T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

SİLASİKLOPROPİLİDEN-SİLAALLEN DÜZENLENMESİNİN HESAPSAL YÖNTEMLERLE İNCELENMESİ

YÜKSEK LİSANS TEZİ

Cem Burak YILDIZ

Bahkesir, Ocak-2011

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

SİLASİKLOPROPİLİDEN-SİLAALLEN DÜZENLENMESİNİN HESAPSAL YÖNTEMLERLE İNCELENMESİ

YÜKSEK LİSANS TEZİ

Cem Burak YILDIZ

Bahkesir, Ocak-2011

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

SİLASİKLOPROPİLİDEN-SİLAALLEN DÜZENLENMESİNİN HESAPSAL YÖNTEMLERLE İNCELENMESİ

YÜKSEK LİSANS TEZİ

Cem Burak YILDIZ

Tez Danışmanı: Doç. Dr. Akın AZİZOĞLU

Sınav Tarihi: 11.01.2011

Jüri Üyeleri: Doç. Dr. Akın AZİZOĞLU (Danışman-BAÜ) X. Araşılı Doç. Dr. Özkan DEMİRBAŞ (BAÜ)

SILASİKLOPROPILIDEN-SILAALLEN DÜZENLENMESININ HESAPSAL YÖNTEMLERLE İNCELENMESI

Cem Burak YILDIZ

Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü

Kimya Anabilim Dalı

(Yüksek Lisans Tezi/Tez Danışmanı: Doç.Dr. Akın AZİZOĞLU) Balıkesir, 2011

Yaklaşık 30 sene öncesine kadar, koordinasyon sayısı dörtten az silikon atomu içeren bileşikler, reaktif ara ürünler olarak tanımlanırlardı ve izole edilemeyecekleri düşünülürdü. Bu durum 1981 yılında Si-Si ikili bağını içeren ilk kararlı bileşiğin rapor edilmesiyle değişti. Bu kararlı bağ çeşidine, 1993 yılında kümülenik bağda katılmıştır. İlk kararlı 1-silaallen ve trisilaallen yapısı günümüzde sentezlenmiş ve yapıları aydınlatılmıştır, buna karşın kararlı olarak diğer silaallen bileşikleri rapor edilebilmiş değildir.

1-lityo–1-bromo siliran (14) ve 2-lityo–2-bromo siliran (15) bileşiklerinin ilgili 2-silaallen (17) ve 1-silaallen (18) yapılarına halka açılmaları esnasında oluşan ara ürün ve geçiş basamaklarının enerjileri, GAUSSIAN 03W programı yardımıyla hesaplanmıştır. Sonuç olarak, 14 numaralı bileşiğin 17 numaralı bileşiğe basamak basamak (*stepwise*), 15 numaralı bileşiğin 18 numaralı bileşiğe konserted (*concerted*) mekanizma ile izomerizasyonunun gerçekleştiği bulunmuştur. Özellikle, 17 numaralı silaallen yapısının oluşumu esnasında, halka açılma enerji bariyerinin çok yüksek olduğu tespit edilmiştir (48.5 kcal.mol⁻¹). Bununla birlikte, 18 numaralı silaallen yapısına izomerizasyon için gerekli olan enerji bariyeri, çok düşük elde edilmiştir (1.2 kcal.mol⁻¹).

ANAHTAR SÖZCÜKLER: Silaallene / Doering-Moore-Skattebol / Silasiklokarbenoid / Reaktif Ara Ürün / DFT / HF / Ab-initio

ÖZET

ABSTRACT

REARRANGEMENT OF SILACYCLOPROPYLIDENE-SILAALLENE INVESTIGATED BY COMPUTATIONAL METHODS

Cem Burak YILDIZ

Bahkesir University, Institute of Science, Department of Chemistry (M.Sc. Thesis / Supervisor : Assoc. Prof. Akın AZİZOĞLU) Bahkesir-Turkey, 2011

As recently as 30 years ago, molecular compounds that contained silicon atoms with a coordination number of less than four were considered solely in terms of reactive intermediates that could not be isolated. Nowadays, various compounds containing silicon-silicon and silicon-carbon double and triple bonds have been synthesized. Moreover, the stable molecule having cumulenic silicon bond was obtained in 1993. Although the various compounds including 1-silaallene and trisilaallene unit in their skeletons were synthesized, other silaallenes have not been synthesized uptil now.

Density functional theory and ab initio quantum mechanical calculations elucidated the ring-opening reactions of 1-bromo-1-lithiosilirane (14) and 2-bromo-2-lithiosilirane (15) to 2-silallene (17) and 1-silaallene (18), respectively. The ring-opening of 14 to 17 can proceed in a stepwise fashion. Here, a high-energy barrier needs to be overcome in order to open the silacyclopropylidene ring and to generate 17 (48.5 kcal.mol⁻¹). On the contrary, the ring-opening of 15 to 18 can occur in a concerted fashion. Especially, the calculated reaction barrier for the concerted ring-opening of 15 to 1-silaallene (18) is found to be very low, $1.2 \text{ kcal.mol}^{-1}$.

KEYWORDS: Silaallene / Doering-Moore-Skattebol / Silacyclocarbenoid / Reactive Intermediate / DFT / HF / Ab-initio

ÖZ	ii
ABSTRACT	iii
İÇİNDEKİLER	iv
SEMBOL LİSTESİ	vi
ŞEKİL LİSTESİ	vii
ÇİZELGE LİSTESİ	
ÖNSÖZ	xiii
1. GİRİŞ	1
1.1. Allen Bileşiklerinin Sentezi	3
1.2. Doering-Moore-Skattebol Metoduna Göre Yapılmış	4
Deneysel Çalışmalara Örnekler	
1.3. Doering-Moore-Skattebol Metoduna Göre Yapılmış	5
Teorik Çalışmalara Örnekler	
1.4. Karben ve Karbenoid Yapıları	8
1.5. Silaallen Kimyası	10
1.5.1. 1-Silaallen ve Türevleri	12
1.5.2. 2-Silaallen ve Türevleri	13
2. HESAPSAL KİMYA	16
2.1. Ab initio Yöntemleri	16
2.2. Hartree-Fock Yöntemi	17
2.3. Basis Set (Temel Kümeler)	18
2.4. Yoğunluk fonksiyoneli Teorisi (YFT)	19
2.5. Moller-Plesset	20
2.6. Intrinsic Reaction Coordinate (IRC)	21
3. ARAÇLAR VE YÖNTEMLER	22
3.1. Kullanılan Bilgisayar Programları	22
3.2. Kullanılan Bilgisayar Donanımları	22
4. TARTIŞMA SONUÇ	23
4.1. Silasiklopropilidenoid Yapıları	
4.2. Silasiklopropilidenoid Yapılarının Halka Açılması	
4.3. Serbest Karben Bileşiklerinin Halka Açılması	

EKLER	34
KAYNAKÇA	68

SEMBOL LÍSTESÍ

Sembol	Tanımı
HF :	Hartree-Fock
MP2 :	Moller Plesset
B3LYP :	Becke 3 parametre fonksiyoneli ve Lee, Yang, Parr korelasyon
	fonksiyoneli
DFT :	Density functional theory (Yoğunluk Fonksiyoneli Teorisi, YFT)
IRC :	Intrinsik Reaksiyon Koordinatı
MeLi :	Metillityum
NMR :	Nükleer manyetik resonans
SCF :	Self-consistent field (Kendi İçinde Tutarlı Alan)
WBO:	Wiberg Bağ İndeksi
NBO:	Natural Bond Orbital (Doğal Bağ Orbitali)

ŞEKİL LİSTESİ

Şekil No	Şekil Adı Sayı	fa No
Şekil 1	Allen Molekülünün Genel Yapısı	1
Şekil 2	Allen Molekülünün П-bağı	2
Şekil 3	β-eliminasyonu	3
Şekil 4	Doering-Moore-Skattebol Reaksiyonu	3
Şekil 5	Linear Allen Sentezi ile İlgili Bir Çalışma	4
Şekil 6	Yedi Üyeli Allen Sentezi İle Alakalı Bir Çalışma	4
Şekil 7	Altı Üyeli Allen Sentezi İle Alakalı Bir Çalışma	4
Şekil 8	Linear Allen Sentezi İle İlgili Bir Çalışma	5
Şekil 9	1,2-sikloheksadien Bileşiğinin Sentez Denemesi	5
Şekil 10	Siklo-C ₃ H ₄ LiCl 'den LiCl 'ün Uzaklaşması İçin	6
	Hesaplanmış Reaksiyon Yolu (MP2/6-31G(d)//MP2/6-	
	31G(d)+ZPE).	
Şekil 11	Silakarbenoid Bileşiklerinin Allen Bileşiğine Halka Açılma	7
	Reaksiyonu	
Şekil 12	Karben Yapısı	8
Şekil 13	Karbenoid Yapısı	8
Şekil 14	gem-dihalobileşiklerinin Metillityum ile Reaksiyonu	9
Şekil 15	Kararlılık Sırası: Li, Na, K	10
Şekil 16	Siklo-CSi ₂ H4LiCl 'den LiCl 'ün Uzaklaşması İçin	11
	Hesaplanmış Reaksiyon Yolu (MP2/6-31G(d)//MP2/6-	
	31G(d)+ZPE).	
Şekil 17	1-Silaallen Molekülünün Geometrik Yapısı	12
Şekil 18	Dehalonegatif intermoleküler karbometalasyon eliminasyonu	13
Şekil 19	Deneysel 1-silaallen Bileşiği	13
Şekil 20	2-Silaallen Molekülünün Geometrik Yapısı	14
Şekil 21	C ₂ SiH ₄ İzomerlerinin Geometrileri ve Enerjileri	14
Şekil 22	Silasiklopropiliden-LiBr kompleks karbenoidlerin (14 ve 15)	23
	geometrik yapıları ve enerjileri (E, au). Bağ uzunluğu	
	angstrom (Å) bağ açısı derece cinsinden B3LYP/6-31G(d)	
	teori seviyesinde hesaplanmıştır.	

- Şekil 23 1-bromo-1-lityosiliran (14) Bileşiğinin 2-silaallen-LiBr (17) 27
 Kompleksine "basamak basamak (stepwise)" Halka
 Açılmasının B3LYP6-31G(d) Seviyesinde Hesaplanan
 Reaksiyon Yolu. Bağ Uzunlukları ve Açıları Sırasıyla
 Angstrom ve Derece Olarak, WBO Değerleri Parantez
 İçerisinde Verilmektedir.
- Şekil 24 2-bromo-2-lityosiliran (15) Bileşiğinin 2-silaallen-LiBr (18) 30
 Kompleksine "konserted (concerted)" Halka Açılmasının
 B3LYP6-31G(d) Seviyesinde Hesaplanan Reaksiyon Yolu.
 Bağ Uzunlukları ve Açıları Sırasıyla Angstrom ve Derece
 Olarak, WBO Değerleri Parantez İçerisinde Verilmektedir.
- Şekil 25 B3LYP/6-31G(d) seviyesinde 15 numaralı bileşiğin IRC 31 hesaplaması.
- Şekil 26
 19 Numaralı Bileşiğin 2-silaallen (17) Bileşiğine Halka 32
 Açılmasının B3LYP6-31G(d) Seviyesinde Hesaplanan
 Reaksiyon Yolu. Bağ Uzunlukları ve Açıları Sırasıyla
 Angstrom ve Derece Olarak, WBO Değerleri Parantez
 İçerisinde Verilmektedir.
- Şekil B.1B3LYP/6-31G(d) metodu ile hesaplanan TS2 numaralı yapı38için IRC analizi.
- Şekil B.2B3LYP/6-31G(d) metodu ile hesaplanan TS4 numaralı yapı39için IRC analizi.
- Şekil B.3B3LYP/6-31G(d) metodu ile hesaplanan TS3 numaralı yapı39için IRC analizi.
- Şekil B.4B3LYP/6-31G(d) metodu ile hesaplanan 20 numaralı yapı40için IRC analizi.

ÇİZELGE LİSTESİ

Çizelge No	Çizelge Adı Sayf	a No
Çizelge 1	14 ve 15 numaralı bileşiklerdeki Hesaplanan Bağ	25
	Uzunlukları d (Å) ve Bağ Uzamaları [%]. Bağların Uzama	
	Verileri B3LYP/6	
Çizelge 2	14 ve 15 Numaralı Bileşiklerden Silaallen Bileşiklerine	26
	Doğru B3LYP/6	
Çizelge 3	Serbest silasiklopropiliden ve Silasiklopropilidenoid	29
	yapılarının silaallen Bileşiklerine Konserted (Concerted) ve	
	Basamak Basamak (Stepwise) Halka Açılmaları İçin	
	Hesaplanan Enerji Bariyerleri ((B3LYP/6-31G(d), B3LYP/6-	
	31+G(d,p) (parantez içerisinde) ve MPW1PW91/6-	
	31+G(d,p) (Altı çizili), MP2/6-31+G(d,p) (Parantez	
	İçerisinde ve Altı Çizili) Teori Seviyelerinde).	
Çizelge A.1	B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-	34
	31+G(d,p) ve MP2/6-31+G(d,p) metotları ile hesaplanan 14	
	ve 15 numaralı bileşiklerin bazı bağ uzama ve kısalma	
	değerleri.	
Çizelge A.2	B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-	35
	31+G(d,p) ve MP2/6-31+G(d,p) metotları ile hesaplanan 14,	
	16, 17-LiBr, TS1, TS2 numaralı bileşiklerin geometrik	
	verileri.	
Çizelge A.3	B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-	36
	31+G(d,p) ve MP2/6-31+G(d,p) metotları ile hesaplanan 15,	
	18-LiBr, TS4 numaralı bileşiklerin geometrik verileri.	
Çizelge A.4	B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-	37
	31+G(d,p) ve MP2/6-31+G(d,p) metotları ile hesaplanan 19,	
	17, TS4 numaralı bileşiklerin geometrik verileri.	
Çizelge C.1	B3LYP/6-31G (d) teori seviyesinde hesaplanan 15 numaralı	41
	bileşiğin Kartezyen koordinatları toplam enerjisi.	
Çizelge C.2	B3LYP/6-31G (d) teori seviyesinde hesaplanan 18 numaralı	42

bileşiğin Kartezyen koordinatları toplam enerjisi.

- Çizelge C.3B3LYP/6-31G (d) teori seviyesinde hesaplananTS342numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.4B3LYP/6-31G (d) teori seviyesinde hesaplanan 14 numaralı43bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.5B3LYP/6-31G (d) teori seviyesinde hesaplanan 16 numaralı44bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.6B3LYP/6-31G (d) teori seviyesinde hesaplanan 19 numaralı44bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.7B3LYP/6-31G (d) teori seviyesinde hesaplanan 17 numaralı45bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.8 B3LYP/6-31G (d) teori seviyesinde hesaplanan **TS1** 46 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.9B3LYP/6-31G (d) teori seviyesinde hesaplananTS246numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.10B3LYP/6-31G (d) teori seviyesinde hesaplananTS447numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.11 B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **15** 48 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.12 B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **18** 48 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.13 B3LYP/6-31+G(d,p) teori seviyesinde hesaplanan **TS3** 49 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.14 B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **14** 50 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.15 B3LYP/6-31+G(d,p) teori seviyesinde hesaplanan **16** 50 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.16 B3LYP/6-31+G(d,p) teori seviyesinde hesaplanan **19** 51 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.17 B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **17** 52 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.18 B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **TS1** 52 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

- Çizelge C.19 B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **TS2** 53 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.20B3LYP/6-31+G(d,p)teoriseviyesindehesaplananTS454numaralı bileşiğin Kartezyen koordinatları toplam enerjisi
- Çizelge C.21 MP2/6-31+G (d,p) teori seviyesinde hesaplanan **15** numaralı 54 bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.22MP2/6-31+G (d,p) teori seviyesinde hesaplanan 18 numaralı55bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.23 MP2/6-31+G(d,p) teori seviyesinde hesaplanan **TS3** 56 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.24 MP2/6-31+G (d,p) teori seviyesinde hesaplanan **14** numaralı 56 bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.25 MP2/6-31+G(d,p) teori seviyesinde hesaplanan **16** numaralı 57 bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.26 MP2/6-31+G(d,p) teori seviyesinde hesaplanan **19** numaralı 58 bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.27 MP2/6-31+G (d,p) teori seviyesinde hesaplanan 17 numaralı 58 bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.28 MP2/6-31+G (d,p) teori seviyesinde hesaplanan **TS1** 59 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.29 MP2/6-31+G (d,p) teori seviyesinde hesaplanan **TS2** 60 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.30 MP2/6-31+G (d,p) teori seviyesinde hesaplanan **TS4** 60 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi
- Çizelge C.31MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan 1561numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.32MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan 1862numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.33MPW1PW91/6-31+G(d,p) teori seviyesinde hesaplanan TS362numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.34MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan 1463numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.35 MPW1PW91/6-31+G(d,p) teori seviyesinde hesaplanan 16 64

numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

- Çizelge C.36MPW1PW91/6-31+G(d,p) teori seviyesinde hesaplanan 1964numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.37MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan 1765numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.38 MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan 66 **TS1** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.39 MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan 66 **TS2** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.
- Çizelge C.40 MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan 67 TS4 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi

ÖNSÖZ

Bu tezin konusunun belirlenmesinden sonuna kadar bütün aşamalarda bilgi ve deneyimlerinden yararlandığım danışman hocam Sayın Doç. Dr. Akın AZİZOĞLU 'na sonsuz teşekkürlerimi sunarım.

TÜBİTAK, Aksaray Üniversitesi ve Balıkesir Üniversitesi kurumlarına desteklerinden ötürü teşekkür etmek istiyorum.

Ayrıca tez çalışmam sırasında bütün yakın ilgi ve anlayışından dolayı sevgili babam Prof. Dr. Yaşar Kemal YILDIZ 'a ve tez çalışmalarım boyunca benden manevi desteğini esirgemeyen sevgili annem Gülden YILMAZ ve kardeşim Zeynep YILDIZ 'a teşekkür ederim.

1. GİRİŞ

Allenler (1,2-dienler) organik kimyada doymamış hidrokarbonlar sınıfındadırlar. Bu bileşikler merkez karbon atomunun, diğer iki komşu karbon atomuna çifte bağ ile bağlanması sonucu oluşurlar (Şekil 1). Uç karbonlar birbirine diktir ve optikçe merkez taşımadıkları halde optikçe aktiflik gösterirler.

Şekil 1. Allen Molekülünün Genel Yapısı

Dienler genel olarak üç gruba ayrılmaktadır. Bunlar izole, konjuge ve kümüle dienler halinde bulunurlar. Bu moleküller kararlılık ve reaktivite bakımından farklılıklar içermektedir.

Genel hatları ile anlatılacak olursa:

• *İzole dienler:* Çifte bağlar arasında iki ya da daha fazla sp³ hibritleşmesi yapmış karbon atomu bulunduğundan dolayı, kararlılıkları olağan alkenlere benzer.

İzole Dien

Konjuge dienler: İki çift bağ ve sp² hibriti yapan karbon atomları birbirlerine bağlıdır. Bu durum kararlılık ve reaktiviteyi etkileyen temel nedendir. Konjuge dienler izole dienlerden daha kararlıdır.

Konjuge Dien

• *Kümüle dienler:* Bu yapılar bütün allen ve alken bileşiklerine göre hem daha reaktiftir hemde daha az kararlı olabilirler.

Kümüle Dien (Allen)

İzole ve konjuge dienler, yalnız kapalı kimyasal formül bakımından birbirlerine benzerler [1]. Kümüle allen (dien) yapısının ilk elde edilişinden beri, bu birim üzerine yapılan sentez çalışmaları, organik kimyacıların dikkate değer bir şekilde ilgisini çekmektedir [2–4]. Bu tip yapılar üzerine sentetik çalışmaların yanı sıra, hesapsal çalışmalarda yapılmaktadır. Böylece, allen bileşiklerinin bilinmeyen yapısal ve olağan dışı fiziksel özellikleri de irdelenmektedir [5–7].

Allenlerin bağ uzunlukları, diğer olefinlerin bağ uzunluklarından daha kısadır. Örneğin, etilenin II-bağı uzunluğu 1,33 Å iken, allenlerin II bağı uzunlukları 1,309 ile 1,312 Å arasındadır. Bunun sebebi, merkez karbon atomunun sp hibriti yapmasıdır. Çünkü linear allen bileşiğindeki hibritleşme neticesinde geometride s karakteri oranı yüksektir [8]. Allenlerin bu özellikleri IR ve ¹³C-NMR spektrumlarını etkiler. Alkenlerin titreşim spektrumları 2650 cm⁻¹ civarında sinyal verirken, allenlerin titreşim spektrumlarında bu sinyal 1900-2000 cm⁻¹ civarındadır. 1,1–disübstite allenlerin karakteristik sinyalleri 850 cm⁻¹ 'dir [9]. Aynı şekilde, ¹³C-NMR spektrumu, allenlerdeki C₂ merkez karbon atomunun 201–220 ppm 'de rezonans verdiğini gösterirken, olefinik karbonların çift bağ yapmış karbon atomları 120-140 ppm 'de rezonans verdiğini göstermektedir [10].

Şekil 2. Allen Molekülünün П-bağı

Allen yapısında (Şekil 2) $R_1R_2C_2$ ve $R_3R_4C_1$ atom grupları C_2 atomu üzerinde kesişirler ve böylece birbirlerine dik olurlar. Bu tip allen bileşiklerinin uç

kısımlarında yer alan sübstitüent gruplardan herhangi biri farklı olduğu zaman, bu bileşiklerde optikçe aktiflik gözlenir.

1.1. Allen Bileşiklerinin Sentezi

Allen bileşiklerinin sentezi üzerine sıklıkla kullanılan iki önemli metot vardır. Bunlardan biri β-eliminasyonu metodudur (Şekil 3). Bu yöntem, organik bir molekülden baz yardımıyla HX uzaklaştırılması sonucu allen yapısının sentezlenebileceğini göstermektedir. Bu yöntemle ilgili literatürde birçok çalışma mevcuttur [11–13].

Şekil 3. β-eliminasyonu

Diğer yöntem ise Doering-Moore-Skattebol reaksiyonudur (Şekil 4) [14–16]. Bu metodun ilk basamağında, α-eliminasyonu sonucu elde edilen dihalokarben bileşiği alken birimine katılarak gem-dihalosiklopropan halkası sentezlenir. İkinci basamakta, gem-dihalosiklopropan bileşiği alkil halojenürler ile muamele edilerek, allen biriminin sentezlenebileceği ortaya konulmuştur. Bu metodun yardımıyla günümüzde birçok allen bileşiği sentezlenmiştir.

Şekil 4. Doering-Moore-Skattebol Reaksiyonu

Ancak bu metodun reaksiyon mekanizması hala tam olarak netlik kazanabilmiş değildir. Teorik olarak düşünüldüğünde allen sentezi için iki yol mümkündür. Bunlardan birisi serbest karben üzerinden basamak basamak halinde allen birimine geçiş, diğeri ise reaksiyon ortamında serbest karben gözlenmeden, konserted mekanizma üzerinden karbenoid yapısının direk allene izomerizasyonudur.

1.2. Doering-Moore-Skattebol Metoduna Göre Yapılmış Deneysel Çalışmalara Örnekler

Sadece allen ürünü veren, Doering-Moore-Skattebol reaksiyonları üzerine yapılan deneysel çalışmalardan bazıları aşağıdaki şekillerle kısaca anlatılmaya çalışılmıştır.

Şekil 5. Linear Allen Sentezi ile İlgili Bir Çalışma [14]

Şekil 6. Altı Üyeli Allen Sentezi İle Alakalı Bir Çalışma [53]

Şekil 7. Yedi Üyeli Allen Sentezi İle Alakalı Bir Çalışma [54]

Şekil 8. Linear Allen Sentezi İle İlgili Bir Çalışma [55]

1.3. Doering-Moore-Skattebol Metoduna Göre Yapılmış Teorik Çalışmalara Örnekler

Bu tip çalışmalara literatürde birçok örnek verile bilir. Bunlardan biri Ruedenberg ve grubu tarafından yapılmıştır. Çalışmanın temel prensibi, siklopropiliden (7) bileşiğinin halka açılma hareketinin ters yönlü açılma (disrotatory motion) ile başladığını ve bununla birlikte Cs simetrisini koruduğuna dairdir. Ancak C-C-C açısı 80° dereceye geldiğinde senkronize hareketin kaybolduğu da veriler arasındadır. Reaksiyon yolu potansiyel enerji yüzeyinde incelendiğinde, halkada kırılma olduğu gözlenmiştir. C-C-C açısının 90° dereceyi bulması halinde ise, halkanın açılma hareketi aynı yönlü (conrotatory motion) açılma hareketinde devam etmektedir [56, 57].

Diğer bir çalışma, 1,2-sikloheksadien bileşiğinin sentezine dairdir. Ancak, bu sentez başarısız olmuştur [2].

Şekil 9. 1,2-sikloheksadien Bileşiğinin Sentez Denemesi

Bunun sebebi, Schleyer ve grubu tarafından yapılan bir çalışma ile açıklanmıştır. Elde edilen sonuçlar neticesinde, **9** numaralı bileşiğin konfrmasyonunun uygun olmadığı ve buna ilişkin olarak halka açılmasının zor olacağı tespit edilmiştir. Bu açılma reaksiyonu için gerekli aktivasyon enerjisi 14.6 kcal/mol ile çok yüksek olarak bulunmuştur [58].

Apeloig ve grubunun yapmış olduğu bir çalışmada, lityum klorokarbenoid bileşiğinin halka açılması enerji bakımından teorik olarak incelenmiştir (Şekil 10). Lityum klorokarbenoid bileşiklerinin, serbest karben üzerinden allene dönüşümü için gerekli aktivasyon enerjisi 42.5 kcal/mol 'dür. Reaksiyon yolu incelendiğinde, 46.6 kcal/mol 'lük bir enerji gerektirdiği görülmektedir. Ancak, serbest karben bileşiğinden allen bileşiğine halka açılması bu çalışmada bulunmamaktadır [40].

Şekil 10. Siklo-C₃H₄LiCl 'den LiCl 'ün Uzaklaşması İçin Hesaplanmış Reaksiyon Yolu (MP2/6-31G(d)//MP2/6-31G(d)+ZPE) [40].

Yakın zamanda bu metoda ilişkin bir çalışma Azizoğlu ve grubu tarafından yapılmıştır [17]. Bu çalışmada siklopropanoid bileşiklerinin allen bileşiklerine halka açılma reaksiyonu Doering-Moore-Skattebol mekanizması üzerinden teorik olarak önerilmiş ve farklı sübstitüentler (X= -H, –SiH₃, –CN, –CF₃, –Br, –Cl, –CH₂OH, – CH₃, –F, –Ph, –OH, –OCH₃, –NH₂) ile denenmiştir (Şekil 11). Elektron alıcı-verici sübstitüentler eşliğinde mekanizmaların hangi yolu izlediği tespit edilmiştir (Basamak basamak veya Konserted). Çalışmada kullanılan kuantum mekaniksel hesaplamalar, B3LYP/6-31G(d), B3LYP/6-311++G(d,p) ve MP2/6-31+G(d,p) düzeylerinde gerçekleştirilmiştir.

Şekil 11. Karbenoid Bileşiklerinin Allen Bileşiğine Halka Açılma Reaksiyonu [17].

Sonuç olarak, -H, –SiH₃ gruplarının bağlı olduğu karbenoid yapılarında sadece basamak basamak, –Cl, –F, –OH, –OCH₃, –NH₂ gruplarının bağlı olduğu yapılarda sadece konserted, –Ph, –CH₃, –CN, –CF₃, –Br gruplarının bağlı olduğu yapılarda ise her iki mekanizmanın da gerçekleştiği gözlenmiştir.

1.4. Karben ve Karbenoid Yapıları

Karbenler, divalent karbon atomu ara ürünleri olarak sınıflandırılabilir. Daha geniş bir tanımlama yapılacak olursa, karben merkezindeki karbon atomunun komşu karbon atomlarına kovalent bağla bağlandığı ve bir çift ortaklaşmamış elektron içerdiği bileşiklere karben denir. Bu yapılar bulundurdukları ortaklaşmamış elektronların spin yönlerine göre ikiye ayrılırlar. Eğer aynı spinlere sahipseler singlet, farklı spinlere sahipseler triplet karben olarak nitelendirilirler. Genel olarak, singlet karbenler triplet karbenlere göre daha kararlıdırlar [18].

Singlet Triplet **Şekil 12.** Karben Yapısı

Karbenoid terimi ilk kez 1964 yılında Closs ve Moss tarafından karbene benzeyen fakat serbet divalent karbon atomu yapısının oluşmasının şart olmadığı, ara ürünleri tanımlamak için kullanılmıştır [19]. Bu bileşiklere ilişkin bir diğer veri ise karbenoid bileşiklerinin organometalik ve karbene benzer ara ürünler olduğunu ve hangi reaksiyonun serbest karben, hangisinin karbenoid üzerinden yürüdüğünün deneysel olarak tespitinin güç olduğunu belirtmektedir [20].

Şekil 13. Karbenoid Yapısı

Bu bağlamda, baz kullanarak gerçekleştirilen, α -eliminasyonu ile oluşturulan karbenoid yapısını, karben haline dönüştürebilmek için, krown eter kimyasalı kullanılmıştır. Elde edilen bulgular ile krown eter kullanılarak gerçekleştirilen α eliminasyonu metodunun daha hızlı olduğu bulunmuştur. Krown eter, ortamdaki metal ilyonları ile kompleks vermiş böylece karbenoid yapısının bozulmasına neden olmuştur. Böylece, reaksiyonun serbest karbene benzer bir ara ürün üzerinden gerçekleştiği gözlenmiştir [21].

Buna karşın, gem-dihalobileşiklerinin metillityum ile reaksiyonuna, 12crown–4-eterin hiçbir etkisi olmadığı bulunmuş ve serbest karben oluşumu tespit edilmiştir (Şekil 14) [22]. Bunun nedeni, Scheleyer ve grubu tarafından 1984 yılından açıklanmıştır. Çalışmaya göre, karbenoid grubuna bağlı farklı metallerin etkisi hesapsal yöntemlerle incelenmiş ve lityum metalinin, sodyum ve potasyum metaline oranla, karbon atomuyla daha iyi bir şekilde koordine olduğu saptanmıştır (Şekil 15) [23].

Şekil 14. gem-dihalobileşiklerinin Metillityum ile Reaksiyonu

Bu bileşiklere ilişkin yapılan çalışmada, karbenoidlerin oluşumunda 1,1dibromopropanın metillityum ile reaksiyonu Seebach ve grubu tarafından -100 °C 'de ¹³C-NMR spektroskopisi yardımı ile incelenmiştir. Sonuç olarak -100 °C 'de **8a** yapısındaki C-Br bağının kuvvetsiz olduğu bulunmuştur. Sıcaklık arttırıldığında ise bu bağ bozunarak, serbest karben yapılarına benzer yapılar elde edilmiştir (**8b, 8c, 8d**) [24].

1,1-dibromosiklopropan bileşiklerinden elde edilen 1-bromo-1lityosiklopropan bileşikleri ısıtılınca az, ya da çok koordine olmuş siklopropiliden bileşikleri oluşur. Böylece, organometalik yapılar bozunur.

Şekil 15. Kararlılık Sırası: Li, Na, K

Bozunmanın gerçekleştiği bu sıcaklıkta lityumlaşmış karbon atomu bromun uzaklaşmış olmasından dolayı karbon kısmi pozitif yüklenir. Bu nedenden dolayı, bu tip bileşikler reaksiyon ortamında elektrofilik olarak davranır [25].

1.5. Silaallen Kimyası

Yaklaşık 30 sene öncesine kadar, koordinasyon sayısı dörtten az olan silikon atomlu bileşikler sadece reaktif ara ürün olarak düşünülürdü [26]. Ancak, bu düşünce 1981 yılında West, Fink ve Michel adlı bilim adamları tarafından değiştirildi [27]. Son on yıl içerisinde, tetrasilabuta–1,3-dien (**13a**) [28], spiropentasiladien [29], trisilaallen (**13c**) [30] ve Si-Si üçlü bağı içeren disiline (**13b**) bileşiklerinin sentezi oldukça dikkat çekti.

Genelde, sililenler termal ve fotokimyasal tepkimelerde ara ürün olarak gözlenmektedir. Bu bağlamda, silikon kimyası da bu yapıları literatürde ilk olarak geçiş hali olarak önermişlerdir [31]. Ancak, bu bileşikler daha sonraları matriks ortamında düşük sıcaklıklarda izole edilebilmişlerdir [32]. İlerleyen yıllarda sililen bileşikleri kararlı olarak elde edilebilmişlerdir [33].

Silaallen kimyası eşsiz yapıları ve karbon analogları ile karşılaştırıldığında fiziksel ve kimyasal özelliklerindeki göze çarpan farklılıklarından dolayı son yıllarda oldukça ilgi çekmektedir [34]. İlk karalı silaallen bileşiği West tarafından 1993 yılında sentezlenmiştir. Sentezlenen 1-silaallen bileşiği Si=C=C kısmındaki büyük sterik engel ile kararlı hale gelmiş ve X-ray kristalografi yöntemi ile karakterize

edilmiştir. Sonuç olarak, elde edilen bileşik linear karbon analoğuna göre 173.5° derece ile bent allenik yapıya sahiptir [35].

Siklopropiliden bileşikleri yüksek reaktiviteye sahip karbon türleridir. Bu bileşikler organik sentezlerde sıklıkla kullanılan ara ürünlerdir [36]. Lityum-brom yerdeğiştirme reaksiyonu sonucu oluşan 1,1-dihalosiklopropan bileşiklerinin alkillityum ile reaksiyonu allen sentezi için sıklıkla kullanılan bir yöntemdir [37]. Bu reaksiyona Doering-Moore-Skattebøl reaksiyonu denir [38, 39].

Apeloig tarafından yapılan bir çalışmada, Doering-Moore-Skattebøl reaksiyonu ile teorik olarak R₂Si=C=SiR₂ bileşiğinin sentezi için uygulanabilir bir yol önerilmiştir [40].

Şekil 16. Siklo-CSi₂H₄LiCl 'den LiCl 'ün Uzaklaşması İçin Hesaplanmış Reaksiyon Yolu (MP2/6-31G(d)//MP2/6-31G(d)+ZPE) [40].

Lityum klorokarbenoid bileşiklerinin, serbest karben üzerinden allene dönüşümü için gerekli aktivasyon enerjisi 42.5 kcal/mol olduğu ve yapılan çalışma neticesinde teorik olarak bu enerji bariyerinin 46.6 kcal/mol olduğuna daha önceden değinilmişti. Bununla beraber lityum klorosilasiklopropanoid bileşiklerinin allenlere dönüşümü 2.9 kcal/mol ile ekzotermik olduğu teorik olarak bulunmuştur (Şekil 16). Böylece, disilaallen bileşikleri için uygun bir yol önerilmiştir. Ancak, şu ana kadar herhangi bir deneysel çalışma yapılmamıştır.

1.5.1. 1-Silaallen ve Türevleri

1-silaallen bileşiklerine dair ilk çalışma teorik olarak 1980 yılında Mark ve çalışma grubu tarafından yapılmıştır [41]. Yapılan çalışmada C_2SiH_4 kapalı formülünün izomerleri tartışılmıştır. Optimize edilen düzlemsel (linear) 1-silaallen bileşiği şekil 17 'de görülmektedir.

Şekil 17. 1-Silaallen Molekülünün Geometrik Yapısı

 C_1 - C_2 bağ uzunluğu 1.296 Å, C_2 -Si₃ bağ uzunluğu 1.703 Å olarak Ab initio (6-31G*//3-21G) SCF düzeylerinde bulunmuştur. Bu bileşiğin toplam enerjisi ise 28.88 kcal/mol olarak bulunmuş ve diğer izomerler ile karşılaştırmalar yapılmıştır. Sonuç olarak, bağıl enerjisi silasiklopropiliden bileşiğinden daha fazladır. Buda serbest silakarbenden sentezin kolay gerçekleşmeyeceğini göstermektedir.

Bu çalışmanın ardından ilk kararlı 1-silaallen bileşiğinin sentezi 1993 yılında West ve grubu tarafından yapılmıştır [35]. Bu bileşikteki ilk dikkat çekici husus, oldukça büyük bağlı gruplar içermesidir (Şekil 19). Elde edilen X-ray spektroskopisi verilerine göre, 1-silaallen yapısı az miktarda bükülmüştür (bent, 173.5°). West ve grubu ilerleyen yıllarda çeşitli kararlı 1-silaallen bileşiklerinin sentezini de rapor etmişlerdir. Genel olarak, sterik yönden kalabalık gruplar içeren 1-silaallenlerin yeterince kararlı olduğu tespit edilmiştir. Bununla birlikte, sterik yönden daha küçük gruplar içeren 1-silaallenlerin kararsız olduğu bulunmuştur. Bu durum, silikonkarbon ikili bağlarının reaktifliğinin fazla olmasıyla açıklanmıştır [62]. Yapılan çalışma Dehalonegatif intermoleküler karbometalasyon eliminasyonu metoduna dayanmaktadır (Şekil 18).

Şekil 18. Dehalonegatif intermoleküler karbometalasyon eliminasyonu

Yapılan çalışma sonucunda şekil 18 'deki 1-silaallen bileşiği sentezlenmiştir. Bileşikteki bağ uzunlukları: Si-C1, 1.704 Å; C1-C2, 1.324 Å olarak bulunmuştur. Silikon-karbon ve karbon-karbon bağ uzunluklarının ilk teorik çalışma ile çok yakın olduğu sonuçlardan kolayca görülebilmektedir.

Şekil 19. Deneysel 1-silaallen Bileşiği

Bu bileşikle ilgili diğer bir önemli teorik çalışmada allenik yapının biçimi, bağ uzunlukları, açıları diğer analog sistemlere göre kararlılıkları ve enerji değişimleri YFT teori seviyesinde incelenmiştir [42].

1.5.2. 2-Silaallen ve Türevleri

Bu bileşiklerle ilgili ilk teorik çalışma 1978 yılında Barthelat ve çalışma arkadaşları tarafından yapılmıştır [43]. Çalışmanın genel içeriği C₂SiH₄ yapı

izomerlerinin C_3H_4 yapı izomerleri ile karşılaştırılarak bağıl kararlılıklarının tartışılmasıdır. Hesaplamalar PSIBMOL alogaritma metoduna göre yapılmıştır.

Şekil 20. 2-Silaallen Molekülünün Geometrik Yapısı

Hesaplamalar sonucunda, optimize edilen 2-silaallen bileşiğindeki silikon atomunun karbon atomları ile arasında bağ uzunluğu 1.694 Å olarak bulunmuştur (Şekil 20). Ayrıca 2-silaallen bileşiğinin silasiklopropiliden bileşiğine nazaran bağıl enerjisinin daha yüksek olduğu, dolayısıyla kararlılığının daha düşük olduğu vurgulanmıştır.

Buna benzer bir çalışma 90 'lı yılların sonunda daha gelişmiş olanaklarla yinelenmiş B3LYP/6-31G** teori seviyesinde hesaplanmıştır [44]. Silasiklopropiliden bileşiğinin bağıl enerjisi 11.4 kcal/mol olarak tespit edilmiş buna karşın, 2-silaallenin bağıl enerjisi 33.4 kcal/mol olarak saptanmıştır (Şekil 21).

Şekil 21. C₂SiH₄ İzomerlerinin Geometrileri ve Enerjileri

Buda demek oluyor ki serbest silakarben bileşiği 2-silaallen bileşiğinden 20 kcal/mol daha kararlı durumdadır. Ayrıca optimize edilen 2-silaallen bileşiğinin geometrik yapısı da bu çalışmada verilmiştir. 153.8° ile bent allenik yapıya sahiptir. Silisyum-karbon bağ uzunluğu 1.727 Å 'dur. Bir önceki çalışma ile kıyaslanınca bağ uzunluğunun yüksek seviyedeki hesaplamada arttığı görülmektedir.

Bu bileşiğe ilişkin son yıllarda yapılan bir çalışmada ise: 1-siliraniliden bileşiğinden 2-silaallen bilşiğine bir geçiş basamağı üzerinden izomerizasyonun mümkün olduğu gösterilmektedir [14].

Bu izomerizasyon sonucunda entalpi verileri G3//QCISD/6-31G(d) seviyesinde karşılaştırılmıştır. Yapılan hesaplamalar ile 1-siliraniliden bileşiğinden geçiş haline izomerizasyon için 23.5 kcal/mol enerji gerektiği bulunmuştur. Bir önceki çalışmada bent allenik yapıya sahip olan 2-silaallen farklı düzeyde yapılmış olan bu çalışmada düzlemsel olarak bulunmuştur.

2. HESAPSAL KİMYA

Teorik kimyanın hızla gelişen bir alt dalı olan hesaplamalı kimya yardımı ile kimya ve özellikle organik kimya ile ilgili bilinmeyenler aydınlatılmaya çalışılmaktadır. Bu konunun temeli üç önemli noktaya dayanmaktadır.

- Bunlardan biri kodların çözümüdür. Bu hususta hesaplamalı kimyada kullanılan birçok kısaltma ve kod bulunmaktadır ki bunların kesinlikle iyice benimsenmesi gerekmektedir.
- İkinci önemli nokta teknik kısımdır. Hesaplamaların tümü çeşitli programlar acılığı ile yapıldığından dolayı, kullanılan programların tamamının nasıl ve ne amaçla kullanıldığı bilinmelidir.
- Son nokta ise verilerin güvenirliliğidir. Yapılan hesaplamalar sonucunda alınan veriler literatürle uyumlu olmak zorundadır. Böylece hesaplamanın kalitesi gözlemlenebilir.

Birinci noktada belirtilen önem hesapsal kimyada alanında yazılan kodların kısaltılmış olması neticesinde ortaya çıkmıştır. Yapılan çalışmalar neticesinde kullanılan kısaltmaların tümü burada mevcuttur. Örneğin, YFT kodu yoğunluk fonksiyoneli teorisi (Density functional theory (DFT)) anlamına gelmektedir. Bu şekilde yüzlerce kod bulunmaktadır.

İkinci nokta kullanıcı ile direk ilişkilidir. Çünkü hesaplamaların tümü bilgisayar üzerinden yapılacağından, hesaplamacı kişinin bilgisayar programı kullanım bilgisi yüksek derecede önemli ve zorunludur.

Son noktada, çalışılan konu hakkında iyi bir bilgi birikimine sahip olmak gerekmektedir. Böylece, yapılan hesaplamalar neticesinde yorum yapılabilir. Ancak öncesinde, kullanılacak yöntemler sonraki sayfalarda açıklanmaya çalışıldı.

2.1. Ab initio Yöntemleri

Hesaplamalı kimya alanında deneysel veriler kullanmaksızın atomik ve moleküler sistemlere ait fiziksel ve kimyasal özelliklerin teorik olarak incelenmesinde ab initio yöntemleri kullanılmaktadır. Ab initio hesaplamalarında pek çok matematiksel dönüşüm ve yaklaşım yöntemleri kullanılmaktadır.

Bütün ab initio hesaplamaları temelde zamana bağlı veya bağımsız olarak Schrödinger denklemini yaklaşık yöntemlerle çözmeyi amaçlamaktadır. Ab-initio teorisinde birçok basitleştirici yaklaşım ve ön kabuller vardır. Hesaplamalar daha doğrudur ve komplikedir. Bu nedenle, semiempirik yöntemlere göre daha fazla bilgisayar zamanı gerekmektedir. Bu yöntemle yapılan hesaplamaların, kimyasal doğruluk değeri daha fazla olmasına karşın, bilgisayar zamanı çok pahalı olduğundan ancak küçük moleküller ile çalışılabilmektedir. Çok atomlu sistemlerde atomlar arası etkileşimlerin tanımlanması zor olduğundan dolayı Schrödinger denkleminin çözümü oldukça zor hale gelmektedir. Bu zorluklardan dolayı, kuantum mekaniksel olarak yapılan hesaplamalarda bir dizi yaklaşık yöntemler kullanılır [46].

- Hartree-Fock Yöntemi (HF)
- Yoğunluk Fonksiyonelleri Teorisi (DFT)
- Spin Sınırsız Hartree-Fock Yöntemi (UHF)
- Elektron Korelasyonu ve Konfigürasyon Etkileşim Yöntemi (CI)
- Sınırlandırılmamış Konfigürasyon Etkileşim Yöntemi

Bu yaklaşımlardan sıklıkla kullandığımız Yoğunluk Fonksiyonelleri Teorisine ve Hartree-Fock yönteminin geliştirilmiş hali olan Moller-Plesset teorisine değinilecektir.

2.2. Hartree-Fock Yöntemi

Kuantum mekaniği ilkelerine dayanan hesapsal yöntemler, Hartee-Fock metodunu kullanarak, Schrödinger denklemini çözebilir ve enerjileri bulabilirler.

Schrödinger denkleminin çözümünin zorluğu üzerine daha öncede değinilmiştir. Fakat bazı yaklaşımlar, denklemin parametrelerinden bazılarını çözebilmek için uygulanabilmektedir.

$$H_{\Psi} = E_{\Psi}$$

Hartee-Fock yaklaşımı antisimetrik dalga fonksiyonlarını kullanarak tekelektron dalga fonksiyonlarından, çok-elektron dalga fonksiyonunu Hartree teorisinden daha iyi ifade eder [47]. Bu yaklaşımın, Hartee yaklaşımından daha karışık olmasından dolayı Slater determinantı yardımı ile çözülebilir. Bu yaklaşımın önerilmesiyle hamiltonyen denklemini açıklamak tekrar mümkün hale geldi.

$$D(\vec{r_1}, \vec{r_2}, ..., \vec{r_N}) = \begin{vmatrix} \Psi_1(\vec{r_1}) & \Psi_1(\vec{r_2}) & \cdots & \Psi_1(\vec{r_N}) \\ \Psi_2(\vec{r_1}) & \Psi_2(\vec{r_2}) & \cdots & \Psi_2(\vec{r_N}) \\ \vdots & \vdots & \vdots & \vdots \\ \Psi_N(\vec{r_1}) & \Psi_N(\vec{r_2}) & \cdots & \Psi_N(\vec{r_N}) \end{vmatrix}$$

Eşitlik 1: Slater Determinantı

Bu yaklaşımın avantajı tek elektron dalga fonksiyonunu içeren bir slater determinantı kullanması, varyasyonel olması ve toplam enerjiyi minimize eden bir deneme dalga fonksiyonunu kullanmasıdır. Fakat Hartree-Fock metodu elektronlar arasındaki korelasyonu (ilişkiyi) göz önüne almaz. Ayrıca değiş-tokuş terimi yerel 40 olmadığından Hartree-Fock denkleminin çözümü oldukça zordur ve hesaplanması da yoğunluk fonksiyonel teorisine göre oldukça uzundur [48].

2.3. Basis Set (Temel Kümeler)

1951 yılında Roothan Hartree Fock orbitallerinin, bilinen bazı fonksiyon kümelerinin lineer kombinasyonları şeklinde yazılabileceğini ortaya koydu. Bunun üzerine, Şu ana kadar iki önemli temel küme geliştirilmiştir.

- 1. Slater tipi orbital (STO)
- 2. Gaussian tipi orbital (GTO)

GTO ile integraller daha hızlı hesaplanabildiği için, bu tip fonksiyonlar günümüzde daha popüler olarak kullanılmaktadır. Bunlarla ilgili, 4 seviye temel küme geliştirilmiştir ve aşağıda kısaca belirtilmiştir [49]:

- a) Minimal Basis Set; STO ve GTO fonksiyonlarının karışımı ile elde edilmiştir. (STO-nG) : STO-3G, STO-4G gibi.
- b) Split-Valence Basis Set; GTO fonksiyonlarının kullanılması ile elde edilmiştir.
 4-21G, 6-31G gibi.
- c) Polarization Basis Set; Polarizasyon temel kümeleri ile elde edilmiştir.
 6-31G*, 6-31G** gibi.
- d) Difüzyon Fonksiyonları; Geniş s ve p orbital fonksiyonlarının tanımlanması ile elde edilmiştir.
 6-31+G*, 6-31+G** gibi.

2.4. Yoğunluk fonksiyoneli Teorisi (DFT)

Hohenberg ve Kohn [50], temel haldeki elektronik enerjinin tamamen elektron yoğunluğu tarafından belirlendiğini ileri sürdüler. Bir başka deyişle, enerji ve sistemin elektron yoğunluğu arasında bire bir uyum olduğu ortaya konuldu. Bunun önemi, belki dalga fonksiyonu yaklaşımı ile karşılaştırarak en iyi açıklanır. Bir dalga fonksiyonu, N elektronlu bir sistem için, 3N tane koordinat içerir. Elektron yoğunluğu dalga fonksiyonunun karesidir. Elektron yoğunluğu yalnız üç koordinata bağlıdır, elektronların sayısından bağımsızdır. Bir dalga fonksiyonunun karmaşıklığı, elektron sayısının artması ile artar. Elektron yoğunluğu, aynı sayıdaki değişkenlere sahip sistemlerin boyutundan bağımsızdır.

DFT, atom ve moleküllerin elektronik yapısını incelemek için kullanılan bir yöntemdir. Amacı enerji ile elektron yoğunluğu fonksiyonları birleştirip, düzenlemektir. Bu teori kuantum mekaniğinde Slater 'in çalışmalarına göre geliştirilmiştir. Bütün ab initio yöntemleri, spin yörüngeleri ile sonuç veren ve elektron korelasyonlarını hesaba katan HF yaklaşımı ile başlar. Bu yöntemler ile yapılan hesaplamaların güvenilirliğinin yüksek olmasına karşın yoğun ve geniş moleküllere kolaylıkla uygulanamaz. Ancak, DFT metotlarında bu değerlerde hesaba katılır.

Günümüzde DFT metotları elektronik enerjiyi birkaç terimin toplamı olarak tanımlarlar.

 $E = E^{T} + E^{V} + E^{J} + E^{XC}$ $E^{T} = Elektronların hareketinden ortaya çıkan kinetik enerjiye ait terim
<math display="block">E^{V} = Cekirdek-elektron çekimlerine ve çekirdek çiftlerinin itmesine ait potansiyel enerjiyi tanımlayan terimleri
içerir.$

 E^{J} = Elektron-elektron itmesine ait terim

 E^{XC} = Geriye kalan diğer elektron-elektron etkileşimlerini kapsar. Kısaca değişim-korelasyon terimi olarak adlandırılır.

 E^{XC} terimi genellikle "değişim" ve "korelasyon" olarak iki kısma ayrılır. $E^{XC}(\rho) = E^{X}(\rho) + E^{C}(\rho)$

Bu denklemdeki her terim yine birer fonksiyoneldir. $\vec{E}^{(p)}(\rho)$ değişim fonksiyoneli, $\vec{E}^{(p)}(\rho)$ ise korelasyon fonksiyonelidir.

2.5. Moller-Plesset

Moller-Plesset pertürbasyon teorisi hesaplamalı kimya alanında kullanılan kuantum kimyasal ileri-Hatrre-Fock ab initio yöntemlerinden biridir. Elektron korelasyon etkilerinin Hartrre-Fock yöntemlerine katılması sonucu ortaya çıkmış bir teoridir. Katılma işleminde Rayleigh-Schrödinger pertürbasyon teorisi kullanılır. Moller-Plesset (MP) yöntemi genellikle ikinci, üçüncü ve dördüncü dereceden hesaplamalarda kullanılır. Kullandığımız ikinci dereceden Moller-Plesset pertürbasyon teorisi (MP2) kısaca açıklanacak olursa: "H=H_o+ λ H₁" eşitliğinde Hartree-Fock Hamilton'u (H_o) ve Hartree-Fock ortalama elektronik arası etkileşimden (λ H₁) farklı bir pertürbasyondur. Verilen eşitlikten dalga fonksiyonu ve enerjiler λ ' da bir güç serisi gibi yazılabilir. Sonuç olarak aşağıdaki formüller elde edilir.

$$\psi = \psi_0 + \lambda \psi_1 + \lambda^2 \psi_2 + \dots$$

E=E₀+ λ E₁+ λ^2 E₂+ λ^3 E₃+ λ^4 E₄+ \dots

Küçük pertürbasyonlar için sadece ψ_0 (Hartree-Fock dalga fonksiyonu) ve ψ_1 (ilk düzenlenen dalga fonksiyonu) değerlerinin hesaba katılması kâfidir. Daha büyük pertürbasyonlar için, ψ_2 , ψ_3 ve gerektiği durumlarda diğerleri mutlaka hesaba katılmalıdır.

2.6. Intrinsik Reaksiyon Koordinat (IRC)

Bir reaksiyonda geçiş hallerini tanımlamak için kullanılan yöntemlerden birisi sanal frekans (Imaginary Freq.) kontrolüdür. Bu frekanslar frekans veri dosyasındaki negatif değerlerdir. Eğer bir yapının geçiş hali olması isteniyorsa yalnızca bir sanal frekansın bulunması kâfidir. Ancak, bu yapının reaktant ve ürün ile ilgisi olmayabilir. Bu karmaşaya karşın geliştirilen en iyi yöntem "Intrinsic Reaction Coordinate (IRC) metodudur [51]. Bu metot ile başlangıç yapısından başlanarak reaktan ve ürünlerin her iki geçiş yolundaki yapılarının geometri ve enerjileri hesaplanır. Böylece, iki minimum nokta birleştirilir ve daha önce bulunan geçiş halinin bu reaksiyon yolu ile ilişkisi kolayca gözlenebilir. Bazı durumlarda iki nokta farklı reaksiyon koordinatları ile birleştirilebilir. Bu durumda birden fazla geçiş hali olması mümkündür. IRC hesabıyla bulunan yapılar en düşük enerjili halleri ile veri dosyasına işlenir. Bütün geçiş halleri tespit edildikten sonra sıfır noktası titreşim enerjileri de eklenerek izomerizasyon için gerekli enerji bariyerleri hesaplanabilir.
3. ARAÇLAR VE YÖNTEMLER

1- ve 2-silaallen bileşiklerinin sentezinde kullanılabilecek olan Doering-Moore-Skattebol reaksiyon mekanizmasına göre teorik olarak metodlarla incelenmiş ve buna ilişkin optimize edilmiş moleküllerin geometrik verileri, izomerizasyonlar için gerekli enerji bariyerleri çeşitli seviyelerde hesaplanmıştır. Bu amaçla, aşağıdaki bilgisayar programları ve donanımları kullanılmıştır.

3.1. Kullanılan Bilgisayar Programları

Bu çalışmada, Gauss View 3.0 ve GAUSSIAN03W bilgisayar programları kullanılmıştır [52]. Gauss View 3.0 adlı bilgisayar programının yardımıyla, çalışılan moleküllerin geometrileri hazırlanmış ve elde edilen moleküllerin similasyonları irdelenmiştir. GAUSSIAN03W paket programı yardımıyla da, ilgili teorik hesaplamalar gerçekleştirilmiştir.

3.2. Kullanılan Bilgisayar Donanımları

Intel C2DUO E6400 2.13 GHz 1066 MHz 2 MB 64 BIT 775 pin işlemci, 2 GB DDR2 800MHz bellek, 74GB Western Dijital 1500 RPM SATA2 16 Cache sabit diske sahip bir masaüstü bilgisayarı hesaplamalarda kullanılmıştır.

4. TARTIŞMA ve SONUÇ

Daha önceki bölümlerde çeşitli teorik hesaplama yöntemleri anlatılmıştı. Öncelikle çalışmamız için en uygun yöntem, literatür verilerinden yararlanılarak tespit edilmeye çalışıldı. Bu amaçla, daha önce yapılmış olan deneysel-teorik verilerin karşılaştırıldığı çalışmalar tarandı. Bu çalışmalar genel anlamda, bağ uzunlukları, bağ açıları, titreşim frekansları vb. deneysel ve teorik olarak karşılaştırma yapılan sistemleri içermektedir. Böylece en uygun yöntemler seçilmiştir ve diğer yöntemler ile karşılaştırmaları yapılmıştır.

4.1. Silasiklopropilidenoid Yapıları

Şekil 22. Silasiklopropiliden-LiBr kompleks karbenoidlerin (14 ve 15) geometrik yapıları ve enerjileri (E, au). Bağ uzunluğu angstrom (Å) bağ açısı derece cinsinden B3LYP/6-31G(d) teori seviyesinde hesaplanmıştır.

1,1-dibromosiliran ve 2,2-dibromosiliran, metillityum ile lityum-brom yer değiştirme reaksiyonu üzerinden sırasıyla, 1-bromo-1-lityosiliran (14) ve 2-bromo-2lityosiliran (15) bileşiğini oluşturmak için tepkime verebilir. Bu tepkimelerin sonucu olarak, Şekil 22 'de verilen en kararlı konformasyonlara sahip 14 ve 15 numaralı bileşiklerin B3LYP/6-31G(d) teori seviyesinde konformasyon optimizasyonlarını belirlendi. Optimize ettiğimiz bileşiklerin enerji değerlerinden anlaşılıyor ki, 14 numaralı bileşik 48.7 kcal/mol enerji ile 15 numaralı bileşikten daha kararlıdır. Yapısal veriler, lityum ve brom iyonlarının siliran halkası üzerinde aynı tarafta konumlandığını, C-Br bağının lityum ile köprülendiğini ve karben merkezindeki tüm lignantların bir huni şeklinde olduğunu göstermektedir. **14** ve **15** numaralı bileşiklerin geometrik yapıları distorted-tetrahedron koordinasyonundadır. Bu moleküllerin önemli yapısal verileri Çizelge 1 de verilmektedir. Çizelgede, [%] işaretinin pozitif değerde olması bağdaki uzamayı, buna karşın [%] işaretinin negatif değerde olması referans bağ uzunlukları ile kıyaslanınca kısalmayı göstermektedir. Bu işlem, referans bağ uzunluğu ve hesaplanan bağ uzunluğu arasındaki matematiksel bir ifade ile açıklanır.

Bu uygulamaya bir örnek gösterilecek olursa; H₃Si-Br bağ uzunluğu B3LYP/6-31G teori seviyesinde 2.229 Å olarak hesaplanmıştır. Buna karşın **14** numaralı bileşik için Si-Br bağ uzunluğu aynı teori seviyesinde 2.587 Å olarak bulunmuştur. Bu değerler aşağıdaki şekilde karşılaştırılmıştır.

[%] Uzama/Kısalma =
$$\frac{2.587 \text{ Å} - 2.229 \text{ Å}}{2.229 \text{ Å}}$$
 . 100 = % 16.1

14 ve 15 numaralı bileşiklerin Li-Br bağ uzunlukları referans Li-Br uzunluğu (2.176 Å) ile karşılaştırılınca bağ uzaması sırasıyla %6.7 ve %8.3 arasındadır. Karbon analoğuna benzer olarak [17], 15 numaralı bileşiğin karben merkezindeki hesaplanan C(2)-Li bağ uzunluğu 1.946 Å 'dur. Dahası, 14 numaralı bileşikteki Si(1)-Li bağ uzunluğu 2.452 Å olarak hesaplanmıştır. Eğer bu değer H₃C-Li yapısındaki C-Li (1.980 Å) ve H₃Si-Li yapısındaki Si-Li (2.473 Å) bağ uzunlukları ile karşılaştırılırsa, 14 ve 15 numaralı karbenoid bileşiklerinin yapısında çok az bir değişme olduğunu görülmektedir. Ancak, C(2)-Br ve Si(1)-Br bağ uzunlukları, referans H₃C-Br (1.965 Å) ve H₃Si-Br (2.229 Å) bağ uzunluklarıyla karşılaştırılınca sırasıyla %10.6 (**15** numaralı bileşik için minimum değer) ve %16.1 (**14** numaralı bileşik için maksimum değer) değerine bir uzaman bulundu. Bu değerler, çalışılan karbenoid yapıları üzerindeki bağ uzamalarından en yükseğinin Si(1)-Br bağı olduğunu göstermektedir. Bağ uzaması ve kısalmasına dair çeşitli teori ve düzeylerde yapılan hesaplamalar Ek 'ler kısmında, Çizelge A.1 başlığı altında verilmiştir.

Çizelge 1. **14** ve **15** Numaralı Bileşiklerdeki Hesaplanan Bağ Uzunlukları *d* (Å) ve Bağ Uzamaları [%]. Bağların Uzama Verileri B3LYP/6-31G(d) Teori Seviyesinde Hesaplanan H₃Si-Br (2.229 Å)^a, H₃Si-Li (2.473 Å)^b, Li-Br (2.167 Å)^c, H₃C-Br (1.965 Å)^d ve H₃C-Li (1.980 Å)^e Bağ Uzunlukları ile Karşılaştırılarak Bulunmuştur.

	Si(1)-Br		Si(1)-Li		Li-Br	
	$d(A^{o})$	Uzama ^a (%)	$d(A^{\circ})$	Uzama ^b (%)	$d(A^{o})$	Uzama ^c (%)
14	2.587	16.1	2.452	-0.85	2.316	6.88
	C(2)-Br		C(2)-Li		Li-Br	
	$d(A^{o})$	Uzama ^d (%)	$d(A^{\circ})$	Uzama ^e (%)	$d(A^{o})$	Uzama ^c (%)
15	2.174	10.6	1.946	-1.72	2.350	8.44

Alternatif olarak, **14** ve **15** numaralı bileşiklerdeki çeşitli bağlarının NBO analizleri ile hesaplanan Wiberg bond orders (WBO) [59] değerleri Çizelge 2 de verilmektedir. NBO analizi (Natural Bond Orbital Analysis) molekülde içindeki bütün atomların etkileşimlerini göstermek amacıyla kullanılan bir metotdur. Atomların yükleri, hibritleşmeleri, polarlaşmaları, vb. gibi birçok veriyi NBO analizleri sonucunda elde edebiliriz. WBO (Wiberg Bond Orders) ise NBO analizi ile yapılabilen ve atomlar arasındaki kovalent bağ etkileşimini farklı bir pencereden görmemizi sağlayan hesapsal bir analiz yöntemidir. Örneğin; WBO analizi sonucunda ilgili iki atom arasındaki bağ değeri bir ise bir adet kovalent bağ vardır. Eğer birden düşük ise bağ zayıflığını yüksek ise bağın kuvvetliliğini gösterir. İki civarında bir değer ilgili atomlar arasında bir ikili bağın olduğuna işarettir. Sonuçlar, **15** numaralı bileşiğin C(2)-Br bağının 0.838 'lik yüksek WBO değerinden dolayı kuvvetli bir kovalent bağa sahip olduğunu belirtmektedir. Buna karşın, **14** numaralı bileşiğin Si(1)-Br bağının 0.580 'lik WBO değeri zayıf bir kovalent bağa sahip olduğunu göstermektedir. Buna ek olarak, Si(1)-Li ve C(2)-Li bağları sırasıyla 0.124 ve 0.101 'lik çok düşük WBO değerlerinden ötürü kovalent yerine iyonik karaktere sahiptir.

Çizelge 2. 14 ve 15 Numaralı Bileşiklerden Silaallen Bileşiklerine Doğru B3LYP/6-31G(d) Teori Seviyesinde Hesaplanan Wiberg Bond Order (WBO) değerleri.

	Si(1)-Br	Si(1)-Li	Li-Br
14	0.580	0.124	0.121
TS1	0.075	0.125	0.255
16	0.026	0.125	0.282
TS2	0.014	0.132	0.279
	C(2)-Br	C(2)-Li	Li-Br
15	0.838	0.101	0.092
TS3	0.426	0.096	0.137

4.2. Silasiklopropilidenoid Yapılarının Halka Açılması

Bu çalışmada, 1-bromo-1-lityosiliran (14) ve 2-bromo-2-lityosiliran (15) bileşiklerinin reaktiviteleri üzerine iki önemli durum düşünülecektir. Sonuçlar Lityum ve Brom iyonlarının karben reaktivitesi üzerine etkilerinden elde edilecektir. Buna karşın serbest siklopropiliden bileşiklerinin hesaplamaları karben kimyasının açıklanmasında yardımcı olacaktır.

Şekil 23. 1-bromo-1-lityosiliran (14) Bileşiğinin 2-silaallen-LiBr (17) Kompleksine "basamak basamak (stepwise)" Halka Açılmasının B3LYP6-31G(d) Seviyesinde Hesaplanan Reaksiyon Yolu. Bağ Uzunlukları ve Açıları Sırasıyla Angstrom ve Derece Olarak, WBO Değerleri Parantez İçerisinde Verilmektedir.

Lityum bromosilasiklopropilidenoidlerin silaallen bileşiklerine halka açılma reaksiyonu için iki yol düşünülebilir: Bunlardan biri serbest siklopropiliden ara ürünü ile "basamak basamak (*stepwise*)" diğeri ise "konserted (*concerted*)"

tarzındadır. 1-bromo-1-lityosiliran (14) bileşiğinin stepwise halka açılması için gerekli enerji değerleri Şekil 23 'de gösterilmektedir. 14 numaralı bileşikten LiBr eliminasyonu basamak basamak (stepwise) halka açılma reaksiyonunun ilk basamağıdır ve bu açılma Si-Br bağ kırılımının gerçekleştiği TS1 (14→16) geçiş basamağı ile kolayca başlar. Daha sona karbenoid (14) pozitif yüklü lityumun karben üzerindeki ortaklaşmamış elektron çifti ile etkileşime giren silikon-lityum kompleksine (16) düzenlenir. B3LYP/6-31G(d) teori seviyesinde 14, TS1 ve 16 kodlu bilesikler için hesaplanan karbenik silikon üzerindeki doğal atomik yükler (Natural Atomic Charges) sırasıyla +0.443, +0.791 ve +0.815 'dir. Bu sonuçlar 14 numaralı bileşikten brom iyonunun uzaklaşması ile silikon atomunun elektrofilik karakterinin arttığını göstermektedir. 14 numaralı karbenoid bileşiğinin 16 numaralı bileşiğe izomerizasyonu için çeşitli seviyelerde (B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-31+G(d,p), ve MP2/6-31+G(d,p)) hesaplanan enerji bariyerleri sırasıyla 11.6, 12.6 ve 14.8 kcal/mol 'dür. Buna karşın 16 numaralı bileşiğin geri reaksiyonu için aynı seviyelerde hesaplanan enerji bariyerleri sırasıyla 1, 0.7 ve 0.8 kcal/mol 'dür. Düşük geri reaksiyon enerji bariyerleri çok ılıman koşullarda (örneğin düşük sıcaklıklarda) bile 16 numaralı bileşiğin hızlı bir düzenlenmeye girip 14 numaralı bileşiğe geçişin mümkün olduğunu göstermektedir. Bir sonraki basamakta, üç üyeli halka 2-silaalle-LiBr kompleksine (TS2 $(16\rightarrow 17)$) B3LYP6-31G(d) teori seviyesinde 37.9 kcal/mol gibi yüksek bir aktivasyon enerjisini geçerek açılır. 14 numaralı yapıdan TS2 kodlu yapıya geçiş için gerekli toplam enerji 48.5 kcal/mol ile çok yüksektir. 16 numaralı bileşiğin 17 numaralı bileşiğe halka açılma reaksiyonunun karbon analoğu ile karşılaştırmasında metilen gruplarının basit bir disrotasyon hareketini izlediği görünmektedir. Siklopropiliden bileşiğinin allene halka açılma reaksiyonu da metilen gruplarının disrotasyon hareketi ile başlar. Ancak, bu geometri değişimlerine rağmen allen bileşiğinin en son hali düzlemsel (linear) olmalıdır [17,60]. Siklopropiliden bileşiğinden allen bileşiğine geçişi için 2.3 kcal/mol enerji gerekmektedir. Ancak, bu durumda reaksiyon 47.0 kcal/mol ile yüksek derecede ekzotermiktir (B3LYP6-31G(d)) [17].

14 numaralı bileşiğin basamak basamak (stepwise) halka açılma reaksiyonu için, TS1 ve TS2 kodlu bileşiklerin NBO analizleri ile hesaplanan WBO değerleri de Şekil 23 üzerinde parantez içerisinde verilmiştir. TS1 numaralı yapının sonuçlarından Si(1)-Br bağ kırılmasının gerçekleşmesi ve siklopropan kısmındaki silikon-karbon bağlarının az bir miktar güçlendiğini çıkarabiliriz. Dahası, **TS2** kodlu yapı için Si(1)-C(2) ve Si(1)-C(3) bağlarının WBO değerleri 1.322 'ye eşittir. Bu değer ilgili atomlar arasında bir π -bağı oluşumunu göstermektedir. Buna karşılık, C(2)-C(3) bağının WBO değeri 0.376 'dır. Burada da C(2) ve C(3) atomları arasındaki σ -bağının kırıldığı gözlenmektedir.

Çizelge 3. Serbest Silasiklopropiliden ve Silasiklopropilidenoid Silaallen Bileşiklerine Konserted (Concerted) ve Basamak Basamak (Stepwise) Halka Açılmaları İçin Hesaplanan Enerji Bariyerleri ((B3LYP/6-31G(d), B3LYP/6-31+G(d,p) (parantez içerisinde) ve MPW1PW91/6-31+G(d,p) (Altı çizili), MP2/6-31+G(d,p) (Parantez İçerisinde ve Altı Çizili) Teori Seviyelerinde).

		Basamak		Konserted	Serbest
		Basamak			Karben
	TS1 ^a	16	TS2 ^a	TS3 ^b	TS4 ^a
14	11.6/(12.6)/	10.6/(11.9)/	48.5/(49.6)/	-	43.7/(42.7)/
	<u>17.0/(14.8)</u>	<u>16.3/(14.0)</u>	<u>60.7/(57.1)</u>		<u>49.0/(47.3)</u>
15	-	-	-	1.2/(1.7)/	-
				<u>5.5/(5.2)</u>	

^a 14 numaralı bileşik ile ilgili kcal/mol cinsinden enerjiler.

^b 15 numaralı bileşik ile ilgili kcal/mol cinsinden enerjiler.

^c Potansiyel enerji yüzeyinde optimize edilemeyen bileşikler.

Bu çalışmada, 2-bromo-lityosiliran (15) bileşiğinin basamak basamak halka açılması da incelenmiştir. Ancak, basamak basamak halka açılmasına dair lokal minimaların B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-31+G(d,p) ve MP2/6-31+G(d,p) gibi çeşitli teori seviyelerinde hesaplamaları sonucunda bu yapının ilgili allene konserted mekanizma ile geçtiği gözlenmiştir. Çizelge 3 de verilen kesik çizgi (-) bu yapıların uygun optimizasyonlarının bulunamadığını ve bunun neticesinde enerji bariyerlerinin hesaplanamadığını göstermektedir. 15 numaralı bileşik için 1-silaallen bileşiğinin oluşumunun serbest karben ara ürünü olmadan karbenoid bileşiğinin allen bileşiğine TS3 kodlu yapı üzerinden konserted mekanizma üzerinden geçiş yaptığı hesaplanmıştır (Şekil 24). **TS3** kodlu yapıda Si(1)-C(3) bağının WBO değeri 0.596 ile çok düşüktür ve bu değer bize Si(1) ve C(3) atomları arasında çok zayıf bir kovalent bağ olduğunu göstermektedir. Buna karşın, Si(1)-C(2) ve C(2)-C(3) bağlarının WBO değerleri sırasıyla 1.06 ve 1.408 'dir. Bu verilerden de birbirine bağlı olan bu atomlar arasında bir π - bağı oluşumu gözlenmektedir. Dahası, **15** numaralı bileşiğin 1-silaallen-LiBr (**18**) bileşiğine konserted halka açılma reaksiyonu için hesaplanan reaksiyon bariyeri 1.2 kcal/mol ile çok düşüktür. Ancak bu durum da reaksiyon B3LYP/6-31G(d) teori seviyesinde hesaplanan 36.1 kcal/mol 'lük enerji ile eksotermiktir.

Şekil 24. 2-bromo-2-lityosiliran (**15**) Bileşiğinin 2-silaallen-LiBr (**18**) Kompleksine "konserted (concerted)" Halka Açılmasının B3LYP6-31G(d) Seviyesinde Hesaplanan Reaksiyon Yolu. Bağ Uzunlukları ve Açıları Sırasıyla Angstrom ve Derece Olarak, WBO Değerleri Parantez İçerisinde Verilmektedir.

1-bromo-1-lityosiliran (14) bileşiğinin konserted halka açılma reaksiyonu için uygun geçiş hali bulunamamıştır. Bunun yerine TS2 kodlu yapı B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-31+G(d,p) ve MP2/6-31+G(d,p) gibi farklı teori seviyelerinde saptanmış ve karakterize edilmiştir. IRC hesaplamaları sonucunda TS3 kodlu yapı ile 2-silaallen-LiBr kompleksi arasında herhangi bir bağıntı tespit edilememiştir. Apeloig'in sonuçları gibi [42], 1-silaallen (18) bileşiğinin 2-silaallen (17) bileşiğinden enerji bakımından MP2/6-31G(d,p) seviyesinde 14.8 kcal/mol daha kararlı olduğunu bulduk. Bu sonuç beklide silikon atomunun çoklu bağlara karşı düşük yeterlilikte olduğunu göstermektedir.

4.3. Serbest Karben ve Serbest Silasiklopropiliden Yapılarının Halka Açılması

Alternatif olarak, 1- ve 2-silaallen bileşiklerinin halka açılma reaksiyonları sırasıyla serbest karben (20) ve serbest silasiklopropiliden veya 1-siliraniliden (18) bileşiğinden gerçekleşebilir (Şekil 25 ve 26). 20 numaralı bileşiğin geometri optimizasyonu HF/3-21G teori seviyesinde Gordon tarafından yayınlanmış olmasına rağmen [41], bütün teori sevilerinde yapmış olduğumuz hesaplamalarda potansiyel enerji yüzeyinde 20 numaralı bileşiğe ait hiçbir lokal minima elde edilememiştir. Bunun yerine bütün denemeler sonucunda 20 numaralı yapının direk olarak 1silaallen (18) bileşiğine izomerizasyonunun gerçekleştiğini gözlemledik. Buna bağlı olarak, IRC hesaplamaları ile 20 numaralı bileşiğin 18 numaralı bileşiğe izomerizasyonunda hiçbir geçiş halini tespit edilememektedir (Şekil 25). Buda 20 numaralı bileşiğin 18 numaralı bileşiğe dönüşümünde kayda değer bir enerji bariyerinin olmadığını göstermektedir.

Sekil 25. B3LYP/6-31G(d) seviyesinde 18 numaralı bileşiğin IRC plot hesaplaması.

Silasiklopropiliden (19) bileşiğinin kimyasına dair çeşitli deneysel ve teorik çalışmalar yapılmıştır [44,45,61]. Mairer ve çalışma arkadaşları ilk olarak 10 K⁰'de etilen ile silikon atomunun reaksiyonundan 19 numaralı bileşiğin matriks-

izolasyonunu yayınlamışlardır. Bu yapı IR spektrum analizini ile karşılaştırılarak ve B3LYP/6-31G(d,p) seviyesinde DFT hesaplamaları elde edilerek tanımlanmıştır. Örneğin, 19 numaralı bileşikte C(2)-C(3) bağının gözlenen ve hesaplanan simetrik gerilme frekansı sırasıyla 1011.9 ve 1029 cm⁻¹ 'dir [44]. Biz bu değerleri B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-31+G(d,p) ve MP2/6-31+G(d,p) teori seviyelerinde sırasıyla 1065.3, 1046.5, 1071.6 ve 1083.9 cm⁻¹ olarak bulduk. Özellikle B3LYP/6-31+G(d,p) teori seviyesinde bulduğumuz değer deneysel C(2)-C(3) gerilme frekansına diğerlerine nazaran çok yakındır. Singlet silasiklopropiliden (19) bileşiği 42.9 kcal/mol enerji ile triplet halinden daha kararlıdır. 19 numaralı bileşik için, halka açılması 2-silaallen (17) bileşiğini vermektedir. Bunun için gerekli enerji bariyerleri B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-31+G(d,p) ve MP2/6-31+G(d,p) teori seviyelerinde hesaplanmış ve sırasıyla 43.7, 42.7, 49.0 ve 47.3 kcal/mol olarak bulunmuştur. Görüldüğü gibi 19 numaralı bileşiğin halka açılması için geçmesi gereken enerji bariyeri oldukça yüksektir. Buna karşın, 19 numaralı bileşiğin karbon analoğunda halka açılması için gerekli enerji bariyeri 7.0 kcal/mol 'den düşüktür. Bu yüzden, silasiklopropiliden ve siklopropiliden bileşikleri arasındaki yapı ve halka açılmasına dair karşılaştırmalar, karbon kimyasının düşük koordinasyonlu silikon bileşiklerinin özelliklerinin belirlenmesi hususunda çok zayıf kaldığını göstermektedir.

Şekil 26. 19 Numaralı Bileşiğin 2-silaallen (17) Bileşiğine Halka Açılmasının B3LYP6-31G(d) Seviyesinde Hesaplanan Reaksiyon Yolu. Bağ Uzunlukları ve Açıları Sırasıyla Angstrom ve Derece Olarak, WBO Değerleri Parantez İçerisinde Verilmektedir.

Özet olarak, 1-bromo-1-lityosiliran (14) bileşiği 2-silaallen-LiBr bileşiğine serbest silasiklopropiliden ara ürünü üzerinden basamak basamak (stepwise) halka açılma reaksiyonu üzerinden gerçekleşebilir. Buna karşın 2-bromo-2-lityosiliran (15) bileşiği 1-silaallen-LiBr bileşiğine konserted (concerted) halka açılma reaksiyonu üzerinden gerçekleşir. 20 numaralı bileşiğe dair elektronik olarak kullandığımız teori seviyelerinde hiçbir minima tespit edilememiş ve kararsız olduğu sonucuna varılmıştır. Halka açılması için gerekli enerjinin dikkate alınmadığı varsayılarak, halka açılma reaksiyonunun direk olarak gerçekleştiği gözlenmiştir. Bunun aksine, silasiklopropiliden (19) bileşiği kararlı olarak elde edilmiş ve 2silaallen bileşiğine izomerizasyon için gerekli enerji bariyerinin çok yüksek olduğu sonucuna varılmıştır [63]. **Ek A:** B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-31+G(d,p) ve MP2/6-31+G(d,p) metotları ile hesaplanan minima ve geçiş hallerinin geometrik verileri.

Çizelge A.1. B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-31+G(d,p) ve MP2/6-31+G(d,p) metotları ile hesaplanan 14 ve 15 numaralı bileşiklerin bazı bağ uzama ve kısalma değerleri.

Molekül Numarası	Teori ve Düzev	Rağ Vanan Atomlar							
1 (uniui uși	Teon ve Duzey	Si(1)-Br		Sig Tup	i(1)-Li	J	Li-Br		
		d(A ^o)	Uzama ^a (%)	d(A°)	Uzama ^b (%)	d(A°)	Uzama ^c (%)		
	B3LYP/								
	6-31G(d)	2.587	16.1	2.452	-0.85	2.316	6.8		
14	B3LYP/	2.587	15.5	2.457	-0.72	2.347	6.9		
	6-31+G(d,p)								
	MPW1PW91/								
	6-31+G(d,p)	2.517	13.3	2.446	-1.25	2.366	7.7		
	MP2/								
	6-31+G(d,p)	2.535	13.5	2.486	-0.56	2.386	7.3		
		Bağ Yapan Atomlar							
		С	C(2)-Br		2(2)-Li	Li-Br			
		d(A ^o)	Uzama ^a (%)	$d(A^{o})$	Uzama ^b (%)	$d(A^{o})$	Uzama ^c (%)		
	B3LYP/	2.174	10.6	1.946	-1.72	2.350	8.44		
15	6-31G(d)								
13	B3LYP/								
	6-31+G(d,p)	2.155	9.7	1.944	-2.1	2.406	9.6		
	MPW1PW91/								
	6-31+G(d,p)	2.078	7.1	1.942	-1.9	2.426	10.4		
	MP2/								
	6-31+G(d,p)	2.054	5.4	1.976	-1.8	2.480	11.6		

Referans Bağ Uzunlukları

	~ ~ ~	~		~ ~	~
	Si-Br	Si-Li	Li-Br	C-Br	C-Li
B3LYP/	2.229	2.473	2.169	1.967	1.980
6-31G					
B3LYP/	2.239	2.475	2.195	1.963	1.985
6-31+G(d,p)					
MPW1PW91/	2.220	2.477	2.196	1.939	1.981
6-31+G(d,p)					
MP2/	2.232	2.500	2.222	1.947	2.013
6-31+G(d,p)					

Çizelge A.2. B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-31+G(d,p) ve MP2/6-31+G(d,p) metotları ile hesaplanan **14**, **16**, **17-LiBr**, **TS1**, **TS2** numaralı bileşiklerin geometrik verileri.

Molekül numarası	Bağ uzunluk ve açıları	B3LYP/ 6-31G(d)	B3LYP/ 6-31+G(d,p)	MPW1PW91/ 6-31+G(d,p)	MP2/ 6-31+G(d,p)
	C^2-C^3	1.525	1.530	1.523	1.524
	C ² -Si ¹	1.907	1.905	1.895	1.898
	C ³ -Si ¹	1.907	1.905	1.895	1.898
14	Si-Li	2.452	2.457	2.446	2.486
	Si-Br	2.587	2.587	2.517	2.535
	Si-Li-Br	65.6	65.1	63.05	62.6
	C^2 -Si ¹ -C ³	47.1	47.3	47.4	47.3
	C^2-C^3	1.519	1.523	1.516	1.518
	C ² -Si ¹	1.894	1.890	1.879	1.882
TS1	C^3 -Si ¹	1.894	1.890	1.879	1.882
151	Si-Li	2.633	2.678	2.694	2.709
	Si-Br	4.433	4.640	4.685	4.667
	C^2 -Si ¹ -C ³	47.2	47.5	47.5	47.5
16	C^2-C^3	1.518	1.522	1.516	1.518
	C^2 -Si ¹	1.892	1.890	1.878	1.881
	C ³ -Si ¹	1.892	1.890	1.878	1.881
	C^2 -Si ¹ -C ³	47.3	47.5	47.6	47.6
	C^2-C^3	2.822	2.826	2.789	2.835
тер	C^2 -Si ¹	1.809	1.810	1.805	1.804
152	C ³ -Si ¹	1.809	1.810	1.805	1.804
	C^2 -Si ¹ -C ³	102.5	102.6	101.2	103.5
	C^2 -Si ¹	1.798	1.795	1.787	1.798
	C ³ -Si ¹	1.710	1.712	1.707	1.710
17-LiBr	C ² -Li	2.043	2.046	2.046	2.043
	Si-Br	2.373	2.369	2.338	2.373
	$\overline{C^2-Si^1-C^3}$	141.7	142.05	142.4	141.7

Çizelge A.3. B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-31+G(d,p) ve MP2/6-31+G(d,p) metotları ile hesaplanan **15**, **18-LiBr**, **TS4** numaralı bileşiklerin geometrik verileri.

Molekül	Bağ uzunluk	B3LYP/	B3LYP/	MPW1PW91/	MP2/
numarası	ve açıları	6-31G(d)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
	Si^2-C^3	1.892	1.891	1.879	1.880
	Si^2-C^1	1.857	1.857	1.849	1.851
	C^3-C^1	1.510	1.514	1.516	1.527
15	C ¹ -Li	1.946	1.944	1.942	1.976
	C ¹ -Br	2.174	2.155	2.078	2.054
	C ¹ -Li-Br	59.9	58.2	55.4	52.4
	$Si^2-C^1-C^3$	57.4	67.3	67.05	66.8
TS3	Si^2-C^3	2.005	2.018	2.077	2.030
	Si ² -C ¹	1.811	1.809	1.789	1.795
	C^3-C^1	1.430	1.425	1.397	1.424
	C ¹ -Li	1.986	1.990	2.018	2.024
	C ¹ -Br	2.602	2.632	2.864	2.520
	C ¹ -Li-Br	75	75.1	83.3	70.1
	$Si^2-C^1-C^3$	75.4	76.1	80.3	77.2
18-LiBr	Si^2-C^1	1.697	1.699	1.695	1.703
	C^3-C^1	1.317	1.318	1.315	1.328
	C ¹ -Li	2.263	2.271	2.301	2.258
	C ³ -Br	4.267	4.178	3.812	4.177
	$Si^2-C^1-C^3$	172.5	172.8	175	174

Çizelge A.4. B3LYP/6-31G(d), B3LYP/6-31+G(d,p), MPW1PW91/6-31+G(d,p) ve MP2/6-31+G(d,p) metotları ile hesaplanan **19**, **17**, **TS4** numaralı bileşiklerin geometrik verileri.

Molekül numarası	Bağ uzunluk ve acıları	B3LYP/ 6-31G(d)	B3LYP/ 6-31+G(d.p)	MPW1PW91/ 6-31+G(d,p)	MP2/ 6-31+G(d.p)
	C^2-C^3	1.506	1.512	1.506	1.507
10	C ² -Si ¹	1.922	1.918	1.906	1.909
19	C ³ -Si ¹	1.922	1.918	1.906	1.909
	C^2 -Si ¹ -C ³	46.1	46.4	46.5	46.5
	C^2-C^3	2.607	2.617	2.604	2.643
т\$4	C^2 -Si ¹	1.836	1.838	1.827	1.835
154	C^3 -Si ¹	1.824	1.824	1.812	1.813
	C^2 -Si ¹ -C ³	90.8	91.2	91.3	92.8
17	C^2 -Si ¹	1.697	1.698	1.693	1.703
	C^3 -Si ¹	1.697	1.698	1.693	1.703
	C^2 -Si ¹ -C ³	179.5	179.6	179.9	179.6

Ek B: B3LYP/6-31G(d) metodu ile hesaplanan IRC analizi sonuçları.

Şekil B.1. B3LYP/6-31G(d) metodu ile hesaplanan **TS2** numaralı bileşik için IRC analizi.

Şekil B.2. B3LYP/6-31G(d) metodu ile hesaplanan **TS4** numaralı bileşik için IRC analizi.

Şekil B.3. B3LYP/6-31G(d) metodu ile hesaplanan **TS3** numaralı bileşik için IRC analizi.

Şekil B.4. B3LYP/6-31G(d) metodu ile hesaplanan **20** numaralı bileşik için IRC analizi.

Ek C: B3LYP/6-31G(d), B3LYP/6-31+G(d,p) ve MP2/6-31+G(d,p) metotları ile hesaplanan minima ve geçiş hallerinin Kartezyen koordinatları.

Çizelge C.1. B3LYP/6-31G (d) teori seviyesinde hesaplanan **15** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,1.6471409167,-0.6319489271,-0.7763557098 C,0.7243513703,-0.4466115933,0.4049196062 H,1.3946234837,-0.1754622438,-1.7380856502 H,2.7190064543,-0.5746635386,-0.5765373151 Br,-0.742458153, 1.1435844886,0.18368614 Li,0.4602443408,0.4856866,2.0927399845 Si,0.4311376413,-2.0515564581,-0.4829344883 H,0.7399008879,-3.3263223533,0.21 04684318 H,-0.5131091921,-2.2129152309,-1.6133808611

Zero-point vibrational energy	128943.0 (Joules/Mol)
30.81812 (Kcal/Mol)
Zero-point correction=	0.049112 (Hartree/Particle)
Thermal correction to Energy=	0.056042
Thermal correction to Enthalpy=	0.056986
Thermal correction to Gibbs Fre	e Energy= 0.017323
Sum of electronic and zero-poin	t Energies= -2947.249479
Sum of electronic and thermal E	nergies= -2947.242549
Sum of electronic and thermal E	nthalpies= -2947.241605
Sum of electronic and thermal F	ree Energies= -2947.281268

Çizelge C.2. B3LYP/6-31G (d) teori seviyesinde hesaplanan **18** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.0000495273,-0.0004294236,-1.8763173618 C,0.0001997197,-0.0001467921,-0.563967876 H,0.9234231333,0.0002492981,-2.4603279602 H,-0.9241066438,-0.0011792957,-2.4593988858 Si,-0.0000228304,0.000272864,1.1266637626 H,-0.0011830539,1.2606582543,1.893949931 H,0.0012850352,-1.2600910578,1.8941956644

ENERGY VALUES:

Zero-point vibrational energy	119662.8 (Joules/Mol)
28.60011	(Kcal/Mol)
Zero-point correction=	0.045577 (Hartree/Particle)
Thermal correction to Energy=	0.050273
Thermal correction to Enthalpy	= 0.051217
Thermal correction to Gibbs Fr	ee Energy= 0.019527
Sum of electronic and zero-poin	nt Energies= -367.967281
Sum of electronic and thermal l	Energies= -367.962585
Sum of electronic and thermal l	Enthalpies= -367.961641
Sum of electronic and thermal l	Free Energies= -367.993331

Çizelge C.3. B3LYP/6-31G (d) teori seviyesinde hesaplanan **TS3** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,1.3932296611,-1.2957713974,-0.9483443025 C,0.3272914316,-1.0764887775,-0.0206929372 H,1.567460748,-0.6873105765,-1.8472250076 H,2.3070405563,-1.8007292141,-0.6228530925 Br,-0.1547424252,1.3460675362,0.7971818308 Li,-0.0749260941,-0.6484344983,1.8769577186 Si,-0.4832386244,-1.737389844,-1.5000383101 H,-0.5936522916,-1.0882819757,-2.8259387651 H,-1.1978716631,-3.0337196406,-1.4214605898

Zero-point vibrational energy	127566.4 (Joules/Mol)
30.48910	(Kcal/Mol)
Zero-point correction=	0.048587 (Hartree/Particle)
Thermal correction to Energy=	0.055071
Thermal correction to Enthalpy	= 0.056015
Thermal correction to Gibbs Fre	ee Energy= 0.017079
Sum of electronic and zero-point	nt Energies= -2947.247555
Sum of electronic and thermal I	Energies= -2947.241071
Sum of electronic and thermal I	Enthalpies= -2947.240127
Sum of electronic and thermal I	Free Energies= -2947.279064

Çizelge C.4. B3LYP/6-31G (d) teori seviyesinde hesaplanan **14** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.1582161465,-2.2282552732,-0.5996632494 C,-0.1961867929,-2.1122822244,0.9211310792 H,0.8033357523,-2.0722287613,-1.0857043272 H,0.7405877305,-1.8803790685,1.4249666321 H,-0.7852752408,-2.8540509323,1.4616483597 Br,0.6494714534,1.1651818049,-0.0723858125 Li,-1.6056073374,1.6874032798,-0.1682286956 Si,-1.1302839841,-0.7105963339,0.0256105056 H,-0.7229336872,-3.0453405871,-1.0500751989

Zero-point vibrational energy	146466.6 (Joules/Mol)
35.00635 (Kcal/Mol)
Zero-point correction=	0.055786 (Hartree/Particle)
Thermal correction to Energy=	0.062704
Thermal correction to Enthalpy=	= 0.063648
Thermal correction to Gibbs Fre	e Energy= 0.023595
Sum of electronic and zero-poin	t Energies= -2947.327012
Sum of electronic and thermal E	nergies= -2947.320095
Sum of electronic and thermal E	nthalpies= -2947.319151
Sum of electronic and thermal F	ree Energies= -2947.359203

Çizelge C.5. B3LYP/6-31G (d) teori seviyesinde hesaplanan **16** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,1.1884463019,-3.7657700079,-0.4469904928 C,1.1586600187,-3.7068516692,1.0702031738 H,2.1590389616,-3.8312140521,-0.9403932603 H,2.1110638447,-3.7250234178,1.6019000523 H,0.3930629929,-4.2835268153,1.5907028886 Br,-0.7936166377,2.5388342911,-0.2373419461 Li,-0.149304141,0.4662525366,-0.0246349494 H,0.4378809259,-4.3796266455,-0.9468269301 Si,0.6457721495,-2.0859169145,0.2383010089

ENERGY VALUES:

Zero-point vibrational energy	143471.1 (Joules/Mol)	
34.29042 (Kcal/Mol)		
Zero-point correction=	0.054645 (Hartree/Particle)	
Thermal correction to Energy=	0.062251	
Thermal correction to Enthalpy	= 0.063195	
Thermal correction to Gibbs Fr	ee Energy= 0.019706	
Sum of electronic and zero-poin	nt Energies= -2947.310020	
Sum of electronic and thermal l	Energies= -2947.302414	
Sum of electronic and thermal l	Enthalpies= -2947.301470	
Sum of electronic and thermal I	Free Energies= -2947.344959	

Çizelge C.6. B3LYP/6-31G (d) teori seviyesinde hesaplanan **19** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.1557725901,-0.7540882583,-0.7643446606 C,0.1418830449,-0.7787588822,0.7421587152 H,1.1099047302,-0.9039943192,-1.2717416727 H,1.0864127143,-0.9457025385,1.261987692 H,-0.6858920692,-1.2869912813,1.2390427074 H,-0.6623160536,-1.245850869,-1.2928597811 Si,-0.188145938,0.9699729893,0.0140490519

Zero-point vibrational energy 1.	35851.8 (Joules/Mol)	
32.46936 (Kcal/Mol)		
Zero-point correction=	0.051743 (Hartree/Particle)	
Thermal correction to Energy=	0.055541	
Thermal correction to Enthalpy=	0.056485	
Thermal correction to Gibbs Free Energy= 0.026318		
Sum of electronic and zero-point Energies= -367.977661		
Sum of electronic and thermal En	ergies= -367.973863	
Sum of electronic and thermal En	thalpies= -367.972919	
Sum of electronic and thermal Fre	ee Energies= -368.003086	

Çizelge C.7. B3LYP/6-31G (d) teori seviyesinde hesaplanan **17** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.0067782912,0.0003569202,-1.6975773738 C,-0.0005150213,-0.0001117257,1.6975831661 H,0.9376119115,-0.0001615203,-2.2547037454 H,-0.0044115133,-0.9264668445,2.2619868712 H,-0.0038903465,0.9261900072,2.2620793258 Si,-0.0037079851,-0.0000161739,-0.0000087655 H,-0.9149778794,-0.0008063744,-2.269274489

Zero-point vibrational energy	126280.5 (Joules/Mol)	
30.18176 (Kcal/Mol)		
Zero-point correction=	0.048098 (Hartree/Particle)	
Thermal correction to Energy=	0.053364	
Thermal correction to Enthalpy	= 0.054308	
Thermal correction to Gibbs Fre	ee Energy= 0.020293	
Sum of electronic and zero-poir	nt Energies= -367.936073	
Sum of electronic and thermal H	Energies= -367.930807	
Sum of electronic and thermal H	Enthalpies= -367.929863	
Sum of electronic and thermal I	Free Energies= -367.963878	

Çizelge C.8. B3LYP/6-31G (d) teori seviyesinde hesaplanan **TS1** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.030399467,-3.52007035,-0.8720585344 C,-0.0496668258,-3.5806863186,0.6455885785 H,0.9398172913,-3.4781399425,-1.3685178958 H,0.9073298549,-3.580445927,1.1687034213 H,-0.7725655352,-4. 2450226181,1.1208012933 Br,0.3595061226,2.3749165362,0.0734634301 Li,-1.0078929832,0.6749625778,0.027044083 H,-0.7393606224,-4.144379776,-1.4173140473 Si,-0.6724184694,-1.935317016,-0.0569432384

ENERGY VALUES:

Zero-point vibrational energy	143275.2 (Joules/Mol)	
34.24360 (Kcal/Mol)		
Zero-point correction=	0.054571 (Hartree/Particle)	
Thermal correction to Energy=	0.061305	
Thermal correction to Enthalpy	= 0.062249	
Thermal correction to Gibbs Fr	ee Energy= 0.021036	
Sum of electronic and zero-point	nt Energies= -2947.308457	
Sum of electronic and thermal	Energies= -2947.301723	
Sum of electronic and thermal	Enthalpies= -2947.300779	
Sum of electronic and thermal	Free Energies= -2947.341992	

Çizelge C.9. B3LYP/6-31G (d) teori seviyesinde hesaplanan **TS2** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-2.2281227119,-2.6118976834,-1.4833722928 C,-2.1384343896,-2.7646580719,1.3332311813 H,-1.9315682594,-2.3723417499,-2.5057462269 H,-1.9951224987,-2.4589792607,2.370891974 H,-2.4760181742,-3.7984536012,1.2420947489 Br,1.5915707709,1.9602209021,0.054598902 Li,0.2127075023,0.2615190699,0.0073658546 H,-3.1727176172,-3.1565749104,-1.4359942179 Si,-1.4691664523,-1.8104717664,-0.0502470531

Zero-point vibrational energy 133796.7 (Joules/Mol) 31.97818 (Kcal/Mol) Zero-point correction= 0.050960 (Hartree/Particle) Thermal correction to Energy= 0.058867 Thermal correction to Enthalpy= 0.059811 Thermal correction to Gibbs Free Energy= 0.015319 Sum of electronic and zero-point Energies= -2947.249635 Sum of electronic and thermal Energies= -2947.241729 Sum of electronic and thermal Enthalpies= -2947.240785 Sum of electronic and thermal Free Energies= -2947.285277

Çizelge C.10. B3LYP/6-31G (d) teori seviyesinde hesaplanan **TS4** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.4990517904,-0.2820394961,-1.28478463 C,0.5307321569,-0.0735583281,1.3145499391 H,1.5756548099,-0.0947688536,-1.2445070004 H,1.5219480696,-0.5031800403,1.1533707321 H,0.1972884238,-0.2009895662,2.3484536555 H,0.2042829196,-0.7482643044,-2.2299474179 Si,-0.6912769934,0.2629135507,-0.0147115589

Zero-point vibrational energy	126634.2 (Joules/Mol)	
30.26631 (Kcal/Mol)		
Zero-point correction=	0.048232 (Hartree/Particle)	
Thermal correction to Energy=	0.052189	
Thermal correction to Enthalpy	= 0.053133	
Thermal correction to Gibbs Fre	ee Energy= 0.022446	
Sum of electronic and zero-poir	t Energies= -367.907963	
Sum of electronic and thermal H	Energies= -367.904007	
Sum of electronic and thermal H	Enthalpies= -367.903062	
Sum of electronic and thermal H	Free Energies= -367.933749	

Çizelge C.11. B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **15** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.9259487302,-0.1144759968,-1.6742519366 C,-0.914908118,-0.1072635725,-0.159654585 H,0.0245966194,-0.1267316891,-2.2157221806 H,-1.6733381142,-0.7421363396,-2.162375942 Br,0.986732747,-0.6090004645,0.7231693284 Li,-1.2411145281,-1.1878287796,1.4235461106 Si,-1.1224317749,1.5916364911,-0.8807684007 H,-2.4095406388,2.2967010829,-0.6794490642 H,0.0051655105,2.4981960829,-1.1898209007

ENERGY VALUES:

Zero-point vibrational energy	128219.2 (Joules/Mol)	
30.64513 (Kcal/Mol)		
Zero-point correction=	0.048836 (Hartree/Particle)	
Thermal correction to Energy=	0.055817	
Thermal correction to Enthalpy-	= 0.056761	
Thermal correction to Gibbs Fre	ee Energy= 0.016968	
Sum of electronic and zero-point Energies= -2947.272250		
Sum of electronic and thermal Energies= -2947.265270		
Sum of electronic and thermal H	Enthalpies= -2947.264325	
Sum of electronic and thermal H	Free Energies= -2947.304118	
Sum of electronic and thermal F	Free Energies= -2947.304118	

Çizelge C.12. B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **18** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.0006477625,-0.0000707962,-1.8787047295 C,0.0002856412,-0.0000288848,-0.5643367693 H,0.9259232423,0.0000564315,-2.458931814 H,-0.9243128163,0.0000307423,-2.4594307598 Si,-0.0006178244,0.0000286598,1.1280362151 H,0.0006900506,1.2594824809,1.8920092142 H,0.0007486424,-1.2593728054,1.8920953407

Zero-point vibrational energy 119136.2 (Joules/Mol) 28.47423 (Kcal/Mol) Zero-point correction= 0.045377 (Hartree/Particle) Thermal correction to Energy= 0.050063 Thermal correction to Enthalpy= 0.051008 Thermal correction to Gibbs Free Energy= 0.019354 Sum of electronic and zero-point Energies= -367.978624 Sum of electronic and thermal Energies= -367.973938 Sum of electronic and thermal Enthalpies= -367.972993 Sum of electronic and thermal Free Energies= -368.004647

Çizelge C.13. B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **TS3** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.8876657573,0.5981709553,-1.8359388721 C,-0.9052480369,0.5743564832,-0.4108025999 H,0.0261027822,0.5711813333,-2.4465355232 H,-1.7620640229,0.2713325218,-2.404563569 Br,0.5747616619,-1.2324542575,0.8030789551 Li,-1.5789500069,-0.479346111,1.1376746786 Si,-0.2143703613,2.1993616494,-0.8079673603 H,1.0692092715,2.4914006642,-1.4803422732 H,-0.9543883521,3.4137951048,-0.3973542236

Zero-point vibrational energy 12	26484.2 (Joules/Mol)	
30.23045 (Kcal/Mol)		
Zero-point correction=	0.048175 (Hartree/Particle)	
Thermal correction to Energy=	0.054767	
Thermal correction to Enthalpy=	0.055711	
Thermal correction to Gibbs Free	Energy= 0.016523	
Sum of electronic and zero-point I	Energies= -2947.269620	
Sum of electronic and thermal End	ergies= -2947.263028	
Sum of electronic and thermal Ent	halpies= -2947.262083	
Sum of electronic and thermal Fre	e Energies= -2947.301272	

Çizelge C.14. B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **14** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.6604096956,-2.0832096997,-0.7650955187 C,-0.6603936369,-2.0832579634,0.7649265297 H,0.307271207,-2.1089598052,-1.2626999162 H,0.3072993359,-2.1090408188,1.2625057365 H,-1.4003574632,-2.7109676947,1.2619103375 Br,0.8956728766,0.9942612838,0.0000324515| Li,-1.2187187447,2.0138596351,0.0002271465 Si,-1.2558143773,-0.4430047095,-0.0000295675 H,-1.4003862486,-2.7108836078,-1.262105521

ENERGY VALUES:

Zero-point vibrational energy	145382.3 (Joules/Mol)
34.74719 (Kcal/Mol)
Zero-point correction=	0.055373 (Hartree/Particle)
Thermal correction to Energy=	0.062337
Thermal correction to Enthalpy=	0.063281
Thermal correction to Gibbs Fre	e Energy= 0.023150
Sum of electronic and zero-poin	t Energies= -2947.349677
Sum of electronic and thermal E	nergies= -2947.342713
Sum of electronic and thermal E	nthalpies= -2947.341769
Sum of electronic and thermal F	ree Energies= -2947.381899

Çizelge C.15. B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **16** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,1.3819879054,-3.6924667847,-0.7605633505 C,1.3820892522,-3.6924058664,0.7621763335 H,2.3453588132,-3.6914306822,-1.2714204675 H,2.3455939964,-3.6910279652,1.2727954564 H,0.6544468538,-4.3236832321,1.2731426353 Br,-0.9409869296,2.5136760324,-0.0006792204 Li,-0.1717176967,0.4577778957,-0.0000546619 H,0.6540367044,-4.323619241,-1.2712599248 Si,0.7761283082,-2.0723569853,0.0007857931

Zero-point vibrational energy 14	3020.1 (Joules/Mol)	
34.18262 (Kcal/Mol)		
Zero-point correction=	0.054473 (Hartree/Particle)	
Thermal correction to Energy=	0.061949	
Thermal correction to Enthalpy=	0.062893	
Thermal correction to Gibbs Free	Energy= 0.020049	
Sum of electronic and zero-point H	Energies= -2947.330709	
Sum of electronic and thermal Ene	ergies= -2947.323234	
Sum of electronic and thermal Ent	halpies= -2947.322290	
Sum of electronic and thermal Fre	e Energies= -2947.365134	

Çizelge C.16. B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **19** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.2717817425,-0.728921443,-0.7562280162 C,0.2717675314,-0.7289260346,0.7562295846 H,1.2347194933,-0.7290558318,-1.2688997305 H,1.2346581827,-0.7292282846,1.2689814621 H,-0.4563693785,-1.359224833,1.2687184105 H,-0.4562069088,-1.359319707,-1.2687975911 Si,-0.344149788,0.9231366802,-0.0000008544

Zero-point vibrational energy	134886.3 (Joules/Mol)
32.23860 (Kcal/Mol)
Zero-point correction=	0.051375 (Hartree/Particle)
Thermal correction to Energy=	0.055193
Thermal correction to Enthalpy=	0.056137
Thermal correction to Gibbs Fre	e Energy= 0.025944
Sum of electronic and zero-poin	t Energies= -367.990006
Sum of electronic and thermal E	nergies= -367.986189
Sum of electronic and thermal E	nthalpies= -367.985245
Sum of electronic and thermal F	ree Energies= -368.015438

Çizelge C.17. B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **17** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.0026094769,0.0004308455,-1.6984786244 C,0.0017319442,-0.0001415915,1.6984804364 H,0.9320412197,-0.0005134633,-2.2577174771 H,0.0000870372,-0.9277519858,2.2606924371 H,0.0000206313,0.927325913,2.2609321522 Si,-0.0025119642,-0.0000056827,-0.0000018164 H,-0.9230299159,-0.0007164299,-2.263892554

ENERGY VALUES:

Zero-point vibrational energy	125888.2 (Joules/Mol)	
30.08799 (Kcal/Mol)		
Zero-point correction=	0.047948 (Hartree/Particle)	
Thermal correction to Energy=	0.053110	
Thermal correction to Enthalpy	= 0.054054	
Thermal correction to Gibbs Fre	ee Energy= 0.020899	
Sum of electronic and zero-poin	nt Energies= -367.951758	
Sum of electronic and thermal I	Energies= -367.946597	
Sum of electronic and thermal I	Enthalpies= -367.945653	
Sum of electronic and thermal I	Free Energies= -367.978807	

Çizelge C.18. B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **TS1** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.1649281939,-3.719394585,-0.7623732691 C,0.1651021042,-3.719750618,0.7605384861 H,1.128347421,-3.737455489,-1.272761666 H,1.1286388709,-3.7380508093,1.2706963892 H,-0.5754292401,-4.3362296548,1.271068096 Br,0.1458247599,2.5230055899,0.0005981945 Li,-0.8511685066,0.5554374374,0.0002248201 H,-0.5757202485,-4.3356356011,-1.2730203063 Si,-0.4025985478,-2.0849475133,-0.000470363

Zero-point vibrational energy 141834.8 (Joules/Mol) 33.89932 (Kcal/Mol) Zero-point correction= 0.054022 (Hartree/Particle) Thermal correction to Energy= 0.060903 Thermal correction to Enthalpy= 0.061847 Thermal correction to Gibbs Free Energy= 0.020015 Sum of electronic and zero-point Energies= -2947.329511 Sum of electronic and thermal Energies= -2947.322630 Sum of electronic and thermal Enthalpies= -2947.321686 Sum of electronic and thermal Free Energies= -2947.363518

Cizelge C.19. B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan TS2 numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-3.1657994989,-1.4633400833,-1.4131048861 C,-3.1646429141,-1.4658591319,1.413096532 H,-2.7900257835,-1.4455771791,-2.4369482602 H,-2.9078718509,-1.1909286489,2.4369415005 H,-3.9177944347,-2.2536330067,1.3619255926 Br,2.3106484963,1.0691756016,0.0000020256 Li,0.3068907564,0.1420032405,0.0000035848 H,-4.25378398,-1.5274894366,-1.3619386509 Si,-2.1386599366,-0.9895951582,-0.0000008362

ENERGY VALUES:

7

• • • • • •

Zero-point vibrational energy	133300.7 (Joules/Mol)	
31.85964 (Kcal/Mol)		
Zero-point correction=	0.050772 (Hartree/Particle)	
Thermal correction to Energy=	0.058602	
Thermal correction to Enthalpy-	= 0.059546	
Thermal correction to Gibbs Fre	ee Energy= 0.015252	
Sum of electronic and zero-poin	nt Energies= -2947.270654	
Sum of electronic and thermal H	Energies= -2947.262823	
Sum of electronic and thermal H	Enthalpies= -2947.261879	
Sum of electronic and thermal H	Free Energies= -2947.306173	

Çizelge C.20. B3LYP/6-31+G (d,p) teori seviyesinde hesaplanan **TS4** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.4606236665,-0.2864438631,-1.3016956454 C,0.4591855857,-0.2928287227,1.3162306385 H,1.5515942682,-0.3261872796,-1.2405954477 H,1.3390112401,-0.912032839,1.1298998285 H,0.0619406464,-0.4346413433,2.324837671 H,0.0914698669,-0.6216304822,-2.2752682006 Si,-0.6116336811,0.4121519614,-0.0018631292

ENERGY VALUES:

Zero-point vibrational energy	125884.9 (Joules/Mol)	
30.08721 (Kcal/Mol)		
Zero-point correction=	0.047947 (Hartree/Particle)	
Thermal correction to Energy=	0.051915	
Thermal correction to Enthalpy	= 0.052860	
Thermal correction to Gibbs Fr	ee Energy= 0.022158	
Sum of electronic and zero-point	nt Energies= -367.921960	
Sum of electronic and thermal	Energies= -367.917991	
Sum of electronic and thermal	Enthalpies= -367.917047	
Sum of electronic and thermal	Free Energies= -367.947749	

Çizelge C.21. MP2/6-31+G (d,p) teori seviyesinde hesaplanan **15** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.9103438153,-0.1464649916,-1.6278685028 C,-0.8679559845,-0.120094579,-0.1014708433 H,0.0306974396,-0.2108071736,-2.1755614895 H,-1.6900148417,-0.7485859306,-2.0840247612 Br,0.9736645427,-0.5732547916,0.6870388864 Li,-1.2794736905,-1.2838442967,1.4417627602 Si,-1.1090324021,1.5547029434,-0.8519712119 H,-2.3960402365,2.2441046692,-0.6754477956 H,0.0117721458,2.4642552477,-1.1329822144

Zero-point vibrational energy 1	32920.5 (Joules/Mol)	
31.76876 (Kcal/Mol)		
Zero-point correction=	0.050627 (Hartree/Particle)	
Thermal correction to Energy=	0.057402	
Thermal correction to Enthalpy=	0.058346	
Thermal correction to Gibbs Free Energy= 0.018950		
Sum of electronic and zero-point	Energies= -2944.726925	
Sum of electronic and thermal Er	nergies= -2944.720150	
Sum of electronic and thermal Er	-2944.719206	
Sum of electronic and thermal Fr	ee Energies= -2944.758601	

Çizelge C.22. MP2/6-31+G (d,p) teori seviyesinde hesaplanan **18** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.0001360263,-0.0003008085,-1.8882766865 C,0.0001494143,-0.0001009961,-0.5647563562 H,0.92259818,0.0003496399,-2.4615027947 H,-0.923117787,-0.0011435441,-2.4611043659 Si,-0.000072587,0.0001836297,1.1322600253 H,-0.0007660736,1.2485281512,1.894365111 H,0.0013069739,-1.2478942361,1.8947999512

Zero-point vibrational energy	22030.8 (Joules/Mol)	
29.16606 (Kcal/Mol)		
Zero-point correction=	0.046479 (Hartree/Particle)	
Thermal correction to Energy=	0.051195	
Thermal correction to Enthalpy=	0.052139	
Thermal correction to Gibbs Free	e Energy= 0.020360	
Sum of electronic and zero-point	Energies= -367.193778	
Sum of electronic and thermal En	nergies= -367.189062	
Sum of electronic and thermal En	nthalpies= -367.188118	
Sum of electronic and thermal Fi	ree Energies= -367.219898	

Çizelge C.23. MP2/6-31+G (d,p) teori seviyesinde hesaplanan **TS3** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.9099297802,0.4228809576,-1.8051900939 C,-0.9011193858,0.46832785,-0.3814034051 H,-0.0134480777,0.4668619591,-2.4348128311 H,-1.7689404008,0.0190004227,-2.3355560858 Br,0.6503445143,-1.1288378263,0.7987824671 Li,-1.5905214818,-0.5865712908,1.2025636796 Si,-0.359966057,2.1192507294,-0.834247901 H,0.8636071265,2.4847570374,-1.5586840161 H,-1.165892409,3.2816553156,-0.4369928459

ENERGY VALUES:

Zero-point vibrational energy 1	30452.4 (Joules/Mol)
31.17887 (К	cal/Mol)
Zero-point correction=	0.049687 (Hartree/Particle)
Thermal correction to Energy=	0.056201
Thermal correction to Enthalpy=	0.057145
Thermal correction to Gibbs Free	Energy= 0.018139
Sum of electronic and zero-point	Energies= -2944.718595
Sum of electronic and thermal En	ergies= -2944.712081
Sum of electronic and thermal En	thalpies= -2944.711137
Sum of electronic and thermal Fre	ee Energies= -2944.750143

Çizelge C.24. MP2/6-31+G (d,p) teori seviyesinde hesaplanan **14** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.5981414935,-2.0326110716,-0.7622824425 C,-0.5981234523,-2.0327286517,0.7618850706 H,0.3653624307,-2.0106232295,-1.2590281731 H,0.365390033,-2.0108503792,1.2586159408 H,-1.3070922771,-2.6957125356,1.2482499782 Br,0.8685151589,0.9582290711,0.0000737671 Li,-1.2459343664,2.0636649367,0.0005785886 Si,-1.2570852898,-0.4231616769,-0.0000728753 H,-1.3071039182,-2.6955243375,-1.2487508743

Zero-point vibrational energy 150104.9 (Joules/Mol) 35.87593 (Kcal/Mol) Zero-point correction= 0.057172 (Hartree/Particle) Thermal correction to Energy= 0.063967 Thermal correction to Enthalpy= 0.064911 Thermal correction to Gibbs Free Energy= 0.025184 Sum of electronic and zero-point Energies= -2944.809158 Sum of electronic and thermal Energies= -2944.802363 Sum of electronic and thermal Enthalpies= -2944.801418 Sum of electronic and thermal Free Energies= -2944.841145

Çizelge C.25. MP2/6-31+G (d,p) teori seviyesinde hesaplanan **16** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,1.375239076,-3.7362534269,-0.6327373635 C,1.3603756719,-3.6905268038,0.8849242942 H,2.3417587861,-3.7563623503,-1.1271660237 H,2.3171868078,-3.6795969765,1.3982049049 H,0.6259712631,-4.3016929613,1.4008259609 Br,-0.9338380718,2.5341374586,-0.0861934739 Li,-0.1668971328,0.4524420593,-0.0153411702 H,0.6501499547,-4.3773936846,-1.1249297395 Si,0.7740191866,-2.0983149908,0.0716241721

Zero-point vibrational energy	147238.4 (Joules/Mol)
35.19082	(Kcal/Mol)
Zero-point correction=	0.056080 (Hartree/Particle)
Thermal correction to Energy=	0.063466
Thermal correction to Enthalpy	= 0.064410
Thermal correction to Gibbs Fr	ee Energy= 0.021791
Sum of electronic and zero-point	nt Energies= -2944.786862
Sum of electronic and thermal	Energies= -2944.779476
Sum of electronic and thermal	Enthalpies= -2944.778532
Sum of electronic and thermal	Free Energies= -2944.821151
Çizelge C.26. MP2/6-31+G (d,p) teori seviyesinde hesaplanan **19** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.2699809386,-0.7252201339,-0.7535895735 C,0.2699358371,-0.7251585003,0.7536620553 H,1.2300670693,-0.7258885674,-1.2606839833 H,1.2299448888,-0.7259961511,1.2608903951 H,-0.45680576,-1.3529098918,1.2603592778 H,-0.4565414089,-1.3531542953,-1.2603621718 Si,-0.3418689602,0.9185871937,-0.0000456006

ENERGY VALUES:

Zero-point vibrational energy	139220.9 (Joules/Mol)
33.27459	(Kcal/Mol)
Zero-point correction=	0.053026 (Hartree/Particle)
Thermal correction to Energy=	0.056759
Thermal correction to Enthalpy	= 0.057703
Thermal correction to Gibbs Fre	ee Energy= 0.027647
Sum of electronic and zero-poin	nt Energies= -367.210920
Sum of electronic and thermal I	Energies= -367.207188
Sum of electronic and thermal I	Enthalpies= -367.206244
Sum of electronic and thermal I	Free Energies= -367.236300

Çizelge C.27. MP2/6-31+G (d,p) teori seviyesinde hesaplanan **17** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.0033294812,-0.0001633055,-1.7035821014 C,0.0022938897,0.0003029912,1.7035859662 H,0.9325279321,0.0003198423,-2.2550739876 H,0.0004894437,-0.9263590748,2.259279925 H,-0.0007842381,0.9272139653,2.2588603486 Si,-0.0032101133,-0.0000791175,-0.0000028675 H,-0.9210317769,-0.0009052014,-2.2630493305

Zero-point vibrational energy 1	28320.2 (Joules/Mol)
30.66927 (K	Kcal/Mol)
Zero-point correction=	0.048875 (Hartree/Particle)
Thermal correction to Energy=	0.054080
Thermal correction to Enthalpy=	0.055024
Thermal correction to Gibbs Free	e Energy= 0.021529
Sum of electronic and zero-point	Energies= -367.170226
Sum of electronic and thermal Er	nergies= -367.165021
Sum of electronic and thermal Er	-367.164077
Sum of electronic and thermal Fr	ee Energies= -367.197572

Çizelge C.28. MP2/6-31+G (d,p) teori seviyesinde hesaplanan **TS1** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.0849989378,-3.7246599902,-0.7361057242 C,-0.0838938964,-3.714933781,0.7820441926 H,0.8737028886,-3.7885430254,-1.2418839505 H,0.8756727718,-3.7723441837,1.2869584668 H,-0.849545778,-4.2937972068,1.2896026075 Br,0.3306087717,2.5108137754,-0.0156053717 Li,-0.8604830796,0.6255266372,-0.002513447 H,-0.8514928519,-4.3100205168,-1.2348669966 Si,-0.5732026997,-2.0680567493,0.0127348153

Zero-point vibrational energy	145998.9 (Joules/Mol)	
34.89456 (Kcal/Mol)		
Zero-point correction=	0.055608 (Hartree/Particle)	
Thermal correction to Energy=	0.062422	
Thermal correction to Enthalpy-	= 0.063366	
Thermal correction to Gibbs Fre	ee Energy= 0.021517	
Sum of electronic and zero-point Energies= -2944.785576		
Sum of electronic and thermal H	Energies= -2944.778763	
Sum of electronic and thermal H	Enthalpies= -2944.777818	
Sum of electronic and thermal H	Free Energies= -2944.819667	

Çizelge C.29. MP2/6-31+G (d,p) teori seviyesinde hesaplanan **TS2** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-3.2566216828,-1.2999348098,-1.416728294 C,-3.2574180725,-1.2959102952,1.4185511389 H,-2.8706986494,-1.322285574,-2.4323773607 H,-2.9922246123,-1.0139013916,2.4339933394 H,-4.0164190285,-2.0746735705,1.3678273799 Br,2.3840697358,0.9500967855,-0.0006659622 Li,0.3138378547,0.125018212,-0.0001025527 H,-4.3431831415,-1.2565801907,-1.3654253782 Si,-2.2197993108,-0.8847093407,0.0006186633

ENERGY VALUES:

Zero-point vibrational energy	136845.6 (Joules/Mol)
32.70687	(Kcal/Mol)
Zero-point correction=	0.052122 (Hartree/Particle)
Thermal correction to Energy=	0.059852
Thermal correction to Enthalpy	= 0.060796
Thermal correction to Gibbs Fre	ee Energy= 0.016857
Sum of electronic and zero-point	nt Energies= -2944.718088
Sum of electronic and thermal I	Energies= -2944.710358
Sum of electronic and thermal I	Enthalpies= -2944.709413
Sum of electronic and thermal I	Free Energies= -2944.753352

Çizelge C.30. MP2/6-31+G (d,p) teori seviyesinde hesaplanan **TS4** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.4711225693,-0.2535489276,-1.3115630683 C,0.4725188554,-0.2483983168,1.332146399 H,1.5586158877,-0.2014995868,-1.2451757364 H,1.3467947485,-0.868250227,1.1350489769 H,0.100562721,-0.3514958742,2.3505715375 H,0.1242277473,-0.5792846532,-2.2913466505 Si,-0.6280035466,0.358015272,-0.0051855794

Zero-point vibrational energy	129195.2 (Joules/Mol)
30.87840 (Kcal/Mol)
Zero-point correction=	0.049208 (Hartree/Particle)
Thermal correction to Energy=	0.053145
Thermal correction to Enthalpy=	= 0.054089
Thermal correction to Gibbs Fre	ee Energy= 0.023408
Sum of electronic and zero-poin	t Energies= -367.135477
Sum of electronic and thermal E	energies= -367.131540
Sum of electronic and thermal E	enthalpies= -367.130596
Sum of electronic and thermal F	ree Energies= -367.161277

Çizelge C.31. MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan **15** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.8547753167,-0.1534504968,-1.6711210652 C,-0.8653986388,-0.1705267098,-0.1552497954 H,0.1036063582,-0.1261930917,-2.1950685651 H,-1.5742959207,-0.7970059785,-2.176070483 Br,0.9846159879,-0.5430889991,0.7147273929 Li,-1.2208561262,-1.3050422627,1.3804197665 Si,-1.1717592323,1.51175419,-0.8595005586 H,-2.508723614,2.1285221542,-0.6918760756 H,-0.0939050372,2.4972232503,-1.1024699418

Zero-point vibrational energy	129926.7 (Joules/Mol)	
31.05323 (Kcal/Mol)		
Zero-point correction=	0.049486 (Hartree/Particle)	
Thermal correction to Energy=	0.056350	
Thermal correction to Enthalpy-	= 0.057294	
Thermal correction to Gibbs Fre	ee Energy= 0.017763	
Sum of electronic and zero-point Energies= -2947.390188		
Sum of electronic and thermal H	Energies= -2947.383324	
Sum of electronic and thermal H	Enthalpies= -2947.382380	
Sum of electronic and thermal F	Free Energies= -2947.421911	

Çizelge C.32. MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan **18** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.0002454447,-0.0000223611,-1.875045135 C,0.0002331273,-0.0000086509,-0.5635294078 H,0.9252615899,-0.000009297,-2.4522021073 H,-0.9247562464,-0.0000463192,-2.4522242636 Si,-0.0002170151,0.0000137999,1.1256289522 H,-0.0001944007,1.261141556,1.888516897 H,-0.0001441629,-1.2610930656,1.8885514008

ENERGY VALUES:

Zero-point vibrational energy	120074.9 (Joules/Mol)
28.69859	(Kcal/Mol)
Zero-point correction=	0.045734 (Hartree/Particle)
Thermal correction to Energy=	0.050389
Thermal correction to Enthalpy	= 0.051333
Thermal correction to Gibbs Fre	ee Energy= 0.019768
Sum of electronic and zero-poin	nt Energies= -367.940061
Sum of electronic and thermal I	Energies= -367.935407
Sum of electronic and thermal I	Enthalpies= -367.934462
Sum of electronic and thermal I	Free Energies= -367.966028

Çizelge C.33. MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan **TS3** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.9127766507,0.616590885,-1.973237149 C,-0.9605282613,0.6371878493,-0.5767847035 H,-0.0156207233,0.7366123917,-2.6000041958 H,-1.763020539,0.2498190107,-2.5527844825 Br,0.5821538567,-1.2650317015,0.9081530678 Li,-1.5524379707,-0.4705310771,1.0029021432 Si,-0.2013135935,2.2294065208,-0.8745744585 H,1.0212254167,2.5081430164,-1.6593395028 H,-0.9024354478,3.4587646687,-0.4377620878

Zero-point vibrational energy	127395.1 (Joules/Mol)
30.44815 (Kcal/Mol)
Zero-point correction=	0.048522 (Hartree/Particle)
Thermal correction to Energy=	0.055235
Thermal correction to Enthalpy=	= 0.056179
Thermal correction to Gibbs Free Energy= 0.016443	
Sum of electronic and zero-poin	t Energies= -2947.381318
Sum of electronic and thermal E	inergies= -2947.374606
Sum of electronic and thermal E	inthalpies= -2947.373662
Sum of electronic and thermal F	ree Energies= -2947.413397

Çizelge C.34. MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan **14** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-0.6479041676,-2.0444249567,-0.7618448846 C,-0.6478917176,-2.0444627882,0.7616884005 H,0.3187004174,-2.0740989752,-1.2581939891 H,0.3187233366,-2.0741617002,1.2580156076 H,-1.3911345234,-2.6661886455,1.2575943379 Br,0.880705002,0.961273723,0.0000294457 Li,-1.2275701483,2.0360235267,0.0002602948 Si,-1.2301656696,-0.4099110963,-0.0000369452 H,-1.3911591704,-2.6661197452,-1.2577713016

Zero-point vibrational energy	147247.3 (Joules/Mol)
35.19296	(Kcal/Mol)
Zero-point correction=	0.056084 (Hartree/Particle)
Thermal correction to Energy=	0.062936
Thermal correction to Enthalpy	= 0.063880
Thermal correction to Gibbs Fre	ee Energy= 0.024076
Sum of electronic and zero-point Energies= -2947.470890	
Sum of electronic and thermal I	Energies= -2947.464037
Sum of electronic and thermal I	Enthalpies= -2947.463093
Sum of electronic and thermal I	Free Energies= -2947.502897

Çizelge C.35. MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan **16** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,1.3822675237,-3.692984188,-0.7574089041 C,1.3823208809,-3.692956527,0.7590284248 H,2.3445233297,-3.6902400522,-1.2673914089 H,2.344722116,-3.6897118822,1.2687590259 H,0.6541807882,-4.3219367575,1.2691503674 Br,-0.9426274727,2.517608559,-0.0006872339 Li,-0.172579509,0.4602400938,-0.0000663273 H,0.6536985955,-4.3217089994,-1.2672592938 Si,0.780360344,-2.082698419,0.0008054539

ENERGY VALUES:

Zero-point vibrational energy	144505.3 (Joules/Mol)
34.53758	(Kcal/Mol)
Zero-point correction=	0.055039 (Hartree/Particle)
Thermal correction to Energy=	0.062477
Thermal correction to Enthalpy	= 0.063421
Thermal correction to Gibbs Fre	ee Energy= 0.020639
Sum of electronic and zero-poir	nt Energies= -2947.444867
Sum of electronic and thermal H	Energies= -2947.437430
Sum of electronic and thermal H	Enthalpies= -2947.436486
Sum of electronic and thermal I	Free Energies= -2947.479268

Çizelge C.36. MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan **19** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.2699846368,-0.7240917131,-0.7533028955 C,0.2699708298,-0.7240962179,0.7533044413 H,1.2313016765,-0.7217908511,-1.2655164097 H,1.2312410098,-0.7219634967,1.2655982314 H,-0.4585431467,-1.3514928387,1.2653237699 H,-0.4583807557,-1.3515883531,-1.2654033316 Si,-0.3418108273,0.916854509,-0.0000008239

Zero-point vibrational energy	136413.3 (Joules/Mol)
32.60356 (1	Kcal/Mol)
Zero-point correction=	0.051957 (Hartree/Particle)
Thermal correction to Energy=	0.055737
Thermal correction to Enthalpy=	0.056681
Thermal correction to Gibbs Free Energy= 0.026556	
Sum of electronic and zero-point	t Energies= -367.959671
Sum of electronic and thermal E	nergies= -367.955891
Sum of electronic and thermal E	nthalpies= -367.954947
Sum of electronic and thermal Fi	ree Energies= -367.985072

Çizelge C.37. MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan **17** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.0017704943,0.000119139,-1.6937686282 C,-0.0012396674,0.0000306517,1.6937685315 H,0.9296968862,-0.0000457333,-2.2533477641 H,-0.0018201131,-0.9271355834,2.254598671 H,-0.0019481221,0.9272274086,2.2545467719 Si,-0.000317906,-0.000054165,0.0000003615 H,-0.9246629286,-0.0001865255,-2.2558021598

Zero-point vibrational energy	127266.7 (Joules/Mol)
30.41747 ((Kcal/Mol)
Zero-point correction=	0.048473 (Hartree/Particle)
Thermal correction to Energy=	0.053513
Thermal correction to Enthalpy	= 0.054457
Thermal correction to Gibbs Fre	ee Energy= 0.021892
Sum of electronic and zero-poin	nt Energies= -367.916275
Sum of electronic and thermal H	Energies= -367.911235
Sum of electronic and thermal H	Enthalpies= -367.910291
Sum of electronic and thermal H	Free Energies= -367.942856

Çizelge C.38. MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan **1TS1** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.1804098335,-3.7487335112,-0.7591039848 C,0.1805809635,-3.7491980756,0.7573611866 H,1.1418708419,-3.785066392,-1.2691571596 H,1.1421457832,-3.7858412738,1.2671964566 H,-0.5724886892,-4.3476451374,1.2678675401 Br,0.11424725,2.5488662994,0.0005119176 Li,-0.8023476393,0.5422122346,0.0002668474 H,-0.5727661172,-4.3468627455,-1.2698259787 Si,-0.3497369594,-2.1131394366,-0.0003101234

ENERGY VALUES:

Zero-point vibrational energy 1	43192.4 (Joules/Mol)
34.22381 (Kcal/Mol)	
Zero-point correction=	0.054539 (Hartree/Particle)
Thermal correction to Energy=	0.061420
Thermal correction to Enthalpy=	0.062364
Thermal correction to Gibbs Free	e Energy= 0.020351
Sum of electronic and zero-point	Energies= -2947.443761
Sum of electronic and thermal Er	nergies= -2947.436880
Sum of electronic and thermal Er	-2947.435936
Sum of electronic and thermal Fr	ee Energies= -2947.477950

Çizelge C.39. MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan **TS2** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,-3.1788470041,-1.4709567653,-1.3947109847 C,-3.1789293506,-1.4708930694,1.3947611611 H,-2.822720245,-1.4533960972,-2.424465748 H,-2.9350625199,-1.2108112249,2.4245260918 H,-3.9455505319,-2.2421551986,1.3212226958 Br,2.3178807642,1.0725279425,-0.0000313617 Li,0.3123060744,0.1445058717,0.0000272712 H,-4.2629674233,-1.5560512481,-1.3212051618 Si,-2.1392704373,-0.9898916304,0.0000454935

Zero-point vibrational energy 134403.9 (Joules/Mol) 32.12329 (Kcal/Mol) Zero-point correction= 0.051192 (Hartree/Particle) Thermal correction to Energy= 0.059011 Thermal correction to Enthalpy= 0.059956 Thermal correction to Gibbs Free Energy= 0.015705 Sum of electronic and zero-point Energies= -2947.374172 Sum of electronic and thermal Energies= -2947.366352 Sum of electronic and thermal Enthalpies= -2947.365408 Sum of electronic and thermal Free Energies= -2947.409658

Çizelge C.40. MPW1PW91/6-31+G (d,p) teori seviyesinde hesaplanan **TS4** numaralı bileşiğin Kartezyen koordinatları toplam enerjisi.

C,0.4545471811,-0.2875439422,-1.2950258545 C,0.4530082122,-0.2965591088,1.3092434383 H,1.5458648622,-0.2939297554,-1.2526296436 H,1.3169682153,-0.9349227635,1.1219202609 H,0.0450290682,-0.4351385589,2.3126010482 H,0.0765594042,-0.6523136298,-2.2529669774 Si,-0.6021252792,0.4157802153,-0.0010164422

Zero-point vibrational energy	127251.4 (Joules/Mol)
30.41382 (Kcal/Mol)	
Zero-point correction=	0.048468 (Hartree/Particle)
Thermal correction to Energy=	0.052388
Thermal correction to Enthalpy	= 0.053333
Thermal correction to Gibbs Fr	ee Energy= 0.022726
Sum of electronic and zero-point	nt Energies= -367.881456
Sum of electronic and thermal	Energies= -367.877535
Sum of electronic and thermal	Enthalpies= -367.876591
Sum of electronic and thermal	Free Energies= -367.907197

KAYNAKÇA

[1] Fischer, H., The chemistry of Allenes, ed. Patai, S., Interscience Publishers Inc., London, (1964).

[2] Balci, M., Taşkesenligil, Y., Recent Developments in Strained Cyclic Allenes, Advances in Strained and Interesting Organic Molecules, ed. Halton, B., Vol: 8, JAI yayınevi, Stamfort, CT, (2000), p. 43.

[3] Christl, M., Modern Allene Chemistry, ed. Krause, N., Hashmi, S. K., Vol:1, Wiley-VCH, Weinheim, (2004), p. 242.

[4] Taylor, D. R., "The Chemistry of Allenes", Chem. Rev., (1967), 67, 317.

[5] Kosa, M., Karni, M., Apeloig, Y., "Trisilaallene and the Relative Stabilty of SiH₃
 Isomers", J. Chem. Theory Comput., (2006), 2, 959.

[6] Nori-Shargh, D., Deyhimi, F., Boggs, J. E., Jemeh-Bozorghi, S., Shakibazadeh,
R., "DFT Study and NBO Analysis of The Mutual interconversion of Cumulene Compounds", *J. Phys. Org. Chem.*, (2007), 20, 355.

[7] Zhao, Y. L., Kan, W., Zhong, H., Yu, H. T., Fu, H. G., "Combined DFT, QCISD(T), and G2 Mechanism Investigation Fort he Reactions of Carbon Monophosphide CP with unsaturated Hydrocarbons Allene CH₂CCH₂ and Methylacetylene CH₃CCH", *J. Comp. Chem.*, (2003), **28**, 1221.

[8] Algi, F., Özen, R., Balci, M., "The first generation and trapping of a fivemembered ring allene: 2-dehydro-3a,4,5,6,6a-pentahydropentalene", *Tetrahedron Lett.* (2002), **43**, 3129.

[9] (a) Wotiz, J. H., Mancuso, D. E., *J. Org. Chem.*, (1957), **22**, 207. (b) Simmons,

H. E., Blanchard, E. P., Hartzler, H. D., J. Org. Chem., (1966), 31, 295.

[10] Friedel, R. A., Retcofsky, H. L., J. Am. Chem. Soc., (1963), 85, 1300.

[11] (a) Yildiz, Y. K., Secen, H., Krawiec, M., Watson, W. H., Balci, M., "A Seven-Membered Ring Allene Dimer: Sythesis of 1,2-Benzo-1,3,4-cycloheptatriene and Atteped Synthesis of 1,2-Benzo-1,4,5-cycloheptatriene", *J. Org. Chem.*, (1993), 58, 5355. (b) Ceylan, M., Yalcin, S., Secen, H., Sutbeyaz, Y., Balci, M., "Evidence for The Formation of A New Five-Membered Ring cyclic Allene: Generation of 1-Cyclopenta-1,2-dien-1-ylbenzene", *J. Chem. Res.*, (2003), 21.

[12] Kilbas, B., Azizoglu, A., Balci, M., "Incorporation of an Allene Unit into Alpha-Piene vie Beta-Elimination", *Helv. Chem. Acta*, (2006), **9**, 1449.

[13] Schoneboom, J. C., Groetsch, S., Christl, M., Engels, B., "Computational Assessment of The Electronic Structure of 1-Azacyclohexa-2,3,5-Triene (3 Delta(2)-1H-Pyridine) and Its Benzo Derivative (3 Delta(2)-1H-Quinoline) as well as Generation and Interception of 1-Methyl-3 Delta(2)1H-Quinoline", *Chem-Eur. J.*, (2003), 9, 4641.

[14] Doering, W.v.e., LaFlamme, P.M., "A Two-Step Synthesis of Allenes From Olefins", *Tetrahedron*, (1958), **2**, 75.

[15] Moore, W.R., Ward, H.R., "Reactions of gem-Dibromocyclopropanes with Alkyllithium Reagents Formation of Allenes, Spiropentanes, and A Derivative of Cicyclopropylidene", *J. Org. Chem.*, (1960), **25**, 2073.

[16] Skattebol, L., "Allenes from gem-Dihalocyclopropane Derivatives and Alkyllithium", *Tetrahedron Lett.*, (1961), **2**, 167.

[17] Azizoglu, A., Balci, M., Mieusset, J-L., Brinker, U. H., "Substituent Effects on the Ring-Opening Mechanism of Lithium Bromocyclopropylidenoids to Allenes", *J. Org. Chem.*, (2008), **73**, 8182.

[18] Kirmse, W., "Carbene Chemistry", ed. Blomquist, A., Wasserman, H., Vol: 1, Academic Pres, New York, (1971), p.1.

[19] Closs G. L., Moss R. A., "Carbenoid Formation of Arylcyclopropanes from Olefins, Benzal Bromides and Organolithium Compounds and from Photolysis of Aryldiazomethanes", *J. Am. Chem.* Soc., (1964), **86**, 4042.

[20] Gilchrist T. L., Rees C. W., Thomas Nelson and Sons Ltd., London., (1969), p.1.

[21] Moss, R. A., Pilkiewicz, F. G., "Crown Ethers in Carbene Chemistry. The Generation of free Phenylhalocarbenes", J. Am. Chem. Soc., (1974), 96, 5632.

[22] Brinker, U. H., Ritzer, J., "Temperature Dependence of Carbene-Carbene rearrangements. A New Method for the Generation of Carbenes", *J. Am. Chem. Soc.*, (1981), **103**, 2116.

[23] Schleyer, P. V. R., Clark, T., Kos, A. A., Spintznagel, G. W., Rohde, C., Arad, D., Houk, K. N., Rondan, N. G., "Structures and Stabilities of α-Hetero-Substitued Organolithium and Organosodium Compounds. Energetic Unimpotance of Second-Row d-Orbital Effects", *J. Am. Chem. Soc.*, (1984), **106**, 6467.

[24] Mieusset, J. L., Brinker, U. H., "On the Existence of uncharged Molecules with A pyramidally Coordinated Carbon: The Cases of Pentacyclo

[4.3.0.0.(2,9).0(3,8).0(7,9)] non-4-ene and Heptacyclo[7.6.0.0(1,5)0.(6,14).0(10,14).0(10,15)] pentadecane", J. Org. Chem., (2005), **70**, 10572.

[25] Seebach, D., Siegel, H., Müllen, K., Hiltbrunner, K., "Direct ¹³C-NMR spectroscopic Observation of Cycloproylidene Bromolithiocarbenoids", *Angew. Chem. Int. Ed.*, (1979), **18**, 784.

[26] Weidenbruch, M., "A Stable Silylenoid and a Donor-Stabilized Chlorosilylene: Low-Coordinate Silicon Compounds-A Never ending story", *Angew. Chem. Int., Ed.*, (2006), 45, 4241.

[27] West, R., Fink, M. J., Michl J., "Tetramesityldisilen, a Stable Compound Containing a Silicon-Silicon Double Bond", *Science*, (1981), **214**, 1343.

[28] Weidenbruch, M., Willms, S., Saak, W., Henkel, G., "Hexaaryltetrasilabuta-1,3diene: A Molecule with Cunjugated Si=Si Dounle Bonds", *Angew. Chem.* Int. Ed. Engl., (1997), **6**, 2503.

[29] Iwamoto, T., Kabuto, C., Kira, M., "The First Stable Cyclotrisilene", J. Am. Chem. Soc., (1999), **121**, 886.

[30] Ishida, S., Iwamoto, T., Kabuto, C., Kira, M., "A Stable Silicon-Based Allene Analogue with Formally sp-hybridized Silicon Atom", *Nature*, (2003), **421**, 725.

[31] Drahnak, T. J., Michl J, West, R., "Dimethlysilylene, (CH₃)₂Si", *J. Am. Chem. Soc.*, (1979), **101**, 5427.

[32] Punanik, D. B., Fink, M. J., "The thermal İsomerization of a Silacyclobutadiene to a Cyclopropenylsilylene: Evidence for a Stable Silylene in Fluid solution", *J. Am. Chem. Soc.*, (1989), **111**, 5951.

[33] (a) Karsch, H. H., Keller, U., Gamper, S., Müler, G., "Si[(Me₂P)₂C(SiMe₃)]₂, A Stable σ -Bonded Compound Containing Divalent Silicon", *Angew. Chem.* Int. Ed. Engl., (1990), **29**, 295.

[34] (a) Escudie, J., Ranaivonjatovo, H., Rigon, L., "Heavy Allenes and Cumulenes E=C=E' and E=C=C=E' (E= P, As, Si, Ge, Sn; E'=C, N, P, As, O, S)", *Chem. Rev.*, (2000), **100**, 3639. (b) Karni, M., Apeloig, Y., Kapp, J., Schleyer, P., von R., In The Chemistry of Organic Silicon Compounds, ed. Rappoport, Z., Apeloig, Y., Wiley&Sons, Vol. 3, Chichester, (2001), p. 1. (c) Escudie, J., Ranaivonjatovo, H., "Group 14 and 15 Heteroallenes E=C=C and E=C=E", *Organometallics*, (2007), **26**, 1542.

[35] (a)Miracle, G. E., Ball, J. L., Powell, D. R., West, R. J., "The 1ST Stable 1-Silaallene", *Am. Chem. Soc*, (1993), 115, 11598. (b) Trommer, M., Miracle, G. E., Eichler, B. E., Powell, D. R., West, R., "Synthesis and Reactivity of Several Stable 1-Silaallenes", *Organometallics*, (1997), 16, 5737.

[36] (a) De Meijere, A., Faber, D., Heinecke, U., Walsh, R., Muller, T., Apeloig, Y., "On the question of cyclopropylidene intermediates in cyclopropene-to-allene Tetrakis(trimethylsilyl)cyclopropene, rearrangements -3-alkenyl-1,2,3tris(trimethylsilyl)cyclopropenes, and related model compounds", Eur. J. Org. Chem., (2001), 663. (b) Mieusset, J-L., Brinker, U. H., "On the Existence of Uncharged Molecules with a Pyramidally Coordinated Carbon: The Cases of Pentacyclo[4.3.0.02,9.03,8.07,9]non-4-ene and Heptacyclo-[7.6.0.0^{1,5}.05^{,15}.0^{6,14}.0^{10,14}.0^{10,15}]pentadecane", J. Org. Chem., (2005), **70**, 10572. (c) Satoh, T., "Recent advances in the chemistry of magnesium carbenoids", Chem. Soc. Rev., (2007), 36, 1561.

[37] (a) Backes, J., Brinker, U. H., In Houben-Weyl (Methoden der Organischen Chemie) ed. Regitz, M., Thieme: Stuttgart, Germany, (1989), Vol.E19b, 391. (b) Siegel, H., "Lithium Halocarbenoids-Carbanions of High Synthetic Versatility", *Top. Curr. Chem.*, (1982), **106**, 55.

[38] (a) Averina, E. B., Sedenkova, K. N., Borisov, I. S., Grishin, Y. K., Kuznetzova, T. S., Zefirov, N. S., "Unusual methylation reaction of gembromofluorospiropentanes with methyllithium", *Tetrahedron*, (2009), **65**, 5693. (b) Kilbas, B., Azizoglu, A., Balci, M., "Endo- and Exo-Configured Cyclopropylidenes Incorporated into the Norbornadiene Skeleton: Generation, Rearrangement to Allenes, and the Effect of Remote Substituents on Carbene Stability", *J. Org. Chem.* (2009), **74**, 7075.

[39] (a) Özen, R., Balci, M., "Generation and trapping of a highly strained bicyclic allene: tricyclo[6.3.1.0^{2,7}] dodeca-2,4,6,9,10-pentaene", *Tetrahedron*, (2002), **58**, 3079. (b) Azizoglu, A., Özen, R., Hokelek, T., Balci, M., "Incorporation of An Allene Unit into Alpha-Rinene: Generation of The Cyclic Allene 2,7,7-Trimethylbicyclo[4.1.]octa-2,3-diene and Its Dimerization", *J. Org. Chem.*, (2004), **69**, 1202. (c) Azizoglu, A, Demirkol, O., Kilic, T., Yildiz, Y. K., "Incorporation of an Allene Unit into 1,4-Dihydronaphthalene: Generation of 1,2-Benzo-1,4,5-Cycloheptatriene and Its Dimerization", *Tetrahedron*, (2007), **63**, 2409.

(d) Mahlokozera, T., Goods, J. B., "Crystal Structure of a Cyclotetramer from a Strained Cyclic Allene", *Org. Lett.*, (2009), **11**, 5095

[40] Sigal, N., Apeloig, Y., J. "Are disilacyclopropylidenes and their carbenoids good precursors for the unknown 1,3-disilaallenes?", J. Organomet. Chem., (2001), 636, 148.

[41] Gordon, M. S., Koob, R. D., "Relative Stability of multiple Bonds to Silicon-An ab initio Study of C₂SiH₄ İsomers", *J. Am. Chem. Soc.*, (1981), **103**, 2939.

[42] Sigal, N., Apeloig, Y., "Theoretical Study of Heavier Group 14 Analogues of Allene", *Organometallics*, (2002), **21**, 5486.

[43] Barthelat, J. C., Trinquier, G., Bertrand, G., "Theoretical Investigations on Some C₂SiH₄ Isomers", *J. Am. Chem. Soc.*, (1978), **79**, 3785.

[44] Maier, G., Reisenauer, H. P., Egenolf, H., "Reaction of Silicon Atoms with Acetylene and Ethylene: Generation and Matrix-Spectroscopic Identification of C₂H₂Si and C₂H₄Si Isomers", *Eur.J. Org. Chem.*, (1998), **28**, 1313.

[45] Becerra, R., Cannady, J. P., Dormer, G., Walsh, R. J., "The Addition Reaction between Silylene and Ethyne: Further Isotope Studies, Pressure Dependence Studies, and Quantum Chemical Calculations", *Phys. Chem.*, (2008), **112**, 8665.

[46] http://www.shodor.org/chemviz/overview/ccbasics.html

[47] Haug, A., "Theoretical Solid State Physics", Pergamon, New York, (2005), 302.

[48] Pople, J.A., Nesbet, R.K., J. Chem. Phys., (1954), 22, 571.

[49] (a) Hehre, W. J., Radom, L., Schleyer, P. v. R., Pople, J. A., Ab Initio Molecular Orbital Theory. Wiley Interscience, New York (1986). (b) Davidson, E. R., Feller. D., *Chem. Rev.*, (1986), 86, 681. (c) Schaefer III, H. F., "The Electronic Structure of Atoms and Molecules. A Survey of Rigorous Quantum Mechanical Results". Addison-Wesley Publ., Reading, Massachusetts (1972).

[50] (a) Parr, R. G., Yang. W., "Density Functional Theory in Atoms and Molecules", Oxford University Press, New York, (1989). (b) Hohenberg, W., Kohn, P., *Phys. Rev. B*, (1964), **136**, 864.

[51] (a) Fukui, K., J. Phys. Chem. (1970), 74, 4161. (b) Fukui, K., Acc. Chem. Res. (1981), 14, 363.

[52] Gaussian 03, Revision C.2, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J.C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V.,

Mennucci, B., Cossi, M., Scalmani,G., Rega, N., Petersson, G. A., Nakatsuji, H.,
Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima,
T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P.,
Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts,R., Stratmann, R. E.,
Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y.,
Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G.,
Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D.,
Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S.,
Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I.,
Martin, R.L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A.,
Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez,
C., Pople, J. A., Gaussian, Inc., Wallingford CT, (2004).

[53] Taylor, K. G., Hobbs, W. E., Clark, M. S., Chaney, J., "Carbenoids with Neighboring Heteroatoms. III. Electrophilic Reactions of Two α -Halocyclopropyllithium Compounds", *J. Org. Chem.*, (1972), **37**, 2436.

[54] Tolbert, L. M., Islam, Md. N., Jhonson, R. P., Loiselle, P.M., Shakespeare, W.
C., "Carbanion Photochemistry: A New Photochemical Route to Strained Cyclic Allenes", *J. Am. Chem. Soc.*, (1990), 112, 6416.

[55] De Meijere, A., von Seebach, M., Zollner, S., Kozhushkov, S.I., Belov, V. N., Boese, R., Haumann, T., Benet-Buchholz, J., Yufit, D. S., Howard, J. A. K., "Spirocyclopropanated Bicyclopropilidenes: Straightfoward Preparation, Physical Properities, and Chemical Transformations", *Chem. Eur. J.*, (2001), **7**, 4021.

[56] (a) Valtazanos, P., Elbert, S. T., Zantheas, S., Ruedenberg, K., "The Ring Opening of Cyclopropylidene to Allene- Global Features of The Reaction Surface", *Theor. Chim. Acta.*, (1991), **78**, 287. (b) Valtazanos, P., Ruedenberg, K., "The Ring Opening of Substituted Cyclopropylidenes to Substitued Allenes- The Effect of Steric and Long-Range Electrostatic Interactions", *Theor. Chim. Acta.*, (1991), **78**, 397.

[57] (a) Xantheas, S., Ruedenberg, K., "The Ring Openin of Cyclopropylidene to Allene and the Isomerization of Allene-Ab initio Interpretation of The Electronic Rearrangements in terms of Quasi-Atomic Orbitals", *Theor. Chim. Acta.*, (1991), **78**, 365. (b) Xantheas, S., Elbert, S. T., Ruedenberg, K., "The Ring Opening of

Cyclopropylidene to Allene-Key Features of The Accurate Reaction Surface", *Theor. Chim. Acta*, (1991), **78**, 365.

[58] Bettinger, H. F., Schleyer, P. V., Schreiner, P., Schaefer, H. F., "Ring Opening of Substitued Cyclopropylidenes to Cyclic allenes", *J. Org. Chem.*, (1997), 62, 9267.
[59] Wiberg, K. B., *Tetrahedron*, (1967), 24, 1083.

[60] Bettinger, H. F., Schreiner, P. R., Schleyer, P. v. R., Schaefer, H. F., "Ring Opening of Cyclopropylidene and Internal Rotation of Allene", *J. Phys. Chem.* (1996), **100**, 16147.

[61] Skancke, P. N., Hrovat, D. A., Borden, W. "Computational Study of Isomerization Reactions of Silacyclopropene", *T. J. Phys. Chem. A.*, (1999), **103**, 4043.

[62] Kerts, C., Rogers, C. W., Ruffolo, R., Leigh, W. J., "Direct Detection and Characterization of a Transient 1-Silaallene Derivative in Solution", *J. Am. Chem. Soc.*, (1997), **119**, 466.

[63] Azizoglu, A., Yildiz, C.B., "Ring-Opening Mechanism of Lithium Bromosilacyclopropylidenoids to Silaallenes", *Organometallics*, (2010), **29**, 6739.