T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

ALÜMİNYUM, DEMİR VE KURŞUN İÇEREN BAZI BORATLI BİLEŞİKLERİN KATI-HAL KİMYASAL SENTEZLERİ VE KARAKTERİZASYON ÇALIŞMALARI

YÜKSEK LİSANS TEZİ

İrfan DOĞAN

Balıkesir, Mayıs-2010

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

ALÜMİNYUM, DEMİR VE KURŞUN İÇEREN BAZI BORATLI BİLEŞİKLERİN KATI-HAL KİMYASAL SENTEZLERİ VE KARAKTERİZASYON ÇALIŞMALARI

YÜKSEK LİSANS TEZİ

İrfan DOĞAN

Tez Danışmanı: Doç. Dr. Halil GÜLER

Sinav Tarihi: 31.05.2010

Jüri Üyeleri: Doç. Dr. Halil GÜLER (Danışman-BAÜ)

Yrd. Doç. Dr. Abdülkerim PEKİN (BAÜ)

Yrd. Doç. Dr. Figen KURTULUŞ (BAÜ)

Balıkesir, Mayıs-2010

ÖZET

ALÜMİNYUM, DEMİR VE KURŞUN İÇEREN BAZI BORATLI BİLEŞİKLERİN KATI-HAL KİMYASAL SENTEZLERİ VE KARAKTERİZASYON ÇALIŞMALARI

İrfan DOĞAN Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı

(Yüksek Lisans Tezi / Tez Danışmanı: Doç. Dr. Halil GÜLER)

BALIKESİR, 2010

Bu tez çalışmasında, alüminyum, demir ve kurşun nitratların borik asit ile oluşturabilecekleri olası tek metal atomu içeren boratlı tipteki bileşiklerinin katı-hal reaksiyonları ile sentezlenmesine çalışılmıştır. Deneysel reaksiyon ürünlerinin karakterizasyonunda X-Işınları Kırınımı (XRD) başlıca yöntem olarak kullanılmış, bileşiklerdeki BO₃ ve BO₄ fonksiyonel grupların varlıkları Fourier Transform-IR spektroskopisi (FTIR) ile desteklenmiş, TG/DTA termal analiz teknikleri ile ürünlerin termal kararlılıkları analiz edilmiştir.

Bu çalışmalar sonucunda Al₄B₂O₉, Fe₃BO₆ ve PbB₄O₇ bileşikleri saf bir şekilde başarıyla sentezlenmiştir. Al₄B₂O₉ bileşiğinin ortorombik kristal sistemde olduğu ve hücre parametrelerinin a=14.746 Å, b=15.268 Å ve c=5.557 Å değerlerinde, Fe₃BO₆ bileşiğinin ise yine ortorombik kristal sisteme sahip olduğu, hücre parametrelerinin de a=10.048 Å, b=8.531 Å ve c=4.466 Å değerlerinde bulunduğunu son olarak PbB₄O₇ maddesinin kristal geometrik yapısının ortorombik olduğunu, yapı parametrelerinin a=4.4562 Å, b=10.8401 Å ve c=4.2434 Å değerlerinde bulundukları ICDD veri tabanında bildirilmiştir.

Bu tez çalışmasında, Al₄B₂O₉, Fe₃BO₆ ve PbB₄O₇ bileşikleri, literatürden farklı olarak başka başlangıç kimyasal maddeleri kullanılarak sentezlenmiştir. Kimyasal reaksiyon sıcaklıkları ve zaman aralıkları da literatürden daha düşük değerlerde optimize edilmişlerdir.

ANAHTAR SÖZCÜKLER: Katı-Hal Reaksiyonları, Bor Kimyası, Metal Boratlar, X-Işınları Kırınımı.

ABSTRACT

THE SOLID STATE CHEMICAL SYNTHESIS AND CHARACTERIZATION STUDIES OF SOME BORATE COMPOUNDS THAT CONTAINS ALUMINIUM, IRON AND LEAD

İrfan DOĞAN Balıkesir University, Institute of Science, Department of Chemistry

(M. Sc. Thesis / Supervisor: Assoc. Prof. Dr. Halil GÜLER)

BALIKESİR, 2010

In this thesis, the compounds of aluminium, iron and lead nitrates that can create borate type of compounds containing a potential single metal atom with boric acid were tried to be synthesized by solid-state reactions. X-ray Diffraction (XRD) was used as a main method in the characterization of experimental reaction products. The presence of functional groups BO_3 and BO_4 in the compounds was supported by Fourier Transform-IR spectroscopy (FTIR). The thermal stabilities of the products were analyzed by TG/DTA thermal analysis techniques.

As a result of these studies, $Al_4B_2O_9$, Fe_3BO_6 and PbB_4O_7 compounds were synthesized successfully in a pure way. $Al_4B_2O_9$ compund was in orthorhombic crystal system and the cell parameters were in a=14.746 Å, b=15.268 Å and c=5.557 Å values, Fe_3BO_6 compound was also orthorhombic crystal system with the cell parameters at a=10.048 Å, b=8.531 Å and c=4.466 Å values, and finally the geometrical structure of crystal of the material PbB_4O_7 was orthorhombic and the structure parameters were a=4.4562 Å, b=10.8401 Å and c=4.2434 Å values. All these values were reported to the ICDD data base.

In this thesis $Al_4B_2O_9$, Fe_3BO_6 and PbB_4O_7 compounds were synthesized by using initial chemical matters which were different from the literature. The chemical reaction temperatures and the time intervals were also optimized for lower values than the literature.

KEY WORDS: Solid-State Reactions, Boron Chemistry, Metal Borates, X-Ray Diffraction.

İÇİNDEKİLER

ÖZET	C, ANAHTAR SÖZCÜKLER	ii
ABST	TRACT	iii
İÇİNI	DEKİLER	iv
SEME	BOL LİSTESİ	vi
ŞEKİl	L LİSTESİ	vii
TABI	LO LİSTESİ	viii
ÖNSĊ	ŻΖ	ix
1. GİF	RİŞ	1
1.1 1.2 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.3 1.4 1.5 1.6 1.7	Bor Boratlar Alüminyum Boratlar Demir Boratlar Demir Boratlar Kurşun Boratlar Endüstriyel Boratlar Endüstriyel Boratlar Teknolojik Boratlar Borat Fosfatlar Borat Fosfatlar Borat Florürler Poliboratlar Luminesans Materyaller Doğrusal Olmayan Optik Malzemeler Katı-Hal Sentez Yöntemi Mikrodalga Sentez Yöntemi Calısmanın Amacı	1 2 4 5 6 6 8 9 10 10 10 10 12 13 14 15 17
2. MA	TERYAL VE YÖNTEM	18
2.1 2.2 2.3 2.3.1 2.3.2	Kullanılan Kimyasallar Kullanılan Cihazlar Yöntem Katı- Hal Yöntemi Mikrodalga Yöntemi	18 18 18 18 18 19
3. BU	LGULAR	20

~
0
1
2
3
3
3
3
4
24
4
0
.9
7
7
1
1
3
1

SEMBOL LİSTESİ

Sembol	Adı ve Açıklama
XRD	X-Ray Diffraction (X-Işınları Toz Kırınımı)
FTIR	Fourier Transform Infrared Spektroskopisi
TG/DTA	Termogravimetrik-Diferansiyel Termal Analiz
ICDD	International Centre for Diffraction Data
KF	Kül Fırını
MD	Mikrodalga

ŞEKİL LİSTESİ

Şekil Numarası Adı		iyfa Iarasi
Şekil 4.1	400 °C'den 900 °C'ye kadar olan 4 saatlik	
	Al(NO ₃) ₃ .9H ₂ O:5H ₃ BO ₃ deneylerinin XRD desenleri	28
Şekil 4.2	900 °C'de 4, 8, 12 ve 24 saatlik	
	Al(NO ₃) ₃ .9H ₂ O:5H ₃ BO ₃ deneylerinin XRD desenleri	29
Şekil 4.3	KF6X deneyine ait IR spektrumu deseni	30
Şekil 4.4	KF6X deneyine ait TG/DTA deseni	31
Şekil 4.5	KF20 deneyine ait XRD deseni	32
Şekil 4.6	KF20 deneyine ait IR spektrumu deseni	33
Şekil 4.7	KF20 deneyine ait TG/DTA deseni	34
Şekil 4.8	KF6X ve KF20 deneylerine ait karşılaştırmalı TG deseni	35
Şekil 4.9	400 °C' den 900 °C' ye kadar olan 4 saatlik	
3	Fe(NO ₃) ₃ .9H ₂ O:5H ₃ BO ₃ deneylerinin XRD desenleri	42
Şekil 4.10	700 °C'de 4, 8, 12 ve 24 saatlik	
,	Fe(NO ₃) ₃ .9H ₂ O:5H ₃ BO ₃ deneylerinin XRD desenleri	43
Şekil 4.11	Fe(NO ₃) ₃ .9H ₂ O ve H ₃ BO ₃ maddelerinin 3:1 ve 1:5	
,	stokiyometrik oranlardaki deneylerinin XRD desenleri	44
Şekil 4.12	Fe ₃ BO ₆ maddesine ait "d" değerlerini gösteren	
,	XRD deseni	45
Şekil 4.13	KF10 deneyine ait IR spektrumu deseni	46
Şekil 4.14	KF10 deneyine ait TG/DTA deseni	47
Şekil 4.15	400 °C' den 900 °C' ye kadar olan 4 saatlik	
,	Pb(NO ₃) ₂ :4H ₃ BO ₃ deneylerinin XRD desenleri	51
Şekil 4.16	600 °C' de 4, 8, 12 ve 24 saatlik	
,	Pb(NO ₃) ₂ :4H ₃ BO ₃ deneylerinin XRD desenleri	52
Şekil 4.17	KF15 deneyine ait IR spektrumu deseni	53
Şekil 4.18	KF15 deneyine ait TG/DTA deseni	54
Şekil 4.19	MD1, MD2, MD3, MD4 ve MD5	
	deneylerine ait XRD deseni	58
Şekil 4.20	MD2 deneyine ait IR spektrumu deseni	59
Şekil 4.21	MD6, MD7, MD8, MD9 ve MD10	
-	deneylerine ait XRD deseni	62
Şekil 4.22	MD8 deneyine ait IR spektrumu deseni	63
Şekil 4.23	MD11, MD12, MD13, MD14 ve MD15	
	deneylerine ait XRD deseni	67
	-	

TABLOLAR LİSTESİ

Tablo Numarası	Adı	Sayfa Numarası
Tablo 1.1	Sentezlenmiş Alüminyum Borat Analizleri	4
Tablo 1.2	Mikrodalga Aktif Element, Doğal Mineral ve Bileşikler	16
Tablo 3.1	Al/B Sisteminde Farklı Sıcaklıklarda Yapılan Deneyler	20
Tablo 3.2	Al/B Sisteminde Farklı Sürelerde Yapılan Deneyler	20
Tablo 3.3	Al/B Sisteminde Farklı Stokiyometrik Oranlarda	
	Yapılan Deneyler	20
Tablo 3.4	Fe/B Sisteminde Farklı Sıcaklıklarda Yapılan Deneyler	21
Tablo 3.5	Fe/B Sisteminde Farklı Sürelerde Yapılan Deneyler	21
Tablo 3.6	Fe/B Sisteminde Farklı Stokiyometrik Oranlarda	
	Yapılan Deneyler	21
Tablo 3.7	Pb/B Sisteminde Farklı Sıcaklıklarda Yapılan Deneyler	22
Tablo 3.8	Pb/B Sisteminde Farklı Sürelerde Yapılan Deneyler	22
Tablo 3.9	Al/B Sisteminde Farklı Stokiyometrik Oranlarda	
	Yapılan Mikrodalga Deneyleri	23
Tablo 3.10	Fe/B Sisteminde Farklı Stokiyometrik Oranlarda	
	Yapılan Mikrodalga Deneyleri	23
Tablo 3.11	Pb/B Sisteminde Farklı Stokiyometrik Oranlarda	
	Yapılan Mikrodalga Deneyleri	23
Tablo 4.1	KF6X deneyine ait XRD verileri ve karşılaştırmaları	36
Tablo 4.2	KF6X deneyine ait FTIR verileri	26
Tablo 4.3	KF20 deneyine ait XRD verileri ve karşılaştırmaları	39
Tablo 4.4	KF20 deneyine ait FTIR verileri	27
Tablo 4.5	KF10 deneyine ait XRD verileri ve karşılaştırmaları	48
Tablo 4.6	KF10 deneyine ait FTIR verileri	41
Tablo 4.7	KF13 deneyine ait XRD verileri	55
Tablo 4.8	KF15 deneyine ait XRD verileri	56
Tablo 4.9	KF15 deneyine ait FTIR verileri	50
Tablo 4.10	MD2 deneyine ait XRD verileri	60
Tablo 4.11	MD8 deneyine ait FTIR verileri	61
Tablo 4.12	MD14 deneyine ait XRD verileri ve karşılaştırmaları	65
Tablo 4.13	MD15 deneyine ait XRD verileri ve karşılaştırmaları	66

ÖNSÖZ

Yüksek Lisans Tezi olarak sunduğum bu çalışma, Balıkesir Üniversitesi Fen-Edebiyat Fakültesi Kimya Anabilim Dalı Öğretim Üyesi Doç. Dr. Halil GÜLER yönetiminde Fen-Edebiyat Fakültesi Anorganik Kimya Araştırma Laboratuvarında ve Balıkesir Üniversitesi Temel Bilimler Araştırma Merkezi Laboratuvarında gerçekleştirilmiştir. Bu imkanı sağlayan Fen-Edebiyat Fakültesi Kimya Anabilim Dalı'na ve Temel Bilimler Araştırma Merkezi Birimi'ne;

Bu tez çalışmamın her aşamasında bilgi birikimi ve tecrübesi ile bana her zaman destek olan çok değerli danışmanım Doç. Dr. Halil GÜLER'e;

Bilgi ve desteğini benden esirgemeyen hocam Yrd. Doç. Dr. Figen KURTULUŞ'a;

Çalışmalarım sırasında bana maddi, manevi her alanda destek olan ve bugünlere gelmemde büyük emekleri olan sevgili babam Rıdvan DOĞAN ve sevgili annem Cemile DOĞAN'a;

Bu tez çalışmasının adım her aşamasında yanımda olan ve beni her konuda yüreklendiren Nazlı BALABANOĞLU'na;

İçten teşekkürlerimi sunarım.

Balıkesir, 2010

İrfan DOĞAN

1. GİRİŞ

1.1 Bor

Bor, elmasa yakın sertlikte ve refrakter özelliğe sahip bir elementtir. Gay Lussac, Thenard ve Davy tarafından 1803 yılında keşfedilen elementin atom numarası 5 olarak saptanmıştır. Bor elementi doğada saf halde bulunmaz ve oksijenle kolayca birleşir. Yerkürede yüzden fazla minerali ve değişik alanlarda değişik amaçlarla kullanılan çok sayıda bileşiği vardır. Amorf yapılı bor, gri renkli bir tozdur ve elektrik akımını çok az iletir. Amorf bor havada ısıtıldığında 700 °C'de tutuşur ve B₂O₃ oluşur. Sıcakta Cl₂, Br₂ ve S₈ ile birleşerek sırasıyla BCl₃, BBr₃ ve B₂S₃ verir. 900 °C'nin üstünde azot gazıyla bor nitrür oluşturur. Günümüzde endüstri ve laboratuvar ölçeğinde kullanılan bor bileşiklerinin sayısı hızlı bir şekilde artmaktadır [1].

Doğal bileşiklerden sayabileceğimiz 100'ü aşkın bor mineraline ilaveten yapay yollardan elde edilen bor bileşiklerinin sayısı da gün geçtikçe artmaktadır. Minerallerinde bora eşlik eden element olarak en çok oksijeni görmekteyiz. Başka bir deyişle, bor mineralleri aslında kompleks oksitlerdir. Türkiye dünya bor mineralleri rezervinin yaklaşık % 70'ine sahiptir. Bu anlamda ülkemiz bir bor oksit deposu ve cennetidir. Doğal bor mineralleri, değişik endüstri alanlarında hiçbir kimyasal dönüşüme uğratılmaksızın doğrudan katkı maddesi olarak kullanıldığı gibi kimyasal dönüşüme uğratılarak çeşitli bileşikleri halinde çok değişik endüstriyel üretim sektörlerinde kullanılmaktadır. Ülkemizde en çok bulunan bor mineralleri kolemanit, boraks, tinkal ve üleksittir [1].

Oksijen içeren bor bileşiklerinin doğal minerallerde yaygın olarak bulunmasından dolayı, bugünkü koşullarda en çok üretilen ve tüketilen bileşikler oksijenli bor bileşikleridir. Bunlar arasında ticari bakımdan en önemlisi [Na₂B₄O₇.5H₂O] formülüyle gösterilen sodyum boraks pentahidrat bileşiğidir. Bu bileşik, büyük miktarlarda yalıtım fiberleri üretiminde kullanılmaktadır. Borik asit de önemli bir bor bileşiği olup, tekstil elyafları ve selüloz üretiminde alev geciktirici materyal olarak kullanılır. Diğer önemli bir bileşik boraks dekahidrattır (Na₂B₄0₇.10H₂O) ve başlıca kullanım yeri deterjan sektörüdür. Bor bileşikleri mekanik, kimyasal ve termal bakımdan dayanıklı borosilikat camlarının üretiminde de kullanılmaktadır. Sert, dayanıklı, refrakter ve hafif materyaller olarak bor nitrür bazlı bileşikler, roket yakıtı ve enerji kaynağı olarak da bor hidrür bazlı bileşikler öne çıkmaktadır. Son yıllarda endüstriyel ölçekte üretilen ve tüketilen borat bileşiklerine ek olarak, bilimsel ve teknolojik amaçlı borat bileşikleri de sentezlenmekte ve bu alandaki incelemeler yoğun bir şekilde devam etmektedir. Yeni borat bileşikleri araştırma laboratuvarlarında henüz çok küçük ölçeklerde üretilmelerine rağmen potansiyel uygulamaları giderek artmakta olduğundan, yakın gelecekte endüstriyel tesislerde büyük ölçekli üretimler de mümkün olabilecektir. Kısacası, bor bileşikleri ve materyallerinin kullanılmadığı bir alan yok gibidir [1-3].

1.2 Boratlar

Çok sayıda borat bileşiği doğal yollardan oluşmuş mineraller içinde hidratize bir formda bulunmaktadır. Susuz boratlar borik asit ve metal oksitlerin yüksek sıcaklık eritişi yoluyla, hidratize boratlar ise sulu çözeltilerden kristallendirme edilebilir. uygulanarak elde Boratların stokiyometrisi, $KB_5O_8.4H_2O_1$ Na₂B₄O₇.10H₂O, CaB₂O₄ ve Mg₃B₇O₁₃Cl örneklerinde olduğu gibi, anyonların yapıları hakkında pek az bilgi vermektedir. Bu anyonlar, oksijen atomları üzerinden birbirine bağlanmış BO₃ veya BO₄ birimleri içermektedir. Kısacası boratlar BO₃ ve/veya BO₄ birimleri içeren halkalı ya da çizgisel birimler içeren kristal yapılı bileşiklerdir. Bu yapıları belirleyen temel ilkeler silikatlardaki ilkelere benzer. Nitekim boratların cam oluşturucu özellikleri silikatlarla benzerlik oluşturmaktadır [4]. İskelet oluşturan bu birimler değişik ölçülerde protonlanabilir. Böylece bir ya da daha fazla bor atomu, ilave bir OH⁻ iyonuna sahip olabilir ve üçgen yerine tetrahedral konuma geçer. Bilinen en büyük borat anyonu, üçgen yapılı iki BO3 birimiyle birbirine bağlanmış iki tetraborat biriminden oluşan $B_{10}O_{21}^{12-}$ iyonudur [4]. Susuz boratlarda, BO_3^{3-} , $B_3O_6^{3-}$ iyonları ve sonsuz zincir anyonu $(BO_2)_n^{n-}$

oldukça sık rastlanan yapı birimleri olmasına karşın oksijen atomları üzerinden bağlanmış $B_6O_{12}^{6-}$ ve $B_3O_6^{3-}$ ağ yapıları da görülür [4].

Hidratize boratlar kristal içinde polianyonlar da içerirler ancak bilinen polianyonların hiçbiri çözelti içinde varlığını sürdüremez. Görünüşe göre, yalnızca bir ya da daha fazla BO₄ grubu içeren polianyonlar kararlıdır. Bu hidratize boratlardaki yapıların öne çıkan özellikleri şu şekilde özetlenebilir:

(1) Hem üçgen BO₃ hem de tetrahedral BO₄ grupları mevcuttur. BO₄ sayısının toplam bor atomu sayısına oranı, anyon üzerindeki yükün toplam bor atomu sayısına oranı ile eşdeğerdir. Buna göre KB₅O₈.4H₂O bileşiği bir BO₄ ve dört BO₃ grubu içerir, oysaki Ca₂B₆O₁₁.7H₂O bileşiği dört BO₄ ve iki BO₃ grubu içermektedir.

(2) Temel yapı birimi altı atomlu boroksin halkasıdır. Bu halkanın kararlılığı bir veya iki adet BO₄ grubunun varlığına bağlıdır. Metaborat $[B_3O_6^{3-}]$ veya metaborik asit $[B_3O_3(OH)_3]$ yapı içinde BO₄ grubu içermeyen anyonlar hızlı bir şekilde hidratlaşarak orijinal yapılarını kaybederler. Bazı kompleks boratların çözeltiden çöktürülmesi ya da kristallendirilmesi mümkündür, fakat böylesi bir gözlem çözelti içinde bu anyonların bulunduğuna dair bir kanıt değildir. Çünkü kristallenme işlemi esnasında basit ya da daha az kompleks olan diğer anyonlar kolayca birleşebilirler.

(3) İki veya daha fazla halkanın, paylaşılan tetrahedral bor atomları üzerinden bağlanmasıyla (bazen de materyal dehidrasyonu sonucu, örneğin metaborat HBO₂) yekpare ve zincir polimerleri oluşabilir [4].

En yaygın hidratize triborat iyonu $B_3O_3(OH)_5^{2-}$, dir. Çoğu zaman Ca²⁺ veya Mg^{2+} iyonuyla birlikte bulunur. Bu iyon daha önce değinilmiş olan $B_3O_3(OH)_4^{-}$ iyonuna benzemektedir. $B_4O_5(OH)_4^{2-}$ iyonu boraksta, diğer birçok tetraboratta ve oktaboratlar denilen $M_2^T M^{''}B_8O_{14}.12H_2O$ bileşiklerinde bulunur [4].

1.2.1 Alüminyum Boratlar

Alüminyum boratlar üstün mekanik özellikleri, yüksek sıcaklık istikrarları, düşük termal genleşme katsayıları, kimyasal kararlılıkları ve düşük üretim maliyetleri ile kırılgan seramik kompozit malzemeleri güçlendirmek için kullanılırlar [5]. Ayrıca alüminyum borat (Al₁₈B₄O₃₃) formunun 1960 °C civarındaki erime noktası ve oksitleyici ortamlardaki kararlılığı nedeni ile otomotiv motor parçalarında kullanılmaya başlanmıştır [6].

Sholze [7], Al₂O₃ ve B₂O₃ başlangıç kimyasallarından yola çıkarak, 1000 ve 1100 °C sıcaklıklarda ayrı ayrı yaptığı katı-hal kimyasal deneyleri sonucunda, 2Al₂O₃.B₂O₃ (Al₄B₂O₉) ve 9Al₂O₃.2B₂O₃ (Al₁₈B₄O₃₃) formunda olan alüminyum boratları sentezlemeyi başarmıştır. Al₂O₃ ve B₂O₃, 1000 °C'de 2Al₂O₃.B₂O₃ (Al₄B₂O₉), 1100 °C'de ise 9Al₂O₃.2B₂O₃ (Al₁₈B₄O₃₃) formuna dönüşür. O zamana kadar 9Al₂O₃.2B₂O₃ (Al₁₈B₄O₃₃) yapısı bilinmesine rağmen, 2Al₂O₃.B₂O₃ (Al₄B₂O₉) yapısı bilinmiyordu. Bu çalışma ile Sholze, Al₄B₂O₉ (2Al₂O₃.B₂O₃) bileşiğini ilk defa sentezlemeyi başarmıştır. Deneysel çalışmanın ayrıntısında, Al₂O₃ ve B₂O₃, 30:70 kütlece ağırlık oranında kül fırınında 1000 ve 1100 °C sıcaklıklarda 70 saat süreyle ısıtıldıktan sonra içinde seyreltilmiş NaOH ihtiva eden suda çözülmüştür. Deneyde suda çözünmeyen küçük iğne şeklindeki renksiz kristaller elde edilmiştir. Sentezlenmiş Alüminyum Boratların % ağırlık oranında verilmiş kimyasal analizleri Tablo 1.1'de verilmektedir.

Tablo 1.1 Sentezlenmiş Alüminyum Borat Analizleri (Kütlece % ağırlık oranında)

	Deneme Derecesi	Deneme Derecesi	Hesaplanmış Değer	Hesaplanmış Değer
	1000 °C	1100 °C	$2Al_2O_3.B_2O_3$	$9Al_2O_3.2B_2O_3$
B ₂ O ₃	25.3	13.3	25.5	13.2
Al ₂ O ₃	74.7	86.7	74.5	86.8

Sholze [7], $2Al_2O_3.B_2O_3$ ($Al_4B_2O_9$) formül yapısında ürettiği bileşiğin ortorombik kristal sisteminde kristallendiğini ve hücre parametrelerinin a=14.8±0.2 Å, b=15.1±0.2 Å, c=5.6±0.1 Å; $9Al_2O_3.2B_2O_3$ ($Al_{18}B_4O_{33}$) bileşik formülünde ürettiğini ise yine ortorombik sistemde kristallendiğini, hücre parametrelerinin de a=7.68±0.05 Å, b=14.98±0.10 Å ve c=5.65±0.03 Å olduğunu saptamıştır.

1.2.2 Demir Boratlar

Demir boratlar, gelecek nesil ikincil lityum pillerinde kullanılmak üzere pozitif uç maddesi olarak araştırılmaktadırlar. Demir boratlardan FeBO₃, hem pratik hem de teorik bakış açısı ile önemli bir nesnenin bakış açısı olmuş çünkü olağan üstü bir manyeto optik özelliğe sahiptir. Üretimi ise oldukça zordur. 900 °C'nin üstünde değişken olduğu için difüzyon oranı düşüktür ve ısıl işlemden sonra tekrar homojen bir karışım sağlanarak deneyin tekrarı ile sentezi en az birkaç gün alır. Demir boratlardan Fe₃BO₆ ise zayıf bir ferromanyetik özellik gösterir [8].

Diehl ve Brandt [9], Fe_2O_3 ve B_2O_3 başlangıç kimyasallarını 1:1.5 mol oranında karıştırarak 850 °C'de yaptığı deney sonucunda Fe_3BO_6 polikristallerini sentezlemişler, fazlalık B_2O_3 'ü ise süzme ile uzaklaştırmışlardır. Sentezledikleri Fe_3BO_6 bileşiğinin kristal sistemini ortorombik, hücre parametrelerini ise a=10.048(2) Å, b=8.531(2) Å ve c=4.466(1) Å olarak belirlemişlerdir. Bileşiğin uzay gurubu ise Pnma (62), Z=4 olarak belirlenmiştir. Ayrıca Fe_3BO_6 bileşiğinin norbergite (Mg₃SiO₄(OH)₂) bileşiği ile izoyapıda olduğu belirtilmiştir [10].

1.2.3 Kurşun Boratlar

İnorganik boratların mevcut birçok yapısal türü, B \mathbb{B} O (-BaB₂O₄), LBO (LiB₃O₅), özellikle ultraviyole bölgede mükemmel doğrusal olmayan optik malzemelerdir (NLO). Bazı araştırmacılar, borat ailesinden ultraviyole bölgede doğrusal olmayan optik materyal arayışı içersindedirler. Son zamanlarda bulunan PbB₄O₇ (PBO) ve SrB₄O₇ (SBO) bu aile içersinde yer almaktadır [11]. Doğrusal olmayan optik materyaller, lazerlerin frekans dönüşümünde kullanılırlar [12].

PbB₄O₇ kristallinin yapısı ve doğrusal olmayan optik özellikleri Corker ve Glazer tarafından hesaplanmış ve rapor edilmiştir [12]. Corker ve Glazer [12], uygun stokiyometrik oranda PbO ve B₂O₃ başlangıç kimyasallarını platin krozede 12 saat süre ile 785 °C'de ısıtmış ve PbB₄O₇ bileşiğini sentezlemeyi başarmışlardır. Kristal yapı aydınlatma çalışması sonucunda ise PbB₄O₇ bileşiğinin ortorombik sistemde olduğunu, hücre parametrelerinin ise a=4.251(2) Å, b=4.463(3) Å ve c=10.860(3) Å olarak hesaplamışlardır. Bileşiğin uzay gurubunun ise P2₁nm olduğu belirtilmiştir [12].

1.2.4 Endüstriyel Boratlar

Bu yaygın boratlara ek olarak borik asitten yola çıkılarak çeşitli anorganik boratlar üretilmekte ve tüketilmektedir. Bunlardan bazılarını kullanım alanlarıyla birlikte şöyle sıralayabiliriz:

Alüminyum borat, Al₄B₄O₁₂.3H₂O, cam ve seramik endüstrileri;

Amonyum pentaborat, $(NH_4)_2B_{10}O_{16}.3H_2O$, bor kimyasalları üretiminde ara ürün, elektrolitik ve kağıt kaplama;

Amonyum tetraborat, $(NH_4)_2B_4O_7.4H_2O$, üre-formaldehit reçineleri ve yanmaz eşya üretiminde;

Baryum metaborat, BaB₂O₄.2H₂O, yağlı boya, plastik, tekstil ve kağıt endüstrisi; Kobalt tetraborat, CoB₄O₇.xH₂O, sentetik reçinelerde katalizör; Bakır metaborat, CuB₂O₄, yağ pigmentleri, böcek ilaçları;

Disodyum oktaborat, Na₂B₈O₁₃.4H₂O, kereste ve selülozik materyallerde yanmaya karşı koruyucu ve püskürtme ekin gübresi;

Lityum tetraborat, Li₂B₄O₇, cam üretiminde, XRF analizlerinde ve teknolojik araştırmalarda;

Magnezyum metaborat, MgB₂O₄, antiseptik ve fungusitlerde;

Mangan tetraborat, MnB₄O₇.xH₂O, adsorban ve matbaa mürekkep kurutucusu;

Potasyum pentaborat, $K_2B_{10}O_{16}.8H_2O$, paslanmaz çelik ve demir dışı metaller için kaynak ve lehim flaksı;

Potasyum tetraborat, K₂B₄O₇.4H₂O, lehim ve özel kaynak flaksı, kazein (sütte bulunan bir protein) çözücü;

Sodyum metaborat, Na₂B₄O₄.4H₂O, fotoğraf kimyasalları, yapıştırıcılar, tekstil işleme, deterjan temizleyiciler ve tarım ilaçları;

Sodyum pentaborat, Na₂B₁₀O₁₆.10H₂O, tarımda ve yanmayı geciktirici olarak;

Çinko boratlar, $ZnB_2O_4.2H_2O$, $Zn_2B_6O_{11}.7H_2O$, $Zn_3B_4O_9.5H_2O$, teknolojik araştırmalarda ve yangın geciktirici olarak;

Floroborik asit, HBF₄, alüminyumun elektrolitik parlatılması ve metallerin temizlenmesi;

Amonyum floroborat, NH₄BF₄, alüminyum ve magnezyum kalıp dökümünde flaks ve teknolojik araştırmalar;

Lityum floroborat, LiBF₄, teknolojik araştırmalar ve pil elektrolitleri;

Nikel hekzaminfloroborat, Ni(NH₃)₆(BF₄)₂, teknolojik araştırmalar ve katalizör maddesi;

Potasyum floroborat, KBF₄, indirgen, flaks, öğütme çarkları, köpürtücü ve kimyasal temizleyici;

Sodyum floroborat, NaBF4, indirgen, flaks, köpürtücü ve kimyasal temizleyici;

Çinko floroborat, Zn(BF₄)₂, boya, kaplama çözeltileri ve tekstil endüstrisi;

Çinko tetraamin floroborat, $Zn(NH_3)_4(BF_4)_2$, teknolojik araştırmalar ve kimyasal katalizör [1].

1.2.5 Teknolojik Boratlar

Katı-hal boratlarının sentezine, karakterize edilmesine, malzeme işlenmesine ve cihaz geliştirilmesine yönelik aktivite geçtiğimiz 10-15 yıl boyunca sürekli bir şekilde artmıştır. Yeni borat malzemelerin geniş bir kullanım alanı bulması araştırmacıları bu yöne sevk etmiştir. Borat bazlı malzemeler, UV yayıcı medikal lambalarda fosforesans kaynağı [Eu:SrB₄O₇] olarak, yüksek verimli floresan lambalarda yeşil ışık yayıcı bileşen [Ce, Tb:GdMgB₅O₁₀] olarak, televizyonda yüksek netlikte görüntü veren plazma ekran panellerinde kırmızı ışık yayıcı bileşen [Eu:(Y, Gd)BO₃] olarak yaygın şekilde kullanılmaktadır. β-BaB₂O₄ (BBO), LiB₃O₅ (LBO) ve CsLiB₃O₅ (CLBO) gibi borat kristalleri sayesinde bugün artık, daha önce katı-hal sistemleriyle elde edilemeyen dalga boylarında ve gücünde lazer ışığı üretilebilmektedir. Bu performans karakteristiklerinden dolayı söz konusu kristaller malzeme işlenmesinde, tıpta, araştırma/geliştirme alanlarında yaygın olarak kullanılmaya başlanmıştır.

Temel bilgiye katkı düzeyinde ise boratlar üzerindeki araştırmalar, başka herhangi bir tipte malzeme ile ulaşılamayan bazı fiziksel özelliklere sahip yeni bileşiklerin keşfi ve teşhisi için özel firsatlar ortaya koymaktadır. Makro ölçekli bu özellikler, mikro ölçekte bakıldığında, çok küçük olan bor atomunun bir oksit matriksi içine dağılması sonucu oluşan benzersiz kristal yapılardan ve elektronik özelliklerden ileri gelmektedir.

Bir istisna olarak CLBO (CsLiB₃O₅) hariç tutulursa, girişte listelenen ve yaygın olarak kullanılan kristal yapılı boratların her biri sentez veya faz dengelerini konu alan genel bir çalışma sonucu keşfedilmiştir. Çoğu durumda bu bileşikler, önceki on yıllar boyunca zaten bilinmekte olan bileşiklerdi, fakat özellikleri ve potansiyel uygulamaları konusunda bir inceleme ve geliştirme çalışması yapılmamıştı. Bu deneyim bize, peşinde koşulan ve üzerinde yoğunlaşılan malzeme özelliklerinin büyük ölçüde onların özel yapısal formları tarafından belirlendiğini göstermektedir. Bundan dolayı, uygulamalara girişmeden önce herhangi yeni bir bileşiğin yapısal karakteristiklerinin belirlenmesi ve değerlendirilmesinin çok önemli bir etkinlik olduğu açıktır. Bu bağlam dikkate alındığında, katı boratların yapısal kimyası, B atomunun üç veya dört O atomuna çeşitli şekillerde bağlanabilmesiyle karakterize edilmektedir. Söz konusu yapısal çeşitlilik, izole BO₃ veya BO₄ grupları oluşturarak sağlanabildiği gibi bu grupların kondenzasyonuyla çok farklı oligomerik veya polimerik yapılar elde etmek suretiyle de sağlanabilir.

1.2.6 Borat Fosfatlar

Birkaç borat fosfat bileşiği bilinmektedir. Bu bileşiklerde B ve P atomları ortak bir O atomunu paylaştığı zaman, yapısal olarak her iki atomun da tetrahedral bir O çevresine yerleştiği görülür. $Co_5BP_3O_{14}$ bileşiğinin, kondenzasyonla oluşmuş ilk borat fosfat bileşiği olduğu bildirilmiştir [13]. Bu bileşikte BO₃ gurubu doğrudan doğruya tetrahedral PO₄ grubuna bağlanarak benzersiz bir BPO₆ birimi oluşturur. Yapının bütünü, BPO₆ grupları ile Co atomları üzerinden köprülenen bozulmuş izole PO₄ tetrahedronlarının bir karışımını içermektedir. Bütünsel ölçekten bakıldığında, yapının $Co_5BPO_6(PO_4)_2$ formülüyle gösterilmesi mümkündür.

Zn₃BPO₇'ye ait düşük sıcaklık formunun yapısı saptanmıştır [14]. Bu yapı Zn₃(BO₃)(PO₄) formülünden de anlaşılacağı üzere, izole BO₃ ve PO₄ grupları içermektedir. Bu bileşik sentrosimetrik olmayan uzay grubu Cm'de kristallendiği için non-lineer optik materyal olarak ilgi çekebilir. BO₃ gruplarına ait B-O bağlarının hepsi aynı yönlerde hizalanmıştır. Bu hizalanma şekli ikinci mertebede non-lineeriteye optimal bir yönelme katkısı sağlar. Buna karşın BO₃ grubu sayı yoğunluğu (7.6×10^{21}) oldukça küçüktür ve 0.8 pm/V değerine yakın bir tahmini non-lineeriteye yol açar.

BaBPO₅'tın kristal yapısı, toz x-ışını kırınım verilerinden yararlanılarak Rietveld yöntemiyle daha incelikli bir şekilde belirlenmiştir [15]. Bu yapı, trigonal uzay grubu P3₁21'de kristallenen stillwellit, LnBSiO₅ (Ln = Lantanit), minerali ile eş yapılıdır. Kondense BO₃ ve PO₄ bozulmuş tetrahedronlarının üç boyutlu çatısı Ba atomlarını hapseder. Bileşik 1100 °C'ye ısıtıldığında bozunma gerçekleşir ve kristal yapılı BaBP₃O₁₂ materyali meydana gelir, 1150 °C'ye ısıtıldıktan sonra ise yalnızca kristal yapılı δ -Ba₂P₂O₇ bileşiği gözlenir. Bu sonuçlar, reaksiyon boyunca açığa çıkan sıvı B₂O₃ salınması ile uyumlu ve tutarlıdır;

$$3 \text{ BaBPO}_5 (k) \rightarrow \text{Ba}_3 \text{BP}_3 \text{O}_{12} (k) + \text{B}_2 \text{O}_3 (s) \quad (T=1100 \ ^{\circ}\text{C})$$
 (1.1)

$$2 \operatorname{Ba_{3}BP_{3}O_{12}}(k) \to 3\operatorname{Ba_{2}P_{2}O_{7}}(k) + \operatorname{B_{2}O_{3}}(s) \quad (T=1150 \ ^{\circ}C)$$
(1.2)

1.2.7 Borat Florürler

BaCaBO₃F bileşiğinde olduğu gibi borat florürler, büyük tek kristaller elde etme zorluklarını ortadan kaldıran akışkan özelliğe sahip eriyikler oluşturabilir. Bu tip materyaller, basit boratların geniş aralığı kapsayan doğal ışık geçirgenliğine de sahiptirler ve bu özellik sentrosimetrik olmayan türev bileşikleri kısa dalga boylu lazer ışığı üretmede potansiyel bir ilgi odağı haline getirmektedir [16, 17].

Yeni bir borat florür $Ln_3(BO_3)_2F_3$ (Ln=Sm, Eu, Gd) ailesi standart yüksek sıcaklık teknikleri kullanılarak hazırlanmıştır [18]. Bu tür malzemeler monoklinik kristal yapısında, x-ışını toz kırınım teknikleri ile yapıları aydınlatılmıştır. Yapıda, LnO_4F_5 ve LnO_7F_2 polihedronları üç boyutlu bir matriks oluşturmak üzere birbirine bağlanmışlar, B atomları ise bu matriksin içindeki üçgen düzlemlere yerleşmişlerdir. Materyal termal olarak kararlı değildir. 873 °C'de kristal yapılı GdBO₃ ve Gd₄O₃F₆ ürünlerini vermek üzere bozunmaya uğrar.

1.2.8 Poliboratlar

Poliboratlara ait bazı yeni yapı tipleri tanımlanmıştır. Bu oksit bileşikleri genel olarak B atomlarınca zengindir. Bor zenginliği, üç ve dört koordinasyonlu B atomlarının bir karışımını içeren çeşitli oligomerik veya polimerik borat anyonlarının oluşumuna yol açmaktadır.

TlB₃O₅ bileşiğine ait yapının CsB₃O₅ yapısı ile izotipik olduğu belirlenmiştir [19]. Bu yapıda kaynaşmış iki BO₃ grubu ile bir BO₄ grubundan oluşan B₃O₇ halkaları üç boyutlu bir borat anyonuna yoğunlaşmışlardır. TlB_3O_5 bileşiği sentrosimetrik olmayan $P2_12_12_1$ uzay grubunda kristallendiği için ikinci mertebeden bir non-lineer işlem üzerinden optik frekans dönüşümü mümkündür. Kristalin 222 nokta grubuna eşlik eden simetri kısıtlamaları nedeniyle kritik olmayan faz uyumunu başarmak mümkün değildir.

 $LnZnB_5O_{10}$ (Ln=Ce, Nd, Tb) [20] ve $LnCdB_5O_{10}$ (Ln=La, Sm, Eu) [21] bileşikler ailesinin, SmCoB₅O₁₀ yapı tipinde kristallendikleri bulunmuştur. Bu yapı tipi, yeşil ışık yayıcı ticari fosforesans (Ce, Tb:GdMgB₅O₁₀) materyalinde de bulunmaktadır.

Reaktifler sızdırmaz gümüş ampullerde ısıtılmak suretiyle iki yeni kuaterner gümüş borat bileşiği, AgSrB₇O₁₂ [22] ve AgCsB₁₅O₂₄ [23] hazırlanmıştır. İkinci bileşiğin yapısı kompleks bir poliborat anyonuyla karakterize edilir. Bu kompleks poliborat anyonu, üç ve dört koordinasyonlu O yerlerini dolduran ve kristallografik bakımdan eşdeğer olmayan 16 B atomundan oluşmuştur. Birinci materyal iki boyutlu eşsiz bir poliborat anyonuna sahiptir. Yapı, kristalografik açıdan dört tip üçgen BO₃ düzlemi ve üç tip BO₄ grubu içerir. Ag atomları kompleks borat örgüsündeki bozulmuş tetrahedral yerleri doldurur, Sr atomları ise borat örgüleri arasında köprü işlevi görür.

Bakır metaboratlar, CuDy₂(BO₂)₈ ve CuHo₂(BO₂)₈ [24], birbiriyle çok benzer yapılar benimsemektedir. Dy içeren bileşik, monoklinik CuTb₂(BO₂)₈ materyali ile izotipiktir, Ho bileşiği ise topolojik yönden benzer bir ortorombik biçimli yapılanmayı benimser. Bu materyallerin ortak yanları, üç ve dört koordinasyonlu B atomlarının bir karışımını içeren benzersiz poliborat zincirlerine sahip olmalarıdır. Zincirler boyunca dört koordinasyonlu B atomları, basit düzlemsel BO₃ ve piroborat B₂O₅ grupları arasında dönüşümlü bir tarzda köprü oluşturur. Cu⁺² iyonları bozulmuş oktahedral yerleri doldururlar ve altılı koordinasyonu benimserler.

Kuaterner Cu ve Ni poliboratların yapısal kimyası, NiHo₂(B₂O₅)₂ [25] ve CuHo₂(B₂O₅)₂ [26] bileşikleri üzerindeki yapı tayinleri ile daha da genişlemiştir. Formül içinde B₂O₅ bileşimini içermeleri iki bileşiğin ortak bir özelliğidir. Bu birimin

varlığı yapı içinde de basit bir poliborat biriminin (kaynaşmış iki BO₃ grubu) varlığını gösterir. Diğer taraftan, bu tip malzemelerde B atomlarının her biri dört O atomuyla çevrelenir ve sonuçta oluşan BO₄ grupları kondense olarak iki boyutlu poliborat tabakalarını meydana getirir. Cu ve Ni atomları bu tabakaların arasındaki bozulmuş oktahedronları, Ho atomları ise tabakalar arasındaki bozulmuş tetragonal anti-prizmaları doldurur. Sentezlenmiş ve tanımlanmış yeni poliboratların son örneği Ba₂KZn₃(B₃O₆)(B₆O₁₃) [27] bileşiğidir. Formülden de anlaşılacağı üzere bu bileşik izole boroksin (B₃O₆^{3–}) halkaları ile benzersiz bir izole B₆O₁₃^{8–} birimi içerir. İkinci halka sistemini ortak B₃O₇ halkasının kondense olmuş dimeri olarak düşünmek mümkündür.

1.3 Luminesans Materyaller

Az oranlarda Eu^{2+} eklenmiş oksitlerin çoğunda uyarılma morötesi bölgesinde meydana gelir ve uyarılmanın hemen sonrasında morötesi, mor veya mavi dalga boylarında ışıma emisyonu gerçekleşir. Oysaki Eu^{2+} katkılanmış $Ba_2LiB_5O_{10}$ ve $Ba_2Mg(BO_3)_2$ bileşiklerinde spektrumun kırmızı bölgesine kadar kayan uzun dalga boylu emisyon gözlenmiştir. Geçmişte, emisyonun dalga boyu büyük ölçüde katkılanan iyonun (burada Eu^{2+}) çevresi temel alınarak açıklanmıştır. Yeni geliştirilen bir modelde ise emisyon mekanizması yeniden yorumlanmıştır [28, 29]. Yeni modelde mekanizma O koordinasyon sayılarına ve geometrilerine bağlanmış ve böylece boratlarda gözlenen geniş uyarılma aralığı ile Eu^{2+} 'de görülen yaygın emisyon enerjileri açıklanabilmiştir. Bu modele göre, uzun dalga boylu (yeşil ve kırmızı) Eu^{2+} emisyonu, üç veya daha fazla sayıda ağır atom (Ba, Sr gibi) tarafından sarılmış O atomları içeren konukçularda gözlenirken, kısa dalga boylu emisyon, sadece bir veya iki Ba/Sr atomuyla koordine olmuş O atomları içeren bileşiklerde gözlenir. O koordinasyon çevrelerinin ideal geometrilerden sapması da daha uzun boylu emisyona neden olur.

1.4 Doğrusal Olmayan (Non-Lineer, NLO) Optik Malzemeler

Birçok teknolojik uygulama, uygun frekans ve güçte lazer ışığının doğrudan üretimini gerektirdiği halde, pratikte bu amaca uygun elverişli bir kaynak bulunamamaktadır. Böylesi uygulamalar için istenen frekans ya da güç, bir lazer ışın demetini uygun bir doğrusal olmayan optik kristal içinden geçirmek suretiyle elde edilebilir. Dayanıklı yapıları ve geniş geçirgenlik aralıklarından dolayı boratlar uzak UV'den yakın IR'ye kadar uzanan frekans gereksinimli uygulamalar için tercih edilen NLO kristalleri haline gelmişlerdir.

Becker [30], bu materyallerdeki yapı özellik bağıntılarını ortaya koyan bir çalışma yayınlamıştır. Bu çalışmada dikkate alınan kristaller arasında, uzak UV'deki uygulamalar için geliştirilen Sr₂Be₂(BO₃)₂O (SBBO) [31] bileşiği öne çıkmaktadır. Becker [30] ve Keszler [32], SBBO'nun gözlenen non-lineeritesi ($d_{22} \cong 2 \text{ pm/V}$) ile kristal yapısı arasındaki ilişki konusunda bir miktar anlaşmazlık bulunduğunu belirtmişlerdir. O atomu pozisyonları arasında yapılan bir karşılaştırma, bu atomların hemen hemen noktaya göre simetrik (sentrosimetrik) bir tarzda dağıldığını göstermektedir. BO₃ grupları da benzeri bir dağılım sergilemektedir ve ikinci mertebeden non-lineeriteye en çok katkıda bulunan ışık yayıcılar bu gruplardır.

Ca₄GdO(BO₃)₃ oksit boratın etkin bir NLO kristali olduğu gösterilmiştir [33]. Non-lineerite, 1 pm/V'dir. 532 nm'deki hasar eşiği 1 GW/cm² değerindedir ve yüksektir. 532 nm'lik ışık üretiminde % 50'den büyük bir dönüşüm verimi elde edilmektedir. Kristallerdeki atomik bileşim modifiye edilmek suretiyle 1064 nm'lik Nd bazlı lazerlerin üçüncü harmoniği yanında 830-970 nm aralığını kapsayan temel dalga boyları da kritik olmayan faz uyumlu bir tarzda üretilebilmektedir [34]. Kendi kendini katlayan (self-doubling) lazer materyalleri üretmek ve bu suretle uygun yeşil lazer ışığı kaynakları elde etmek üzere Gd yerine, Nd ve Yb atomları da eklenebilir [35-38].

AMOB₂O₅ (A=K, Rb, Cs; M=Nb, Ta) tipi bileşikler ailesinin iki üyesi olarak non-sentrosimetrik RbNbOB₂O₅ ve KNbOB₂O₅ bileşiklerinin yapıları ve optik özellikleriyle ilgili yeni veriler elde edilmiştir [39]. Kristaller optik soğurma ve kırılma indisleri yönünden ayrıntılı bir şekilde karakterize edilmiştir.

MAl₂(BO₃)₂O (M=Ca, Sr, Ba) [38, 41-43] ailesinin bir üyesi olarak BaAl₂(BO₃)₂O [40] bileşiği için kırılma indisleri ve non-lineer optik katsayılar belirlenmiştir. Optik katsayı [d₁₁=0.75 pm/V] daha önceden yapılmış tahminlerden daha düşüktür [31, 32]. Benzer bir bileşik olan K₂Al₂(BO₃)₂O için de benzer sonuçlar elde edilmiştir [30, 44]. Ancak bu bileşikteki BO₃ gruplarının daha büyük hiza kaymasından dolayı daha düşük bir non-lineer katsayı [d₁₁=0.5 pm/V] elde edilmiştir. Bu sonuçlar, benzer yapılara sahip SrAl₂(BO₃)₂O ve Na₂Al₂(BO₃)O [31, 32] bileşikleri için elde edilen sonuçlarla da benzerlik arz etmektedir. Burada Sr bileşiğinin non-lineer katsayısı da [d=1.9 pm/V] Na bileşiğinin katsayısına [d=0.6 pm/V] kıyasla daha büyüktür. Üstelik SrAl₂(BO₃)₂O (0≤ x ≤1) [32] serisi oluşur.

CsLiB₆O₁₀ bileşiği pratik uygulama alanı bulan en yeni borat kristalidir. Bu bileşik UV frekans dönüşümü konusunda üstün özelliklere sahiptir, ancak kristallerin kırılma indislerinde bozulmalar görülür. Problemlerin kristal hidrasyonu, kesme ve parlatma işlemleri ile ısıl şoklardan kaynaklandığı sanılmaktadır. Bu bozulmalar kristalleri 160 °C civarında işleyerek engellenebilir [45]. Termal faz değiştirme etkilerini azaltmak amacıyla, kristal üzerinden gaz geçirerek bir performans artışı sağlanabilir [46, 47]. İyon aşındırma işlemiyle etkin bir performans artışı elde edilmiştir [48]. CLBO, yüksek güçlü Nd:YAG lazerleri için basit bir frekans katlayıcı olarak da incelenmiştir [49]. CLBO, KH₂PO₄ (KDP)'ye kıyasla daha yüksek dönüşüm verimleri ve daha kararlı operasyon koşulları sağlamaktadır. CLBO (1.5 J/cm²) bileşiğinde, BBO (0.9 J/cm²) ve LBO (1.4 J/cm²) boratlarına kıyasla % 50'lik dönüşüm sağlamak için daha yüksek bir enerji girdisi gerekmektedir.

1.5 Katı-Hal Sentez Yöntemi

Son yirmi yıl için yeni bir metot olan katı-hal sentez metodu sentezi mümkün olmayan birçok bileşiğin elde edilmesinde çok önemli bir rol oynamıştır. Yüksek

sıcaklık firinlarında, başlangıç maddesi olarak kullanılacak bileşiklerin uygun mol oranlarında tartılıp, havanda homojen bir karışımı elde edilip, uygun miktardaki karışımın krozelere yerleştirilmesi ve hazırlanan homojen karışımın bu firinlarda katı-katı kimyasal tepkimeye girmesi için belli süreyle ısıtılması ile elde edilmektedir.

Genellikle ekzotermik reaksiyon olan katı-hal reaksiyonları giriş kimyasalları ve ürünler arasındaki serbest enerjinin farklı olmasından meydana gelir [50]. Katı-hal sentez metodunun başlıca önemli basamaklarını sayacak olursak;

- i. Uygun başlangıç maddelerinin seçimi,
- ii. Başlangıç maddelerinin tartımı,
- Başlangıç maddelerinin havanda toz haline gelecek biçimde homojen bir karışım elde edilinceye kadar iyice karıştırılması,
- iv. Uygun krozenin seçimi,
- v. Isıtma işleminin gerçekleştirilmesi,
- vi. Soğutma işleminin gerçekleştirilip ürünün x-ışını toz difraksiyonu için havanda ezilerek toz haline getirilmesi şeklinde sıralanabilir [51].

Özetle katı-hal sentezi diğer geleneksel metotlarla elde edilmesi güç olan maddelerin sentezinde en etkili yöntemlerden biridir [52].

1.6 Mikrodalga Sentez Yöntemi

Katı-hal kimyasında, bileşiklerin sentezlenebilmesi için değişik yöntemler kullanılmaktadır. İlk akla gelenler, yüksek sıcaklık, hidrotermal ve çözelti reaksiyonları yöntemleridir. Son dönemlerde ise mikrodalga elektromanyetik enerji kullanılarak da birçok kimyasal bileşik sentezlenebilmektedir. Bileşiklerdeki atom ve kristal örgü hareketlerinin doğal frekanslarının, yollanan elektromanyetik mikrodalga frekansla etkileşmesi sonucu, maddenin iç enerjisi hızla yükselmekte ve bu enerji artışıyla katı-katı kimyasal tepkimeler gerçekleşebilmektedir [53]. Mikrodalga yönteminde, mikrodalga ışıması ile madde arasında doğrudan bir etkileşim gerçekleşir. Mikrodalga radyasyonu ilk önce madde ile etkileşir, daha sonra madde tarafından soğurulur. Böylece elektriksel enerji termal enerjiye dönüşmüş olur. Isının dışarıdan içeriye doğru transfer edildiği yaygın ısıtma yöntemlerinin aksine, bu yöntemde ısı maddenin bizzat içerisinde üretilir. Bu içsel ısınma reaksiyon sürelerinin kısalmasını ve enerji maliyetlerinin düşmesini sağladığı gibi yeni maddelerin bu teknikle sentezlerini de mümkün kılmaktadır. Bu nedenle mikrodalga yöntemi geleneksel yöntemlere kıyasla daha hızlı, basit ve enerji açısından da daha verimli bir metotdur [54].

Anorganik malzemelerin büyük bir kısmının normal sıcaklıklarda mikrodalga enerji ile oldukça iyi bir şekilde etkileşme gösterdiği bilinmektedir. Bazı mineral ve anorganik bileşiklerin ev tipi mikrodalga fırında maruz kaldıkları zaman ile ulaştıkları sıcaklıklar Tablo 1.2'de verilmiştir.

Element / Mineral / Bileşik	Mikrodalgaya Maruz	Sıcaklık (T, °K)
	Kalma Süresi (dak.)	
Al	6	850
Со	3	970
Fe	7	1041
Мо	4	933
Zn	3	854
TiB ₂	7	1116
Co ₂ O ₃	3	1563
CuO	6.25	1285
Fe ₃ O ₄	2.75	1531
MnO ₂	6	1560
NiO	6.25	1578

Tablo 1.2 Mikrodalga Aktif Element, Doğal Mineral ve Bileşikler

1.7 Çalışmanın Amacı

Dünya bor rezervlerinin büyük bir kısmına sahip olan ülkemiz, bor konusunda gerekli yatırımları gerçekleştirdiğinde yakın bir gelecekte bu konuda bilimsel, teknolojik ve ekonomik düzeyde önemli avantajlar kazanacaktır. Çok geniş endüstriyel ve teknolojik kullanım alanlarına sahip olan metal içeren borlu bileşiklerin ekonomik sentez yöntemlerinin geliştirilmesiyle, ülkemiz bor madenlerinin ekonomik yönden katma değerini arttıracaktır.

Bu tez çalışmasında, endüstride kullanımı olan bazı türdeki alüminyum, demir ve kurşun içeren boratlı bileşiklerin alternatif sentez yöntemleri ile ekonomik yönden üretilmesi hedeflenmiştir. Kimyasal sentezlemeler termal veya mikrodalga enerji ortamında katı-hal kimyasal reaksiyonlarının oluşumuyla gerçekleştirilmesine çalışılacaktır.

Elde edilen ürünlerin, kimyasal ve kristal sistemlerinin aydınlatılmasında ağırlıklı olarak X-ışınları toz kırınımı (XRD) ve FTIR spektrum yöntemlerinden yararlanılarak gerçekleştirilecektir.

2. MATERYAL VE YÖNTEM

2.1 Kullanılan Kimyasallar

Kimyasal reaksiyonlarda başlangıç maddeleri olarak, $Al(NO_3)_3.9H_2O$, $Fe(NO_3)_3.9H_2O$, $Pb(NO_3)_2$ ve H_3BO_3 kullanılmıştır. Kullanılan tüm kimyasallar Merck ve Carlo Erba firmalarından temin edilmiş olup, analitik saflıktadırlar.

2.2 Kullanılan Cihazlar

Katı-hal yüksek sıcaklık reaksiyonları için en fazla 1200 °C'ye çıkabilen Protherm PLF 120/10 marka kül fırını kullanılmıştır. Mikrodalga sentezlerde 700W maksimum güç ve 2.45 GHz frekansta çalışan Arçelik MD560 model ev tipi mikrodalga fırın kullanılmıştır. X-ışını toz kırınım (XRD) çekimleri CuK α (λ : 1.54056 Å, 30 mA, 40 kV) radyasyonunda çalışan PANalytical X-Pert Pro marka X-Işını toz difraktometresi ile elde edilmiştir. Fourier Transform Infrared spektrumları (FTIR), KBr peletleri hazırlanarak 4000-400 cm⁻¹ ışın bölgesinde çalışan Perkin Elmer BX-2 marka FTIR spektrofotometresi kullanılarak alınmıştır. Maddelere ait termogravimetrik ve diferansiyel termal analizler inert azot gazı ortamında, Perkin Elmer/Diamond TG/DTA marka cihazdan elde edilmiştir.

2.3 Yöntem

2.3.1 Katı- Hal Yöntemi

Katı-hal kimyasal reaksiyonları yüksek sıcaklık kül firinlarında gerçekleştirilmiştir. Başlangıç maddeleri belli bir stokiyometrik orana uygun olarak toplam 3.00 gram olacak şekilde tartılmış ve tartılan maddeler havanda iyice ezilerek öğütülmüş ve homojenize edilmiştir. Hazırlanan karışım seramik krozeye aktarılmış ve kül fırınına yerleştirilmiştir. Katı-hal kimyasal reaksiyonların oluşumu 400, 500, 600, 700, 800 ve 900 °C sıcaklık ortamlarında, farklı zaman aralıklarında gerçekleştirilmesi sağlanmıştır. Öncelikle numuneler 350 °C'de kalsine edilmiş daha sonra hedeflenen sıcaklıklara çıkılarak istenilen sürelerde ısıtılmıştır. Son adımda örnekler, fırın içerisinde oda sıcaklığına ulaşıncaya kadar yavaş soğutulmayla (10 °C/dakika) bekletilmiştir.

2.3.2 Mikrodalga Yöntemi

Mikrodalga enerji ortamında katı-hal kimyasal tepkimelerin gerçekleştirilmesi için ev tipi mikrodalga fırınlardan yararlanılmıştır. Başlangıç maddeleri istenilen stokiyometrik orana uygun olarak toplam 2.00 gram olacak şekilde tartılmış ve tartılan maddeler havanda iyice ezilerek öğütülmüştür. Daha sonra homojen karışım seramik krozeye aktarılmış ve mikrodalga fırınına yerleştirilmiştir. Karışımlar 10 dakika süre ile 600 W güçte 2.45 Ghz frekansına sahip mikrodalga enerjiye maruz bırakılmıştır. Mikrodalga etkileşim sonucu oluşan ürünler havanda öğütülerek homojen hale getirilmiştir.

Deneylerden elde edilen ürünler havanda ezilerek toz haline getirilmiş, XRD, FTIR ve TG/DTA ölçümlerinin yapılması ve numunelerin nemli havadan etkilenmemeleri için desikatörlerde saklanmıştır.

3. BULGULAR

3.1 Katı- Hal Yöntemi Kullanılarak Yapılan Deneyler

3.1.1 Al(NO₃)₃.9H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneyler

			-	-
Deney	Başlangıç Maddeleri	Mol Oranı	Deney Sıcaklığı	Hedeflenen
Kodu			ve süresi	Ürün
KF1	$Al(NO_3)_3.9H_2O+H_3BO_3$	1:5	400 °C-4 saat	$Al_4B_2O_9$
KF2	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	500 °C-4 saat	$Al_4B_2O_9$
KF3	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	600 °C-4 saat	$Al_4B_2O_9$
KF4	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	700 °C-4 saat	$Al_4B_2O_9$
KF5	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	800 °C-4 saat	$Al_4B_2O_9$
KF6	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	900 °C-4 saat	$Al_4B_2O_9$

Tablo 3.1 Al/B Sisteminde Farklı Sıcaklıklarda Yapılan Deneyler

Tablo 3.2 Al/B Sisteminde Farklı Sürelerde Yapılan Deneyler

Deney	Başlangıç	Mol Oranı	Deney Sıcaklığı	Hedeflenen
Kodu	Maddeleri		ve süresi	Ürün
KF6	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	900 °C-4 saat	$Al_4B_2O_9$
KF6X	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	900 °C-8 saat	$Al_4B_2O_9$
KF6XX	$Al(NO_3)_3.9H_2O+H_3BO_3$	1:5	900 °C-12 saat	$Al_4B_2O_9$
KF6X24	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	900 °C-24 saat	$Al_4B_2O_9$

Tablo 3.3 Al/B Sisteminde Farklı Stokiyometrik Oranlarda Yapılan Deneyler

Deney	Başlangıç Maddeleri	Mol Oranı	Deney Sıcaklığı	Hedeflenen
Kodu			ve süresi	Ürün
KF6X24	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	900 °C-24 saat	$Al_4B_2O_9$
KF20	$Al(NO_3)_3.9H_2O+H_3BO_3$	2:1	900 °C-24 saat	$Al_4B_2O_9$

3.1.2 Fe(NO₃)₃.9H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneyler

Deney	Başlangıç Maddeleri	Mol Oranı	Deney Sıcaklığı	Hedeflenen
Kodu			ve süresi	Ürün
KF7	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	400 °C-4 saat	Fe ₃ BO ₆
KF8	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	500 °C-4 saat	Fe ₃ BO ₆
KF9	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	600 °C-4 saat	Fe ₃ BO ₆
KF10	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	700 °C-4 saat	Fe ₃ BO ₆
KF11	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	800 °C-4 saat	Fe ₃ BO ₆
KF12	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	900 °C-4 saat	Fe ₃ BO ₆

Tablo 3.4 Fe/B Sisteminde Farklı Sıcaklıklarda Yapılan Deneyler

Tablo 3.5 Fe/B Sisteminde Farklı Sürelerde Yapılan Deneyler

Deney	Başlangıç	Mol Oranı	Deney Sıcaklığı	Hedeflenen
Kodu	Maddeleri		ve süresi	Ürün
KF10	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	700 °C-4 saat	Fe ₃ BO ₆
KF10X	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	700 °C-8 saat	Fe ₃ BO ₆
KF10XX	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	700 °C-12 saat	Fe ₃ BO ₆
KF10X24	$Fe(NO_3)_3.9H_2O+H_3BO_3$	1:5	700 °C-24 saat	Fe ₃ BO ₆

Tablo 3.6 Fe/B Sisteminde Farklı Stokiyometrik Oranlarda Yapılan Deneyler

Deney Kodu	Başlangıç Maddeleri	Mol Oranı	Deney Sıcaklığı ve süresi	Hedeflenen Ürün
KF10X24	$Fe(NO_3)_3.9H_2O+H_3BO_3$	1:5	700 °C-24 saat	Fe ₃ BO ₆
KF21	$Fe(NO_3)_3.9H_2O+H_3BO_3$	3:1	700 °C-24 saat	Fe ₃ BO ₆

3.1.3 Pb(NO₃)₂/ H₃BO₃ Maddeleri Kullanılarak Yapılan Deneyler

Deney	Başlangıç Maddeleri	Mol Oranı	Deney Sıcaklığı	Hedeflenen
Kodu			ve süresi	Ürün
KF13	Pb(NO ₃) ₂ +H ₃ BO ₃	1:4	400 °C-4 saat	PbB ₄ O ₇
KF14	Pb(NO ₃) ₂ +H ₃ BO ₃	1:4	500 °C-4 saat	PbB ₄ O ₇
KF15	Pb(NO ₃) ₂ +H ₃ BO ₃	1:4	600 °C-4 saat	PbB ₄ O ₇
KF16	Pb(NO ₃) ₂ +H ₃ BO ₃	1:4	700 °C-4 saat	PbB ₄ O ₇
KF17	Pb(NO ₃) ₂ +H ₃ BO ₃	1:4	800 °C-4 saat	PbB ₄ O ₇
KF18	Pb(NO ₃) ₂ +H ₃ BO ₃	1:4	900 °C-4 saat	PbB ₄ O ₇

Tablo 3.7 Pb/B Sisteminde Farklı Sıcaklıklarda Yapılan Deneyler

Tablo 3.8 Pb/B Sisteminde Farklı Sürelerde Yapılan Deneyler

Deney	Başlangıç	Mol Oranı	Deney Sıcaklığı	Hedeflenen
Kodu	Maddeleri		ve süresi	Ürün
KF15	Pb(NO ₃) ₂ +H ₃ BO ₃	1:4	600 °C-4 saat	PbB ₄ O ₇
KF15X	Pb(NO ₃) ₂ +H ₃ BO ₃	1:4	600 °C-8 saat	PbB ₄ O ₇
KF15XX	Pb(NO ₃) ₂ +H ₃ BO ₃	1:4	600 °C-12 saat	PbB_4O_7
KF15X24	Pb(NO ₃) ₂ +H ₃ BO ₃	1:4	600 °C-24 saat	PbB_4O_7

3.2 Mikrodalga Yöntem Kullanılarak Yapılan Deneyler

3.2.1 Al(NO₃)₃.9H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneyler

Deney	Başlangıç Maddeleri	Mol Oranı	Deney Enerjisi ve	Hedeflene
Kodu			süresi	n Ürün
MD1	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	600 Watt–10 dakika	$Al_4B_2O_9$
MD2	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:4	600 Watt–10 dakika	$Al_4B_2O_9$
MD3	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:3	600 Watt–10 dakika	$Al_4B_2O_9$
MD4	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:2	600 Watt–10 dakika	$Al_4B_2O_9$
MD5	Al(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:1	600 Watt–10 dakika	$Al_4B_2O_9$

Tablo 3.9 Al/B Sisteminde Farklı Stokiyometrik Oranlarda Yapılan Mikrodalga Deneyleri

3.2.2 Fe(NO₃)₃.9H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneyler

Deney	Başlangıç Maddeleri	Mol Oranı	Deney Enerjisi ve	Hedeflene
Kodu			süresi	n Ürün
MD7	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:5	600 Watt–10 dakika	Fe ₃ BO ₆
MD8	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:4	600 Watt–10 dakika	Fe ₃ BO ₆
MD9	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:3	600 Watt–10 dakika	Fe ₃ BO ₆
MD10	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:2	600 Watt–10 dakika	Fe ₃ BO ₆
MD11	Fe(NO ₃) ₃ .9H ₂ O+H ₃ BO ₃	1:1	600 Watt–10 dakika	Fe ₃ BO ₆

Tablo 3.10 Fe/B Sisteminde Farklı Stokiyometrik Oranlarda Yapılan Mikrodalga Deneyleri

3.2.3 Pb(NO₃)₂ / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneyler

Deney	Başlangıç Maddeleri	Mol Oranı	Deney Enerjisi ve	Hedeflene
Kodu			süresi	n Ürün
MD12	Pb(NO ₃) ₂ +H ₃ BO ₃	1:5	600 Watt–10 dakika	PbB ₄ O ₇
MD13	Pb(NO ₃) ₂ +H ₃ BO ₃	1:4	600 Watt–10 dakika	PbB ₄ O ₇
MD14	Pb(NO ₃) ₂ +H ₃ BO ₃	1:3	600 Watt–10 dakika	PbB ₄ O ₇
MD15	Pb(NO ₃) ₂ +H ₃ BO ₃	1:2	600 Watt–10 dakika	PbB ₄ O ₇
MD16	Pb(NO ₃) ₂ +H ₃ BO ₃	1:1	600 Watt–10 dakika	PbB ₄ O ₇

Tablo 3.11 Pb/B Sisteminde Farklı Stokiyometrik Oranlarda Yapılan Mikrodalga Deneyleri

4. TARTIŞMA VE SONUÇ

4.1 Katı-Hal Yöntemi Kullanılarak Yapılan Deneylerin Sonuçları

4.1.1 Al(NO₃)₃.9H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Kül firmi kullanılarak, katı-hal kimyasal reaksiyonları ile elde etmeyi hedeflediğimiz Al₄B₂O₉ bileşiği için başlangıç kimyasal maddelerinin stokiyometrik mol parametreleri sabit tutulmuş (Al(NO₃)₃.9H₂O:5H₃BO₃), sıcaklık parametresi ise 400'den 900 °C'ye kadar 100 °C'lik artışlarla deneyler 4 saatlik bir zamanda tamamlanmıştır (Şekil 4.1). 400, 500 ve 600 °C (KF1, KF2 ve KF3) deneylerinden elde edilen XRD grafiklerinde amorf maddelere ait karakteristik bir x-ışını kırınım desenleri görülmektedir. Ancak 700, 800 ve 900 °C (KF4, KF5 ve KF6) sıcaklığında gerçekleştirilen deneylerden elde edilen ürünlerin XRD desenlerinde, kristal yapılı bir maddeye ait x-ışını kırınım desenleri elde edilmiştir. Sentezlenen üründe amorflaşmanın 600'den 700 °C'ye geçişte azalarak, kristallenmenin başladığı görülmektedir. 800 ve 900 °C'ler de kristallenmenin orantılı olarak daha da arttığını XRD piklerinin şiddet değerlerinin artmasından anlamaktayız.

700, 800 ve 900 °C'de elde edilen ürünlere ait XRD desenleri incelendiğinde bu maddenin sentezlemeyi hedeflediğimiz Al₄B₂O₉ bileşiğine ait olduğu görülmektedir. Al₄B₂O₉ bileşiğine ait 09-0158 ve 29-0010 numaralı ICDD kart bilgilerinin bizim deneysel XRD verileri ile oldukça uyum içersinde olduğu görülmektedir. Kristallenmenin en iyi gerçekleştiği 900 °C'de yapılan deney için reaksiyon zamanının etkisini gözlemlemek için deney süreleri 8, 12 ve 24 saat aralıklarında tekrar edilmiştir. Elde edilen ürünlerin XRD analizleri karşılaştırıldığında, piklerin 8 saatlik sentezde belirgin olarak literatür değerlerine benzeştiği, 12 ve 24 saatlik sürelerde gerçekleştirilen sürelerde ise XRD piklerinde çok belirgin bir değişiklik gözlenmediği anlaşılmaktadır (Şekil 4.2).

24

Sonuç olarak $Al_4B_2O_9$ bileşiğini elde etmek için yapılan bu denemelerde en ideal şartın 900 °C ve 8 saat süre ile katı-hal kimyasal reaksiyonla elde edilebileceği Bu deneye ait XRD verileri incelendiğinde bazı uyumsuzluklar anlaşılmıştır. olmakla birlikte, ilgili referans makale [7] ve ICDD kartlarında verilen kristalografik bilgilerle karşılaştırıldığında elde edilen Al₄B₂O₉ bileşiğinin kristal sisteminin ortorombik olduğu, hücre parametrelerinin a=14.8 Å, b=15.1 Å ve c=5.6 Å değerleriyle yaklaşık olarak uyuştuğu görülmektedir. Karşılaştırma amacıyla deneysel XRD verileri ile ICDD 09-0158 ve ICDD 29-0010 kart bilgileri verilmiştir (Tablo 4.1). Alüminyum boratlı bileşiğin ilgili referans makalede [7], Al_2O_3 ve B_2O_3 başlangıç kimyasalları kullanılarak platin tüp içersinde katı-hal kimyasal reaksiyonla 1000 °C'de sentezlendiği, sentezlenen maddenin ise 2Al₂O₃.B₂O₃ (Al₄B₂O₉) formülünde olduğu belirtilmiştir. İlgili makalede aynı giriş kimyasalları ile 1100 °C'de ise 9Al₂O₃.2B₂O₃ (Al₁₈B₄O₃₃) formülünde bir Alüminyum borat bileşiği sentezlendiği, bu bileşiğin kristal geometrisinin ortorombik olduğu ve hücre parametrelerinin a=7.68 Å, b=14.98 Å ve c=5.65 Å olduğu ilgili literatürde rapor edilmiştir.

Özetle bu sonuçlar bizim çalışmamız ile karşılaştırıldığında 900 °C ve 8 saat sürede $Al_4B_2O_9$ formülünün kararlı bir şekilde oluştuğu fakat referansta belirtilen 1100 °C'de ki $Al_{18}B_4O_{33}$ bileşik formülünün ise bizim çalıştığımız sıcaklık değerlerinde elde edilen XRD analizlerinde rastlanmadığı görülmüştür.

Elde edilen ürünün IR spektrum bantları incelendiğinde (Şekil 4.3) H_2O , BO_3 ve BO_4 fonksiyonel gruplarının kristal örgü sisteminde bulunduğunu desteklemektedir (Tablo 4.2). Serbest suyun güçlü geniş soğurma bandı yaklaşık 3200-3400 cm⁻¹ civarında görülmektedir. H-O-H titreşim hareketi ise 1650 cm⁻¹ civarında görülmektedir.

Titreşimler	Dalga Sayısı (cm ⁻¹)
	$Al_4B_2O_9$
<i>v</i> (BO ₃)	1450 [55]
<i>v</i> ₁ (BO ₃)	1044 [56]
v_2 (BO ₃)	782 [56]
<i>v</i> ₃ (BO ₃)	1196 [57]
<i>v</i> ₄ (BO ₃)	644 [58]
$v_1(\mathrm{BO}_4)$	885 [59]
<i>v</i> ₄ (BO ₄)	544 [60]

Tablo 4.2KF6X deneyine ait FTIR verileri

Elde edilen ürün için oda sıcaklığından 600 °C'ye kadar alınan TG, DTG ve DTA eğrileri aşağıda verilmiştir (Şekil 4.4). DTG eğrisi termal bozunma deneylerinde TG eğrilerine alternatif olarak kullanılmaktadır. 103 ve 155 °C sıcaklıklarında DTG eğrisinde 2 tane pik görülmüştür. Ürünün bünye suyunu uzaklaştırdığı 106 ve 157 °C'ler de çıkan DTA piklerinden de doğrulanmaktadır. 480-600 °C sıcaklıklar arasında, kullanılan borik asidin bor okside dönüşümü söz konusu olduğundan DTG eğrisinde çeşitli pikler gözlenmiştir. Bunun nedeni ortamdaki safsızlıkların olabileceği düşünülmektedir. 600 °C'ye kadar ısıtılan % 96.732'lik bir miktar kaldığı hesaplanmıştır. Kayıp olan üründen geriye % 3.268'lik kısım ise ortamdan uzaklaşan bünye suyu olarak yorumlanmıştır.

Al₄B₂O₉ bileşiğini elde etmek için aynı deney giriş kimyasallarının hedeflenen bileşiğin formüldeki tam stokiyometrik oranlarına (2Al(NO₃)₃.9H₂O:H₃BO₃) uyacak şekilde tekrar edilmiştir. Elde edilen XRD deseni incelendiğinde (Şekil 4.5) deneysel değerlerin ICDD 29-0010 numaralı kart bilgileri ile benzerlik gösterdiği görülmektedir (Tablo 4.3). Bu bilgilere göre kristal sistemin ortorombik olduğu, hücre parametrelerinin a=14.74 Å, b=15.26 Å ve c=5.557 Å olduğu kart bilgilerinde verilmiştir. Deneysel olarak elde ettiğimiz bileşiğe ait XRD verileri POWD programı ile [61] indekslendiğinde bizim sentezlediğimiz bileşiğe ait bazı piklerin kart bilgilerinde bulunmamasına rağmen yapılan indekslemede bu
piklerinde kristal sisteme ait olarak indekslenebileceği bu çalışma ile ispatlanmıştır (Tablo 4.3).

Elde edilen ürünün IR spektrum bantları incelendiğinde (Şekil 4.6) BO₃ ve BO₄ fonksiyonel gruplarının kristal örgü sisteminde bulunduğu desteklenmektedir (Tablo 4.4).

Titreşimler	Dalga Sayısı (cm ⁻¹)
	$Al_4B_2O_9$
<i>v</i> (BO ₃)	1318 [55]
<i>v</i> ₁ (BO ₃)	1043 [56]
<i>v</i> ₂ (BO ₃)	777 [56]
v_3 (BO ₃)	1105 [57]
<i>v</i> ₄ (BO ₃)	616 [58]
$v_1(\mathrm{BO}_4)$	895 [62]
v_4 (BO ₄)	515 [62]

Tablo 4.4 KF20 deneyine ait FTIR verileri

KF20 maddesinin yaklaşık 92 °C civarında bünye suyunu kaybettiği, DTA eğrisinden 34 ve 97 °C'ler de endotermik pikler gözlendiği ve 600 °C'deki kalan miktarının kütlece % 98.974 olduğu bulunmuştur (Şekil 4.7).

Şekil 4.8'de KF20 ve KF6X maddelerinin TG eğrileri karşılaştırılmıştır. Oda sıcaklığı ile 600 °C aralığında yapılan termal gravimetrik analizlerde her iki ürünün (Al₄B₂O₉) benzer kararlılıkta olduğunu, sadece bünye sularının farklılığından dolayı TG/DTA eğrisinde kütle değişimi az da olsa farklılık göstermiştir.

Şekil 4.1 400 °C'den 900 °C'ye kadar olan 4 saatlik Al(NO₃)₃.9H₂O:5H₃BO₃ deneylerinin XRD desenleri

Şekil 4.2 900 °C' de 4, 8, 12 ve 24 saatlik Al(NO₃)₃.9H₂O:5H₃BO₃ deneylerinin XRD desenleri

Şekil 4.3 KF6X deneyine ait IR spektrumu deseni

Şekil 4.4 KF6X deneyine ait TG/DTA deseni

Şekil 4.5 KF20 deneyine ait XRD deseni

Şekil 4.6 KF20 deneyine ait IR spektrumu deseni

Şekil 4.7 KF20 deneyine ait TG/DTA deseni

Şekil 4.8 KF6X ve KF20 deneylerine ait karşılaştırmalı TG deseni

Deneysel X-ışınları t ver	Deneysel ürüne ait X-ışınları toz kırınımı verileri		Al ₄ B ₂ O ₉ (ICDD 09-0158)		(Al4B2O9 (ICDD 29-00	10)
I/Io	d _{deneysel} [Å]	I/Io	d[Å]	hkl	I/Io	d[Å]	hkl
		60	15.000	010			
		40	7.4400	200			
6.63	6.533	60	6.5600	210	<5	6.640	210
100	5.290	100	5.2900	220	100	5.300	220
68.17	5.192	100	5.2300	101			
52.25	4.898	100	4.9000	300	15	4.920	111
		80	4.2700	211			
		40	3.7400	031			
		40	3.6500	140			
14.36	3.564	60	3.5800	410	7	3.580	311
		80	3.5500	330			
		60	3.3600	240			
19.21	3.324	80	3.3300	321	25	3.340	231
18.60	3.290	60	3.2900	420			
		20	2.9500	150			
		60	2.9300	510			
4.28	2.812						
8.57	2.793						
4.37	2.754	80	2.7600	520			
27.03	2.654	100	2.6500	341	25	2.650	341
38.91	2.611	100	2.6000	122			
6.31	2.543						
24.62	2.448	100	2.4400	302	13	2.458	600
		20	2.4200	132			
11.89	2.387	40	2.3800	260	<5	2.388	312
		20	2.3500	620	<5	2.351	351
13.61	2.341	20	2.3400	351			

Tablo 4.1 KF6X deneyine ait XRD verileri ve karşılaştırmaları

8.17	2.317	20	2.3200	531			
9.74	2.233						
23.30	2.213	80	2.2100	412	9	2.220	142
7.57	2.165						
34.15	2.136	100	2.1340	422	20	2.135	422
		20	2.1300	170			
		60	2.1220	700			
30.74	2.088	80	2.0850	361	11	2.086	710
27.19	2.055	60	2.0540	052			
10.83	2.048						
10.99	2.024	40	2.0380	720	<5	2.036	152
		40	1.9810	252			
16.50	1.958	60	1.9490	730			
14.21	1.916	60	1.9120	721	<5	1.918	442
4.63	1.862	20	1.8940	352			
4.82	1.853						
7.31	1.841	20	1.8360	810			
12.15	1.826						
11.00	1.816	80	1.8120	023			
9.41	1.781	60	1.7830	081			
		80	1.7760	181			
3.11	1.758	20	1.7360	830			
3.57	1.700	40	1.7120	821			
4.55	1.692	20	1.6790	090			
10.61	1.668	60	1.6640	571			
14.64	1.642	80	1.6380	290			
1.61	1.602						
12.86	1.559				8	1.559	930
10.47	1.552	100	1.5520	253			
3.39	1.516	60	1.5310	581			
5.51	1.510						
13.00	1.490	100	1.4880	603			

9.65	1.470	80	1.4700	263		
12.63	1.427	80	1.4240	1011		
6.09	1.414					
6.98	1.393					
10.47	1.382					
6.28	1.336					
13.76	1.295					
5.27	1.287					
2.79	1.258					
5.25	1.226					
2.98	1.209					
2.90	1.189					
3.10	1.154					

Deneysel ürüne ait x-ışınları toz			(IC)	Al ₄ B ₂ O ₉	010)
kırınımı verileri				DD 27-00	JI ()
I/Io	d _{deneysel} [Å]	hkl	I/Io	d[Å]	hkl
			<5	6.640	210
100	5.300	220	100	5.300	220
14.46	4.914	300	15	4.920	111
7.4	3.582	410	7	3.580	311
30.49	3.343	231	25	3.340	231
6.80	2.778	002			
36.26	2.650	440	25	2.650	341
22.16	2.457	600	13	2.458	600
3.75	2.389	312	<5	2.388	312
			<5	2.351	351
3.45	2.315	232			
12.08	2.219	402	9	2.220	142
37.22	2.132	422	20	2.135	422
21.11	2.086	710	11	2.086	710
			<5	2.036	152
3.07	1.918	442	<5	1.918	442
4.49	1.861	162			
9.71	1.780	023			
8.22	1.668	712			
6.81	1.560	513	8	1.559	930
14.27	1.492	860			
6.84	1.433	363			
12.40	1.386	273			
2.56	1.342	773			
6.02	1.308	283			
3.57	1.286	244			
3.15	1.234	962			

Tablo 4.3 KF20 deneyine ait XRD verileri ve karşılaştırmaları

4.1.2 Fe(NO₃)₃.9H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Fe(NO₃)₃.9H₂O:5 H₃BO₃ oranında hazırlanan giriş kimyasalları kül fırınında katı-hal kimyasal tepkimeler ile 400, 500, 600, 700, 800 ve 900 °C'ler de 4 saat süre ile gerçekleştirilmiş olup, bu ürünlerden elde edilen XRD desenleri (Şekil 4.9) incelendiğinde 400 ve 500 °C'de amorf bir oluşum gözlendiği, 600 ve 900 °C arasında kristallenmenin var olduğunu görmekteyiz. 600 ve 900 °C'de kristallenmenin tam oluşamadığı, 700 ve 800 °C'lerinde ise kristallenmenin belirginleştiğini ve bu kristal yapının Fe₃BO₆ (ICDD Kart No:70-0880) bileşiğine ait olduğu XRD desenlerinden anlaşılmaktadır. En ideal koşulun 700 °C'de yapılan deney olduğu kabul edilmiştir. Daha sonra zaman etkisini gözlemlemek için aynı sıcaklıkta benzer deneyler 4, 8, 12 ve 24 saat aralıklarla tekrar edilmiştir (Şekil 4.10). Bu deneylere ait XRD desenleri incelendiğinde elde edilen Fe₃BO₆ bileşiğine ait kristal sistemde herhangi bir belirgin değişiklik gözlemlenmemekle birlikte kristallenmenin reaksiyon süresi ile orantılı olarak arttığını elde edilen XRD grafik karşılaştırmalarından anlamaktayız (Şekil 4.10). Fe₃BO₆ bileşiğinin 700 °C ve 4 saat gibi kısa bir sürede katı-hal sentez yöntemi ile sentezlenebileceği ve oluşan ürünün ICDD Kart No:70-0880 bilgileri ile uyum içerisinde bulunduğu görülmektedir (Tablo 4.5).

Diehl ve Brandt [9] Fe₃BO₆ bileşiğini çoklu kristaller olarak Fe₂O₃ ve B₂O₃ başlangıç kimyasallarını 1:1.5 stokiyometrik mol oranlarında ve 850 °C'de, B₂O₃ maddesini fazla stokiyometrik oranda tutarak katı-hal kimyasal yöntemle havası alınmış quartz ampullerde sentezlemişlerdir. X-ışınları tek kristal analizi ile Fe₃BO₆ bileşiğinin ortorombik yapıda olduğu, hücre kristolografi değerlerinin de a=10.048(2) Å, b=8.531(2) Å ve c=4.466(1) Å, uzay gurubunun Pnma, Z=4 olduğu belirlenmiştir. Ayrıca Fe₃BO₆ bileşiğinin norbergite (Mg₃SiO₄(OH)₂) ile izoyapıda olduğu referansı verilen literatürde bilgi olarak verilmiştir [10].

 Fe_3BO_6 bileşiğinin sentezinde literatürden farklı olarak, başlangıç kimyasalları $Fe(NO_3)_3.9H_2O$ ve H_3BO_3 bileşikleri kullanılmış gerek 1:5 ve gerekse de 3:1 stokiyometrik mol oranlarında kullanılarak gerçekleştirilen deneysel

sonuçların XRD analizlerinde aynı bileşiğin sentezlendiği ispatlanmaktadır (Şekil 4.11). Sentezlenen Fe₃BO₆ maddesine ait x-ışınları deseni Şekil 4.12'de gösterilmiş olup, XRD piklerinin "d" değerleri x-ışını kırınımı piklerinin üzerlerinde gösterilmiştir.

Sentezlenen Fe_3BO_6 ürününün IR spektrum bantları incelendiğinde (Şekil 4.13) BO_3 ve BO_4 fonksiyonel gruplarının kristal örgü sisteminde bulunduğu desteklenmektedir (Tablo 4.6).

Titreşimler	Dalga Sayısı (cm ⁻¹)
	Fe ₃ BO ₆
v (BO ₃)	1470 [55]
v_1 (BO ₃)	1027 [56]
<i>v</i> ₂ (BO ₃)	783 [56]
<i>v</i> ₃ (BO ₃)	1196 [57]
<i>v</i> ₄ (BO ₃)	644 [58]
<i>v</i> ₁ (BO ₄)	884 [59]
v_4 (BO ₄)	547 [60]

Tablo 4.6KF10 deneyine ait FTIR verileri

KF10 deneyi sonucunda sentezlenen maddenin bünye suyunu yaklaşık 104 °C civarında kaybettiği TG ve DTG eğrisinden gözlenmektedir (Şekil 4.14). DTA eğrisinde 30, 107 ve 300 °C sıcaklıklarda 3 tane endotermik pik gözlenmektedir. Bu endotermik pikler maddeden bünye suyunun uzaklaşması olarak yorumlanmıştır. 600 °C'deki maddelerin kütlece kalan miktarı ise % 99.279 değerinde olduğu bulunmuştur.

Bu sentez çalışmasında literatürden farklı olarak Fe₃BO₆ bileşiği daha düşük sıcaklık ve daha kısa sürede sentezlenebileceğini yapılan deneysel çalışmalarla ispatlamış bulunmaktayız.

Şekil 4.9 400 °C'den 900 °C'ye kadar olan 4 saatlik Fe(NO₃)₃.9H₂O:5H₃BO₃ deneylerinin XRD desenleri

Şekil 4.10 700 °C' de 4, 8, 12 ve 24 saatlik Fe(NO₃)₃.9H₂O:5H₃BO₃ deneylerinin XRD desenleri

Şekil 4.11 Fe(NO₃)₃.9H₂O ve H₃BO₃ maddelerinin 3:1 ve 1:5 stokiyometrik oranlardaki deneylerinin XRD desenleri

Şekil 4.12 Fe₃BO₆ maddesine ait "d" değerlerini gösteren XRD deseni

Şekil 4.13 KF10 deneyine ait IR spektrumu deseni

Şekil 4.14 KF10 deneyine ait TG/DTA deseni

Deneysel ürü toz kırını	ne ait x-ışınları ımı verileri	(10	Fe ₃ BO ₆ CDD 70-0880)	
I/Io	d _{deneysel} [Å]	d[Å]	I/Io	hkl
8.87	4.0806	4.0810	10.1	101
29.14	3.6836	3.6814	39.4	111
100	2.9463	2.9487	100	121
21.02	2.6779	2.6795	18.0	301
56.34	2.5548	2.5563	45.4	311
14.17	2.5075	2.5120	12.2	400
40.23	2.4710	2.4747	29.3	230
10.77	2.3355	2.3331	11.7	131
20.28	2.2656	2.2689	16.6	321
20.79	2.1902	2.1894	11.1	401
25.49	2.1632	2.1646	17.9	231
9.07	2.0405	2.0405	0.7	202
8.13	1.8899	1.8902	6.5	141
12.80	1.6834	1.6837	11.4	521
29.79	1.6688	1.6689	19.8	402
52.40	1.6543	1.6578	42.0	232
7.50	1.5739	1.5741	8.4	151
9.8	1.5402	1.5404	9.4	531
22.97	1.4385	1.4392	16.5	432
12.51	1.4214	1.4218	7.2	060
6.36	1.3890	1.3899	2.1	541
5.21	1.1126	1.1126	1.4	603

Tablo 4.5 KF10 deneyine ait XRD verileri ve karşılaştırmaları

 * Fe₃BO₆ (ICDD 70-0880) referans kart çok pik içerdiğinden dolayı şiddeti yüksek olan pikler alınmıştır. Şiddetler ICDD kart bilgilerinde 1000 üzerinden verilmiştir. Değerlerin uygun olması nedeni ile 100 üzerinden değerlendirilmiştir.

4.1.3 Pb(NO₃)₂ / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Katı-hal sentezi ile elde etmeyi hedeflediğimiz PbB₄O₇ bileşiği için P:B mol parametresi 1:4 oranında sabit tutulmuş, sıcaklık parametresi ise belli oranlarda arttırılmıştır. 400 °C'de yapılan deneyin sonucunda Pb(NO₃)₂ (ICDD Kart No: 06-0151) bileşiğinin bozunmadığını ve ortamda kaldığını XRD analizlerinden anlamaktayız (Tablo 4.7). 500 °C'de yapılan deney sonucunda oluşan maddenin ise amorf bir yapıda olduğu XRD deseninde görülmektedir (Şekil 4.15). 600 ve 700 ^oC'lerde yapılan deneylerde ise elde edilen ürünlerin benzer olabileceğini XRD desenlerinden anlamaktayız. XRD verileri ICDD veritabanı bilgileri ile kıyaslandığında elde edilen ürünün PbB₄O₇ bileşiğine ait olduğu ve 15-0278 numaralı ICDD kart bilgileri ile uyuştuğu görülmektedir (Tablo 4.8). Kart bilgilerinde kristal sistemin ortorombik, hücre parametrelerinin ise a=4.456 Å, b=10.84 Å ve c=4.243 Å değerlerinde olduğu bildirilmektedir. Bu kristal yapının uzay gurubunun Pnm2₁ (31) uzay simetrisine sahip olduğu bilgisi verilmiştir. 700 °C' den sonra gerçekleştirilen 800 ve 900 °C' lik deneylerde ürünün camsılaştığı görülmektedir. Kristallenmenin en uygun olduğu 600 °C'lik koşulda zaman etkisini gözlemlemek için aynı deney 8, 12 ve 24 saat aralıklarında tekrarlanmıştır. Şekil 4.16'da verilen bu deneylere ait XRD desenleri incelendiğinde ise PbB₄O₇ bileşiğine ait kristal yapının değişmediği görülmektedir. Ancak reaksiyon süresi uzadıkça kristallenmenin giderek arttığını elde edilen XRD desenlerinin pik şiddet değerlerinin yükselmesinden anlamaktayız.

PbB₄O₇ bileşiğinin literatürde [12] PbO ve B₂O₃ başlangıç kimyasalları ile ilgili formüle göre gerekli stokiyometrik oranlarda hazırlanarak elde edilen karışım platin krozede, 785 °C sıcaklıkta ve 12 saat süre ile saydam kristaller halinde elde edilmiştir. Bizim çalışmamızda ise Pb(NO₃)₂ ve H₃BO₃ başlangıç kimyasal malzemeleri ile Pb:B (1:4) oranında hazırlanan karışım 600 °C ve 4 saat süre ile katı-hal kimyasal reaksiyonunda, PbB₄O₇ bileşiği kül fırınında başarı ile sentezlenmiştir. Bu deneyde stokiyometrik bor miktarı reaksiyon sıcaklığının düşük değerlerde gerçekleştirilmesi nedeniyle (600 °C) yüksek oranlarda tutulmamıştır. Literatürde belirtilen 785 °C'lik sentezde de bor miktarı gerekli stokiyometrik oranda kullanıldığı rapor edilmiştir [12]. Sentezlenen bileşiğin IR spektrum bantları incelendiğinde (Şekil 4.13) BO₃ ve BO₄ fonksiyonel gruplarının kristal örgü sisteminde bulunduğu desteklenmektedir (Tablo 4.9).

Titreşimler	Dalga Sayısı (cm ⁻¹)
	PbB_4O_7
v_1 (BO ₃)	1025 [56]
<i>v</i> ₂ (BO ₃)	783 [56]
<i>v</i> ₃ (BO ₃)	1149 [57]
v_4 (BO ₃)	626 [58]
<i>v</i> ₁ (BO ₄)	878 [59]
v_3 (BO ₄)	809 [60]
v_4 (BO ₄)	540 [60]

Tablo 4.9 KF15 deneyine ait FTIR verileri

Sentezlenen PbB₄O₇ bileşiğinin 600 °C'ye kadar yapılan termal gravimetrik analizinde kararlı davrandığı ve kalan madde miktarının kütlece % 99.87 olduğu hesaplanmıştır (Şekil 4.18). Termal analizde madde yaklaşık 107 °C civarında bünye suyunu kaybetmektedir.

Bu çalışma ile PbB₄O₇ bileşiğinin saf olarak, literatürde belirtilen değerden daha düşük bir sıcaklıkta ve sürede sentezlenebileceği ispatlanmıştır. Ayrıca bu bileşiğin 800 °C ve üzeri sıcaklıklarda camsı faza dönüştüğü yapılan deneysel çalışmalarla kanıtlanmıştır.

Şekil 4.15 400 °C'den 900 °C'ye kadar olan 4 saatlik Pb(NO₃)₂:4H₃BO₃ deneylerinin XRD desenleri

Şekil 4.16 600 °C'de 4, 8, 12 ve 24 saatlik Pb(NO₃)₂:4H₃BO₃ deneylerinin XRD desenleri

Şekil 4.17 KF15 deneyine ait IR spektrumu deseni

Şekil 4.18 KF15 deneyine ait TG/DTA deseni

Deneysel ürüne ait X-ışınları toz kırınımı verileri		Pb(N (ICDD (IO ₃) ₂ 06-0151)
I/Io	d _{deneysel} [Å]	d[Å]	I/Io
100	4.5279	4.5400	100
41.90	3.9238	3.9290	35
7.23	3.5127	3.5140	8
5.39	3.2013	3.2080	6
51.66	2.7738	2.7780	40
91.47	2.3652	2.3700	70
54.54	2.2659	2.2680	40
13.84	1.9637	1.9640	12
33.95	1.8014	1.8020	25
33.99	1.7556	1.7570	18
21.57	1.6029	1.6040	14
27.06	1.5109	1.5120	12
12.11	1.3878	1.3890	8
21.58	1.3272	1.3280	12
10.93	1.3083	1.3090	8
4.82	1.2413	1.2420	4

Tablo 4.7 KF13 deneyine ait XRD verileri

 * Pb(NO₃)₂ (ICDD 06-0151) referans kart çok pik içerdiğinden dolayı şiddeti yüksek olan pikler alınmıştır.

Deneysel ürü toz kırını	ne ait x-ışınları mı verileri	(10	PbB4O7 CDD 15-0278)	
I/Io	d _{deneysel} [Å]	d[Å]	I/Io	hkl
84.87	5.4106	5.4230	75	020
58.25	4.1340	4.1220	75	110
72.31	3.9602	3.9520	80	011
49.82	3.0750	3.0720	50	101
18.80	2.9501	2.9550	20	111
59.85	2.8030	2.8060	55	130
74.10	2.7486	2.7520	60	031
100	2.6720	2.6730	100	121
78.14	2.0297	2.0330	55	141
41.25	1.9750	1.9760	25	022
21.20	1.9713	1.9720	20	201
17.91	1.9430	1.9410	20	211
20.08	1.9308	1.9310	20	051
42.50	1.8851	1.8870	35	112
15.93	1.5562	1.5575	16	161
6.52	1.4597	1.4592	11	251
18.26	1.4349	1.4357	12	152
11.99	1.3080	1.3081	11	123

Tablo 4.8 KF15 deneyine ait XRD verileri

* PbB₄O₇ (ICDD 15-0278) referans kart çok pik içerdiğinden dolayı şiddeti yüksek olan pikler alınmıştır.

4.2 Mikrodalga Yöntemi Kullanılarak Yapılan Deneylerin Sonuçları

4.2.1 Al(NO₃)₃.9H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Önceki çalışmalarda katı-hal kimyasal sentez yöntemi ile elde edilen Al₄B₂O₉ (ICDD Kart No: 29-0010) bileşiği mikrodalga enerjisi kullanılarak elde edilmeye çalışılmış ancak bu yapı sentezlenememiştir. Deneylere ait XRD desenleri incelendiğinde (Şekil 4.19) ortamda Al(NO₃)₃.9H₂O ve H₃BO₃ giriş kimyasal malzemelerine ait ana piklerin korunduğu görülmektedir (Tablo 4.10). Bu deney sonucunda hedeflenen ürünün elde edilememesini, mikrodalga enerjinin başlangıç kimyasalları arasında yeterli eşik enerjiyi sağlayamaması ile açıklayabiliriz. Ürüne ait IR spektrumu deseni ise Şekil 4.20'de verilmiştir.

Şekil 4.19 MD1, MD2, MD3, MD4 ve MD5 deneylerine ait XRD deseni

Şekil 4.20 MD2 deneyine ait IR spektrumu deseni

(1:4) Deneysel ürüne ait x-ışınları toz kırınımı				
verileri				
I/Io	d _{deneysel} [Å]			
63.69	7.8065			
71.77	7.1291			
32.37	4.8345			
20.61	4.6880			
10.58	4.0264			
33.82	3.9229			
81.76	3.8009			
56.50	3.5743			
37.91	3.4258			
100	3.3446			
94.75	3.1744			
33.49	3.1255			
21.28	2.8244			
21.41	2.7404			
70.25	2.6173			
3.03	2.5081			
19.09	2.3800			
1.92	2.2258			
65.16	2.1109			
11.12	2.0285			
16.78	1.9651			
12.55	1.9357			
10.53	1.8394			
9.56	1.7893			
10.83	1.7638			
9.22	1.6866			
5.17	1.6063			
8.74	1.5688			

Tablo 4.10 MD2 deneyine ait XRD verileri

4.2.2 Fe(NO₃)₃.9H₂O / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Bu çalışmayla, daha önce katı-hal kimyasal sentez yöntemi ile elde edilen kristal yapılı Fe₃BO₆ (ICDD Kart No:70-0880) bileşiği mikrodalga enerjisi kullanılarak sentezlenmesine çalışılmıştır. Ancak XRD analizleri (Şekil 4.21) sentezlenen ürünlerin amorf bir yapıda olduğunu ispatlamaktadır. Borik asit miktarının etkisini görmek için mol oranı 1'den 5'e kadar arttırdığımızda analiz edilen XRD grafiklerinde çok az sayıda pikin açığa çıktığı görülmüştür. Bu piklerin hidrojen borat (HBO₂, ICCD Kart No:77-0425) fazına ait olabileceği yorumlanmıştır.

Bu deneysel çalışmaların sonucunda, mikrodalga enerji ortamında belli stokiyometrik oranlarda reaksiyona sokulan başlangıç kimyasalları olan Fe(NO₃)₃.9H₂O ve H₃BO₃ bileşikleri mikrodalga enerji ortamında sıcaklığın yükselmesi ile reaksiyona girerek amorf fazda demir boratlı tipteki bir maddenin oluştuğu anlaşılmaktadır.

Sentezlenen bileşiğin boratlı tipte bir bileşik olduğunu desteklemek amacı ile ürünün FTIR spektrumu alınmış ve yorumlanmıştır (Şekil 4.22). IR yorumu sonrasında üründe BO_3 ve BO_4 fonksiyonel grupların kristal örgü sisteminde bulunduğu desteklenmektedir (Tablo 4.11).

Titreşimler	Dalga Sayısı (cm ⁻¹)
	Amorf demir boratlı madde
v (BO ₃)	1384 [55]
<i>v</i> ₁ (BO ₃)	1018 [56]
<i>v</i> ₃ (BO ₃)	1196 [57]
$v_3(\mathrm{BO}_4)$	803 [60]
v_4 (BO ₄)	548 [60]

Tablo 4.11 MD8 deneyine ait FTIR verileri

	1:5
	1:4
	1:3
	1:2
	1:1
20 30 40 50 60 70 80 Position [°2Theta]	

Şekil 4.21 MD6, MD7, MD8, MD9 ve MD10 deneylerine ait XRD deseni

Şekil 4.22 MD8 deneyine ait IR spektrumu deseni

63

4.2.3 Pb(NO₃)₂ / H₃BO₃ Maddeleri Kullanılarak Yapılan Deneylerin Sonuçları

Daha önce katı-hal kimyasal sentez yöntemi ile elde edilmiş olan PbB₄O₇ (ICDD Kart No:15-0278) bileşiği mikrodalga enerjisi kullanılarak sentezlenmesine çalışılmıştır. Ancak deneysel ürünlerden elde edilen XRD grafikleri incelendiğinde (Şekil 4.23) başlangıç kimyasal maddesi olan Pb(NO₃)₂ (ICDD Kart No:06-0151) bileşiğine ait "d" değerlerinin aynen kaldığı görülmektedir (Tablo 4.12). Bu sonuçlardan çıkartılabilecek yorum kurşun nitratlı bileşiğin değişik stokiyometrik oranlarda borik asit ile hazırlanmış karışımlarının mikrodalga enerji ile etkilenmediği ancak borik asit oranı 5 mola çıkartıldığında elde edilen ürünün XRD analizinde Pb(NO₃)₂ (ICDD Kart No:06-0151) ve HBO₂ (ICDD Kart No:77-0425) bileşiklerinin ortamda bulundukları görülmektedir. Buradan kurşun nitratın (Pb(NO₃)₂) reaksiyona girmeden ortamda kaldığı fakat borik asidin hidrojen borat (HBO₂) bileşiğine dönüştüğü görülmektedir.

(1:4) Deneysel ürüne ait x- ışınları toz kırınımı verileri		Pb(NO ₃) ₂ (ICDD 06-0151)	
I/Io	d _{deneysel} [Å]	d[Å]	I/Io
100	4.5107	4.5400	100
23.16	3.9058	3.9290	35
3.76	3.4987	3.5140	8
2.82	3.1916	3.2080	6
38.12	2.7674	2.7780	40
68.43	2.3612	2.3700	70
30.60	2.2624	2.2680	40
7.88	1.9594	1.9640	12
24.17	1.7986	1.8020	25
40.59	1.7536	1.7570	18
15.20	1.6012	1.6040	14
15.28	1.5095	1.5120	12
4.94	1.3867	1.3890	8
13.54	1.3266	1.3280	12
3.22	1.3069	1.3090	8
2.86	1.2401	1.2420	4
7.27	1.1966	1.1980	6
4.09	1.1837	1.1844	4
3.04	1.1339	1.1341	2
6.44	1.0991	1.1001	4

 Tablo 4.12
 MD14 deneyine ait XRD verileri ve karşılaştırmaları

 * Pb(NO₃)₂ (ICDD 06-0151) referans kart çok pik içerdiğinden dolayı şiddeti yüksek olan pikler alınmıştır.

(1:5) Deneysel ürüne ait x- ışınları toz kırınımı verileri		Pb(NO ₃) ₂ (ICDD 06-0151)		HBO ₂ (ICDD 77-0425)	
I/Io	d _{deneysel} [Å]	d[Å]	I/Io	d[Å]	I/Io
4.41	4.9262			4.9257	20.5
59.14	4.5160	4.5400	100		
9.15	4.3827			4.3899	28.5
27.91	3.9076	3.9290	35		
		3.5140	8		
4.37	3.4411			3.4521	16.2
		3.2080	6		
23.91	3.1776				
100	3.1217			3.1220	100
23.28	2.7679	2.7780	40		
3.94	2.4615			2.4628	4.9
42.35	2.3623	2.3700	70		
44.62	2.2656	2.2680	40		
54.84	2.2550			2.2562	1.7
5.12	1.9619	1.9640	12		
16.68	1.8000	1.8020	25		
33.40	1.7526	1.7570	18		
1.36	1.6785			1.6789	6.2
13.05	1.5994	1.6040	14		
1.08	1.5625			1.5610	5.2
33.36	1.5070	1.5120	12		
12.81	1.3269	1.3280	12		
6.01	1.3078	1.3090	8		
2.62	1.1966	1.1980	6		
4.15	1.1836	1.1844	4		
7.64	1.1323	1.1341	2		
11.27	1.0999	1.1001	4		

 Tablo 4.13
 MD15 deneyine ait XRD verileri ve karşılaştırmaları

*Referans kartlar çok pik içerdiğinden dolayı şiddeti yüksek pikler alınmıştır.

Şekil 4.23 MD11, MD12, MD13, MD14 ve MD15 deneylerine ait XRD deseni

4.3 SONUÇ

Bu tez çalışmasında, tekli alüminyum, demir ve kurşun metal elementlerini içeren bazı boratlı bileşiklerin, termal ve mikrodalga enerji ortamında katı-hal kimyasal reaksiyonlarıyla sentezlenmelerine çalışılmıştır. Elde edilen ürünlerin karakterizasyon çalışmalarında özellikle x-ışınları toz kırınımı, kızılötesi spektrumu ve termal analiz tekniklerinden yararlanılmıştır.

Al(NO₃)₃.9H₂O ve H₃BO₃ (1:5 mol oranında) başlangıç kimyasal maddeleri kullanılarak kül fırında gerçekleştirilen deneylerde 400-600 °C aralığında elde edilen ürünlerin XRD desenlerinin amorf karakterde çıktığını, 700-900 °C'de ise kristal yapılı oldukları görülmüştür. Bu grafiklerin analizlerinde, elde edilen ürünlerin Al₄B₂O₉ bileşiğine ait olduğunu 09-0158 ve 29-0010 numaralı ICDD kart bilgilerinin "d" değerlerinin örtüşmesinden anlamaktayız. Sıcaklık ve zaman parametrelerinin optimizasyon çalışmaları sonucunda Al₄B₂O₉ bileşiğinin 900 °C'de ve 8 saat sürede saf bir şekilde sentezlenebileceği görülmüştür. Bu bileşiği Sholze [7] termal ortamda 1000 °C' de Al₂O₃ ve bor kaynağı olarak B₂O₃ kullanarak 1:3 stokiyometrik oranlarda 70 saat sürede sentezlemiştir. Bizim çalışmamızı orijinal kılan yön ise başlangıç kimyasalları olarak Al(NO₃)₃.9H₂O ve H₃BO₃ maddelerinin kullanılması, reaksiyon sıcaklılığı ve zamanının daha düşük değerler olan 900 °C ve 8 saatte gerçekleştirilmeşidir. Bu deney ayrıca hedeflenen Al₄B₂O₉ bileşiğindeki formüle göre Al:B element oranlarının stokiyometrik mol sayıları 2:1 olarak da denenmiş ve elde edilen XRD desenleri 29-0010 numaralı ICDD kart bilgileriyle benzer çıkmışlardır. Bunun yanında, ürünün XRD desenlerinin analizlerinde literatürden farklı olarak bazı ekstra piklerin bulunduğu görülmüş ve bu piklerinde kristal yapı indeksleme çalışmasıyla aynı kristal örgü parametreleriyle indekslenebileceğini ve ekstra olarak gözlen bu piklerin sahip oldukları Miller düzlemlerinin sayısal değerleri de bu çalışmayla tanımlanmıştır.

Demir boratlı bileşiklerin sentezlerinde ise başlangıç maddeleri olarak $Fe(NO_3)_3.9H_2O$ ve H_3BO_3 bileşikleri 1:5 mol oranlarında kullanılmışlardır. Farklı sıcaklık ve zaman parametreleriyle gerçekleştirilen deneylerde elde edilen ürünlerin XRD analizleri bize 400 ve 500 °C'lerde amorf karakterde olduklarını, 600, 700, 800

ve 900 °C'lerde elde edilenlerin ise kristal yapılı olduklarını göstermektedir. XRD analiz çalışmalarında bu kristal yapının Fe₃BO₆ bileşiğine ait olduğu ve 70-0880 ICDD kart no bilgileriyle örtüştüğü görülmüştür. Bu deneysel sentez açık hava atmosferinde, 700 °C ve 4 saat süre aralığında optimize edilmiştir. Literatürde ise bu bileşik 850 °C ve Fe₂O₃ ve B₂O₃ başlangıç kimyasallarını 1:1.5 stokiyometrik mol oranlarında kullanılarak, havası alınmış quartz ampüllerde sentezlendiği bilgisi verilmiştir [9].

Hedeflediğimiz PbB_4O_7 bileşiğinin sentezinde stokiyometrik mol parametresi deneysel çalışmada P:B (1:4) oranında sabit tutulmuş, sıcaklık parametresi ise belli oranlarda arttırılmıştır. 400 °C'de yapılan deneyin sonucunda Pb(NO₃)₂ (ICDD Kart No:06-0151) bileşiğinin bozunmadığını ve ortamda kaldığını, 500 °C'de yapılan deney sonucunda ise oluşan maddenin amorf bir yapıda bulunduğunu, 600 ve 700 ^oC'lerde yapılan deneylerde ise elde edilen ürünlerin XRD desenlerinin benzer olduğunu ve bu bileşiğin XRD "d" değerlerinin ICDD veritabanı bilgileri ile kıyaslandığında elde edilen ürünün PbB₄O₇ bileşiğine ait olduğunu ve 15-0278 numaralı ICDD kart bilgileri ile uyuştuğu görülmüştür. Benzer deneylerin 800 ve 900 °C'lerde tekrarladığımızda ise ürünlerin camsılaştığı tespit edilmiştir. Kristallenmenin en ideal olduğu 600 °C'lik koşulda zaman etkisini gözlemlemek için benzer denemeler 8, 12 ve 24 saat aralıklarında tekrarlanmıştır. Bu deneylere ait XRD desenleri incelendiğinde ise PbB₄O₇ bileşiğine ait kristal yapının korunduğunu, ancak reaksiyon süresi uzatıldığında kristallenmenin giderek arttığını elde edilen XRD desenlerinin şiddet değerlerinin büyümesiyle yorumlanmıştır. Zaman parametresi ile yapılan deneysel çalışmalarda PbB₄O₇ bileşiğinin 4 saat gibi kısa bir sürede elde edilebileceği ispatlanmıştır. Bu deneysel çalışmaların sonucunda PbB₄O₇ maddesinin saf olarak, literatürde belirtilen değerden (785 °C) daha düşük bir sıcaklıkta (600 °C) ve zaman aralığında sentezlenebileceği kanıtlanmıştır.

Bütün çalışmalarda elde edilen ürünler için FTIR ve TG/DTA analizleri gerçekleştirilmiş olup, boratlı bileşiklerin kristal örgülerinde IR spektrum analizleriyle yapılarında BO₃ ve BO₄ fonksiyonel grupların varlıkları gözlemlenmiş, termal analizlerde ise ürünlerin bünye sularını ve yapısal kararlılıkları analiz edilmiştir. Maddelerin oda sıcaklığı ile 600 °C aralığında termal kararlılığa sahip oldukları görülmüştür.

Yukarıda özetlenen deneysel çalışmalar mikrodalga enerji ortamında da denenmiş olup alüminyum ve kurşun boratlı bileşiklerin sentez çalışmalarında başlangıç kimyasallarının bozunmadan mikrodalga ortamında kaldıklarını, ancak demir boratlı bileşiğin sentezinde ise başlangıç maddelerinin mirodalga enerji ortamında bozunduklarını ve elde edilen ürünün amorf karakterde bulunduğu gerçekleştirilen XRD analizleriyle anlaşılmıştır.

5. KAYNAKÇA

[1] Taşçıoğlu, S., Bor ve Silisyum Kimyası, M.Ü. Yayınları, 515, (1992).

[2] http://digitalfire.ab.ca/cermat/material/127.html.

[3] Keszler, D.A., *Current Opinion in Solid State and Materials Science*, 4, (1999), 155.

[4] Cotton, F.A., Wilkinson, G., *Advanced Inorganic Chemistry*, Fifth Edition, New York, USA, (1988).

[5] Zhou, J., Su, D., Luo, J., Zhong, M., "Synthesis of aluminum borate nanorods by a low-heating-temperature solid-state precursor method", *Materials Research Bulletin*, 44, (2009), 224.

[6] Elssfah, E.M., Tang, C.C., Zhang, J., Song, H.S., Ding, X.X., Qi, S.R., "Low-temperature performance of $Al_4B_2O_9$ nanowires", *Materials Research Bulletin*, 42, (2007), 482.

[7] Sholze, H., Z. Anorg. Allg. Chem. , 284, (1956), 272.

[8] Çam, İ., Timuçin, M., "Chemical Synthesis of Iron Borate (Fe₃BO₆)", II. Uluslar Arası Bor Sempozyumu, Eskişehir/TÜRKİYE, (2004), 195.

[9] Diehl, R., Brandt, G., "Refinement of the Crystal Structure of Fe₃BO₆", *Acta Cryst.*, B31, (1975), 1662.

[10] White, J.G., Miller, A., Nielsen, R.E., Acta Cryst., 19, (1965), 1060.

[11] Bartwal, K.S., Bhatt, R., Kar, S., Wadhawan, V.K., "Growth and characterization of PbB₄O₇ single crystals", *Materials Science and Engineering*, B85, (2001), 76.

[12] Corker, D.L., Glazer, A.M., "Structure and Optical Non-linearity of PbO,2B₂O₃", *Acta Cryst.*, B52, (1996), 260.

[13] Bontchev, R.P., Sevov, S.C., Inorg. Chem., 35, (1996), 6910.

[14] Bluhm, K., Park, C.H., Z. Naturforsch, 52b, (1997), 102.

[15] Shi, Y., Liang, J., Zhang, H., Liu, Q., Chen, X., Yang, J., Zhuang, W., Rao, G., *J. Solid State Chem.*, 135, (1998), 43.

[16] Keszler, D.A., Akella, A., Schaffers, K.I., Alekel, T., MRS Press, Boston, (1994), 15.

[17] Schaffers, K.I., Deloach, L.D., Payne, S.A., *IEEE J. Quantum Electron.*, 32, (1996), 741.

[18] Corbel, G., Retoux, R., Leblanc, M., J. Solid State Chem., 139, (1998), 52.

[19] Touboul, M., Betourne, N.G., J. Solid State Chem., 131, (1998), 370.

[20] Busche, S., Bluhm, K., Z. Naturforsch, 51b, (1996), 671.

[21] Wiesch, A., Bluhm, K., Acta Crystallogr. Sect. C, 53, (1997), 1730.

[22] Wiesch, A., Bluhm, K., Z. Naturforsch, 52b, (1997), 227.

[23] Wiesch, A., Bluhm, K., Z. Naturforsch, 53b, (1998), 157.

[24] Wiesch, A., Hauke, T., Bluhm, K., Z. Naturforsch, 53b, (1998), 1.

[25] Bluhm, K., Wiesch, A., Z. Naturforsch, 51b, (1996), 677.

[26] Wiesch, A., Bluhm, K., Z. Naturforsch, 53b, (1998), 5.

[27] Busche, S., Bluhm, K., Z. Naturforsch, 51b, (1996), 319.

[28] Diaz, A., Keszler, D.A., Chem. Mater., 9, (1997), 2071.

[29] Keszler, D.A., Diaz, A., Mat. Res. Soc. Symp. Proc., 453, (1997), 247.

[30] Becker, P., Adv. Mater., 10, (1998), 979.

[31] Chen, C., Wang, Y., Wu, B., Wu, K., Zeng, W., Yu, L., *Nature*, 373, (1995), 322.

[32] Keszler, D.A., Opin, C., Solid State Mater. Sci., 1, (1996), 204.

[33] Aka, G., Kahn-Harari, A., Mougel, F., Vivien, D., Salin, F., Coquelin, P., J. Opt. Soc. Am., B14, (1997), 2238.

[34] Yoshiumura, M., Kobayashi, T., Furuya, H., Murase, K., Mori, Y., Sasaki, T., *Optical Society of America*, (1998), 561.

[35] Mougel, F., Aka, G., Kahn-Harari, A., Huber, H., Benitez, J.M., Vivien, D., *Opt. Mater.*, 8, (1997), 161.

[36] Auge, F., Mougel, F., Aka, G., Kahn-Harari, A., Vivien, D., Balembois, F., Georges, P., Brun, A., *Optical Society of America*, (1998), 53.

[37] Chai, B.H.T., Eichenholz, J.M., Ye, Q., Hammons, D.A., Jang, W.K., Shah, L., Luntz, G.M., Richardson, M., *Optical Society of America*, (1998), 56.

[38] Chai, B.H.T., Hammons, D.A., Eichenholz, J.M., Ye, Q., Jang, W.K., Shah, L., Luntz, G.M., Richardson, M., Qiu, H., *Optical Society of America*, (1998), 59.

[39] Nicholls, J.F.H., Henderson, B., Chai, B.H.T., Opt. Mater., 8, (1997), 215.

[40] Ye, N., Wenrong, Z., Baichang, W., Chuangtian, C., "Electro-optic and second harmonic generation materials, devices and applications", 3556, (1998), 21.

[41] Keszler, D.A., The XVII. Congress and General Assembly of the International Union of Crystallography, Seattle, W.A., August (1996), 8.

[42] Chang, K.S., New complex group 13 borates: synthesis, structures, and properties, PhD Thesis, Oregon State University, (1997).

[43] Chang, K.S., Keszler, D.A., Mater. Res. Bull., 33, (1998), 299.

[44] Zhangui, H., Mori, Y., Higashiyama, T., Yoshimura, M., Yap, Y.K., Kagebayashi, Y., Sasaki, T., "Electro-optic and second harmonic generation materials, devices, and applications", 3556, (1998), 156.

[45] Yap, Y.K., Inoue, T., Sakai, H., Kagebayashi, Y., Mori, Y., Sasaki, T., Deki, K., Horiguchi, M., *Opt. Lett.*, 23, (1998), 34.

[46] Yap, Y.K., Deki, K., Kagebayashi, Y., Horiguchi, M., Mori, Y., Sasaki, T., *Optical Society of America*, 19, (1998), 380.

[47] Yap, Y., Deki, K., Kitatochi, N., Mori, Y., Sasaki, T., *Opt. Lett.*, 23, (1998), 1016.

[48] Kamimura, T., Yoshimuar, M., Inoue, T., Mori, Y., Sasaki, T., Yoshida, H., Nakatsuka, M., Yoshida, K., Deki, K., Horiguchi, M., "Improvement of laser-induced surface damage in $CsLiB_6O_{10}$ crystal by ion etching", 3244, (1998), 400.

[49] Yap, Y.K., Haramura, S., Taguchi, A., More, Y., Sasaki, T., *Opt. Commun.*, 145, (1998), 101.

[50] Hanay, N.B., *Treatise Solid State Chemistry (Reaktivity of Solids)*, Plenum Pres, New York, (1976), 4.

[51] http://www.chemistry.ohio-state.edu/~woodward/ch754/synth.htm.

[52] Sigma Aldrich., Chem Files, Solid-State Synthesis, 5(3), 9.

[53] Rao, K.J., Vaitdhyanathan, B., Ganguli, M., Ramakrishnan, P.A., *Chem. Mater.*, 11, (1999), 882.

[54] Chen, D., Tang, K., Shen, G., Sheng, J., Fang, Z., Liu, X., Zheng, H., Qian, Y., "Microwave-assisted Synthesis of Metal Sulfides in Ethylene Glycol", *Materials Chemistry and Physics*, 82, (2003), 206.

[55] Huppertz, H., Altmannshofer, S., Heymann, G., Journal of Solid State Chemistry, 170, (2003), 320.

[56] Gözel, G., Baykal, A., Kızılyallı, M., Kniep, R., Journal of European Ceramic Society, 18, (1998), 2241.

[57] Lemanceau, S., Bertrand-Chadeyron, G., Mahiou, R., et al., *Journal of Solid State Chemistry*, 148, (1999), 229.

[58] Zhang, Y., Chen, L., Liang, K., Xu, T., Journal of Alloys and Compounds, 333, (2002), 72.

[59] Baykal, A., Gözel, G., Kızılyallı, M., Kniep, R., Cryst. Res. Technol., 35, (2000), 247.

[60] Shi, Y., Liang, J., et al., Journal of Solid State Chemistry., 135, (1998), 43.

[61] Wu, E., POWD (An Interactive Powder Diffracti on Data Interpretation and Indexing Program Version 2.2.), School of Physical Science, Flinders University of South Australia, Bedford Park, S.A. 5042, Australia.

[62] Baykal, A., Gözel, G., Kızılyallı, M., Toprak, M., Kniep, R., *Turk J. Chem.*, 24, (2000), 381.