenliğe sahip olduğu kabul edilir [3].

LRFD, ASD'ye göre belirsizliklerin ve elemanların gerçek davranışlarının göz önüne alınmasında daha gerçekçidir. Yük arttırma faktörü ve mukavemet azaltma faktörü, değişik yüklerdeki ve mukavemetteki belirsizlik derecesini tanımlar [11]. Başka bir deyişle ASD'de işletme yük durumuna göre verilen yük kombinasyonlarıyla elde edilen kesit tesirleri altında kesitlerin elastik kalması beklenirken, LRFD'de her yük tipi için farklı yük arttırma faktörü ve farklı mukavemet azaltma katsayıları kullanılarak kesitlerin elastik kalması yerine taşıma gücüne ulaşması beklenmektedir. Türk ve Amerikan yönetmeliklerinde ASD ve LRFD hesap yöntemlerine göre çeşitli yük kombinasyonları aşağıda özetlenmiştir.

Tasarımın ikinci adımı etkin göreli kat ötelemelerinin kontrol edilmesidir. Şartnamelerde zemin sınıfına, deprem bölgesine ve yapının önemine göre değişen elastik deprem yükleri "Deprem Yükü Azaltma Katsayısı (R_a)" ile azaltılarak yapıya eşdeğer yatay statik yük olarak etkitilir. Spektrumların yapısı ASCE ve DBYBHY'de az da olsa farklılık göstermektedir [3],[4],[5].

3.2. Çerçevelerin Tasarımı

Bu çalışmada bahsi geçen yapılar, planda ve düşey kesitte herhangi bir düzensizlik içermeyen 3 ve 6 katlı iki tipik betonarme çerçeveler olup, ($C_d=5.5$) ve

(R=8) durumları için ayrı ayrı tasarlanacaktır. Her iki yapının tipik plan görünüşü Şekil 3.1'de verilmiştir. İki yapı da süneklik düzeyi yüksek moment aktaran çerçeveler olarak tasarlanacaktır. Bütün yapılar, 4 m. aks aralıklarına sahip olup planda 8 x16 m²'lik alanlara ve 4 metre kat yüksekliklerine sahiplerdir. Kesit seçimlerine ve dinamik özelliklerine ilerleyen bölümlerde yer verilecektir.

Şekil 3.1: Tipik kat planı.

ASCE'ye göre hazırlanan 3 ve 6 katlı yapılar Tablo 3.1'de yeralan kombinasyonlara göre tasarlanmışlardır [5].

Tablo 3.1: Kombinasyonl	ar.
-------------------------	-----

1.4D	D = Dead Load
$1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$	L = Live Load
$1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$	$L_r = Roof Live Load$
$1.2D+1.0W+L+0.5(L_r \text{ or } S \text{ or } R)$	W = Wind Load
0.9D+1.0W	S = Snow Load
1.2D + 1.0E + L + 0.2S	E = Earthquake Load
0.9D + 1.0E	R = Rain Or Ice Load

3 ve 6 katlı binalara ait tasarım esasları içeren genel bilgilere Tablo 3.2'de yer verilmiştir [4],[6].

Bina Bilgileri:		
Kat Adedi	3, 6	
Bina Kat Yüksekliği	4.0 m	
Toplam Bina Yüksekliği, [H]	12.00 m, 24 m	
Bina Oturum Alanı	200.00 m ²	
Kullanım Amacı	Ofis	
Malzeme Bilgileri:		
Beton:	C30 ($f_{ck} = 30 \text{ Mpa}$	
	$f_{cd} = 20 \text{ Mpa}$	
Donati	S420 ($f_{yk} = 420 \text{ Mpa}$)	
	$f_{yd} = 365 \text{ Mpa}$	
Betonarme Elastisite Modülü, [E _c]	32000 Mpa	
Donatı Çeliği Elastisite Modülü, [Es]	200000 Mpa	
Beton Malzeme Güvenlik Katsayısı	1.5	
Donatı Malzeme Güvenlik Katsayısı	1.15	
Deprem Parametreleri Bilgileri:		
S _M	2.0 sn	
S ₁	1.0 sn	
Yerel Zemin Sınıfı	В	
Yükler:		
Beton Yoğunluğu	25 kN/m ³	
İlave Ölü Yük (Döşeme Dahil)	5 kN/m ²	
Hareketli Yük	3.5 kN/m ²	

Tablo 3.2: 3 ve 6 katlı binalara ait genel bilgiler.

Kolonların kirişlerden güçlü olması koşulu ve kolon yüzünde birleşim bölgesinin güvenliği kontrol edilmiştir. Döşeme alanları simetrik olduğundan kirişlere üçgen trapez yükleme yapılmıştır. Göreli kat ötelemelerinin kontrolünde kullanılan eşdeğer statik yatay yüklerin bulunmasında ASCE'nin önerdiği tasarım spektrumu kullanılmıştır [4]. Yatay yüklerin elde edilmesinde ASCE'de önerilen yaklaşık periyot formülünden faydalanılmıştır [4]. Yapılar ofis binası olarak tasarlandığından yapı önem katsayısı 1.0 olarak alınmıştır. Elastik deprem yükleri R=8 alınarak azaltılmış ve yapılara etkitilmiştir. Tablo 3.4, Tablo 3.5, Tablo 3.7, Tablo 3.8, Tablo 3.10, Tablo 3.11, Tablo 3.13 ve Tablo 3.14'de R=8 ve C_d=5.5 kullanılarak 3 ve 6 katlı yapıların etkin göreli kat ötelemeleri, Tablo 4.1'de ise her iki yönetmeliğe göre tasarlanan binalar için seçilen kesitler karşılaştırmalı olarak verilmiştir.

3.2.1. Üç Katlı (R=8) Binanın Doğrusal Elastik Analiz Sonuçları

Bu bölümde, (R=8) için üç katlı binaya ait elastik analiz sonuçlarına yer verilmiştir.

Şekil 3.2: a) Kat planı, b) Bina kesiti.
Yapının X doğrultusunda etkin hakim doğal titreşim periyodu:	$T_{1x} = 0.44 \text{ sn}$
Yapının Y doğrultusunda etkin hakim doğal titreşim periyodu:	$T_{1y} = 0.46 \text{ sn}$
Yapı Zati Yükü:	2486 kN
İlave Ölü Yükler:	3000 kN
Hareketli Yük:	2100 kN
W:	6116 kN
X yönünde Taban Kesme Kuvveti:	1020 kN (%16.6)
Y yönünde Taban Kesme Kuvveti:	1020 kN (%16.6)

Tablo 3.3: (R=8) için 3 katlı binaya ilişkin genel bilgiler.

Şekil 3.3: (R=8) için üç katlı binanın üç boyutlu matematiksel modeli.

Şekil 3.4: (R=8) x yönünde eşdeğer deprem yükü altında deforme olmuş şekli.

Şekil 3.5: (R=8) y yönünde eşdeğer deprem yükü altında deforme olmuş şekli.

Şekil 3.6: a) Kolon kesiti, b) Kiriş kesiti.

Tablo 3.4 ve 3.5'de üç katlı (R=8) binaya ait maksimum yerdeğiştirmeler gösterilmiştir.

Tablo 3.4: (R=8) için 3 katlı binanın x yönünde meydana gelen deplasmanları.

Kat	h _i (mm)	d _{i-maks} (mm)	Δ_{i} (mm)	$\delta_i(mm) = R \Delta_i$	$(\delta i)_{maks} / h_i$
3	4000	12.70	2.70	21.60	0.0054
2	4000	9.40	5.30	42.40	0.0106
1	4000	4.10	4.10	32.80	0.0082

Kat	h _i (mm)	d _{i-maks} (mm)	Δ_{i} (mm)	$\delta_i(mm) = R \Delta_i$	$(\delta i)_{maks} / h_i$
3	4000	15.60	4.20	33.60	0.0084
2	4000	11.40	6.50	52.00	0.0130
1	4000	4.90	4.90	39.20	0.0098

Tablo 3.5: (R=8) için 3 katlı binanın y yönünde meydana gelen deplasmanları.

3.2.2. Üç Katlı (Cd=5.5) Binanın Doğrusal Elastik Analiz Sonuçları

Bu bölümde, (C_d=5.5) için üç katlı binaya ait elastik analiz sonuçlarına yer verilmiştir.

Şekil 3.7: a) Kat planı, b) Bina kesiti.

X doğrultusunda etkin hakim doğal titreşim periyodu:	$T_{1x} = 0.76 \text{ sn}$
Y doğrultusunda etkin hakim doğal titreşim periyodu:	$T_{1y} = 0.80 \text{ sn}$
Yapı Zati Yükü:	1710 kN
İlave Ölü Yükler:	3000 kN
Hareketli Yük:	2100 kN
W:	5340 kN
X yönünde Taban Kesme Kuvveti:	602 kN (%11.3)
Y yönünde Taban Kesme Kuvveti:	602 kN (%11.3)

Tablo 3.6: (C_d =5.5) için 3 katlı binaya ilişkin genel bilgiler.

Şekil 3.8: (C_d=5.5) için üç katlı binanın üç boyutlu matematiksel modeli.

Şekil 3.9: (C_d =5.5) x yönünde eşdeğer deprem yükü altında deforme olmuş şekli.

Şekil 3.10: (C_d=5.5) y yönünde eşdeğer deprem yükü altında deforme olmuş şekli.

Şekil 3.11: a) Kolon kesiti, b) Kiriş kesiti.

Tablo 3.7 ve 3.8'de binaya ait maksimum yerdeğiştirmeler gösterilmiştir.

Tablo 3.7: (C_d=5.5) için 3 katlı binanın x yönünde meydana gelen deplasmanları.

Kat	h _i (mm)	d _{i-maks} (mm)	Δ_i (mm)	$\delta_i(mm) = R \Delta_i$	$(\delta_i)_{maks}$ / h_i
3	4000	26.11	7.62	41.91	0.0105
2	4000	18.49	10.90	59.95	0.0150
1	4000	7.59	7.90	43.45	0.0108

Kat	h _i (mm)	d _{i-maks} (mm)	Δ_i (mm)	$\delta_i(mm) = R \Delta_i$	$(\delta i)_{maks} / h_i$
3	4000	32.06	9.65	53.08	0.0133
2	4000	22.41	13.36	73.48	0.0184
1	4000	9.05	9.05	49.78	0.0125

Tablo 3.8: (C_d=5.5) için 3 katlı binanın y yönünde meydana gelen deplasmanları.

3.2.3. Altı Katlı (R=8) Binanın Doğrusal Elastik Analiz Sonuçları

Bu bölümde, (R=8) için altı katlı binaya ait elastik analiz sonuçlarına yer verilmiştir.

Şekil 3.12: a) Kat planı, b) Bina kesiti.

Şekil 3.12: Devam.

Tablo 3.9: (R=8)) için 6 katlı	binaya ilişkin	genel bilgiler.
		<i>, ,</i>	0 0

X doğrultusunda etkin hakim doğal titreşim periyodu:	$T_{1x} = 0.84 \text{ sn}$
Y doğrultusunda etkin hakim doğal titreşim periyodu:	$T_{1y} = 0.90 \text{ sn}$
Yapı Zati Yükü:	5220 kN
İlave Ölü Yükler:	6000 kN
Hareketli Yük:	4200 kN
W:	12480 kN
X yönünde Taban Kesme Kuvveti:	1225 kN (% 9.80)
Y yönünde Taban Kesme Kuvveti:	1151 kN (% 9.22)

Şekil 3.13: (R=8) için altı katlı binanın üç boyutlu matematiksel modeli.

Şekil 3.14: (R=8) x yönünde eşdeğer deprem yükü altında deforme olmuş şekli.

Şekil 3.15: (R=8) y yönünde eşdeğer deprem yükü altında deforme olmuş şekli.

Şekil 3.16: a) Kolon kesiti, b) Kiriş kesiti.

Binaya ait maksimum yerdeğiştirmeler her kat için Tablo 3.10 ve 3.11'de gösterilmiştir.

Kat	h _i (mm)	d _{i-maks} (mm)	Δ_{i} (mm)	$\delta_i(mm) = R \Delta_i (distance)$	δ_i) _{maks} / h_i
6	4000	38.26	3.09	24.72	0.0062
5	4000	35.17	5.32	42.56	0.0106
4	4000	29.85	7.11	56.88	0.0142
3	4000	22.74	8.32	66.56	0.0166
2	4000	14.42	8.64	69.12	0.0173
1	4000	5.78	5.78	46.24	0.0116

Tablo 3.10: (R=8) için 6 katlı binanın x yönünde meydana gelen deplasmanları.

Tablo 3.11: (R=8) için 6 katlı binanın y yönünde meydana gelen deplasmanları

Kat	h _i (mm)	d _{i-maks} (mm)	Δ_i (mm)	$\delta_i(mm) = R \Delta_i (\delta_i)$	_{maks} / h _i
6	4000	43.12	3.62	28.96 0	.0072
5	4000	39.50	6.08	48.64 0	.0122
4	4000	33.42	8.04	64.32 0	.0161
3	4000	25.38	9.33	74.64 0	.0187
2	4000	16.05	9.65	77.20 0	.0193
1	4000	6.40	6.40	51.20 0	.0128

3.2.4. Altı Katlı (C_d=5.5) Binanın Doğrusal Elastik Analiz Sonuçları

Bu bölümde, (C_d=5.5) için altı katlı binaya ait elastik analiz sonuçlarına yer verilmiştir.

Şekil 3.17: (C_d=5.5) için altı katlı binanın kat planı ve yükseklikleri.

X doğrultusunda etkin hakim doğal titreşim periyodu:	$T_{1x} = 1.25 \text{ sn}$
Y doğrultusunda etkin hakim doğal titresim periyodu:	$T_{1y} = 1.34 \text{ sn}$
i doğrundu ölkin nukini doğur tirleşini periyeddi.	1 iy =1.5 i Sh
Vanı Zati Vükü	4072 50 kN
i upi Zuti i uku.	1072.50 KIV
İlave Ölü Vükler:	6000 kN
nave Olu Tukiel.	0000 KIN
Harakatli Vülr	4200 I-N
naiekeuli Yuk.	4200 KIN
XX 7	11222 51 N
W:	11332.5 KN
X yönünde Taban Kesme Kuvveti:	772 kN (% 6.80)
	. , ,
Y vönünde Taban Kesme Kuvveti:	755 kN (% 6.66)
J	

Tablo 3.12: (C_d =5.5) için 6 katlı binaya ilişkin genel bilgiler.

Şekil 3.18: (C_d=5.5) için altı katlı binanın üç boyutlu matematiksel modeli.

Şekil 3.19: (C_d =5.5) x yönünde eşdeğer deprem yükü altında deforme olmuş şekli.

Şekil 3.20: (C_d =5.5) y yönünde eşdeğer deprem yükü altında deforme olmuş şekli.

Şekil 3.21: a) Kolon kesiti, b) Kiriş kesiti.

Tablo 3.13: (C_d =5.5) için 6 katlı binanın x yönünde meydana gelen deplasmanları.

Kat	h _i (mm)	d _{i-maks} (mm)	$\Delta_i (mm) = \delta_i (mm) = \delta_i (mm)$	mm) = R Δ_i	$(\delta_i)_{maks}$ / h_i
6	4000	46.07	3.97	21.84	0.0055
5	4000	42.10	6.64	36.52	0.0091
4	4000	35.46	8.79	48.35	0.0121
3	4000	26.67	10.16	55.88	0.0140
2	4000	16.51	10.23	56.27	0.0141
1	4000	6.28	6.28	34.54	0.0086

Tablo 3.14: (C_d=5.5) için 6 katlı binanın y yönünde meydana gelen deplasmanları.

Kat	h _i (mm)	d _{i-maks} (mm)	Δ_i (mm)	$\delta_i(mm) = R \Delta_i$	$(\delta_i)_{maks}$ / h_i
6	4000	56.69	5.15	28.33	0.0071
5	4000	51.54	8.30	45.65	0.0114
4	4000	43.24	10.93	60.12	0.0150
3	4000	32.31	12.51	68.80	0.0172
2	4000	19.80	12.42	68.31	0.0171
1	4000	7.38	7.38	40.59	0.0101

4. ANALİZ SONUÇLARI

Statik Lineer Analiz sonucunda, binalar *göreli kat ötelemeleri, dayanım* ve *düğüm noktalarında kolonların kirişlerden güçlü olma koşulu* şartlarını sağlamışlardır. Tablo 4.1'de karşılaştırmalı olarak bina kesitleri gösterilmiştir.

Kat	Yönetmelik	Kolon Kesiti	X yönü Kiriş	Y yönü Kiriş
3	<i>R</i> =8.0	C50*50	B30*55	B30*55
3	<i>Cd</i> =5.5	C40*40	B40*30	B40*30
6	<i>R</i> =8.0	C50*50	B30*60	B30*60
6	<i>Cd</i> =5.5	C45*45	B45*35	B45*35

Tablo 4.1: Kolon ve kiriş enkesitleri.

Tablo 4.1'de görüldüğü gibi DBYBHY'ye göre tasarlanan yapıdaki kesitler, her katın kolon ve kirişlerinde daha yüksek ve ağır çıkmıştır [2]. Bu durum maliyet açısından büyük farklar yarattığı halde gerekliliği tartışılmalıdır. İlerleyen bölümlerde yapılacak bir dizi analizle bu ikileme bir yorum getirilmeye çalışılacaktır.

Şekil 4.1: Ölçeklendirilmemiş spektrum diyagramı.

Şekil 4.2: Ölçeklendirilmiş spektrum diyagramı.

Ta	blo 4.2: Kullanılan deprem kayıt	arı ve ölçeklenr	ne katsayıları.

KAYIT NO:	Deprem	Kayıt Süresi	Ölçeklenme Katsayısı (a _{st})
01	Italy-irpinia 302	45	5.08
02	Chi Chi 2714	80	19.98
03	Chi Chi 2734	80	6.46

Özellikleri verilmiş olan deprem ivme kayıtları kullanılarak yapılacak doğrusal elastik olmayan dinamik analizler sonucunda sistemlerin, deprem etkisinde, en büyük çatı deplasmanları ve göreli kat ötelemeleri incelenecektir. Bu sayede yapıların deprem esnasındaki gerçek yer değiştirme istemleri belirlenecektir. Doğrusal olmayan dinamik analizlerin yanı sıra sistemlerin kapasitesine dair fikir edinmek üzere, doğrusal elastik olmayan statik itme analizlerinden de faydalanılacaktır. Her iki doğrusal elastik olmayan analiz sırasında da P- Δ etkileri dikkate alınmıştır. Yapının deprem esnasındaki gerçek yer değiştirme istemi, elastik ötesi davranış esnasında yapının ne kadar deplasman yaptığını ve bahsi geçen büyütme katsayılarından (R ve C_d) hangisinin daha gerçekçi sonuç verdiğini görmemizi sağlayacaktır. Bu bölümde DBYBHY ve ASCE'nin etkin göreli kat ötelemeleri şartları sağlatılarak tasarlanan 3 ve 6 katlı yapıların davranışları, doğrusal elastik olmayan analizler vasıtasıyla karşılaştırmalı olarak değerlendirilecektir [4],[5].

4.1. Üç Katlı Yapıların Doğrusal Elastik Olmayan Analiz Sonuçları

Üç katlı yapıların geometrik ve dinamik özellikleri ile analitik modelde kullanılan özellikleri 3. bölümde detaylı şekilde anlatılmıştır. Bu bölümde 3 katlı yapıların doğrusal elastik olmayan statik itme analizi ve 3 adet deprem kaydı kullanılarak yapılan doğrusal elastik olmayan dinamik analizlere verdikleri tepkiler değerlendirilecektir. Tablo 4.2'de kullanılan deprem kayıtları gösterilmiştir.

4.1.1. (R=8) için Zaman Tanım Alanında Doğrusal Olmayan Elastik Analizi Sonuçları

Üç katlı (R=8) bina için seçilen deprem kayıtlarına göre zaman tanım alanında elastik (Azaltılmamış deprem kuvvetine göre) ve elastik ötesi çatı deplasmanlarına Tablo 4.3'de yer verilmiştir.

Şekil 4.3: a) "Italy" depremi x yönü plastik mafsal bölgeleri, b) "Italy" depremi y yönü plastik mafsal bölgeleri

Şekil 4.4: a) "Chi2714" depremi x yönü plastik mafsal bölgeleri, b)"Chi2714" depremi y yönü plastik mafsal bölgeleri.

Şekil 4.5: a) "Chi2734" depremi x yönü plastik mafsal bölgeleri, b) "Chi2734" depremi y yönü plastik mafsal bölgeleri.

DEPREM	YÖN	Tasarım Yer Değiştirmesi (cm)	Çatı Yer Değiştirmesi (cm)	Yerdeğiştirme Katsayısı (C _d)
ITALY	Х		6.36	5.00
Chi2714	Х	1.27	6.01	4.73
Chi2734	X		10.29	8.10
ITALY	Y		8.56	5.48
Chi2714	Y	1.56	8.20	5.25
Chi2734	Y		10.94	7.01

Tablo 4.3: (R=8) için 3 katlı binaya ait çatı deplasmanları.

Tablo 4.4: (R=8) için 3 katlı binaya ait çatı deplasmanları.

DEPREM	Tasarım Yer Değiştirmesi (cm) Ortalama (C _d) Değeri
01-02-03	5.92

4.1.2. (R=8) için Doğrusal Olmayan Statik İtme Analizi

Üç katlı (R=8) bina için x yönü kapasite diyagramı ve statik itme analizi sonuçlarına sırasıyla Şekil 4.6'da ve Tablo 4.5'de yer verilmiştir [12].

Şekil 4.6: (R=8) için x yönü statik itme analizi kapasite diyagramı.

(R=8) için 3 katlı binaya ait x yönü için statik itme analiz sonuçlarına Tablo 4.5'de yer verilmiştir.

$\Gamma_{X1} =$	22.72	
$\Phi_{\rm xN1} =$	0.0553	
ΣΜ	612 ton (bina kütlesi)	
γ _{x1}	0.86 (etkin kütle oranı)	
M _{y1}	526 ton (etkin kütle)	
Statik itme analizi sonucunda;		
V _{TX}	2500 kN (Taban Kesme Kuvveti Kapasitesi)	
Ω _x	2.45 (Dayanım Fazlalığı Katsayısı)	

Tablo 4.5: (R= 8) için 3 katlı binaya ait statik itme analiz sonuçları.

Üç katlı (R=8) bina için y yönü kapasite diyagramı ve statik itme analizi sonuçlarına sırasıyla Şekil 4.7'de ve Tablo 4.6'da yer verilmiştir [12].

Şekil 4.7: (R=8) için y yönü statik itme analizi kapasite diyagramı.

(R=8) için 3 katlı binaya ait y yönü için statik itme analiz sonuçlarına Tablo 4.6'da yer verilmiştir.

Γ_{Y1}	22.80	
$\Phi_{ m YN1}$	0.0557	
ΣΜ	612 ton (bina kütlesi)	
γ_{y1}	0.86 (etkin kütle oranı)	
M _{y1}	526 ton (etkin kütle)	
Statik itme analizi sonucunda;		
V _{TY}	2300 kN (Taban kesme kuvveti kapasitesi)	
Ωy	2.25 (Dayanım Fazlalığı Katsayısı)	

Tablo 4.6: (R=8) için 3 katlı binaya ait statik itme analiz sonuçları.

4.1.3. (C_d=5.5) için Zaman Tanım Alanında Doğrusal Olmayan Elastik Analiz Sonuçları

Üç katlı ($C_d=5.5$) bina için seçilen deprem kayıtlarına göre zaman tanım alanında elastik (Azaltılmamış deprem kuvvetine göre) ve elastik ötesi çatı deplasmanlarına Tablo 4.7'de yer verilmiştir.

Şekil 4.8: a) "Italy" depremi x yönü plastik mafsal bölgeleri, b) "Italy" depremi y yönü plastik mafsal bölgeleri.

Şekil 4.9: a) "Chi2714" depremi x yönü plastik mafsal bölgeleri, b) "Chi2714" depremi y yönü plastik mafsal bölgeleri.

Şekil 4.10: a) "Chi2734" depremi x yönü plastik mafsal bölgeleri, b) "Chi2734" depremi y yönü plastik mafsal bölgeleri.

DEPREM	YÖN	Tasarım Yer Değiştirmesi (cm)	Çatı Yer Değiştirmesi (cm)	Yerdeğiştirme Katsayısı (C _d)
ITALY	X		14.44	5.53
Chi2714	X	2.61	18.30	7.01
Chi2734	X		26.73	10.24
ITALY	Y		16.89	5.26
Chi2714	Y	3.21	18.48	5.75
Chi2734	Y		26.01	8.10

Tablo 4.7: (C_d=5.5) için 3 katlı binaya ait çatı deplasmanları.

Tablo 4.8: (C_d=5.5) için 3 katlı binaya ait çatı deplasmanları.

DEPREM	Tasarım Yer Değiştirmesi (cm) Ortalama (C _d) Değeri
01-02-03	6.98

4.1.4. (Cd=5.5) için Doğrusal Olmayan Statik İtme Analizi

Üç katlı (C_d =5.5) bina için x yönü statik itme analizi sonucu kapasite diyagramına Şekil 4.11'de yer verilmiştir[12].

Şekil 4.11: ($C_d = 5.5$) için x yönü statik itme analizi kapasite diyagramı.

Üç katlı (C_d =5.5) bina için x yönü statik itme analizi sonucunda taban kesme kuvveti ve dayanım fazlalığı katsayısına Tablo 4.9'da yer verilmiştir.

Γ_{X1}	21.13	
Φ_{xN1}	0.060	
ΣΜ	534 ton (bina kütlesi)	
γ_{x1}	0.83 (etkin kütle oranı)	
M _{x1}	444 ton (etkin kütle)	
Statik itme analizi sonucunda;		
V _{TX}	1600 kN (Taban Kesme Kuvveti Kapasitesi)	
Ω_{x}	2.65 (Dayanım Fazlalığı Katsayısı)	

Tablo 4.9: $(C_d = 5.5)$ için 3 katlı binaya ait statik itme analiz sonuçları.

Üç katlı (C_d =5.5) bina için y yönü statik itme analizi sonucu kapasite diyagramına Şekil 4.12'de yer verilmiştir [12].

Şekil 4.12: (C_d=5.5) için y yönü statik itme analizi kapasite diyagramı.

Üç katlı (C_d =5.5) bina için y yönü statik itme analizi sonucunda taban kesme kuvveti ve dayanım fazlalığı katsayısına Tablo 4.10'da yer verilmiştir.

Γ_{y1}	21.05	
Φ_{yN1}	0.060	
ΣΜ	534 ton (bina kütlesi)	
γ _{y1}	0.83 (etkin kütle oranı)	
M _{y1}	444 ton (etkin kütle)	
Statik itme analizi sonucunda;		
V _{TY}	1400 kN (Taban Kesme Kuvveti Kapasitesi)	
Ωy2.32 (Dayanım Fazlalığı Katsayısı)		

Tablo 4.10: ($C_d = 5.5$) için 3 katlı binaya ait statik itme analiz sonuçları.

4.2. Altı Katlı Yapıların Doğrusal Elastik Olmayan Analiz Sonuçları

Altı katlı yapıların geometrik ve dinamik özellikleri ile analitik modelde kullanılan özellikleri 3. bölümde detaylı şekilde anlatılmıştır. Bu bölümde 6 katlı yapıların doğrusal elastik olmayan statik itme analizi ve 3 adet deprem kaydı kullanılarak yapılan doğrusal elastik olmayan dinamik analizlere verdikleri tepkiler değerlendirilecektir. Tablo 4.2'de kullanılan deprem kayıtları gösterilmiştir.

4.2.1. (R=8) için Zaman Tanım Alanında Doğrusal Olmayan Elastik Analizi Sonuçları

Altı katlı (R=8) bina için Seçilen Deprem kayıtlarına göre Zaman Tanım Alanında elastik (Azaltılmamış Deprem Kuvvetine göre) ve elastik ötesi çatı deplasmanlarına Tablo 4.7 ve Tablo 4.8'de yer verilmiştir.

Şekil 4.13: a) "Italy" depremi x yönü plastik mafsal bölgeleri, b) "Italy" depremi y yönü plastik mafsal bölgeleri.

Şekil 4.14: a) "Chi2714" depremi x yönü plastik mafsal bölgeleri, b) "Chi2714" depremi y yönü plastik mafsal bölgeleri.

Şekil 4.15: a) "Chi2734" depremi x yönü plastik mafsal bölgeleri, b) "Chi2734" depremi y yönü plastik mafsal bölgeleri.

DEPREM	YÖN	Tasarım Yer Değiştirmesi (cm)	Çatı Yer Değiştirmesi (cm)	Yerdeğiştirme Katsayısı (C _d)
ITALY	X		11.36	2.96
Chi2714	X	3.83	13.28	3.46
Chi2734	X		17.80	4.65
ITALY	Y		11.70	2.70
Chi2714	Y	4.32	16.97	3.92
Chi2734	Y		28.77	6.65

Tablo 4.11: (R=8) için 6 katlı binaya ait çatı deplasmanları.

Tablo 4.12: (R=8) için 6 katlı binaya ait çatı deplasmanları.

DEPREM	Tasarım Yer Değiştirmesi (cm) Ortalama (C _d) Değeri
01-02-03	4.05

4.2.2. (R=8) için Doğrusal Olmayan Statik İtme Analizi

Altı katlı (R=8) bina için x yönü statik itme analizi sonucu kapasite diyagramına Şekil 4.16'da yer verilmiştir [12].

Şekil 4.16: (R=8) için x yönü statik itme analizi kapasite diyagramı.

Altı katlı (R=8) bina için x yönü statik itme analizi sonucunda taban kesme kuvveti ve dayanım fazlalığı katsayısına Tablo 4.13'de yer verilmiştir.

Tablo 4.13: (R=8) için 6 katlı binaya ait statik itme analiz sonuçları.

Γ_{X1}	31.75	
Φ_{xN1}	0.040	
ΣΜ	1284 ton (bina kütlesi)	
γ_{x1}	0.80 (etkin kütle oranı)	
M _{x1}	1027 ton (etkin kütle)	
Statik itme analizi sonucunda;		
V _{TX}	2300 kN (Taban Kesme Kuvveti Kapasitesi)	
Ω _x	1.87 (Dayanım Fazlalığı Katsayısı)	

Altı katlı (R=8) bina için y yönü statik itme analizi sonucu kapasite diyagramına Şekil 4.17'de yer verilmiştir [12].

Şekil 4.17: (R=8) için y yönü statik itme analizi kapasite diyagramı.

Altı katlı (R=8) bina için y yönü statik itme analizi sonucunda taban kesme kuvveti ve dayanım fazlalığı katsayısına Tablo 4.14'de yer verilmiştir.

Tablo 4.14: (R=8) için 6 katlı binaya ait statik itme analiz sonuçları.

Γ_{y1}	31.76	
Φ_{yN1}	0.040	
ΣΜ	1284 ton (bina kütlesi)	
γ _{y1}	0.80 (etkin kütle oranı)	
M _{y1}	1027 ton (etkin kütle)	
Statik itme analizi sonucunda;		
V _{TY}	2000 kN (Taban Kesme Kuvveti Kapasitesi)	
Ωy	1.73 (Dayanım Fazlalığı Katsayısı)	

4.2.3. (C_d=5.5) için Zaman Tanım Alanında Doğrusal Olmayan Elastik Analiz Sonuçları

Şekil 4.18: a) " Italy" depremi x plastik mafsal bölgeleri, b) " Italy" depremi y plastik mafsal bölgeleri.

Şekil 4.19: a) "Chi2714" depremi x plastik mafsal bölgeleri, b) "Chi2714" depremi y plastik mafsal bölgeleri.

Şekil 4.20: a) "Chi2734" depremi x plastik mafsal bölgeleri, b) "Chi2734" depremi y plastik mafsal bölgeleri.

DEPREM	YÖN	Tasarım Yer Değiştirmesi (cm)	Çatı Yer Değiştirmesi (cm)	Yerdeğiştirme Katsayısı (C _d)
ITALY	X		24.19	5.26
Chi2714	X	4.60	47.38	10.3
Chi2734	X		43.97	9.55
ITALY	Y		27.65	4.87
Chi2714	Y	5.67	43.96	7.75
Chi2734	Y		43.97	7.75

Tablo 4.15: (C_d=5.5) için 6 katlı binaya ait çatı deplasmanları.

Tablo 4.16: (Cd=5.5) için 6 katlı binaya ait çatı deplasmanları.

DEPREM	Tasarım Yer Değiştirmesi (cm) Ortalama (Cd) Değeri
01-02-03	7.58

4.2.4. (Cd=5.5) için Doğrusal Olmayan Statik İtme Analizi

Altı katlı (C_d =5.5) bina için x yönü statik itme analizi sonucu kapasite diyagramına Şekil 4.21'de yer verilmiştir [12].

Şekil 4.21: ($C_d = 5.5$) için x yönü statik itme analizi kapasite diyagramı.

Altı katlı (R=8) bina için x yönü statik itme analizi sonucunda taban kesme kuvveti ve dayanım fazlalığı katsayısına Tablo 4.17'de yer verilmiştir.

Tablo 4.17: ($C_d = 5.5$) için 6 katlı binaya ait statik itme analiz sonuçları.

Γ_{X1}	30.50	
Φ_{xN1}	0.0426	
ΣΜ	1168 ton (bina kütlesi)	
γ_{x1}	0.80 (etkin kütle oranı)	
M _{x1}	935 ton (etkin kütle)	
Statik itme analizi sonucunda;		
V _{TX}	2000 kN (Taban Kesme Kuvveti Kapasitesi)	
$\Omega_{\rm x}$	2.59 (Dayanım Fazlalığı Katsayısı)	

Altı katlı (C_d =5.5) bina için y yönü statik itme analizi sonucu kapasite diyagramına Şekil 4.22'de yer verilmiştir [12].

Şekil 4.22: ($C_d = 5.5$) için y yönü statik itme analizi kapasite diyagramı.

Altı katlı (R=8) bina için x yönü statik itme analizi sonucunda taban kesme kuvveti ve dayanım fazlalığı katsayısına Tablo 4.18'de yer verilmiştir.

Γ_{y1}	30.55	
Φ_{yN1}	0.0425	
ΣΜ	1168 ton (bina kütlesi)	
γ _{y1}	0.80 (etkin kütle oranı)	
M _{y1}	935 ton (etkin kütle)	
Statik itme analizi sonucunda;		
V _{TY}	1700 kN (Taban Kesme Kuvveti Kapasitesi)	
Ω _y	2.25 (Dayanım Fazlalığı Katsayısı)	

Tablo 4.18: ($C_d = 5.5$) için 6 katlı binaya ait statik itme analiz sonuçları.

4.2.5. Maksimum Plastik Mafsal Dönmeleri

Deprem kayıtları altında binaya ait maksimum plastik mafsal dönmelerine Tablo 4.19'da yer verilmiştir [12].

Bina	Yön	Chi2714	Chi2734	Italy
3 katlı (ASCE)	Х	0.01648	0.02687	0.01333
3 katlı (ASCE)	у	0.01630	0.02477	0.01436
3 katlı (DBYBHY)	Х	0.00670	0.0099	0.00587
3 katlı (DBYBHY)	у	0.00871	0.0100	0.00751
6 katlı (ASCE)	Х	0.01612	0.01578	0.01319
6 katlı (ASCE)	у	0.01569	0.01872	0.01432
6 katlı (DBYBHY)	X	0.00722	0.01234	0.00678
6 katlı (DBYBHY)	у	0.00745	0.01796	0.00685

Tablo 4.19: Maksimum plastik mafsal dönmeleri.

5. SONUÇLAR ve YORUMLAR

Bu çalışmada en yaygın betonarme taşıyıcı sistemlerden biri olan süneklik düzeyi yüksek betonarme çerçevelerin göreli kat ötelemeleri irdelenmiştir. Süneklik düzeyi yüksek betonarme çerçevelerin tasarımında dayanım tahkikinin belirleyici unsur olmasına rağmen DBYBHY ve ASCE yönetmeliklerin sunduğu farklı etkin göreli kat öteleme şartlarına göre 3 ve 6 katlı 4 adet çerçevede, 50 yılda aşılma olasılığı %10 olan toplam 3 farklı deprem kaydı kullanılarak zaman tanım alanında doğrusal elastik olmayan dinamik analizler yapılmıştır [4],[5]. Aynı çerçeveler, doğrusal elastik olmayan statik itme analizlerine de tabi tutulmuştur. Yapılan analizler sonucunda yapıların elastik ötesi davranışı incelenmiş ve tasarım depreminde kaynaklanan yer değiştirme istemleri incelenmiştir. ASCE'nin önerdiği $C_d=5.5$ ve DBYBHY'nin önerdiği R=8 katsayılarından hangisinin daha rasyonel sonuçlar verdiği konusunda bilgi edinilmeye çalışılmıştır [4],[5]. Yapılan çalışmadan elden edilen sonuçlar aşağıdaki gibi özetlenebilir:

• Süneklik düzeyi yüksek betonarme çerçevelerin tasarımında göreli kat ötelemeleri için önerilen sınırlamalar hakim etki değildir.

• 3 katlı yapılar için zaman tanım alanında doğrusal elastik olmayan dinamik analizlerden elde edilen C_d katsayıları DBYBHY'ye ve ASCE'ye göre sırasıyla 5.92 ve 6.98'dir [4],[5].

•6 katlı yapılar için zaman tanım alanında doğrusal elastik olmayan dinamik analizlerden elde edilen C_d katsayıları DBYBHY'ye ve ASCE'ye göre sırasıyla 4.05 ve 7.58'dir [4],[5].

•DBYBHY'ye göre tasarlanan 3 katlı ve 6 katlı binaların her ikisinde de ASCE'ye göre yapılan tasarımlara göre daha az göreli kat ötelemesi meydana gelmiştir [4],[5].

•DBYBHY'ye göre tasarlanan 3 katlı ve 6 katlı binaların her ikisinde de ASCE'ye göre yapılan tasarımlara göre daha fazla plastik mafsal meydana gelmiştir [4],[5].

• Dayanım faktörünün etkin olduğu süneklik düzeyi yüksek betonarme çerçevelerde DBYBHY'nin önerdiği R=8 yerine ASCE'nin önerdiği $C_d=5.5$ 'ye
göre tasarım taşıyıcı eleman boyutlarını azaltmasına rağmen donatı oranları sınır seviyelere taşımaktadır [4],[5].

• Dayanım fazlalığı katsayısının kısa periyotlu yapılarda daha fazla olduğu görülmektedir. Periyodu uzun yapılarda ise bu değer biraz azalmaktadır. 3 katlı yapıda her iki yönetmelik için de dayanım fazlalığı katsayısı ciddi bir değişkenlik göstermez iken, 6 katlı yapılarda farklılık göze çarpmaktadır.

• Yapılan çalışmada kullanılan yapı ve deprem adedinin kısıtlı olması sebebiyle eşit yer değiştirme kuralının süneklik düzeyi yüksek betonarme çerçevelerdeki geçerliğinin sorgulanabilmesi için daha fazla deneysel ve analitik çalışma yapılması gerektiği söylenebilir.

KAYNAKLAR

- Aydınoğlu M. N., (2007), "Dayanıma Göre Tasarımdan Şekildeğiştirmeye Göre Tasarım", Gebze Yüksek Teknoloji Enstitüsü Semineri, , Gebze Kocaeli, Türkiye, 31 Mayıs.
- [2] Kutanis M., (2009), "Yapı ve Deprem Mühendisliğinde Performans Yaklaşımı", 2. Baskı, İnşaat Mühendisleri Odası Sakarya Bülteni Dergisi.
- [3] Şeker O., (2011), "Süneklik Düzeyi Yüksek Çelik Çerçevelerin Etkin Göreli Kat Ötelemelerinin İrdelenmesi", Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi.
- [4] ASCE, (2010), Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers, ASCE-07.
- [5] DBYBHY, (2007), Türk Deprem Yönetmeliği, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, DBYBHY-2007.
- [6] TSE, (2000), Betonarme Yapıların Tasarım ve Yapım Kuralları, TS-500, Türk Standartları Enstitüsü.
- [7] Miranda E., Bertero V.V., (1994), "Evaluation of Strength Reduction Factors", Earthquake Engineering Research Center, 357-379.
- [8] Uang, C. M., (1991), "Establishing R (or R_w) and C_d Factors for Building Seismic Provisions", 2. Edition, Journal of Structural Engineering.
- [9] Uang, C. M., Associate Member, ASCE, and Maarouf, A., (1994), "DeflectionAmplification Factor for Seismic Design Provisions", Journal of Structural Engineering, 120(8), 50-100.
- [10] Newmark, N. M., Hall, W.J., (1973), "Seismic Design Criteria for Nuclear Reactor Facilities" Techical Report No: 46, Department of Commerce Building, USA.
- [11] Akbaş, B.,(2008). Advanced Steel Structures Ders Notları, Gebze Yüksek Teknoloji Enstitüsü, Kocaeli.
- [12] SAP (2010), Static and Dynamic Calculation Software, Structural Analyses Program.
- [13] Seker, O., Akbas, B., Shen, J., Ozturk, A. Z., (2014), "Evaluation of DeflectionAmplification Factor in Steel Moment-Resisting Frames," The Structural Design of Tall and Special Buildings, 23 (12), 897-928.
- [14] Chopra, A. K., (1995), "Dynamics of structures: Theory and Applications to Earthquake Engineering", 2nd Edition, Prentice Hall.

ÖZGEÇMİŞ

Serkan GÖKALP, 1986 yılında İstanbul'da doğdu. 2004 yılında başladığı İstanbul Teknik Üniversitesi (İTÜ), İnşaat Fakültesi, İnşaat Mühendisliği Bölümünü 2009 yılında başarıyla tamamladıktan sonra 2012 yılında yüksek lisans eğitimine Gebze Yüksek Teknoloji Enstitüsü (GYTE) Deprem ve Yapı Mühendisliği Anabilim Dalında başladı. 2011 yılında proje mühendisi olarak başladığı Teknik Yapı Proje Firmasında 2014 yılınından beri proje yöneticisi olarak çalışmaktadır.