T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

BAZI METAL İÇEREN BORATLI, FOSFATLI ve BORFOSFATLI BİLEŞİKLERİN SENTEZİ ve YAPISAL KARAKTERİZASYONU

DOKTORA TEZİ

Berna TEKİN

Balıkesir, Ağustos-2007

T.C. BALIKESİR ÜNİVERSİTESİ FEN BÌLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

BAZI METAL İÇEREN BORATLI, FOSFATLI ve BORFOSFATLI BILEŞİKLERİN SENTEZİ ve YAPISAL KARAKTERİZASYONU

DOKTORA TEZÌ

Berna TEKIN

Tez Danismani: Doç. Dr. Hafil GÜLER

Smay Tarihi: 10 / 08 / 2007

Jüri Üyeleri: Prof. Dr. Mahir ALKAN (BAÜ) Prof. Dr. Mürsel ALPER (UÖ) (UMAMA Doç. Dr. Halil GÜLER (Damışman-BAÜ) M. M. Doç. Dr. Raif KURTARAN (BAŬ) Doç. Dr. İzzet MORKAN (AİBŬ)

Balıkesir, Ağustos-2007

Bu çalışma, Balıkesir Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Birimi tarafından BAP 2004/22 kodlu proje ile desteklenmiştir.

ÖZET

BAZI METAL İÇEREN BORATLI, FOSFATLI ve BORFOSFATLI BİLEŞİKLERİN SENTEZİ ve YAPISAL KARAKTERİZASYONU

Berna TEKİN Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı

(Doktora Tezi / Tez Danışmanı : Doç. Dr. Halil GÜLER)

BALIKESİR, 2007

Bu tez çalışmasında, katı-hal, mikrodalga ve hidrotermal yöntemler kullanılarak bazı metal boratlı, fosfatlı ve borfosfatlı malzemelerin sentezlenmesine çalışılmıştır. Elde edilen ürünler XRD, FTIR, TG-DTA, SEM ve diğer analitik yöntemler kullanılarak analiz edilmiştir.

Katı-hal yöntemi kullanılarak yapılan deneylerde, $Co_2Ni(BO_3)_2$ ve $CoNi_2(BO_3)_2$ bileşikleri ilk defa ve saf olarak başarılı bir şekilde sentezlenmişlerdir. Her iki orjinal bileşiğinde, ortorombik sistemde kristallendiği bulunmuş, uzay grupları Pnmn olarak belirlenmiştir. Co_2NiBPO_7 ve $CoNi_2BPO_7$ bileşikleri de katıhal sentez yöntemleri kullanılarak ilk defa ve az bir safsızlıkla sentezlenebilmiştir. Elde edilen ürünlerin monoklinik sistemde kristallendiği ve uzay gruplarının Cm olduğu bulunmuştur.

Hidrotermal yöntem kullanılarak yapılan deneylerde vaterite yapısına sahip NdBO₃ bileşiği ilk ve saf olarak başarılı bir şekilde üç farklı yol kullanılarak sentezlenmiştir. Deneysel ürünler monoklinik sistemde indekslenmiş, uzay simetrilerinin (P) grubuna bağlı oldukları görülmüştür.

Mikrodalga yöntem kullanılarak yapılan deneylerde, $Co_2Ni(BO_3)_2$ bileşiği az bir safsızlık ile ilk kez bu çalışmada başarılı bir şekilde sentezlenmiştir. Elde edilen bileşiğin kristal yapısının ortorombik ve uzay grubunun Pnmn olduğu belirlenmiştir. Literatürde bulanan bazı metal boratlı ve fosfatlı bileşikler, bu çalışmada ilk defa hidrotermal ve mikrodalga yöntemler kullanılarak sentezlenmiştir.

ANAHTAR SÖZCÜKLER: katı-hal reaksiyonları / hidrotermal yöntem / mikrodalga teknikler / metal boratlar / metal fosfatlar / metal borfosfatlar / x-ışınları toz kırınımı

ABSTRACT

SYNTHESES and STRUCTURAL CHARACTERIZATIONS of CERTAIN COMPOUND of METAL BORATES, PHOSPHATES and BOROPHOSPHATES

Berna TEKIN Bahkesir University, Institute of Science Department of Chemistry

(Ph.D Thesis / Supervisor : Asoc. Prof. Dr. Halil GÜLER)

BALIKESİR, 2007

This study's principle aim was the synthesize of some new type metal borates, phosphates and borophosphates by using conventional solid-state techniques, microwave and hydrothermal methods. The experimental products were characterisized by XRD, FTIR, TG-DTA, SEM and other analytical methods.

The compounds, $Co_2Ni(BO_3)_2$ and $CoNi_2(BO_3)_2$ firstly and successfully were synthesized by using thermally-induced solid-state reactions. It was found that both of the original compounds had orthorhombic crystal system and Pnmn space groups. The Co_2NiBPO_7 and $CoNi_2BPO_7$ were also synthesized firstly by solid-state reactions techniques with a small amount of impurity. The obtained products had monoclinic systems with a Cm space group.

Vatarite type NdBO₃ was synthesized by hydrothermal method using the three different experimental procedures in pure form for the first time. The obtained products were indexed in monoclinic crystal system and it was found that theirs space symmetries were belong to P groups.

In the microwave assisted syntheses, $Co_2Ni(BO_3)_2$ was obtained firstly and with a small impurity. It was found that $Co_2Ni(BO_3)_2$ had orthorhombic crystal system and its space group was defined as Pnmn. In this study, some of the compounds which were known as metal borates and phosphates were synthesized by using hydrothermal and microwave methods for the first time.

KEY WORDS: solid-state reactions / hydrothermal method / microwave techniques / metal borates / metal phosphates / metal borophosphates / x-ray powder diffraction

İÇİNDEKİLER

<u>Sayfa N</u>	umarası
ÖZET, ANAHTAR SÖZCÜKLER	ii
ABSTRACT, KEY WORDS	iii
İÇİNDEKİLER	iv
SEMBOL LİSTESİ	viii
ŞEKİL LİSTESİ	ix
TABLO LİSTESİ	XV
ÖNSÖZ	xxii
1. GİRİŞ	1
1.1 Ortoborik Asit, Meta Borik Asit ve Bor Oksit1.2 Boraks ve Kolemanit1.2 Deputter	1 3
1.3 Boratlar 1.3 1 Borat Bilogiklarinin Vüksak Taknolojidaki Kullanım Alanları	6
1.3.1 Borat Bileşiklerinin Tuksek Teknolojideki Kunanin Alamari 1.3.2 Boratlı Bileşiklerinin Sınıflandırılması ve Boratlı Bileşikler ile İlgili Yapılmış Calışmalar	8
1.4 Fosfatlar	16
1.4.1 Fosfat Bileşiklerinin Önemi	16
1.4.2 Fosfat Bileşiklerinin Sınıflandırılması ve Fosfatlı Bileşikler ile İlgili Yapılmış Çalışmalar	16
1.5 Borfosfatlar	20
1.5.1 Borfosfat Bileşiklerinin Önemi	20
1.5.2 Borfosfat Bileşiklerinin Sınıflandırılması ve Borfosfatlı Bileşikler ile İlgili Yapılmış Çalışmalar	21
1.6 Katı-Hal Sentez Yöntemi	31
1.7 Hidrotermal Sentez Yöntemi	32
1.8 Mikrodalga Sentez Yöntemi	34
1.8.1 Mikrodalga Enerji ile Maddelerin Etkileşimi	34
1.8.2 Mikrodalga Isitmanın Prensibi	35
1.8.3 Fosfatlı Bileşiklerin Sentezlenmesinde Mikrodalga Yöntemi	36
1.9 X-Işınları Difraksiyonunu ile Kristal Yapı Tayini	38
1.10 Çalışmanın Amacı	39

2. MATERYAL VE YÖNTEM

2.1 Kullanılan Kimyasallar	40
2.2 Kullanılan Cihazlar	40
2.3 Yöntem	41
2.3.1 Katı-Hal Yöntemi	41
2.3.2 Hidrotermal Yöntem	41
2.3.3 Mikrodalga Yöntem	42
2.4 AAS ile Metal İvonlarının Analizi	42
2.5 Bor Analizi	42
2.6 Indeksleme Program	43
3. BULGULAR	44
3.1 Katı-Hal Yöntemi	44
Kullanılarak Yapılan Deneyler	
$3.1.1 \operatorname{Co(NO_3)_2.6H_2O}/\operatorname{Ni(NO_3)_2.6H_2O}/\operatorname{H_3BO_3}$ Maddeleri	44
Kullanılarak Yapılan Denevler	
$3.1.2 \operatorname{Co}(\operatorname{NO}_3)_2.6H_2O / \operatorname{Ni}(\operatorname{NO}_3)_2.6H_2O / H_3BO_3 / (\operatorname{NH}_4)_2HPO_4$ Maddeleri	46
Kullanılarak Yapılan Denevler	-
3.1.3 Boraks (Na ₂ B ₄ O ₇ 10H ₂ O)/Nadir Toprak Metal Oksit	47
$(L_{a_2}O_2 \ Nd_2O_2 \ Y_2O_2)$ Maddeleri Kullanılarak Yapılan Denevler	.,
3.1.4 Kolemanit (Ca ₂ B ₂ O ₁₁ 5H ₂ O) / Nadir Toprak Metal Oksit	48
$(L_{a_2}O_2, Nd_2O_3)$ Maddeleri Kullanılarak Yanılan Denevler	10
3 2 Hidrotermal Vöntem	50
Kullandarak Vandan Denevler	50
3.2.1 Boraka Borik Asit Bor Oksit / Nadir Toprak Matal Oksit	50
(La-O. Nd-O.) Maddalari Kullanılarak Vanılan Danaylar	50
(La_2O_3, Nu_2O_3) Maddeleri Kunainarak Tapitan Deneyler 2.2.2 Kolomonit (Co. B. O., 5H. O.) / Nd. O. Moddolori	51
S.2.2 Kolemann (Ca ₂ D ₆ O ₁].511 ₂ O) / Nu ₂ O ₃ Maddelen	51
2.2.2 CuO / (NH) HDO + HDO / H BO + Maddalari	51
S.2.5 CuO/ (INI14)211F O4, 113F O4/ 113DO3 Widducteri Kullondoral: Vandan Danaylar	51
2.2.4 Motol Okoit (NiO Al O Sh O ZnO AcNO SnO) / H DO /	50
5.2.4 Metal OKSII (NIO, Al $_2$ O ₃ , SO $_2$ O ₃ , ZIIO, AgNO ₃ , SIIO) / Π_3 DO ₃ /	32
(NH4) ₂ HPO4 Maddeleri Kullanilarak Yapilan Deneyler	E 1
3.3 Mikrodalga Yontem	54
Kullanilarak Yapilan Deneyler	E 4
$3.3.1 \text{ Co}(\text{NO}_3)_2.6\text{H}_2\text{O} / \text{Ni}(\text{NO}_3)_2.6\text{H}_2\text{O} / \text{H}_3\text{BO}_3 \text{ Maddeleri}$	54
Kullanilarak Yapilan Deneyler	- 4
$3.3.2 \text{ Ca}(\text{NO}_3)_2.4\text{H}_2\text{O} / (\text{NH}_4)_2\text{HPO}_4, \text{NaH}_2\text{PO}_4.2\text{H}_2\text{O} / \text{H}_3\text{BO}_3$	54
Maddeleri Kullanilarak Yapilan Deneyler	
3.3.3 Cr(NO ₃) ₃ .9H ₂ O / (NH ₄) ₂ HPO ₄ , NaH ₂ PO ₄ .2H ₂ O Maddeleri	55
Kullanilarak Yapılan Deneyler	
$3.3.4 \text{ Fe}(\text{NO}_3)_3.9\text{H}_2\text{O} / (\text{NH}_4)_2\text{HPO}_4 \text{ Maddeleri}$	56
Kullanılarak Yapılan Deneyler	
3.3.5 AI $(NO_3)_3.9H_2O / NaH_2PO_4.2H_2O$, $(NH_4)_2HPO_4$ Maddeleri	57
Kullanılarak Yapılan Deneyler	
3.3.6 Hg(NO ₃) ₂ .H ₂ O / NaH ₂ PO ₄ .2H ₂ O Maddeleri	58
Kullanılarak Yapılan Deneyler	

40

3.3.7 Zn(NO ₃) ₂ .6H ₂ O / (NH ₄) ₂ HPO ₄ Maddeleri	59
Kullanılarak Yapılan Deneyler	
3.3.8 AgNO ₃ / (NH ₄)H ₂ PO ₄ veya NaH ₂ PO ₄ .2H ₂ O / H ₃ BO ₃ Maddeleri	60
Kullanılarak Yapılan Deneyler	
$3.3.9 \text{ WO}_3 / (\text{NH}_4)_2 \text{HPO}_4 \text{ veya NaH}_2 \text{PO}_4.2 \text{H}_2 \text{O} \text{ Maddeleri}$	61
Kullanılarak Yapılan Deneyler	
4. TARTIŞMA VE SONUÇ	62
4.1 Katı-Hal Yöntemi	62
Kullanılarak Yapılan Deneylerin Sonuçları	
4.1.1 Co(NO ₃) ₂ .6H ₂ O / Ni(NO ₃) ₂ .6H ₂ O / H ₃ BO ₃ Maddeleri	62
Kullanılarak Yapılan Deneylerin Sonuçları	~ -
$4.1.2 \text{ Co}(\text{NO}_3)_2.6\text{H}_2\text{O} / \text{Ni}(\text{NO}_3)_2.6\text{H}_2\text{O} / \text{H}_3\text{BO}_3 / (\text{NH}_4)_2\text{HPO}_4$	87
Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları	07
4.1.3 Boraks $(Na_2B_4O_7.10H_2O)$ / Nadir Toprak Metal Oksit	97
$(La_2O_3, Nd_2O_3, Y_2O_3)$ Maddeleri Kullanilarak Yapilan	
Deneylerin Sonuçlari 4.1.4 Kolamanit (Co. P. O. – 511 O.) / Nadir Tanrak Matal Okait	100
4.1.4 Kolemann $(Ca_2D_6O_{11}.5n_2O)$ / Nauli Toprak Metal Oksit (L. Q. Nd Q.) Moddolori Kullondorek Vandon	108
(La ₂ O ₃ , Nu ₂ O ₃) Maduelen Kunannarak Tapitan Denevlerin Sonuclari	
4 2 Hidrotermal Vöntem	116
Kullanılarak Yapılan Denevlerin Sonucları	110
4.2.1 Boraks, Borik Asit, Bor Oksit / Nadir Toprak Metal Oksit	116
(La ₂ O ₃ , Nd ₂ O ₃) Maddeleri Kullanılarak Yapılan	-
Deneylerin Sonuçları	
4.2.2 Kolemanit (Ca ₂ B ₆ O ₁₁ .5H ₂ O) / Nd ₂ O ₃ Maddeleri	134
Kullanılarak Yapılan Deneylerin Sonuçları	
4.2.3 CuO / (NH ₄) ₂ HPO ₄ , H ₃ PO ₄ / H ₃ BO ₃ Maddeleri	136
Kullanılarak Yapılan Deneylerin Sonuçları	
4.2.4 Metal Oksit (NiO, Al ₂ O ₃ , Sb ₂ O ₃ , ZnO, AgNO ₃ , SnO) /	148
H ₃ BO ₃ /(NH ₄) ₂ HPO ₄ Maddeleri Kullanılarak Yapılan	
Deneylerin Sonuçları	
4.3 Mikrodalga Yöntem	162
Kullanilarak Yapilan Deneylerin Sonuçlari	1.00
4.5.1 Co(NO ₃) ₂ .0H ₂ O / NI(NO ₃) ₂ .0H ₂ O / H ₃ BO ₃ Maddeleri Kullandarak Vandan Danavlarin Sanyalari	162
Kunannarak Tapitan Deneylerin Sonuçları $4.2.2 C_0(NO_1), 4H_O / (NH_1) HDO_1 N_0 H_DO_2 H_O / H_DO_$	166
Maddeleri Kullanılarak Vanılan Denevlerin Sonucları	100
4 3 3 $Cr(NO_2)_2$ 9H ₂ O / (NH ₄) ₂ HPO ₄ NaH ₂ PO ₄ 2H ₂ O Maddeleri	166
Kullanılarak Yapılan Denevlerin Sonucları	100
$4.3.4 \text{ Fe}(\text{NO}_3)_3.9\text{H}_2\text{O} / (\text{NH}_4)_2\text{HPO}_4 \text{ Maddeleri}$	180
Kullanılarak Yapılan Denevlerin Sonucları	
4.3.5 Al(NO ₃) ₃ .9H ₂ O / NaH ₂ PO ₄ .2H ₂ O, (NH ₄) ₂ HPO ₄ Maddeleri	183
Kullanılarak Yapılan Deneylerin Sonuçları	
4.3.6 Hg(NO ₃) ₂ .H ₂ O / NaH ₂ PO ₄ .2H ₂ O Maddeleri	188
Kullanılarak Yapılan Deneylerin Sonuçları	
4.3.7 Zn(NO ₃) ₂ .6H ₂ O / (NH ₄) ₂ HPO ₄ Maddeleri	193
Kullanılarak Yapılan Deneylerin Sonuçları	

4.3.8 AgNO ₃ / (NH ₄)H ₂ PO ₄ , NaH ₂ PO ₄ .2H ₂ O / H ₃ BO ₃ Maddeleri Kullanılarak Yapılan Denevlerin Sonucları	201
4.3.9 WO ₃ / (NH ₄) ₂ HPO ₄ , NaH ₂ PO ₄ .2H ₂ O Maddeleri Kullanılarak Yapılan Denaylarin Sonyaları	208
4.4 Sonuçlar	214
5. EKLER	217
EK:A BAZI FONKSİYONEL GRUPLARIN VE BİLEŞİKLERİN FTIR SPEKTRUMU DALGA SAYILARI	217
EKA.1 Bazı Fonksiyonel Gruplara ait Literatürde	217
Bulunan Makalelerden Elde Edilmiş Dalga Sayıları EK A.2 Bazı Bileşiklere ve Fonksiyonel Gruplara ait Literatürde Bulunan Kitaplardan Elde Edilmiş Dalga Sayıları	219
6. KAYNAKÇA	220

SEMBOL LİSTESİ

Sembol	Adı
XRD	X-Işınları Toz Difraksiyonu
FTIR	Fourier Transform Infrared Spektroskopisi
SEM	Taramalı Elektron Mikroskobu
TG-DTA	Termogravimetrik-Diferansiyel Termal Analiz
AAS	Atomik Absorbsiyon Spektrofotometresi
ICDD	International Centre for Diffraction Data
KFD	Kül Fırın Deneyi
HD	Hidrotermal Deney
MD	Mikrodalga Deney

ŞEKİL LİSTESİ

Şekil Numarası	Adı	Sayfa Numarası
Şekil 1.1	H ₃ BO ₃ ' ün Tabakalı Kısmı	2
Şekil 1.2	Tek tabakalı HBO2' de Atomların Düzeni	2
Şekil 1.3	Boraks Kristalinin Görünümü	4
Şekil 1.4	B ₄ O ₅ (OH) ₄ ⁻² Polianyonunun Yapısı	5
Şekil 1.5	Kolemanit Kristalinin Görünümü	5
Şekil 1.6	B ₃ O ₄ (OH) ₃ Halkasının Yapısı	5
Şekil 1.7	(001) Düzlemi Boyunca Ca ₃ La ₃ (BO ₃) ₅ Bileşiğinin Kristal Yapısı	11
Şekil 1.8	Sr ₂ B ₂ O ₅ Kristalindeki Atomların Bağlanma Pozisyonları	13
Şekil 1.9	(100) Düzlemi Boyunca TlB ₃ O ₅ Bileşiğinin Kristal Yapısı	14
Şekil 1.10	B ₅ O ₈ ⁻ anyonunun yapısı	15
Şekil 1.11	SrZr(PO ₄) ₂ Bileşiğinin Kristal Yapısı	17
Şekil 1.12	(001) Düzlemi Boyunca WP ₂ O ₇ Bileşiğinin Kristal Yapısı	18
Şekil 1.13	P4O12 Halkasının Açık Yapısı	19
Şekil 1.14	Ba ₃ BPO ₇ Bileşiğinin Kristal Yapısı	25
Şekil 1.15	SrBPO ₅ Bileşiğinin Kristal Yapısı	28
Şekil 1.16	Co ₅ BP ₁₃ O ₁₄ Bileşiğinin Kristal Yapısı	29
Şekil 1.17	Na ₅ [B ₂ P ₃ O ₁₃] Bileşiğinin Kristal Yapısı	30
Şekil 4.1	KFD1 Deneyine ait X-Işınları Toz Kırınımı Grafiği	64

Şekil 4.2	KFD1 Deneyine ait FTIR Spektrumu	65
Şekil 4.3	KFD1 Deneyine ait SEM Fotoğrafı	66
Şekil 4.4	KFD2 Deneyine ait X-Işınları Toz Kırınımı Grafiği	67
Şekil 4.5	KFD3 Deneyine ait X-Işınları Toz Kırınımı Grafiği	67
Şekil 4.6	KFD4 Deneyine ait X-Işınları Toz Kırınımı Grafiği	68
Şekil 4.7	KFD5-Co2Ni(BO3)2 Bileşiğine ait X-Işınları Toz Kırınımı Grafiği	71
Şekil 4.8	KFD5-Co ₂ Ni(BO ₃) ₂ Bileşiğine ait Oda Sıcaklığındaki FTIR Spektrumu	72
Şekil 4.9	KFD5-Co ₂ Ni(BO ₃) ₂ Bileşiğine ait TG-DTA Eğrileri	74
Şekil 4.10	KFD6 Deneyine ait X-Işınları Grafiği	76
Şekil 4.11	KFD6 Deneyine ait FTIR Spektrumu	77
Şekil 4.12	KFD6 Deneyine ait SEM Fotoğrafı	78
Şekil 4.13	KFD7 Deneyine ait X-Işınları Toz Kırınımı Grafiği	79
Şekil 4.14	KFD8 Deneyine ait X-Işınları Toz Kırınımı Grafiği	79
Şekil 4.15	KFD9-CoNi ₂ (BO ₃) ₂ Bileşiğine ait X-Işınları Toz Kırınımı Grafiği	83
Şekil 4.16	KFD9-CoNi ₂ (BO ₃) ₂ Bileşiğine ait Oda Sıcaklığındaki FTIR Spektrumu	84
Şekil 4.17	KFD9-CoNi ₂ (BO ₃) ₂ Bileşiğine ait TG-DTA Eğrileri	86
Şekil 4.18	KFD10 Deneyine ait X-Işınları Toz Kırınımı Grafiği	90
Şekil 4.19	KFD10 Deneyine ait FTIR Spektrumu	92
Şekil 4.20	KFD10 Deneyine ait SEM Fotoğrafı	92
Şekil 4.21	KFD11 Deneyine ait X-Işınları Toz Kırınımı Grafiği	95
Şekil 4.22	KFD11 Deneyine ait FTIR Spektrumu	96
Şekil 4.23	KFD11 Deneyine ait SEM Fotoğrafı	97
Şekil 4.24	KFD12 Deneyine ait X-Işınları Toz Kırınımı Grafiği	100

Şekil 4.25	KFD13 Deneyine ait X-Işınları Toz Kırınımı Grafiği	100
Şekil 4.26	KFD14 Deneyine ait X-Işınları Toz Kırınımı Grafiği	102
Şekil 4.27	KFD15 Deneyine ait X-Işınları Toz Kırınımı Grafiği	103
Şekil 4.28	KFD16 Deneyine ait X-Işınları Toz Kırınımı Grafiği	105
Şekil 4.29	KFD17 Deneyine ait X-Işınları Toz Kırınımı Grafiği	106
Şekil 4.30	KFD18 Deneyine ait X-Işınları Toz Kırınımı Grafiği	107
Şekil 4.31	KFD19 Deneyine ait X-Işınları Toz Kırınımı Grafiği	110
Şekil 4.32	KFD20 Deneyine ait X-Işınları Toz Kırınımı Grafiği	111
Şekil 4.33	KFD21 Deneyine ait X-Işınları Toz Kırınımı Grafiği	111
Şekil 4.34	KFD22 Deneyine ait X-Işınları Toz Kırınımı Grafiği	114
Şekil 4.35	KFD23 Deneyine ait X-Işınları Toz Kırınımı Grafiği	114
Şekil 4.36	KFD24 Deneyine ait X-Işınları Toz Kırınımı Grafiği	115
Şekil 4.37	HD1 Deneyine ait X-Işınları Toz Kırınımı Grafiği	119
Şekil 4.38	HD1 Deneyine ait FTIR Spektrumu	119
Şekil 4.39	HD2-NdBO3 Bileşiğine ait X-Işınları Toz Kırınımı Grafiği	122
Şekil 4.40	HD2- NdBO3 Bileşiğine ait FTIR Spektrumu	123
Şekil 4.41	HD2- NdBO3 Bileşiğine ait DTA/TG eğrileri	124
Şekil 4.42	HD3- NdBO3 Bileşiğine ait X-Işınları Toz Kırınımı Grafiği	126
Şekil 4.43	HD3- NdBO3 Bileşiğine ait FTIR Spektrumu	127
Şekil 4.44	HD3- NdBO3 Bileşiğine ait DTA/TG eğrileri	128
Şekil 4.45	HD4- NdBO3 Bileşiğine ait X-Işınları Toz Kırınımı Grafiği	130
Şekil 4.46	HD4-NdBO3 Bileşiğine ait FTIR Spektrumu	131
Şekil 4.47	HD4- NdBO3 Bileşiğine ait DTA/TG eğrileri	132

Şekil 4.48	HD5 Deneyine ait X-Işınları Toz Kırınımı Grafiği	133
Şekil 4.49	HD5 Deneyine ait FTIR Spektrumu	133
Şekil 4.50	HD6 Deneyine ait X-Işınları Toz Kırınımı Grafiği	134
Şekil 4.51	HD6 Deneyine ait FTIR Spektrumu	135
Şekil 4.52	HD7 Deneyine ait X-Işınları Toz Kırınımı Grafiği	138
Şekil 4.53	HD7 Deneyine ait FTIR Spektrumu	139
Şekil 4.54	HD8 Deneyine ait X-Işınları Toz Kırınımı Grafiği	141
Şekil 4.55	HD8 Deneyine ait FTIR Spektrumu	142
Şekil 4.56	HD9 Deneyine ait X-Işınları Toz Kırınımı Grafiği	143
Şekil 4.57	HD9 Deneyine ait FTIR Spektrumu	144
Şekil 4.58	HD10 Deneyine ait X-Işınları Toz Kırınımı Grafiği	146
Şekil 4.59	HD10 Deneyine ait FTIR Spektrumu	147
Şekil 4.60	HD11 Deneyine ait X-Işınları Toz Kırınımı Grafiği	148
Şekil 4.61	HD11 Deneyine ait FTIR Spektrumu	149
Şekil 4.62	HD12 Deneyine ait X-Işınları Toz Kırınımı Grafiği	153
Şekil 4.63	HD12 Deneyine ait FTIR Spektrumu	154
Şekil 4.64	HD13 Deneyine ait X-Işınları Toz Kırınımı Grafiği	154
Şekil 4.65	HD13 Deneyine ait FTIR Spektrumu	155
Şekil 4.66	HD14 Deneyine ait X-Işınları Toz Kırınımı Grafiği	157
Şekil 4.67	HD14 Deneyine ait FTIR Spektrumu	158
Şekil 4.68	HD15 Deneyine ait X-Işınları Toz Kırınımı Grafiği	159
Şekil 4.69	HD15 Deneyine ait FTIR Spektrumu	160
Şekil 4.70	HD16 Deneyine ait X-Işınları Toz Kırınımı Grafiği	161
Şekil 4.71	MD1 Deneyine ait X-Işınları Toz Kırınımı Grafiği	164
Şekil 4.72	MD1 Deneyine ait FTIR Spektrumu	165

Şekil 4.73	MD2 Deneyine ait X-Işınları Toz Kırınımı Grafiği	168
Şekil 4.74	MD2 Deneyine ait FTIR Spektrumu	169
Şekil 4.75	MD3 Deneyine ait X-Işınları Toz Kırınımı Grafiği	171
Şekil 4.76	MD3 Deneyine ait FTIR Spektrumu	172
Şekil 4.77	MD4 Deneyine ait X-Işınları Toz Kırınımı Grafiği	173
Şekil 4.78	MD4 Deneyine ait FTIR Spektrumu	174
Şekil 4.79	MD5 Deneyine ait FTIR Spektrumu	174
Şekil 4.80	MD5 Deneyine ait FTIR Spektrumu	175
Şekil 4.81	MD6 Deneyine ait X-Işınları Toz Kırınımı Grafiği	176
Şekil 4.82	MD6 Deneyine ait FTIR Spektrumu	177
Şekil 4.83	MD7 Deneyine ait X-Işınları Toz Kırınımı Grafiği	179
Şekil 4.84	MD7 Deneyine ait FTIR Spektrumu	180
Şekil 4.85	MD8 Deneyine ait X-Işınları Toz Kırınımı Grafiği	181
Şekil 4.86	MD8 Deneyine ait FTIR Spektrumu	182
Şekil 4.87	MD9 Deneyine ait X-Işınları Toz Kırınımı Grafiği.	184
Şekil 4.88	MD9 Deneyine ait FTIR Spektrumu	185
Şekil 4.89	MD10 Deneyine ait X-Işınları Toz Kırınımı Grafiği	186
Şekil 4.90	MD10 Deneyine ait FTIR Spektrumu	187
Şekil 4.91	MD11 Deneyine ait X-Işınları Toz Kırınımı Grafiği	189
Şekil 4.92	MD11 Deneyine ait FTIR Spektrumu	190
Şekil 4.93	MD12 Deneyine ait X-Işınları Toz Kırınımı Grafiği	191
Şekil 4.94	MD12 Deneyine ait FTIR Spektrumu	191
Şekil 4.95	MD13 Deneyine ait X-Işınları Toz Kırınımı Grafiği	192
Şekil 4.96	MD13 Deneyine ait FTIR Spektrumu	192
Şekil 4.97	MD14 Deneyine ait X-Işınları Toz Kırınımı Grafiği	195

Şekil 4.98	MD14 Deneyine ait FTIR Spektrumu	196
Şekil 4.99	MD15 Deneyine ait X-Işınları Toz Kırınımı Grafiği	196
Şekil 4.100	MD15 Deneyine ait FTIR Spektrumu	197
Şekil 4.101	MD16 Deneyine ait X-Işınları Toz Kırınımı Grafiği	199
Şekil 4.102	MD16 Deneyine ait FTIR Spektrumu	200
Şekil 4.103	MD17 Deneyine ait X-Işınları Toz Kırınımı Grafiği	202
Şekil 4.104	MD17 Deneyine ait FTIR Spektrumu	203
Şekil 4.105	MD18 Deneyine ait X-Işınları Toz Kırınımı Grafiği	205
Şekil 4.106	MD18 Deneyine ait FTIR Spektrumu	206
Şekil 4.107	MD19 Deneyine ait X-Işınları Toz Kırınımı Grafiği	207
Şekil 4.108	MD19 Deneyine ait FTIR Spektrumu	208
Şekil 4.109	MD20 Deneyine ait X-Işınları Toz Kırınımı Grafiği	210
Şekil 4.110	MD20 Deneyine ait FTIR Spektrumu	211
Şekil 4.111	MD21 Deneyine ait X-Işınları Toz Kırınımı Grafiği	212
Şekil 4.112	MD21 Deneyine ait FTIR Spektrumu	212
Şekil 4.113	MD22 Deneyine ait X-Işınları Toz Kırınımı Grafiği	213

TABLO LÍSTESÍ

Tablo		Sayfa
Listesi	Adı	Numarası
Tablo 1.1	Türkiye için Ticari Öneme Sahip Bor Mineralleri	4
Tablo 1.2	Borat Bileşiklerinin Sınıflandırılması	10
Tablo 1.3	γ -CsB ₅ O ₈ , α -CsB ₅ O ₈ ve β -RbB ₅ O ₈ Bileşiklerine ait Kristal Yapı, Uzay Grubu ve Hücre Parametreleri Verileri	15
Tablo 1.4	LaP ₅ O ₁₄ , EuP ₅ O ₁₄ ve GdP ₅ O ₁₄ Bileşiklerine ait Kristal Yapı, Uzay Grubu ve Hücre Parametreleri Verileri	20
Tablo 1.5	α -Mg ₃ BPO ₇ , α -Zn ₃ BPO ₇ , β -Zn ₃ BPO ₇ Bileşiklerine ait Uzay Grubu ve Hücre Parametreleri Verileri	24
Tablo 1.6	M ^{II} BPO ₅ (M ^{II} =Ca, Sr, Ba) Bileşiklerine ait Hücre Parametreleri Verileri	26
Tablo 1.7	CaBPO ₅ , SrBPO ₅ , BaBPO ₅ Bileşiklerine ait Kristal Yapı ve Hücre Parametreleri Verileri	26
Tablo 1.8	Nadir Toprak Borfosfat Bileşiklerine ait Hücre Parametreleri Verileri	31
Tablo 1.9	Farklı Fosfatlı Bileşiklerin Mikrodalga Etkinliği	37
Tablo 3.1	Co/Ni/B Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	44
Tablo 3.2	Co/Ni/B Sisteminde Yapılan Deneyler ve Gözlemleri	44
Tablo 3.3	Co/Ni/B/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	46
Tablo 3.4	Co/Ni/B/P Sisteminde Yapılan Deneyler ve Gözlemleri	46
Tablo 3.5	Na:B/ M (M=La, Nd, Y) Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	47

Tablo 3.6	Na:B/ M (M=La, Nd, Y) Sisteminde Yapılan Deneyler ve Gözlemleri	47
Tablo 3.7	Ca:B/M (M=La, Nd) Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	48
Tablo 3.8	Ca:B/M (M=La, Nd) sisteminde kullanılarak yapılan deneyler ve Gözlemleri	49
Tablo 3.9	Na:B, B/M (M=Nd, La) Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	50
Tablo 3.10	Na:B, B/M (M=Nd, La) Sisteminde Yapılan Deneyler ve Gözlemleri	50
Tablo 3.11	Ca:B/Nd Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	51
Tablo 3.12	Ca:B/Nd Sisteminde Yapılan Deneyler ve Gözlemleri	51
Tablo 3.13	Cu/P ve Cu/P/B Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	51
Tablo 3.14	Cu/P ve Cu/P/B Sisteminde Yapılan Deneyler ve Gözlemleri	52
Tablo 3.15	M (M=Ni, Al, Sb, Zn, Ag, Sn)/B/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	52
Tablo 3.16	M (M=Ni, Al, Sb, Zn, Ag, Sn)/B/P Sisteminde Yapılan Deneyler ve Gözlemleri	53
Tablo 3.17	Co/Ni/B Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	54
Tablo 3.18	Co/Ni/B Sisteminde Yapılan Deneyler ve Gözlemleri	54
Tablo 3.19	Ca/P ve Ca/P/B Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	54
Tablo 3.20	Ca/P ve Ca/P/B Sisteminde Yapılan Deneyler ve Gözlemleri	55
Tablo 3.21	Cr/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	55
Tablo 3.22	Cr/P Sisteminde Yapılan Deneyler ve Gözlemleri	56

Tablo 3.23	Fe/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	56
Tablo 3.24	Fe/P Sisteminde Yapılan Deneyler ve Gözlemleri	56
Tablo 3.25	Al/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	57
Tablo 3.26	Al/P Sisteminde Yapılan Deneyler ve Gözlemleri	57
Tablo 3.27	Hg/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	58
Tablo 3.28	Hg/P Sisteminde Yapılan Deneyler ve Gözlemleri	58
Tablo 3.29	Zn/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	59
Tablo 3.30	Zn/P Sisteminde Yapılan Deneyler ve Gözlemleri	59
Tablo 3.31	Ag/P ve Ag/P/B Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	60
Tablo 3.32	Ag/P ve Ag/P/B Sisteminde Yapılan Deneyler ve Gözlemleri	60
Tablo 3.33	W/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler	61
Tablo 3.34	W/P Sisteminde Yapılan Deneyler ve Gözlemleri	61
Tablo 4.1	Co/Ni/B Sisteminde Yapılan Deneyler ve Kod Numaraları	62
Tablo 4.2	KFD1 Deneyine ait X-Işınları Toz Kırınımı Verileri	63
Tablo 4.3	KFD1 Deneyine ait FTIR Spektrumu Verileri	65
Tablo 4.4	KFD5-Co ₂ Ni(BO ₃) ₂ Bileşiğine ait X-Işınları Toz Kırınımı Verileri	68
Tablo 4.5	KFD5-Co ₂ Ni(BO ₃) ₂ Bileşiğine ait FTIR Spektrumu Verileri	72
Tablo 4.6	KFD6 Deneyine ait X-Işınları Toz Kırınımı Verileri	75
Tablo 4.7	KFD6 Deneyine ait FTIR Spektrumu Verileri	77

Tablo 4.8	KFD9-CoNi ₂ (BO ₃) ₂ Bileşiğine ait X-Işınları Toz Kırınımı Verileri	81
Tablo 4.9	Katoite Yapısına Sahip Olan Bazı Metal Borat Bileşiklerinin Hücre Parametreleri, Z Değerleri ve Yoğunlukları.	82
Tablo 4.10	KFD9-CoNi ₂ (BO ₃) ₂ Bileşiğine ait FTIR Spektrumu Verileri	84
Tablo 4.11	Co/Ni/B/P Sisteminde Yapılan Deneyler ve Kod Numaraları	87
Tablo 4.12	KFD10 Deneyine ait X-Işınları Toz Kırınımı Verileri	88
Tablo 4.13	KFD10 Deneyine ait FTIR Spektrumu Verileri	91
Tablo 4.14	KFD11 Deneyine ait X-Işınları Toz Kırınımı Verileri	93
Tablo 4.15	KFD11 Deneyine ait FTIR Spektrumu Verileri	96
Tablo 4.16	Na:B/M (M=La, Nd, Y) Sisteminde Yapılan Deneyler ve Kod Numaraları	97
Tablo 4.17	KFD12 Deneyine ait X-Işınları Toz Kırınımı Verileri	98
Tablo 4.18	KFD14 Deneyine ait X-Işınları Toz Kırınımı Verileri	101
Tablo 4.19	KFD16 Deneyine ait X-Işınları Toz Kırınımı Verileri	103
Tablo 4.20	KFD18 Deneyine ait X-Işınları Toz Kırınımı Verileri	107
Tablo 4.21	Ca:B/M (M=La, Nd) Sisteminde Yapılan Deneyler ve Kod Numaraları	108
Tablo 4.22	KFD19 Deneyine ait X-Işınları Toz Kırınımı Verileri	109
Tablo 4.23	KFD22 Deneyine ait X-Işınları Toz Kırınımı Verileri	112
Tablo 4.24	Na:B, B/M (M=Nd, La) Sisteminde Yapılan Deneyler ve Kod Numaraları	116
Tablo 4.25	HD1 Deneyine ait X-Işınları Toz Kırınımı Verileri	118
Tablo 4.26	HD1 Deneyine ait FTIR Spektrumu Verileri	120
Tablo 4.27	HD2-NdBO3 Bileşiğine ait X-Işınları Toz Kırınımı	121
Tablo 4.28	HD2-NdBO ₃ Bileşiğine ait FTIR Spektrumu Verileri	123

Tablo 4.29	HD3-NdBO3 Bileşiğine ait X-Işınları Toz Kırınımı Verileri	125
Tablo 4.30	HD3-NdBO3 Bileşiğine ait FTIR Spektrumu Verileri	127
Tablo 4.31	HD4-NdBO3 Bileşiğine ait X-Işınları Toz Kırınımı Verileri	129
Tablo 4.32	HD4-NdBO3 Bileşiğine ait FTIR Spektrumu Verileri	131
Tablo 4.33	Ca:B/Nd Sisteminde Yapılan Deney ve Kod Numarası	134
Tablo 4.34	Cu/P ve Cu/P/B Sisteminde Yapılan Deneyler ve Kod Numaraları	136
Tablo 4.35	HD7 Deneyine ait X-Işınları Toz Kırınımı Verileri	136
Tablo 4.36	HD7 Deneyine ait FTIR Spektrumu Verileri	138
Tablo 4.37	HD8 Deneyine ait X-Işınları Toz Kırınımı Verileri	139
Tablo 4.38	HD8 Deneyine ait FTIR Spektrumu Verileri	142
Tablo 4.39	HD9 Deneyine ait FTIR Spektrumu Verileri	143
Tablo 4.40	HD10 Deneyine ait X-Işınları Toz Kırınımı Verileri	145
Tablo 4.41	HD10 Deneyine ait FTIR Spektrumu Verileri	147
Tablo 4.42	M (M=Ni, Al, Sb, Zn, Ag, Sn)/B/P Sisteminde Yapılan Deneyler ve Kod Numaraları	148
Tablo 4.43	HD11 Deneyine ait FTIR Spektrumu Verileri	149
Tablo 4.44	HD12 Deneyine ait X-Işınları Toz Kırınımı Verileri	150
Tablo 4.45	HD12 Deneyine ait FTIR Spektrumu Verileri	153
Tablo 4.46	HD13 Deneyine ait FTIR Spektrumu Verileri	155
Tablo 4.47	HD14 Deneyine ait X-Işınları Toz Kırınımı Verileri	156
Tablo 4.48	HD14 Deneyine ait FTIR Spektrumu Verileri	158
Tablo 4.49	HD15 Deneyine ait X-Işınları Toz Kırınımı Verileri	159
Tablo 4.50	HD15 Deneyine ait FTIR Spektrumu Verileri	160

Tablo 4.51	Co/Ni/B Sisteminde Yapılan Deneyler ve Kod Numaraları	162
Tablo 4.52	MD1 Deneyine ait X-Işınları Toz Kırınımı Verileri	163
Tablo 4.53	MD1 Deneyine ait FTIR Spektrumu Verileri	165
Tablo 4.54	Ca/P ve Ca/P/B Sisteminde Yapılan Deneyler ve Kod Numaraları	166
Tablo 4.55	MD2 Deneyine ait X-Işınları Toz Kırınımı Verileri	166
Tablo 4.56	MD2 Deneyine ait FTIR Spektrumu Verileri	168
Tablo 4.57	MD3 Deneyine ait X-Işınları Toz Kırınımı Verileri	169
Tablo 4.58	MD3 Deneyine ait FTIR Spektrumu Verileri	172
Tablo 4.59	MD4 Deneyine ait FTIR Spektrumu Verileri	173
Tablo 4.60	MD5 Deneyine ait FTIR Spektrumu Verileri	175
Tablo 4.61	Cr/P Sisteminde Yapılan Deneyler ve Kod Numaraları	176
Tablo 4.62	MD6 Deneyine ait FTIR Spektrumu Verileri	177
Tablo 4.63	MD7 Deneyine ait X-Işınları Toz Kırınımı Verileri	178
Tablo 4.64	MD7 Deneyine ait FTIR Spektrumu Verileri	179
Tablo 4.65	Fe/P Sisteminde Yapılan Deney ve Kod Numarası	180
Tablo 4.66	MD8 Deneyine ait X-Işınları Toz Kırınımı Verileri	181
Tablo 4.67	MD8 Deneyine ait FTIR Spektrumu Verileri	182
Tablo 4.68	Al/P Sisteminde Yapılan Deneyler ve Kod Numaraları	183
Tablo 4.69	MD9 Deneyine ait X-Işınları Toz Kırınımı Verileri	183
Tablo 4.70	MD9 Deneyine ait FTIR Spektrumu Verileri	184
Tablo 4.71	MD10 Deneyine ait X-Işınları Toz Kırınımı Verileri	185
Tablo 4.72	MD10 Deneyine ait FTIR Spektrumu Verileri	187
Tablo 4.73	Hg/P Sisteminde Yapılan Deneyler ve Kod Numaraları	188
Tablo 4.74	MD11 Deneyine ait X-Işınları Toz Kırınımı Verileri	188

Tablo 4.75	MD11 Deneyine ait FTIR Spektrumu Verileri	190
Tablo 4.76	Zn/P Sisteminde Yapılan Deneyler ve Kod Numaraları	193
Tablo 4.77	MD14 Deneyine ait X-Işınları Toz Kırınımı Verileri	193
Tablo 4.78	MD14 Deneyine ait FTIR Spektrumu Verileri	195
Tablo 4.79	MD16 Deneyine ait X-Işınları Toz Kırınımı Verileri	197
Tablo 4.80	MD16 Deneyine ait FTIR Spektrumu Verileri	200
Tablo 4.81	Ag/P ve Ag/P/B Sisteminde Yapılan Deneyler ve Kod Numaraları	201
Tablo 4.82	MD17 Deneyine ait X-Işınları Toz Kırınımı Verileri	201
Tablo 4.83	MD17 Deneyine ait FTIR Spektrumu Verileri	203
Tablo 4.84	MD18 Deneyine ait X-Işınları Toz Kırınımı Verileri	204
Tablo 4.85	MD18 Deneyine ait FTIR Spektrumu Verileri	205
Tablo 4.86	MD19 Deneyine ait FTIR Spektrumu Verileri	207
Tablo 4.87	W/P Sisteminde Yapılan Deneyler ve Kod Numaraları	208
Tablo 4.88	MD20 Deneyine ait X-Işınları Toz Kırınımı Verileri	209
Tablo 4.89	MD20 Deneyine ait FTIR Spektrumu Verileri	210

ÖNSÖZ

Doktora tez çalışmalarım sırasında bilgi ve önerileri ile çalışmalarıma yön veren değerli danışmanım Doç. Dr. Halil GÜLER' e,

Çalışmalarım sırasında büyük ilgi ve desteğini gördüğüm sevgili hocam Prof. Dr. Mahir ALKAN, bütün kimya bölümü öğretim üyeleri ve araştırma görevlisi arkadaşlarıma,

Laboratuar çalışmalarım sırasında büyük yardımlarını ve desteğini gördüğüm değerli abim Mevlüt ALNIAÇIK ve X-ışınları çekimlerimin alınmasında büyük yardımlarını gördüğüm sevgili ablam Havva ÜNLÜCE' ye,

Bu araştırma süresince çalışmama maddi olanak sağlayan Balıkesir Üniversitesi Araştırma Fonu (Araştırma Proje No: 2004/22) ve TÜBİTAK' a (TBAG-HD/37 105T050) teşekkür ederim.

Bütün bu çalışmalarım sırasında, en zor anlarımda maddi ve manevi desteklerini benden esirgemeyen canım ailem, Abdullah, Ayşe, Banu ve Begüm BÜLBÜL'e, Hülya ve Artam TEKİN ile sevgili eşim Övünç Tekin' e teşekkürü bir borç bilirim.

Bahkesir, 2007

Berna Tekin

1. GİRİŞ

1.1 Ortoborik Asit, Meta Borik Asit ve Bor Oksit

Borik asit ismi genellikle (H_3BO_3) ortoborik asidi akla getirir. Borik asidin farklı formlarına bor oksidin hidratları gözü ile bakılabilir. Borik asit; ortoborik asit için $B_2O_3.3H_2O$ veya B(OH)₃ ve metaborik asit için $B_2O_3.H_2O$ veya HBO₂ olarak formüle edilir [1,2].

Ortoborik asit ısıtıldığında en son ürün olarak B_2O_3 yani bor oksit elde edilir. Eğer ortoborik asit 100 ⁰C' nin üzerinde ısıtılırsa bir molekül su kaybederek, (HBO₂) metaborik aside dönüşür [2].

Metaborik asit 3 kristal şekline sahiptir. Borik asit 130 0 C' a eşit yada ondan daha düşük bir sıcaklığa kadar ısıtılırsa, ilk ürün ortorombik HBO₂(III) ve borik asidin bir karışımıdır. Eğer dehidratasyon daha yüksek bir sıcaklığa kadar devam ettirilirse ürün monoklinik HBO₂ (II) kristal yapısına dönüşür. Geleneksel ısıtma teknikleri kullanılarak ısıtma 150 0 C' nin de üzerine çıkarılırsa kübik HBO₂ (I)' in yoğun bir sıvı karışımı, 170 0 C' nin üzerine çıkarılırsa B₂O₃ elde edilir. Orto ve meta borik asit 104 ve 200 0 C arasında yüksek bir değişkenliğe sahiptir [2].

Ortoborik asit beyaz, triklinik bir şekle sahiptir. Normal erime noktası 171 0 C olup, yoğunluğu 1,52 g/cm³, dür [2]. Bor bileşiklerin çoğunun hidrolizinin son ürünü olan borik asit, genellikle boraksın sulu çözeltisinin asitlendirilmesi ile elde edilir. Düzlemsel sıralı BO₃ birimlerine asimetrik hidrojen bağlarının katıldığı kristaller, beyaz, şeffaf ve kar tanesi yapısındadır [3].

Ortorombik HBO₂, hidrojen bağlarıyla tabakalar içerisinde halka oluşturan trimerik $B_3O_3(OH)_3$ birimlerini içerir. Tüm B atomları oksijen atomu ile üçlü koordinasyon yapar. Monoklinik HBO₂, B atomlarının bazılarının oksijen atomuyla dört koordinasyon yaptığı $B_3O_4(OH)(H_2O)$ zincirlerinden meydana getirilir.

Şekil 1.1 H₃BO₃' ün Tabakalı Kısmı

Şekil 1.2 Tek Tabakalı HBO2' de Atomların Düzeni

Halbuki kübik HBO₂, H bağlarıyla tetrahedral BO₄ gruplarının oluşturduğu kafes bir yapıya sahiptir [3].

Borun en temel oksidi olan bor oksit, kristallenmesi en zor maddelerden biridir. Erime noktası 450 ^oC ve kaynama noktası hemen hemen 2250 ^oC civarındadır. Daha önceleri sadece camsı formu bilinen bor oksit, genellikle borik asidin dehidratasyonu ile hazırlanmaktadır. Camsı formdaki susuz borik asit belli bir erime derecesine sahip değildir. Yaklaşık 325 $^{\circ}$ C' de yumuşamaya başlar ve 500 $^{\circ}$ C civarında tamamen akışkan hale gelir [3].

Normal kristal yapısının yoğunluğu 2.56 g/cm³ olan bor oksit, oksijen atomlarının içerisine katılmış BO₃ gruplarının üç boyutlu ağını içerir, fakat 525 ^oC ve 35 kbar basınç altında yoğun bir formu vardır. Kristal yapısı düzensiz iç bağlantılı tetrahedral BO₄ gruplarından yapılanır. Camsı halinin yoğunluğu 1.83 g/cm³ olan bor oksit, muhtemelen 6 üyeli (BO)₃ halkasının hakim olduğu sıralı trigonal BO₃ birimlerinin ağını içerir. Kristal yapı, yüksek sıcaklıklara gidildikçe düzensizleşmeye başlar ve 450 ^oC' nin üzerinde polar –B=O grupları oluşur [4]. Erimiş borik asit, renkli borat camlarının yapımında kullanılan birçok metal oksidi çözer. Bu yüzden onun en büyük endüstriyel uygulaması borasilikat camlarının çok yoğun bir biçimde kullanıldığı cam endüstrisidir [3].

1.2 Boraks ve Kolemanit

Bor mineralleri kendi arasında; kristal suyu içeren boratlar, hidroksil ve/veya diğer iyonları içeren bileşik boratlar, borik asit, susuz boratlar, borofluoritler ve borosilikatlar olmak üzere altı gruba ayrılabilir. Türkiye için ticari öneme sahip bor mineralleri Tablo 1.1' de verilmiştir [5].

Kimyasal formülü Na₂B₄O₇.10H₂O, kaba formülü Na₂(B₄O₅)(OH)₄·8H₂O olan boraks, % 16.25 oranında Na₂O, % 36.51 oranında B₂O₃ ve % 47.24 oranında H₂O bileşimine sahiptir. Monoklinik kristal sisteminde kristallenir ve uzay grubu A2/a' dır. Hücre parametreleri ise a=11.858 Å, b=10.674 Å, c=12.674 Å, β =106.583° olup, Z=4' dür. ICDD kart numarası 33-1215 olup, en yüksek 3 pik şiddeti değeri sırasıyla 4.82, 5.68 ve 2.56 Å' dur [6].

Yoğunluğu 1.715 g/cm³ olan boraks, renksiz, beyaz, grimsi beyaz, yeşilimsi ve mavimsi renklerde olabilir. Tetramer borat bileşiklerinden olan boraksın kristal yapısını düzlem üçgen BO₃ gruplarına bağlı ve ortak bir köprü oksijen atomunu paylaşan iki tetrahedral BO₄ grubunun meydana getirdiği $B_4O_5(OH)_4^{-2}$ polianyonu oluşturur [7]. Bu polianyonun yapısı Şekil 1.4' de gösterilmiştir.

		1	1
Mineral	Formülü	% Borik	Bulunduğu Yer
	I officiate	asit	2 diana aga 1 di
Boraks (Tinkal)	Na ₂ B ₄ O ₇ .10H ₂ O	36.6	Kırka, Emet, Bigadiç, ABD
Kernit (Razorit)	Na ₂ B ₄ O ₇ .4H ₂ O	51.0	Kırka, ABD, Arjantin
Üleksit	NaCaB ₅ O ₉ .8H ₂ O	43.0	Bigadiç, Kırka, Emet, Arjantin
Propertit	NaCaB ₅ O ₉ .5H ₂ O	49.6	Kestelek, Emet, ABD
Kolemanit	Ca ₂ B ₆ O ₁₁ .5H ₂ O	50.8	Emet, Bigadiç, Küçükler, ABD
Pandermit	Ca ₄ B ₁₀ O ₁₉ .7H ₂ O	49.8	Sultançayır, Bigadiç
(Priseit)			
Borasit	Mg ₃ B ₇ O ₁₃ Cl	62.2	Almanya
Szaybelit	MgBO ₂ (OH)	41.4	Birleşik Devletler Topluluğu
Hidroborasit	CaMgB ₆ O ₁₁ .6H ₂ O	50.5	Emet

Tablo 1.1 Türkiye için Ticari Öneme Sahip Bor Mineralleri [5]

Şekil 1.3 Boraks Kristalinin Görünümü [6]

Boraks suyunu kaybederek kolaylıkla Tinkalkonit' e dönüşebilir. Kille ara katkılı Tinkalkonit ve Üleksit ile birlikte bulunur. Ülkemizde Eskişehir-Kırka yataklarından üretilmektedir. Boraks, buharlaşan ortamlarda oluşan bir mineraldir. Tuzlu göl sularının buharlaşması ile oluşur. Karbonatlar, sülfatlar ve halit gibi diğer buharlaşarak oluşan mineralleri ile birlikte bulunur [8].

Şekil 1.4 B₄O₅(OH)₄⁻² Polianyonunun Yapısı [9]

Şekil 1.5 Kolemanit Kristalinin Görünümü [10]

Şekil 1.6 (B₃O₃(OH)₅)⁻² Halkasının Yapısı [11]

Kimyasal formülü gibi basit formülü de Ca₂B₆O₁₁.5H₂O olan kolemanit % 27.28 oranında CaO, % 50.81 oranında B₂O₃, % 21.91 oranında H₂O bileşimine sahiptir. Monoklinik kristal sisteminde kristallenir ve uzay grubu P2₁/a' dır. Hücre parametreleri ise a=8.743 Å, b=11.264 Å, c=6.102 Å, β =110.116° olup, Z=2' dir.

ICDD kart numarası 33-267 olup, en yüksek 3 pik şiddeti değeri sırasıyla: 3.13, 3.85, 5.64 Å' dur [10]. Yoğunluğu 2.42 g/cm³ olan kolemanit, renksiz, beyaz ve şeffaf-yarı şeffaf renklerde olabilir. Trimer borat bileşiklerinden olan kolemanitte a ekseni doğrultusunda uzanan zincirler, Ca iyonları ile yatay olarak iyonik bağlanarak tabaka oluştururlar. Tabakalar, zincirlerdeki hidroksil grupları ve su molekülleri nedeni ile hidrojen bağları ile tutulurlar [3]. Halka biçimi ($B_3O_3(OH)_5$)⁻² bileşimindedir. Burada bir BO₂(OH) üçgeni ile iki BO₂(OH)₂ dörtyüzlüsü köşeleri paylaşarak bir halka oluştururlar.

Kristal formu, mükemmel dilinimi, diğer boratlardan daha sert yapıda olması kolemaniti diğer bor minerallerinden ayıran başlıca özellikleridir [3].

Yapılan DTA çalışmalarında kolemanitin 400 ^oC' de su ayrışmasının tamamlandığı görülür. DTA grafiğinde ikinci endotermik reaksiyon ile kafes değişimi ve arkadan yeni kristal oluşumu (yeni kafes oluşumu) kademeli ekzotermik pikler yardımı ile görülmektedir. İlk eriyik başlangıcı 960 ^oC' de, ancak ana eriyik bölgesi yaklaşık 1100 ^oC' de oluşmaktadır. Eriyikte az miktarda ve kararlı kristal faz olmasına rağmen, ısıtmanın devam etmesi ile kristal faz tamamen eriyik haline dönüşmektedir. [12,13].

1.3 Boratlar

1.3.1 Borat Bileşiklerinin Yüksek Teknolojideki Kullanım Alanları

Bir çok metal borat bileşiği nonlineer optik materyal ve lazer materyali olarak bilinir [14]. Bu bileşikler üzerine yapılan araştırmalar daha önceden elde edilemeyen dalga boyu ve güç özelliklerindeki lazer ışınlarının üretimini mümkün kılmıştır [15]. Tek renkli, oldukça düz, yoğun ve aynı fazlı paralel dalgalar halinde yayılan, genliği yüksek, güçlü ışın demetine lazer adı verilir. Optik frekans bölgesi yaklaşık olarak 10^{12} hertz ile $3x10^{15}$ hertz arasında yer alır. Bu bölge, kırmızı ötesi ışınlarını, görünür bölge ışınlarını ve elektromanyetik spektrumun morötesi ışınlarını kapsar [16].

Her elementin atom yapısında yalnız o elemente özgü olan elektron yerleşim düzeni vardır; yani o elementteki atomların elektronları kararlı yörüngeleri olan belli bir enerji düzeyinde bulunurlar. Yörüngelerinde kararlı olarak bulunan elektronların, dışarıdan gelen bir enerji ile uyarılıp bir üst yörüngeye çıkarak tekrar eski kararlı konumuna dönmesi sırasında aldığı enerjiyi dışarıya salma işlemi laserin ana prensibini oluşturmaktadır. Eğer atom dalga boyu (rengi) kendisine uygun düşmeyen bir ışık demeti (dalga boyu) ile uyarılmış ise enerjisini sürekli ışın şeklinde yayar; eğer kendisine tam olarak uygun düşen bir ışık demeti ile uyarılmış ise çok kısa bir sürede yerleştirildiği ışık demeti ile aynı doğrultuda ve daha parlak bir ışık demeti şeklinde ışınır, bu 'bindirilmiş (yükseltilmiş) ışınım' olayıdır [16].

Bir bileşiğin yapısındaki bor-oksijen grupları nonlineer optik etkinin gözlenebilmesi için önemli bir faktördür, buna katyonlarda etkide bulunur. Katyonlar içinde, alkali metal ve toprak alkali metaller, onların değerlik orbitalleri enerji seviyeleri nedeni ile en uygun olanlarıdır [17].

Nadir toprak metali iyonlarının, benzer koordinasyon yapısının yanında benzer fiziksel ve kimyasal özelliklere sahip olduğu çok iyi bilinir. Bu iyonlar kısmen yada tamamen diğer nadir toprak metali veya metal iyonları ile yer değiştirdiğinde istenilen özelliklerde NLO materyaller (nonlineer optik, doğrusal yapıda olmayan ışınsal malzeme) elde edilmiş olur [18].

Geçiş metali içeren borat bileşikleri katalitik aktivite, eşsiz manyetik davranış ve geri dönüşümlü Li-iyon kullanımı gibi önemli özelliklere sahiptirler [19]. Bunun yanında nadir toprak metali içeren borat bileşiklerinin, genellikle fosforlar olarak isimlendirilen yaygın kullanım alanları bulunur [15].

Günümüzde plazma gösteri panelleri, büyük televizyon gösterileri için kullanılan en iyi cihazlardan biridir. Bununla birlikte bu gösteri panellerinin ışıldama

etkinliği, zaman kararlılığı, yaşam süresi ve renk saflık performansı gibi özelliklerinin iyileştirilmesi gereklidir [20]. Metal borat bileşikleri bu amaç için kullanılabilecek oldukça uygun bileşiklerdir. UV ışın yayan medikal lambalardaki Eu:SrB₄O₇ bileşiği, yüksek etkili floresans lambalardaki yeşil ışık yayan Ce,Tb:GdMgB₅O₁₀ bileşiği ve yüksek çözünürlüklü televizyonların plazma gösteri panellerindeki kırmızı ışık yayan Eu:(Y,Gd)BO₃ bileşiği nadir toprak metali içeren boratlı bileşiklere birer örnektir [15].

 β – BaB₂O₄ [21] kristalinin nonlineer optik özelliğe sahip olduğu anlaşıldığından beri, bu yapıdaki materyalleri elde etmek için yapılan bir çok araştırma LiB₃O₅ [22], CsB₃O₅ [23], CsLiB₆O₁₀ [24], Sr₂B₂Be₂O₇ [25], KBe₂BO₃F₂ [26] ve KAl₂B₂O₇ [27] gibi bir çok mükemmel borat bileşiğinin keşfine yol açmıştır. Bu tip materyaller; renkli lazer gösterilerinde, yüksek çözünürlüklü lazer yazıcılarda, renk korumada, yüksek yoğunluğa sahip optik veri depolamada, sualtı iletişiminde, stereo lithografında (taş basması resim) ve diğer alanlarda önemli rol oynayan frekans jeneratörleri, optik-parametrik oscillatörler ve elektrik optik modülatörler gibi bir çok elektrik optik ve non-lineer optik aletlerde kullanılırlar [18].

1.3.2 Boratlı Bileşiklerinin Sınıflandırılması ve Boratlı Bileşikler ile İlgili Yapılmış Çalışmalar

Bor-oksijen bileşiklerindeki bağı anlayabilmek ve katı borat bileşiklerinin yapısal sınıflamasını yapabilmek için aşağıda bulunan ifadeleri göz önüne almak gerekir [28].

- i) Borat bileşiklerinde bor atomu oksijen atomu ile üçlü veya dörtlü koordinasyonda bulunur.
- ii) Tetrahedral bor atomunun toplam bor atomuna oranı, katyon yükünün toplam bor atomuna oranına eşittir.
- iii) Kristal yapılı boratlar polimerik veya monomerik yapıda olabilir. Monomer, dimer, trimer, tetramer, pentamer ve çok boyutlu ağların varlığı mevcuttur.

- iv) Daha yüksek kristal boratlarda, temel yapı bor atomlarıyla oksijen atomlarının birbiri ile yer değiştirmesi ile oluşmuş altı atomlu bir halkadır.
- v) Halkalar, sıfır, bir, iki veya muhtemelen üç tane tetrahedral bor atomu içerebilir.
- vi) Trimerik halkalar, daha yüksek polianyonları (tetramer ve pentamer) oluşturmak için tetrahedral bor atomlarından kırılabilirler.
- vii) Polianyonlar; zincirleri, tabakaları ve üç boyutlu ağları oluşturabilmek için paylaşılmış ortak oksijen atomları ile birbirlerine bağlanırlar.
- viii) Bazı nadir ve sentetik türleri içeren boratlar, karbonatlar ve silikatlar gibi sistemlerle yapısal benzerlikler gösterirler [28,29,30].

Borat bileşikleri, hem bor atomlarının sahip olduğu koordinasyon sayısına göre hem de her bir BO₃ veya BO₄ grubu tarafından paylaşılan oksijen atomunun sayısına göre sınıflandırılabilirler. Borat bileşikleri sadece düzlem üçgen BO₃ veya tetrahedral BO₄ anyonlarından oluşabileceği gibi hem BO₃ hem de BO₄ gruplarının karışımından oluşabilirler.

İzole (BO₃) veya (BO₄) gruplarından oluşan monomer yapısındaki borat bileşiklerine ortoborat adı verilir. Tek bir oksijen atomunu paylaşan (BO₃) veya (BO₄) gruplarından oluşan dimer yapısındaki borat bileşiklerine piroborat, iki oksijen atomunu paylaşan (BO₃) veya (BO₃ ve BO₄) gruplarının halkalı ve zincir yapılı anyonları oluşturmasıyla meydana gelen borat bileşiklerine metaborat adı verilir. Metaboratlar genellikle $M_x(BO_2)_y$ yapısındaki susuz bileşiklerdir. H₂O molekülü içeren sulu metaboratlar B(OH)₄ iyonları içerir. Borat bileşiklerinin en genel sınıflandırılması Tablo 1.2' de verilmiştir.

Ortoborat bileşiklerinden olan ve nadir toprak metali içeren Ca₃La₃(BO₃)₅ bileşiği geleneksel katı-hal reaksiyonları kullanılarak sentezlenmiştir. Başlangıç maddeleri olarak analitik saflıktaki La₂O₃, CaCO₃ ve H₃BO₃ maddeleri kullanılmış, hazırlanan katı karışımı 900 ^oC' de 10 saat ısıtıldıktan sonra 1150 ^oC' de 24 saat bırakılmıştır. Yavaş bir şekilde oda sıcaklığına soğutulan ürünün yapı analizi X-ışını toz difraksiyonu ile yapılmıştır. Elde edilen bileşik hegzagonal kristal yapısında olup, uzay grubu P6₃mc' dir. Hücre parametreleri ise a=10.5319(3) Å, b=6.4077(1) Å olup, Z=2' dir [14].

			Üçgen-Düzlem ve
Үарı	Üçgen-Düzlem (BO ₃)	Tetrahedral (BO ₄)	Tetrahedral (BO ₃ ve
			BO ₄)
Monomerler	$(BO_3)^{-3}$	$(\underline{BO}_4)^{-5}$	
	XBO ₃ , CaSn(BO ₃) ₂ ,	TaBO ₄ ,	
	$Mg_3(BO_3)_2,$	Ca ₂ H ₄ BAsO ₈	
	Co ₃ (BO ₃) ₂ ,	$\underline{B(OH)_4}$	
	YAl ₃ (BO ₃) ₄ ,	Na ₂ B(OH) ₄ Cl,	
	Be ₂ OHBO ₃ .	CuB(OH) ₄ Cl.	
	<u>B(OH)</u> ₃ B(OH) ₃ .		
Dimerler	$(\underline{B}_{2}\underline{O}_{5})^{-4}$	$[\underline{B}_{\underline{2}}O(OH)]_{\underline{6}}^{-2}$	
	Mg ₂ B ₂ O ₅ , Co ₂ B ₂ O ₅ ,	MgB ₂ O(OH) ₆	
	$Fe_2B_2O_5$	<u>B</u> ₂ <u>O</u> ₇	
		$CaB_2Si_2O_8$	
		$\underline{B}_{2}(O_{2})_{2}(OH)^{-2}$	
		NaBO ₃ 4H ₂ O	
Trimerler	$(\underline{B_3O_6})^{-3}$ (halkalı)		$\underline{B_3O_3(OH)_4}$
	HBO ₂ -III, NaBO ₂ ,		<u>B₃O4(OH)₂ (halkalı)</u>
	KBO ₂		HBO ₂ -II
			$\underline{B_bO_3(OH)_5}^{-2}(halkalı)$
			Meyerhofferite, İnyoite.
			$\underline{B_3O_4(OH)_3}^{-2}$
			<u>(zincirde halkalar)</u>
			kolemanit
			$\underline{B}_{3}\underline{O}_{5}(OH)^{-2}$
			<u>(yapraklarda halkalar)</u>
			CaB ₃ O ₅ OH
			<u>B₃O₅ (ağlar)</u>
			CsB ₃ O ₅
Tetramerler			$\underline{B_4O_5(OH)_4}^2$
			Boraks
			(<u>B4O7)-2 (ağlar)</u>
			$Li_2B_4O_7$
Pentamerler			$\underline{B_5O_6(OH)_4}$
			$KB_5O_8.4H_2O$
			<u>B₅O₈⁻ (ağlar)</u>
			KB ₅ O ₈

Tablo 1.2 Borat Bileşiklerinin Sınıflandırılması [28]

Tablo 1.2' nin devamı				
Bir ve iki boyutlu	$(\underline{BO}_2)_n^{-n}$	<u>BO₃OH (tabakalar)</u>	HBO ₂ -II, kolemanit,	
bağlanmalar	$Ca(BO_2)_2$	CaB(OH)SiO ₄	kernite	
3 boyutlu	<u>BO₃</u>	<u>BO₄</u>	$\underline{BO_3} ve BO_4$	
bağlanmalar	Tourmaline , $B_2O_3 -$	B ₂ O ₃ -kuartz tipi,	$Mg_{3}B_{7}O_{13}$,	
	camsı	BPO ₄ ,	Alkali-borat camlar,	
		HBO ₂ -I, NaBSi ₃ O ₈ ,	CsB_3O_5 , $Li_2B_4O_7$.	
		$Zn_4B_6O_{13}$		
		<u>B</u> ₂ <u>O</u> ₇		
		Danburite		

Şekil 1.7 (001) Düzlemi Boyunca Ca₃La₃(BO₃)₅ Bileşiğinin Kristal Yapısı [14]

Ca₃La₃(BO₃)₅ bileşiğinin birim hücresi (001) düzlemi boyunca Şekil 1.7' de gösterilmiştir. Büyük siyah küreler La atomlarını, küçük siyah atomlar Ca atomlarını, içi boş büyük küreler O atomlarını, içi boş küçük kürelerde B atomlarını göstermektedir. Görüldüğü gibi yapıda izole BO₃ grupları mevcuttur.

Yine ortoborat yapısına sahip olan ve nadir toprak metali içeren Na₃Ln(BO₃)₂ (Ln: Y, Gd) bileşiği geleneksel katı-hal reaksiyonları kullanılarak sentezlenmiştir. Başlangıç maddeleri olarak analitik saflıktaki Y₂O₃, Na₂CO₃ ve H₃BO₃ maddeleri kullanılmıştır. Uygun stokiyometrik oranlarda hazırlanan karışım ezilip karıştırıldıktan sonra, bir platin krozeye aktarılmış, 900 0 C' de 24 saat ısıtılmıştır. Yavaş bir şekilde oda sıcaklığına soğutulan ürünün yapı analizi X-ışını toz difraksiyonu kullanılarak yapılmıştır. Elde edilen ürün Na₃Y(BO₃)₂' ın kristal yapısı monoklinik olup, uzay grubu P2₁/c' dir. Hücre parametreleri; a=6.5050(3) Å, b=8.5172(1) Å, c=12.0213(1) Å olup, Z=4' dür [17].

Başlangıç maddeleri olarak LiOH.H₂O, Gd₂O₃ ve H₃BO₃ bileşiklerinin stokiyometrik orandaki karışımlarından hazırlanan, ortoborat yapısındaki Li₃Gd(BO₃)₂ bileşiğinin kristal yapısı tek kristal X-ışını difraksiyonu kullanılarak aydınlatılmıştır. Bileşik monoklinik kristal yapısına sahip olup, uzay grubu P2₁/c' dir. Hücre parametreleri; a=8.724(2) Å, b=6.425(2) Å, c=10.095(2) Å ve β =116.85(2)⁰ olup, Z=4' dür [31].

 $3LiOH.2H_2O+2H_3BO_3+1/2Gd_2O_3\rightarrow Li_3Gd(BO_3)_2+15/2H_2O$

Ortoborat yapısındaki diğer bir bileşik Na₃Sm(BO₃)₂, geleneksel katı-hal yöntemleri kullanılarak sentezlenmiştir. Başlangıç maddeleri olarak Sm₂O₃, Na₂CO₃ ve H₃BO₃ bileşikleri kullanılmıştır. Stokiyometrik oranlarda hazırlanan karışım bir agat havanda ezilip karıştırıldıktan sonra bir platin krozeye aktarılmıştır. 500 0 C' de 10 saat ısıtıldıktan sonra ürün tekrar ezilmiş ve 800 0 C' de 24 saat tutulmuştur. Yavaş bir şekilde oda sıcaklığına soğutulan ürünün yapı analizi tek kristal X-ışını difraksiyonu ile yapılmıştır.

$$3Na_2CO_3 + 2Sm_2O_3 + 6H_3BO_3 \rightarrow 2Na_3Sm_2(BO_3)_2 + 3CO_2 + 9H_2O_3 + 6H_3BO_3 + 6H_$$

Elde edilen ürünün kristal yapısı ortorombik olup, uzay grubu Amm2' dir. Hücre parametreleri; a=5.0585 Å, b=11.0421 Å, c=7.0316 Å' dir [18].

 β -Ba₃YB₃O₉ bileşiği de ortoborat yapısında olup, geleneksel katı-hal yöntemleri kullanılarak sentezlenmiştir. Başlangıç maddeleri Y₂O₃, BaCO₃ ve H₃BO₃' den 1:6:6 mol oranında hazırlanan karışım, 700 ⁰C' de 10 saat ısıtıldıktan sonra, 1140 ⁰C' de 40 saat tutulmuştur. Ürüne ait toz X-ışını difraksiyon verileri kristal yapının hegzagonal, uzay grubunun R-3 olduğunu göstermiştir. Hücre parametreleri; a=13.0441(1) Å, c=9.5291(1) Å olup, Z=6' dır [32].

Şekil 1.8 Sr₂B₂O₅ Kristalindeki Atomların Bağlanma Pozisyonları [33]

Pyroborat yapısındaki $Sr_2B_2O_5$ bileşiği geleneksel katı-hal yöntemleri kullanılarak hazırlanmıştır. Başlangıç maddeleri olarak analitik saflıktaki $SrCO_3$, KFB_4 ve H_3BO_3 bileşikleri kullanılmıştır. Bu maddelerden uygun oranlarda hazırlanan karışım, bir platin krozeye aktarılmıştır. 1193 K' de 15 saat ısıtıldıktan sonra, 1050 K' e hızlı bir biçimde, 953 K' e de saatte 0,011 K' lik bir hızla soğutulmuştur. Elde edilen ürünün yapı analizi tek kristal X-ışını difraksiyonu kullanılarak yapılmıştır. Ürün monoklinik kristal yapısında olup, uzay grubu P2₁c' dir. Hücre parametreleri; a=7.719 Å, b=5.341 Å, c=11.873 Å olup, Z=4'dür. Şekil 1.8' deki içi boş küreler oksijen atomlarını, içi dolu büyük küreler Ba atomlarını içi dolu küçük kürelerde Sr atomlarını gösterir [33].

Bir diğer pyroborat yapısına sahip BaCuB₂O₅ bileşiği, Ba(NO₃)₂, Cu(NO₃)₂2.5H₂O ve B₂O₃ başlangıç maddelerinden yola çıkılarak, hekzan ortamında, geleneksel katı-hal reaksiyonları kullanılarak sentezlenmiştir. Elde edilen ürünün Xışını difraksiyon analizi, kristal yapının monoklinik, uzay grubunun C₂ olduğunu göstermiştir. Bileşiğe ait hücre parametreleri; a=6.485(1) Å, b=9.165(1) Å, c=3.971 Å olup, Z=2' dir. Kristal yapıyı, sonsuz iki boyutlu tabakaları oluşturmak için birbirine bağlanan B₂O₅ ve CuO₄ grupları ile tabakalar arasındaki Ba atomları oluşturmaktadır [34].

Şekil 1.9 (100) Düzlemi Boyunca TlB₃O₅ Bileşiğinin Kristal Yapısı [35]

Trimer yapısındaki borat bileşiklerinden olan TlB₃O₅ bileşiği, geleneksel katıhal yöntemleri kullanılarak sentezlenmiştir. Analitik saflıktaki Tl₂CO₃ ve H₃BO₃ bileşiklerinden uygun stokiyometrik oranlarda hazırlanan karışım bir platin krozede önce 300 0 C' ye yavaş bir biçimde ısıtılmıştır. Daha sonra sıcaklık erime sıcaklığı olan 627 0 C' nin üzerine yani 650 0 C' ye çıkarılmıştır. Sonra yavaş yavaş soğutma işlemi uygulanarak TlB₃O₅ kristalleri elde edilmiştir. Elde edilen bileşiğin tek kristal X-ışını difraksiyonu analizi, kristal yapının ortorombik, uzay grubunun P2₁2₁2₁ olduğunu göstermiştir. Hücre parametreleri; a=5.2099(3) Å, b=8.248(1) Å, c=10.246(1) Å olup, Z=4' dür. Elde edilen bileşik, CsB₃O₅ ve LiB₃O₅ kristalleri ile aynı kristal yapıya sahiptir. Üç boyutlu kristal yapı B₃O₃ halkalarından oluşur [35].

Trimer yapısındaki bir diğer bileşik kolemanitin özellikleri daha önce ayrıntılı olarak verilmiştir.

Tetramer yapısındaki CoB₄O₇ bileşiği geleneksel katı-hal yöntemleri kullanılarak sentezlenmiştir. Ürünün kristal yapısı tek- kristal X-ışını difraksiyonu kullanılarak aydınlatılmıştır. Elde edilen ürünün kristal yapısı ortorombik olup, uzay grubu P_{bca}2' dır. Hücre parametreleri; a=8.1189(7) Å, b=8.621(1) Å, c=13.737(1) Å olup, Z=8'dir [19]. Tetramer diğer bir bileşik boraksın özellikleri daha önce de ayrıntılı olarak verilmiştir.

Şekil 1.10 B₅O₈⁻ Anyonunun Yapısı

Tablo 1.3 γ -CsB₅O₈, α -CsB₅O₈ ve β -RbB₅O₈ Bileşiklerine ait Kristal Yapı, Uzay Grubu ve Hücre Parametreleri Verileri

Bileşik	Kristal Yapısı	Uzay grubu	Hücre Parametreleri (Å)	Z
γ -CsB ₅ O ₈ ,	Ortorombik	P _{bca}	a=8.697(3), b=8.341(2), c=21.410(6)	8
α -CsB ₅ O ₈	Monoklinik	P2 ₁ /n	a=7.117(2), b=9.634(3), c=10.391(4) β =101,160(4)	4
β -RbB ₅ O ₈	Ortorombik	P _{bca}	a=7.553(2), b=11.857(3), c=14.813(4)	8

Pentamer yapısındaki γ -CsB₅O₈, α -CsB₅O₈ ve β -RbB₅O₈ bileşiklerinin kristal yapıları tek kristal X-ışını difraksiyonu kullanılarak analiz edilmiştir. Elde edilen bileşiklerin kristal yapısı, uzay grubu ve hücre parametreleri aşağıdaki tabloda özetlenmiştir. B₅O₈⁻ anyonunun yapısı Şekil 1.10' da gösterilmiştir [36].

1.4 Fosfatlar

1.4.1 Fosfat Bileşiklerinin Önemi

Bilindiği gibi bir çok fosfat bileşiği ve minerali oldukça yaygın kullanım alanlarına sahiptir. Bunların başında gübre, yem, gıda, deterjan, alaşım endüstrisi, kağıt, kibrit ve kimya sanayileri gelmektedir. Özellikle son yıllarda ortofosfatlar, pirofosfatlar ve trifosfatlar gibi fosfatik metal bileşiklerinin, moleküler elek özellikleri, anorganik ve organik işlemlerde iyon değiştirici ve katalizör olarak kullanılabilmeleri nedeni ile teknolojik ve endüstriyel önemi giderek artmaktadır [37,38].

Metal pirofosfatlar (M₂P₂O₇, M: Cu, Zn, Fe, Ni, Co) biyolojik öneme sahip moleküllerdir. Çünkü bu bileşikler, polisakkarit ve DNA sentezi içeren çok önemli işlemlerin son ürünleridir [39].

Yine metal içeren pirofosfat bileşikleri manyetik özellikleri, iletkenlikleri ve floresans özellikleri açısından teknolojide pek çok kullanım alanına sahiptirler [40]. Örneğin Cu₂P₂O₇ bileşiğinin bakır kaplama işlemlerinde, elektrot olarak da endüstride, uygulamaları görülmüştür [41].

1.4.2 Fosfat Bileşiklerinin Sınıflandırılması ve Fosfatlı Bileşikler ile İlgili Yapılmış Çalışmalar

Fosfat bileşikleri genel olarak dört grup altında toplanır [42]:

- i) Monofosfatlar
- ii) Kondenze fosfatlar (yoğun fosfor içeren)
 - a) Polifosfatlar
 - b) Siklofosfatlar
 - c) Ultrafosfatlar
- iii) İlave anyon grubu içeren fosfatlar
- iv) Hetereopolifosfatlar
 - a) Sonlu hetereopolianyonlar
 - b) Sonsuz lineer hetereopolianyonlar

Şekil 1.11 SrZr(PO₄)₂ Bileşiğinin Kristal Yapısı [43]

Merkezde bir tane fosfor iyonunun dört tane oksijen atomuna bağlanması ile oluşan tetrahedral yapıdaki bağımsız PO_4^{-3} iyonlarını içeren fosfat bileşikleri ortofosfatlar yada diğer adı ile monofosfatlar olarak isimlendirilirler. Literatürde monofosfat yapısında bulunan bir çok fosfatlı bileşik mevcuttur. LnPO₄, AlPO₄, NaCaPO₄, Hg₃(PO₄)₂, Zn₃(PO₄)₂ bileşikleri monofosfat yapısındaki bileşiklere örnektir.

Ortofosfat bileşiklerinden olan SrZr(PO₄)₂ bileşiği, geleneksel katı-hal yöntemleri kullanılarak sentezlenmiştir. Başlangıç maddeleri olarak, analitik saflıktaki SrCO₃, ZrO₂ ve NH₄H₂PO₄ bileşikleri kullanılmıştır. Bütün başlangıç maddeleri uygun stokiyometrik oranlarda tartıldıktan sonra, ilk iki bileşik, SrZrO₃ bileşiğini oluşturmak için 1773 K' de 1 saat ısıtılmıştır. Elde edilen SrZrO₃ bileşiği, NH₄H₂PO₄ ile karıştırıldıktan sonra 1573 K' de 100 saat süreyle ısıtılmıştır. Ürüne ait kristal yapı analizi X-ışını toz difraktometresi kullanılarak yapılmış, kristal yapı triklinik, uzay grubu P₁ olarak belirlenmiştir. Hücre parametreleri; a=0.7750(4) Å, b=0.7888(5) Å, c=0.5125(3) Å, α =95.754(3)⁰, β =90.228(2)⁰, γ =92.474(2)⁰ olup, Z=2' dir. SrZr(PO₄)₂ bileşiğinin kristal yapısı, SrO₉, ZrO₇, P1O₄ ve P2O₄ yapılarından oluşur [43].

Şekil 1.12 (001) Düzlemi Boyunca WP₂O₇ Bileşiğinin Kristal Yapısı [44]

Yapısında bir veya birden çok P-O-P bağı içeren ve PO_4^{-3} gruplarının çeşitli şekillerde bir araya gelmesiyle oluşmuş fosfat bileşiklerine yoğun fosfatlar adı verilir. Yoğun fosfatlarda kendi aralarında üçe ayrılılar. Genel formülü $[P_nO_{3n+1}]^{-(n+2)}$ $(P_2O_7^{-4}, P_3O_{10}^{-5}, P_4O_{13}^{-6})$ yapısındaki fosfat anyonlarının oluşturduğu bileşikler polifosfatlar, PO_4^{-3} anyonundaki oksijenlerden birinin ortak kullanılması ile meydana gelen halkalı yapıdaki $[P_nO_{3n}]^{-n}$ gruplarından oluşan bileşikler siklofosfatlar olarak bilinirler. Siklofosfat bileşiklerindeki n sayısı 3 den başlamak üzere 12' ye kadar çeşitli değerler alabilir. n sayıdaki PO_3^{-1} ve m sayıdaki P_2O_5 gruplarının meydana getirdiği, $[P_{(2m+n)}O_{(5m-3n)}]^{-n}$ anyonlarından oluşan fosfat bileşikleri ise ultrafosfatlar olarak isimlendirilirler [7].

Polifosfat yapısında bir bileşik olan WP₂O₇ bileşiğinin kristal yapısı X-ray toz difraktometresi kullanılarak aydınlatılmıştır. Ürün kübik kristal yapıda olup, uzay grubu Pa3' dür. Hücre parametresi ise a=7.9502(3) Å' dur. WP₂O₇ Bileşiğinin kristal yapısı P₂O₇ anyonu ve bu anyonlara köşelerden bağlanan WO₆ oktahedrasının oluşturduğu bir ağ olarak tanımlanır. [44].

CsLnP₂O₇, (Ln=Gd, Tb, Dy, Ho, Y, Er, Tm, Yb) [45], $A_2^{I}B_3^{II}(P_2O_7)_2$ (A=Ag, Na, B: Co, Mn, Cd) [40], NaEuP₂O₇ [46], NH₄FeP₂O₇ bileşikleri polifosfat yapısındaki diğer fosfatlı bileşiklere örnektir.

Şekil 1.13 P₄O₁₂ Halkasının Açık Yapısı [47]

Siklofosfat yapısındaki KDyP₄O₁₂ kristali flux tekniği ile büyütülmüş ve kristal yapısı tek kristal X-ışını difraktometresi kullanılarak aydınlatılmıştır. Monoklinik kristal yapısına sahip olan bileşiğin uzay grubu C2/c' dir. Hücre parametreleri ise a=7.8158(3) Å, b=12.3401(5) Å, c=10.4382(3) Å olup, $\beta = 111.053(2)^0$, dir. Bileşiğin kristal yapısını DyO₈ polihedrası, K⁺¹ iyonları ve P₄O₁₂ halkaları oluşturur. P₄O₁₂ halkasının açık yapısı Şekil 1.13' de gösterilmiştir [47].

Ultrafosfat yapısındaki LaP₅O₁₄, EuP₅O₁₄ ve GdP₅O₁₄ bileşiklerinin yapısı tek-kristal X-ışını toz difraktometresi kullanılarak aydınlatılmıştır. Bu bileşiklere ait kristal yapı, uzay grubu ve hücre parametreleri Tablo 1.4' de verilmiştir [48].

Bileşik	Kristal Yapı	Uzay Grubu	Hücre Parametreleri (Å)	Z
LaP ₅ O ₁₄	Monoklinik	P21/c	a=8.8206(1), b=9.1196(2), c=13.1714(2), β=90.661(1)	4
EuP ₅ O ₁₄	Monoklinik	P21/c	a=8.7491(1), b=8.9327(1), c=12.9768(2), β =90.534(1)	4
GdP ₅ O ₁₄	Monoklinik	P2 ₁ /c	a=8.7493(1), b=8.9189(1), c=12.9717(1), β =90.6682(3)	4

Tablo 1.4 LaP₅O₁₄, EuP₅O₁₄ ve GdP₅O₁₄ Bileşiklerine ait Kristal Yapı, Uzay Grubu ve Hücre Parametreleri Verileri

Fosforik anyonlardan başka, yapısında O⁻², OH⁻, F⁻, Cl⁻, Br⁻, I⁻, NO₃⁻, BO₃⁻ gibi anyonları da bulunduran fosfat bileşikleri, ilave anyon grubu bulunduran fosfatlar olarak bilinirler. $Ln_7O_6(BO_3)(PO_4)$ ve $MnNa_3(PO_4)(CO_3)$ bileşikleri bu türdeki fosfat bileşiklerine örnektir [42].

Sonlu ve sonsuz kondenze hetereopolifosfatlar olmak üzere iki gruba ayrılan, kenar ve köşeleri paylaşılan polihedral XO_n ve YO_n düzeninde kurulu X-O-X ve Y-O-Y bağları içeren fosfatlar hetereopolifosfatlar olarak bilinirler (X veya Y: P). Fosfomolibdatlar, fosfotungstenler, fosfosülfatlar ve fosfokromatlar sonlu kondenze hetereopolifosfatlara, $Na_5B_2P_3O_{13}$ bileşiği ise sonsuz kondense lineer hetereopolifosfatlara örnektir. [42].

1.5 Borfosfatlar

1.5.1 Borfosfat Bileşiklerinin Önemi

Borfosfat bileşiklerinin endüstride pek çok uygulama alanları vardır. Örneğin BPO₄ bileşiği endüstride, hidratasyon, dihidratasyon ve oligomerizasyon gibi bir çok reaksiyonda katalizör olarak kullanılır [49]. Lityum borfosfat, yeniden şarj edilebilir lityum iyon pillerinde kullanılır [50]. Eu elementi yerleştirilmiş stronsyum borfosfat ve baryum magnezyum alüminatın ışığa duyarlı olduğu saptanmış ve güneş enerjisi ile ilgili araştırmalarda kullanılmıştır [51].

Bunların yanında bir polimer tutkalında, düzenli bir biçimde dağılmış MBPO₅ tozları metal yüzeyini korozyondan korumak için kullanılır. Genellikle, nemli havada kalsiyum borfosfat çamuru ile kaplanmış çelik levhanın korozyondan korunması, kalsiyum borat-kalsiyum fosfat karışımıyla kaplanmış, çelik levhanın korumasından daha iyidir. Alüminyum borfosfat, killer ve fosfatların tutkalı olarak ,metal borfosfat bileşiklerinin farklı türevleri ise anti oksidan olarak kullanılır [52].

Ayrıca borfosfat-cam-seramik bileşimleri, katot ışını tüplerini kaplamada, plazma gösteri panellerinde ve floresans karakterli gösteri tüplerinde kullanılır [53].

1.5.2 Borfosfat Bileşiklerinin Sınıflandırılması ve Borfosfatlı Bileşikler ile İlgili Yapılmış Çalışmalar

Borfosfatlar, BO₄, BO₃ ve PO₄ gruplarından ve onların kısmen protonlanmış türlerinden meydana gelen, kompleks yapılı anyonik türleri içeren, M_xO_y -B₂O₃-P₂O₅-(H₂O) sistemlerinin ara ürün bileşikleridir. Bu bileşiklerin yapı kimyası, izole olmuş türlerden, oligomerlere, halkalı ve zincirli, tabakalı ve kafesli türlere kadar uzanır. Borfosfat bileşikleri kristal yapılarına göre genel olarak iki grupta toplanırlar [54]:

- i) Yapılarında su içeren borfosfatlı bileşikler.
- ii) Yapısında su içermeyen borfosfatlı bileşikler.

Yapılarında su içeren borfosfat bileşikleri de kendi aralarında üçe ayrılırlar:

- i) B:P oranı birden büyük olan.
- ii) B:P oranı bire eşit olan.
- iii) B:P oranı birden küçük olan.

Yapılarında su bulunan ve B:P oranı 1' den küçük olan bor fosfatlı bileşikler BO₄ ve PO₄ gruplarının çeşitli şekillerde bir araya gelmesi ile oluşurlar. Yapılarında fazlasıyla fosfat bulundurmalarına rağmen kristal yapıda P-O-P bağı gözlenmez. Örneğin oligomer yapısındaki NaFe[BP₂O₇(OH)₃] [55] bileşiğinin kristal yapısı, iki fosfat grubu ile köşeleri paylaşılan bir borat grubunun üçlü dizilime sahip halkasız yapı oluşturmayla meydana gelir. Bu gruptaki bileşiklere örnek olarak, Mg₂[BP₂O₇(OH)₃ [56], K₂Fe₂[B₂P₄O₁₆(OH)₂] [55], Na₄Cu₃[B₂P₄O₁₅(OH)₂].2HPO₄ [57], M^IM^{II}(H₂O)₂[BP₂O₈].H₂O (M^I: Na, K; M^{II}: Mg, Mn, Fe, Co, Ni, Cu) [58] ve Co(C₂N₂H₁₀)[B₂P₃O₁₂(OH)] [59] bileşikleri verilebilir.

Yapılarında su bulunan ve B:P oranı 1' e eşit olan bor fosfatlı bileşikler de, BO₄ ve PO₄ gruplarının çeşitli şekillerde bir araya gelmesi ile oluşurlar. Örneğin Mn₃(OH)₂[B(OH)₄][PO₄] [60] bileşiği izole yapıdaki B(OH)₄ ve PO₄ gruplarından meydana gelir. Mg₃(H₂O)₆[B₂(OH)₆(PO₄)₂] [61], Fe[B₂P₂O₇(OH)₅] [62] ve M[B₂P₂O₈(OH)] (M: Rb, Cs) [63] bileşikleri bu grupta bulunan diğer bileşiklere örnek olarak verilebilir.

Yapılarında su bulunan ve B:P oranı 1' den büyük olan bileşiklerde yapı, BO₃, BO₄ ve PO₄ gruplarının çeşitli şekillerde bir araya gelmesi ile oluşur. BO₃ gruplarının bağ yapmayan oksijenleri daima protonlanmıştır. BO₄ grubunun bütün köşeleri zincirler içindeki komşu birimler ile ortak köşeleri paylaşır. $K_3[B_5PO_{10}(OH)_3]$, [64], Li[B₃PO₆(OH)₃] [65] ve (NH₄)₂[B₃PO₇(OH)₂] [66] bu yapıdaki bileşiklere örnektir.

Su içermeyen bor fosfat bileşikleri ise oksijenle üçlü ve dörtlü koordinasyonda bulunan bor gruplarından ve oksijenle dörtlü koordinasyonda bulunan fosfat gruplarından oluşur. Bor fosfat bileşikleri yapısal olarak sınıflandırılırken yukarıdaki ifadelerin dışında göz önünde bulundurulması gereken başka prensipler de vardır. Bu prensipler şunlardır [54]:

- B:P oranı birden büyük olan bileşikler, üçlü veya dörtlü koordinasyonda bor içerir.
- Sulu fazlarda borat türlerinin bağ yapmayan köşeleri OH gruplarına karşılık gelir.
- iii) Boratların yapısal kimya analogları, sık sık tekrarlanan üç üyeli halkaların oluşumu ile verilir.
- iv) P-O-P bağı gözlenmez.
- v) Fosfatların kimyasal yapı bağıntıları, tabaka veya kafes yapısındaki fosfatların varlığı ile verilir.

Susuz yapıdaki bor fosfat bileşiklerinden olan M₃BPO₇ (M: Zn, Mg, Ba, Sr, Co,...) bileşikleri izole olmuş düzlem üçgen BO₃ grupları ile tetrahedral yapılı PO₄ gruplarından oluşur.

Libertz ve Stahr, α -düşük sıcaklık ve β -yüksek sıcaklık formları bulunan, birbiriyle benzer kristal yapıya sahip ortorombik Zn₃BPO₇ ve Mg₃BPO₇ bileşiklerini sentezlemişlerdir. Bu bileşiklere ait uzay grupları ve hücre parametreleri Tablo 1.5' de verilmiştir [67].

Bluhm ve Park, B₂O₃, P₂O₅ ve ZnCO₃ maddelerini kullanarak 1050 ^oC' de α -Zn₃BPO₇ tek kristalini sentezlemişlerdir. Elde edilen bileşiğin kristal yapısı monoklinik olup, uzay grubu Cm' dir. Hücre parametreleri; a=9.725 Å, b=12.720 Å, c=4.874 Å, β =119.8^o, dir [68].

Wang ve arkadaşları β -Zn₃BPO₇ bileşiğini geleneksel katı-hal yöntemleri ile sentezlemişlerdir. Başlangıç maddeleri olarak analitik saflıktaki ZnCO₃, H₃BO₃ ve (NH₄)₂HPO₄ maddeleri kullanılmış, stokiyometrik oranlarda hazırlanan karışım bir platin kaba konulmuştur. İlk olarak 450 ^oC' de 10 saat tutulan karışım, soğutulup tekrar ezilerek, 870 ^oC' de sinterleştirilmiştir. Elde edilen ürüne ait kristal yapı çözümlemesi X-ışını toz difraksiyonu kullanılarak yapılmıştır. β -Zn₃BPO₇ bileşiği hekzagonal yapıda olup, uzay grubu 6m2'dir. Daha sonra elde edilen toz ürün özel kristal büyütme metodu ile eriyik halinden 43*43*12 mm büyüklüğünde yüksek kaliteli bir tek kristal olarak elde edilmiştir [69].

Bileşik	a (Å)	b (Å)	c (Å)	Uzay grubu
α -Mg ₃ BPO ₇	8.497	4.880	12.558	Imm2
α -Zn ₃ BPO ₇	8.438	4.880	12.746	Imm2
β -Zn ₃ BPO ₇	8.439	8.439	13.030	P6m2/P62m

Tablo 1.5 α -Mg₃BPO₇, α -Zn₃BPO₇, β -Zn₃BPO₇ Bileşiklerine ait Uzay Grubu ve Hücre Parametreleri Verileri

Gözel ve arkadaşları, Zn₃BPO₇ yapısı ile eş yapılı olan α -Mg₃BPO₇ bileşiğini geleneksel katı-hal yöntemlerini kullanarak sentezlemişlerdir. Sentezleme işlemi üç farklı yolla yapılmıştır.

- MgHPO₄.H₂O, MgCO₃ ve H₃BO₃ başlangıç maddelerinden, 1:2:1 mol oranında 1200 ^oC' de,
- ii) $Mg_3B_2O_6$, $MgCO_3$ ve $(NH_4)_2HPO_4$ başlangıç maddelerinden, 1:3:2 mol oranında, 1100 0 C' de.
- iii) MgO, B_2O_3 ve P_2O_5 başlangıç maddelerinden, 6:1:1 mol oranında, 1100 ^oC' de.

Elde edilen ürüne ait kristal yapı çözümlemesi α -Mg₃BPO₇ bileşiğinin ortorombik yapıda olduğunu ve uzay grubunun Immm olduğunu göstermiştir. Hücre parametreleri; a=8.495(3) Å, b=4.886(1) Å, c=12.565(4) Å olup, Z=4'tür [70].

Yine Gözel [71], benzer yapıdaki iki bileşik olan Sr₃BPO₇ ve Ba₃BPO₇ bileşiklerini geleneksel katı-hal yöntemleri ile sentezlemiş ve bu bileşiklerin kristal yapılarını aydınlatmıştır.

$$3SrCO_3 + H_3BO_3 + (NH_4)_2HPO_4 \rightarrow Sr_3BPO_7 + 3H_2O + 3CO_2 + 2NH_3$$
$$3BaCO_3 + H_3BO_3 + (NH_4)_2HPO_4 \rightarrow Ba_3BPO_7 + 3H_2O + 3CO_2 + 2NH_3$$

Yukarıdaki kimyasal denklemlere göre elde edilen Sr₃BPO₇ ve Ba₃BPO₇ bileşiklerinin hücre parametreleri sırasıyla a=9.0561 Å, b=9.7984 Å, c=13.9531 Å, ve a=11.7947 Å, b=9.6135 Å, c=12.9548 Å' dur.

Şekil 1.14 Ba₃BPO₇ Bileşiğinin Kristal Yapısı [72]

Ma ve arkadaşları [72] Ba₃BPO₇ bileşiğini, analitik saflıktaki BaCO₃, H₃BO₃ ve NH₄H₂PO₄ maddelerinden yola çıkarak ve geleneksel katı-hal yöntemlerini kullanarak sentezlemişlerdir. 3:1:1 oranında hazırlanan stokiyometrik karışım, bir platin kapta, 1200 0 C' de 48 saat ısıtıldıktan sonra oda sıcaklığına soğutulmuştur. Elde edilen ürüne ait X-ray toz difraksiyon verileri bileşiğin hekzagonal kristal yapıda olduğunu ve uzay grubunun P6₃mc olduğunu göstermiştir. Hücre parametreleri; a=5.4898(1) Å, c=14.7551(1) Å olup, Z=2' dir. Bileşiğe ait temel kristal yapı, Ba1-B-P-O kümelerinden oluşmuş, [BaO₁₀]-[BO₃]-[PO4] polar polihedra-zinciridir.

Yılmaz ve arkadaşları [73], Co₃BPO₇ bileşiğini, analitik saflıktaki CoCO₃xH₂O, H₃BO₃ ve NH₄H₂PO₄ maddelerinden yola çıkarak ve geleneksel katıhal yöntemlerini kullanarak sentezlemişlerdir. Ortama H₃BO₃ maddesinin 5 kat aşırısı ilave edilmiş, hazırlanan karışım 400 0 C' de 4 saat kalsine edildikten sonra iyice ezilmiş ve 1050 0 C' de 3 saat ısıtılmıştır. Daha sonra 600 0 C' ye yavaş bir biçimde soğutulan ürün, 6 saat bu sıcaklıkta tutulduktan sonra oda sıcaklığına soğutulmuştur. Reaksiyon ürünü aşırı borik asitten kurtulmak için birkaç kez saf su ile yıkanmış ve Co₃BPO₇ kristalleri elde edilmiştir.

Bileşik	a (Å)	c (Å)
CaBPO ₅	6.688	13.234
SrBPO ₅	6.857	13.657
BaBPO ₅	7.111	13.977

Tablo 1.6 M^{II}BPO₅ (M^{II}=Ca, Sr, Ba) Bileşiklerine ait Hücre Parametreleri Verileri

Tablo 1.7 CaBPO₅, SrBPO₅, BaBPO₅ Bileşiklerine ait Kristal Yapı ve Hücre Parametreleri Verileri

Bileşik Formülü	CaBPO ₅	SrBPO ₅	BaBPO ₅
Kristal Sistem	Hegzagonal	Hegzagonal	Hegzagonal
M _A	161.86	209.40	259.11
a, Å	6.6799(2)	6.8488(1)	7.1026
c, Å	6.6121(3)	6.8159(2)	6.9822
V, A^3	255.51	276.88	305.04
d, g/cm ³	2.53	4.04	4.23
Ζ	3	3	3

Ürüne ait tek-kristal X-ışını toz difraksiyon verileri kristal yapının monoklinik, uzay grubunun da Cm olduğunu göstermiştir. Hücre parametreleri; a=9.774(2) Å, b=12.688(2) Å, c=4.9057(8) Å, β =119.749(2)⁰ olup, Z=4' dür.

Susuz yapıdaki bor fosfat bileşiklerinden olan, MBPO₅ (M: Ca, Sr, Ba, Pb) bileşiklerin kristal yapısı BO₄ ve PO₄ gruplarının meydana getirdiği 3 üyeli halkalardan oluşmuş zincir yapısıdır. 2 MO.B₂O₃.P₂O₅ (M: Ca, Sr, Ba) izotopik bileşikleri ilk defa Bauer tarafından aşağıdaki reaksiyonlar kullanılarak termal metotlarla hazırlanmıştır.

$$\begin{split} & 2\text{CaHPO}_{4}.2\text{H}_2\text{O} + 2\text{H}_3\text{BO}_3 \rightarrow 2\text{CaO}.\text{B}_2\text{O}_3.\text{P}_2\text{O}_5 + 6\text{H}_2\text{O} \\ & 2\text{SrCO}_3 + 2\text{H}_3\text{BO}_3 + 2(\text{NH}_4)_2\text{HPO}_4 \rightarrow 2\text{SrO}. \text{ B}_2\text{O}_3.\text{P}_2\text{O}_5 + 2\text{CO}_2 + 6\text{H}_2\text{O} + 2\text{NH}_3 \\ & 2\text{BaCO}_3 + 2\text{H}_3\text{BO}_3 + 2(\text{NH}_4)_2\text{HPO}_4 \rightarrow 2\text{BaO}. \text{ B}_2\text{O}_3.\text{P}_2\text{O}_5 + 2\text{CO}_2 + 6\text{H}_2\text{O} + 2\text{NH}_3 \end{split}$$

Bauer [74-75], X-ışını toz verilerinden yola çıkarak, bu bileşikleri hekzagonal sistemde indekslemiştir. Bileşiklere ait hücre parametreleri Tablo 1.6' da verilmiştir.

Gözel [71] doktora tezinde, geleneksel katı-hal reaksiyonlarını kullanarak MBPO₅ yapısındaki CaBPO₅, BaBPO₅ ve SrBPO₅ bileşiklerini sentezlemiş ve Rietweld metodunu kullanarak kristal yapıyı aydınlatmaya çalışmıştır. Gözel' in elde ettiği bu bileşiklere ait özellikler ve hücre parametreleri Tablo 1.7' de verilmiştir.

Baykal ve arkadaşları [76] üç farklı yol kullanarak CaBPO₅ bileşiğini sentezlemişlerdir. İlk olarak, CaHPO₄.2H₂O ve H₃BO₃ maddeleri uygun stokiyometrik oranlarda karıştırılmış, karışım 600 0 C' de 6 saat süre ile ısıtıldıktan sonra 900 0 C' de üç gün tutulmuştur. İkinci olarak, CaHPO₄.2H₂O ve B₂O₃ maddeleri uygun oranlarda karıştırılmış ve hazırlanan karışım 900 0 C' de 3 gün ısıtılmıştır. Üçüncü yol olarak da, CaCO₃ ve BPO₄ maddelerinden oluşan karışım 900 0 C' de 4 gün ısıtılmıştır.

 $\begin{array}{l} CaHPO_4.2H_2O+H_3BO_3 \rightarrow CaBPO_5+4H_2O\\ 2CaHPO_4.2H_2O+B_2O_3 \rightarrow 2CaBPO_5+5H_2O\\ CaCO_3+BPO_4 \rightarrow CaBPO_5+CO_2 \end{array}$

İlk ve ikinci sentez yolunda CaBPO₅ bileşiği başarılı bir şekilde elde edilmiştir. Üçüncü sentez yolunda ise CaBPO₅ bileşiğine ilave olarak ortamda az miktarda BPO₄ bileşiği de bulunmuştur. Tek faz olarak elde edilmiş CaBPO₅ bileşiğinin X-ışını toz difraksiyon analizi, kristal yapının hegzagonal ve uzay grubunun P3₁21 olduğunu göstermiştir. Bileşiğe ait hücre parametreleri; a=6.684(2) Å, c=6.616(2) Å' dur.

Yine Baykal ve arkadaşları [77] üç farklı sentez yöntemi kullanarak SrBPO₅ bileşiğini elde etmişlerdir. İlk iki yolda geleneksel katı-hal yöntemleri, üçüncü sentez yolunda ise hidrotermal sentez yöntemi kullanılmıştır. Hidrotermal sentez yönteminde başlangıç maddeleri olarak Sr(OH)₂, NaBO₂.2H₂O ve NaH₂PO₄.2H₂O kullanılmıştır. 4:3:3 oranında, toplam 8 g. olacak şekilde hazırlanan katı karışım 17 ml 4M HNO₃ ve 5ml saf su karışımda 90 ^oC' de ısıtılarak çözülmüştür. Toplam hacim buharlaştırma işlemi uygulanarak 10 ml.' ye azaltılmış ve karışım 160 ^oC' de 3 gün süre ile tutulmuştur.

Şekil 1.15 SrBPO₅ Bileşiğinin Kristal Yapısı [77]

SrBPO₅ bileşiği tek fazlı olarak katı-hal yöntemleri ile başarı bir şekilde sentezlenmiştir. Hidrotermal yöntemle elde edilen ürüne ait X-ışını toz difraksiyonu verileri ortamda az miktarda BPO₄ fazının bulunduğunu göstermiştir. Ürünün X-ışını toz difraksiyon analizi kristal yapının hegzagonal ve uzay grubunun P3₁21 olduğunu göstermiştir. Hücre parametreleri, a=6.8488(1) Å, c=6.8159(2) Å olup, Z=3'dür [77].

Shi ve arkadaşları [78] BaBPO₅ bileşiğini geleneksel katı-hal yöntemlerini kullanarak sentezlemişlerdir. Elde edilen ürüne ait X-ray toz difraksiyon verileri kristal yapının hegzagonal, hücre parametrelerinin a=7.109(1) Å, c=6.990(2) Å, Z=3 olduğunu göstermiştir. BaBPO₅ bileşiği 1100 ⁰C' de 24 saat sinterleştirilir ise yeni bir ürün Ba₃BP₃O₁₂ bileşiğinin oluştuğu gözlenmiştir. Elde edilen yeni ürünün tekkristal X-ray difraksiyon analizi kristal yapının ortorombik, uzay grubunun Ibca olduğunu göstermiştir.Bileşiğe ait hücre parametreleri a=7.0859(13) Å, b=14.2903(22) Å, c=22.1868(32) Å olup, Z=8' dir. BaBPO₅ bileşiğinin, termal bozunma işleminin en son ürünü ise hegzagonal kristal yapısına sahip olan δ - Ba₂P₂O₇ bileşiğidir [78].

Şekil 1.16 Co₅BP₁₃O₁₄ Bileşiğinin Kristal Yapısı [80]

Purhscharovsky ve arkadaşları [79], BaBPO₅ ve LiBaB₉O₁₅ bileşiklerini hidrotermal sentez yöntemini kullanarak sentezlemişlerdir. Sentezler, ilk bileşik için BaO- B₂O₃- P₂O₅-H₂O ve ikinci bileşik için BaCl₂-LiCO₃- B₂O₃- H₂O hidrotermal sisteminde, 280 0 C' de, 100 bar basınç altında ve 20 gün süre ile gerçekleştirilmiştir.

Bontchev ve Sevov [80], geleneksel katı-hal yöntemlerini kullanarak susuz bor fosfat bileşiklerinden olan, $Co_5BP_{13}O_{14}$ bileşiğini sentezlemişlerdir. Bileşiğin sentezinde B_2O_3 bileşiğinin aşırısı (10 kat fazla), $CoCO_3.xH_2O$ ve H_3PO_4 bileşiklerinin stokiyometrik oranları kullanılmıştır. Hazırlanan karışım 950 °C' de 12 saat tutulduktan sonra, dakikada 1 °C' lik azalma ile oda sıcaklığına soğutulmuştur. Elde edilen ürüne ait tek-kristal X-ışını difraksiyonu analizi, kristal yapının, BPO_6^{-4} , PO_4^{-3} ve Co^{+2} iyonik birimlerinden oluştuğunu göstermiştir.

Şekil 1.17 Na₅[B₂P₃O₁₃] Bileşiğinin Kristal Yapısı [81]

Yine susuz borfosfat bileşiklerinden olan Na₅[B₂P₃O₁₃] bileşiği Kızılyallı ve arkadaşları [81] tarafından geleneksel katı-hal yöntemi, hidrotermal yöntem ve mikrodalga yöntemi kullanılarak sentezlemişlerdir. Geleneksel katı-hal yöntemi kullanılarak yapılmış sentezde, NaH₂PO₄.2H₂O ve NaBO₂.4H₂O başlangıç maddelerinden uygun stokiyometrik oranda karışım hazırlanmış, 780 ⁰C' de ve bir platin krozede reaksiyon gerçekleştirilmiştir. Kristal yapı BO₄ ve PO₄ anyonlarının oluşturduğu [B₂P₃O₁₃] yapısından meydana gelen sonsuz zincir yapısıdır. Hidrotermal sentez yöntemi kullanılarak yapılmış sentezde, uygun stokiyometrik oranlardaki NaBO₂.4H₂O ve NaH₂PO₄.2H₂O karışımı 15 ml. sıcak suda çözülmüş ve bir teflon otoklavda, 150 ^oC' de 2 gün süre ile bırakılmıştır. Mikrodalga sentez yönteminde ise, NaH₂PO₄.2H₂O ve NaBO₂.4H₂O bileşiklerinden 3:2 mol oranında hazırlanan karışım, ev tipi bir mikrodalga fırında 2 dakika süre ile mikrodalga ışınlamaya maruz bırakılmıştır. Tek fazlı ürün Na₅[B₂P₃O₁₃] bileşiği elde edilmiştir. Katı-hal yöntemi kullanılarak sentezlenmiş ürünün kristal yapısı Şekil 1.17' de verilmiştir.

Köşelerde bulunan oksijen atomlarının, BO_4 ve PO_4 grupları tarafından paylaşılması ile oluşan açık halka yapısındaki $Ba_3BP_3O_{12}$ [71] ve $Pb_3BP_3O_{12}$ [68] bileşikleri ise ortorombik kristal yapıya sahiptirler. İlk bileşiğin uzay grubu Ibca, ikinci bileşiğin uzay grubu ise Pbca' dır

Bileşik	a (Å)	b (Å)	c (Å)
La ₇ O ₆ (BO ₃)PO ₄	7.019	17.915	12.653
Nd ₇ O ₆ (BO ₃)PO ₄	6.862	17.591	12.375
Gd ₇ O ₆ (BO ₃)PO ₄	6.704	17.299	12.100
Dy ₇ O ₆ (BO ₃)PO ₄	6.623	17.172	11.960

Tablo 1.8 Nadir Toprak Borfosfat Bileşiklerine ait Hücre Parametreleri Verileri

Shi ve arkadaşları [82], nadir toprak metali içeren $Ln_7O_6(BO_3)(PO_4)$ (Ln: La, Nd, Gd, Dy) yapısındaki bor fosfatlı bileşikleri geleneksel katı-hal yöntemlerini kullanarak 1300 ⁰C' de sentezlemişlerdir. Elde edilen ürünlere ait kristal yapı analizi X-ray toz difraksiyonu kullanılarak yapılmıştır. Bileşikler eş yapılı olup, monoklinik kristal yapısına ve P2₁/n uzay grubuna sahiptirler. Ürünlere ait hücre parametreleri Tablo 1.8' de verilmiştir.

1.6 Katı-Hal Sentez Yöntemi

Katı-hal reaksiyonları, katı bir fazın bileşiminde yada atomik düzeninde değişimin olduğu kimyasal işlemleri içerir [83]. Katı-hal reaksiyonlarını gerçekleştirmek, sıvı ve gaz fazı reaksiyonlarını gerçekleştirmekten daha zordur. Genellikle ekzotermik reaksiyonlar olup, bu reaksiyonlarda oluşan kristaller, giriş kimyasalları ve ürünler arasındaki Gibbs enerjisinin farklı olmasından dolayı meydana gelir [84].

Katıların etkileşimleri, yapılarında bulunan kristal kusurlarına bağlıdır. Bu reaksiyonlarda, nokta kusurları oldukça önemli rol oynar [84]. Teknolojik açıdan öneme sahip katı-hal reaksiyonları toz giriş kimyasalları arasında meydana gelir.

1.7 Hidrotermal Sentez Yöntemi

Hidrotermal sentez, kısmen olağan koşullarda çözünmeyen materyalleri çözmek ve yeniden kristallendirmek için, yüksek sıcaklık ve basınç altında sulu çözücüler ve mineralleştiricilerin kullanılmasıdır. Böylesi kristallenmeyi sağlayan en genel düzenleyici etken materyalin yüksek çözünürlük bölgesinden, düşük çözünürlük bölgesine geçmesine yardım eden sıcaklık eğilimidir [7].

Hidrotermal sentezi sonsuz sınırlar içinde tarif etmek gerekir. Hidrotermal sentez 1 atm den daha büyük ve oda sıcaklığının üzerinde sulu ortamdaki her bir heterojen reaksiyona uygulanabilir.

Mikroporöz maddelerin sentezi ve kristal yapımında, iyonik iletkenler, kompleks oksitler gibi maddelerin sentezinde hidrotermal sentezin çok etkili bir sistem olduğu kanıtlanmıştır.

Tek kristal bileşikleri sentezlemek için hidrotermal sentez mükemmel bir yöntemdir. Hidrotermal yöntemle kromat, fosfat, borat, ve borfosfat gibi birçok tek kristal bileşikleri sentezlenmiştir [85].

En büyük tek kristal doğada oluşur ve laboratuar ortamında yaratılan en büyük tek kristal hidrotermal orijinlidir. Hidrotermal teknik serbest tek kristalin büyütülmesinde ve saflaştırılmasında teknolojik açıdan çok önemlidir.

Hidrotermal sentez yöntemi; cihaz, sıcaklık ve basınç uygulamalarının kontrolünü, çözünürlük ölçümlerini ve kristallenme kinetiğini içerir. Bunların her biri hidrotermal çalışmada son derece önemlidir.

Hidrotermal sentezlerde gerekli olan basınçları sağlamak için özel nitelikteki otoklavların kullanılması gereklidir. Genellikle bu iş için ağzı kapatılmış kuartz ve cam ampüllerin kullanımı kadar içi teflon kaplı dışı paslanmaz çelikten yapılmış kapların kullanımı oldukça yaygındır.

Kaplar için seçilmiş materyaller hidrotermal reaksiyonlarda çok önemli rol oynarlar. Bu yüzden bu kapları seçerken, arzu edilmiş şartlar altındaki çözeltinin aşındırıcı özellikleri kadar, reaksiyon ürünündeki istenmeyen bir kirliliğinde göz önünde bulundurulması gerekir. Sülfür, selenyum, arsenik, antimon ve bizmut içeren çözeltilerin varlığında, cam veya kuartz camdan yapılmış kaplar kadar, grafit, titanyum ve özellikle de teflon kapların kullanımı oldukça elverişlidir [86]. Hidroflorik asit dışındaki, nötral ve asidik ortamlarda, ayrıca da aşındırıcı oksidasyon reaksiyonlarının olduğu ortamlarda borosilikat ve kuartz camların kullanımı oldukça uygundur.

Bu kaplarda reaksiyon gerçekleştirilirken çıkılabilecek maksimum basınç, ampullerin çapına, duvarların gücüne, sıcaklığa ve kullanılan camın mekanik özelliklerine bağlıdır. İnce duvarlı camdan yapılmış cam tüpler, ancak birkaç yüz barlık basınçlara dayanabilirler [87].

Hidrotermal sentez metodunun diğer sentez metotlarına göre bazı önemli avantajları vardır. Bunlar şu şekilde sıralanabilirler [7]:

i) Bu metotta, sol-jel metodunda kullanılan pahalı alkoksitlerin yerine basit asetat ve nitrat tuzları kullanılır.

ii) Materyallerin çoğu nispeten düşük sıcaklıklarda ve istenilen kristal fazda doğrudan üretilebilirler.

iii) Hidrotermal yöntem, düşük sıcaklık katı-hal reaksiyonları için oldukça elverişlidir. Özellikle normal yolla elde etmenin zor olduğu çeşitli oksidasyon basamaklarındaki elementler ile önemli geçiş metallerinin bileşikleri kapalı sistemlerde hidrotermal sentezle kolayca elde edilebilirler.

Tüm bu avantajlarının yanında hidrotermal senteze artan ilginin diğer nedenleri, yüksek reaktivite, kolay çözgen kontrolü, metastabil fazların oluşumu, az hava ve çevre kirliliği ile düşük enerji sarfiyatıdır.

33

1.8 Mikrodalga Sentez Yöntemi

Materyallerin sentezinde pek çok farklı sentez yöntemleri kullanılır. Geleneksel katı-hal reaksiyonları, hidrotermal sentez, sol-jel tekniği bu sentez yollarından bazılarıdır [88-91]. Ancak son yıllarda daha hızlı, daha basit ve enerji verimli bir sentez yolu olan mikrodalga sentez gittikçe önem kazanmaktadır. Daha önceleri sadece organik reaksiyonlar için kullanılan mikrodalga sentez yöntemi artık bir çok inorganik bileşiğin sentezlenmesinde de kullanılmaktadır [92-95]. Materyallerin sentezi süresince giriş kimyasalları ile mikrodalga etkileşimin doğası oldukça zor anlaşılır ve spekülatiftir. Bununla beraber mikrodalgalardan materyale, enerji transferinin hızlı ısınma ile sonuçlanan hem rezonans hem de relaksasyon (rahatlama, gevşeme) sayesinde meydana geldiğine inanılır.

Mikrodalgalar, 300 MHz ile 300 GHz frekansa sahip iyonize olmamış elektromanyetik radyasyondur ve üç band içermektedir: Ultra yüksek frekans (UHF: 300 MHz-3GHz), Süper yüksek frekans (SHF: 3GHZ-30 GHz), Aşırı yüksek frekans (EHF: 30GHz-300 GHz). Mikrodalgalar 900 MHz'lik dar bir frekans aralığındaki iletişim alanında yoğun bir uygulamaya sahiptir. Günümüzde 2450 MHz, hemen hemen 50 yıl önce Percy L. Spencer tarafından icat edilen ve evlerde kullanılan mikrodalga fırınlarında en çok kullanılan frekanstır. Bununla beraber endüstriyel, bilimsel, tıbbi ve aletsel uygulamalar için belirli frekanslara müsaade edilmektedir. Bunun yanında kimyasal reaksiyonlarda, mikrodalga ısınma uygulamaları için 28, 30, 60 ve 83 MHz' lik frekanslar kullanılmaktadır [96].

Literatürde, mikrodalga uygulamalarının çoğunun, laboratuarda birkaç gram seviyesinde yapıldığı belirtilmiştir. Bu uygulamalarda, 250-1 kW aralığı gücünde ve genellikle 2.45 GHz frekansında çalışan mikrodalga fırınlar kullanılmıştır.

1.8.1 Mikrodalga Enerji ile Maddelerin Etkileşimi

Genellikle maddeler mikrodalga etkileşimlerine göre üç gruba ayrılırlar;

 Mikrodalgaları elde etmekte kullanılan, metaller ve pirinç gibi alaşımları içeren mikrodalga yansıtıcılar,

- ii) Genellikle reaksiyon kabı ve yemek kabı yapmakta kullanılan, eritilmiş kuartzlar, geçiş metali içermeyen seramikler ve teflonları içeren mikrodalga ileticiler,
- iii) Mikrodalga sentezler için maddelerin önemli bir kısmını oluşturan mikrodalga soğurucularıdır. Onlar mikrodalga enerjiyi alır ve çok hızlı bir şekilde ısıya dönüştürürler [97].

1.8.2 Mikrodalga Isitmanın Prensibi

Mikrodalgalar, iyonik parçaların göçü ve/veya dipolar parçaların rotasyonu ile moleküler harekete sebep olurlar. Bir malzemeyi mikrodalga ile ısıtma, malzemenin dissipation (harcama, tüketme, kayıp) faktörüne büyük oranda bağlıdır. Bu faktör malzemenin dielektrik sabitine, dielektrik kaybının bir oranı olarak ifade edilir. Dielektrik sabiti, malzemenin mikrodalga enerjisinin içerisinden geçmesi esnasında alıkoyma yeteneğinin bir ölçüsüdür. Kayıp faktörü ise malzemenin enerjiyi tüketmesi yeteneğinin bir ölçüsüdür. Diğer bir deyişle kayıp faktörü, giren mikrodalga enerjisinin malzeme içinde ısı olarak tükenmesi ile kayıp olma miktarını vermektedir. Bu nedenle yüksek kayıp faktörlü bir malzeme mikrodalga enerjisi ile kolaylıkla ısıtılabilmektedir. Gerçekte iyonik iletim ve dipolar rotasyon mikrodalga enerjisi kaybının iki önemli mekanizmasıdır. Maddelerin mikrodalgalar ile etkileşmesi sonucunda maddenin iç enerjisi hızla yükselmekte ve bu iç enerji sayesinde katı-katı kimyasal reaksiyonları gerçekleşmektedir [96].

Bilindiği gibi mikrodalgalar, elektron kaynağı olarak ısıtılmış katotlara sahip olan magnetronlar tarafından üretilirler. Magnetronlardan gelen mikrodalgalar genellikle bir hedef metale doğru yönlendirilirler. Bu klavuzlar genellikle ince tabakalı metallerden yapılırlar ve dalgalar içindeki şiddet dağılımı dağıtıcılar kullanılarak homojenleştirilir.

Mikrodalga ısıtma sistemi dört temel parçadan oluşur. Bunlar güç uygulayıcı, magnetron, hedef maddenin ısıtılması için aplikatör ve jenaratörden gelen mikrodalgaları aplikatöre ileten dalga rehberidir [96].

35

1.8.3 Fosfatlı Bileşiklerin Sentezlenmesinde Mikrodalga Yöntemi

Literatürde mikrodalgalar kullanılarak yapılmış olan sentez çalışmalarını genel olarak yedi grup altında toplamak mümkündür [97];

- i) Basit bileşiklerin kullanımını gerektiren direk reaksiyonlar,
- ii) Kompleks bileşimli katıların oluşumunu sağlayan bozunma ve birleşme reaksiyonları içeren reaksiyonlar,
- iii) Nitridasyon reaksiyonları,
- iv) Sıvı ortamlarda meydana gelen reaksiyonlar,
- v) Seçimli deoksidasyon reaksiyonları,
- vi) Plazma yardımlı reaksiyonlar.

Fosfatların ve fosfatik malzemelerin hazırlanışı ikinci gruptaki reaksiyonlara iyi bir örnektir. Bilindiği gibi bu malzemelerin hazırlanması genellikle geleneksel katı-hal metotları kullanıldığında yüksek sıcaklıkları ve uzun zaman gerektirir. Aslında fosfat bileşikleri mikrodalgalarda etkilenmezler. Bu yüzden ortamda tetikleyici bir madde olmadığı sürece bu maddeleri hazırlamakta mikrodalgaları kullanmak pek elverişli değildir. Ancak son yıllarda NaH₂PO₄.2H₂O bileşiğinin iyi bir mikrodalga etkilenici olduğu bulunmuştur. NaH₂PO₄.2H₂O bileşiği mikrodalga ışınlamaya maruz bırakıldığında, yapısında bulunan kristal suyun varlığı sayesinde ısınma başlar. Kristal yapıdan iki molekül suyun ayrılması ile orta dereceli bir mikrodalga etkinliğe sahip olan NaPO₃ bileşiği oluşur ve sıcaklık 700 K' e ulaşır. NaPO₃ artan ısının etkisi ile erir ve bu sürede sıcaklık 1000 K' e ulaşır [97].

Hidratlaşmış fosfatlardaki başlangıç mikrodalga absorbsiyonunun, su moleküllerinin dönüşsel uyarılışı yüzünden olması muhtemeldir. Kristal suyu içermeyen fosfat bileşiklerinde hiç uyarılma olmaz. Toprak alkali metal fosfat bileşiklerinin mikrodalga etkinliği Tablo 1.9' da gösterilmiştir.

			5
	Maruz	1Z	
Bileşik	Kalma	Gözlemler	Illagilan
	Süresi		Ölaşılalı
			Sicaklik
NaH ₂ PO ₄ .2H ₂ O	7	50 s sonra iki koordine su molekülü tamamen	951 K
	dakika	uzaklaştı. 3.su 125 s sonra uzaklaştı.3 su	
		molekülüne bağlı ağırlık kaybı var	
Na ₂ HPO ₄ .2H ₂ O	9	Ağırlık kaybı yok, erime gözlenmedi, mikrodalga	328 K
	dakika	hassas değil.	
Na ₃ PO ₄ .12H ₂ O	7	2 su molekülüne bağlı ağırlık kaybı gözlendi. Erime	365 K
	dakika	gözlenmedi.	
KH ₂ PO ₄	9	Ağırlık kaybı ve erime yok. Mikrodalga hassas	316 K
	dakika	değil.	
(NH ₄) ₂ HPO ₄	8	Ağırlık kaybı ve erime yok. Mikrodalga hassas	323 K
	dakika	değil.	

Tablo 1.9 Farklı Fosfatlı Bileşiklerin Mikrodalga Etkinliği [97]

A' nın alkali element, B' nin bir geçiş metali, Si veya Ge olduğu $A_x B_y(PO_4)_3$ formülündeki fosfatlar genellikle sodyum süper iyonik iletken olarak isimlendirilen NASİCON' lar olarak bilinirler. Örneğin NaZr₂(PO₄)₃ ve NaSiGe(PO₄)₃ bileşikleri iyi bir Na⁺¹ iletkeni olarak bilinirler [98,99]. Kristal yapılı fosfatların bu sınıfı, düşük termal genişlik, yüksek iyonik iletkenlik ve nükleer atık depolama gibi üstün özelliklere sahiptirler.

Rao ve Vaidyanathan [100] 8 dakikadan çok daha kısa sürelerde, mikrodalga ışınlamayı kullanarak NASİCON tipinde camsı ve kristal yapılı maddeler sentezlemişlerdir. Camsı yapıda sentezlenen fosfatlı bileşikler, Na₃Ga₂P₃O₁₂, Na₄VP₃O₁₂, Na₄NbP₃O₁₂, kristal yapıda sentezlenen bileşikler ise NaZr₂(PO₄)₃ ve Na₃Fe₂(PO₄)₃ bileşikleridir.

1.9 X-Işınları Difraksiyonunu ile Kristal Yapı Tayini X-Işınları

Herhangi bir kimyasal reaksiyon sonucunda elde edilmiş bir bileşiğin kristal yapısının aydınlatılabilmesi için, o bileşiğe ait X-ışını toz difraksiyonu verileri elde edilmelidir. Elde edilen verilerin hangi bileşiğe ait olduğunun belirlenebilmesi için Uluslar Arası Kırınım Verileri Merkezi tarafından sağlanan veri dosyalarına (ICDD kartlarına) bakılmalıdır. Bu dosyalarda varlığı bilinen bütün bileşiklere ait X-ışını difraksiyonu verileri bulunur. Her bir dosya yada her bir kart, d mesafelerini ve bağıl çizgi şiddetlerini gösterir. Eğer elde edilen bileşiğin d değerleri herhangi bir ICDD kartının verileri ile uyum içerisinde ise sentezlenen bileşik tanımlanmış olur. Ancak sentezlenen bileşiğe ait X-ışını difraksiyon verileri hiçbir ICDD kartı verileri ile uyuşmuyor ise bu daha önce sentezlenmemiş yeni bir bileşiğin bulunduğu şeklinde yorumlanabilir. Bu durumda yeni bileşiğe ait kristal yapı çözümlenmesi yapılmalıdır.

Bilinmeyen bir bileşiğin kristal yapı çözümlemesi üç basamakta yapılır.

- i) İlk olarak maddenin X-ışını analizindeki d değerlerine ve şiddetlerine bakılarak, kristal yapının yedi ana kristal yapıdan hangisine ait olduğu hakkında bir varsayım yapılır. Daha sonra deneysel d değerlerinin ışığında, seçilen bir kristal sistemi için uygun Miller düzlemleri belirlenir. Belirlenen her bir miller düzlemi için $\sin^2 \theta$ değeri hesaplanır. Eğer seçilen kristal sistemi, gerçekten bilinmeyen kristal yapıya ait ise, o zaman hesaplanan $\sin^2 \theta$ ile deneysel olarak ölçülen d değerlerinden elde edilmiş $\sin^2 \theta$ değeri birbiri ile uyum içerisinde olur. Bu yapılan işleme indeksleme adı verilir. İndeksleme işlemi sonucunda birim hücrenin boyutları ve açıları belirlenmiş olur.
- ii) Bilinmeyen kristal yapının yoğunluğu çeşitli yöntemler ile hesaplanır.
 Bundan yararlanılarak, numunenin bileşimi ve birim hücredeki atomların sayısı hesaplanır.
- iii) En son olarak atomların birim hücre içindeki pozisyonları difraksiyon çizgilerinin bağıl şiddetlerinden yola çıkılarak belirlenir. Böylece bilinmeyen bir kristal yapı çözümlenmiş olur.

1.10 Çalışmanın Amacı

Borlu, fosfatlı ve borfosfatlı bileşiklerinin yüksek teknolojideki uygulamaları, enerji kaynağı olarak kullanımı ve her türlü endüstri kolunda uygulanabilirliği, araştırmacıların bu konulara daha büyük bir önem vermelerine yol açmıştır. Bu kadar üstün özelliklere sahip bor, fosfat ve borfosfat içeren malzemelerin sentez çalışmaları ve endüstriyel uygulamaları, bor kaynakları açısından zengin olan ülkemizin ekonomisine ileriki yıllarda büyük katkılar sağlayacaktır. Bu çalışmada, endüstriyel ve teknolojik önemi olan, ekonomik değeri yüksek, yeni tip borlu, fosfatlı ve borfosfatlı bileşiklerin sentezlenmesi amaçlanmıştır. Bunun için geleneksel katıhal sentez metodu, hidrotermal ve son yıllarda çok fazla kullanılan mikrodalga enerji yardımlı yöntemlerden yararlanılmıştır.

2. MATERYAL VE YÖNTEM

2.1 Kullanılan Kimyasallar

Boraks $(Na_2B_4O_710H_2O)$, kolemanit $(Ca_2B_6O_{11}5H_2O)$, $Ni(NO_3)_26H_2O$, $Co(NO_3)_26H_2O$, $Fe(NO_3)_39H_2O$, $Ca(NO_3)_24H_2O$, $Al(NO_3)_39H_2O$, $Hg(NO_3)_2H_2O$, $Zn(NO_3)_26H_2O$, $AgNO_3$, NiO, CuO, WO_3, Al_2O_3 , Sb_2O_3 , ZnO, SnO, Y_2O_3 , La_2O_3 , Nd_2O_3 , $(NH_4)_2HPO_4$, $NaH_2PO_42H_2O$, H_3BO_3 ve B_2O_3 kimyasal maddeleri Merck ve Riedel firmalarından temin edilmiş olup, analitik saflıktadır.

2.2 Kullanılan Cihazlar

Mikrodalga reaksiyonlar, mutfak tipi ARÇELİK MD-255 model 2.45 GHz' lik frekans ayarında çalışan bir mikrodalga fırını kullanılarak, katı-hal reaksiyonları ise en fazla 1200 °C' ye çıkabilen PROTHERM PLF 120/10 marka kül fırını kullanılarak gerçekleştirilmiştir. Hidrotermal reaksiyonlar, 45-100 ml.' lik iç hacme sahip, içi teflon dışı çelik kaplı kaplar kullanılarak, en fazla 300 °C' ye çıkabilen BINDER ED 53/E2 marka etüvde yapılmıştır. X-ışını toz difraksiyon çekimleri CuK α (λ : 1.54059 A⁰, 30 mA, 40 kV) radrasyonunda çalışan RİKAGU D_{max} 2200 marka X-ışını toz difraktometresi kullanılarak yapılmıştır. Infrared spektrumları, KBr peletleri hazırlanarak, 4000-400 cm⁻¹ ışın bölgesinde çalışan PERKİN ELMER BX-2 ve MATTSON GENESİS II marka FTIR spektrofotometreleri kullanılarak alınmıştır. SEM fotoğrafları ZEİSS SUPRA 50 VP marka cihaz kullanılarak cekilmiştir. Ürünlere ait termogravimetrik ve diferansiyel termal analizler, 20 °C ile 1200 ^oC arasında, azot atmosferinde, 10 ^oC/d.'lik kalibrasyona sahip PERKİN ELMER / DIAMOND TG/DTA ve NETZCSCH STA 409 marka cihazlardan elde edilmiştir. Elde edilen bileşiklerdeki metal iyonları tayini UNİCAM 929 AA spektrofotometresi kullanılarak, bor analizi ise Dr. LANGE 2800 Spektrofotometresi kullanılarak yapılmıştır.

2.3 Yöntem

2.3.1 Katı-Hal Yöntemi

Başlangıç maddeleri, reaksiyon denklemlerine göre uygun stokiyometrik oranlarda toplam 10 gram olacak şekilde tartılmıştır. Tartılan maddeler havanda ezilerek öğütülmüş, öğütülen karışım platin krozeye alınarak kül fırına yerleştirilmiştir. Her deneye özgü olarak, karışımın sıcaklığı belirlenen artış oranlarında, 400 ^oC ve 450 ^oC' ye çıkarılmış bu sıcaklıklarda 3-5 saat süre ile kalsine edilmiştir. Kalsine edilen karışımlar, bazı deneylerde 600 ^oC ve 900 ^oC' lik ara sıcaklıklarda 3 ile 10 saat arasındaki sürelerde bekletilmiş, 650 ^oC ile 1150 ^oC arasındaki son sıcaklıklarda 12 ile 48 saat arasındaki sürelerde ısıtılmıştır. Daha sonra belirli azalış oranlarında oda sıcaklığına soğutulmuştur. Elde edilen ürünler bir havanda ezilerek toz haline getirilmiş, sonra sıcak saf su ile yıkanmış ve 60 ^oC' de 4 saat süre ile kurutulmuştur. Ürünler IR ve XRD spektrumlarının alınması için desikatörde muhafaza edilmiştir.

2.3.2 Hidrotermal Yöntem

Başlangıç maddeleri, reaksiyon denklemlerine göre uygun stokiyometrik oranlarda toplam 2 gram olacak şekilde tartılmıştır. Tartılan maddeler teflon otoklavın içine konmuş üzerine saf su ilave edilmiştir (doluluk oranı en fazla % 60 olacak şekilde). Hazırlanan otoklavlar ağızları iyice kapatılarak, etüve yerleştirilmiştir. Etüvde 160 ^oC ile 230 ^oC arasındaki sıcaklıklarda 3 veya 4 gün süre ile bırakılmıştır. Deney sonucunda oluşan malzemeler önce ezilerek toz haline getirilmiş, sonra sıcak saf su ile yıkanmış ve 60 ^oC' de 4 saat süre ile kurutulmuştur. Ürünler IR ve XRD çekimlerinin alınması için desikatörde muhafaza edilmiştir.

2.3.3 Mikrodalga Yöntemi

Başlangıç maddeleri, reaksiyon denklemlerine göre uygun stokiyometrik oranlarda toplam 5 gram olacak şekilde tartılmıştır. Hazırlanan karışım bir porselen krozeye aktarılmış ve ev tipi bir mikrodalga fırın içine yerleştirilmiştir. Fırın içerisinde maddeler her bir deneye özgü olarak 180 W ile maximum watt ayarları arasında 2 ile 30 dakika arasında değişen sürelerde mikrodalga ışınlamaya maruz bırakılmıştır. Deney sonucunda oluşan malzemeler önce ezilerek toz haline getirilmiş, sonra sıcak saf su ile yıkanmış ve 60 0 C' de 4 saat süre ile kurutulmuştur. Ürünler IR ve XRD analizlerinin alınması için desikatörde muhafaza edilmiştir.

2.4 AAS ile Metal İyonlarının Analizi

Elde edilen ürünlerden 0,0250 gram tam tartım alınmış ve 1:1 H_2O -HNO₃ karışımında ısıtılarak çözülmüştür. Balon joje içerisinde 100 ml.' ye saf su ile seyreltilmiştir. Daha sonra bu çözeltiden uygun seyreltme işlemleri yapılmış, hazırlanan standart çözeltilerden yararlanılarak AAS' de metal iyonlarının analizi gerçekleştirilmiştir.

2.5 Bor Analizi

Elementel bor analizi, yüksek algılama gücüne sahip azomethine-H spektrokimyasal metot kullanılarak [101,102], Dr. Lange Cadas 2800 spektrofotometresinde, yapılmıştır. Yöntemin içeriği referans edilmiş makalelerde ayrıntılı bir şekilde anlatılmaktadır. Bu metotta borat anyonları, azomethine-H maddesi ile fotometrik olarak algılanabilen sarı renkli bir kompleks oluşturmaktadır. Bu işlem için standart bir kit (LCK 307 Bor, 0.05-2.5 mg/L, Hach Lange firmasından temin edilmiştir, GmbH Willstätterstr, 11, 40549 Düsseldorf, Germany) kullanılmıştır. Tayini yapılacak numune uygun miktarlarda tartılıp az bir miktar (2-3 ml.) nitrik asit varlığında, su ortamında çözülmüş, örnek içindeki bor konsantrasyonu 0.05-2.5 mg/L arasında kalıcak şekilde uygun seyreltme işlemleri yapılmıştır.

42

Standart kitler kullanılarak, tayini yapılacak örnek içindeki bor konsantrasyonu daha önceden hazırlanmış köre karşı spektrofotometrede ölçülmüştür. Matemetiksel dönüşümler kullanılarak bir mol ürün içerisinde kaç mol bor bulunduğu belirlenmiştir.

2.6 İndeksleme Programı

Rafine edilmiş (istatistiksel hata oranı göz önüne alınarak hesaplanmış) birim hücre parametreleri E. Wu [103] tarafından yazılmış, POWD (interaktif bir toz difraksiyon verileri yorumlama ve indeksleme programı) programı kullanılarak hesaplanmıştır.

3. BULGULAR

3.1 Katı-Hal Yöntemi Kullanılarak Yapılan Deneyler

3.1.1 Co(NO₃)₂.6H₂O / Ni(NO₃)₂.6H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.1 Co/Ni/B Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$Co(NO_3)_2.6H_2O + Ni(NO_3)_2.6H_2O + H_3BO_3$	2:1:2	Co ₂ Ni(BO ₃) ₂
$Ni(NO_3)_2.6H_2O + Co(NO_3)_2.6H_2O + H_3BO_3$	2:1:2	Ni ₂ Co(BO ₃) ₂

Deney Kodu	Başlangıç Maddeleri	Sıcaklık ve Süre	Elde Edilen Ürün
	2Co(NO ₃) ₂ .6H ₂ O +	15 [°] C/d.'lik artışla 450 [°] C' de 3 saat ısıtma	Açık gül
KED1	$Ni(NO_3)_2.6H_2O +$	1^{0} C/d.'lik artışla 600 0 C' de 3 saat ısıtma	kurusu
KI DI	$2H_3BO_3$	1^{0} C/d.'lik artışla 950 0 C' de 24 saat ısıtma	renginde
	(kütlece % 10 fazla)	3ºC/d.'lik azalışla oda sıcaklığına soğutma	toz ürün
	2Co(NO ₃) ₂ .6H ₂ O +	15 [°] C/d.'lik artışla 450 [°] C' de 3 saat ısıtma	Açık gül
VEDI	$Ni(NO_3)_2.6H_2O +$	1^{0} C/d.'lik artışla 600 0 C' de 3 saat ısıtma	kurusu
KI ⁻ D2	2H ₃ BO ₃	1^{0} C/d.'lik artışla 900 0 C' de 48 saat ısıtma	renginde
	(kütlece % 10 fazla)	1°C/d.'lik azalışla oda sıcaklığına soğutma	toz ürün
	2Co(NO ₃) ₂ .6H ₂ O +	15°C/d.'lik artışla 450 °C' de 3 saat ısıtma	Açık gül
KFD3	$Ni(NO_3)_2.6H_2O +$	1^{0} C/d.'lik artışla 600 0 C' de 3 saat ısıtma	kurusu
	$2H_3BO_3$	1^{0} C/d.'lik artışla 850 0 C' de 48 saat ısıtma	renginde
	(kütlece % 10 fazla)	1ºC/d.'lik azalışla oda sıcaklığına soğutma	toz ürün

Tablo 3.2 Co/Ni/B Sisteminde Yapılan Deneyler ve Gözlemleri

		Tablo 3.2' nin devamı	
KFD4	2Co(NO ₃) ₂ .6H ₂ O +	15° C/d.'lik artışla 450 °C' de 3 saat ısıtma	Açık gül
	Ni(NO ₃) ₂ .6H ₂ O +	1°C/d.'lik artışla 600 °C' de 3 saat ısıtma	kurusu
	2H ₃ BO ₃	1°C/d.'lik artışla 750 °C' de 48 saat ısıtma	renginde
	(kütlece % 10 fazla)	1°C/d.'lik azalışla oda sıcaklığına soğutma	toz ürün
KFD5	$2Co(NO_3)_2.6H_2O +$ Ni(NO_3)_2.6H_2O + $2H_3BO_3$ (tam)	15° C/d.'lik artışla 450 °C' de 3 saat ısıtma 1°C/d.'lik artışla 600 °C' de 3 saat ısıtma 1°C/d.'lik artışla 900 °C' de 48 saat ısıtma 1°C/d.'lik azalışla oda sıcaklığına soğutma	Gül kurusu renginde toz ürün
KFD6	2Ni(NO ₃) ₂ .6H ₂ O +	15°C/d.'lik artışla 450 °C' de 3 saat ısıtma	Açık
	Co(NO ₃) ₂ .6H ₂ O +	1°C/d.'lik artışla 600 °C' de 3 saat ısıtma	toprak
	2H ₃ BO ₃	1°C/d.'lik artışla 950 °C' de 24 saat ısıtma	renginde
	(kütlece % 10 fazla)	3°C/d.'lik azalışla oda sıcaklığına soğutma	toz ürün
KFD7	2Ni(NO ₃) ₂ .6H ₂ O +	15° C/d.'lik artışla 450 °C' de 3 saat ısıtma	Açık
	Co(NO ₃) ₂ .6H ₂ O +	1°C/d.'lik artışla 600 °C' de 3 saat ısıtma	toprak
	2H ₃ BO ₃	1°C/d.'lik artışla 900 °C' de 48 saat ısıtma	renginde
	(kütlece % 10 fazla)	1°C/d.'lik azalışla oda sıcaklığına soğutma	toz ürün
KFD8	2Ni(NO ₃) ₂ .6H ₂ O +	15^{0} C/d.'lik artışla 450 0 C' de 3 saat ısıtma	Açık
	Co(NO ₃) ₂ .6H ₂ O +	1^{0} C/d.'lik artışla 600 0 C' de 3 saat ısıtma	toprak
	2H ₃ BO ₃	1^{0} C/d.'lik artışla 850 0 C' de 48 saat ısıtma	renginde
	(Kütlece % 10 fazla)	1^{0} C/d.'lik azalışla oda sıcaklığına soğutma	toz ürün
KFD9	$2Ni(NO_3)_2.6H_2O + Co(NO_3)_2.6H_2O + 2H_3BO_3$ (tam)	15° C/d.'lik artışla 450 °C' de 3 saat ısıtma 1°C/d.'lik artışla 600 °C' de 3 saat ısıtma 1°C/d.'lik artışla 900 °C' de 48 saat ısıtma 1°C/d.'lik azalışla oda sıcaklığına soğutma	Toprak renginde toz ürün

3.1.2 Co(NO₃)₂.6H₂O / Ni(NO₃)₂.6H₂O / H₃BO₃ / (NH₄)₂HPO₄ Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.3 Co/Ni/B/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$Co(NO_3)_2.6H_2O + Ni(NO_3)_2.6H_2O + H_3BO_3 +$ (NH ₄) ₂ HPO ₄	2:1:1:1	Co ₂ NiBPO ₇
$Ni(NO_3)_2.6H_2O + Co(NO_3)_2.6H_2O + H_3BO_3 + (NH_4)_2HPO_4$	2:1:1:1	Ni ₂ CoBPO ₇

Tablo 3.4 Co/Ni/B/P Sisteminde Yapılan Deneyler ve Gözlemleri

Deney Kodu	Başlangıç Maddeleri	Sıcaklık ve Süre	Elde Edilen Ürün
KFD10	$2Co(NO_3)_2.6H_2O +$ Ni(NO_3)_2.6H_2O + H_3BO_3 + (NH_4)_2HPO_4	15° C/d.'lik artışla 450 °C' de 3 saat ısıtma 1°C/d.'lik artışla 600 °C' de 3 saat ısıtma 1°C/d.'lik artışla 1050 °C' de 24 saat ısıtma 3°C/d.'lik azalışla oda sıcaklığına soğutma	Mor renkli toz ürün
KFD11	$2Ni(NO_3)_2.6H_2O +$ $Co(NO_3)_2.6H_2O +$ $H_3BO_3 +$ $(NH_4)_2HPO_4$	15°C/d.'lik artışla 450 °C' de 3 saat ısıtma 1°C/d.'lik artışla 600 °C' de 3 saat ısıtma 1°C/d.'lik artışla 1050 °C' de 24 saat ısıtma 3°C/d.'lik azalışla oda sıcaklığına soğutma	Kahve- rengi renkli toz ürün

3.1.3 Boraks (Na₂B₄O₇.10H₂O) / Nadir Toprak Metal Oksit (La₂O₃, Nd₂O₃, Y₂O₃) Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.5 Na:B/ M (M=La, Nd, Y) Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$Na_2B_4O_7.10H_2O + La_2O_3$	6:1	$Na_6La(BO_3)$
$Na_2B_4O_7.10H_2O + La_2O_3$	6:3	Na ₆ La ₃ (BO ₃) ₅
$Na_2B_4O_7.10H_2O + Nd_2O_3$	6:1	$Na_6Nd(BO_3)_3$
$Na_2B_4O_7.10H_2O + Nd_2O_3$	6:3	Na ₆ Nd ₃ (BO ₃) ₅
$Na_2B_4O_7.10H_2O + Y_2O_3$	6:1	$Na_6Y(BO_3)_3$

Tablo 3.6 Na:B/ M (M=La, Nd, Y) Sisteminde Yapılan Deneyler ve Gözlemleri

Deney Kodu	Başlangıç Maddeleri	Sıcaklık ve Süre	Elde Edilen Ürün
KFD12	$6Na_2B_4O_7.10H_2O + La_2O_3$	100 C/s. lik artışla 400 °C' de 5 saat ısıtma 100° C/s.'lik artışla 650 °C' de 6 saat ısıtma 3° C/d.'lik azalışla oda sıcaklığına soğutma	Beyaz renkli toz ürün
KFD13	6Na ₂ B ₄ O ₇ .10H ₂ O + La ₂ O ₃	15^{0} C/d.'lik artışla 450 ^o C' de 3 saat ısıtma 15^{0} C/d.'lik artışla 800 ^o C' de 10 saat ısıtma 5^{0} C/d.'lik artışla 1150 ^o C' de 12 saat ısıtma 4^{0} C/d.'lik azalışla oda sıcaklığına soğutma	Beyaz renkli toz ürün
KFD14	$6Na_2B_4O_7.10H_2O + 3La_2O_3$	100° C/s.'lik artışla 400 $^{\circ}$ C' de 5 saat ısıtma 100° C/s.'lik artışla 800 $^{\circ}$ C' de 6 saat ısıtma 3° C/d.'lik azalışla oda sıcaklığına soğutma	Beyaz renkli toz ürün
KFD15	6Na ₂ B ₄ O ₇ .10H ₂ O + 3La ₂ O ₃	15 [°] C/d.'lik artışla 450 [°] C' de 3 saat ısıtma 15 [°] C/d.'lik artışla 900 [°] C' de 10 saat ısıtma 4 [°] C/d.'lik artışla 1150 [°] C' de 12 saat ısıtma 4 [°] C/d.'lik azalışla oda sıcaklığına soğutma	Beyaz renkli toz ürün
KFD16	$6Na_2B_4O_7.10H_2O + \\Nd_2O_3$	100^{0} C/s.'lik artışla 400 [°] C' de 5 saat ısıtma 100^{0} C/s.'lik artışla 650 [°] C' de 6 saat ısıtma 3^{0} C/d.'lik azalışla oda sıcaklığına.soğutma	Eflatun renkli toz ürün

Tablo 3.6' nın devamı			
KFD17	$6Na_2B_4O_7.10H_2O + \\3Nd_2O_3$	100^{0} C/s.'lik artışla 400 [°] C' de 5 saat ısıtma 100^{0} C/s.'lik artışla 800 [°] C' de 6 saat ısıtma 3^{0} C/d.'lik azalışla oda sıcaklığına soğutma	Eflatun renkli toz ürün
KFD18	$6Na_2B_4O_7.10H_2O + Y_2O_3$	15° C/d.'lik artışla 450 °C' de 3 saat ısıtma 15° C/d.'lik artışla 800 °C' de 10 saat ısıtma 5° C/d.'lik artışla 1150 °C' de 12 saat ısıtma 4° C/d.'lik azalışla oda sıcaklığına soğutma	Beyaz renkli toz ürün

3.1.4 Kolemanit (Ca₂B₆O₁₁.5H₂O) / Nadir Toprak Metal Oksit (La₂O₃, Nd₂O₃) Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.7 Ca:B/M (M=La, Nd) Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$Ca_{2}B_{6}O_{11}.5H_{2}O + La_{2}O_{3}$	3:1	Ca ₃ La(BO ₃) ₃
$Ca_{2}B_{6}O_{11}.5H_{2}O + La_{2}O_{3}$	3:3	Ca ₃ La ₃ (BO ₃) ₅
$Ca_{2}B_{6}O_{11}.5H_{2}O + Nd_{2}O_{3}$	3:1	$Ca_3Nd(BO_3)_3$
$Ca_{2}B_{6}O_{11}.5H_{2}O + Nd_{2}O_{3}$	3:3	$Ca_3Nd_3(BO_3)_5$
Tablo 3.8 Ca:B/M (M=La, Nd)	sisteminde kullanılarak yapılan deneyler ve	
-----------------------------	---	
	Gözlemleri	

Deney Kodu KFD19	Başlangıç Maddeleri 3Ca ₂ B ₆ O ₁₁ .5H ₂ O +	Sıcaklık ve Süre 150°C/s.'lik artışla 450 °C' de 5 saat ısıtma 150°C/s.'lik artışla 900 °C' de 6 saat ısıtma	Elde Edilen Ürün Beyaz renkli toz
	$3La_2O_3$	3°C/d.'lik azalışla oda sıcaklığına soğutma	ürün
KFD20	$3Ca_2B_6O_{11}.5H_2O + \\La_2O_3$	150°C/s.'lik artışla 450 °C' de 5 saat ısıtma 150°C/s.'lik artışla 900 °C' de 6 saat ısıtma 3°C/d.'lik azalışla oda sıcaklığına soğutma	Beyaz renkli toz ürün
KFD21	$3Ca_2B_6O_{11}.5H_2O + \\3La_2O_3$	15^{0} C/d.'lik artışla 450 0 C' de 3 saat ısıtma 15^{0} C/d.'lik artışla 900 0 C' de 10 saat ısıtma 4^{0} C/d.'lik artışla 1150 0 C' de 12 saat ısıtma 4^{0} C/d.'lik azalışla oda sıcaklığına soğutma	Beyaz renkli toz ürün
KFD22	$3Ca_2B_6O_{11}.5H_2O + \\Nd_2O_3$	150°C/s.'lik artışla 450 °C' de 5 saat ısıtma 150°C/s.'lik artışla 900 °C' de 6 saat ısıtma 3°C/d.'lik azalışla oda sıcaklığına soğutma	Eflatun renkli toz ürün
KFD23	$3Ca_2B_6O_{11}.5H_2O + \\3Nd_2O_3$	150°C/s.'lik artışla 450 °C' de 5 saat ısıtma 150°C/s.'lik artışla 900 °C' de 6 saat ısıtma 3°C/d.'lik azalışla oda sıcaklığına soğutma	Eflatun renkli toz ürün
KFD24	$3Ca_2B_6O_{11}.5H_2O + \\3Nd_2O_3$	15^{0} C/d.'lik artışla 450 0 C' de 3 saat ısıtma 15^{0} C/d.'lik artışla 900 0 C' de 10 saat ısıtma 4^{0} C/d.'lik artışla 1150 0 C' de 12 saat ısıtma 4^{0} C/d.'lik azalışla oda sıcaklığına soğutma	Eflatun renkli toz ürün

3.2 Hidrotermal Yöntem Kullanılarak Yapılan Deneyler

3.2.1 Boraks, Borik, Bor oksit / Nadir Toprak Metal Oksit (La₂O₃, Nd₂O₃) Maddeleri Kullanılarak Yapılan Deneyler

Hedellenen Bileşikler				
Başlangıç Maddeleri	Mol Oranı	Hedeflenen Bileşik		
$Borax + Nd_2O_3$	6:3	Na ₆ Nd ₃ (BO ₃) ₅		
Borik asit + Nd_2O_3	2:1	NdBO ₃		
Bor oksit + Nd_2O_3	1:1	NdBO ₃		
$Borax + La_2O_3$	6:3	Na ₆ La ₃ (BO ₃) ₅		

Tablo 3.9 Na:B, B/M (M=Nd, La) Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

1 abio 3.10 Na:B, B/M (M=Nd, La) Sisteminde Yapilan Deneyler ve Goziemi

Donor			Elde
Kodu Başlangıç Maddeleri		Sıcaklık ve Süre	Edilen
			Ürün
		Reaktifler otoklava aktarılarak, üzerine 20	Eflatun
HD1	$6Borax + 3Nd_2O_3$	ml. saf su ilavesi yapılmış, heterojen	renkli toz
		karışım 200 0 C' de 4 gün bekletilmiştir.	ürün
		Reaktifler otoklava aktarılarak, üzerine 20	Eflatun
HD2	$6Borax + 3Nd_2O_3$	ml. saf su ilavesi yapılmış, heterojen	renkli toz
		karışım 230 °C' de 4 gün bekletilmiştir.	ürün
		Reaktifler otoklava aktarılarak, üzerine 20	Eflatun
HD3	2Borik asit + Nd ₂ O ₃	ml. saf su ilavesi yapılmış, heterojen	renkli toz
		karışım 230 °C' de 4 gün bekletilmiştir	ürün
		Reaktifler otoklava aktarılarak, üzerine 20	Eflatun
HD4	Bor oksit + Nd_2O_3	ml. saf su ilavesi yapılmış, heterojen	renkli toz
		karışım 230 °C' de 4 gün bekletilmiştir	ürün
		Reaktifler otoklava aktarılarak, üzerine 20	Eflatun
HD5	$6Borax + 3La_2O_3$	ml. saf su ilavesi yapılmış, heterojen	renkli toz
		karışım 200 0 C' de 4 gün bekletilmiştir.	ürün

3.2.2 Kolemanit $(Ca_2B_6O_{11}.5H_2O)$ / Nd_2O_3 Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.11 Ca:B/Nd Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
Kolemanit + La_2O_3	3:3	$Ca_3La_3(BO_3)_5$

Tablo 3.12 Ca:B/Nd Sisteminde Yapılan Deneyler ve Gözlemleri

Deney Kodu	Başlangıç Maddeleri	Sıcaklık ve Süre	Elde Edilen Ürün
		Reaktifler otoklava aktarılarak, üzerine	Beyaz
HD6	3 Kolemanit + 3 Nd $_2$ O $_3$	20 ml. saf su ilavesi yapılmış, heterojen	renkli toz
		karışım 200 0 C' de 4 gün bekletilmiştir.	ürün

3.2.3 CuO / (NH₄)₂HPO₄, H₃PO₄ / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.13 Cu/P ve Cu/P/B Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen bileşik
$CuO + H_3BO_3 + (NH_4)_2HPO_4$	1:1:1	CuBPO ₅
$CuO + H_3PO_4$	2:1	Cu ₂ PO ₄ (OH)
$CuO + (NH_4)_2HPO_4$	1:1	$Cu_2P_2O_7$

Deney Kodu	Başlangıç Maddeleri	Sıcaklık ve Süre	Elde Edilen Ürün
HD7	$CuO + H_3BO_3 + (NH_4)_2HPO_4$	Reaktifler otoklava aktarılarak, üzerine 45 ml. saf su ve 5 ml. derişik fosforik asit ilave edilmiş, heterojen karışım 160 ⁰ C' de 3 gün bekletilmiştir.	Açık yeşil renkli toz ürün
HD8	$CuO + H_3BO_3 + (NH_4)_2HPO_4$	Reaktifler otoklava aktarılarak, üzerine 45 ml. saf su ve 5 ml. derişik hidroklorik asit ilave edilmiş, heterojen karışım 180 ⁰ C' de 3 gün bekletilmiştir.	Koyu yeşil renkli toz ürün
HD9	2CuO + H ₃ PO ₄	Reaktifler otoklava aktarılarak, üzerine 50 ml. saf su ilavesi yapılmış, heterojen karışım 160 ⁰ C' de 3 gün bekletilmiştir.	Koyu yeşil renkli toz ürün
HD10	CuO + (NH ₄) ₂ HPO ₄	Reaktifler otoklava aktarılarak, üzerine 50 ml. saf su ilavesi yapılmış, heterojen karışım 160 ⁰ C' de 3 gün bekletilmiştir.	Yeşil renkli toz ürün

Tablo 3.14 Cu/P ve Cu/P/B Sisteminde Yapılan Deneyler ve Gözlemleri

3.2.4 Metal Oksit (NiO, Al₂O₃, Sb₂O₃, ZnO, AgNO₃, SnO) / H₃BO₃ / (NH₄)₂HPO₄ Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.15 M (M=Ni, Al, Sb, Zn, Ag, Sn)/B/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$NiO + H_3BO_3 + (NH_4)_2HPO_4$	1:1:1	NiBPO ₅
$Al_2O_3 + H_3BO_3 + (NH_4)_2HPO_4$	1:4:4	$Al[B_2P_2O_7(OH)_5]$
$Sb_2O_3 + H_3BO_3 + (NH_4)_2HPO_4$	1:4:4	Sb[B ₂ P ₂ O ₇ (OH) ₅]
$ZnO + H_3BO_3 + (NH_4)_2HPO_4$	1:1:1	ZnBPO ₅
$AgNO_3 + H_3BO_3 + (NH_4)_2HPO_4$	1:2:2	$Ag[B_2P_2O_8(OH)]$
$SnO + H_3BO_3 + (NH_4)_2HPO_4$	1:1:1	SnBPO ₅

Tablo 3.16 M (M=Ni, Al, Sb, Zn, Ag, Sn)/B/P Sisteminde Yapılan Deneyler ve
Gözlemleri

Deney	Başlangıç	Sıcaklık ve Süre	Gözlem
Kodu	Maddeleri		Goziem
	NiO +	Reaktifler otoklava aktarılarak, üzerine 45 ml. saf	Yeşil
HD11	$H_3BO_3 +$	su ve 5 ml. derişik fosforik asit ilave edilmiş,	renkli toz
	(NH ₄) ₂ HPO ₄	heterojen karışım 160 0 C' de 3 gün bekletilmiştir.	ürün
	$Al_2O_3 +$	Reaktifler otoklava aktarılarak, üzerine 50 ml. saf	Beyaz
HD12	$4H_{3}BO_{3} +$	su ilavesi yapılmış, heterojen karışım 160 °C' de 3	renkli toz
	$4(NH_4)_2HPO_4$	gün bekletilmiştir	ürün
	$Sb_2O_3 +$	Reaktifler otoklava aktarılarak, üzerine 45 ml. saf	Beyaz
HD13	$4H_{3}BO_{3} +$	su ve 5 ml. derişik hidroklorik asit ilave edilmiş,	renkli toz
	$4(NH_4)_2HPO_4$	heterojen karışım 160 0 C' de 3 gün bekletilmiştir.	ürün
	ZnO +	Reaktifler otoklava aktarılarak, üzerine 50 ml. saf	Beyaz
HD14	$H_3BO_3 +$	su ilavesi yapılmış, heterojen karışım 160 °C' de 3	renkli toz
	(NH ₄) ₂ HPO ₄	gün bekletilmiştir.	ürün
	AgNO ₃ +	Reaktifler otoklava aktarılarak, üzerine 50 ml. saf	Sarı
HD15	$2H_{3}BO_{3} +$	su ilavesi yapılmış, heterojen karışım 160 °C' de 3	renkli toz
	$2(NH_4)_2HPO_4$	gün bekletilmiştir.	ürün
	SnO +	Reaktifler otoklava aktarılarak, üzerine 50 ml. saf	Beyaz
HD16	$H_3BO_3 +$	su ilavesi yapılmış, heterojen karışım 160 °C' de 3	renkli toz
	(NH ₄) ₂ HPO ₄	gün bekletilmiştir.	ürün

3.3 Mikrodalga Yöntem Kullanılarak Yapılan Deneyler

3.3.1 Co(NO₃)₂.6H₂O / Ni(NO₃)₂.6H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.17 Co/Ni/B Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$Co(NO_3)_2.6H_2O + Ni(NO_3)_2.6H_2O + H_3BO_3$	2:1:2	Co ₂ Ni(BO ₃) ₂

Tablo 3.18 Co/Ni/B Sisteminde Yapılan Deneyler ve Gözlemleri

Deney	Başlangıç	Güç	Gözlem	
Kodu Maddeleri Si		Süre		
MD1	$2Co(NO_3)_2.6H_2O + Ni(NO_3)_2.6H_2O + 2H_3BO_3$	Max. 30 dak.	Başlangıçta gül kurusu-yeşil renkli katı karışımı. 1. dakikadan itibaren erime ve kaynama. 2. dakikada yoğun NO ₂ gazı çıkışı ve akkorlaşma. Koyu–gül kurusu renginde katı ürün oluşumu.	

3.3.2 Ca(NO₃)₂.4H₂O / (NH₄)₂HPO₄, NaH₂PO₄.2H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.19 Ca/P ve Ca/P/B Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$Ca(NO_3)_2.4H_2O + (NH_4)_2HPO_4$	1:1	$Ca_2P_2O_7$
$Ca(NO_3)_2.4H_2O + NaH_2PO_4.2H_2O$	1:1	NaCaPO ₄
$Ca(NO_3)_2.4H_2O + H_3BO_3 + (NH_4)_2HPO_4$	1:1:1	CaBPO ₅
$Ca(NO_3)_2.4H_2O + H_3BO_3 + NaH_2PO_4.2H_2O$	1:1:1	CaBPO ₅

Deney Kodu	Başlangıç Maddeleri	Güç Süre	Gözlem
MD2	$Ca(NO_3)_2.4H_2O + (NH_4)_2HPO_4$	600 W. 10 dak.	Başlangıçta beyaz renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı ve erime. Ürün renginde değişim yok.
MD3	$Ca(NO_3)_2.4H_2O + NaH_2PO_4.2H_2O$	600 W. 10 dak.	Başlangıçta beyaz renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı ve erime. Ürün renginde değişim yok.
MD4	$Ca(NO_3)_2.4H_2O + H_3BO_3 + (NH_4)_2HPO_4$	Max. 10 dak.	Başlangıçta beyaz renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı ve erime. Ürün renginde değişim yok
MD5	$Ca(NO_3)_24H_2O + H_3BO_3 + NaH_2PO_4.2H_2O$	Max. 10 dak.	Başlangıçta beyaz renkli karışım. 1. dakikada yoğun NO ₂ gazı çıkışı, 2. dakikada akkorlaşma, 4. dakikadan sonra parıldayarak yanma ve gaz çıkışı. Saydam, camsı özellikte ürün oluşumu.

Tablo 3.20 Ca/P ve Ca/P/B Sisteminde Yapılan Deneyler ve Gözlemleri

3.3.3 Cr(NO₃)₃.9H₂O / (NH₄)₂HPO₄, NaH₂PO₄.2H₂O Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.21 Cr/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$Cr(NO_3)_3.9H_2O + (NH_4)_2HPO_4$	1:1	CrPO ₄
$Cr(NO_3)_3.9H_2O + NaH_2PO_4.2H_2O$	2:3	$Na_3Cr_2(PO_4)_3$

Deney Kodu	Başlangıç Maddeleri	Güç Süre	Gözlem
MD6	Cr(NO ₃) ₃ .9H ₂ O + (NH ₄) ₂ HPO ₄	Max. 10 dak.	Başlangıçta eflatun renkli karışım (ezildiğinde). 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı. Kahverengi renkli katı ürün oluşumu.
MD7	$2Cr(NO_3)_3.9H_2O + 3NaH_2PO_4.2H_2O$	Max. 10 dak.	Başlangıçta eflatun renkli karışım (ezildiğinde). 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı ve erime. 2. dakikada akkorlaşma. Yeşil renkli katı ürün oluşumu

Tablo 3.22 Cr/P Sisteminde Yapılan Deneyler ve Gözlemleri

3.3.4 $Fe(NO_3)_3.9H_2O\ /\ (NH_4)_2HPO_4$ Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.23 Fe/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$Fe(NO_3)_3.9H_2O + (NH_4)_2HPO_4$	1:2	NH ₄ FeP ₂ O ₇

Deney	Başlangıç	Güç	Gözlem
Kodu	Maddeleri	Süre	
MD8	Fe(NO ₃) ₃ .9H ₂ O + 2(NH ₄) ₂ HPO ₄	Max. 10 dak.	Başlangıçta açık pembe renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı. Açık pembe renkli katı ürün oluşumu.

3.3.5 Al(NO₃)₃.9H₂O / NaH₂PO₄.2H₂O, (NH₄)₂HPO₄ Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.25 Al/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$Al(NO_3)_3.9H_2O + NaH_2PO_4.2H_2O$	1:1	AlPO ₄
$Al(NO_3)_3.9H_2O + (NH_4)_2HPO_4$	1:1	AlPO ₄

Tablo 3.26 Al/P Sisteminde Yapılan Deneyler ve Gözlemleri

Deney Kodu	Başlangıç Maddeleri	Güç Süre	Gözlem
MD9	$Al(NO_3)_3.9H_2O + NaH_2PO_4.2H_2O$	600 W. 10 dak.	Başlangıçta beyaz renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı ve erime. Ürün renginde değişim olmamıştır.
MD10	$Al(NO_3)_3.9H_2O + (NH_4)_2HPO_4$	600 W. 10 dak.	Başlangıçta beyaz renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı ve erime. Ürün renginde değişim olmamıştır.

3.3.6 Hg(NO₃)₂.H₂O / NaH₂PO₄.2H₂O, (NH₄)₂HPO₄ Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.27 Hg/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$Hg(NO_3)_2 H_2O + NaH_2PO_4 H_2O$	3:2	$Hg_3(PO_4)_2$

Deney Kodu	Başlangıç Maddeleri	Güç Süre	Gözlem
MD11	$Hg(NO_3)_2.H_2O + 2NaH_2PO_4.2H_2O$	360 W. 2 dak.	Başlangıçta beyaz renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı. Ürün renginde değişim olmamıştır
MD12	$Hg(NO_3)_2.H_2O + 3NaH_2PO_4.2H_2O$	360 W. 2 dak.	Başlangıçta beyaz renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı. Ürün renginde değişim olmamıştır.
MD13	3Hg(NO ₃) ₂ .H ₂ O + 2NaH ₂ PO ₄ .2H ₂ O	Max. 10 dak.	Başlangıç maddeleri teflon bir kapta, 50 ml saf su ilavesi ile çözülmüş ve mikrodalga ışınına maruz bırakılmıştır.Ürün renginde değişim olmamıştır.

Tablo 3.28 Hg/P Sisteminde Yapılan Deneyler ve Gözlemleri

3.3.7 $Zn(NO_3)_2.6H_2O$ / $(NH_4)_2HPO_4$ Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.29 Zn/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$Zn(NO_3)_2.6H_2O + (NH_4)_2HPO_4$	3:2	$Zn_3(PO_4)_2$

Deney	Başlangıç	Güç	Cäzlam
Kodu	Maddeleri	Süre	Goziem
MD14	3Zn(NO ₃) ₂ .6H ₂ O + 2(NH ₄) ₂ HPO ₄	180 W. 3 dak.	Başlangıçta beyaz renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı. Ürün renginde değişim olmamıştır.
MD15	3Zn(NO ₃) ₂ .6H ₂ O + 2(NH ₄) ₂ HPO ₄ (% 10 fazla)	180 W. 3 dak.	Başlangıçta beyaz renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı. Ürün renginde değişim olmamıştır.
MD16	3Zn(NO ₃) ₂ .6H ₂ O + 2(NH ₄) ₂ HPO ₄	Max. 10 dak.	Başlangıç maddeleri teflon bir kapta, 50 ml saf su ilavesi ile çözülmüş ve mikrodalga ışınına maruz bırakılmıştır.Ürün renginde değişim olmamıştır.

Tablo 3.30 Zn/P Sisteminde Yapılan Deneyler ve Gözlemleri

3.3.8 AgNO₃ / (NH₄)H₂PO₄, NaH₂PO₄.2H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.31 Ag/P ve Ag/P/B Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$AgNO_3 + (NH_4)H_2PO_4$	3:1	Ag ₃ PO ₄
$AgNO_3 + NaH_2PO_4.2H_2O$	3:1	Ag ₃ PO ₄
$AgNO_3 + H_3BO_3 + (NH_4)_2HPO_4$	2.1:1	Ag ₂ BPO ₅

Tablo 3.32 Ag/P ve Ag/P/B Sisteminde Yapılan Deneyler ve Gözlemleri

Deney	Başlangıç	Güç	Cärlom
Kodu	Maddeleri	Süre	Goziem
MD17 MD18	$3AgNO_{3} +$ $(NH_{4})H_{2}PO_{4}$ $3AgNO_{3} +$ $NaH_{2}PO_{4}.2H_{2}O$	600 W. 12 dak. 600 W. 12 dak.	Ezilince sarıya dönüşen başlangıçta beyaz renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı. 3. dakikadan itibaren akkorlaşma. Sentezlenen katı ürün sarı renktedir. Ezilince sarıya dönüşen başlangıçta beyaz renkli karışım. 1. dakikadan itibaren yoğun NO ₂ gazı çıkışı ve akkorlaşma. Sentezlenen katı ürün sarı renktedir
MD19	$2AgNO_3 + H_3BO_3 + (NH_4)_2HPO_4$	Max. 12 dak.	Ezilince sarıya dönüşen başlangıçta beyaz renkli karışım.1. dakikadan itibaren yoğun NO ₂ gazı çıkışı ve hafif akkorlaşma. Sentezlenen katı ürün açık sarı-beyaz arası renge sahiptir.

3.3.9 WO₃ / (NH₄)₂HPO₄, NaH₂PO₄.2H₂O Maddeleri Kullanılarak Yapılan Deneyler

Tablo 3.33 W/P Sisteminde Yapılan Deneyler, Mol Oranları ve Hedeflenen Bileşikler

Başlangıç Maddeleri	Mol Oram	Hedeflenen Bileşik
$WO_3 + (NH_4)_2 HPO_4$	1:2	WP ₂ O ₇
$WO_3 + (NH_4)_2 HPO_4$	9:1	$W_{18}P_2O_{59}$
$WO_3 + NaH_2PO_4.2H_2O$	1:3	Na ₃ W(PO ₄) ₃

Tablo 3.34 W/P Sisteminde Yapılan Deneyler ve Gözlemleri

Deney Kodu	Başlangıç Maddeleri	Güç Süre	Gözlem
MD20	WO ₃ + 2(NH ₄) ₂ HPO ₄	Max. 30 dak.	Başlangıçta açık yeşil renkli karışım. 4.dakikada sıvılaşma, renk değişimi ve akkorlaşma. Lacivert renkli katı ürün oluşumu.
MD21	9WO ₃ + (NH ₄) ₂ HPO ₄	360 W. 10 dak.	Başlangıçta açık yeşil renkli karışım. 1. dakikadan itibaren akkorlaşma ve yeşil-açık lacivert renkli katı ürün oluşumu.
MD22	WO ₃ + $3NaH_2PO_4.2H_2O$	Max. 12 dak.	Başlangıçta açık yeşil renkli karışım. 2.dakikada renk değişimi ve akkorlaşma. Açık mavi renkli camsı katı ürün oluşumu.

4. TARTIŞMA VE SONUÇ

4.1 Katı-Hal Yöntemi Kullanılarak Yapılan Deneylerin Sonuçları

4.1.1 Co(NO₃)₂.6H₂O / Ni(NO₃)₂.6H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Deney No	Başlangıç Maddeleri
KFD1	$2Co(NO_3)_2.6H_2O + Ni(NO_3)_2.6H_2O + 2H_3BO_3$ (kütlece % 10 fazla) 950 °C
KFD2	$2Co(NO_3)_2.6H_2O + Ni(NO_3)_2.6H_2O + 2H_3BO_3$ (kütlece % 10 fazla) 900 ⁰ C
KFD3	$2Co(NO_3)_2.6H_2O + Ni(NO_3)_2.6H_2O + 2H_3BO_3$ (kütlece % 10 fazla) 850 ⁰ C
KFD4	$2Co(NO_3)_2.6H_2O + Ni(NO_3)_2.6H_2O + 2H_3BO_3$ (kütlece % 10 fazla) 750 ⁰ C
KFD5	$2Co(NO_3)_2.6H_2O + Ni(NO_3)_2.6H_2O + 2H_3BO_3$ (tam) 900 ⁰ C
KFD6	$2Ni(NO_3)_2.6H_2O + Co(NO_3)_2.6H_2O + 2H_3BO_3$ (kütlece % 10 fazla) 950 ^{0}C
KFD7	$2Ni(NO_3)_2.6H_2O + Co(NO_3)_2.6H_2O + 2H_3BO_3$ (kütlece % 10 fazla) 900 ^{0}C
KFD8	$2Ni(NO_3)_2.6H_2O + Co(NO_3)_2.6H_2O + 2H_3BO_3$ (Kütlece % 10 fazla) 850 ⁰ C
KFD9	$2Ni(NO_3)_2.6H_2O + Co(NO_3)_2.6H_2O + 2H_3BO_3$ (tam) 900 ⁰ C

Tablo 4.1 Co/Ni/B Sisteminde Yapılan Deneyler ve Kod Numaraları

Tartışma ve Sonuç bölümünün 4.3.1 bölümünde verilen ve mikrodalga yöntem kullanılarak yapılan MD1 deneyine ait XRD analizi sonuçları, elde edilen ürünün, Co₃(BO₃)₂ (ICDD 75-1808) bileşiğinin kristal yapısına benzer orijinal yeni bir faz olduğunu göstermiştir. Bu sonuç, elde edilen bileşiğin Co₂Ni(BO₃)₂ olabileceğini düşündürmüştür. Buna göre ürünün XRD verileri indekslenmeye çalışılmış, ancak bazı pikler indekslemeye katılamamıştır. Bunun üzerine aynı deneyin birde katı-hal yöntemi kullanılarak yapılmasına karar verilmiştir. Başlangıç maddeleri stokiyometrik oranlarda tartılmış, ancak üründe bor eksikliği olmaması açısından borik asidin kütlece % 10 fazlası ilave edilmiştir. Karışım ezilerek platin krozeye aktarılmış ve bir kül fırında 950 ^oC' lik son sıcaklıkta 24 saat süre ile ısıtılmıştır. Daha sonra soğutularak, sıcak saf su ile yıkanmış ve kurutulmuştur.

20	I/I ₀	d _{deneysel}	d _{hesaplanan}	hkl
19.941	13	4.4490	-	-
21.241	2	4.1795	4.1795	020
22.461	29	3.9552	3.9636	011
25.779	18	3.4531	3.4653	101
27.901	2	3.1952	3.2027	111
30.102	4	2.9663	-	-
31.820	5	2.8100	-	-
32.979	7	2.7138	2.7181	200
33.560	100	2.6682	2.6713	121
34.960	13	2.5645	-	-
36.120	38	2.4847	2.4863	130
37.179	2	2.4163	-	-
37.879	4	2.3733	2.3744	031
38.682	7	2.3258	2.3263	201
39.480	4	2.2807	2.2809	220
40.240	48	2.2393	2.2417	211
41.538	19	2.1723	2.1759	131
43.618	3	2.0734	2.0779	102
45.219	6	2.0036	-	-
45.819	2	1.9788	-	-
47.240	8	1.9225	-	-
49.400	2	1.8434	-	-
50.000	2	1.8227	-	-
50.880	9	1.7932	1.7940	141
52.820	30	1.7318	1.7326	202
54.540	4	1.6812	-	-
55.040	37	1.6671	1.6678	132
57.401	4	1.6040	1.6029	150
58.681	13	1.5720	1.5717	051
59.180	18	1.5600	1.5601	321
60.338	3	1.5328	1.5336	042
60.861	20	1.5208	1.5206	330
61.859	2	1.4987	-	-
62.901	5	1.4763	1.4760	142
65.178	2	1.4302	-	-
66.859	8	1.3982	-	-

Tablo 4.2 KFD1 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.2' nin devamı						
68.602	11	1.3669	1.3663	123		
68.939	21	1.3610	1.3606	251		
69.680	2	1.3484	-	-		
71.299	2	1.3217	1.3212	033		
71.858	2	1.3127	-	-		
72.840	3	1.2975	-	-		
73.640	4	1.2853	1.2856	411		
75.339	5	1.2605	1.2597	332		
80.800	3	1.1885	1.1883	233		
82.880	5	1.1639	1.1631	402		
83.581	1	1.1559	-	-		
86.461	4	1.1246	1.1246	004		
87.460	4	1.1143	1.1136	323		

Şekil 4.1 KFD1 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Ürüne ait XRD verileri ortorombik sistem temel alınarak indekslenmeye çalışmış, bazı pikler dışında bütün pikler indekslenebilmiştir. Elde edilen yeni faz ortorombik sistemde kristallenmiş olup, uzay grubu Pnmn olarak belirlenmiştir. Hücre parametreleri ise a=5.4363 Å, b=8.3875 Å ve c=4.4974 Å olarak bulunmuştur. Ürüne ait XRD verileri Tablo 4.2' de, XRD grafiği ise Şekil 4.1' de verilmiştir.

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ 3(BO ₃)	1253, 1166
υ 2(BO ₃)	774, 707
ℓ 4(BO ₃)	688, 623, 593

Tablo 4.3 KFD1 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.2 KFD1 Deneyine ait FTIR Spektrumu

Elde edilen ürüne ait FTIR spektrumu verileri, $(BO_3)^{-3}$ fonksiyonel grubunun varlığını desteklemektedir.

Şekil 4.3 KFD1 Deneyine ait SEM Fotoğrafı

Elde edilen ürün basınç uygulanarak 1 cm çapında pelet haline getirilmiş, üzeri altın ile kaplanarak, vakum altında SEM fotoğrafı çekilmiştir. Yüzey resmi, boyutları mikrometre civarında olan, çeşitli tanecik büyüklüğüne sahip kristaller olduğunu göstermiştir.

İndekslenemeyen piklerin varlığının neden kaynaklandığını bulabilmek amacı ile farklı sıcaklarda ve değişen borik asit miktarlarında deneyler tekrarlanmıştır. KFD2, KFD3 ve KFD4 deneylerinde de aynı indekslenemeyen piklerin ortamda varlığını koruduğu gözlenmiştir. Ancak KFD5 deneyinden elde edilen ürünün XRD grafiğinde safsızlık piklerin kaybolduğu gözlemlenmiştir. Bu sonuç indekslenemeyen piklerin varlığının, ortama fazladan konan borik asitten kaynaklandığını göstermiştir.

Şekil 4.4 KFD2 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.5 KFD3 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.6 KFD4 Deneyine ait X-Işınları Toz Kırınımı Grafiği

					Co ₃ (BO ₃) ₂ ' nin XRD verileri (ICDD 75-1808)	
20	hkl	I/I ₀	d _(den.) (Å)	d _(hes.) (Å)		
					d değerleri	I/I ₀
21.052	020	3	4.2167	4.2020	4.2180	3
22.378	011	32	3.9697	3.9699	3.9903	41
25.621	101	19	3.4741	3.4705	3.4863	23
27.800	111	2	3.2065	3.2078	3.2220	2
32.876	200	9	2.7221	2.7224	2.7310	9
33.458	121	100	2.6760	2.6759	2.6872	100
36.019	130	38	2.4914	2.4910	2.5001	37
37.783	031	5	2.3791	2.3788	2.3889	4
38.617	201	7	2.3296	2.3299	2.3387	5
39.362	220	4	2.2872	2.2848	2.2924	4
40.119	211	53	2.2458	2.2452	2.2537	48
41.363	131	22	2.1811	2.1798	2.1887	16
43.420	102	3	2.0824	2.0811	2.0918	2

Tablo 4.4 KFD5-Co₂Ni(BO₃)₂ Bileşiğine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.4' ün devamı						
50.759	141	9	1.7972	1.7973	1.8045	6
50.928	231	7	1.7916	1.7913	1.7981	4
52.700	202	33	1.7355	1.7353	1.7431	26
54.919	132	41	1.6705	1.6705	1.6783	33
57.323	150	3	1.6060	1.6060	1.6120	2
58.562	051	13	1.5749	1.5747	1.5810	9
59.078	321	15	1.5624	1.5627	1.5681	13
60.222	042	3	1.5354	1.5363	1.5433	2
60.740	330	22	1.5236	1.5232	1.5283	16
62.818	142	7	1.4781	1.4785	1.4860	4
66.701	060	6	1.4011	1.4007	1.4060	5
68.522	123	12	1.3683	1.3684	1.3755	7
68.840	251	19	1.3627	1.3631	1.3683	11
71.199	033	2	1.3233	1.3233	1.3301	2
72.762	213	5	1.2986	1.2989	1.3053	3
73.520	411	4	1.2871	1.2876	1.2919	3
75.221	332	6	1.2622	1.2617	1.2667	3
76.418	260	2	1.2454	1.2455	1.2500	1
80.735	062	3	1.1893	1.1894	1.1944	1
82.797	402	3	1.1648	1.1649	1.1693	3
86.320	004	3	1.1261	1.1260	1.1322	2
86.981	053	2	1.1192	1.1197	1.1250	1
87.418	243	4	1.1148	1.1145	1.1203	3

Co₂Ni(BO₃)₂ bileşiğinin katı-hal sentezi için öngörülen kimyasal denklem aşağıdaki gibidir:

$$2Co(NO_3)_2.6H_2O(s) + Ni(NO_3)_2.6H_2O(s) + 2H_3BO_3(s)$$

$$\downarrow$$

$$Co_2Ni(BO_3)_2(s) + 6NO_2(g) + 18H_2O(g) + 3O_2(g)$$

Tek fazlı olarak ve ilk defa bu çalışmada sentezlenen, $Co_2Ni(BO_3)_2$ bileşiğinin kristal yapısı, $Co_3(BO_3)_2$ (ICDD 75-1808) bileşiğinin kristal yapısı ile çok benzerdir. Literatür verilerine göre, $Co_3(BO_3)_2$ ortorombik sistemde kristallenir ve uzay grubu Pnmn' dir. Birim hücre parametreleri ise a=5.462(2) Å, b=8.436(2) Å, c=4.529(2) Å ve Z=2' dir [104]. $Co_2Ni(BO_3)_2$ bileşiğine ait XRD grafiği Şekil 4.7' de, detaylı XRD verileri ise Tablo 4.4' de verilmiştir.

 $Co_2Ni(BO_3)_2$ örneğine ait bütün pik değerleri ortorombik sistem temel alındığında indekslenebilmiştir. İndeksleme işlemi sırasında hiç bir safsızlık pikine rastlanmamıştır. Rafine edilmiş hücre parametreleri a=5.444(8) Å, b=8.404(0) Å, c=4.504(1) Å ve Z=2 olarak hesaplanmıştır. Uzay grubu kotoite yapısında gözlenen Pnmn olarak belirlenmiştir. Hesaplanan hücre parametreleri. $Co_3(BO_3)_2$ bileşiğinin hücre parametrelerinden biraz daha küçüktür. Bunun nedeni Ni⁺² (r=0.69 Å) iyonlarının yarıçapının Co⁺² (r=0.72 Å) iyonlarının yarıçapından daha küçük olmasıdır [105].

 $Co_2Ni(BO_3)_2$ bileşiğinin kristal yapısının, daha önceleri Effenberger and Pertlik [104] tarafından sentezlenmiş $M_3(BO_3)_2$ (M=Mg, Co ve Ni (kotoite yapısı, kotoite ismi Japon jeolojist Prof. Bundjiro Koto (1856-1935) şerefine verilmiştir)) bileşikleri ile eş yapılı olduğu Tablo 4.4' de açıkça görülmektedir.

Şekil 4.7 KFD5-Co₂Ni(BO₃)₂ Bileşiğine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹) Co ₂ Ni(BO ₃) ₂
v ₃ (BO ₃)	1255, 1170
υ ₂ (BO ₃)	707
v ₄ (BO ₃)	678, 615, 485

Tablo 4.5 KFD5-Co₂Ni(BO₃)₂ Bileşiğine ait FTIR Spektrumu Verileri

Şekil 4.8 KFD5-Co₂Ni(BO₃)₂ Bileşiğine ait Oda Sıcaklığındaki FTIR Spektrumu

Deneysel olarak elde edilen $\text{Co}_2\text{Ni}(\text{BO}_3)_2$ ait FTIR spektrumu Şekil 4.8' de, spektrum verileri ise Tablo 4.5' de verilmiştir. Düzlem üçgen yapıya sahip $(\text{BO}_3)^{-3}$ fonksiyonel grubu temel olarak 4 titreşim frekansına sahiptir. Bunlar; υ_3 =1164-1450 cm⁻¹ (B-O bağı asimetrik gerilme, geniş ve güçlü), υ_1 =898-1040 cm⁻¹ (B-O bağı simetrik gerilme, zayıf), υ_2 =700-785 cm⁻¹ (düzlem-dışı bükülme, keskin ve güçlü) ve υ_4 =480-680 cm⁻¹ (düzlem-içi bükülme, orta) titreşim frekanslarıdır [18,70, 128, 129, 131]. Elde edilen ürünün spektrum verileri ile (BO₃)⁻³ fonksiyonel grubuna ait titreşim frekansları uyum içerisinde olup, bu veriler Co₂Ni(BO₃)₂ kimyasal formülünü desteklemektedir. Co^{+2} ve Ni^{+2} iyonlarının elementel analizi Atomik Absorbsiyon Spektrofotometresi (AAS) kullanılarak yapılmıştır. Co^{+2} ve Ni^{+2} iyonları arasındaki deneysel mol oranı 1.97:1.03 olarak bulunmuştur. Bu değerler $\text{Co}_2\text{Ni}(\text{BO}_3)_2$ olarak tahmin edilmiş kimyasal formüldeki atomik mol oranları ile tamamen uyumludur.

Azomethine-H metodunun temel alındığı, standart bor kitlerinden yararlanılarak yapılan bor tayini sonucunda, Co₂Ni(BO₃)₂ bileşiğindeki borun mol oranı 1.95 olarak bulunmuştur. Bu değer teorik değer olan 2 değerine çok yakındır.

 $Co_2Ni(BO_3)_2$ bileşiğinin yoğunluğu, sıvı faz olarak toluenin kullanıldığı piknometre kullanılarak ölçülmüş ve 4.608 g/cm³ olarak bulunmuştur. Deneysel Z değeri 1.98 olarak hesaplanmıştır. 2 olarak kabul edebileceğimiz bu değer eş kristal yapıya sahip olan $Co_3(BO_3)_2$ (ICDD 75-1808) bileşiğine ait Z=2 değeri ile tamamen uyumludur.

Deneysel ürüne ait TG-DTA eğrileri Şekil 4.9' da verilmiştir. Bu eğriler 20 ⁰C ile 1200 ⁰C arasında hiç bir kütle kaybının gözlenmediğini ve bu sıcaklık aralığında endotermik veya ekzotermik hiçbir pik oluşumunun olmadığını göstermiştir. Bu sonuçtan hareketle, bu sıcaklık aralığında ürünün termodinamik bir şekilde kararlı olduğu söylenebilir.

Şekil 4.9 KFD5-Co₂Ni(BO₃)₂ Bileşiğine ait TG-DTA Eğrileri

 $Co_2Ni(BO_3)_2$ bileşiğinin ilk defa ve tek fazlı olarak elde edilebilmesi, bu bileşiğe benzer $CoNi_2(BO_3)_2$ bileşiğinin de elde edilebileceği düşüncesini uyandırmıştır. Bu düşünce ile başlangıç maddeleri olan Kobalt(II)nitrat, Nikel(II)nitrat ve borik asit uygun stokiyometrik oranlarda tartılmış, elde edilen üründe yapıda bor eksikliği olmaması açısından borik asidin kütlece % 10 fazlası ortama ilave edilmiştir. Karışım ezilerek bir platin krozeye aktarılmış son sıcaklık olan 950 ⁰C' de 24 saat süre ile ısıtılmıştır. Elde edilen ürün sıcak saf su ile yıkanarak kurutulmuştur. XRD grafiği Şekil 4.10' da, verileri ise Tablo 4.6' da verilmiştir.

XRD verileri analizi, elde edilen ürünün kristal yapısının $Ni_3(BO_3)_2$ (ICDD 75-1809) bileşiğinin XRD verileri ile çok benzer olduğunu göstermiştir. Bu da bize oluşan yeni maddenin CoNi₂(BO₃)₂ olabileceğini düşündürmüştür. Ortorombik sistem temel alınarak veriler indekslenmeye çalışılmış, bazı pik değerleri dışındaki tüm veriler indekslenebilmiştir. Buna göre yeni elde edilen fazın hücre parametreleri a=5.4207 Å, b=8.3538 Å ve c=4.4796 Å olarak hesaplanmıştır.

20	I/I ₀	d _{deneysel} d _{hesaplanan}		hkl
14.799	1	5.9812	-	-
19.838	10	4.4718	-	-
21.259	2	4.1760	4.1769	020
21.820	2	4.0699	-	-
22.501	37	3.9483	3.9478	011
25.781	22	3.4529	3.4531	101
27.939	2	3.1909	3.1912	111
29.861	2	2.9897	-	-
30.260	2	2.9512	-	-
31.720	5	2.8186	-	-
33.022	8	2.7104	2.7103	200
33.659	100	2.6606	2.6614	121
35.102	14	2.5544	-	-
36.240	37	2.4768	2.4769	130
37.121	2	2.4200	-	-
38.021	4	2.3648	2.3649	031
38.802	7	2.3189	2.3189	201
39.619	4	2.2730	2.2736	220
40.339	55	2.2340	2.2344	211
41.640	19	2.1672	2.1676	131
43.280	1	2.0888	2.0884	040
43.699	3	2.0697	2.0700	102
45.040	5	2.0112	2.0093	112
45.941	1	1.9738	1.9739	022
47.440	5	1.9149	-	-
50.101	1	1.8192	-	-
51.079	7	1.7867	1.7870	141
53.000	30	1.7264	1.7265	202
54.741	2	1.6755	1.6757	301
55.258	38	1.6610	1.6613	132
57.719	3	1.5959	1.5956	150
58.959	10	1.5653	1.5654	051
59.380	14	1.5552	1.5552	321
61.082	20	1.5159	1.5157	330
61.980	2	1.4960	-	-
63.218	5	1.4697	1.4699	142

Tablo 4.6 KFD6 Deneyine ait X-Işınları Toz Kırınımı Verileri

	Tablo 4.6' nın devamı						
67.180	6	1.3923	1.3923	060			
68.924	8	1.3613	1.3610	123			
69.259	17	1.3555	1.3556	251			
69.880	1	1.3450	-	-			
71.660	2	1.3159	1.3159	033			
72.201	1	1.3073	1.3073	341			
73.199	4	1.2920	1.2921	213			
73.880	3	1.2817	1.2818	411			
75.701	4	1.2554	1.2553	332			
76.901	1	1.2387	1.2388	260			
81.300	2	1.1825	1.1825	062			
82.721	1	1.1657	-	-			
83.261	4	1.1595	1.1595	402			
84.017	1	1.1510	1.1510	303			
86.920	3	1.1199	1.1119	004			
87.901	4	1.1099	1.1097	323			

Şekil 4.10 KFD6 Deneyine ait X-Işınları Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ 3(BO ₃)	1471, 1264, 1172
_{U1} (BO ₃)	1018
<i>υ</i> 2(BO ₃)	777, 710
υ 4(BO ₃)	688, 660, 629, 598, 503

Tablo 4.7 KFD6 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.11 KFD6 Deneyine ait FTIR Spektrumu

Elde edilen ürüne ait FTIR spektrumundaki veriler, yeni faz içerisinde bulunan $(BO_3)^{-3}$ fonksiyonel gruplarının varlığını desteklemektedir. Ürüne ait FTIR spektrumu Şekil 4.11' de, spektrum verileri Tablo 4.7' de verilmektedir.

Şekil 4.12 KFD6 Deneyine ait SEM Fotoğrafı

KFD6 deneyinden elde edilen üründe bulunan safsızlıkların neden kaynaklandığının belirlenmesi amacı ile farklı sıcaklıklarda ve değişen borik asit miktarlarında yeni deneyler planlanmış ve uygulanmıştır. KFD7 ve KFD8 deneylerinden oluşan ürünlerin XRD verilerinde de indekslenemeyen piklerin varlığını koruduğu belirlenmiştir. Buda safsızlık piklerinin sıcaklık nedeni ile değil de ortama fazladan konan borik asit nedeni ile oluştuğunu göstermiştir. Bu verilerden hareketle borik asidin tam stokiyometrik oranında kullanıldığı KFD9 deneyi yapılmıştır. KFD7 ve KFD8 deneylerinde oluşan ürünlere ait XRD grafikleri Şekil 4.13 ve Şekil 4.14' de verilmektedir.

Şekil 4.13 KFD7 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.14 KFD8 Deneyine ait X-Işınları Toz Kırınımı Grafiği

CoNi₂(BO₃)₂ bileşiğinin katı-hal sentezine ilişkin verilen reaksiyon denklemi aşağıdaki gibidir:

$$2Ni(NO_3)_2.6H_2O(s) + Co(NO_3)_2.6H_2O(s) + 2H_3BO_3(s)$$

Ţ

$$CoNi_2(BO_3)_2(s) + 6NO_2(g) + 18H_2O(g) + 3O_2(g)$$

CoNi₂(BO₃)₂ bileşiğinin kristal yapısı Ni₃(BO₃)₂ (ICDD 75-1809) bileşiğinin kristal yapısı ile çok benzerdir. Literatür verilerine göre kotoite yapısında olan Ni₃(BO₃)₂ bileşiği ortorombik sistemde kristallenmekte olup, Pnmn uzay grubuna sahiptir. Birim hücre parametreleri ise a=5.396(2) Å, b=8.297(1) Å, c=4.459(1) Å olup, Z=2' dir [106].

CoNi₂(BO₃)₂ bileşiğine ait bütün XRD verileri ortorombik sistem temel alınarak indekslenmeye çalışılmıştır. İndeksleme işlemi sırasında hiçbir safsızlık pikine rastlanmamıştır. Rafine edilmiş hücre parametreleri, a=5.419(9) Å, b=8.352(0) Å, c=4.478(8) Å ve Z=2 olarak hesaplanmıştır. Uzay grubu Pnmn olarak belirlenmiştir. Ürüne ait XRD grafiği Şekil 4.15'de, XRD pikleri Tablo 4.8' de verilmiştir.

Deneysel ürüne ait hesaplanmış hücre parametreleri. Ni₃(BO₃)₂ bileşiğine ait birim hücre parametrelerinden biraz daha büyüktür. Bunun nedeni Co⁺² iyonlarının yarıçapının (r=0.72 Å) Ni⁺² iyonlarının yarıçapından (r=0.69 Å) daha büyük olmasıdır [105]. CoNi₂(BO₃)₂ bileşiğine ait kristal yapının, daha önce birkaç grup tarafından yapay olarak hazırlanmış M₃(BO₃)₂ (M=Mg. Co ve Ni (kotoite yapısı)), bileşikleri ile eş yapılı olduğu Tablo 4.8' de açıkça görülmektedir [104].

Karşılaştırma yapabilmek amacı ile kotoite yapısına sahip olan bazı metal borat bileşiklerine ait birim hücre parametreleri. Z değerleri ve yoğunluk değerleri Tablo 4.9' da verilmiştir.

					Ni ₃ (BO ₃) ₂ ' nin	XRD verileri
20	hkl	I/I ₀	d _(den.) (Å)	d _(hes.) (Å)	(ICDD 7	5-1809)
					d değerleri	I/I ₀
19.533	110	1	4.5410	4.5465	4.5235	1
21.277	020	2	4.1726	4.1760	4.1485	3
22.537	011	38	3.9420	3.9471	3.9277	44
25.800	101	23	3.4503	3.4525	3.4372	24
27.962	111	2	3.1883	3.1907	3.1755	2
33.040	200	9	2.7090	2.7099	2.6980	9
33.678	121	100	2.6591	2.6609	2.6467	100
36.259	130	36	2.4755	2.4764	2.4612	37
38.022	031	4	2.3647	2.3644	2.3502	4
38.822	201	8	2.3178	2.3186	2.3083	7
39.619	220	4	2.2729	2.2732	2.2617	4
40.341	211	55	2.2339	2.2341	2.2238	54
41.641	131	17	2.1671	2.1672	2.1547	16
43.340	040	1	2.0860	2.0880	2.0742	1
43.735	102	3	2.0681	2.0697	2.0605	2
44.715	221	1	2.0250	2.0271	2.0171	1
45.100	112	1	2.0086	2.0089	1.9998	1
45.976	022	1	1.9724	1.9735	1.9638	1
51.098	141	6	1.7860	1.7867	1.7759	7
51.239	231	5	1.7815	1.7816	1.7721	7
53.019	202	30	1.7258	1.7263	1.7186	27
54.738	301	1	1.6756	1.6755	1.6680	1
55.261	132	33	1.6610	1.6610	1.6523	35
57.701	150	2	1.5964	1.5963	1.5860	2
58.961	051	8	1.5652	1.5651	1.5552	9
59.381	321	13	1.5552	1.5550	1.5476	13
60.582	042	2	1.5272	1.5272	1.5186	2
61.100	330	17	1.5155	1.5155	1.5078	18
61.601	151	2	1.5043	1.5037	1.4943	2
63.238	013	4	1.4693	1.4696	1.4630	4
64.700	103	1	1.4396	1.4393	1.4329	1
64.915	331	1	1.4353	1.4355	1.4283	1
67.199	060	4	1.3920	1.3920	1.3828	5
67.472	312	3	1.3870	1.3866	1.3803	3

Tablo 4.8 KFD9-CoNi₂(BO₃)₂ Bileşiğine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.8' in devamı						
68.960	123	7	1.3607	1.3608	1.3544	7
69.259	251	14	1.3555	1.3553	1.3473	12
71.642	033	1	1.3162	1.3157	1.3092	2
72.238	341	1	1.3068	1.3068	1.2998	1
72.781	401	1	1.2984	1.2969	1.2912	1
73.179	213	3	1.2923	1.2919	1.2861	3
73.298	161	2	1.2905	1.2910	1.2829	2
73.897	411	2	1.2815	1.2816	1.2758	2
74.102	133	2	1.2784	1.2786	1.2723	2
75.720	332	3	1.2551	1.2551	1.2490	3
76.903	421	1	1.2387	1.2386	1.2328	1
80.417	261	1	1.1932	1.1934	1.1862	1
81.356	062	1	1.1818	1.1822	1.1751	1
83.261	402	3	1.1595	1.1593	1.1541	3
84.019	303	1	1.1510	1.1508	1.1457	1
86.977	004	2	1.1193	1.1197	1.1147	2
87.540	053	1	1.1135	1.1131	1.1071	1
87.862	323	3	1.1098	1.1095	1.1044	4

Tablo 4.9 Kotoite Yapısına Sahip Olan Bazı Metal Borat Bileşiklerinin Hücre Parametreleri, Z Değerleri ve Yoğunlukları

	$Mg_3(BO_3)_2$	$Mn_3(BO_3)_2$	$Co_3(BO_3)_2$	$Ni_3(BO_3)_2$	CoNi ₂ (BO ₃) ₂
	[107]	[108]	[107]	[106]	Şimdiki
		[]	[207]	[-30]	Çalışma
a (Å)	5.398(2)	5.658(1)	5.462(2)	5.396(1)	5.419(9)
b (Å)	8.416(2)	8.740(1)	8.436(2)	8.297(2)	8.352(0)
c (Å)	4.497(2)	4.646(2)	4.529(2)	4.459(1)	4.478(8)
Z	2	2	2	2	2
d _(den.)	3.04	4.00	4.66	4.80	4.48
(g/cm^3)	2.0.				

Şekil 4.15 KFD9-CoNi_2(BO_3)_2 Bileşiğine ait X-Işınları Toz Kırınımı Grafiği

Titus simelan	Dalga Sayısı (cm ⁻¹)
Tureşimler	CoNi ₂ (BO ₃) ₂
υ ₃ (BO ₃)	1253, 1180
υ₂(BO 3)	712
v ₄ (BO ₃)	688, 622

Tablo 4.10 KFD9-CoNi₂(BO₃)₂ Bileşiğine ait FTIR Spektrumu Verileri

Şekil 4.16 KFD9-CoNi₂(BO₃)₂ Bileşiğine ait Oda Sıcaklığındaki FTIR Spektrumu

Deneysel olarak elde edilen $\text{CoNi}_2(\text{BO}_3)_2$ ait FTIR spektrumu Şekil 4.16' da, spektrum verileri ise Tablo 4.10' da verilmiştir. Düzlem üçgen yapıya sahip (BO_3)⁻³ fonksiyonel grubu temel olarak 4 titreşim frekansına sahiptir. Bunlar; $\upsilon_3=1164$ -1450 cm⁻¹ (B-O bağı asimetrik gerilme, geniş ve güçlü), $\upsilon_1=898$ -1040 cm⁻¹ (B-O bağı simetrik gerilme, zayıf), $\upsilon_2=700$ -785 cm⁻¹ (düzlem-dışı bükülme, keskin ve güçlü) ve $\upsilon_4=480$ -680 cm⁻¹ (düzlem-içi bükülme, orta) titreşim frekanslarıdır [18, 70, 128, 129, 131]. Elde edilen ürünün spektrum verileri ile (BO_3)⁻³ fonksiyonel grubuna ait titreşim frekansları uyum içerisinde olup, bu veriler CoNi₂(BO_3)₂ kimyasal formülünü desteklemektedir.
Co^{+2} ve Ni^{+2} iyonlarının elementel analizi Atomik Absorbsiyon Spektrofotometresi (AAS) kullanılarak yapılmıştır. Co^{+2} ve Ni^{+2} iyonları arasındaki deneysel mol oranı 1.95:1.05 olarak bulunmuştur. Bu değerler $\text{CoNi}_2(\text{BO}_3)_2$ olarak tahmin edilmiş kimyasal formüldeki atomik mol oranları ile oldukça uyumludur.

Daha önce açıkladığımız bor analiz metoduyla, elde edilen CoNi₂(BO₃)₂ bileşiğindeki borun mol oranı 1.94 olarak bulunmuştur. Bu değer teorik değer olan 2 değerine çok yakındır.

 $CoNi_2(BO_3)_2$ bileşiğinin yoğunluğu. sıvı faz olarak toluenin kullanıldığı piknometre kullanılarak ölçülmüş ve 4.479 g/cm³ olarak bulunmuştur. Deneysel Z değeri 1.95 olarak hesaplanmıştır. 2 olarak kabul edebileceğimiz bu değer eş kristal yapıya sahip olan $Co_3(BO_3)_2$ (ICDD 75-1808) bileşiğine ait Z=2 değeri ile tamamen uyumludur.

Deneysel ürüne ait TG-DTA eğrileri Şekil 4.17' de verilmiştir. Bu eğriler 20 ⁰C ile 1200 ⁰C arasında hiç bir kütle kaybının gözlenmediğini ve bu sıcaklık aralığında endotermik veya ekzotermik hiçbir pik oluşumunun olmadığını göstermiştir. Bu sonuçtan hareketle, bu sıcaklık aralığında ürünün termodinamik bir şekilde kararlı olduğu söylenebilir.

Şekil 4.17 KFD9-CoNi₂(BO₃)₂ Bileşiğine ait TG-DTA Eğrileri.

4.1.2 Co(NO₃)₂.6H₂O / Ni(NO₃)₂.6H₂O / H₃BO₃ / (NH₄)₂HPO₄ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.11 Co/Ni/B/P Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
KFD10	$2Co(NO_3)_2.6H_2O + Ni(NO_3)_2.6H_2O + H_3BO_3 + (NH_4)_2HPO_4 1050 \ ^0C$
KFD11	$Co(NO_3)_2.6H_2O + 2Ni(NO_3)_2.6H_2O + H_3BO_3 + (NH_4)_2HPO_4 1050 \ ^0C$

 Co^{+2} ile Ni⁺² iyonlarının yarıçaplarının birbirine çok yakın olması, bu iyonların kristal yapı içerisinde birbiri ile rahatlıkla yer değiştirebileceğini göstermiştir. Co₂Ni(BO₃)₂ ve CoNi₂(BO₃)₂ bileşiklerinin tek fazlı olarak elde edilebilmesi, yine çift metal içeren Co₂NiBPO₇ ve CoNi₂BPO₇ bileşiklerinin de sentezlenebileceğini düşündürmüştür.

Bu amaca yönelik olarak yeni deneyler yapılmış ancak bu sefer yapılan deneylerde borik asit tam stokiyometrik oranında kullanılmıştır.

Kobalt(II)nitrat, nikel(II)nitrat, borik asit ve diamonyum hidrojen fosfat başlangıç maddeleri arasında, 2:1:1:1 mol oranında, kül fırında 1050 ^oC' de yapılan deneye ait XRD verileri analizi, ürünün verileri ile Zn₃BPO₇ (ICDD 86-2017) bileşiğinin XRD verilerinin birbirine çok yakın olduğunu göstermiştir. Literatür verilerine göre Zn₃BPO₇ bileşiği monoklinik sistemde kristallenmiş olup, uzay grubu Cm' dir. Birim hücre parametreleri ise a=9.7252 Å, b=12.7230 Å, c=4.8743 Å, $\beta = 119.80^{\circ}$ ve Z=4' dür [109].

Kristal yapılar arasındaki benzerlikten yaralanılarak ürüne ait bütün XRD verileri monoklinik sistem temel alınarak indekslenmeye çalışılmış, bazı küçük pik değerleri dışındaki bütün pikler indekslemeye katılabilmiştir. Birim hücre parametreleri ise a=9.7233 Å, b=12.5476 Å, c=4.8813 Å ve β =119.487⁰ olarak hesaplanmıştır. Deneysel olarak elde edilen ürüne ait XRD grafiği Şekil 4.18' de, XRD verileri ise Tablo 4.12' de verilmiştir.

20	I/I ₀	d _{deneysel}	d _{hesaplanan}	Fark	hkl
14.219	12	6.2236	6.2738	0.00025	020
21.101	100	4.2070	4.2078	0.00002	-201
23.798	3	3.7359	3.7497	0.00031	130
25.381	10	3.5064	3.5084	0.00005	220
28.120	9	3.1707	3.1760	0.00020	-131
28.521	12	3.1271	3.1369	0.00038	040
28.882	4	3.0888	3.0824	0.00026	-311
32.598	6	2.7447	2.7526	0.00045	310
35.303	9	2.5403	-	-	-
35.641	99	2.5170	2.5150	0.00015	-241
36.040	5	2.4901	-	-	-
36.563	15	2.4556	2.4546	0.00008	201
36.840	59	2.4378	2.4405	0.00022	-202
36.960	64	2.4301	2.4308	0.00006	-401
37.299	5	2.4088	2.4060	0.00024	150
39.579	9	2.2751	2.2745	0.00007	-222
39.739	9	2.2664	2.2666	0.00002	-421
40.400	9	2.2308	2.2318	0.00011	-151
42.520	2	2.1243	2.1245	0.00003	002
42.722	10	2.1148	2.1160	0.00014	400
43.039	4	2.0999	2.1039	0.00051	-402
44.100	3	2.0518	2.0501	0.00024	-132
44.320	6	2.0422	2.0408	0.00020	-332
44.520	6	2.0334	-	-	-
45.241	15	2.0027	2.0050	0.00034	420
45.480	4	1.9927	1.9947	0.00021	-422
45.919	7	1.9747	1.9783	0.00055	151
47.279	5	1.9210	1.9214	0.00007	-441
48.501	7	1.8754	1.8751	0.00006	350
52.140	56	1.7528	1.7536	0.00018	170
52.319	28	1.7472	1.7473	0.00002	-442
53.500	3	1.7114	1.7106	0.00018	-352
54.576	3	1.6802	1.6808	0.00015	-532
57.520	8	1.6010	1.6011	0.00003	-203
57.761	10	1.5949	1.5944	0.00014	-403
57.939	12	1.5904	1.5899	0.00014	-602

Tablo 4.12 KFD10 Deneyine ait X-Işınları Toz Kırınımı Verileri

	Tablo 4.12' nin devamı				
58.780	11	1.5696	1.5691	0.00015	530
60.002	2	1.5405	1.5412	0.00022	-622
60.380	2	1.5318	1.5316	0.00006	-551
61.160	2	1.5141	1.5133	0.00019	-113
62.559	3	1.4836	1.4832	0.00014	-462
62.982	8	1.4746	-	-	-
63.120	14	1.4717	1.4714	0.00011	081
65.380	24	1.4262	1.4262	0.00005	-243
65.701	34	1.4200	1.4209	0.00037	-642
66.279	8	1.4090	-	-	-
66.678	8	1.4016	1.4026	0.00043	-603
68.060	5	1.3764	1.3763	0.00006	620
71.262	11	1.3222	1.3217	0.00027	281
71.419	21	1.3197	1.3195	0.00012	371
71.818	2	1.3134	1.3136	0.00012	-732
73.581	2	1.2862	1.2865	0.00019	640
74.063	4	1.2790	1.2791	0.00006	191
78.558	7	1.2167	-	-	-
79.941	3	1.1991	1.1993	0.00015	-192
81.880	3	1.1755	1.1760	0.00037	-204
87.420	2	1.1147	1.1147	0.00003	192
88.820	7	1.1008	1.1012	0.00032	-244
89.119	8	1.0978	-	-	-

Şekil 4.18 KFD10 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
𝙂 ₃(BO₃)	1227
υ ₃ (PO ₄), υ ₁ (BO ₃)	1007
$\upsilon_1(\mathrm{BO}_3), \upsilon_1(\mathrm{PO}_4)$	979
𝙂 2(BO 3)	744, 719
υ ₄ (BO ₃), υ ₄ (PO ₄)	638, 595
υ ₄ (PO ₄)	595, 562, 542, 481
υ ₂ (PO ₄)	400

Tablo 4.13 KFD10 Deneyine ait FTIR Spektrumu Verileri

BPO₇ fonksiyonel grubu izole düzlem üçgen (BO₃)⁻³ grubu ile izole tetrahedral (PO₄)⁻³ grubu anyonlarının bir araya gelmesi ile oluşur. Bu nedenden dolayı, BPO₇ fonksiyonel grubuna ait titreşim bantlarının hem (BO₃)⁻³ hem de (PO₄)⁻³ gruplarına ait titreşim bantlarını içermesi beklenir. (BO₃)⁻³ grubuna ait 4 temel titreşim frekansı daha önce verilmiştir. (PO₄)⁻³ anyonu da 4 adet temel titreşim frekansına sahiptir. Bunlar; v_3 =1377-991 cm⁻¹, v_1 =989-885 cm⁻¹, v_4 =644-450 cm⁻¹ ve v_4 =334-450 cm⁻¹ titreşim frekanslarıdır [69, 70, 78, 82, 130, 135, 136]. Elde edilen ürünün FTIR spektrum verileri yapıda bulunan (BO₃)⁻³ ve (PO₄)⁻³ fonksiyonel gruplarının varlığını desteklemektedir.

Ürüne ait FTIR spektrumu Şekil 4.19' da, spektrum verileri ise Tablo 4.13' de verilmektedir.

Şekil 4.19 KFD10 Deneyine ait FTIR Spektrumu

Şekil 4.20 KFD10 Deneyine ait SEM Fotoğrafı

20	I/I ₀	d _{deneysel}	d _{hesaplanan}	fark	hkl
12.620	1	7.0086	6.9993	0.00002	110
14.181	25	6.2402	6.2449	0.00003	020
15.099	2	5.8629	-	-	-
21.019	57	4.2232	4.2255	0.00004	200
23.341	5	3.8080	-	-	-
23.821	5	3.7324	3.7347	0.00005	130
25.422	7	3.5008	3.4997	0.00004	220
25.881	9	3.4397	-	-	-
28.289	6	3.1522	3.1634	0.00043	-131
28.665	3	3.1116	3.1064	0.00021	111
29.038	4	3.0726	3.0762	0.00015	-311
30.499	3	2.9286	-	-	-
32.559	10	2.7479	2.7480	0.00002	310
33.738	4	2.6545	-	-	-
35.759	100	2.5089	2.5112	0.00017	240
37.022	47	2.4263	2.4269	0.00005	-401
39.823	7	2.2618	2.2621	0.00003	-421
40.601	10	2.2202	2.2222	0.00022	-151
42.741	6	2.1139	2.1128	0.00015	400
44.438	4	2.0370	2.0342	0.00039	-332
45.279	8	2.0011	2.0013	0.00004	420
46.058	8	1.9691	1.9707	0.00025	151
47.420	4	1.9157	1.9162	0.00008	-441
48.702	6	1.8682	1.8683	0.00001	061
51.240	4	1.7814	-	-	-
52.239	28	1.7497	1.7498	0.00002	440
53.801	3	1.7025	1.7044	0.00046	-352
54.758	2	1.6750	1.6749	0.00001	510
57.480	3	1.6020	1.6019	0.00004	401
58.122	5	1.5858	1.5861	0.00010	261
59.122	18	1.5614	1.5612	0.00006	080
60.221	1	1.5355	1.5349	0.00020	351
61.479	3	1.5070	1.5073	0.00012	370
62.861	2	1.4772	1.4772	0.00000	-552
63.479	8	1.4643	1.4645	0.00006	280
65.453	12	1.4248	1.4253	0.00018	441

Tablo 4.14 KFD11 Deneyine ait X-Işınları Toz Kırınımı Verileri

	Tablo 4.14' ün devamı							
65.876	10	1.4167	1.4167	0.00002	-443			
66.940	3	1.3967	-	-	-			
68.441	3	1.3697	1.3694	0.00014	190			
70.538	1	1.3340	1.3345	0.00027	-191			
71.840	10	1.3130	1.3130	0.00000	-481			
73.740	2	1.2838	1.2839	0.00007	640			
74.542	2	1.2720	1.2715	0.00028	-391			
76.439	1	1.2451	1.2449	0.00013	390			
78.021	1	1.2237	1.2236	0.00009	-733			
78.841	2	1.2130	1.2135	0.00030	-802			
80.538	1	1.1917	1.1912	0.00037	-822			
87.582	2	1.1131	1.1130	0.00013	-682			
88.939	2	1.0996	1.0994	0.00015	641			
89.379	2	1.0953	1.0947	0.00054	-841			

KFD11 deneyine ait XRD verileri, KFD10 deneyinde olduğu gibi monoklinik sistem temel alınarak indekslenmeye çalışılmış, bazı küçük pik değerleri dışındaki tüm pikler indekslenebilmiştir. Birim hücre parametreleri ise a=9.7079 Å, b=12.4898 Å, c=4.8662 Å ve β =119.479⁰ olarak hesaplanmıştır.

Deneysel ürüne ait XRD grafiği Şekil 4.21' de, XRD verileri ise Tablo 4.14' de verilmiştir.

Şekil 4.21 KFD11 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ ₃ (BO ₃)	1241, 1194
$\upsilon_3(PO_4), \upsilon_1(BO_3)$	1001
$v_1(BO_3), v_1(PO_4)$	973
υ ₂ (BO ₃)	747, 722
υ ₄ (BO ₃), υ ₄ (PO ₄)	646, 601
υ₄(PO₄)	601, 562, 539, 489, 458

Tablo 4.15 KFD11 Deneyine ait FTIR Spektrumu Verileri

Elde edilen ürüne ait FTIR spektrumu pikleri, yapıda bulunan $(BO_3)^{-3}$ ve $(PO_4)^{-3}$ fonksiyonel gruplarının varlığını desteklemektedir.

Şekil 4.22 KFD11 Deneyine ait FTIR Spektrumu

Şekil 4.23 KFD11 Deneyine ait SEM Fotoğrafı

4.1.3 Boraks (Na₂B₄O₇.10H₂O) / Nadir toprak metal oksit (La₂O₃. Nd₂O₃, Y₂O₃) Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Deney No	Başlangıç Maddeleri
KFD12	$6Na_{2}B_{4}O_{7}.10H_{2}O + La_{2}O_{3}$ $650 \ ^{0}C$
KFD13	$6Na_{2}B_{4}O_{7}.10H_{2}O + La_{2}O_{3}$ 1150 ^{0}C
KFD14	$6Na_{2}B_{4}O_{7}.10H_{2}O + 3La_{2}O_{3}$ 800 ^{0}C
KFD15	$6Na_{2}B_{4}O_{7}.10H_{2}O + 3La_{2}O_{3}$ 1150 ^{0}C
KFD16	$6Na_{2}B_{4}O_{7}.10H_{2}O + Nd_{2}O_{3} 650 {}^{0}C$
KFD17	$6Na_{2}B_{4}O_{7}.10H_{2}O + 3Nd_{2}O_{3} 800 \ ^{0}C$
KFD18	$6Na_{2}B_{4}O_{7}.10H_{2}O + Y_{2}O_{3}$ 1150 ^{0}C

Tablo 4.16: Na:B/M (M=La, Nd, Y) Sisteminde Yapılan Deneyler ve Kod Numaraları

			LaBO ₃		$Na_2B_4O_7$	
20	I/I_0	d _{deneysel} (Å)	(ICDD 12-762)	hkl	(ICDD 29-1179)	hkl
			$d_{değerleri}$		$d_{de ext{gerleri}}$	
13.821	8	6.4021	-	-	6.490	110
15.697	5	5.6410	-	-	5.780	0-11
16.825	6	5.2651	-	-	5.350	011
17.281	15	5.1273	-	-	5.230	020
20.740	14	4.2792	4.339	011	-	-
21.800	4	4.0736	4.130	020	-	-
22.923	36	3.8765	-	-	3.920	021
25.741	100	3.4581	3.492	111	-	-
26.620	47	3.3459	3.377	120	-	-
29.359	5	3.0397	-	-	3.080	2-21
29.718	5	3.0038	-	-	3.035	1-31
30.200	7	2.9569	-	-	2.998	1-12
30.560	15	2.9229	2.936	200	-	-
32.080	7	2.7878	-	-	2.815	-310
33.801	16	2.6497	-	-	2.670	022
35.401	13	2.5335	2.553	002	-	-
37.220	29	2.4138	2.424	031	-	-
37.738	12	2.3818	2.394	220	-	-
39.682	5	2.2695	-	-	2.287	032
40.541	9	2.2234	-	-	2.240	141
41.801	12	2.1592	2.173	022	-	-
43.415	3	2.0826	-	-	2.121	-241
44.720	38	2.0248	2.037	122	-	-
47.141	67	1.9263	1.927	202	-	-
47.498	13	1.9127	-	-	1.936	-421
48.901	28	1.8610	1.869	231	-	-
51.339	23	1.7782	1.785	311	-	-
51.755	9	1.7649	1.768	320	-	-
52.679	21	1.7361	1.746	222	-	-
54.081	13	1.6944	1.690	240	-	-
57.861	8	1.5924	1.603	113	-	-
59.941	7	1.5420	1.548	142	-	-
61.399	7	1.5088	1.517	151	-	-
64.119	4	1.4512	1.453	322	-	-

Tablo 4.17 KFD12 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.17' nin devamı						
64.520	7	1.4431	1.449	213	-	-
65.879	3	1.4166	1.420	340	-	-
66.502	3	1.4049	1.408	242	-	-
67.321	4	1.3898	1.390	411	-	-
67.981	4	1.3779	1.383	420	-	-
73.000	8	1.2950	1.298	233	-	-
74.440	4	1.2735	1.276	004	-	-
74.880	6	1.2671	-	-	-	-
75.742	5	1.2548	-	-	-	-

Bilindiği gibi içerisinde nadir toprak metali içeren çift metalli metal borat bileşiklerinin endüstride oldukça fazla kullanım alanına sahiptir [15]. Literatürde bu türdeki bileşiklerin sentezlenmesinde ilgili metallerin oksitlerinden ve bor oksit veya borik asit maddelerinden yararlanılmıştır. Ülkemizin bor mineralleri açısından oldukça zengin olması, bu türdeki bileşiklerin sentezlenmesinde bor minerallerinin kullanılabileceği düşüncesini uyandırmıştır. Tek türde metal içeren boraks ve kolemanit mineralleri kullanılarak çift metal içeren metal borat bileşiklerinin sentezlenmesine yönelik deneyler planlanmış ve yapılmıştır.

Başlangıç maddesi olarak boraks ve nadir toprak metal oksit içeren deneylerde 650 °C, 800 °C ve 1150 °C gibi sıcaklıklar denenmiş, düşük sıcaklıklarda yapılan deneylerde herhangi bir yeni faz oluşumu yerine daha önceden varlığı bilinen iki fazlı ürün oluşumları gözlemlenmiştir. Yüksek sıcaklıklara çıkıldıkça sodyum içeren fazların amorflaştığı, nadir toprak metal borat içeren fazların ise varlığını koruduğu görülmüştür.

KFD12 deneyine ait XRD verileri analizi, ürünün LaBO₃ (ICDD 12-762) ve Na₂B₄O₇ (ICDD 29-1179) fazlarını içerdiğini göstermiştir. Ürüne ait XRD grafiği Şekil 4.24' de XRD verileri Tablo 4.17' de verilmiştir.

Şekil 4.24 KFD12 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.25 KFD13 Deneyine ait X-Işınları Toz Kırınımı Grafiği

KFD13 deneyine ait XRD analiz sonuçları, LaBO₃ (ICDD 12-762) bileşiğinin olduğunu, sodyum atomu içeren bileşiğin ise amorflaştığını göstermiştir. Elde edilen ürüne ait XRD grafiği Şekil 4.25' de verilmiştir.

			LaBO ₃		Na ₂ B ₅ O ₈ OH.H ₂ O	
20	I/I ₀	d _{deneysel} (Å)	(ICDD 12-762)	hkl	(ICDD 35-421)	hkl
			$d_{de ext{gerleri}}$		d _{değerleri}	
19.442	4	4.5620	-	-	4.5900	104
20.777	17	4.2718	-	-	4.2500	210
21.841	8	4.0661	-	-	4.0600	014
23.740	11	3.7449	-	-	2.7400	300
25.800	100	3.4503	3.492	111	-	-
26.699	55	3.3362	3.377	120	-	-
28.957	4	3.0809	-	-	3.0500	-215
29.496	5	3.0259	-	-	3.0300	-206
30.737	18	2.9065	2.936	200	-	-
32.602	5	2.7443	2.767	210	-	-
33.339	10	2.6853	-	-	2.6760	314
35.441	26	2.5308	2.553	002	-	-
37.399	36	2.4026	2.433	211	-	-
37.862	11	2.3743	2.394	220	-	-
41.880	13	2.1553	2.173	022	-	-
44.758	46	2.0232	2.037	122	-	-
46.939	18	1.9341	1.947	140	-	-
47.422	21	1.9156	1.927	202	-	-
48.980	36	1.8582	1.869	231	-	-
51.399	28	1.7763	1.785	311	-	-
51.901	15	1.7603	1.768	320	-	-
52.641	6	1.7373	1.746	222	-	-
55.321	6	1.6593	1.667	013	-	-
57.719	19	1.5959	1.603	113	-	-
59.940	15	1.5420	1.548	142	-	-
61.263	16	1.5118	1.517	151	-	-
64.499	10	1.4436	1.453	322	-	-
65.959	4	1.4151	1.420	340	-	-
66.560	6	1.4038	1.408	242	-	-
67.421	4	1.3879	1.390	411	-	-
67.881	6	1.3796	1.383	420	-	-
73.038	15	1.2944	1.298	233	-	-
74.441	9	1.2735	1.276	004	-	-
74.979	13	1.2657	-	-	-	-

Tablo 4.18 KFD14 Deneyine ait X-Işınları Toz Kırınımı Verileri

	Tablo 4.18' in devamı					
75.878	13	1.2529	-	-	-	-
76.582	6	1.2431	-	-	-	-
76.922	10	1.2385	-	-	-	-
78.158	9	1.2219	-	-	-	-
79.259	9	1.2077	-	-	-	-

Şekil 4.26 KFD14 Deneyine ait X-Işınları Toz Kırınımı Grafiği

KFD14 deneyine ait XRD analiz sonuçları, ürünün LaBO₃ (ICDD 12-762) ve $Na_2B_5O_8OH.H_2O$ (ICDD 35-421) fazlarını içerdiğini göstermiştir. Deneysel olarak elde edilmiş ürüne ait XRD verileri Tablo 4.18' de, XRD grafiği ise Şekil 4.26' da verilmiştir.

KFD15 deneyine ait XRD analiz sonuçları, sodyum atomu içeren fazın amorflaştığını, kristal fazda ise LaBO₃ (ICDD 12-762) bileşiğinin kaldığını göstermiştir. Ürüne ait XRD verileri Şekil 4.27' de verilmektedir.

Şekil 4.27 KFD15 Deneyine ait X-Işınları Toz Kırınımı Grafiği

			NdBO ₃		Na ₂ B ₄ O ₇	
20	I/I ₀	d _{deneysel} (Å)	(ICDD 12-756) hkl		(ICDD 29-1179)	hkl
			d _{değerleri}		d _{değerleri}	
13.461	6	6.5724	-	-	6.550	001
15.301	3	5.7860	-	-	5.780	0-11
16.560	16	5.3487	-	-	5.350	011
16.900	25	5.2419	-	-	5.230	020
19.019	6	4.6626	-	-	4.640	-111
20.382	11	4.3536	-	-	4.360	120
20.623	20	4.3034	4.273	011	-	-
21.799	8	4.0738	4.039	020	-	-
22.639	13	3.9245	-	-	3.926	021
22.898	3	3.8807	-	-	3.879	1-21
25.899	100	3.4374	3.427	111	-	-
26.860	45	3.3165	3.300	120	-	-
27.544	3	3.2358	-	-	3.235	220

Tablo 4.19 KFD16 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.19' un devami							
28.919	3	3.0849	-	-	3.086	2-21	
29.702	5	3.0054	-	-	2.998	1-12	
30.681	15	2.9116	-	-	-	-	
31.041	14	2.8787	2.865	200	-	-	
32.038	9	2.7913			2.790	-230	
32.819	6	2.7267	2.701	210	-	-	
33.539	98	2.6698	-	-	2.670	022	
34.698	4	2.5832	-	-	2.580	202	
35.740	35	2.5103	-	-	2.513	-231	
36.519	61	2.4585	2.438	130	-	-	
37.700	31	2.3842	2.377	031	-	-	
38.340	8	2.3458	2.336	220	-	-	
39.237	2	2.2942	-	-	2.287	032	
40.619	4	2.2193	2.217	112	-	-	
41.480	3	2.1752	-	-	2.176	0-13	
42.200	9	2.1397	2.138	022	-	-	
42.536	4	2.1236	-	-	2.121	-241	
44.101	12	2.0518	-	-	2.052	3-22	
45.160	34	2.0061	2.003	122	-	-	
46.900	7	1.9357	-	-	1.936	-421	
47.320	10	1.9194	-	-	1.923	-123	
47.680	11	1.9058	1.904	140	-	-	
47.941	12	1.8960	1.893	202	-	-	
48.219	8	1.8857	-	-	1.882	340	
48.748	2	1.8665	-	-	1.865	213	
49.719	19	1.8323	1.828	231	-	-	
51.320	2	1.7788	-	-	1.784	402	
52.320	16	1.7472	1.744	311	-	-	
52.801	13	1.7324	1.727	320	-	-	
53.279	8	1.7180	1.714	222	-	-	
54.539	2	1.6812	-	-	-	-	
55.621	3	1.6511	1.650	240	-	-	
56.960	3	1.6154	-	-	-		
58.263	6	1.5823	1.581	113	-	-	
59.858	2	1.5439	-	-	-	-	
60.742	5	1.5235	1.519	142	-	-	
62.319	5	1.4887	1.486	151	-	-	

			Tablo 4.19' un devam	1		
65.420	8	1.4255	1.425	033	-	-
67.201	2	1.3919	1.387	340	-	-
69.161	3	1.3572	1.355	251	-	-
69.722	2	1.3476	1.346	060	-	-
73.900	4	1.2814	-	-	-	-
74.220	7	1.2767	1.276	233	-	-
76.240	5	1.2478	1.246	313	-	-
77.559	3	1.2299	1.227	431	-	-
78.502	3	1.2174	1.216	342	-	-

Şekil 4.28 KFD16 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Boraks ve neodmiyum(III)oksit maddeleri arasında 6:1 mol oranında 650 0 C' de yapılan deneyin XRD analiz sonucu, ürünün NdBO₃ (ICDD 12-756) ve Na₂B₄O₇ (ICDD 29-1179) fazlarını içerdiğini göstermiştir. Elde edilen ürüne ait XRD verileri Tablo 4.19' da, XRD grafiği Şekil 4.28' de verilmiştir.

Şekil 4.29 KFD17 Deneyine ait X-Işınları Toz Kırınımı Grafiği

KFD17 deneyine ait analiz sonuçları yine hedeflenen bileşiğe ulaşılmadığını ve ortamda ana faz olarak yine NdBO₃ (ICDD 12-756) fazının bulunduğunu göstermiştir.

Boraks ve İtriyum (III)oksit maddeleri arasında 6:1 mol oranında ve 1150 0 C' de gerçekleştirilen deneyin XRD analizi üründe, sodyum atomu borlu bileşiğin amorflaştığını, kristal fazda ise YBO₃ (ICDD 83-1205) bileşiğinin bulunduğunu göstermiştir. Elde edilen ürüne ait XRD verileri Tablo 4.20' de XRD grafiği ise Şekil 4.30' da verilmiştir.

		d	YBO	O ₃	
20	I/I ₀	udeneysel	(ICDD 8	3-1205)	hkl
		(A)	$d_{\text{değerleri}}$	I/I_0	
20.260	46	4.3796	4.400	40	002
27.460	96	3.2455	3.270	95	100
29.281	16	3.0476	3.070	14	101
31.980	3	2.7963	-	-	-
34.340	100	2.6093	2.626	100	102
41.160	18	2.1914	2.199	12	004
42.498	3	2.1254	-	-	-
48.360	68	1.8806	1.888	45	110
50.080	49	1.8199	1.826	65	104
52.900	34	1.7294	1.736	40	112
56.420	13	1.6296	1.636	12	200
60.460	27	1.5300	1.534	25	202
63.481	4	1.4642	1.467	2	006
65.280	10	1.4282	1.434	12	114
70.440	27	1.3357	1.339	14	106
71.961	10	1.3111	1.313	18	204
77.261	8	1.2339	1.237	8	210

Tablo 4.20 KFD18 Deneyine ait X-Işınları Toz Kırınımı Verileri

Şekil 4.30 KFD18 Deneyine ait X-Işınları Toz Kırınımı Grafiği

3.1.4 Kolemanit (Ca₂B₆O₁₁.5H₂O) / Nadir toprak metal oksit (La₂O₃, Nd₂O₃) Maddeleri Kullamlarak Yapılan Deneylerin Sonuçları

Deney No	Başlangıç Maddeleri
KFD19	$3Ca_2B_6O_{11}5H_2O + 3La_2O_3 900 \ ^{0}C$
KFD20	$3Ca_{2}B_{6}O_{11}5H_{2}O + La_{2}O_{3}900$ ⁰ C
KFD21	$3Ca_{2}B_{6}O_{11}5H_{2}O + 3La_{2}O_{3} 1150 \ ^{0}C$
KFD22	$3Ca_{2}B_{6}O_{11}5H_{2}O + Nd_{2}O_{3} 900 \ ^{0}C$
KFD23	$3Ca_{2}B_{6}O_{11}5H_{2}O + 3Nd_{2}O_{3}900$ ⁰ C
KFD24	$3Ca_{2}B_{6}O_{11}5H_{2}O + 3Nd_{2}O_{3} 1150 \ ^{0}C$

Tablo 4.21 Ca:B/M (M=La, Nd) Sisteminde Yapılan Deneyler ve Kod Numaraları

Başlangıç maddesi olarak kolemanit ve nadir toprak metal oksit içeren deneylerde 900 0 C ve 1150 0 C gibi sıcaklıklarda çalışılmış, her iki sıcaklık değerinde de yeni ürün oluşumu gözlenmemiştir.

Kolemanit ve Lantanyum(III)oksit maddeleri arasında 1:1 mol oranı ve 900 0 C' de yapılan deneye ait XRD analiz sonucu, üründe LaBO₃ (ICDD 12-762) ve Ca₂B₂O₄ (ICDD 73-79) olmak üzere iki faz bulunduğunu göstermiştir. Elde edilen ürüne ait XRD verileri Tablo 4.22' de, XRD grafiği şekil 4.31' de verilmektedir.

KFD20 deneyinden elde edilen ürünün XRD analizi sonucu, hedeflenen bileşiğin yine sentezlenemediğini göstermiştir.

Yine aynı başlangıç maddeleri ile 1:1 mol oranında, 1150 ⁰C' de yapılan deneyin XRD analizi, KFD19 deneyinde gözlenen fazların varlığını koruduğunu işaret etmiştir.

Kolemanit ve Neodimyum(III)oksit maddeleri arasında değişen mol oranları ve sıcaklıklarda yapılan KFD22, KFD23 ve KFD24 deneylerine ait analiz sonuçları, ürünlerde NdBO₃ (ICDD 12-756) ve CaB₂O₄ (ICDD 73-79) fazlarının bulunduğunu göstermiştir.

			LaBO ₃		CaB ₂ O ₄	
20	I/I ₀	d _{deneysel} (Å) (ICDD 12-762) hkl		(ICDD 73-79)	hkl	
			$d_{de ext{gerleri}}$	d _{değerleri}		
20.538	14	4.3208	4.339	011	-	-
21.603	6	4.1102	4.130	020	-	-
25.559	100	3.4824	3.492	111	-	-
26.459	53	3.3659	3.377	120	-	-
28.720	3	3.1059	-	-	3.1023	200
29.740	13	3.0016	-	-	2.9967	210
30.399	17	2.9381	2.936	200	-	-
30.899	2	2.8916	-	-	2.8966	040
31.238	2	2.8610	-	-	2.8657	031
31.577	2	2.8310	2.822	121	-	-
32.340	3	2.7660	2.767	210	-	-
32.716	2	2.7350	-	-	2.7348	220
34.501	4	2.5975	-	-	2.6016	131
35.239	20	2.5448	2.553	002	-	-
36.158	2	2.4822	2.493	130	-	-
36.939	20	2.4315	2.433	211	-	-
37.201	27	2.4150	2.424	031	-	-
37.561	10	2.3927	2.394	220	-	-
40.341	2	2.2340	2.252	112	-	-
41.699	11	2.1643	2.173	022	-	-
42.260	5	2.1368	-	-	2.1373	002
42.721	2	2.1148	-	-	2.1172	240
44.002	4	2.0562	2.066	040	-	-
44.540	42	2.0326	2.037	122	-	-
46.760	18	1.9411	1.947	140	-	-
47.178	16	1.9249	1.927	202	-	-
48.759	29	1.8661	1.869	231	-	-
49.500	3	1.8399	-	-	1.8381	311
51.100	18	1.7860	1.785	311	-	-
51.600	10	1.7698	1.768	320	-	-
52.457	4	1.7429	1.746	222	-	-
54.399	4	1.6852	1.690	240	-	-
55.160	2	1.6637	1.667	013	-	-
57.520	14	1.6010	1.603	113	-	-

Tablo 4.22 KFD19 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.22' nin devamı								
59.819	10	1.5448	1.548	142	-	-		
61.140	9	1.5146	1.517	151	-	-		
61.702	3	1.5021	-	-	1.5041	242		
63.119	2	1.4718	1.467	400	-	-		
63.980	5	1.4540	1.453	322	-	-		
64.400	7	1.4455	1.449	213	-	-		
65.739	2	1.4193	1.420	340	-	-		
66.421	3	1.4064	1.408	242	-	-		
67.704	3	1.3828	1.383	420	-	-		
68.221	2	1.3736	1.376	060	-	-		
72.859	8	1.2972	1.298	233	-	-		
74.361	6	1.2746	1.276	004	-	-		
74.779	5	1.2685	-	-	1.2636	223		
75.579	6	1.2571	-	-	1.2553	402		
76.779	6	1.2404	-	-	1.2480	412		
77.941	5	1.2248	-	-	1.2269	233		
79.240	4	1.2079	-	-	1.2090	460		

Şekil 4.31 KFD19 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.32 KFD20 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.33 KFD21 Deneyine ait X-Işınları Toz Kırınımı Grafiği

			NdBO ₃		CaB ₂ O ₄	
20	I/I ₀	d _{deneysel} (Å)	Å) (ICDD 12-756) hkl		(ICDD 73-79)	hkl
			$d_{\text{değerleri}}$		$d_{\text{değerleri}}$	
15.400	11	5.7492	-	-	5.7932	020
20.301	34	4.3709	-	-	-	-
20.918	16	4.2433	4.273	011	-	-
22.081	6	4.0223	4.039	020	-	-
26.101	100	3.4112	3.427	111	-	-
26.500	57	3.3608	-	-	3.3681	111
27.139	47	3.2831	3.300	120	-	-
28.839	13	3.0933	-	-	3.1023	200
29.821	100	2.9937	-	-	2.9967	210
30.581	21	2.9210	-	-	-	-
31.020	50	2.8806	-	-	2.8966	040
31.281	27	2.8572	2.865	200	-	-
32.761	12	2.7314	-	-	2.7348	220
33.360	4	2.6837	2.701	210	-	-
34.559	37	2.5933	-	-	2.6016	131
35.721	17	2.5115	2.520	002	-	-
36.139	3	2.4835	-	-	-	-
37.960	39	2.3684	2.377	031	-	-
38.639	8	2.3283	2.336	220	-	-
40.361	13	2.2329	-	-	2.2367	141
40.778	12	2.2110	2.217	112		
41.121	8	2.1934	-	-	-	-
42.341	45	2.1329	2.138	022	-	-
42.701	24	2.1158	-	-	2.1172	240
43.040	23	2.0999	-	-	2.1050	231
44.597	4	2.0301	-	-	2.0372	051
44.981	5	2.0137	2.019	040	-	-
45.340	40	1.9986	2.003	122	-	-
46.980	47	1.9326	-	-	1.9355	151
47.861	17	1.8990	1.904	140	-	-
48.120	17	1.8894	1.893	202	-	-
49.539	51	1.8386	-	-	1.8381	311
49.940	27	1.8247	1.828	231	-	-
52.498	16	1.7417	1.744	311	-	-

Tablo 4.23 KFD22 Deneyine ait X-Işınları Toz Kırınımı Verileri

		Та	blo 4.23' ün devam	1		
53.082	8	1.7239	1.727	320	-	-
53.501	4	1.7114	1.714	222	-	-
54.460	14	1.6835	-	-	1.6840	222
56.021	9	1.6402	1.646	013	-	-
56.561	8	1.6258	-	-	1.6394	260
57.584	4	1.5994	-	-	1.6016	232
58.401	11	1.5789	1.581	113	-	-
60.983	7	1.5181	1.519	142	-	-
61.678	12	1.5026	-	-	1.5041	242
61.898	11	1.4978	-	-	1.4983	420
62.561	6	1.4835	1.486	151	-	-
63.703	3	1.4597	-	-	1.4603	270
64.561	3	1.4423	-	-	1.4467	080
65.040	2	1.4329	-	-	1.4394	322
65.578	10	1.4224	1.425	033	-	-
67.919	4	1.3790	1.387	340	-	-
72.242	5	1.3067	-	-	1.3068	133
72.580	5	1.3015	-	-	1.3024	441
74.360	6	1.2746	1.276	233	-	-
76.362	8	1.2461	1.246	313	-	-
77.822	4	1.2264	1.227	431	-	-
78.681	5	1.2151	1.218	260	-	-
79.118	4	1.2095	-	-	1.2090	460

Şekil 4.34 KFD22 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.35 KFD23 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.36 KFD24 Deneyine ait X-Işınları Toz Kırınımı Grafiği

4.2 Hidrotermal Yöntem Kullanılarak Yapılan Deneylerin Sonuçları

4.2.1 Boraks, Borik asit, Bor oksit / Nadir Toprak Metal Oksit (La₂O₃, Nd₂O₃) Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.24 Na:B, B/M (M=Nd, La) Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
HD1	$2\text{Borax} + \text{Nd}_2\text{O}_3 200 ^{0}\text{C}$
HD2	$2Borax + Nd_2O_3 230 \ ^{0}C$
HD3	2Borik asit + Nd_2O_3 230 ^{0}C
HD4	Bor oksit + Nd_2O_3 230 ^{0}C
HD5	$2Borax + La_2O_3 200 \ ^{0}C$

Nadir toprak metali içeren metal borat bileşiklerinin endüstride çok fazla kullanım alanı bulunduğu için [15], bu kez hidrotermal yöntem kullanılarak ve yine doğal bor minerallerinden yola çıkılarak yeni tipte bileşikler sentezlenmeye çalışılmıştır. Yapılan denemeler sonucunda çift metal içeren yeni tipte herhangi bir bileşik sentezlenemediği görülmüştür. Ancak, boraks ve neodimyum(III)oksit maddeleri arasında 2:1 mol oranında, çözücü olarak saf suyun kullanıldığı ve 200 °C' de teflon otoklavda gerçekleştirilen deneye ait XRD analizi, üründe daha önce hiç tanımlanmayan yeni bir fazın bulunduğunu işaret etmiştir. XRF analizi, ürün içerisinde Nd ve B elementlerinin bulunduğunu, sodyum atomu içeren bileşiğin teflon otoklav içerisindeki suda çözünmüş olarak kaldığını, yıkama işlemiyle de ortamdan uzaklaştırıldığını göstermiştir. Bu elde edilen veri ışığında, Nd ve B içeren bileşiklerin ICDD kartları taranmış, ancak elde edilen yeni faza ilişkin bir tanımlama yapılamamıştır. Yapılan tüm incelemeler sonucunda elde edilen ürünün XRD grafiğinin, vaterite yapısına sahip olan SmBO₃ (ICDD 74-1930) bileşiğinin XRD grafiği ile oldukça benzer olduğu görülmüştür. Bundan yola çıkılarak elde edilen ürünün vaterite yapısına sahip NdBO3 bileşiği olabileceği düşünülmüştür.

Literatürde daha önce vaterite yapısında sentezlenmiş NdBO₃ bileşiğine rastlanmamıştır. Neodimyum ortoborat bileşiğinin şimdiye kadar sentezlenmiş iki yapı tipi bilinmektedir. Bunlardan düşük sıcaklık yapı tipi arrogonite formuna sahip NdBO₃ (ICDD 12-756) bileşiği literatürde ilk defa neodmiyum oksit ve boroksit

maddelerinin 1075 0 C' de, 18 saat ısıtılması ile elde edilmiştir [110]. Yüksek sıcaklık yapı tipine sahip NdBO₃ bileşiği ise, arrogonite tipi NdBO₃['] ün 1475 0 C' de 1 saat süre ile ısıtılması ile elde edilmiştir. Arragonite yapılı NdBO₃, ortorombik sistemde kristallenmiş olup, uzay grubu Pnma, yüksek sıcaklık yapı formuna sahip NdBO₃ ise tiriklinik sistemde indekslenmiş olup, uzay grubu P1' dir [111].

Nadir toprak metali içeren ortoborat bileşikleri genel olarak üç farklı yapı tipini tercih ederler. Bunlar arragonite, vaterite ve kalsit yapılarıdır. Lantanit serisi içinde büyük yarıçapa sahip iyonlar düşük sıcaklıklarda arrogonite yapısını tercih ederler (La, Pr ve Nd) [111]. İtriyum ve daha küçük yarıçapa sahip nadir toprak metali iyonları (Sm-Lu) vaterite (μ -CaCO₃) ile eş kristal yapıya sahiptir [112]. İndiyum borate ise sadece kalsit yapı tipini gösterir [111].

Nadir toprak ortoborat fazları arasında vaterite yapısı şimdiye kadar tartışılan en karmaşık yapı tipi olmuştur [113]. İlk önceleri Newnham ve arkadaşları [114] bu yapıdaki bileşikler için iki olası yapı tipini önermiştir. Bunlar bozulmuş bir hekzagonal yapıya sahip P6₃/mmc ve P6₃/mcm uzay gruplarıdır. Daha sonraları Bradley ve arkadaşları yapının P6c2 uzay grubunda olduğunu ileri sürmüştür [115]. Son zamanlarda yapılan Raman, IR ve NMR çalışmaları, bu bileşiklerin, bor atomunun tetrehedral koordinasyonda olduğu, B₃O₉ gruplarını içerdiğini ortaya koymuştur [116-118]. 1999 yılında Ren ve arkadaşları elektron difraksiyonu ve Xışını toz difraksiyonu verilerinden yararlanarak, vaterite yapısına sahip düşük sıcaklık GdBO₃ bileşiğinin, rombohedral yapıda kristallendiğini ve uzay grubunun R32 olduğunu bulmuşlardır [119]. 2004 yılında ise Lin ve arkadaşları, vaterite yapı tipinde $Y_{0.92}Er_{0.08}BO_3$ bileşiğini sentezlemişler, nötron difraksiyonundan yararlanarak kristal yapıyı çözümlemeye çalışmışlar, hem düşük sıcaklık hem de yüksek sıcaklık yapı tipi için bu bileşiğin monoklinik sistemde kristallendiğini, uzay grubunun ise C2/c olduğunu işaret etmişlerdir [113].

HD1 deneyinden elde edilen ürüne ait XRD verileri, tarihsel gelişim dikkate alınarak öncelikle hekzagonal sistem temel alınarak indekslenmeye çalışılmış birkaç küçük pik dışında diğer bütün pikler indekslemeye katılmıştır. Birim hücre parametreleri a=3.9011 Å ve c=9.0229 Å olarak bulunmuştur.

			Hekzag	onal	Ortoron	ıbik	Monok	linik	Monok	linik
20	т/т	4	sisteme	gore	sisteme	gore	sisteme	gore	sisteme	gore
20	1/10	Udeneysel	P63/m	mc	Pbnn	n	(C2/	'c)	(P))
			d _{hesaplanan}	hkl	d _{hesaplanan}	hkl	d _{hesaplanar}	n hkl	d _{hesaplanan}	hkl
15.9	2	5.5623	-	-	-	-	-	-	-	-
19.6	100	4.5031	4.5120	002	4.5114	002	4.5126	002	4.5126	002
26.3	14	3.3759	3.3785	100	3.3756	020	3.3798	020	3.3798	020
27.8	1	3.2044	-	-	-	-	3.1947	112	3.1947	112
28.7	2	3.0975	-	-	-	-	3.0971	310	3.0971	310
33.1	35	2.7027	2.7044	102	2.7028	022	2.7052	022	2.7052	022
39.9	25	2.2544	2.2560	004	2.2557	004	2.2563	004	2.2532	030
46.5	6	1.9506	1.9505	110	1.9514	600	1.9494	114	1.9494	114
48.4	37	1.8762	1.8762	104	1.8761	314	1.8766	024	1.8764	-521
49.7	1	1.8322	-	-	1.8355	611	-	-	1.8353	-415
50.9	8	1.7906	1.7904	112	1.7911	602	1.7906	-604	1.7906	-604
54.2	2	1.6897	1.6892	200	1.6894	620	1.6899	040	1.6899	040
58.2	4	1.5819	1.5820	202	1.5822	622	1.5823	-624	1.5823	-624
61.6	4	1.5039	1.5040	006	1.5038	006	1.5042	006	1.5042	006
62.9	4	1.4759	1.4755	114	1.4758	604	1.4758	-226	1.4758	-226
68.1	14	1.3743	1.3740	106	1.3739	316	1.3742	026	1.3742	026
69.4	4	1.3524	1.3522	204	1.3522	624	1.3526	044	1.3525	-541
74.2	1	1.2760	1.2769	210	1.2761	350	1.2760	-821	1.2760	-821
77.6	3	1.2293	1.2287	212	1.2291	912	1.2290	-644	1.2290	-644

Tablo 4.25 HD1 Deneyine ait X-Işınları Toz Kırınımı Verileri

İkinci olarak ortorombik sistem temel alınarak indeksleme yapılmaya çalışılmış, yine birkaç küçük pik dışında bütün pikler indekslemeye katılmıştır. Birim hücre parametreleri a=11.7086 Å, b=6.7513 Å ve c=9.0229 Å olarak bulunmuştur. Son olarak monoklinik sistem temel alınarak bir indeksleme yapılmış, bu durumda da bazı pik değerleri dışındaki tüm pikler indekslemeye katılmıştır. Birim hücre parametreleri ise a=11.5221 Å, b=6.7595 Å, c=9.9481 Å ve β =114.875⁰ olarak bulunmuştur.

Şekil 4.37 HD1 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Frekans (cm ⁻¹)
υ ₃ (BO ₄)	1121, 956
<i>v</i> ₁ (BO ₄)	886, 816

Tablo 4.26 HD1 Deneyine ait FTIR Spektrumu Verileri

Hangi sistem temel alınarak indeksleme işlemi yapılırsa yapılsın bazı pikler indeksleme işlemine katılamadığı için daha yüksek sıcaklıklara çıkılarak deneyler tekrarlanmıştır.

Boraks ve neodimyum(III)oksit maddeleri arasında 2:1 mol oranında, 230 ^oC' de yapılan deneyden elde edilen ürüne ait XRD analizi, daha önceden sentezlenemeyen yeni bir fazın varlığını ortaya koymuştur.

Elde edilen ürüne ait XRD verileri, en son literatür verilerine göre, monoklinik sistem temel alınarak indekslenmeye çalışılmıştır. Yapılan indeksleme sonucunda C2/c uzay grubu temel alındığında bazı piklerin indekslemeye katılamadığı, basit bravis örgüsü temel alındığında ise tüm piklerin indekslemeye girdiği görülmüştür. Elde edilen ürüne ait rafine edilmiş birim hücre parametreleri a=11.812(1) Å, b=6.754(2) Å, c=9.913(5) Å ve β =115.34(8) olarak hesaplanmıştır. Bu değerler daha önceden sentezlenmiş benzer kristal yapıdaki düşük sıcaklık YBO₃ bileşiğine ait hücre parametrelerinden daha büyüktür (a=11.314 Å, b=6.540 Å, c=9.550 Å, β =112.9). Bunun nedeni Nd⁺³ (r=1.04 Å) iyonlarının yarıçapının Y⁺³ (r=0.92 Å) iyonlarının yarı çapından daha büyük olmasıdır [105].

Vaterite yapısına sahip NdBO₃ bileşiği ilk kez bu çalışmada saf olarak elde edilmiştir. Reaksiyonun gerçekleşmesi sırasında oluşan yüksek basıncın, iyon gruplarını bu sistemde bir araya getirerek vaterite yapısındaki NdBO₃ bileşiğini oluşturduğu düşünülmektedir.

HD2 deneyinden elde edilen ürüne ait XRD verileri Tablo 4.27' de, XRD grafiği ise Şekil 4.39' da verilmektedir.
			Monoklinik sisteme gore			Monoklinik sisteme gore			
20	I/I ₀	d _{deneysel}	Uzay grubu (C2/c)			Uza	y grubu (P)		
			d _{hesaplanan}	hkl (fark	(x10 ⁻⁴)	d _{hesaplanan}	hkl fark ($(x10^{-4})$	
19.679	76	4.5076	4.5118	-202	0.5	4.5118	-202	0.5	
26.378	85	3.3760	3.3771	020	0.3	3.3771	020	0.3	
28.201	5	3.1619	3.1600	021	0.7	3.1629	-121	0.4	
33.101	100	2.7042	2.7036	-222	0.4	2.7036	-222	0.4	
39.941	18	2.2554	2.2559	-404	0.5	2.2559	-404	0.5	
46.537	26	1.9499	1.9542	402	6.8	1.9509	231	1.5	
48.499	50	1.8755	1.8759	-424	0.7	1.8759	-424	0.7	
50.940	27	1.7912	-	-	-	1.7918	005	1.3	
54.260	8	1.6892	1.6886	040	0.6	1.6886	040	0.6	
58.259	15	1.5824	1.5828	025	1.2	1.5825	-506	0.5	
61.600	3	1.5044	1.5039	-606	1.7	1.5045	-723	0.3	
62.920	8	1.4759	-	-	-	1.4758	432	0.4	
68.199	13	1.3740	1.3739	-626	0.7	1.3739	-626	0.7	
69.400	9	1.3531	1.3526	-823	2.2	1.3526	-823	2.2	
74.181	5	1.2773	1.2777	442	2.0	1.2773	216	0.2	
77.600	10	1.2293	1.2289	045	2.8	1.2295	-308	1.5	
80.502	4	1.1922	1.1920	117	1.7	1.1920	117	1.7	
86.139	4	1.1280	1.1279	-808	0.5	1.1278	-808	0.5	
86.559	5	1.1236	1.1237	154	0.9	1.1237	154	0.9	
87.700	7	1.1119	1.1120	-10 2 3	0.5	1.1120	-10 2 3	0.5	
89.561	3	1.0936	1.0937	-10 2 2	0.8	1.0937	-10 2 2	0.8	

Tablo 4.27 HD2-NdBO3 Bileşiğine ait X-Işınları Toz Kırınımı Verileri

Şekil 4.39 HD2-NdBO $_3$ Bileşiğine ait X-Işınları Toz Kırınımı Grafiği

Tablo 4.28 HD2-NdBO3 Bileşiğine ait FTIR Spektrumu Verileri

Şekil 4.40 HD2- NdBO3 Bileşiğine ait FTIR Spektrumu

Vaterite yapısını oluşturan 3 üyeli halka B_3O_9 ' da bor atomu oksijen atomu ile dörtlü koordinasyondadır. Bor atomunun oksijenle dörtlü koordinasyonda bulunduğu $(BO_4)^{-5}$ fonksiyonel grubu 4 temel titreşim frekansına sahiptir. Antisimetrik ve simetrik gerilme titreşimleri $(v_3 \text{ ve } v_1)$ 1196 cm⁻¹ ile 805 cm⁻¹ arasında gözlenirken, 709 cm⁻¹ ile 436 cm⁻¹ arasında bükülme titreşimleri $(v_4 \text{ ve } v_2)$ gözlenir [78, 131, 133]. Deneysel olarak elde edilen NdBO₃ bileşiğine ait titreşim frekansları bu değerler ile uyum içerisindedir.

Şekil 4.41 HD2- NdBO3 Bileşiğine ait DTA/TG eğrileri

20 ^oC ve 1200 ^oC arasında, azot atmosferinde yapılan DTA ölçümleri 718 ^oC' de bir faz dönüşümünün gerçekleştiğini, 730 ^oC' nin üzerinde bileşiğin vaterite yapı tipinden arrogonite yapı tipine dönüştüğünü ortaya koymuştur.

Tesadüfen elde edilmiş vaterite yapısına sahip NdBO₃ bileşiğinin elde edilmesinde iki farklı sentez yöntemi daha kullanılmıştır. İkinci sentez yolunda, neodmiyum(III)oksit ve borik asit maddeleri 1:2 mol oranında, çözücü olarak suyun kullanıldığı teflon otoklavda 230 ^oC' de dört gün süre ile bekletilmiştir. Elde edilen ürünlerin XRD grafiği, HD2 deneyine ait XRD grafiği ile çok benzerdir. Sadece birkaç pik oluşumu daha gözlemlenmiştir. Monoklinik sistem temel alınarak ürüne ait XRD verileri indekslenmiştir. Rafine edilmiş birim hücre parametreleri ise a=11.8128 Å, b=6.7456 Å, c=9.9211 Å ve β =115.367⁰ olarak hesaplanmıştır. Uzay grubu olarak C2/c tayin edildiğinde bazı pik değerleri indeksleme dışında kalırken, basit bravis örgüsü tayin edildiğinde bütün pik değerleri indekslemeye katılmıştır. Ürüne ait XRD verileri Tablo 4.29' de , XRD grafiği ise Şekil 4.41' de verilmektedir.

			Monoklinik sisteme gore			Monoklinik sisteme gore			
20	I/I ₀	d _{deneysel}	Uzay	grubu (C2/	(c)	Uza	y grubu (P))	
			d _{hesaplanan}	hkl fark	(x10 ⁻⁴)	d _{hesaplanan}	hkl fark	(x10 ⁻⁴)	
17.818	2	4.9738	-	-	-	4.9603	-102	1.3	
19.641	100	4.5162	4.5146	-202	0.2	4.5146	-202	0.2	
24.940	4	3.5673	-	-	-	3.5579	300	2.6	
26.339	47	3.3810	3.3728	020	2.6	3.3818	211	0.3	
28.179	3	3.1642	3.1568	021	2.9	3.1596	-121	1.9	
30.840	3	2.8970	2.9041	-402	3.6	2.9041	-402	3.6	
33.079	63	2.7058	2.7020	-222	2.4	2.7020	-222	2.4	
39.921	24	2.2565	2.2573	-404	0.8	2.2573	-404	0.8	
43.938	1	2.0590	-	-	-	2.0605	123	2.1	
44.438	1	2.0370	2.0353	510	2.5	2.0353	510	2.5	
46.481	16	1.9522	1.9523	-331	0.1	1.9523	-331	0.1	
48.460	42	1.8769	1.8759	-424	1.8	1.8770	412	0.3	
50.920	16	1.7919	-	-	-	1.7929	005	2.1	
54.218	4	1.6904	1.6909	422	1.3	1.6909	422	1.3	
58.240	9	1.5829	1.5831	025	0.7	1.5831	025	0.7	
61.601	3	1.5043	1.5049	-606	2.0	1.5042	-723	0.2	
62.901	5	1.4763	-	-	-	1.4763	-803	0.0	
68.179	13	1.3743	1.3743	-626	0.2	1.3743	-626	0.2	
68.299	10	1.3722	1.3704	116	8.5	1.3719	-542	1.3	
69.381	6	1.3534	1.3529	315	2.7	1.3529	315	2.7	
74.159	3	1.2776	1.2767	442	5.1	1.2777	216	0.8	
77.580	6	1.2296	1.2284	045	8.0	1.2296	053	0.1	
80.539	4	1.1917	1.1925	117	7.0	1.1914	-618	2.3	
86.120	4	1.1282	1.1283	-934	1.0	1.1283	-934	1.0	
86.499	4	1.1242	1.1243	060	0.5	1.1243	060	0.5	
87.641	4	1.1125	-	-	-	1.1127	-652	1.6	
87.700	4	1.1119	1.1118	-10 2 3	0.8	1.1118	-10 2 3	0.8	
89.580	2	1.0934	1.0935	-10 2 2	0.8	1.0935	-10 2 2	0.8	

Tablo 4.29 HD3-NdBO3 Bileşiğine ait X-Işınları Toz Kırınımı Verileri

Şekil 4.42 HD3- NdBO $_3$ Bileşiğine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
v ₃ (BO ₄)	1104, 956
𝙂 1(BO₄)	886, 825

Tablo 4.30 HD3-NdBO3 Bileşiğine ait FTIR Spektrumu Verileri

Şekil 4.43 HD3- NdBO3 Bileşiğine ait FTIR Spektrumu

Elde edilen ürüne ait FTIR spektrum verileri, $(BO_4)^{-5}$ fonksiyonel grubunun varlığını desteklemektedir.

Şekil 4.44 HD3- NdBO3 Bileşiğine ait DTA/TG eğrileri

20 ^oC ve 1200 ^oC arasında, azot atmosferinde yapılan DTA ölçümleri 747 ^oC de bir faz dönüşümünün gerçekleştiğini, 770 ^oC' nin üzerinde bileşiğin vaterite yapı tipinden arrogonite yapı tipine dönüştüğünü ortaya koymuştur.

Vaterite yapısına sahip NdBO₃ bileşiğinin sentezlenmesinde kullanılan üçüncü yolda, neodimyum(III)oksit ve boroksit maddeleri 1:1 mol oranında, çözücü olarak suyun kullanıldığı teflon otoklavda 230 ⁰C' de, dört gün süre ile bekletilmiştir. Elde edilen ürünlerin XRD grafiği HD2 deneyine ait XRD grafiği ile çok benzerdir. Sadece birkaç pik oluşumu daha gözlemlenmiştir.

Ürüne ait XRD verileri monoklinic sistem temel alınarak indekslenmiştir. Birim hücre parametreleri a=11.7261 Å, b=67592 Å, c=9.9094 Å ve β =114.500⁰ olarak hesaplanmıştır. Uzay grubu olarak C2/c tayin edildiğinde bazı pik değerleri indeksleme dışında kalırken, primitive bravis örgüsü tayin edildiğinde bütün pik değerleri indekslemeye katılmıştır. Ürüne ait XRD verileri Tablo 4.31' de , XRD grafiği ise Şekil 4.43' de verilmektedir.

			Monoklinik sisteme gore			Monoklinik sisteme gore			
20	I/I ₀	d _{deneysel}	Uzay	grubu (C2/	(c)	Uza	y grubu	(P)	
			d _{hesaplanan}	hkl fark	(x10 ⁻⁴)	d _{hesaplanan}	hkl fa	rk (x10 ⁻⁴)	
17.879	5	4.9571	-	-	-	4.9545	-102	0.2	
19.680	91	4.5074	4.5086	002	0.2	4.5086	002	0.2	
24.959	7	3.5647	-	-	-	3.5568	300	2.1	
26.360	77	3.3783	3.3796	020	0.4	3.3796	020	0.4	
28.181	5	3.1640	3.1646	021	0.2	3.1646	021	0.2	
30.858	8	2.8954	2.9012	202	2.9	2.9012	202	2.9	
33.099	100	2.7043	2.7042	022	0.1	2.7042	022	0.1	
36.160	1	2.4821	2.4773	-204	3.8	2.4813	410	0.6	
39.959	27	2.2544	2.2543	004	0.1	2.2543	004	0.1	
43.923	3	2.0597	2.0614	-423	2.3	2.0614	-423	2.3	
44.478	4	2.0353	2.0350	510	0.3	2.0350	510	0.3	
46.501	27	1.9514	1.9519	-331	0.8	1.9519	-331	0.8	
47.902	4	1.8975	1.8929	-315	8.1	1.8956	-215	3.2	
48.499	63	1.8755	1.8754	024	0.2	1.8754	024	0.2	
50.960	26	1.7906	-	-	-	1.7916	-505	2.0	
54.240	9	1.6898	1.6898	040	0.0	1.6898	040	0.0	
54.642	2	1.6783	-	-	-	1.6784	502	0.4	
58.259	14	1.5824	1.5823	042	0.3	1.5823	042	0.3	
61.676	4	1.5027	1.5029	006	0.6	1.5029	006	0.6	
62.959	8	1.4751	1.4730	043	7.9	1.4751	503	0.0	
68.200	18	1.3740	1.3732	026	3.6	1.3734	342	2.8	
69.422	10	1.3527	1.3521	044	2.9	1.3525	-815	1.0	
74.179	5	1.2773	1.2776	-351	1.5	1.2772	-816	0.3	
77.581	10	1.2296	1.2315	-353	12.2	1.2293	-545	2.0	
80.271	2	1.1950	1.1950	136	0.1	1.1950	136	0.1	
80.542	6	1.1917	1.1911	443	4.3	1.1919	-817	1.4	
80.801	4	1.1885	1.1885	425	0.1	1.1885	425	0.1	
86.139	5	1.1280	1.1281	534	1.0	1.1281	534	1.0	
86.539	6	1.1238	1.1243	-554	3.8	1.1243	-554	3.8	
86.733	1	1.1218	1.1216	-934	1.5	1.1216	-934	1.5	
87.701	6	1.1119	1.1127	-737	7.4	1.1118	018	0.9	
87.919	2	1.1097	-	-	-	1.097	416	0.1	
89.600	3	1.0932	1.0932	822	0.1	1.0932	822	0.1	

Tablo 4.31 HD4-NdBO3 Bileşiğine ait X-Işınları Toz Kırınımı Verileri

Şekil 4.45 HD4- NdBO3 Bileşiğine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
v ₃ (BO ₄)	1102, 956
v ₁ (BO ₄)	886, 822

Tablo 4.32 HD4-NdBO3 Bileşiğine ait FTIR Spektrumu Verileri

Şekil 4.46 HD4-NdBO3 Bileşiğine ait FTIR Spektrumu

Elde edilen ürüne ait FTIR spektrum verileri, (BO₄)⁻⁵ fonksiyonel grubunun varlığını desteklemektedir.

Şekil 4.47 HD4- NdBO3 Bileşiğine ait DTA/TG eğrileri

 $20\ {}^{0}$ C ve $1200\ {}^{0}$ C arasında, azot atmosferinde yapılan DTA ölçümleri 748 0 C' de bir faz dönüşümünün gerçekleştiğini, 780 0 C' nin üzerinde bileşiğin vaterite yapı tipinden arrogonite yapı tipine dönüştüğünü ortaya koymuştur.

HD5 deneyinden elde edilen ürüne ait XRD analizi, NdBO₃ (ICDD 12-762) bileşiğinin bulunduğunu, içinde sodyum içeren bileşiğin ise teflon otoklavdaki çözücü içinde kalarak, yıkama işleme sonucunda ortamdan uzaklaştırıldığını, göstermiştir. Ürüne ait XRD grafiği Şekil 4.48' de FTIR spektrumu Şekil 4.49' da verilmektedir.

Şekil 4.48 HD5 Deneyine ait X-Işınları Toz Kırınımı Grafiği

4.2.2. Kolemanit (Ca $_2B_6O_{11}.5H_2O$) / Nd $_2O_3$ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.33 Ca:B/Nd Sisteminde Yapılan Deney ve Kod Numarası

Deney No	Başlangıç Maddeleri
HD6	$Ca_2B_6O_{11}.5H_2O + Nd_2O_3 200 \ ^0C$

Şekil 4.50 HD6 Deneyine ait X-Işınları Toz Kırınımı Grafiği

HD6 deneyinden elde edilen ürüne ait XRD analizi, ortamda $La(OH)_3$ (ICDD 36-1481) ve $Ca_2B_4O_8$. H_2O (ICDD 15-532) bileşiklerinin bulunduğunu göstermiştir. Ürüne ait XRD grafiği Şekil 4.50' de FTIR spektrumu Şekil 4.51' de verilmektedir.

Şekil 4.51 HD6 Deneyine ait FTIR Spektrumu

4.2.3 CuO / (NH₄)₂HPO₄, H₃PO₄ / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.34 Cu/P ve Cu/P/B Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
HD7	$CuO + H_3BO_3 + (NH_4)_2HPO_4 160 \ ^0C (H_3PO_4 \text{ ortaminda})$
HD8	$CuO + H_3BO_3 + (NH_4)_2HPO_4 180 \ ^0C$ (HCl ortamında)
HD9	$2CuO + H_3PO_4 \ 160 \ ^0C$
HD10	$CuO + (NH_4)_2HPO_4 \ 160 \ ^0C$

Tablo 4.35 HD7 Deneyine ait X-Işınları Toz Kırınımı Verileri

		d	α -Cu ₂ P ₂ O ₇		BPO ₄	
20	I/I ₀	deneysel	(ICDD 21-880)	hkl	(ICDD 34-132)	hkl
		(A)	$d_{de ext{gerleri}}$		$d_{de ext{gerleri}}$	
17.622	3	5.0288	5.0633	110	-	-
20.740	9	4.2793	4.3161	002	-	-
23.459	3	3.7891	3.8144	-112	-	-
24.678	100	3.6046	-	-	3.6351	101
26.962	2	3.3042	-	-	3.3207	002
28.480	37	3.1314	3.1443	-202	-	-
29.297	5	3.0460	-	-	3.0699	110
30.419	60	2.9362	2.9568	022	-	-
30.621	39	2.9172	2.9284	112	-	-
31.859	1	2.8067	2.8412	-113	-	-
35.580	11	2.5212	2.5321	220	-	-
36.139	12	2.4834	2.4953	130	-	-
40.139	37	2.2447	-	-	2.2546	112
41.086	2	2.1951	2.2046	-114	-	-
41.922	6	2.1533	2.1601	-204	-	-
43.402	4	2.0832	2.0868	310	-	-
44.341	17	2.0413	2.0491	132	-	-
46.179	8	1.9642	1.9706	222	-	-
47.801	10	1.9012	1.9065	-224	-	-
49.040	12	1.8561	-	-	1.8641	211
49.819	3	1.8289	1.8357	042	-	-
50.359	6	1.8105	-	-	1.8175	202

	Tablo 4.35' in devamı						
51.654	4	1.7352	1.7478	-134	-	-	
52.882	4	1.7299	1.7330	-332	-	-	
54.440	5	1.6841	1.6874	330	-	-	
56.918	2	1.6165	1.6200	400	-	-	
58.342	2	1.5804	1.5814	-422	-	-	
58.861	8	1.5676	1.5701	204	-	-	
60.319	16	1.5332	1.5378	134	-	-	
61.119	3	1.5150	1.5190	-152	-	-	
62.942	2	1.4755	1.4784	044	-	-	
63.840	11	1.4569	-	-	1.4597	213	
64.517	4	1.4432	1.4487	332	-	-	
64.741	5	1.4388	1.4415	152	-	-	
68.422	4	1.3700	-	-	1.3732	310	
69.600	4	1.3497	1.3521	060	-	-	
71.460	8	1.3191	-	-	1.3192	204	
72.980	3	1.2953	1.2974	-350	-	-	
74.940	4	1.2662	-	-	1.2689	312	
76.760	4	1.2407	1.2422	-262	-	-	
79.158	3	1.2090	-	-	1.2114	303	

Bakır(II)oksit, borik asit ve diamonyum hidrojen fosfat maddelerinin, 1:1:1 mol oranında, çözücü olarak suyun kullanıldığı (5 ml fosforik asit ilavesi) teflon otoklavda 160 0 C' de 3 gün süre ile bekletildiği hidrotermal reaksiyon sonucu elde edilen ürünün XRD analizi, hedeflenen borfosfatlı bileşiğin sentezlenemediğini, α -Cu₂P₂O₇ (ICDD 21-880) ve BPO₄ (ICDD 34-132) bileşiklerinin oluştuğunu göstermiştir. Elde edilen ürünlere ait XRD verileri Tablo 4.35' de, Şekil 4.52' de verilmiştir.

Şekil 4.52 HD7 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ ₃ (BO ₄), υ ₃ (PO ₄)	1169, 1071, 1007
$\upsilon_1(PO_4), \ \upsilon_{as}(POP)$	931
$\upsilon_{s}(\text{POP}), \ \delta \ (\text{CO}_{2})$	668
υ ₄ (BO ₄), υ ₄ (PO ₄),	620
𝙂₄(PO₄)	567, 523
υ₂(PO₄)	411

Tablo 4.36 HD7 Deneyine ait FTIR Spektrumu Verileri

 $(P_2O_7)^{-4}$ anyonu üç temel titreşim frekansına sahiptir. Bunlar; $\upsilon_{as}(POP)=1026-916 \text{ cm}^{-1}$, $\upsilon_s(POP)=766-670 \text{ cm}^{-1}$ ve δ (POP)=365 cm⁻¹ titreşim frekanslarıdır [45, 136]. BPO₄ grubu ise tetrahedral (BO₄)⁻⁵ ile tetrahedral (PO₄)⁻³ anyonlarının bir oksijen atomunu ortak kullanmasıyla oluşan birimlerden meydana gelir. Ürüne ait FTIR spektrumu verileri, fazların yapılarında bulunan (P₂O₇)⁻⁴, (BO₄)⁻⁵ ve (PO₄)⁻³ fonksiyonel grupların varlığını desteklemektedir.

Şekil 4.53 HD7 Deneyine ait FTIR Spektrumu

20	I/I ₀	d _{deneysel} (Å)	Cu ₂ PO ₄ .OH (ICDD 36-404) d _{değerleri}	hkl	CuO (ICDD 5-661) d _{değerleri}	hkl
15.339	68	5.7717	5.8070	110	-	-
18.518	75	4.7876	4.8200	011	-	-
18.722	65	4.7358	4.7560	101	-	-
21.561	7	4.1183	4.1360	111	-	-
23.980	51	3.7079	3.7200	120	-	-
24.580	20	3.6188	3.6330	210	-	-
30.424	13	2.9356	2.9420	002	-	-
30.840	100	2.8971	2.9080	220	-	-
32.502	2	2.7526	-	-	2.7510	110
33.969	30	2.6370	2.6440	130	-	-
34.200	81	2.6197	2.6270	112	-	-
34.481	20	2.5990	2.6060	221	-	-
35.138	37	2.5519	2.5590	310	-	-
35.601	37	2.5198	2.5270	031	-	-

Tablo 4.37 HD8 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.37' nin devamı						
36.821	17	2.4390	2.4440	301	-	-
37.359	42	2.4051	2.4120	131	-	-
37.902	34	2.3719	2.3760	202	_	-
38.418	12	2.3412	2.3470	311	-	-
38.783	18	2.3200	-	-	2.3230	111
39.061	35	2.3042	2.3090	122	-	-
39.900	3	2.2576	2.2640	320	-	-
43.839	11	2.0635	2.0690	222	-	-
46.201	5	1.9633	1.9674	132	-	-
47.101	8	1.9279	1.9324	312	-	-
47.365	9	1.9177	1.9208	141	_	-
47.720	11	1.9043	1.9065	103	-	-
49.039	14	1.8561	1.8596	411	-	-
50.360	4	1.8105	1.8171	420	-	-
50.941	4	1.7912	1.7950	322	-	-
52.799	4	1.7325	1.7362	421	-	-
53.680	29	1.7061	1.7095	042	-	-
55.280	18	1.6604	1.6632	402	-	-
55.981	7	1.6413	1.6441	150	-	-
56.920	22	1.6164	1.6193	332	-	-
57.954	7	1.5900	1.5929	341	-	
58.301	24	1.5814	1.5844	303	-	-
58.660	14	1.5725	1.5745	133	-	-
59.361	6	1.5556	1.5574	313	-	-
59.860	25	1.5439	1.5461	422	-	-
60.619	6	1.5263	1.5296	511	-	-
61.641	8	1.5035	1.5055	520	-	-
63.199	14	1.4701	1.4719	004	-	-
64.100	18	1.4516	1.4540	440	-	-
65.398	4	1.4259	1.4270	114	-	-
65.881	2	1.4166	-	-	1.4180	022
66.379	3	1.4072	1.4120	441	-	-
67.140	3	1.3930	1.3948	512	-	-
68.080	4	1.3761	1.3792	333	-	-
68.501	5	1.3687	1.3722	252	-	-
70.261	6	1.3386	1.3403	522	-	-
71.381	4	1.3203	1.3224	260	-	-

	Tablo 4.37' nin devamı					
71.901	11	1.3121	1.3133	224	-	-
72.557	5	1.3018	1.3040	442	-	-
73.680	6	1.2847	1.2861	134	-	-
74.342	6	1.2749	1.2760	053	-	-
75.300	8	1.2610	1.2641	062	-	-
76.124	3	1.2494	1.2499	541	-	-
77.479	4	1.2309	1.2327	513	-	-

Şekil 4.54 HD8 Deneyine ait X-Işınları Toz Kırınımı Grafiği

HD8 deneyine ait XRD analizi, üründe Cu₂PO₄OH (ICDD 36-404) ve CuO (ICDD 5-661) bileşiklerinin bulunduğunu göstermiştir. Ürüne ait XRD grafiği Şekil 4.54' de, XRD verileri Tablo 3.37' da verilmektedir.

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ ₃ (PO ₄)	1051
υ ₁ (PO ₄)	942, 808
υ ₄ (PO ₄)	637, 609, 551, 517, 481
υ ₂ (PO ₄)	444

Tablo 4.38 HD8 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.55 HD8 Deneyine ait FTIR Spektrumu

Ürüne ait FTIR spektrum verileri, (PO₄)⁻³ fonksiyonel grubunun varlığını desteklemektedir.

Bakır(II)oksit ve fosforik asit maddelerinden yola çıkılarak, 2:1 mol oranında, çözücü olarak suyun kullanıldığı teflon otoklavda 160 0 C' de 3 gün süre ile yapılan hidrotermal reaksiyona ait XRD analizi, üründe iki farklı fazın bulunduğunu ve bu fazların Cu₂PO₄OH (ICDD 36-404) ve CuO (ICDD 5-661) olduğunu göstermiştir. Ürüne ait XRD grafiği Şekil 4.56' da, FTIR spektrumu ise Şekil 4.57' de verilmiştir. FTIR spektrum verileri, (PO₄)⁻³ gurubu anyonların varlığını desteklemektedir.

Şekil 4.56 HD9 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ ₃ (PO ₄)	1051
υ ₁ (PO ₄)	942, 811
υ ₄ (PO ₄)	632, 612, 548, 520, 483
υ ₂ (PO ₄)	444

Tablo 4.39 HD9 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.57 HD9 Deneyine ait FTIR Spektrumu

HD10 deneyinden elde edilen ürüne ait XRD verileri, ortamda $Cu_5(PO_4)_2(OH)_4$ (ICDD 83-1207) bileşiğinin oluştuğunu göstermiştir. Literatür verilerine göre $Cu_5(PO_4)_2(OH)_4$ bileşiği monoklinik sistemde sistemde kristallenmiş olup, uzay grubu P2₁/a' dır. Birim hücre parametreleri ise a=9.1861 Å, b=10.6842 Å, c=4.4612 Å ve β =92.310⁰, dir [120]. Ürüne ait XRD verileri Tablo 4.40' da, XRD grafiği ise Şekil 4.58' de verilmektedir.

Elde edilen ürüne ait FTIR spektrum pikleri, $(PO_4)^{-3}$ fonksiyonel grubunun varlığını desteklemektedir.

			$Cu_5(PO_4)_2(C$		
20	I/I ₀	d _{deneysel} (Å)	(ICDD 83-12	207)	hkl
			$\mathbf{d}_{ ext{değerleri}}$	I/I_0	
16.581	38	5.3422	5.3420	14	020
19.203	6	4.6182	4.6169	5	120
19.331	5	4.5880	4.5892	6	200
19.881	89	4.4623	4.4573	100	001
23.288	3	3.8166	3.8071	5	11-1
24.021	4	3.7018	3.7028	5	111
25.561	6	3.4821	3.4810	6	220
26.034	13	3.4199	3.4224	16	021
27.480	15	3.2431	3.2397	19	12-1
28.095	14	3.1735	3.1747	15	121
28.540	27	3.1250	3.1214	30	21-1
29.681	23	3.0074	3.0081	24	211
30.470	5	2.9313	2.9412	16	310
31.797	23	2.8121	2.8135	19	230
32.095	5	2.7865	2.7851	5	22-1
33.491	3	2.6735	2.6710	6	040
33.862	15	2.6451	2.6442	13	131
34.961	20	2.5644	2.5646	13	140
35.858	7	2.5022	2.4999	9	31-1
37.300	100	2.4088	2.4062	86	23-1
38.222	10	2.3528	2.3531	10	231
38.759	8	2.3214	2.3207	3	330
39.244	15	2.2938	2.2946	10	400
40.340	25	2.2340	2.2338	14	14-1
43.241	2	2.0906	2.0811	3	150
45.103	9	2.0085	2.0075	10	401
48.039	5	1.8924	1.8923	2	15-1
50.300	8	1.8125	1.8104	9	31-2
51.261	11	1.7807	1.7806	5	060
51.680	5	1.7673	1.7684	9	23-2
52.998	11	1.7264	1.7263	10	232
53.513	3	1.7110	1.7112	5	042
54.070	4	1.6947	1.6917	6	14-2
55.486	10	1.6547	1.6536	9	511

Tablo 4.40 HD10 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.40' ın devamı							
58.921	8	1.5662	1.5674	6	402		
59.021	7	1.5638	1.5631	4	450		
60.392	3	1.5315	1.5280	5	15-2		
61.192	5	1.5134	1.5128	7	342		
61.559	10	1.5053	1.5056	5	170		
62.535	3	1.4841	1.4857	3	003		
62.986	4	1.4745	1.4741	3	25-2		
64.224	4	1.4491	1.4473	3	270		
65.263	3	1.4285	1.4293	5	601		
65.481	6	1.4243	1.4235	4	171		
66.490	4	1.4051	1.4067	6	460		
69.400	2	1.3531	1.3549	4	63-1		
69.478	7	1.3518	1.3511	7	223		
70.678	10	1.3317	1.3321	6	461		
71.030	5	1.3260	1.3274	6	23-3		
72.600	5	1.3011	1.3006	6	710		

Şekil 4.58 HD10 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
<i>v</i> ₃ (PO ₄)	1096, 1037
υ ₁ (PO ₄)	987, 920, 825
$v_{s}(POP)$	760
υ ₄ (PO ₄)	598, 548, 509
υ ₂ (PO ₄)	447

Tablo 4. 41 HD10 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.59 HD10 Deneyine ait FTIR Spektrumu

4.2.4 Metal oksit (NiO, Al₂O₃, Sb₂O₃, ZnO, AgNO₃, SnO) / H₃BO₃ / (NH₄)₂HPO₄ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.42 M (M=Ni, Al, Sb, Zn, Ag, Sn)/B/P Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
HD11	$NiO + H_3BO_3 + (NH_4)_2HPO_4 160 \ ^0C (H_3PO_4 \text{ ortamında})$
HD12	$Al_2O_3 + 4H_3BO_3 + 4(NH_4)_2HPO_4 160 \ ^0C$
HD13	$Sb_2O_3 + 4H_3BO_3 + 4(NH_4)_2HPO_4 \ 160 \ ^0C$ (HCl ortamında)
HD14	$ZnO + H_3BO_3 + (NH_4)_2HPO_4 \ 160 \ ^0C$
HD15	$AgNO_3 + 2H_3BO_3 + 2(NH_4)_2HPO_4 160 \ ^0C$
HD16	$SnO + H_3BO_3 + (NH_4)_2HPO_4 \ 160 \ ^0C$

Şekil 4.60 HD11 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ (P=O)	1401
𝙂 ₃(BO₄)	1172
υ ₃ (PO ₄)	1001
𝙂₄(BO₄)	660
υ ₄ (PO ₄)	492

Tablo 4.43 HD11 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.61 HD11 Deneyine ait FTIR Spektrumu

HD11 deneyine ait XRD analizi ortamda kristal yapıda BPO₄ (ICDD 34-132) bileşiğinin bulunduğunu, nikel atomu içeren bileşiğin ise amorf yapıda kaldığını göstermiştir. Ürüne ait FTIR spektrum verileri, (Tablo 4.43) $(BO_4)^{-5}$ ve $(PO_4)^{-3}$ fonksiyonel gruplarının varlığını desteklemektedir. XRD grafiği Şekil 4.60' da, FTIR spektrumu Şekil 4.61' de verilmektedir.

			NH ₄ Al ₂ P ₂ O ₈ .OH.2H ₂ O		AlO.OH	
20	I/I_0	d _{deneysel} (Å)	(ICDD 45-183)	hkl	(ICDD 21-1307)	hkl
			$d_{de ext{gerleri}}$		$d_{de ext{gerleri}}$	
11.800	18	7.4935	7.5329	-101	-	-
13.301	62	6.6512	6.6876	110	-	-
14.559	27	6.0791	-	-	6.1100	020
15.019	100	5.8940	5.9196	101	-	-
19.119	42	4.6382	4.6444	200	-	-
20.900	18	4.2470	4.2545	021	-	-
21.339	26	4.1605	4.1718	-211	-	-
22.021	6	4.0331	4.0396	-121	-	-
23.701	11	3.7510	3.7665	-202	-	-
23.920	34	3.7171	3.7241	121	-	-
25.139	6	3.5396	3.5554	211	-	-
25.460	10	3.4957	3.5049	-212	-	-
26.800	15	3.3239	3.3296	022	-	-
28.280	28	3.1532	-	-	3.1640	120
29.581	46	3.0174	3.0251	-311	-	-
29.940	31	2.9820	2.9901	221	-	-
30.220	31	2.9550	2.9598	310	-	-
30.420	39	2.9361	2.9380	013	-	-
31.621	43	2.8272	2.8318	212	-	-
32.100	39	2.7861	2.7893	-312	-	-
32.419	4	2.7594	2.7647	301	-	-
33.820	22	2.6482	2.6536	-321	-	-
34.161	55	2.6226	2.6242	-132	-	-
35.680	8	2.5143	2.5202	222	-	-
36.100	2	2.4860	2.4901	-223	-	-
36.701	9	2.4467	2.4481	132	-	-
37.621	8	2.3890	2.3940	321	-	-
38.440	20	2.3399	-	-	2.3460	031
38.640	22	2.3283	2.3314	-411	-	-
38.800	22	2.3190	2.3222	004	-	-
39.739	6	2.2664	2.2702	410	-	-
40.021	5	2.2511	2.2554	-331	-	-
40.621	8	2.2192	2.2220	033	-	-
42.001	7	2.1494	2.1481	-421	-	-

Tablo 4.44 HD12 Deneyine ait X-Işınları Toz Kırınımı Verileri

			Tablo 4.44' ün devamı			
42.540	5	2.1234	2.1242	-142	-	-
43.160	10	2.0943	2.0976	411	-	-
43.879	3	2.0617	2.0654	-314	-	-
44.700	4	2.0257	2.0294	241	-	-
44.903	3	2.0170	2.0198	-242	-	-
45.981	15	1.9722	1.9732	-333	-	-
46.539	4	1.9498	1.9530	124	-	-
46.961	5	1.9333	1.9347	313	-	-
47.520	9	1.9118	1.9147	402	-	-
47.923	6	1.8967	1.8979	340	-	-
48.119	3	1.8894	1.8934	043	-	-
48.719	13	1.8676	1.8694	-234	-	-
48.980	12	1.8582	-	-	1.8600	051
49.379	12	1.8441	-	-	1.8500	200
51.383	5	1.7768	1.7768	134	-	-
51.580	9	1.7705	1.7728	224	-	-
51.841	10	1.7622	1.7630	-334	-	-
52.158	3	1.7522	1.7547	501	-	-
52.564	2	1.7397	1.7414	520	-	-
52.861	7	1.7306	1.7323	-343	-	-
53.158	1	1.7216	1.7260	511	-	-
54.641	3	1.6783	1.6906	-144	-	-
54.799	5	1.6738	1.6778	-325	-	-
55.120	6	1.6649	1.6648	044	-	-
55.320	11	1.6593	-	-	1.6620	151
55.860	7	1.6446	1.6475	521	-	-
56.061	11	1.6391	1.6387	125	-	-
56.498	5	1.6275	1.6283	053	-	-
57.780	4	1.5944	1.5993	-253	-	-
58.182	3	1.5843	1.5850	-206	-	-
58.663	3	1.5725	1.5723	160	-	-
58.960	7	1.5652	1.5666	-533	-	-
59.321	5	1.5566	1.5579	600	-	-
60.181	3	1.5364	1.5375	531	-	-
60.540	6	1.5281	1.5283	016	-	-
60.700	6	1.5245	-	-	1.5270	080
61.400	8	1.5088	1.5085	062	-	-

			Tablo 4.44' ün devamı			
61.659	3	1.5031	1.5046	-226	-	-
62.677	2	1.4811	1.4808	253	-	-
63.080	7	1.4726	1.4727	540	-	-
63.501	4	1.4638	1.4648	414	-	-
64.239	4	1.4488	-	-	1.4530	231
64.720	2	1.4392	1.4413	-416	-	-
65.021	2	1.4332	-	-	1.4340	002
65.659	4	1.4208	1.4221	-136	-	-
66.000	5	1.4143	1.4159	424	-	-
66.781	5	1.3997	1.3995	-263	-	-
67.219	8	1.3916	1.3931	523	-	-
67.601	4	1.3847	1.3853	-336	-	-
67.800	4	1.3811	-	-	1.3830	171
68.099	5	1.3757	1.3763	206	-	-
69.181	2	1.3568	1.3579	-712	-	-
69.420	3	1.3528	1.3541	-711	-	-
69.802	4	1.3463	1.3469	-552	-	-
70.581	2	1.3333	1.3332	055	-	-
71.182	2	1.3235	1.3236	-146	-	-
71.999	9	1.3105	-	-	1.3120	251
72.201	9	1.3074	1.3073	-127	-	-
72.618	2	1.3009	1.3011	514	-	-
73.701	2	1.2844	1.2853	-272	-	-

Alüminyum(III)oksit, borik asit ve diamonyum hidrojen fosfat maddelerinden yola çıkılarak, 1:4:4 mol oranında, çözücü olarak suyun kullanıldığı teflon otoklavda, 160 ⁰C' de 3 gün süre ile gerçekleştirilen hidrotermal reaksiyona ait XRD analizi, üründe NH₄Al₂P₂O₈.OH (ICDD 45-183) ve AlO.OH (ICDD 21-1307) bileşiklerine ait iki fazlı bir oluşumun bulunduğunu göstermiştir. Deneysel ürüne ait XRD grafiği Şekil 4.62' de, XRD verileri Tablo 4.44' de verilmiştir.

Şekil 4.62 HD12 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ(NH ₄)	1432
𝙂(P=O)	1200
υ ₃ (PO ₄)	1118, 1076, 1018
υ ₁ (PO ₄)	889
δ (CO ₂)	668
𝙂₄(PO₄)	612, 520, 469
υ ₂ (PO ₄)	444

Tablo 4.45 HD12 Deneyine ait FTIR Spektrumu Verileri

Ürüne ait FTIR spektrum pikleri, $(NH_4)^{+1}$ ve $(PO_4)^{-3}$ fonksiyonel gruplarının varlığını desteklemektedir.

Şekil 4.63 HD12 Deneyine ait FTIR Spektrumu

Şekil 4.64 HD13 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ ₃ (PO ₄)	1020
𝙂₄(PO₄)	565

Tablo 4.46 HD13 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.65 HD13 Deneyine ait FTIR Spektrumu

HD13 deneyine ait XRD analizi elde edilen ürünün amorf yapıda olduğunu göstermiştir. Ürüne ait FTIR spektrumu verileri (Tablo 4.46) ortamda $(PO_4)^{-3}$ fonksiyonel grubunun bulunduğunu işaret etmektedir. Buda elde edilen ürünün amorf yapılı SbPO₄ olabileceğini göstermiştir. FTIR spektrumu Şekil 4.39' da verilmiştir.

HD14 deneyine ait XRD analizi, NH₄ZnPO₄ (ICDD 88-1126) bileşiğinin tek fazlı olarak oluştuğunu göstermiştir. Literatür verilerine göre NH₄ZnPO₄ bileşiği, monoklinik sistemde kristallenmiş olup, uzay grubu P2₁' dir. Birim hücre parametreleri ise a=8.79665 Å, b=5.45653 Å, c=8.96545 Å ve β =90.323⁰' dür [121]. Deneysel ürüne ait XRD grafiği Şekil 4.66' da, XRD verileri Tablo 4.39' da verilmiştir.

			NH ₄ ZnPO ₄ (ICDD 88-1126)		
20	I/I ₀	d _{deneysel} (Å)			hkl
			$d_{de ext{gerleri}}$	I/I_0	
10.199	5	8.6657	8.9652	3	001
14.061	86	6.2935	6.2966	72	-101
19.039	100	4.6577	4.6610	100	011
19.796	30	4.4811	4.4826	40	002
20.143	85	4.4047	4.3982	80	200
21.470	2	4.1355	4.1136	6	-111
22.456	4	3.9560	3.9574	2	-201
22.520	5	3.9450	3.9398	3	201
25.704	4	3.4630	3.4636	4	012
26.002	9	3.4241	3.4243	8	210
27.680	76	3.2201	3.2180	44	112
27.844	60	3.2015	3.2036	32	-211
28.332	6	3.1475	3.1483	13	-202
28.585	6	3.1203	3.1306	15	202
29.879	10	2.9880	2.9884	8	003
32.080	35	2.7878	2.7915	20	-301
32.859	58	2.7235	2.7282	40	020
34.200	59	2.6197	2.6210	43	013
35.919	24	2.4982	2.5033	15	-121
36.146	10	2.4830	2.4851	3	-311
38.859	3	2.3156	2.3184	3	220
40.179	33	2.2425	2.2427	22	-312
41.508	2	2.1738	2.1690	3	104
43.640	4	2.0724	2.0732	3	014
44.417	5	2.0380	2.0396	4	410
45.443	4	1.9943	1.9973	2	320
46.600	26	1.9474	1.9479	15	321
48.460	3	1.8769	1.8791	2	-214
49.860	4	1.8275	1.8291	3	223
51.301	7	1.7795	1.7825	4	031
52.901	6	1.7293	1.7318	4	024
52.979	6	1.7270	1.7282	4	-501
54.021	17	1.6961	1.6969	13	124
54.298	13	1.6881	1.6886	10	-413

Tablo 4.47 HD14 Deneyine ait X-Işınları Toz Kırınımı Verileri
Tablo 4.47' nin devamı						
54.430	6	1.6843	1.6853	6	032	
55.679	9	1.6495	1.6526	5	-231	
55.914	8	1.6431	1.6443	4	511	
57.240	3	1.6081	1.6090	2	224	
58.741	5	1.5706	1.5713	4	232	
59.506	3	1.5522	1.5536	8	033	
60.622	3	1.5263	1.5258	3	305	
63.780	11	1.4581	1.4599	8	-521	
66.179	3	1.4109	1.4123	3	206	
68.883	3	1.3620	1.3641	3	040	
70.674	4	1.3318	1.3328	2	-141	
70.703	4	1.3313	1.3317	3	325	
72.115	2	1.3087	1.3105	2	026	
73.320	4	1.2901	1.2914	4	316	
74.317	5	1.2753	1.2768	3	035	

Şekil 4.66 HD14 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ(NH ₄)	1465, 1432
υ ₃ (PO ₄)	1118, 1040, 1012
υ ₁ (PO ₄)	973
υ ₄ (PO ₄)	632, 609, 581, 539, 467
υ ₂ (PO ₄)	433

Tablo 4.48 HD14 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.67 HD14 Deneyine ait FTIR Spektrumu

Bilindiği gibi $(PO_4)^{-3}$ anyonları temel olarak dört adet titreşim frekansına sahiptir. Bunlar: $\upsilon_3=1377-991$ cm⁻¹, $\upsilon_1=989-885$ cm⁻¹, $\upsilon_4=644-450$ cm⁻¹ ve $\upsilon_4=334-450$ cm⁻¹ titreşim frekanslarıdır [69, 70, 78, 82, 130, 135, 136]. Ürüne ait FTIR spektrum verileri (Tablo 4.48), NH₄ZnPO₄ bileşiğinin yapısında bulunan $(NH_4)^{+1}$ ve $(PO_4)^{-3}$ fonksiyonel gruplarının varlığını desteklemektedir. Ürüne ait FTIR spektrumu Şekil 4.67' de verilmiştir.

			Ag ₃ PG	O_4	
20	I/I_0	d _{deneysel} (Å)	(ICDD 6	-505)	hkl
			d _{değerleri}	I/I_0	
20.902	24	4.2465	4.2500	14	110
29.701	15	3.0055	3.0060	18	200
33.320	100	2.6868	2.6890	100	210
36.601	59	2.4532	2.4540	35	211
42.518	8	2.1245	2.1260	4	220
47.821	18	1.9005	1.9016	10	310
52.700	22	1.7355	1.7356	14	222
55.041	29	1.6671	1.6676	20	320
57.320	31	1.6061	1.6070	14	321
61.662	12	1.5030	1.5034	8	400
65.898	2	1.4163	1.4173	2	330
69.941	9	1.3440	1.3444	4	420
71.939	21	1.3115	1.3121	12	421
73.901	4	1.2814	1.2819	4	332
77.764	3	1.2271	1.2275	2	422

Tablo 4.49 HD15 Deneyine ait X-Işınları Toz Kırınımı Verileri

Şekil 4.68 HD15 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ(P=O)	1404
υ ₃ (PO ₄)	1006
𝙂₄(PO₄)	562

Tablo 4.50 HD15 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.69 HD15 Deneyine ait FTIR Spektrumu

Gümüş(I)nitrat, borik asit ve diamonyum hidrojen fosfat maddeleri arasında, 1:2:2 mol oranında, çözücü olarak suyun kullanıldığı teflon otoklavda, 160 0 C' de 3 gün süre ile gerçekleştirilen deneye ait XRD analiz sonucu, hedeflenen bileşiğin yerine Ag₃PO₄ (ICDD 6-505) bileşiğinin oluştuğunu göstermiştir. Literatür verilerine göre Ag₃PO₄ bileşiği kübik sistemde kristallenmiş olup, uzay grubu P⁴3n' dir. Birim hücre parametreleri ise a=6.013 Å ve Z=2' dir [122]. Ürüne ait XRD verileri Tablo 4.49' da, XRD grafiği Şekil 4.68' de verilmiştir. FTIR spektrum verileri, bileşikte bulunan (PO₄)⁻³ fonksiyonel grubunun varlığını desteklemektedir.

Şekil 4.70 HD16 Deneyine ait X-Işınları Toz Kırınımı Grafiği

HD16 deneyine ait XRD analizi, ürünün amorf yapıda olduğunu göstermiştir. Ürüne ait XRD grafiği Şekil 4.70' de verilmiştir.

4.3 Mikrodalga Yöntem Kullanılarak Yapılan Deneylerin Sonuçları

4.3.1 Co(NO₃)₂.6H₂O / Ni(NO₃)₂.6H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.51 Co/Ni/B Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
MD1	$2Co(NO_3)_2.6H_2O + Ni(NO_3)_2.6H_2O + 2H_3BO_3$

Kobalt nitrat, nikel nitrat ve borik asit maddeleri arasında 2:1:2 mol oranında mikrodalga fırında gerçekleştirilen reaksiyon sonucu oluşan ürüne ait XRD grafiğinin, Co₃(BO₃)₂ bileşiğine ait XRD grafiği ile çok benzer olduğu dikkati çekmiştir. Bu benzerlik, ortamda oluşan ürünün kimyasal formülünün Co₂Ni(BO₃)₂ olabileceğini düşündürmüştür.

Literatür verilerine göre $Co_3(BO_3)_2$ (ICDD 75-1808) ortorombik sistemde kristallenmiş olup, uzay grubu Pnmn' dir. Birim hücre parametreleri ise a=5.462(2) Å, b=8.436(2) Å, c=4.529(2) Å ve Z=2' dir [104].

Bu verilerden yola çıkılarak, ürüne ait XRD verileri ortorombik sistem temel alınarak indekslenmeye çalışılmış, bazı küçük pik değerleri dışında, diğer tüm pikler indekslemeye katılmıştır. Birim hücre parametreleri a=5.4388 Å, b=8.3940 Å ve c=4.4992 Å olarak hesaplanmıştır. Ürüne ait XRD grafiği Şekil 4.71' de, XRD verileri ise Tablo 4.52' de verilmektedir.

20	I/I ₀	d _{deneysel}	d _{hesaplanan}	hkl	fark (x10 ⁻⁴)
17.701	4	5.0067	-	-	-
19.860	4	4.4668	-	-	-
21.200	2	4.1875	4.1970	020	1.6
22.440	41	3.9589	3.9655	011	1.3
25.701	24	3.4635	3.4667	101	0.9
27.896	2	3.1957	3.2042	111	3.1
31.839	2	2.8084	-	-	-
32.919	8	2.7186	2.7194	200	0.4
33.521	100	2.6712	2.6728	121	1.0
35.001	6	2.5615	-	-	-
36.099	38	2.4861	2.4881	130	1.5
36.820	6	2.4391	-	-	-
37.840	3	2.3756	2.3760	031	0.4
38.699	7	2.3249	2.3273	201	2.3
39.440	3	2.2829	2.2822	220	0.7
40.199	53	2.2415	2.2427	211	1.3
41.459	19	2.1762	2.1773	131	1.3
43.519	2	2.0779	2.0788	102	1.1
45.101	3	2.0086	-	-	-
50.821	6	1.7951	1.7952	141	0.3
52.761	28	1.7336	1.7334	202	0.5
55.000	34	1.6682	1.6687	132	1.2
57.401	3	1.6040	1.6041	150	0.3
58.640	9	1.5730	1.5729	051	0.4
59.140	13	1.5609	1.5609	321	0.1
60.241	2	1.5350	1.5345	042	1.7
60.821	15	1.5218	1.5215	330	0.9
62.880	4	1.4768	1.4768	142	0.1
65.340	2	1.4270	-	-	-
66.799	4	1.3993	1.3990	060	1.3
68.900	14	1.3617	1.3615	251	0.8
71.281	2	1.3219	1.3218	033	0.4
72.801	2	1.2980	1.2975	213	2,9
73.580	2	1.2862	1.2862	411	0.0
75.300	3	1.2610	1.2603	332	4.2

Tablo 4.52 MD1 Deneyine ait X-Işınları Toz Kırınımı Verileri

Şekil 4.71 MD1 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
v ₃ (BO ₃)	1295, 1258
υ ₁ (BO ₃)	1012
υ ₂ (BO ₃)	777, 710
υ ₄ (BO ₃)	688, 626, 595, 548

Tablo 4.53 MD1 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.72 MD1 Deneyine ait FTIR Spektrumu

Elde edilen ürünün FTIR spektrum verileri (Tablo 4.53), bileşiğin yapısında bulunan $(BO_3)^{-3}$ fonksiyonel grubunun varlığını desteklemektedir. FTIR spektrumu Şekil 4.72' de verilmiştir.

4.3.2 Ca(NO₃)₂.4H₂O / (NH₄)₂HPO₄, NaH₂PO₄.2H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.54 Ca/P ve Ca/P/B Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
MD2	$Ca(NO_3)_2.4H_2O + (NH_4)_2HPO_4$
MD3	$Ca(NO_3)_2.4H_2O + NaH_2PO_4.2H_2O$
MD4	$Ca(NO_3)_2.4H_2O + H_3BO_3 + (NH_4)_2HPO_4$
MD5	$Ca(NO_3)_2.4H_2O + H_3BO_3 + NaH_2PO_4.2H_2O$

Tablo 4.55 MD2 Deneyine ait X-Işınları Toz Kırınımı Verileri

		d	α –Ca ₂ P ₂ O ₇		$\gamma - Ca_2P_2O_7$	
No	I/I0	0 (Å)	(ICDD 9-345)	hkl	(ICDD 17-499)	hkl
			$d_{de {f gerleri}}$		$d_{de ext{gerleri}}$	
12.539	14	7.0537	7.0600	110	-	-
14.041	4	6.3021	6.3100	020	-	-
18.120	28	4.8917	4.9000	011	-	-
19.779	7	4.4850	4.5000	101	-	-
20.919	29	4.2430	4.2600	200	-	-
23.561	24	3.7730	3.7800	130	-	-
24.258	6	3.6661	3.6700	121	-	-
25.200	25	3.5312	3.5300	220	-	-
26.980	100	3.3021	3.3200	031	-	-
27.741	65	3.2132	3.2100	211	-	-
28.980	70	3.0786	3.0800	131	-	-
30.201	31	2.9569	2.9640	140	-	-
30.620	52	2.9173	-	-	2.9400	-
32.281	30	2.7709	2.7710	310	-	-
33.741	36	2.6543	2.6550	002	-	-
34.718	26	2.5818	2.5900	320	-	-
35.342	9	2.5376	2.5390	240	-	-
36.560	15	2.4558	2.4580	311	-	-
37.120	15	2.4200	2.4240	150	-	-
38.281	14	2.3493	2.3540	122	-	-
38.641	9	2.3282	2.3290	321	-	-
40.060	12	2.2489	2.2530	202	-	-

			Tablo 4.55' in devam			
40.600	13	2.2203	2.2190	212	-	-
40.896	8	2.2049	2.2060	151	-	-
41.879	9	2.1554	-	-	2.1800	-
43.019	32	2.1009	2.1020	410	-	-
44.280	12	2.0439	2.0460	160	-	-
45.620	52	1.9869	1.9880	232	-	-
48.181	6	1.8872	1.8880	421	-	-
49.081	7	1.8546	1.8550	322	-	-
49.640	11	1.8350	1.8340	242	-	-
50.478	6	1.8065	-	-	1.8200	-
51.340	23	1.7782	1.7800	261	-	-
52.979	5	1.7270	1.7320	103	-	-
53.598	5	1.7085	1.7110	071	-	-
54.701	4	1.6766	1.6770	171	-	-
56.320	15	1.6322	1.6350	033	-	-
56.760	12	1.6206	1.6230	501	-	-
57.220	7	1.6087	1.6110	511	-	-
58.743	8	1.5705	1.5730	521	-	-
60.062	4	1.5391	1.5410	262	-	-
60.863	4	1.5208	1.5240	233	-	
61.877	4	1.4983	1.4930	540	-	-
63.256	3	1.4689	-	-	1.4700	-
70.759	10	1.3334	-	-	1.3400	-
72.478	5	1.3030	-	-	1.3100	-
78.020	6	1.2238	-	-	1.2200	-

MD2 deneyine ait XRD çekimi, ürünün iki faz içerdiğini, bu fazlardan birinin α -Ca₂P₂O₇ (ICDD 9-345) diğerinin ise γ -Ca₂P₂O₇ (ICDD 17-499) bileşiklerine ait olduklarını göstermiştir. Ürüne ait XRD verileri Tablo 4.55' de, XRD grafiği Şekil 4.73' de verilmiştir.

Şekil 4.73 MD2 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ(P=O)	1429, 1384
$\upsilon_{as}(PO_3)$	1208, 1135
$\upsilon_{ m s}(m PO_3)$	1088, 1043
$v_{\rm as}({\rm POP})$	953
$v_{s}(POP)$	769, 730
δ (PO ₃)	654, 612, 567, 461, 430

Tablo 4.56 MD2 Deneyine ait FTIR Spektrumu Verileri

Ürüne ait FTIR spektrum verileri, bileşiklerin yapısında bulunan $(P_2O_7)^{-4}$ fonksiyonel grubunun varlığını desteklemektedir.

	d		NaCaPO ₄		$Ca_2P_2O_7$	
20	(Å)	I/I_0	(ICDD 29-1193)	hkl	(ICDD 33-297)	hkl
	(A)		d_{teorik}		$\mathbf{d}_{\mathrm{teorik}}$	
16.180	5.4737	11	5.4600	110	-	-
19.000	4.6672	6	4.6530	011	-	-
20.099	4.4142	2	-	-	4.4000	112
23.098	3.8475	46	3.8370	111	_	-
23.376	3.8024	27	3.7950	120	_	-
25.761	3.4555	3	-	-	3.4500	016
26.179	3.4012	10	3.3970	200	-	-
26.598	3.3486	7	-	-	3.3400	020
27.618	3.2272	7	-	-	3.2200	022
28.839	3.0933	6	-	-	3.0900	023
29.501	3.0254	13	-	-	3.0200	008
30.001	2.9761	4	-	-	2.9660	211
30.663	2.9133	4	-	-	2.9010	212
31.002	2.8823	7	2.8750	201	-	-
32.080	2.7878	14	2.7870	130	_	-

Tablo 4.57 MD3 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.57' nin devamı						
32.559	2.7479	100	2.7450	211	-	-
33.060	2.7073	58	2.7010	002	-	-
33.640	2.6620	81	2.6600	031	-	-
34.802	2.5758	2	-	-	2.5720	026
37.039	2.4252	5	2.4230	112	-	-
38.581	2.3317	10	2.3290	022	-	-
39.619	2.2730	17	2.2720	230	-	-
40.360	2.2329	4	-	-	2.2280	030
40.960	2.2016	36	2.2000	310	-	-
41.541	2.1721	9	2.1710	140	-	-
42.659	2.1178	8	2.1150	202	-	-
43.838	2.0635	7	2.0620	212	-	-
44.540	2.0326	11	2.0310	320	-	-
44.939	2.0155	33	2.0150	141	-	-
46.741	1.9419	14	1.9400	132	-	-
47.241	1.9225	41	1.9210	222	-	-
47.820	1.9006	11	1.9000	240	-	-
49.138	1.8526	2	-	-	1.8539	320
50.081	1.8199	3	1.8196	330	-	-
51.581	1.7705	8	1.7695	150	-	-
52.540	1.7404	12	1.7395	232	-	-
53.881	1.7002	10	1.6996	400	-	-
54.803	1.6737	2	1.6710	410	-	-
56.682	1.6226	3	1.6290	123	-	-
57.021	1.6138	4	1.6136	250	-	-
57.761	1.5949	5	1.5931	420	-	-
58.762	1.5701	7	1.5689	213	-	-
59.460	1.5533	13	1.5526	033	-	-
59.840	1.5443	7	1.5443	341	-	-
60.557	1.5278	2	1.5275	060	-	-
62.680	1.4810	6	1.4808	152	-	-
65.060	1.4325	11	1.4319	431	-	-
65.620	1.4216	6	1.4210	412	-	-
67.599	1.3847	5	1.3838	342	-	-
69.421	1.3527	7	1.3517	004	-	-
70.780	1.3301	6	1.3296	062	-	-
P						

Şekil 4.75 MD3 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Kalsiyum(II)nitrat ve sodyum dihidrojen fosfat maddelerinden yola çıkarak, 1:1 mol oranında, mikrodalga fırında gerçekleştirilen reaksiyona ait XRD analizi iki fazlı ürün oluşumunun gözlemlendiğini, bu fazlardan birinin NaCaPO₄ (ICDD 29-1193), diğerinin ise β -Ca₂P₂O₇ (ICDD 33-297) olduğunu göstermiştir. Elde edilen ürüne ait XRD verileri Tablo 4.57' de, XRD grafiği Şekil 4.75' de verilmiştir.

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ(P=O)	1381,1211
υ ₃ (PO ₄)	1186, 1172, 1085, 1029
$v_1(PO_4)$, $v_{as}(POP)$	973, 956
$v_{s}(POP)$	727
𝙂₄(PO₄)	593, 576, 528, 492
υ ₂ (PO ₄)	458

Tablo 4.58 MD3 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.76 MD3 Deneyine ait FTIR Spektrumu

Ürüne ait FTIR spektrumu (Tablo 4.58) NaCaPO₄ ve Ca₂P₂O₇ bileşiklerinin yapısında bulunan $(PO_4)^{-3}$ ve $(P_2O_7)^{-4}$ fonksiyonel gruplarının varlığını desteklemektedir.

Şekil 4.77 MD4 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
v(P=O)	1384
υ ₃ (PO ₄), υ ₃ (BO ₄)	1074
υ ₁ (PO ₄), υ ₁ (BO ₄)	931
υ_4 (BO ₄), δ (CO ₂)	668
υ ₄ (PO ₄)	545

Tablo 4.59 MD4 Deneyine ait FTIR Spektrumu Verileri

MD4 deneyine ait XRD analizi, sentezlemek istenilen ürünün elde edilemediğini, bunun yerine ortamda BPO₄ (ICDD 34-132) bileşiğinin oluştuğunu, Ca atomu içeren bileşiğin ise amorflaştığını göstermiştir. Ürüne ait XRD çekimi Şekil 4.77' de verilmiştir.

Şekil 4.78 MD4 Deneyine ait FTIR Spektrumu

Şekil 4.79 MD5 Deneyine ait FTIR Spektrumu

MD5 deneyine ait XRD analizi elde edilen ürünün amorf fazda kaldığını göstermiştir. Ürüne ait XRD çekimi şekil 4.79' da, FTIR spektrum verileri Tablo 4.60' de, FTIR spektrumu Şekil 4.80' de verilmiştir.

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ(Ρ=O)	1384
υ ₃ (PO ₄), υ ₃ (BO ₄)	1096
$v_1(PO_4), v_1(BO_4)$	959
$\upsilon_4(\mathrm{BO}_4),\ \delta\ (\mathrm{CO}_2)$	668
𝙂 ₄(PO₄)	551

Tablo 4.60 MD5 Deneyine ait FTIR Spektrumu Verileri

110,8 %T 65,4 1800 1600 cm-1 400,0 4000,0

Şekil 4.80 MD5 Deneyine ait FTIR Spektrumu

4.3.3 Cr(NO₃)₃.9H₂O / (NH₄)₂HPO₄, NaH₂PO₄.2H₂O Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.61 Cr/P Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
MD6	$Cr(NO_3)_3.9H_2O + (NH_4)_2HPO_4$
MD7	$2Cr(NO_3)_3.9H_2O + 3NaH_2PO_4.2H_2O$

Şekil 4.81 MD6 Deneyine ait X-Işınları Toz Kırınımı Grafiği

MD6 deneyine ait XRD analizi, elde edilen ürünün amorf fazda olduğunu göstermiştir. Ürüne ait XRD çekimi Şekil 4.81' de verilmiştir.

Titreşimler	Dalga sayısı (cm ⁻¹)
v(P=O)	1384
υ _s (PO ₃)	1093
$v_{as}(POP)$	951
$v_{s}(POP)$	741
δ (CO ₂)	668
δ (PO ₃)	500

Tablo 4.62 MD6 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.82 MD6 Deneyine ait FTIR Spektrumu

Krom(III)nitrat ve sodyum dihidrojen fosfat maddeleri arasında 2:3 mol oranında, mikrodalga fırında gerçekleştirilen reaksiyona ait XRD çekimi, ürünün ana faz olarak NaCr₂P₂O₇ (ICDD 75-1722) bileşiği içerdiğini göstermiştir. Ürüne ait XRD grafiği Şekil 4.83' de, XRD verileri Tablo 4.63' de verilmiştir. FTIR spektrum verileri (Tablo 4.64) NaCr₂P₂O₇ bileşiğinin yapısında bulunan (P₂O₇)⁴ fonksiyonel grubunun varlığını desteklemektedir.

			NaCrP ₂ C	D ₇	
20	I/I_0	d _{deneysel} (Å)	(ICDD 75-1	1722)	hkl
			d _{değerleri}	I/I_0	
12.818	16	6.9008	-	-	-
14.735	23	6.0070	-	-	-
16.920	26	5.2359	-	-	-
17.443	45	5.0801	5.0937	62	-111
18.022	13	4.9182	-	-	-
18.959	13	4.6772	-	-	-
19.251	11	4.6069	-	-	-
19.597	28	4.5262	4.5401	11	-102
22.386	17	3.9683	3.9735	18	111
22.820	9	3.8938	-	-	-
23.216	52	3.8282	3.8403	30	012
26.358	29	3.3786	3.3880	34	200
26.643	11	3.3431	3.3509	6	-202
28.403	14	3.1398	-	-	-
28.776	50	3.0999	3.1099	42	210
29.022	28	3.0742	3.0812	31	-212
29.527	9	3.0228	-	-	-
29.700	26	3.0055	-	-	-
30.264	12	2.9508	2.9666	4	-122
30.579	100	2.9212	2.9280	100	022
30.818	13	2.8991	-	-	-
31.679	46	2.8222	-	-	-
32.587	10	2.7456	2.7501	3	013
32.804	37	2.7279	-	-	-
33.140	30	2.7010	-	-	-
34.479	20	2.5991	-	-	-
39.104	11	2.3017	2.3049	9	-311
39.738	16	2.2664	2.2701	14	-223
42.695	19	2.1161	2.1205	8	-231
46.561	10	1.9490	1.9523	9	311
47.401	12	1.9164	1.9201	5	024
50.105	9	1.8191	1.8232	10	-402
50.754	10	1.7974	1.7990	3	-142
54.277	15	1.6887	1.6915	9	-242

Tablo 4.63 MD7 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.63' ün devamı					
55.999	17	1.6408	1.6531	1	-422
61.379	8	1.5092	1.5079	3	-415
62.895	9	1.4765	1.4784	7	224
63.642	16	1.4609	1.4609	5	332

Şekil 4.83 MD7 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
v(P=O)	1384
𝙂 s(PO ₃)	1088
$v_{as}(POP)$	973
υ ₁ (PO ₄)	878
$v_{s}(POP)$	741
δ (CO ₂)	668
$\upsilon_4(\text{PO}_4), \ \delta \ (\text{PO}_3)$	584, 565, 523, 455

Tablo 4.64 MD7 Deneyine ait FTIR Spektrumu Verileri

4.3.4 Fe(NO₃)₃.9H₂O / (NH₄)₂HPO₄ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.65 Fe/P Sisteminde Yapılan Deney ve Kod Numarası

Deney No	Başlangıç Maddeleri
MD8	$Fe(NO_3)_3.9H_2O + 2(NH_4)_2HPO_4$

MD8 deneyine ait XRD çekimi ilk defa bu çalışmada mikrodalga yöntem kullanılarak NH₄FeP₂O₇ (ICDD 21-26) bileşiğinin sentezlenebildiğini göstermiştir [123]. Ürüne ait XRD çekimi Şekil 4.85' de verilmiştir.

			NH ₄ Fel	P_2O_7	
20	I/I ₀	d _{deneysel} (Å)	(ICDD 2	1-26)	hkl
			d _{değerleri}	I/I_0	
15.080	5.8702	100	5.8600	100	-
16.638	5.3242	36	5.3400	30	-
17.735	4.9970	14	5.0100	16	-
20.956	4.2357	9	4.2500	10	-
22.319	3.9800	76	3.9700	80	-
25.880	3.4399	11	3.4400	16	-
28.599	3.1187	15	3.1100	16	-
29.461	3.0294	52	3.0300	50	-
29.780	2.9977	53	3.0000	50	-
30.058	2.9706	58	2.9800	60	-
33.781	2.6512	12	2.6500	16	-
35.876	2.5010	9	2.5000	10	-
36.964	2.4299	14	2.4300	20	-
43.943	2.0588	8	2.0600	10	-
45.558	1.9895	9	1.9900	10	-
51.721	1.7660	8	1.7600	10	-

Tablo 4.66 MD8 Deneyine ait X-Işınları Toz Kırınımı Verileri

Şekil 4.85 MD8 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı(cm ⁻¹)		
υ(P=O)	1384, 1227		
$v_{as}(PO_3)$	1163		
υ _s (PO ₃)	1090, 1060, 1020		
$v_{as}(POP)$	942		
$v_{s}(POP)$	760		
δ (PO ₃)	634, 587, 551, 492, 469, 429		

Tablo 4.67 MD8 Deneyine ait FTIR Spektrumu Verileri

110,2 %T 60 15,3 4000,0 400,0 cm-1

Şekil 4.86 MD8 Deneyine ait FTIR Spektrumu

MD8' de elde edilen NH₄FeP₂O₇ bileşiğine ait FTIR spektrum verileri (Tablo 4.67) yapıda bulunan $(P_2O_7)^{-4}$ anyonlarının varlığını desteklemektedir. Ürüne ait FTIR spektrumu Şekil 4.86' da verilmiştir.

4.3.5 Al(NO₃)₃.9H₂O / NaH₂PO₄.2H₂O, (NH₄)₂HPO₄ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.68 Al/P Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
MD9	$Al(NO_3)_3.9H_2O + NaH_2PO_4.2H_2O$
MD10	$Al(NO_3)_3.9H_2O + (NH_4)_2HPO_4$

Tablo 4.69 MD9 Deneyine ait X-Işınları Toz Kırınımı Verileri

			NH ₄ AlP ₂ O ₇		AlPO ₄	
20	I/I_0	d _{deneysel} (Å)	(ICDD 49-557)	hkl	(ICDD 48-652)	hkl
			$d_{ m değerleri}$		$d_{de\check{g}erleri}$	
11.679	8	7.5710	-	-	-	-
15.499	51	5.7124	5.7378	110	-	-
17.098	6	5.1817	5.2281	101	-	-
20.540	48	4.3204	-	-	4.332	020
21.678	31	4.0962	-	-	4.104	211
21.680	100	4.0958	4.0981	021	-	-
22.920	49	3.8769	3.8914	002	-	-
25.399	4	3.5039	-	-	-	-
26.680	7	3.3385	3.3521	210	-	-
30.580	61	2.9211	2.9324	130	-	-
35.820	20	2.5049	-	-	2.520	107
37.441	9	2.4000	2.4127	040	-	-
39.159	6	2.2986	2.3062	041	-	-
44.039	3	2.0545	2.0665	-321	-	-
46.660	6	1.9450	1.9487	-133	-	-
52.976	5	1.7271	1.7310	052	-	-
60.860	5	1.5209	-	-		
62.880	3	1.4768	-	-	-	-

Şekil 87 MD9 Deneyine ait X-Işınları Toz Kırınımı Grafiği.

Titreşimler	Dalga Saysı (cm ⁻¹)
υ(NH ₄)	1429
υ(Ρ=O)	1384, 1208
υ ₃ (PO ₄)	1135, 1088, 1043, 1020
$v_1(PO_4), v_{as}(POP)$	953
$v_{s}(POP)$	760, 730
υ ₄ (PO ₄)	654, 612, 567, 461
υ ₂ (PO ₄)	430

Tablo 4.70 MD9 Deneyine ait FTIR Spektrumu Verileri

MD9 deneyine ait XRD çekimi, ürünün iki faz içerdiğini, bu fazlardan birinin NH₄AlP₂O₇ (ICDD 49-557) diğerinin ise AlPO₄ (ICDD 48-652) olduğunu göstermiştir. Ayrıca ürüne ait FTIR spektrumu fazlarda bulunan $(P_2O_7)^{-4}$ ve $(PO_4)^{-3}$ fonksiyonel gruplarının varlığını desteklemektedir.

AlPO₄ (ICDD 51-1674) d_{deneysel} (Å) hkl 2θ I/I_0 I/I_0 d_{değerleri} 4.373 20.421 4.3455 100 89 -406 21.561 4.1183 4.136 100 67 800 23.040 34 3.8571 3.866 59 006 24.419 1 3.6423 3.657 3 114 27.180 3.2782 2 4 3.286 -316 27.621 2 3.2269 3.250 -408 1 29.562 3 3.0193 3.004 18 406 29.879 3 2.9880 2.990 4 -617 35.680 21 2.5143 2.523 26 -619 37.282 1 2.4099 2.409 1 408 38.742 2 2.3224 2.330 12 -1606 2 42.020 2.1485 2.153 3 820 42.838 3 2.1093 2.112 7 -4 0 12 43.958 3 2.0581 2.066 2 1600

Tablo 4.71 MD10 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.71' in devam					
45.839	1	1.9780	1.975	2	808
53.361	1	1.7155	1.711	8	4 0 12
55.861	1	1.6445	1.651	5	-10 1 15
57.039	2	1.6133	1.619	4	-12 2 12
59.239	2	1.5585	1.556	2	-932
59.880	1	1.5434	1.546	7	-22 1 3
64.019	1	1.4532	1.456	4	-12 0 18
66.017	1	1.4140	1.416	7	2 1 15

Şekil 4.89 MD10 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Alüminyum(III)nitrat ve sodyum dihidrojen fosfat maddeleri arasında 1:1 mol oranında, mikrodalga fırında gerçekleştirilen reaksiyona ait XRD analizi, ürünün AlPO₄ fazı olduğunu göstermiştir. Literatür verilerine göre, AlPO₄ bileşiği (ICDD 51-1674) monoklinik sistemde kristallenmiş olup, uzay grubu Pc' dir. Birim hücre parametreleri ise a=37.3995 Å, b=5.04664 Å, c=26.224 Å β =117.8487⁰ ve Z=48' dir [124]. Ürüne ait XRD verileri Tablo 4.71' de, XRD çekimi ise Şekil 4.89' da verilmiştir.

TitreşimlerDalga Sayısı (cm⁻¹)v (P=O)1384 v_3 (PO4)1132 v_4 (PO4)727, 629, 484

Tablo 4.72 MD10 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.90 MD10 Deneyine ait FTIR Spektrumu

FTIR spektrumu verileri (Tablo 4.72) AlPO₄ bileşiğinin yapısında bulunan $(PO_4)^{-3}$ fonksiyonel grubunun varlığını desteklemektedir. FTIR spektrumu Şekil 4.90' da verilmiştir.

4.3.6 Hg(NO₃)₂.H₂O / NaH₂PO₄.2H₂O, (NH₄)₂HPO₄ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.73 Hg/P Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
MD11	$Hg(NO_3)_2.H_2O + 2NaH_2PO_4.2H_2O$
MD12	$Hg(NO_3)_2.H_2O + 3NaH_2PO_4.2H_2O$
MD13	$3Hg(NO_3)_2H_2O + 2NaH_2PO_4.2H_2O$ (çözelti)

 $Hg_3(PO_4)_2$ (ICDD 70-1798) hkl 2θ d_{denevsel} (Å) I/I_0 $d_{de \check{g} erleri}$ I/I_0 4.4315 4.4289 20.020 12 7 210 21.919 97 4.0518 4.0518 -121 81 22.679 17 3.9176 3.9181 15 -211 25.062 42 3.5503 3.5510 29 130 3.2010 27.877 73 3.1979 41 300 29.529 100 100 3.0225 3.0186 221 31.201 92 2.8643 2.8665 56 040 33.119 2.7027 2.7043 7 11 -321 7 5 34.303 2.6120 2.6118 311 2 2 36.559 2.4559 2.4590 -302 37.399 9 2.4026 2.4044 5 212 37.633 17 2.3882 2.3920 13 -331 41.047 7 2.1971 2.1969 4 -421 42.339 29 2.1330 2.1354 15 340 43.740 18 2.0679 2.0691 10 250 44.808 2.0253 17 2.0210 23 142 46.253 5 1.9612 1.9601 113 5 48.019 12 1.8931 1.8942 6 510 49.024 7 1.8567 1.8559 8 -152 49.892 9 1.8264 1.8300 7 -432 50.489 3 1.8062 1.8118 9 -323 1.7743 1.7753 8 51.460 14 260 52.518 9 1.7410 1.7430 5 351

Tablo 4.74 MD11 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.74' ün devamı					
54.579	26	1.6801	1.6812	12	261
57.150	5	1.6105	1.6101	3	-532
59.006	8	1.5641	1.5647	5	-214
60.141	7	1.5373	1.5385	6	-513
61.460	11	1.5074	1.5064	6	114
62.719	6	1.4802	1.4813	3	611
64.059	11	1.4524	1.4542	6	-172
65.640	4	1.4212	1.4217	4	532
69.558	9	1.3504	-	-	-
78.541	6	1.2169	-	-	-

Şekil 4.91 MD11 Deneyine ait X-Işınları Toz Kırınımı Grafiği

MD11, MD12 ve MD13 deneylerine ait XRD çekim sonuçları, ürünün Hg₃(PO₄)₂ olduğunu göstermiştir. Literatür verilerine göre Hg₃(PO₄)₂ (ICDD 70-1798) bileşiği monoklinik sistemde kristallenmiş olup, uzay grubu P2₁/c' dir. Birim hücre parametreleri ise a=9.7372 Å, b=11.4662 Å, c=6.4061 Å β =99.5102⁰ ve Z=4' dür [125].

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ(P=O)	1381
υ ₃ (PO ₄)	1104, 1029, 998
υ ₁ (PO ₄)	942
υ ₄ (PO ₄)	634, 528, 464

Tablo 4.75 MD11 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.92 MD11 Deneyine ait FTIR Spektrumu

Deneylerden elde edilen ürünlere ait FTIR spektrum verileri, yapıda bulunan $(PO_4)^{-3}$ fonksiyonel grubunun varlığını desteklemektedir.

Şekil 4.93 MD12 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.94 MD12 Deneyine ait FTIR Spektrumu

Şekil 4.95 MD13 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.96 MD13 Deneyine ait FTIR Spektrumu
4.3.7 Zn(NO₃)₂.6H₂O / (NH₄)₂HPO₄ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.76 Zn/P Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
MD14	$3Zn(NO_3)_2.6H_2O + 2(NH_4)_2HPO_4$
MD15	$3Zn(NO_3)_2.6H_2O + 2(NH_4)_2HPO_4$ (% 10 fazla)
MD16	$3Zn(NO_3)_2.6H_2O + 2(NH_4)_2HPO_4$ (çözelti)

2θ d_{denevsel} (Å) (ICDD 70-900) I/I_0 hkl I/I_0 d_{değerleri} 11 5.3213 5.3145 20 200 16.646 17.229 4 5.1428 5.1044 28 210 18.279 26 4.8496 4.8598 35 011 19.379 58 4.5766 4.5847 53 220 20.119 36 4.4099 4.4197 43 111 22.146 4.0107 23 230 16 4.0107 22.917 12 3.8776 3.8887 13 031 100 24.382 9 3.6478 2.6519 201 25.570 10 3.4809 3.4714 240 30 26.151 12 3.4048 3.3968 43 221 28.479 8 3.1315 3.1383 10 231 29.794 3 2.9963 2.9656 7 051 100 31.339 100 241 2.8520 2.8589

Tablo 4.77 MD14 Deneyine ait X-Işınları Toz Kırınımı Verileri

 $Zn_3(PO_4)_2.4H_2O$

34.227	20	2.6177	2.6189	27	331
35.609	10	2.5192	2.5200	16	002
37.041	12	2.4250	2.4299	13	112
38.420	8	2.3411	2.3452	10	261
39.681	15	2.2696	2.2708	13	171
40.901	5	2.2046	2.2098	5	222
41.857	8	2.1565	2.1622	8	142
43.059	12	2.0990	2.1031	12	280
45.319	17	1.9995	2.0039	16	460
46.820	27	1.9388	1.9423	24	371

	Tablo 4.77' nin devamı					
48.920	2	1.8603	1.8652	2	531	
49.960	16	1.8240	1.8285	14	402	
51.384	3	1.7768	1.7800	3	291	
52.738	4	1.7343	1.7393	4	620	
54.041	7	1.6955	1.6984	7	442	
54.957	6	1.6694	1.6712	5	601	
56.140	4	1.6370	1.6393	4	481	
57.719	5	1.5959	1.5999	5	133	
58.920	11	1.5662	1.5702	12	641	
60.661	10	1.5254	1.5282	10	0 12 0	
61.419	9	1.5083	1.5093	8	4 10 0	
63.539	3	1.4630	1.4663	3	661	
64.560	3	1.4424	1.4459	4	612	
66.118	3	1.4121	1.4121	2	4 11 0	
67.902	2	1.3793	1.3818	3	642	
69.064	2	1.3589	1.3595	4	363	
72.075	2	1.3093	1.3095	3	0 14 0	
74.721	3	1.2694	1.2695	2	5 11 1	

MD14 ve MD15 deneylerine ait XRD çekim sonuçları elde edilen ürünlerin, Zn₃(PO₄)₂.4H₂O (ICDD 70-900) bileşiğine ait olduklarını göstermiştir. Literatür verilerine göre, Zn₃(PO₄)₂.4H₂O bileşiği ortorombik sistemde kristallenmiş olup, uzay grubu Pnma' dır. Birim hücre parametreleri ise a=10.6292 Å, b=18.3393 Å, c=5.041 Å ve Z=4' dür [126].

Şekil 4.97 MD14 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ ₃ (PO ₄)	1110, 1074, 1026, 1004
υ ₁ (PO ₄)	945
𝙂 ₄(PO₄)	634, 576

Her iki deneyde de elde edilmiş FTIR spektrumları $Zn_3(PO_4)_2.4H_2O$ bileşiğinde bulunan $(PO_4)^{-3}$ fonksiyonel gruplarının varlığını desteklemektedir.

Şekil 4.98 MD14 Deneyine ait FTIR Spektrumu

Şekil 4.99 MD15 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.100 MD15 Deneyine ait FTIR Spektrumu

			$Zn_3(PO_4)_2$.	4H ₂ O	
20	I/I_0	d _{deneysel} (Å)	(ICDD 37-	465)	hkl
			$d_{de ext{gerleri}}$	I/I_0	
16.659	1	5.3174	5.2970	6	200
17.340	2	5.1099	5.0920	8	210
18.221	2	4.8650	4.8490	9	011
19.358	100	4.5816	4.5680	100	220
20.061	2	4.4227	4.4100	10	111
22.140	3	4.0117	4.0020	9	230
22.841	2	3.8901	3.8800	5	031
24.359	1	3.6511	3.6460	6	201
25.658	7	3.4691	3.4600	13	240
26.221	4	3.3960	3.3880	13	221
28.439	1	3.1359	3.1320	3	231
29.221	1	3.0537	3.0500	1	060
29.582	2	3.0173	3.0120	2	250
30.139	2	2.9628	2.9590	4	051
31.280	15	2.8572	2.8530	65	241
32.398	1	2.7612	2.7570	1	321
33.799	2	2.6499	2.6510	7	400

Tablo 4.79 MD16 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.79' un devamı					
34.240	3	2.6167	2.6120	8	331
34.639	1	2.5875	2.5840	2	251
35.345	2	2.5374	2.5330	4	161
37.000	1	2.4276	2.4240	3	022
38.379	2	2.3435	2.3420	3	261
39.321	11	2.2895	2.2870	5	080
39.680	3	2.2696	2.2680	8	132
40.860	1	2.2068	2.2050	2	222
41.781	1	2.1602	2.1570	2	142
43.000	4	2.1017	2.1000	9	280
45.258	2	2.0020	2.0020	9	460
46.781	9	1.9403	1.9390	19	371
47.840	1	1.8998	1.8970	1	290
49.761	2	1.8309	1.8306	2	0 10 0
51.360	1	1.7775	1.7762	1	291
52.840	1	1.7312	1.7306	1	2 10 0
54.001	1	1.6967	1.6956	2	442
54.877	1	1.6717	1.6712	2	182
56.139	1	1.6370	1.6374	2	481
56.940	1	1.6159	1.6167	1	033
57.640	1	1.5979	1.5963	1	522
59.040	2	1.5633	1.5623	1	1 11 1
60.641	15	1.5258	1.5255	8	0 12 0
61.479	2	1.5070	1.5058	2	4 10 0
62.701	1	1.4806	1.4799	1	0 10 2
63.421	1	1.4655	1.4642	1	253
64.501	1	1.4435	1.4432	2	4 10 1
65.322	1	1. 4274	1.4261	1	482
65.880	1	1.4166	1.4164	2	403
66.341	1	1.4079	1.4072	1	2 12 1
69.199	1	1.3565	1.3561	2	363
69.861	1	1.3453	1.3447	1	1 13 1
71.241	1	1.3226	1.3220	2	810
72.380	1	1.3046	1.3041	1	0 12 2
73.059	1	1.2941	1.2940	1	1 12 2
74.699	1	1.2697	1.2695	1	821
77.479	3	1.2309	1.2306	2	2 14 1

Şekil 4.101 MD16 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Çinko(II)nitrat ve amonyum dihidrojen fosfat maddeleri arasında, 3:2 mol oranında, mikrodalga fırında, çözelti ortamında yapılan deney ait XRD analiz sonuçları, ürünün $Zn_3(PO_4)_2.4H_2O$ bileşiği (ICDD 37-465) olduğunu göstermiştir. Literatür verilerine göre, $Zn_3(PO_4)_2.4H_2O$ bileşiği ortorombik sistemde kristallenmiş olup, uzay grubu Pnma' dır. Birim hücre parametreleri ise a=10.9067 Å, b=18.3004 Å, c=5.0284 Å ve Z=4' dür [127]. Ürüne ait XRD verileri Tablo 4.79' da, XRD çekimi ise Şekil 4.101' de verilmektedir.

FTIR spektrum verileri (Tablo 4.90), $Zn_3(PO_4)_2.4H_2O$ bileşiğinin yapısında bulunan $(PO_4)^{-3}$ fonksiyonel gruplarının varlığını desteklemektedir. Ürüne ait FTIR spektrumu Şekil 4.102' de verilmektedir.

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ ₃ (PO ₄)	1110, 1071, 1020
υ ₁ (PO ₄)	945, 897
υ ₄ (PO ₄)	632, 573
υ ₂ (PO ₄)	427

Tablo 4.80 MD16 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.102 MD16 Deneyine ait FTIR Spektrumu

4.3.8 AgNO₃ / (NH₄)H₂PO₄, NaH₂PO₄.2H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.81 Ag/P ve Ag/P/B Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
MD17	$3AgNO_3 + (NH_4)H_2PO_4$
MD18	$3AgNO_3 + NaH_2PO_4.2H_2O$
MD19	$2AgNO_3 + H_3BO_3 + (NH_4)_2HPO_4$

Tablo 4.82 MD17 Deneyine ait X-Işınları Toz Kırınımı Verileri

			Ag ₃ PO ₄		$Ag_4P_2O_7$	
20	I/I ₀	d _{deneysel} (Å)	(ICDD 6-505)	hkl	(ICDD 37-187)	hkl
			$d_{de ext{gerleri}}$		$d_{de ext{gerleri}}$	
12.939	10	6.8362	-	-	6.8000	006
20.822	11	4.2627	4.2500	110	-	-
26.081	3	3.4138	-	-	2.4000	0 0 12
27.039	4	3.2950	-	-	3.2800	119
28.679	3	3.1102	-	-	3.1100	1 1 10
29.641	15	3.0114	3.0060	200	-	-
30.417	2	2.9363	-	-	2.9300	1 1 11
32.200	19	2.7777	-	-	2.7620	1 1 12
33.259	100	2.6916	2.6890	210	-	-
34.062	3	2.6300	-	-	2.6220	1 1 13
36.541	28	2.4571	2.4540	211	-	-
38.080	15	2.3612	-	-	2.3670	222
39.583	8	2.2750	-	-	2.2700	0 0 18
42.440	2	2.1282	2.1260	220	-	-
44.260	5	2.0448	-	-	2.0520	1 2 15
45.041	2	2.0111	-	-	2.0050	2 2 11
46.378	2	1.9562	-	-	1.9490	2 2 1 2
47.779	10	1.9021	1.9016	310	-	-
50.542	1	1.8044	-	-	1.8020	140
52.678	10	1.7361	1.7356	222	-	-
53.701	10	1.7055	-	-	1.7030	0 0 24
55.000	14	1.6682	1.6676	320	-	-
57.260	13	1.6076	1.6070	321	-	-

Tablo 4.82' nin devamı						
61.639	6	1.5035	1.5034	400	-	-
69.900	2	1.3447	1.3444	420	-	-
71.881	8	1.3124	1.3121	421	-	-
77.380	3	1.2323	1.2275	422	-	-

Şekil 4.103 MD17 Deneyine ait X-Işınları Toz Kırınımı Grafiği

MD20 deneyine ait XRD çekimi, üründe Ag_3PO_4 (ICDD 6-505) ve $Ag_4P_2O_7$ (ICDD 37-187) fazları olduğunu göstermiştir. Elde edilen ürüne ait XRD çekimi Şekil 4.103' de verilmiştir.

Titreşimler	Dalga Sayısı (cm ⁻¹)
υ(P=O)	1381
υ ₃ (PO ₄)	1099, 1009
υ ₁ (PO ₄)	900
$v_{s}(POP)$	693
𝙂₄(PO₄)	553

Tablo 4.83 MD17 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.104 MD17 Deneyine ait FTIR Spektrumu

FTIR spektrumu verileri fazlarda bulunan $(PO_4)^{-3}$ ve $(P_2O_7)^{-4}$ fonksiyonel gruplarının varlığını desteklemektedir.

			Ag		Ag ₃ PO ₄	
20	I/I ₀	d _{deneysel} (Å)	(ICDD 4 -783)	hkl	(ICDD 37-187)	hkl
			$d_{de\check{g}erleri}$		$d_{değerleri}$	
20.742	6	4.2788	-	-	4.2500	110
22.277	5	3.9874	-	-	-	-
29.681	9	3.0075	-	-	3.0060	200
31.681	16	2.8220	-	-	-	-
33.260	76	2.6915	-	-	2.6890	210
34.323	8	2.6106	-	-	-	-
34.804	13	2.5756	-	-	-	-
35.441	14	2.5308	-	-	-	-
36.538	22	2.4572	-	-	2.4540	211
38.060	100	2.3624	2.3590	111	-	-
44.278	38	2.0440	2.0440	200	-	-
45.536	8	1.9904	-	-	-	-
47.779	8	1.9021	-	-	1.9016	310
52.581	9	1.7391	-	-	1.7356	222
54.999	13	1.6682	-	-	1.6676	320
57.239	11	1.6082	-	-	1.6070	321
61.521	10	1.5061	-	-	1.5034	400
64.420	32	1.4451	1.4450	220	-	-
71.942	7	1.3114	-	-	1.3121	421
77.341	31	1.2328	1.2310	311	-	-

Tablo 4.84 MD18 Deneyine ait X-Işınları Toz Kırınımı Verileri

Gümüş(I)nitrat ve sodyum dihidrojen fosfat maddeleri arasında, mikrodalga fırında gerçekleştirilen reaksiyona ait XRD çekimi, gümüş tozu (ICDD 4-783) ve Ag₃PO₄ (ICDD 37-187) bileşiğine ait olmak üzere ortamda iki fazın bulunduğunu göstermiştir. Elde edilen ürüne ait XRD verileri Tablo 4.84' de, XRD çekimi Şekil 4.105' de verilmektedir.

Şekil 4.105 MD18 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
v(P=O)	1384
υ ₃ (PO ₄)	1004
υ ₁ (PO ₄)	897
𝙂₄(PO₄)	674, 553

Tablo 4.85 MD18 Deneyine ait FTIR Spektrumu Verileri

FTIR spektrumu, üründe bulunan $(PO_4)^{-3}$ fonksiyonel gruplarının varlığını desteklemektedir.

Şekil 4.106 MD18 Deneyine ait FTIR Spektrumu

MD19 deneyine ait XRD çekimi, BPO₄' ün (ICDD 34-132) elde edildiğini, gümüş atomu içeren fazın ise amorf yapılı bir fosfat bileşiği olduğunu düşündürmektedir. FTIR spektrum verileri (Tablo 4.86) $(BO_4)^{-5}$ ve $(PO_4)^{-3}$ fonksiyonel gruplarının varlığını desteklemektedir. Ürüne ait FTIR spektrumu Şekil 4.107' de verilmiştir.

Şekil 4.107 MD19 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Titreşimler	Dalga Sayısı (cm ⁻¹)
𝙂(P=O)	1384
υ ₃ (PO ₄)	1082
υ ₁ (PO ₄), υ ₃ (BO ₄)	937
υ ₁ (BO ₄)	819
υ_4 (BO ₄), δ (CO ₂)	668
𝙂₄(PO₄)	531

Tablo 4.86 MD19 Deneyine ait FTIR Spektrumu Verileri

4.3.9 WO₃ / (NH₄)₂HPO₄, NaH₂PO₄.2H₂O Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Tablo 4.87 W/P Sisteminde Yapılan Deneyler ve Kod Numaraları

Deney No	Başlangıç Maddeleri
MD20	$WO_3 + 2(NH_4)_2HPO_4$
MD21	$9WO_3 + (NH_4)_2HPO_4$
MD22	$WO_3 + 3NaH_2PO_4.2H_2O$

Tungsten(VI)oksit ve amonyum dihidrojen fosfat maddeleri arasında, 1:2 mol oranında mikrodalga fırında gerçekleştirilen reaksiyona ait XRD verileri (Tablo 4.88), elde edilen ürünün iki fazlı olduğunu, bu fazlardan ilkinin WP₂O₇ (ICDD 53-1015), diğerinin ise reaksiyona girmeden kalan WO₃ (ICDD 75-2072) olduğunu göstermiştir. Ürüne ait FTIR spektrum verileri, (Tablo 4.89) (P₂O₇)⁻⁴ fonksiyonel grubunun varlığını desteklemektedir. Ürüne ait XRD grafiği şekil 4.109' da, FTIR spektrumu ise Şekil 4.110' de verilmiştir.

	1		WP_2O_7		WO ₃	
20	(Å)	I/I_0	(ICDD 53-1015)	hkl	(ICDD 75-2072)	hkl
	(A)		$d_{degerleri}$		d _{değerleri}	
19.461	4.5577	94	4.592	111	-	-
22.500	3.9484	100	3.977	002	-	-
23.160	3.8374	14	-	-	3.8240	001
23.761	3.7416	17	-	-	3.7505	020
24.480	3.6334	14	-	-	3.6370	200
25.201	3.5310	10	3.556	021	-	-
26.662	3.3407	8	-	-	3.3334	120
27.600	3.2293	11	3.245	112		
28.817	3.0956	5	-	-	3.0865	111
31.960	2.7980	42	2.811	022	-	-
33.421	2.6789	9	-	-	2.6776	021
33.920	2.6407	11	-	-	2.6337	201
34.279	2.6138	12	-	-	2.6109	220
35.542	2.5238	6	-	-	2.5120	121
37.640	2.3878	51	2.397	113	-	-
39.360	2.2873	14	2.295	222	-	-
41.783	2.1601	5	-	-	2.1553	221
45.741	1.9820	6	1.987	004	-	-
47.038	1.9303	4	1.927	223	-	-
48.455	1.8771	5	1.874	114	-	-
50.119	1.8186	22	1.824	331	-	-
51.480	1.7737	18	1.778	024	-	-
52.522	1.7409	4	1.735	124	-	-
53.598	1.7085	4	1.701	332	-	-
54.300	1.6881	6	-	-	1.6837	041
54.982	1.6687	5	-	-	1.6667	240
56.061	1.6391	3	-	-	1.6363	420
56.839	1.6185	12	1.623	224	-	-
58.239	1.5829	4	-	-	1.5847	331
60.680	1.5250	15	1.530	115	-	-
66.700	1.4012	6	1.406	044	-	-
70.141	1.3406	7	1.344	153	-	-
70.693	1.3315	3	-	-	1.3388	042
71.141	1.3242	6	1.325	442	-	-

Tablo 4.88 MD20 Deneyine ait X-Işınları Toz Kırınımı Verileri

Tablo 4.88' in devamı						
71.458	1.3191	4	-	-	1.3168	402
75.897	1.2526	4	1.257	062	-	-

Şekil 4.109 MD20 Deneyine ait X-Işınları Toz Kırınımı Grafiği.

Titreşimler	Dalga Sayısı (cm ⁻¹)
$v_{as}(PO_3)$	1172
υ _s (PO ₃)	1006
$\upsilon_{\rm as}({\rm POP})$	883
$v_{s}(POP)$	702
δ (PO ₃)	500

Tablo 4.89 MD20 Deneyine ait FTIR Spektrumu Verileri

Şekil 4.110 MD20 Deneyine ait FTIR Spektrumu

MD21 deneyine ait XRD verilerinin analizi, başlangıçta ortama konan WO₃ bileşiğinin, reaksiyona giremeden ortamda kaldığını göstermiştir. Bunun nedeni reaksiyon sırasında ulaşılan sıcaklığın katı hal reaksiyonu için yeterli olmamasıdır. Ürüne ait FTIR spektrumu da bu durumu desteklemektedir.

Şekil 4.111 MD21 Deneyine ait X-Işınları Toz Kırınımı Grafiği

Şekil 4.112 MD21 Deneyine ait FTIR Spektrumu

Şekil 4.113 MD22 Deneyine ait X-Işınları Toz Kırınımı Grafiği

MD22 deneyinde, Tungsten(VI)oksit ve sodyum dihidrojen fosfat maddeleri arasında, mikrodalga fırında gerçekleştirilen reaksiyona ait XRD grafiği, elde edilen ürünün amorf özellikte olduğunu göstermiştir.

4.4 Sonuçlar

Bu tez çalışmasında, katı-hal, mikrodalga ve hidrotermal yöntemler kullanılarak yeni tipte bazı metal (Na, Al, Ca, Cr, Fe, Co, Ni, Cu, Zn, Ag, Hg, Nd) boratlı, fosfatlı ve borfosfatlı malzemelerin sentezlenmesine çalışılmıştır.

Katı-hal yöntemi kullanılarak yapılan deneylerde, $Co_2Ni(BO_3)_2$ ve $CoNi_2(BO_3)_2$ bileşikleri ilk defa ve tek fazlı olarak başarılı bir şekilde sentezlenmişlerdir. Her iki orjinal bileşiğinde ortorombik sistemde kristallendiği bulunmuş, uzay grupları Pnmn olarak belirlenmiştir. İlk bileşiğin birim hücre parametreleri a=5.444(8) Å, b=8.404(0) Å, c=4.504(1) Å ve Z=2, ikinci bileşiğin hücre parametreleri ise a=5.419(9) Å, b=8.352(0) Å, c=4.478(8) Å ve Z=2 olarak hesaplanmıştır. Deneysel olarak hesaplanmış yoğunluk değerleri, $Co_2Ni(BO_3)_2$ için 4.608 g/cm³ iken, $CoNi_2(BO_3)_2$ için 4.479 g/cm³ olarak bulunmuştur.

Co₂NiBPO₇ ve CoNi₂BPO₇ bileşikleri de yine katı-hal yöntemleri kullanılarak ilk defa ve az bir safsızlıkla sentezlenebilmiştir. Her iki orjinal bileşiğinde monoklinik sistemde kristallendiği bulunmuş, uzay grubu Cm olarak belirlenmiştir. İlk bileşiğe ait birim hücre parametreleri a=9.723(3) Å, b=12.547(6) Å, c=4.881(3) Å ve β =119.48(7)⁰, ikinci fazın birim hücre parametreleri ise a=9.707(9) Å, b=12.489(8) Å, c=4.866(2) Å ve β =119.47(9)⁰ olarak hesaplanmıştır.

Nadir toprak metali içeren çift metalli boratlı tipteki bileşiklerinin sentezlenmesinde, bor minerallerinin kullanıldığı katı-hal deneylerinde, hedeflenen orijinal maddelerin sentezlenemediği görülmüştür.

Hidrotermal yöntem kullanılarak yapılan deneylerde vaterite yapısına sahip NdBO₃ bileşiği ilk kez ve tek fazlı olarak başarılı bir şekilde sentezlenmiştir. Bu sentez işlemi üç farklı yol kullanılarak gerçekleştirilmiştir. Bu sentezlerde elde edilen bileşikler monoklinik sistemde indekslenmiş, uzay simetrilerinin (P) grubuna bağlı olduğu belirlenmiştir. İlk yolda başlangıç maddeleri olarak boraks ve neodimyum(III)oksit bileşikleri kullanılmış, ürüne ait birim hücre parametreleri a=11.812(1) Å, b=6.754(2) Å, c=9.913(5) Å ve β =115.34(8)⁰ olarak hesaplanmıştır. İkinci sentez yolunda, başlangıç maddeleri olarak borik asit ve neodimyum(III)oksit bileşikleri hücre parametreleri a=11.812(8) Å, b=6.745(6) Å,

c=9.921(1) Å ve β =115.36(7)⁰ olarak hesaplanmıştır. Üçüncü sentez yolunda ise başlangıç maddeleri olarak bor oksit ve neodimyum(III)oksit bileşikleri kullanılmış, birim hücre parametreleri a=11.726(1) Å, b=6.759(2) Å, c=9.909(4) Å ve β =114.50(0)⁰ olarak hesaplanmıştır.

Yine hidrotermal yöntem kullanılarak yapılan deneylerde literatürdeki üç bileşik $Cu_5(PO_4)_2(OH)_4$ (ICDD 83-1207), Ag_3PO_4 (ICDD 6-505) ve NH_4ZnPO_4 (ICDD 88-1126) tek fazlı ve saf olarak, altı bileşik ise [$Cu_2P_2O_7$ (ICDD 21-880) -BPO₄ (ICDD 34-132)], [$Cu_2PO_4.OH$ (ICDD 36-404) – CuO (ICDD 5-661)] ve [$NH_4Al_2P_2O_8.OH.2H_2O$ (ICDD 45-183) - AlO.OH (ICDD 21-1307)] iki fazlı sistemlerin bileşenleri olarak elde edilmiştir.

Mikrodalga yöntem kullanılarak yapılan deneylerde, $Co_2Ni(BO_3)_2$ bileşiği az bir safsızlık ile ilk kez bu çalışmada başarılı bir şekilde sentezlenmiştir. Elde edilen bileşiğin kristal yapısı ortorombik olarak belirlenmiş, uzay grubu Pnmn olarak tayin edilmiştir. Rafine edilmiş birim hücre parametreleri ise a=5.438(8) Å, b=8.394(0) Å, ve c=4.499(2) Å olarak hesaplanmıştır.

Yine mikrodalga yöntem kullanılarak yapılan deneylerde, literatürde bulunan beş bileşik Zn₃(PO₄)₂.4H₂O (ICDD 70-900), Hg₃(PO₄)₂ (ICDD 70-1798), Zn₃(PO₄)₂.4H₂O (ICDD 37-465), NH₄FeP₂O₇ (ICDD 21-26) ve AlPO₄ (ICDD 51-1674) tek fazlı ve saf olarak, NaCrP₂O₇ (ICDD 75-1722) az bir safsızlıkla ana faz olarak, diğer altı bileşik ise [α -Ca₂P₂O₇ (ICDD 9-345) - γ -Ca₂P₂O₇ (ICDD 17-499)], [NaCaPO₄ (ICDD 29-1193) - Ca₂P₂O₇ (ICDD 33-297)] ve [NH₄AlP₂O₇ (ICDD 49-557) -AlPO₄ (ICDD 48-652)] iki fazlı sistemlerin bileşenleri olarak elde edilmiştir.

Özetle bu tez çalışmasında sentezlenen beş yeni tip bileşikten üç tanesi $(Co_2Ni(BO_3)_2, CoNi_2(BO_3)_2)$ ve vaterite tipi-NdBO₃) tek fazlı olarak, iki tanesi $(Co_2NiBPO_7 \text{ ve } CoNi_2BPO_7)$ ise az bir safsızlıkla ana fazlar olarak elde edilmişlerdir. Bütün bu bileşikler toz olarak sentezlendiği için, tek kristallerde elde edilen, üç boyutlu parametre bilgileri elde edilememiştir.

İlerleyen aşamalarda ilk olarak az bir safsızlıkla elde edilen bileşikler tek fazlı olarak sentezlenmeye çalışılacak ve daha sonra bütün bu bileşiklerin Rietveld analiz yöntemi kullanılarak üç boyutlu yapıları aydınlatılmaya çalışılacaktır.

5. EKLER

EK:A BAZI FONKSİYONEL GRUPLARIN ve BİLEŞİKLERİN FTIR SPEKTRUMU DALGA SAYILARI

EK A.1 Bazı Fonksiyonel Gruplara ait Literatürde Bulunan Makalelerden Elde Edilmiş Dalga Sayıları

Titreşimler	Dalga Sayıları (cm ⁻¹)
υ (P=O)	1216 [77] / 1230, 1213 [76] / 1377-1342 [135]
U as(OPO)	1321-1181 [136]
U _s (OPO)	1104 [70] / 1138, 1096, 1061 [136]
δ (OPO)	564 [70] / 561 [77] / 588 [76] / 590, 555, 506, 477, 421 [136]
𝙂 ₃(PO₄)	1098, 1013 [69] / 1090-1044 [130] / 1132-991 [82] / 1059 [70] / 1196, 1095, 965 [78] / 1051 [77] / 1068 [76] / 1103-1024 [135]
υ ₁ (PO ₄)	962 [130] / 985-948 [82] / 989 [70] / 885 [78] / 972 [77] / 971 [76] / 959 [135]
𝙂 ₄(PO₄)	644, 592, 551 [69] / 602-571 [130] / 573-450 [82] / 467, 423 [70] / 520 [78] / 466 [77] / 485-439, 426 [76] / 482 [135]
υ ₂ (PO ₄)	438 [69] / 472 [130] / 436-334 [82] / 370-357 [70] / 466 [78]
U as(POP)	971 [76] / 1026-984, 934 [136] / 970 [46] / 943-916 [45]
υ _s (POP)	750, 700 [76] / 766, 738, 670 [136] / 763 [46] / 751-737 [45]
δ (POP)	365 [136] / 623, 580, 557, 530, 492, 476, 451 [46]
U as(PO ₃)	1163, 1108 [46] / 1215-1100 [45]
𝙂 s(PO ₃)	1066, 1050, 1010 [46] / 1098-984 [45]
δ (PO ₃)	623, 580, 557, 530, 492, 476, 451 [46] / 626-376 [45]
U as(BOP)	850, 800 [77] / 841, 796 [76] / 850 [135]
U _s (BOP)	749 [77] / 750-700 [76] / 681 [135]
δ (BOP)	655 [77] / 673 [76] / 650 [119]
υ(BO ₃)	1450-1200 [128] / 1300 [119]
$v_{as}(BO_3)$	1000-1300 [18] / 1241 [129] / 1423, 1351 [131]
$\overline{\upsilon}_{s}(BO_{3})$	900-1000 [18] / 949 [129] / 957, 898 [131]

$\delta_{\rm dd}({\rm BO}_3)$	700-900 [18] / 742 [129]
$\delta_{\rm di}({ m BO}_3)$	560-680 [18] / 676, 581, 529 [131]
$a_{1}(\mathbf{BO}_{2})$	1353, 1210, 1164 [17] / 1347-1089 [133] / 1230 [69] /1304, 1252, 1208 [130] /
0 3(1003)	1345-1156 [82] / 1200-1245 [70]
υ ₁ (BO ₃)	938, 912 [17] / 933-940 [133] / 913-907 [82] / 1040 [70]
$v_{2}(\mathbf{BO}_{2})$	767, 742 [17] / 780-712 [133] / 727 [69] / 784, 772, 755 [130] / 779-623 [82] /
U 2(D O3)	785-750 [70]
U ₄ (BO ₃)	645-613 [17] / 653-529 [133] / 644, 592, 551 [69] / 598-574 [82] /
	662-623 [70]
υ (BO ₄)	790-1200 [128] / 900-1050 [119] / 1100-800 [134]
$v_{as}(BO_4)$	1098, 1026 [131] / 1030-992 [134]
υ _s (BO ₄)	863, 812 [131] / 850-900 [134]
δ (BO ₄)	581, 529, 436 [131]
$v_{2}(\mathbf{BO}_{4})$	1051, 1011, 919 [133] / 1196, 1095, 1022, 965, 885, 856, 805, 748 [78] /
U 3(DO ₄)	1117 [77] / 1120, 1185, 1100 [76] / 1103-1024 [135]
υ ₁ (BO ₄)	871, 844 [133] / 654 [78] / 882 [77] / 899 [76] / 882 [135]
υ ₄ (BO ₄)	709 [133] / 614, 549 [78] / 519, 466 [77] / 627, 517, 439 [76] / 576 [135]
υ ₂ (BO ₄)	596 [133] / 466 [78]

Fonksiyonel				
Gruplar/	Dalga Sayıları (cm ⁻¹)			
Bileşikler				
DO -3	1017, 1000-1080 υ_3 / 938, 960 υ_1 / 567, 520-600 υ_4 / 420, 370 υ_2 [137]			
ΓO_4	940-1120 stg / 540-650 m [138]			
P O ⁻⁴	1100-1220 stg / 960-1060 wk-m / 850-980 m /			
P_2O_7	705-770 w-m / 545-580 m-stg [138]			
BO_3^{-3}	1220-1280 υ_3 / 950 υ_1 / 720-800 υ_2 / 600-680 υ_4 [137]			
BO4 ⁻⁵	886 v ₃ /880 v ₁ /627 v ₄ /372 v ₂ [137]			
NO_3^{-1}	1310-1405 υ_3 / 1018-1050 υ_1 / 807-850 υ_2 / 697-716 υ_4 [138]			
$\mathrm{NH_4}^{+1}$	3250 v / 1400 δ [138]			
OH	Katı 3637 v / Gaz 3555 v [137]			
	Katı 3220 υ_3 / 3400 υ_1 / 1620 υ_2 [137]			
H_2O	Sivi 3615 v_3 / 3450 v_1 / 1640 v_2 [137]			
	Gaz 3756 υ_3 / 3657 υ_1 / 1595 υ_2 [137]			
CO ₂	2349 υ_3 / (1337) υ_1 / 667 υ_2 [137]			

EK A.2 Bazı Bileşiklere ve Fonksiyonel Gruplara ait Literatürde Bulunan Kitaplardan Elde Edilmiş Dalga Sayıları

6. KAYNAKÇA

[1] Adams, R.M., Boron, Metallo-Boron Compounds and Boranes, Wiley-Interscience, New York, (1964).

[2] Smith, R.A., Mc Brom, R.B., Boron Compounds, Oxides, Acid, Borates, Kirk-Othmer Encyclopedia of Chemical Tecnology, Wiley, New York, (1992).

[3] http://bor.balikesir.edu.tr/bor.html.

[4] Kocakuşak, S., Akçay, K., Ayok, T., Köroğlu, J.,Savaşçı,T. ve Tolun,R., Akışkan Yatakta Bor Oksit Üretim Teknolojisinin Geliştirilmesi, Tübitak Araştırma Merkezi, Rapor No:KM 323, (1998).

[5] http://ekutup.dpt.gov.tr/madencil/sanayiha/oik474.pdf

[6] http://webmineral.com/data/Borax.shtml

[7] Baykal A., Synthesis and Characterization of Alkaline Earth and Rare Earth Borophosphate Compounds, Ph.D.Thesis, METU, Ankara, (1999).

[8] http://www.mta.gov.tr

[9] Morimoto, N., *Mineral J.Japan*, (1956), **2**, 1.

[10] http://webmineral.com/data/Colemanite.shtml

[11] Silver, A.H., J. Chem. Phys., (1960), 32, 959.

[12] Demiral Kurtuluş F., Bazı Metal Borfosfatların ve Borkarbürlerin Katı-Hal Yöntemiyle Sentezlenmesi ve Malzemelerin Karakterizasyon Çalışmaları, Doktora Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Balıkesir, (2003).

[13] Goetzman, K., Karlheinz, D., Hans-Dieter, N., and Ralf, G., Patent CA, C09K015, (1996).

[14] Zhang, Y., Liang, J.K., Chen, X.L., He, M., Xu,T., Journal of Alloy and Compounds, (2001), **327**, 96.

[15] Keszler, D.A., *Current Opinion in Solid State and Materials Science*, (1999), **4**, 155.

[16] http://www.fizikdosyasi.com/lazerler.html

[17] Zhang, Y., Chen, X.L., Liang, J.K., Xu, T., *Journal of Alloy and Compounds*, (2002), **333**, 72.

[18] Zhang, G., Wu, Y., Fu, P., Wang, G., Liu, H., Fan, G., Chen, C., Journal of Physics and Chemistry of Solid, (2002), 63, 145.

[19] Rowsell, J.L.C., Taylor, N.J., Nazar, L.F., *Journal of Solid State Chemistry*, (2003), **174**, 189.

[20] Boyer, D., Bertrand-Chadeyron, G., Mahiou R., Brioude, A., Mugnier, J., *Optical Materials*, (2003), **24**, 35.

[21] Chen, C.T., Wu, B.C., Jiang, et al., Sci. Sin., (1985), B28 (3), 234.

[22] Chen, C.T., Wu, B.C., Jiang, et al., J. Opt.Soc.Am., (1989), B6 (4), 616.

[23] Wu, Y.C., Sasaki, T., Nakai, S., et al., Appl. Phys. Lett., (1993), 62 (21), 2614.

[24] Mori, Y., Kuroda, I., Nakajima, I.S., et al., Appl. Phys. Lett., (1995), 67, 818.

[25] Chen, C.T., Wang, Y.B., Wu., B.C., et al., Nature, (1995), 373, 322.

[26] Mei, L.F., Wang Y.B., Chen, C.T., et al., J.Appl. Phys., (1993), 74 (11), 7014.

[27] Hu, Z.G., Higashiyama, T., Yoshimara, M., et al., J. Appl. Phys., (1998), **37** (2), 1093.

[28] Muetterties, E.L., The Chemistry of Boron and Its Compounds, John Wiley Publ., New York, (1967).

[29] Wells, A.F., Structural Inorganic Chemistry, Oxford, Clarendon Press, (1975).

[30] Byrappa, K., Pushcharovky, D.Y., *Prog. Crystal Growth and Characterization*, (1992), **24**, 269.

[31] Jubera, V., Gravereau, P., Chaminade, J.P., Solid State Sciences, (2001), 3, 469.

[32] Li, X.Z., Chen, X.L., Jian, J.K., Wu, L., Xu, Y.P., Cao, Y.G., *Journal of Solid State Chemistry*, (2004), **177**, 216.

[33] Lin, Q.S., Cheng, W.D., Chen, J.T., Huang, J.S., *Journal of Solid State Chemistry*, (1999), **144**, 30.

[34] Smith, W.R., Keszler, D.Z., Journal of Solid State Chemistry, (1997), 129, 184.

[35] Touboul, M., Betourne, E., Nowogrocki, G., *Journal of Solid State Chemistry*, (1997), **131**, 370.

[36] Penin, N., Seguin, L., Touboul, M., Nowogrocki G., *Journal of Solid State Chemistry*, (2001), **161**, 205.

[37] Hong, H.Y.P., Mater. Res.Bull., (1976), 11, 173.

[38] Moffat, J.B., Catal. Rev. Sci. Eng., (1978), 18, 199.

[39] Andrew, Rappe, M., Nicholas, Ramer, J., American Physical Society, (1996), March, 12.

[40] Bennazha, J., Erragh, F., Boukhari, A., Holt M.E., *Journal of Chemical Crystallography*, (2000), **30** (11), 705.

[41] Madore, C., Landolt, D., Hassenpflug, C., Herman, J.A., *Plating and Surface Finishing* (1995), **82** (8), 36.

[42] Averbuch, M.T., Durif, A.P., Topics in Phosphate Chemistry, World Scientific Publication, London, (1996).

[43] Fukuda, K., Moriyoma, A., Hashimoto, S., *Journal of Solid State Chemistry*, (2004), **177**, 3514.

[44] Linsyak, V.V., Stus, N.V., Sloboyanik, N.S., Belyavina, N.M., Markiv, V.Y., *Journal of Alloy and Compounds*, (2000), **309**, 83.

[45] Khay, N., Ennaciri, A., Journal of Alloy and Compounds, (2001), 323, 800.

[46] Ferid, M., Horchani, K., Amami, J., Materials Research Bulletin, (2004), 39, 1949.

[47] Horchani, K., Ferid, M., Gacon, J.C., Lecocq, S., Ayedi-Trabelsi, M., Gregora, I., *Materials Research Bulletin*, (2002), **37**, 1259.

[48] Cole, J.M., Lees, M.R., Howard, J.A.K, Newport, R.J., Saunders, G.A., Schönder, E., *Journal of Solid State Chemistry*, (2000), **150**, 377.

[49] Sevov, S.C., Angrew. Chem. Int. Ed. Engl., (1996), 35 (22), 2630.

[50] Jak, M.J.G., Kelder, E.M., Van Zomeren, A.A., Schoonman, J., *Proc. Electrochem. Soc.*, (1996), **96 (14)**, 58.

[51] Bulur, E., Goeksu, H.Y., Wieser, A., Figel, M., Oezer, A.M., *Radiation Prot, Dosim.*, (1996), **65**, 373.

[52] Goetzman, K., Karlheinz, D., Hans-Dieter, N., Ralf, G., Patent CA, C09K015, (1996).

[53] Tanabe, R., Sugimato, N., Ho, S., Manabe, T., Patent CA Section 57 (Ceramics) CODEN JKXXXAF, ICS: C03C008; C03C008-14, 95-274456, 23 Oct.,(1995).

- [54] Kniep, R., Engelhardt, H., Hauf, C., Chem. Mater., (1998), 10, 2930.
- [55] Boy, I., Cordier, G., Eisenmann, B., Kniep, R., Z. Naturforsch., (1998), **53b**, 165.
- [56] Hauf, C., Boy, I., Kniep, R., Z. Kristallogr., (1999), 214, 3.
- [57] Boy, I., Cordier, G., Kniep, R., Z. Kristallogr., (1998), 213, 29.
- [58] Kniep, R., Will, H.G., Boy, I., Röhr, C., Angrew. Chem., (1998), 109, 1052.
- [59] Sevov, S.C., Angrew. Chem., (1996), 108, 2814.
- [60] Moore, P.B., Ghose, S., Amer. Mineral., (1971), 56, 1527.
- [61] Gupta, P.K.S., Swihart, G.H., Dimitrijevic, R., Hossain, M.B., Amer. Mineral., (1991), 1400.
- [62] Boy, I., Hauf, C., Kniep, R., Z. Naturforsch., (1998), 53, 631.
- [63] Hauf, C., Kniep, R., Z. Naturforsch., (1997), 52b, 1432.
- [64] Hauf, C., Kniep, R., Z. Kristallogr., (1996), 211, 707.
- [65] Hauf, C., Kniep, R., Z. Kristallogr., (1997), NCS 212, 313.
- [66] Hauf, C., Kniep, R., Z. Kristallogr., (1996), 211, 705.
- [67] Liebertz, J., Stahr, S., Zeitschrift Kristallographie, (1982), 160, 135.
- [68] Park, C.H., Bluhm, K., Z. Naturforsch., (1995), 50B, 1617.
- [69] Wang, G., Wu, Y., Fu, P., Liang, X., Xu, Z., Chen, C., *Chem. Mater.*, (2002), **14**, 2044.
- [70] Gözel, G., Baykal, A., Kızılyallı, M., Kniep R., *Journal of European Ceramic Society* (1998), **18**, 2241.
- [71] Gözel, G., Preparation and Structural Investigation of Alkaline-Earth Borophosphates, Ph. D. Thesis, METU, Ankara, (1993).
- [72] Ma, H.W., Liang, J.K., Wu, L., Liu, G.Y., Rao, G.H., Chen, X.L., *Journal of Solid State Chemistry*, (2004), **177**, 3454.
- [73] Yılmaz, A., Bu, X., Kızılyallı, M., Kniep, R., Stucky, G.D., *Journal of Solid State Chemistry*, (2001), **156**, 281.
- [74] Bauer, H., Zeitschrift für Anorganis che und Allgemenie Chemie, (1965), **337**, 183.

[75] Bauer, H., Zeitschrift für Anorganis che und Allgemenie Chemie, (1966), **345**, 225.

[76] Baykal, A., Gözel, G., Kızılyallı, M., Toprak, M., Kniep, R., Turk J. Chem., (2000), 24, 381.

[77] Baykal, A., Kızılyallı, M., Gözel, G., Kniep, R., Cryst. Res. Technol., (2000), 35, 247.

[78] Shi, Y., Liang, J., et al., Journal of Solid State Chemistry, (1998), 135, 43.

[79] Pushcharovsky, D.Y., Gobetchia, E.R., Pasero, M., Merlino, S., Dimitrova, O.V., *Journal Alloy and Compounds*, (2002), **339**, 70.

[80] Bontchev, R.P., Sevov, S. C., Inorg. Chem., (1996), 35, 6910.

[81] Hauf, C., Yılmaz, A., Kızılyallı, M., Kniep, R., Journal of Solid State Chemistry., (1998), **140**, 154.

[82] Shi, Y., Liang, J., Zhang, H., Yang, J., Zhuang, W., Rao, G., *Journal of Solid State Chemistry.*, (1997), **129**, 45.

[83] Roberts, L. E. J., Solid State Chemistry, Vol. 10, Butterworths University Park Press, London, (1972).

[84] Hanay, N.B., Treatise Solid State Chemistry (Reactivity of Solids), Vol. 4, Plenum Press, New York, (1976).

[85] Byrappa, K., Progress in Crystal Growth and Characterization of Materials, Vol. 21, Permagon Press, Frankfurt, (1991).

[86] Chen, H.Y., Miller D.M., Hudson, J.E., Westenbroek C.J.A., *IEEE Trans. Magn.*, (1984), **20**, 24.

[87] Rabenau, A., Angrew. Chem. Int. Ed., (1985), 24, 1026.

[88] Livage, J., Henry, M., Sanchez, C., Prog. Solid State Chem., (1988), 18, 259.

[89] Schöllhorn, R., Inclusion Compounds, Academic Press, London, Vol.1, (1984).

[90] Rouxel, J., Intercalated Layered Materials, Reidel Publishing, Dordrecht, Holland, (1979).

[91] Gopalakrishnan, J., Chem. Mather., (1995), 7, 1265.

[92] Mingos, D.M.P., Baghurst, D.R., Chem. Soc. Rev., (1991), 20, 1.

[93] Mingos, D.M.P., Chem. Ind., (1994), 598.

[94] Dagani, R., Chem. Eng. News., (1997), 26.

[95] Sridar, V., Curr. Sci, (1998), 74, 446.

[96] Yıldız, K., Alp, A., *TMMOB Metalurji Mühendisleri Odası Dergisi*, (2002), **125**, 1.

[97] Rao, K.J., Vaidhyanathan, B., Ganguli, M., Ramakrishnan, P.A., *Chem. Mater.*, (1999), **11**, 882.

[98] Hong, H.Y.P., Mater. Res. Bull., (1976), 11, 173.

[99] Hangman, L., Kierkegaard, P., Acta Chem. Scand., (1968), 22, 1822.

[100] Vaidhyanathan, B., Rao, K.J., Journal of Solid State Chemistry, (1997), 132, 349.

[101] Copelle, R., Anal. Chim. Acta., (1961), 24, 555.

[102] Zaijun, L., Yuling, Y., Jiaomai, P., Jan T., The Analyst, (2001), 126, 1160

[103] Wu, E., POWD (An Interactive Powder Diffraction Data Interpretation And Indexing Program Ver. 2.2.), School of Physical Sciences, Flinders University Of South Australia, Bedford Park, S. A. 5042, Australia.

[104] Effenberger, H., Pertlik, Z. Kristallogr., (1984), 129, 166.

[105] Battey, M.H., Mineralogy for Students, Oliver & Boyd, Edinburgh, (1972).

[106] Pardo, J., Martinez-Ripol, M., Blanco-Garcia, S., Acta Crystallogr., (1974), B30, 37.

[107] Berger, S.V., Acta Chem. Scand., (1949), 3, 660.

[108] Bondareva, O.S., Simanov, M.A., Belov, N.B., Sos. Phys. Crystallogr., (1978), **23**, 272.

[109] Bluhm, K., Park, C.H., Z. Naturforsch. B: Chem Sci., (1997), 52, 102.

[110] Natl. Bur. Stand. (US). Monogr., (1962), 1 32, 25.

[111] Levin, E.M., Roth, R.S., Martin, J.B., Am. Mineralojist, (1961), 46, 1030.

[112] Felten, E.J., Journal of Inorganic and Nuclear Chemistry, (1961), 19, 61.

[113] Lin, J., Spheptyakov, D., Wang, Y., Allenspach, P., Chem. Mater., (2004), 16, 2418.

[114] Newnham, R.E., Redman, M.J., Santoro, R.P., *Journal of the American Ceramic Society*, (1963), **46**, 253

[115] Bradley, W.F., Graf, D.L., Roth, R.S., Acta Cryst., (1966), 20, 283.

[116] Laperches, J.P., Tarte, P., Spectrochim. Acta, (1966), 22, 1201.

[117] Denning, J.H., Ross, S.D., Spectrochim. Acta, (1972), 28A, 1775.

[118] Kriz, H.M., Bray, P.J., J. Chem. Phys., (1969), 51, 3624.

[119] Ren, M., Lin, J.H., Dong, Y., Yang, L.Q., Su, M.Z., You, L.P., *Chem. Mater.*, (1999), **11**, 1576.

[120] Anderson, J.B., et all., Am. Mineral., (1997), 62, 115.

[121] Bu, W.H., et all., Zeolites, (1997), 19, 200.

[122] Swanson, et all., Natl. Bur. Stand. [US] Circ., (1955), 5 62, 539.

[123] Ando, Frazier, Lehr, J. Agric. Food. Chem., (1968), 16, 691.

[124] Graetsch, H. Inst., f. Mineralogie, Ruhr-Univ. Bochum, Germany, Private Communication, (1999).

[125] Aurivillius, K., Nilsson, B.A., Z. Kristallogr., Kristallgeom., Kristallchem., (1975), **1**, 141.

[126] Whitaker, A., Acta Crystallogr. Sec. B, (1975), 31, 2026.

[127] Blanchard, F., Dept of Geology, University of Florida, Gainesville, Florida, USA, ICDD, Grant-in-Aid (1986).

[128] Huppertz, H., Altmannshofer, S., Heymann, G., *Journal of Solid State Chemistry*, (2003), **170**, 320.

[129] Lin, J.H., Zhou, S., Yang, L.Q., Yao, G.Q., Su, M.Z., *Journal of Solid State Chemistry*, (1997), **134**, 158.

[130] Ternane, R., Cohen-Adad M.Th., Boulon, G., Florian, P., Massiot, D., Trabelsi-Ayedi, M., Kbir-Ariguib, N., *Solid State Ionics*, (2003), **160**, 183.

[131]Yongzhang, J., Shiyang, G., Shuping, X., Jun, L., *Spectrochimica Acta Part*, (2000), **A 56**, 1291.

[132] Baykal, A., Kızılyallı, M., Toprak, M., Kniep, R., *Turk J. Chem.*, (2001), **25**, 425.

[133] Lemanceau, S., Bertrand-Chadeyron, G., Mahiou, R., El-Ghozzi, M., Cousseins, J.C., Conflant, P., Vannier, R.N., *Journal of Solid State Chemistry*, (1999), **148**, 229.

[134] Huppertz, H., Z. Naturforsch, (2003), 58b, 278.

[135] Baykal, A., Kızılyallı, M., J. Mater. Science, (2000), 35, 4621.

[136] Gözel, G., Kızılyallı, M., Kniep, R., J. Solid State Chem., (1997), 129, 196.

[137] Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, John Wiley & Sons, New York, (1997).

[138] Nyquist, R. A., Kagel, R. O., Infrared Spectra of Inorganic Compounds, Academic Pres, New York and London, (1971).