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ABSTRACT

It is known that various nonlocal boundary value problem for the hyperbolic equa-
tions can be reduced to the nonlocal boundary problem

d?u(t)
dit?

+Au(t) = f(t) (0<t<1), u0)=au(l)+y, u'(0)=L,u(1)+v

for differential equation in a Hilbert space H with self - adjoint positive operator A.
Applying the operator approach we obtain the stability estimates for solution of this
nonlocal boundary problem. In applications this abstract result permit us to obtain the
stability estimates for the solution of nonlocal boundary value problem for hyperbolic
equations. The first and second order of accuracy difference schemes generated by the
integer power of A approximately solving this abstract nonlocal boundary value problem
are presented. The stability estimates for the solution of these difference schemes are
obtained. The theoretical statements for the solution of this difference schemes are
supported by the results of numerical experiments.
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OZET

Bilindigi gibi gesitli local olmayan hiperbolik tip sinir-deger denklemleri, Hilbert
uzayindaki kendi kendine eg positive operator A ile local olmayan sinir-deger problemine

d?u(t)
dt?
‘d6niigtiiriilebilir. Operator metod kullanarak, bu locol olmayan problemin kararliligt
elde edilmistir. '

Yapilan soyut uygulamalar bize local olmayan iki hiperbolik tip sinir-deger prob-
lemlerinin kararliligini elde etmemizi saglamigtir. Bu local olmayan hiperbolik tip sinir-
deger problemleri icin A- nin tamsay1 degerli {islerinin olugturdugu birinci ve ikinci mer-
tebeden yaklagimh sonlu farklar metodlariyla kurulmugtur. Bu sonlu farklar metodlar:
ile ¢bziimiin kararh olup olmadig: incelenmigtir ve yapilan niimerik denemelerle, elde
edilen teorik sonuglarin dogrulugu desteklenmigtir.

+Au(t) = (&) (0<t<1), u(0)=oaul)+e, u'(0)=pu(l)+y

iv
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INTRODUCTION

It is known that most problems in fluid mechanics (dynamics,elasticity)and other
areas of physics lead to partial differential equations of the hyperbolic type. These
equations can be derived as models of physical systems and consider methods for solving

boundary value problems.

A problem is called well-posed if for each set of data there exists exactly one solution
and dependence of the solution on the data continuous. Our goal in this work is to show
that various types of the nonlocal boundary value problems for equations of hyperbolic
type are well-posed. Also, consider the difference method for solving these problems.

Let us consider the simple problems for wave equations. First, consider the initial-
boundary value problem for wave equations

Pu  ,60%
W=6w, 0St<00,0<$<L, (01)
u(t,0) = u(t,L)=0, 0<t< o0,
uw(0,7) = ¢(z), u(0,z)=9(), 0<z <L

The mixed problem (0.1) can be solved using the so-called a Laplace transform
method (in t), or method of separation of variables.
The one-dimensional wave equation can be solved by separation of variables using

a trial solution
u(z,t) = X (z)T(t). (0.2)

This gives

1 °T() 1 0*X(x) = k2 k is constant.

T(t) o2  X(z) Ox?

So, the solution for X is
X(z) = Acos (kz) + Bsin (kz) .
So, the solution for T is
T(t) = E cos (ckt) + F sin (ckt) .
Applying the boundary conditions
u(t,0) = u(t, L) = 0,

we obtain
X(0)=0 and X(L)=0.

Therefore



A =0, kL = nn where n is integer.

Then
- = nw enw
u(t,z) = ,,E=1 un(t, z) = nE=1 (En cos Ayt + Fy, sin Ayt) sin AL An = A

Using the initial conditions we have that

u(0,z) = ZE" sin nwa = p(z).

n=1

Hence we must choose the E,’s so that u(0,z) becomes the Fourier sine series of
o(z)

B, =

o

L
nwT
/ o(z) sin ——dz.
L
0
In the same manner, we can obtain

= ; . NTT
Utlt=0 = [E(—En/\n sin Apt + Fy Ay, cos Ayt) sin A t=20

n=1

o0
= Z F, )\, sin T _ P(z).
n=1 L

ou .
Hence we must choose Fy,’s for t =0 — becomes the Fourier sine series of ¢(z)

ot
5 L
. nNwT
Fn)\n = Z/’l,[]((l)) s —‘L—d$
0
. cnw
or since A, = I
9 L
nmw
Fn = 571—7'; /'t,b(x) sin Td.’l;

Thus



-, L
u(t,z) = Z % / o(z) sinn?da: coS Apt (0.3)
Rt

3

0
) L
. NI . . nw
+ -c—n—w/w(a;)sm 7 dz | sin Apt p sin 7 %
0

Note that using the same manner one obtains the solution of the simply nonlocal
boundary value problem for wave equations

O*u  ,0%u
52 =c 522 ,0<t<T, 0<z <L,
u(t,0) = u(t,L)=0, 0<t<oo,
u(0,z) = ou(T,z)+o(z), |of#1,
u(0,2) = au(l,z)+¢(z), 0<z <L

However, the method of separation of variables and other classical methods can be
used only in the case when c? =constant. It is a well-known the most useful method for
solving partial differential equations with dependent coefficients in t and in the space
variables is difference method.

Second, we will consider the initial value problem for wave equation

2 2
%:cz%,0<t<oo, ~ 00 < 7 < 00, (0.4)

u(0,z) = o(z) ,u:(0,z) = ¢¥(z) , —00 < T < 0.

It is a well-known that this initial value problem can be solved using the so-called
d’Alembert’s solution, a Laplace transform method (in t), or a Fourier transform
method (in x).

Here consider d’Alembert’s solution.
Let

v=x+c , z=2x—ct, then
=1, zg=1

Let’s denote u(t,z) as a functions of v, z. By the chain rule,
Uy = UyUp + UzZg = Uy + Uy,

Upg ('U"u + uz)z = (uv + uz)',, Uy + (u'v + U'z)z 2z = Uyy T+ 27-’"07. + Uyy,

Uy = cz(um, — Uy, + Uyy)-

3



The wave equation then becomes

&u
T 920v 0

Uyz

We have that

ou
5—; = h('U),

= / h(v)dv + B(2).

So, any solution of this equation is of the form

u(t, z) = A(z + ct) + B(z — ct),

where A and B are any functions. This solution known as d’Alembert’s solution of the
wave equation. Using the initial conditions it can be written

u(z,0) = A(z) + B(z) = ¢(g), (0.5)
u:(0, 1) = cA'(z) — cB'(z) = ¥(z). (0.6)
Dividing (0.6) by ¢ and integrating with respect to x, we obtain

T
1
A(z) ~ B(&) = k(ao) + - / W(s)ds k(zo) = A(zo) + B(zo).  (0.7)
Zo
If we add this to (0.5), then 9 drops out and division by 2 gives
)= oto) + 1 [ otordo + It ©08)
— W Ty g P\t '
Zo
Subtraction of (0.7) from (0.5) and divided by 2

B(z) = s0(a) - o / 9(s)ds ~ 5k(zo). (0.9)

In the equation (0.8) £ — z + ¢t integral from z, to z + ct.
In the equation (0.9) z — z — ¢t and get mines an integral from z, to z — ct
or plus integral from z — ct to zy. Thus, our final result is

u(t,2) = 2 [p(a +ct) + p(z — )] + - / w(s)ds. (0.10)

z—ct



However, this method and other methods can be used only in the case when c?=constant.

Most difference schemes for solving the wave equations are conditionally stable. In this
work it studied the unconditionally stable difference schemes.

It is known that various nonlocal boundary value problem for the hyperbolic equa-
tions can be reduced to the boundary value problem )

d?u(t)
dt?

for differential equation in a Hilbert space H with self - adjoint positive operator A.

In the present work the stability estimates for solution of the last nonlocal boundary
problem are obtained. In applications this abstract result permit us to obtain the sta-
bility estimates for the solution of nonlocal boundary value problem for the hyperbolic
equations. The first and second order of accuracy difference schemes generated by the
integer power of A approximately solving this abstract nonlocal boundary value prob-
lem are presented. The stability estimates for the solution of these difference schemes
are obtained. The theoretical statements for the solution of this difference schemes are
supported by the results of numerical experiments.

Let us briefly describe the contents of the various sections.It consists of an intro-
duction ,conclusions and three sections.First section presents all the elementary Hilbert
space theory that is needed for this work. Second section consists of four subsections. A
brief survey of all investigations in this area can be found in the first subsection. Second
subsection is devoted to the study of the stability of this nonlocal boundary value prob-
lem.In last two subsections the first and second order of accuracy difference schemes
are presented. The stability estimates for the solution of these difference schemes are
obtained.Third section is devoted to the numerical analysis.

+Aut) = f(t) (0<¢<1), w(0) =au(l) +¢, w(0) = Bu'(l) + 4



1 ELEMENTS OF HILBERT SPACE

This section is the selected concepts of the elementary Hilbert space theory as developed
in [24]-[26]. Several examples and problems are given to illustrate concepts and their
applications to differential equations.

1.1 Hilbert Space

Definition 1.1. A complex linear space H is called an inner product space if there is
a complex-valued function {.,.) : H x H — C with the properties

i. {z,z)>0 and (z,z) =0 <= =z=o,

i (z,y) = {y, ) forall z,ye H,

. (oz,y) = alz,y), forall z,y€ H and « € C,

w. {z+y,2z) ={(z,2) +(y,2) foral z,y,z€ H.

The function (z,y) is called the inner product of x and y. A Hilbert space is a
complete inner product space. An inner product on H defines a norm on H given by

lz]| = (=, w)% . Hence inner product spaces are normed spaces, and Hilbert spaces are
Banach spaces.

Example 1.1. The space Cz [~1,1] of all defined and continuous functions on a given
closed interval [—1,1] is an inner product space with the inner product given by

(z,5) = / 2(ty @)t (L1)

Solution.

(z,z) = / lz()|*dt >0 and (z,z) =0 <= z(t)=0,

8

@) = [ 20§ = [a@y@d- [ Omd

y(t)z(t)dt = (y,z),

Le—

N ECOLS
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(az,2) = /ax(t)z_(tjdt = a/x(t)—z—(t_)dt = a(z,z),

(z+y,2) = / [z(t) + y(2)] 2(t)dt = / z(t)2(2)dt + / y(t)z(t)dt
= (z,2) + (y,2) .

So, the space C2[~1,1] is an inner product space.

Note that the space Cy [—1, 1] is not complete.

Let
-1, -1<t< -4
z, (1) = nt, —-L<t< Y
1, <<
Then
-1, —-1<t<0,
z(t)=limz()=¢ O, t=0,
e 1, 0< t<1

Let us prove that z, (¢) is a Cauchy sequence

l|zn — -'L'm“oz{—1,1] = (/ |Zn(t) — Zm (t)|2 dt)
< ( [ 1oty -2 o dt) ¥ ( [ s~ 2m 1P dt)

op—

2

[

Since

1
1 2
2
- 2 < s
(/ |z (t) — z (2)] dt) < V3n’ we obtain
o1

2 2
120 = Zmllyiayy < 4/ 5=+ 4/ 5
2 2
—+4/— =0 when n — 00 , M — OQ.
3n 3m

So, {zn (t)},~, is a Cauchy sequence but not convergent , since z (t) ¢ Co[-1,1].
Then, Cy[-1,1] is incomplete, that is, Cy[—1,1] is not a Hilbert space.

7



Example 1.2. The space Ly [~1,1] = Cy[~1,1] with the inner product (1.1) is a
Hilbert space.

Theorem 1.1. Let z,y be any two vectors in a Hilbert space, then

[z, o)l < =l llyll ( Schwartz inequality). (1)

Proof. If y = 0, then the last inequality holds since {z,0) = 0. Let y # 0 for any
scaler A we have

0< |lz = Ml = (& - My, z — W) = (z,3) — (7, \v) — My, 2) + (g, M)

= {lal* - Xy, z) — Ay, ) + AL Iyl .
We see that if

’“=<x1y> n
A=
I M PN LG R
O lell” =y 02 = 2 + g vl
o L@l el Kol
e W B T

0 off - KL o

Kz, ) < Jlal® lylf® or

Wz, ) <l vl -
Note that the inner product is related to the norm by the following identity

1 . , ,
@y =7 [(l=+ 9l = llz = 9I*) +4 (lz + &l* - ll= - ll)] - (1.3)
A norm on an inner product space satisfies the important Parallelogram law
Theorem 1.2. If H is a Hilbert space, then

lz+yl2+lle -l =2lz|®+2|lwl* , Vz,yeH (Paralelogram law) (1.4)

Conversely, H is a complez complete normed space with the norm ||-|| satisfying
the equation (1.4) then H is o Hilbert space with the scalar product {-,-) satisfying

llz]) = (z,7)% .



Example 1.3. The space P of all sequence, x = (§;) = (§1,&,,...) such that |&,F +
|&,F + ... converges with p # 2 is not an inner product space,hence not a Hilbert space.

Solution. Our statement means that the norm of I? with p # 2 cannot be ob-
tained from an inner product. We prove this by showing that the norm does not
satisfies the parallelogram law (1.4). Infect let us take z = (1,1,0,0,...) € I? and
y=(1,-1,0,0,...) € I” and calculate

Izl = llyll =22, llz+yll = llz~yll =2

We now see that (1.4) is not satisfied if p # 2.

[P is complete. Hence [P with p # 2 with is a Banach space which is not a Hilbert
space.

Example 1.4. The space C[a,b] is not an inner product space,hence not a Hilbert
space.

Solution.We show that the norm defined by

= t
I = max [z (9)
cannot be obtained from an inner product since this norm does not satisfy the paral-
lelogram law (1.4). Indeed, if we take z (¢t) =1 and y(¢) = (t—a)/ (b —a), we have

lzll =1, |lyll =1 and
t—a

z(t)+y(t)=1+

b—a’
2@ —y()=1— 2%
b—a
Hence
lz+yll=2]z-yl=1
and

lz+yl* +llz =yl =5 but 2(jlll*+llyll*) = 4

We now see that (1.4) is not satisfied. So, the space C[a,b] is not an inner product
space.

1.2 Bounded Linear Operators in H

Definition 1.2. Let H; and H; are two Hilbert space. A linear operator A is an operator
such that A : H; — H,

Alaz + By) = aAz + BAy forall o,f€C andz,y € Hy.
The domain of A D (A) = {z € H,,3Az € H,} is a vector space and
R(A) = {y = Az,Vz € D(A)} denotes the range of A.



A linear operator A : H — H is said to be bounded if there exist a real number
M >0 such that

|Azlly <M ||zl forall ze€ H. (1.5)
If A linear operator A= H — H is bounded with M, then
|A|l = inf M (1.6)

is called the norm of operator A.

Example 1.5. A bounded linear operator from H = L, [0,1] into itself is defined by
Az =tz(t) , 0<t <1, (1.7)

Solution.
A (azy + Bzs) =t (azy (t) + Bzs (1) = atzy (t) + Btzs (t) = aAzy + BAL,.

So, A is a linear operator.

1
”A-'17”L2[0,1] = (/t2 I-’E(tl dt) (/ |$(t)| dt) ”93”1,2[0,1] :

0
So, A is a bounded operator.

Example 1.6. Another bounded linear operator L, [0,1] into itself is defined by

Az(t) = / tsw(s)ds. (1.8)

Solution.

Alaz, + fze) = / ts[az1(s) + Bza(s)] ds

1

= / tsz1(s)ds + B / tsza(s)ds

= aA:z:l + ,BA$2

So, A is the linear operator. Using the Schwartz inequality, we obtain

sl = ( / |Ax(t>|2dt) / / taz(s)ds
/lt /1 s)ds 2 /ls:z: (s)ds

10

1
2 2

dt

[ Ll

1
3




A e
(;) el o

||37“L2[0,1] .

W=

So, A is the bounded operator.

Theorem 1.3. The norm of the bounded linear operator A is

41 = aup Az . R— (19)

zl|< oo |17l llz)|l=1

Example 1.7. A is an operator defined by Az = az(t), A:Ly[0,1] — L9[0,1].
Show that ||Az| = |o|.

Solution.

(S

”Ax“Lg[O,l] = (/ [ax(t)|2 dt) = |o] ||$”L2[o,1]°

0

So,
|All= sup ||A$||L2[0,1] =la| sup ||$”L2[0,1} = |al.
1zl £ 0,13=1 #llpy00,1=1

1.3 Adjoint of an Operator

Definition 1.3. Let A: H; — H; be a bounded linear operator, where H; and H,
are Hilbert space. Then the Hilbert adjoint operator A* of A is the operator

A* Hy — Hl,
such that for all z € H; and y € Hy
(Az,y) = (z, A™y) .

Theorem 1.4. The Hilbert adjoint operator A* of A is unique and bounded linear

operator with the norm
4™ = 1|A]l.- (1.10)

Definition 1.4. A bounded linear operator A : H — H on a Hilbert space H is
said to be self-adjoint if (Az,y) = (z, Ay) for all z,y € H.

Definition 1.5. A self-adjoint operator A is said to be positive if A > 0, that is
(Az,z) > 0 for all z € H.

Example 1.8. A is an operator defined on the ezample 1.5. Show that if o € R!, then
A is a self-adjoint operator.

11



Solution. If @ € R', then

Az(t)y (t)dt = / az(t)y (t)dt

o\’—' o\»—*

(Az,y)

z(t)ay (t)dt = (z, Ay) .

A is the self adjoint operator. If & € R! and o > 0, then the operator T is positive
operator. Actually

(Az,z) = /ax(t)a_:-(t_)dt =a(z,z) > 0.

Example 1.9. A is an operator defined on the example (1.7). Show that A is a
self-adjoint positive operator.

Solution.
1

(Au,v) = jsu(s)g—(s—)ds = /u(s)smds = (u, Av) .

o

- So, A is the self-adjoint operator.
1 1
(Au,u) = /su(s)u (s)ds = /s lu(s)|*ds > 0.
0 0

Definition 1.6. Let A: D (A) — H be a linear operator with D (4) = H. Then
A is called a symmetric if (Az,y) = (z, Ay) forall z,y € D(A).
If A is symmetric and D (A) = D (A*), then A is a self-adjoint operator.

Example 1.10. Let Au= —% +u , wule)=uld)=0 oand H= Ly[a,b]
Show that A is a self-adjoint positive operator.

Solution.

Alou+ Bv) = _ﬂo‘_;g’__ﬁ“) + ou + B
=0 (—@+u> + 8 (—-@—l—u)
dz? dz?
= aAu + BAv.

So, A is the linear operator.

12



Since

b 1/2
o = ([2) = ()" = (o)

u(z) = (z—a)’* € Ly[a,b]. But

“Au”Lg[a,b] = J /b ("— (z - _9/4 +(z - a)'1/4)2dx
= J /b (21;)6 (z—a)™% - g (z—a)"+(z— a)‘1/2> dz

b
S )'7’2-%<w-ar3/2+z(x—a)”2} = oo,

So, A is the unbounded operator.

(Au) = /b{—f—z-l-u(x)} @)ds

" M
= /u(x) {————l— v(z )}da;
= (u,Av)

D(A) = {u : (-32—2 +u) € Ly [a,b], u(a) = u(b) = 0} .

1
d?u 2\’
full sy = / R I

< 2[fullzaa + 14"l zagas

b
< 3 ( [ (o + e + ' or) dt)

aQ

= 3ilu
el gy

[N

Since ,

/ ()] dt = /b o () da(D) = — /b W (Hya()dt.

a
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”U'“z,z[a,b] =

b
/ W () a(Ddt

R 172, , 1/2
( / Iu”(t)lzdt) ( / W)fdt)

(Jreora) " +(frora) "

2

IA

< lullpeay -

Really, we have that

0 (2

)
D(A) =V([)/'2 [a,b] (W2 [a,b] is the Sobolev’s spa.ce) . (1.11)

Since
0o (2
Wa [a,b] = La[a,b]

it follows that D(A) dense in L; [a,b]. Then, A is the symmetric operator in Ly [a, b] .

(2)
Since D(A*) =V([)/2 [a,b]. We have that D(A*) = D(A). Therefore A is the self-

adjoint operator.

(Au,u)=/b{—~f—z+u( )}-@dx (1.12)
/———u x)d$+/|u(a:)l dz
du

d dx—l-/lux)] iz > 0.

So, A is the positive operator.
As a result, the operator A is positive defined self adjoint linear operator in L, [a, b] .

1.4 Spectrum

Definition 1.7. Let H be a Hilbert space and A : H — H be a linear operator with
D (A) C H. We associate the operator Ay = A— Al , where A € C and [ is the identity

operator on D(A).

4
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If A, has an inverse, we denote it by R, (A) and we call it the resolvent operator
of A, or simply, resolvent of A.

Ry(A) = (A=D1, (1.13)

Definition 1.8. (Regular value, resolvent set, spectrum)
Let A be a linear operator with the D(A) C H and H is a Hilbert space. A
regular value A of A is a complex number such that
(R1) R)(A) exists.
(R2) R)(A) isbounded.
(R3) Rx(A) is defined on a set which is dense in H.

The resolvent set p (A) of A is the set of all regular values of A. Its complement
o(A) =C — p(A) is called spectrum of A , and a A € o (A) is called spectral value of
A. Furthermore, the spectrum p(A) is partitioned into three disjoint sets as follows.

The point spectrum or discrete spectrum ¢, (A) is the set such that R, (A)
does not exist. A A € o (A) is called an eigenvalue of A.

The continuous spectrum o, (A) is the set such that Ry (A) exists and satisfies
(R3) but not (R2), that is Ry (T) unbounded.

The residual spectrum o, (A) is the set such that Ry (A) exists (and may be
bounded or not) but does not satisfy (R3) , that is the domain of R, (A) is not dense
in H.

If Axx = (A— M)z =0 for some z # 0, then A € o, (A), by definition, that
is, A is an eigenvalue of A.

The vector z is called an eigenvector of A corresponding to eigenvalue A. The
subspace of D(A) consisting of 0 and all eigenvectors of A corresponding to an eigenvalue
A of A is called the eigenspace of A corresponding to that eigenvalue A.

o(A)=0.(A)Uo,(A)Uac,(4), (1.14)
oc(A)Up(A) =C.

Definition 1.9. Let H be a Hilbert space over the field of real numbers and for any
z € H , let ||z| denote the norm of z. Let J be any interval of the real line R. A
function z : J — H is called an abstract function.

A function z(t) is said to be continuous at the point ¢y € J,
if
Jim [}a(t) - a(to)l| = 0
ifz:J— H is continuous at each point of J, Then we say that z is continuous on J
and we write z € C [J, H].

Definition 1.10. The Stieltjes integral of a function z : [a,b] — H with respect to
a function y : [a,b] — H;. Let H, Hy, H, be three Hilbert space. A bilinear operator
P: H x Hy — Hy, whose norm is less than or equal to 1, that is,

1P (z,9) 1< M=yl (1.15)

15



is called a product operator. We shall agree to write P (z,y) = zy. Let z:[a,b] —
H and y: [a,b] = H; be two bounded functions such that the product z(t)y(t) € Ha,
for each t € [a,b] is linear in both x and y and

le@y@Il < llz@lHly @)l

(for example, z(t) = A(t) is an operator with domain D [A (¢)] D Hi, or one of the
function x,y is a scalar function). We denote the partition (a =t; <t <ty < ... < t, = b)
together with the points 7; (t; < 71 < ti41,1=0,1,2,..,n—1) by 7

and set |7|=max; |t;11 — t;| . We form the Stieltjes sum

Se= S (m) [y (ier) — (8], (1.16)

i=1

If the lim S, exist as |7| — 0 and defines an element I in H, independent of T,
then I is called the Stieltjes integral of the function z (¢) by the function y (¢), and is

denoted by
b

/ 2 (8)dy (2). (1.17)

a

Theorem 1.5. Ifz € C|[[a,b],H] and y : [a,b] — Hy is of bounded variation on
[a,b], then the Stieltjes integral (1.17) ezists.

Consider the function y : [a,b] — H; and the partition

T:a= te<t1 <ty <..<t,=b.

Form the sum

V=3l () —y @1 | (118)

i=1

The least upper bound of the set of all possible sums V is called the (strong)
total variation of the function y(t) on the interval [a,b] and is denoted by V? (y). If
V2 (y) < oo, then y (t) is called an abstract function of bounded variation on [a,b].

Example 1.11. If z € Ca,b],H] and y : [a,b] — H; is of bounded variation on
[a,b], then

b

/ (t)dy (¢

a

/Ilm @l 4V, Ty ()] < max Iz @)1 Ve [y )] (1.19)

1.5 Application of Spectral Representation of the Unit Matrix

Consider the initial value problem for the system of linear differential equations

2 +4z=0,>0,5(0) =3 (1.20)

16



where

A= G ’11) . z= (2) . (1.21)

The solution of the given initial value problem (1.2) is

2(£) = exp(—At)zo < (28) — exp(—At) (22) o (1.22)

The characteristic equation (1 — A\)2+ 1 = 0 has roots A; = 1+ and A, =1 — 1. The

7') as an eigenvector. The eigenvalue A\ =1 —1

eigenvalue A\; = 1 + ¢ has the vector (1

yields an eigenvector C) Therefore, the spectral representation of unit matrix

(22) = —‘;‘(ixm — Zz0) (i) - %(ixzo — Z10) (i) , (1.23)

exp(—tA) (xm) =

Z20

and

_% exp(—(1 + 1)) (iz10 — T20) (;) - %exp(—-(l — 4)) (im0 — T10) C)
_ ( (L exp(—(1+)t) + § exp(—(1 — )t))z10 + (§exp(—(1 +9)t) — 3 exp(=(1 ~ 1)t))z20 )
(—i exp(—(1 +i)t) + & exp(—(1 = )t))a10 + (§ exp(—(1 +9)t) + 5 exp(—(1 — 9)¢))z20
3 exp(—t) cos(t)z10 + exp(—t) sin(t)za0
~ \ — exp(—t) sin(t)z10 + exp(—t) cos(t)z2o '
Hence using the formula (1.22)
(371 (t)) B ( exp(—t) cos(t)z10 + exp(—t) sin(t)z20 ) —

z2(t)) ~ \ — exp(—t) sin(t)z10 + exp(—t) cos(t)z20

1 (t) = exp(—t) cos(t)z10 + exp(—t) sin(t)z2o,
T(t) = — exp(—t) sin(t)z10 + exp(—t) cos(t)z2o.

Now let us return to the problem (1.21). It is known that Euler’s method for approxi-
mate solution of the initial value problem (1.21) is

Up — Ug—1
T

+ Aup =0,k > 1,u0 = z0. (124)
The solution of this problem is
ug = (I +7A) Fug, k> 1. (1.25)

Using the formula (1.23) the solution of difference method (1.24) is obtained.

=i we) (1) St~ (1)
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1 : .
(2(1+1"(11+i))k + 2(0+7(1-1))F ) Ui + (2(1+r(21+i))7= - 2(1+7'(zl—i))") U20

- - . 1 1
(‘ S () T 2(1+‘r(zl—i))") u10 + (2(1+‘r(1+i))k + 2(1+7'(1—z'))") Uz20

Thus, representation of unit matrix permits us to obtain the solution of initial value
problem for system differential equations and for difference schemes. )

1.6 Projection Operator. Spectral Family

Definition 1.11. A Hilbert space H is represented as the direct sum of a closed
subspace Y and its orthogonal complement Y :

H=YoY"t (1.26)
r=y+z , where yeY,zeY" .

Since the sum is direct, y is unique for any given z € H. Hence(1.26) defines a linear
operator

P:H— H,
z — y = Pz.
P is called an orthogonal projection or projection on H.

Theorem 1.6. A bounded linear operator P : H — H on a Hilbert space H is
projection if and only if P is self-adjoint and idempotent that is, P2 = P.

Spectral family from dimensional case as follows: If matrix A has n different eigenval-
ues A; < Ay < As... < A,. then A has an orthogonal set of n vectors z1, z2, z3, ..., Tn,Where
z; corresponds to A; and we write these vectors as column vectors, for convenience. This

basis for H, has a unique representation:
n
z= Z V5%, v = (T 35) = 2'7; (1.27)
i=1
z; is an eigenvector of A, so that we have Az; = A;z;.
n
Az = Z )\i’)’j.’L'j. (1.28)
=1
We can define an operator
P;:H — H, (1.29)

Obviously, P; is the projection (orthogonal projection) of H onto the eigenspace

of A corresponding to A; . From the equation (1.27) can be written

18



T = Zn: Pz hence I= Z P, (1.30)

j=1 j=1
where I is an identity operator on H.
Formula (1.28) becomes
Az = }E NPz hence A= Z A B;. (1.31)
j=1 j=1
This is a representation of A in terms of projections.

Theorem 1.7. Spectral Theorem: Let A: H — H be a bounded self-adjoint
linear operator on a complex Hilbert space H. Then there exists a family of orthogonal
projection {E (A)}, A € R such that

)\1 S )\2 implies that & ()\1) E (/\1) =F ()\2) E (Al) =F (Al) ’
E(\A+¢)— E()\) (strongly) ase — 07
E(A) =0 (strongly) as A — —o0,

and
E()) = I (strongly) as A — +o0;

a) A has the spectral representation
M
A= / AdE), (1.32)

where E) is the spectral family associate with A; the integral is to be understood in the
sense of uniform operator convergence, and for all z,y € H.

M
(Az,y) = / Adw (A) w(\) = (By, 1) (1.33)

m—0
where the integral is an ordinary Riemann-Stieltjes integral.

b) If P is a polynomial in X with real coefficients,
P(X) = oz + an12™ 4+ ..+
then the operator P (A) defined by
P(A) = 0y A" + an 1 A"+ .+ o]

has the spectral representation

P(4) = / P(\) dE) (1.34)

m~0

and for all z,y € H.

19



Theorem 1.8. Let A : D(A) — H be a self-adjoint linear operator, where H is a
complez Hilbert space and D (A) is dense in H. Then A has the spectral representa-

tion o .
A= / ME,  and I= / dE,. . (1.35)

If F is the continuously bounded function on [m, o], then
M
F(4) = / F () dEj. (1.36)
m
Note that, from theorem 1.8 and property of E) and Stieltjes integral it follows

IF (4) 2] < / F W) d[1Bsal] < / |f ()] dE; |1z

< s |7 [ dB;
m<A<oo

IF (@)l < sup_|£ )]l

IF @< sup |F(A)]- (1.37)

mLA<Loo

Example 1.12. A is an operator defined on the example 1.10. Show that
lexp(—At)|| < e, (1.38)
leos (AY20)]| < 1, [|AY2sin (AY2%)]| < 1.

Solution. Using the spectral representation of the self-adjoint positive defined op-
erators we can write

o0
exp(—At)p = / exp(~—pt)dE,p,
1

where (E,) is the spectral family associated with A. Therefore, for any t > 0 we have
that
fexp(=At)llsn < sup [exp(—pt)| = exp(-).
<u<oo

The estimate (1.88) is proved. Using the spectral representation of the self-adjoint
positive defined operators it can be writen

o0
. 11/2 o0 1/2
ei’A tso:f ein“ dE“(,O
1

Therefore, using the last theorem

< sup || =1

s AL/2
”e:tzA t’
1<pu<oo
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is obtained.

So,
A eiAl/zt + e—z‘AI/?t
" [Jeos (4%) || = 5
< %[ A2t || g—ia2e ] <1
and
12 g (412 eiAl/zt_e—iAl/%
| 42sin (4220 = |
<rllen e <
1
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2 DIFFERENCE SCHEMES OF NONLOCAL
BOUNDARY VALUE PROBLEMS FOR HYPER-
BOLIC EQUATIONS

2.1 The Problem

It is known (see, for example, [1]-[2]) that various initial boundary value problems for
the hyperbolic equations can be reduced to the initial value problem

dt?

u(0) = p,u'(0) =

for differential equation in a Hilbert space H with self -adjoint positive defined operator
A.

{ Pul)  Au(t) = f(¢) (0<t<1), (2.1)

In the paper [3] the first order of accuracy difference scheme for approximately
solving problem (2.1)

fo=f(@), ts=kr, L<E<N-1Nt=1,

T‘z(uk.,_l — 2ug + uk_l) -+ Auk+1 = fk,
T_l(ul = Uo) + iA1/2u1 = iA1/2u0 + ’l,L', U = @

was considered. The stability estimates for the solution of this difference scheme were
obtained. In the papers [4]-[5] the similar results for the solutions of the second order
of accuracy of the following difference schemes

T2 (up41 — 2ug + Up—1) + Aug + %Azuk+1 = frs
fk=f(tk),1SkSN—1,NT=1,

T_l(’ul - Uo) + ,,,A1/2(I + %Al/z)ul = 21,

o= (I +ir AV + L fo+ (1AT — T A)ug, fo = f(0),u0 = ¢,

T2 (Ugg1 — 20k + Up—1) + 3 A(Uks1 + 2up + up—1) = fi,
fo=Ff(t),1<k<N-1,Nr=1,
T;l (ul - Uo) + —%Al/?(ul + uo) = 21,
3 s a1
2 = (I + %Alﬂ)@b + %f() + (ZA§ - 1—24)’11,0, fo = f(O),uo =@

for approximately solving initial value problem (2.1) were obtained. However, for prac-
tical realization of these difference schemes it is necessary to comstruct an operator
A2 This is the difficult action for a computer.Therefore, in spite of theoretical results
the role of their application of a numerical solution for an initial value problem is not
great. In the paper [6] the first and second order of accuracy difference schemes gener-
ated by the integer power of A approximately solving initial boundary value problem
(2.1) were presented. The stability estimates for the solution of these difference schemes

were obtained.

The well-posedness of the nonlocal boundary value problems for parabolic, elliptic
equations and equations of mixed types have been studied extensively, see for instance
[7]-[23] and the references therein.
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In the present work the nonlocal boundary value problem for hyperbolic equations

are considered. e

{ Tl 1+ Au(t) = f(t) (0<t<1), (2.2)

u(0) = au(1) + ¢, v/(0) = Bu'(1) + ¢ '

in a Hilbert space H with self -adjoint positive defined operator A. The stability esti-
mates for solution of the nonlocal boundary problem (2.2) are obtained. In applications
this abstract result permit us to obtain the stability estimates for the solution of nonlo-
cal boundary value problem for the hyperbolic equations. The first and second order of
accuracy difference schemes generated by the integer power of A approximately solving
this abstract nonlocal boundary value problem are presented. The stability estimates
for the solution of these difference schemes are obtained. The theoretical statements
for the solution of this difference schemes are supported by the results of numerical
experiments.

2.2 The Differential Hyperbolic Equation

A function u(2) is called a solution of the problem (2.2) if the following conditions are
satisfied:

i) u(t) is twice continuously differentiable on the interval (0.1) and continuously
differentiable on the segment [0, 1]. The derivatives at the endpoints of the segment are
understood as the corresponding unilateral derivatives.

ii) The element u(t) belongs to D(A) for all ¢ € [0,1], and the function Au(z) is
continuous on the segment [0, 1].

iii) u(t) satisfies the equations and the nonlocal boundary condition (2.2).

If the function f(t) is not only continuous, but also continuously differentiable on
[0,1],¢ € D(A) and ¢ € D(A%), it is known that (see,for example,[2]) the formula

u(t) = OT{(1 - e(la [ s(1 = NN dA+¢] (2.3)

+as(1)[B / c(1 = N FNAA + 9]} + sET{(L — ac(1))[ / (1= A FO)dA + 9]

—ﬁAs(l)[a/s(l — AN f(A)dA + o]} + /s(t = A)f(A)dA
0 0

gives a solution of problem (2.2). Here

T=(1+af— (a+pB)c(1)

itAL/2 —itAl/2 JitAl/2 —z‘tAlfz
e +e ( t) — A2 e
2 27

c(t) =
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Theorem 2.1. Suppose that ¢ € D(A) ¥ € D(A?) and f(t) are continuously differ-
entiable on [0,1] function and |1 + aB| > |a+ B|. Then there is a unique solution of
the problem (2.2) and the stability inequalities

e || 6) < M [n ol + | 4720 s + e | A7250) nH] S (24

max | A1%u(0) < M [n Al g +11% Nl + g | £ nH] o (@5)
d*u(t) 1/2

e | 20 |+ g | 4u() < M) Al 1 %6 0 09

+150) lr + [ 11 £0) s

hold, where M does not depend on f(t), t € [0,1], and ¢, 9.

Proof.From the symmetry and positivity properties of the operator A it follows
that 4
T <
ITllzs < 5 opr = Tar Al
le(@)l| -z < 1,1|A%5(8)]|msm S 1. (2.8)
Using the formula (2.3)and estimates (2.7) and (2.8) we obtain

(2.7)

lu@)llz < lle@a-alTla-a {1+ 8lllc) | z-x)

<l [ 1A% = Vllzoall4 )i + ol

+|o[| AZs(1) || g xllB] / e = Ml zoall 473 FO) | zdA + | A7 3¢]| ]}
+|| A2 s(@) o a | T z-m{(1 + lellle() ] z-x)

(18] / lle(l = Mllzozl A~ FO)|lzd + 1A 2]z + 18 AZs(1) ||z
o] [ 148501 = Nll-ml A~ 7O + lelal)
+ [ 14ks(e = Va4 )l
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<3 [l ol + 1 A7 i+ g | 472562 I

0<t<1
Applying A? to the formula (2.3)and using the estimates (2.7) and (2.8)in a similar

manner we obtain

142wl < lle@ |-l Tla-a{(1 + Blllc)]l z-z)

ol [ 14ts(a = Wl SO dd + bl

ol A%s(1) o181 [ ot = Nl F ) 1A + Illl}
+HlA () -2 | Tl {1+ lelle(0) -2

<181 [ 162 = Vol FO)lladA+ [l + 1811 A3 5(1)
el [ 1435(1 = Nzl £ + 1 Abola)
+ [ 14Fs(t = Dllaomll V)

0<t<1

<M [” A% g + || ¥ ||z + max || f(2) ”H] .

Now, we obtain the estimate for || Au(t) ||z- Applying A to the formula (2.3) and
using an integration by parts, we can write the formula

1

Au(t) = c(OT{(1 ~ Be(1)lalf 1) - () £(0) = [ et = NF NN+ Ag]

0

1

+aAs(1)[B[-s(1) f(1) + / s(1 = N f'(A\)dA] + ]}

+ASET{(1 — ac)BL-sF ) + [ 5(1= ) F W]+
0

~BAslalf(1) )/ (0) = [ o1 NF (A + 4]}

]
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+£(1) — () £(0) - jc

Using the last formula and estimates (2.7), (2.8),we can obtain

lAv(@®lla < lle@llz-al|TIla-a{Q + [Blllc()|z-x)

x[ledllf (Wl + el a-all FO)x + / lle(1 = Mlla-allf (M| 2dA] + || Al ]

1
+al|A2s(1) || aoa Bl AT F (Wlz + / I A%5(1 = M)[lzomll £/ (0| 2dA]
+H|ATY||g]} + (AT s zoml Tl a-a{Q + e z-m) 18I AT ()| el F D) 2

+ [ 14350 = Nl 7 ()] + 1 A4F ]

+HBIllAZs(W) | z-alledllf D)1z + le@llz-rllfOfl2)+

J et = )l £ ) ]+ il + 150+ @)z £ O)
+ [Nt = Wzl )l < M| A

+ 1| A% |lg + 1| £(0) & +/ I /(@) |l at.

Then from the last estimate, it follows that

g | Au(0) < [1 A N+ A% N+ 11 500) i+ g 1 7/6) 1]

By the last estimate and the triangular inequality there follows the estimate (2.6).
Theorem 2.1 is proved.
First,for application of Theorem 2.1 we consider the mixed problem for wave equa-
tion
uyg — (a(2)uz)s +u= f(t,2),0<t<1,0<z<1,
u(0,7) = au(l,z) + ¢(z), us(0, 7) = Bue(l,2) + 9(2),0 <z < 1, (2.9)
u(t,0) = u(t, 1), us(t,0) = ug(¢,1),0 <t < 1.

The problem (2.9) has a unique smooth solution u(¢,z) for |1 + af| > |af + ||
and the smooth a(z) > 0(z € (0,1)), p(z), ¥(z) (z € [0,1]) and f(¢,z) (¢,z € (0,1))
functions. This allows us to reduce the mixed problem (2.9) to the nonlocal boundary
value problem (2.2) in Hilbert space H with a self- adjoint positive defined operator A
defined by (2.9). Let us give a number of corollaries of the abstract theorem 2.1.
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Theorem 2.2. For solutions of the mized problem (2.9) the stability inequalities

0<it<1 jl

max ax || u Hw,l[o 1]< M [max I f Nzao) + I @ lwgroay + 1l % llzao

ax || u ||W2[o 1) + max | wit (| zajo1;

0<t<l 0<i<1

< [ 11 e sy + 1700 o+ 11 g+ 1% o

hold, where M does not depend on f(t,z) and ¢(z), ¥(z).

The proof of this theorem is based on the abstract Theorem 2.1 and the symmetry
properties of the space operator generated by the problem (2.9).

Second, let 2 be the unit open cube in the n-dimensional Euclidean space R* (0<
2 < 1, 1<k <n) with boundary S, @ =QUS. In [0,1] x  we consider the mixed
boundary value problem for the multi-dimensional hyperbolic equation

o?u(t, =
Fulbz) . > (oo ), = £16,9), (2.10)
z=(21,...,2n) €2, 0<t<1, ,

u(0,z) = au(l, z) + ¢(z), 9u(0, z) = ,Bau(l .7) +9Y(z), z€,

ot
u(t,z) =0, z€8, 0<r<n,

where a.(z), (z € Q),0(),%(z) (z € Q) and f(t,2) (¢t € (0,1), € Q) are given
smooth functions and a,(z) >0 .

We introduce the Hilbert spaces Ly(f2)-is the space of the all integrable functions
defined on (2, equipped with the norm

17 = [ 1£@Pdon - dant
zeq
The problem (2.10) has a unique smooth solution u(t,z) for |1 + af| > o + |8
and the smooth a,(z) > 0 and f(¢,z) functions. This allows us to reduce the mixed
problem (2.10) to the nonlocal boundary value problem (2.2) in Hilbert space H with
a self- adjoint positive defined operator A defined by (2.10). Let us give a number of
corollaries of the abstract theorem 2.1.

Theorem 2.3. For solutions of the mized problem (2.10) the stability inequalities

< M [ 1. oy #1121 L.

ax || u llway + max [ us [|L,@

0<t<1 0<t<1

< M [ 1 el + 1 FO) s + 11 g + 11 s
hold, where M does not depend on f(t,z) and o(z),¥(z).
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The proof of this theorem is based on the abstract Theorem 2.1 and the symmetry
properties of the space operator generated by the problem (2.10).

Note that the stability estimate (2.4)is not satisfied for the general o and 8. Let
us give an example. Let A be the operator acting in H = L0, 1] defined by the formula
Av(z) = —v"(z), with the domain D(A4) = {v(z) : v"(z) € L2[0,1], v(0) =0, v(1) = 0}.
Evidently, the operator A is a positive defined self-adjoint operator in the Hilbert space
H = L,[0,1]. Now let @ = 1,8 = 1, f(t,z) = 0. Then the problem (2.2) turns into the
boundary value problem

0%u  O%u 7

- - 1 2.

52 52 0, 0<it<l, O0<z<1], (2.11)
u(0,z) = u(l,z), u(0,z) =u(l,z), 0<z <1,

u(t,0) =0, ug(t,1)=0, 0<¢< 1.
From the stability estimate (2.4) it follows that
u(t, z) = 0.

But,the corresponding counterexample of the nontrivial solution of the mixed problem
(2.10) can be given by

o0
u(t,z) = Z(bk sin 2kmt + ay, cos 2kwt) sin 2kwz,
k=1

where ay, b,k = 1,2, -+ are an arbitrary numbers.

2.3 The First Order of Accuracy Difference Schemes

We consider the first order of accuracy difference scheme for approximately solving the
boundary value problem (2.2)

T2 (upyr — 2ug + Ug—1) + Atgrr = fr, i = [(te1), ten
—(k+1)7, 1<E<N-—1,Nr=1, (2.12)
ug = aun + @, 7" uy — ug) = B uy — un-1) + ¥

A study of discretization ,over time only, of the nonlocal boundary value problem also
permits one to include general difference schemes in applications, if the differential
operator in space variables, A, is replaced by the difference operators A, that act in the
Hilbert spaces and are uniformly self-adjoint positive defined in A for 0 < h < ho.

We are interested to study the stability of solutions of the difference scheme (2.12)
under the assumption that
1+ afB| > |+ Bl (2.13)

We have not been able to obtain the discrete analogue of estimates (2.4),(2.5)and (2.6)
under the assumption (2.13) for the solution of the difference scheme (2.12).Neverthe-
less, we can established the discrete analogue of estimates (2.4),(2.5)and (2.6) under
the more strong assumption than (2.13).
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Theorem 2.4. Let ¢ € D(A), ¥ € D(A?) and 1 > |o||8| + |a| + |B|. Then for the
solution of the difference scheme (2.12) the stability inequalities

N-1
luele < M{S WA Y2 g+ | A2 g + Lo lh, B = 0,2, (214)
leallr < Ml Il + | (I +irAY2) A= ||g],
N-1
1420 < M{S N llar+ 119 e + 1| A%% g}, k=0,2,..N,  (2.15)
1420 < M| A2 ||z + 1| (I + irA2)p 1],
N-1
lAuellr < MU N1 fy = fom bt | £ Dl + 11 A9 |l + | Ag [}, (216)

lAullr < M{| Ap l|r + || (I +irAY?) AV | 4]
hold ,where M does not depend on f;,1<s< N —1 and @,%.
Proof.We will write the formula for the solution of the difference scheme (2.12). It

is easy to show that(see [6]) there are unique solution of the problem

fi= f(tnr), ty = (E+ D)7, 1SESN -1 N7 =1, (2.17)

{ T2 (upg1 — 2ug + Ug—1) + Aty = fi,
=u,T (ul - 7-"0) =w

and for the solutions of these problems the following formulas hold:

Ug = WU = WY+ TW,
%[R’“ L4 RE- l]p,+(R R)r(R* — BF)w
k-1
-y I AT [R’“" R""] f.,2<k<N, (2.18)
where R = (I +irAY%)™, 1 R= (I —irAY 2) ~' . Applying the last formula and the

nonlocal boundary condltlons Uy = auy + @, T (ul —ug) = B ux —uy—1) + ¢ ,we

can write 1
p=ol; R+ BV p+ (R- R r(RY - RV

N-1
_ Z 2—7;;14—1/2 [RN—s _ RN—-S] fs] + ¢,

s=1
Al/2 S . TA ~
w =Bl [RN -1 _ RN 1]u+(R—R) 1A By L VY
N-2 r _ ~
-3 [RN“S + BY=*] fy + TRRfy 1] + 9.
s=1
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Using the last two formulas, we obtain

1”1 (RY +BM)][ aZ——A 1/2 [RN- - B¥=] fl+4] (2.19)

s=1

K= T.,[l—,B(R—R)

Z

-2

+a(R - R)~'7(RN — RM)[-8

s

[RN—S + RN_S:] fs+ ﬂTRRfN_l] + 'l,b],

=1

1

4
X}

w= T{[l—-a[l [RN L4+ RN- 1]]][ -8 [RN‘”+RN‘S] fs+ BrRRfn_1 (2.20)

&

T
14

+4] + ﬁ%ﬁ [RY-1 = A1) [-a Z ZATV2 (RN — RV fy 4+ 4]},

s=1

where

T‘r - (I_ g(RN—l +RN—1) _ _lg_(R"_]_RN—l +R—-1RN—1) +aﬂRN_1fZN"1)"1.

Hence, for the formal solution of the nonlocal boundary value problem (2.12) can
be use the formulas (2.18),(2.19),(2.20). For substantiation of these formulas can be
need to obtain the estimates (2.14),(2.15),(2.16).From the symmetry and positivity
properties of the operator A it follows that

1

I T szt £ =T — ol =161 (2.21)
and the estimates
IRl £ 1, | Rl msrr < 1,
|IRE |z <1, [|1BR M gon < 1, (2.22)
ITAYV2R||gsr <1, |ITAY2R]|gom < 1.
Using the formulas (2.19),(2.20)and estimates (2.21) and (2.22) we obtain
lele < Tl aorll + BB RY Y gor + |RTRY Y| ] (2.23)

N-1
x[lal ’27: [HRN_sllﬂ—»H + IIRN"[IH_m] A7 2\l ) + lleollm]

1.5 —1BN=
Hel5 (1B BN lawn + IR 'R i mr)

x[181 Z [1RY Ml + I Bl -sm | 1A ol

s=1

+|BI7| RR|| o ml| A2 fcall ] + 1A ]
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N-1
< MU A2 flar+ | A2 |l + |l @ |}

s=1

14 bl < 1T o2 + ol [IBY o + IR ] 229

N-2
T —s HDN—3 -
X[81 Y 7 (1Bl + 1BY*lrom] 142,
s=1

+BIT|RR) o m | A2 frr-alli + 14724 ]

815 [IRY s + 1B o]

cllod 32 7 [1RY " lao + 1B o] 1A+ i}

s=1
N-1
<M JAT fllar+ | A% |lw + 1l ¢ 11}
s=1

Applying A7 to the formulas (2.19),(2.20)and using the estimates (2.21) and (2.22)
in a similar manner we obtain

|A%uln < ITlmmmll + BI0E Y rom + |REY o] (2.25)
N-1
(el Y 2 [1RY it + 1B Iz | I fsllr) + 143 ]
Hal IR o + R )

N-2
x[181 Y 7 [1BY g + 1Bl 1 fs

s=1

+ BT RE| s rll frv-all ] + 19| ]
N-1

< MO Nfllam+ 1 ¢z + || Afp ||x).
lwllz < | Trllz-a{l+ |a|%[||RN—1HH—>H + | R Y| o ] (2.26)

<1813 T (1B o + 1R oss] 1 £l

s=1

+BITIRRl| s arll fv—allar + (1] 2]

#1815 [IRY ooz + 1R -]
N-1
xllod 3 % (IRl + 1B llror] 1ol + 4 ol ]}
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N-1
< MO Nfllar+ 19z + || Ao |1}
s=1

Now, we obtain the estimates for || Ay ||x, ||A%w|z. Applying A to the formulas
(2.19), (2.20)and using the Abel’s formula, we can write

N-1

Ap = T-,-[l _ ,B(R_IRN_I +R—1RN—1)][_Q[Z% [RN—s + RN—s] (fs——l - 'fs)

§=2

+(RN 4+ RN"Yfi — (R+ R) fx-1] + Ay]
N-2
+ai(R"_1RN—1 _ R—lRN—l)[iﬂ[Z i [RN—s . RN—sJ (fs—l — fs)

=2

~(RY — BM)fy — (R? — R?)fn_1+ RRfy_i] + AT)],
N-2
Ao =T {0 - oly [R* 4 RJIGSLE g [RY - B (e - 1)

~(RY — RY)f, — (R* - B?)fy-1 + RRfy_1] + Ady)]
N-1
-1—/8512 [RN-I _ RN-l] o[> % [RN" + RN”] (fout — f)

+(RY M+ RV fi — (R+ R) fy-] + Agl}.
Using the last two formulas and the estimates (2.21) and (2.22) we obtain

1Aplz < T llaoall + BIUIRRY | gosr + IR RY | o)) (2.27)

N-1
xlallY 5 [IRYlsre + IR lsz] 1fos = Sll

IR Mo m + 1BY o)l fillx + (IR + Rlla—m) | fv-all ] + [|Agll 2]
+Hol (1R RY Mlgom + R RY o)

N-2

XUBILY- 7 [IRY* oo+ 1R llsm] ot — fullr

§=2

+(|RY g2 + 1RV |z 2) I fillz + (|1R? — R2||gom)l| -l

IR g arll fv—1]la] + | A2 ]
N-1

<MD N o= Ffor N+ 1| fullw + 1| A% la + || Ap [|a}-

3=2
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42wy < 1Tl a-a {1+ lal[% [IIRN‘1||H_,H + ||RN"1”H—»H]]] (2.28)
N-2 i
<BILY. 5 [IRY o + 1B Nieom] ot = ol

+(IBY Y aor + 1BV aom) fillz + (1B = B2 a—m) | fv-1llm
I RB| gorll fy-lla] + |AT9] ]

#1815 IR o + 1B -]

[l Z > % [IBY gt + 1B lzosz | | fam = fuli

+(IBY " o + 1BV o)l fillz + (1R + Bl )l fv-alla] + | Al ]
<MD fo— fomrllm + | fulle + | A% |l + | Ap I}

Now, we will prove the estimates (2.14),(2.15),(2.16).Let £ > 2.Then using the formula
(2,18) and estimates(2.22),(2.23),(2.24),(2,25) and (2.26)we obtain that

luellar < 5 (1Bl + IR ] Dl + 501 E R o

k-1

HE R o ml A ollr + Y 7 (IR la + 1R~ 473 foll
< M)A+ 1| A2l + | @ )

ltula < & (1B + 1B ] NARlr + SRR o

MR B o)l + 30 % (IRl + 1Rl 1ol
< MU fullar+ 1% llz + 1| Ao 1.

Now, we obtain the estimates for || Aug ||z for k¥ > 2. Applying A to the formula
(2.18)and using the Abel’s formula, we can write
Auy = % [R’“'l + R’H] Ap+ (R— R)~'r(R* — R*)Ay

+= (ki [R’““S—}-R’“‘s] (foer = fs) + 2fk—1 — [R’“ !4 RE- 1] fi).

§=2
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Using the last formula and estimates (2.22),(2.27),(2.28) we obtain
1 - =k
lAuella < 5 (1R + 1B oz 1 A0llz

1, - Skoiyp 4L
+5(IR1R* + RTURF )| A3y g

k-1
5O ((IB o + NB o] (s = Folz)

§=2

20 el + 1B o + 1B szl foll )

N-1

<MD N fo—for llm

=2

+ fullz + 1 A2 [l + || Ae Iz}

Thus, the estimates (2.14),(2.15),(2.16)for any k¥ > 2 are obtained.From uy = u and
(2.23),(2.25),(2.27) it follows the estimates (2.14),(2.15),(2.16)for k¥ = 0.Note that in a
similar manner with the estimates (2.24),(2.26),(2.28)we obtain

IrBesllr < lfr ARzl T sz { (1 + el [1BY sz + 1B irom] ]

(1813 2 IRl + 1Bl o] 1472,

+|BIT||RR|| - r | A2 fyallm + 1A )

#1815 [IRY sz + 1B -]

xllal 3 = [1BY~“llsosr + 18" o] A2 F L + llpl]}

N-1

< MO WA fllar+ | A7 1w + 1 ¢ lu}y

3=1

IrRwlle < lTAR||a-a Tl m-a{[l + |a|%[|IRN-1“H—>H + 1 RY -]

N-2
X[81 3 7 1Bl + 1B llzor] I £ll
§=1

+BI7 | REl| -zl fv-allar + 19| ]

#1815 [IRY Mo + 1B o]

<llo] 3 & (IRl + 1R l] 17l + A ]}

g=1

g}
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N-1
< MO Nfllar+ 19 llx + 1| Ao |1},

s=1

N =

|Abr Rl < W ARl sl Tl {11 + Lo (1Rl + 1R o]

<BILY. & (1B llmsr + 1B o] o = Fll

8=2

IRV s + 1RV Mg filler + (1R? — B2l o)l fv-all
HIRR|| gl fv-all ] + | A2 &)

+1815 IR o + 1B 5]

N-1
1 ] DN—s
X[l 5 (1Rl + IRl aosm] fos = fullm
3=2
+IRY M aom + 1B Hasm) fille + (IR + Bllaom) || fi-illa] + [|Apllx]
N-1
SMO N o= for lr+ 1 fullr + | A% 1 + || Ag |}
8=2
Using the formula u; = p + 7w and the last estimates, the triangle inequality and
the estimates (2.23),(2.25),(2.27),we obtain the estimates (2.14),(2.15),(2.16)for k = 1.
Theorem 2.4 is proved.

Note that these stability estimates (2.14),(2.15),(2.16)in the case k = 1 are weaker
than respective estimates in the cases k = 0,2,...N.However, obtaining this type of
estimate is important for applications. We denote by a” = (a;) the mesh function
of approximation. Then [|(I + iTA™Y?)ai|lg ~ |la1]lz = o(r) if we assume that
T||Aai1||g tends to 0 as 7 — 0 not slower than ||a;||g. It takes place in applications by
supplementary restriction of the smooth property of the dates of space variables. It is
clear that the uniformity in 7 estimate

lusller < el + 1 A™2]|x

is absent. However, estimates for the solution of first order of accuracy modification
difference scheme for approximately solving the boundary value problem (2.2)

T2 (Up41 — 2uk + Up—1) + Atkrr = fi, fo = f(t), te=kr, 1< kK< N—-1,N7=1,
up = ouy + @, ([ + 72A) 7wy — uo) = BT Huny — un—1) + ¢.
~ (2.29)

are better than the estimates for the solution of difference scheme (2.12).

Theorem 2.5. Let ¢ € D(A), ¥ € D(A?) and 1 > |o||8] + || + |8]. Then for the
solution of the difference scheme (2.29) the stability inequalities

N-1
o2 [luelle < M{;IIA'”zstIHTJr I A7 [z + || @ =},
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N-1

max A2 urlly < M{Y || fs o 1l A%0llr + || ¥ ]lx},

0<k<N o
x| 772 (w41 — 2us + up—1) | + o2 [l Aue [z
N-1
SM{ N fo=forla + L fulla + | A% [l + || A ||}
8=2

hold ,where M does not depend on f5,1 < s < N —1 and p,1.
The proof of this theorem follows the scheme of the proof of theorem 2.5 and it is
based on the following formulas
ug = p,uy = i+ TRRw,
w=} [RF+ Bt (R— B)~r(RF — R)RAw - kgll FA~V2 [R - B f,
=3[R Bt pt (R R)r(RE - BYREw
+A-1%(k§( [R’H + R’H] (fom1 = f5) +2fp-1 — [Rk-l + Rk—l] fi)y 2<kE<N

=2
and on the estimate (2.22) and
1
1—1of|B] — o - |BI

| T lgor <

Here
T, = (1 - 2RV + B — D(RY + BY) + apRVRY),

- - / - .
b = Tlt-BE- B A (RY + BMRE

N-1
x[—a Z %A—lﬂ [RN—s _ RN—s] fs] + (,0]
s=1

N-2
+a(R— B)'r(RY - RN)RE[-B8 ) 2 [RN“S + RN—S] fs+ BTRRfy_1] + 9],

w = T{1-qf

N-2

x[-8Y 7 [R¥*+ BY=*] £, + BrRRfy-1 + ]

s=1

[RN—-I + RN-1]”

DN =

+,3A—1{3 [RN-—l _ RN—I] [_alviliA—l/z [RN—s _ RN—S] f + ]}
2 229 s Tl

Note that theorems 2.4 and 2.5 permit us to establish the stability of the difference
schemes of the first order of approximation over time and of an arbitrary order of ap-

proximation over space variables of approximate solutions of boundary value problems
(2.9)and (2.10).
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2.4 The Second Order of Accuracy Difference Schemes

Now, we consider the second order accuracy difference schemes for approximately
solving the boundary value problem (2.2)

T_Z(Uk_l_l — 2ug + Uk_1) + Aug + 1—2A2uk+1 = fk,
fk=f(tk), tk=k7', ISkSN—l,NTT—l,
(I + I%A)T—'l (Ul - Uo) - %(fo - AUQ) (230)
= Bl uny — un-1) + §(fv — Auy)] + 9,
fo=£(0), fx = f(1),u0 = qun + ¢
and
T_2(’U.k+1 — 2ug + uk_l) -+ %A’U,k + %A(uk_l.l -+ 'U'Ic—l) = fx,
szf(tk): tk=kT,1SkSN—1,NT=1,
I+ T?TA)[(I + 12%)7'_1(% ~ ug) — (fo — Auo)] (2.31)
= Blr~(uy — un-1) + Z(fv — Aun)] + 9,
fo=£(0), fv = f(1),u0 = cuy + ¢.

Theorem 2.6. Let ¢ € D(A), ¢ € D(A?) and 1 > |a||8| + |&| + |8|. Then for the
solution of the difference scheme (2.30) the stability inequalities

max,uelz < M@om Vet | A la+ e la), (232)
s 147 < M{ZO ol 7+l AP+ 9}, (239)
a7 (kg = 20+ wor) r+ max ([ Au (2:34)

< M{Z | fo— fomrllg + 1l fo llz + | A% [la + || A [|z}

s=1

hold ,where M does not depend on fs,0 < s < N and @, .

Proof.We will write the formula for the solution of the difference scheme (2.30). It
is easy to show that(see [6]) there are unique solution of the problem

fo=f(te), te=kr, 1<k<N-1,N7T=1, (2.35)
(I + BA) 7 (uy — uo) — Z(fo — Auo) = w, fo = f(0),u0 =

and for the solutions of these problems the following formulas hold:

2A 2
Ug = U, U = (I+——2—) (,u+7'w+-2—fo] )

{ T2 (g — 2up + up) + Aug + TA U4 = fi,

.3 -
TzA)-l RF(I + TA 4+ A% | RR-1(7 4 iTA%)u

uk=(I+ D) [ B
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RE-1p-1 _ gk-1fR-1 r

+(iA#)" > (w+ 5 fo)l
k-1 - B
—‘Z ﬂA_l/z [Rk—s - Rk_s] fsa 2<k< N7 (236)

=1

-1 -1
where R = (I +iTAY? TZ—ZA) , R = (I —iTAY? — 72—2A) . Applying the last

formula and the nonlocal boundary conditions

T2A, _ T
Uy = Quy -+, (I"*‘ —2“)7 1(ul - Uo) - ‘Z“(fo - Auo)

= BlrHuy —uy-1) + ';‘(fN — Auy)] + 7,

we can write

24\ RN(I + T4 4+ itady | BN-1(1 4 e}
u=a[(l+f——) R sk 2) Urrd,

_R¥-1R'_RN-IRL 7

+(iA¥) 5 (w+ §f°)]

N-1
_ Z %A—lﬂ [RN—S _ RN—s] fs] + ¢,
s=1

2 4\ —1 N 24 | ir3A¥y | BNl 1
— Al A2 T°A -R (I+—2—+—‘2—)+R (I +irA?)
w = fiA (I +— ) [ > B
T2A\ ' R¥-IRTL4 RNCIRL O p
+(I+ 3 ) 5 (w+§fo)]
7.2A TS T N-—s PDN—s
-(r+ %) X5 [T - g
24\ 7! 24\
+ (I+ —2—) (I—l' T) fv-1] + .
Using the last two formulas, we obtain
724\ R¥-1R~! 4+ RN-1R!
pu=T:1-8 (I—I— 5 ) 5 ] (2.37)

< - N-1
Calyq RN-1R™! — RN-1R™Y Z _ I_ -1/2 N-s _ pN-s
x[a(iA?) 5 5o ad ZiA [R R ] fs] + ¢

s=1

RN-1p-1 _ RN_IR_IB (I N T2A) -1 Rﬁ-lR"l + RN-1p-1,

ey —
Folid?) ) 2 D) 50
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~1N-2
_ﬁ (I+ %@) Zg_ [_RN—'S . sz—s] fs

s=1
24 -1 24 ~1
+8 (I + %—) (I + 2—4-—) In-1+],
24\ L R(I + A + A%y 4 V-1 (1 4 rab
w=T,,{[1—a(I+T2A) Ut5 +5 2) d i )] (2.38)
724\ 7 RV-1R"' + RN-1R1 7 24\
x[ﬂ<l+ ) ) ) §f°_ﬁ<1+—2_)
N-=-2 2 -1 2 -1
T [_RN-s _ fN-s A A
x§2[ RV~ - R ]fs+ﬂ<l+ 2) (I+ 4) fyv1+ 9]

+BiAM2 (I + T2A) RN+ 58 + AL + RYLT 4 irad)
2 2

.  RN-1R-1 _ RN-1R-1, Nl -
. il e L op-1/2 N—s __ pDN-s
x[al(idh) - Zho—a Y AR [RY= — BV ] + g},

s=1

where

2 -1 2 . 343
TT=(I-(I+Z—A) %(RN(I+E+ZTA2

- 5 > )+ BVY(I +irA%)))

2 -1 ~ r 2 -1 B
~ (I + 7—24) g(R-lRN‘l + RT'RN Y 4 (I + 7—2‘-41) aBRN-IRN-1)7L,
Hence, for the formal solution of the difference scheme (2.30) we have the formula
(2.36),(2.37),(2.38). For substantiation of these formulas we need to obtain the stability
estimates (2.32),(2.33),(2.34) for solutions of the difference scheme (2.30). From the

symmetry and positivity properties of the operator A it follows that

1

T < 2.39
” T”H»—)H__:l_IOKH'BI_IOZI_I‘BI ( )
and the estimates
|Rl|lgma < 1, Rl < 1,
IRR Y gn <1, |RR Y mor < 1, (2.40)

ITAY?R|| gy < 1, ||ITAY?R||gsm < 1.

The proof of estimates (2.32),(2.33),(2.34) uses the outline of the proof theorem 2.4 and
is based on the formulas (2.33),(2.34),(2.35)and estimates (2.36) and (2.37).Theorem

2.6 is proved.
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Theorem 2.7. Let ¢ € D(A), ¥ € D(A?) and 1 > |a||8| + |a| + |B]. Then for the
solution of the difference scheme (2.81) the stability inequalities

Jmax Jlueller < M{DOIA'WMIHH | A% g + || @ |la}, (2.41)
N
1/2 1/2
Lax |14 wh<ﬁﬂgyuwHHWA olla + | ¢z}, (2.42)
(e i *(wkr — 2up + upa )| + jmax || Au | (2.43)

< M{Z Il fo= fomr llz + |l fo llw + | A% |l + || A |lm}

s=1

hold ,where M does not depend on f;,0 < s < N and ¢, 1.
Proof. We will write the formula for the solution of the difference scheme (2.31).

It is easy to show that(see [6]) there are unique solution of the problem

fk—- (tk) tk—-kT 1<k<N—-1N’T—1 (2.44)

{ T2 (Upgr — 2up + Up—1) + 3 Auk + lA(uIc+1 +ug_1) = fr,
(I+ 1%_4_)7.—1(“1 - uo) = §(f0 Auo) =w, fo= (0),11,0 =U

and for the solutions of these problems the following formulas hold:

T2A T2A T2
UQZ/L,U1:<I+T> [(I—T)/«L'I'Tw'f‘?fo 3
Rk + R’c Rk — RF T
U = ) (ZA ) -1 2 (w + Efo)
1 3
=Y AT [R’H - R’H] f2<E<N, (2.45)

s=1
, , -1 . . , -1
where R = (1 - £47) (1+542) " = (1+242) (1- #42)" . Applying
the last formula and the nonlocal boundary conditions
Ug = ouy + ¢,
24 724

(I + —)[(I + T) 7 ug — ug) — —(fo — Aup)]

= Blr M uy —un-1) + 5 (fN Auy)] + 1,

we can write

PR S L AT
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N-—
_ z:l %A—-I/Z [RN—.G _ RN~—3] fs] + o,

=1

12 a3\ ~RV +RY A
w=pHA | I+ [__—T———p-{. I+—

2 -2 2 -1
+<I+f-f—> fN_1]+(I+I-f1—) "

Using the last two formulas, we obtain

-] o~
A3\ RN+ RV
p=TAL-B (I + ) —_-~—2-——~] (2.46)

SN _ RN N-1 r
RN - R Tfo y Z%A—I/Z [RN—s A RN-S] fs] +(;?]

2 s=1

~ -1 ~
RN — RY +A3\ BY+RVTT
w[(f+ = ) L

x[o](i4%)™

+a(iAD)™ 5 5

iTA% - N~2T RN—-).-S RN—s
— & S g R -

s=1

2

?"TA% = T N—1~8 “N—s TzA 2
-+ — Z-Z*{R - R }fs-i- I+T) fr-1]

s=1
2 4\ ! A\t _pN-1 4 RY
+ (1 + '—"-f) ) + BiAM* (I + L——T‘;z ) RO 2“' R

,;,EN—RNT N, o BN-
ColiAn) Tl - 2 g vz [RN=r — RY | £+l

s=1
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where

. 1\ ! 2 ~1
T, =(I- %(RN +J?N) - (I+ ”;42) g(RN“1 + RV + <I+ %) afB)t.

Hence, for the formal solution of the difference scheme (2.31) we have the formula -
(2.27),(2.46),(2.47). For substantiation of these formulas we need to obtain the stabil-
ity estimates (2.41),(2.42),(2.43) for solutions of the difference scheme (2.31).From the
symmetry and positivity properties of the operator A it follows that

1

I T o < 7 B =T = 1A] (2.47)

and the estimates

IRl amrr < 1, Bl zrr < 1,
(2.48)

I (7+22) I < 1.

The proof of estimates (2.41),(2.42),(2.43) uses the outline of the proof theorem 2.4 and
is based on the formulas (2.45),(2.46),(2.47) and estimates (2.40) and (2.49). Theorem
2.7 is proved.

Note that theorems 2.6 and 2.7 permit us to establish the stability of the difference

schemes of the second order of approximation over time and of an arbitrary order of ap-
proximation over space variables of approximate solutions of boundary value problems

(2.9)and (2.10).
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3 APPLICATIONS

3.1 The First Order of Accuracy in Time Difference Scheme

Consider the nonlocal boundary-value problem for wave equation

Pute) | Pt 4yt ) = 21 + 5+ 2t + P sing,
1(0) = all,2) o, 3 (3.1)
u(0,2) = au(l,z), u:(0,z) = aut(l z) 0<z <7,

u(t,0) = u(t,7) =0, 0<t<1.
The exact solution is:

2 2
u(t, z) = ( Fre e t+t2> sin z.
(1-a) l-a

For approximate solution of the nonlocal boundary-value problem (3.1), consider
the set [0, 1], x [0, 7]s of a family of grid points depending on the ’small’ parameters 7
and h:

[0,1], x [0, 7], = {(tk,Zn) : tx = k7, 0< k<N, Nr=1,
Zp,=nh, 0<n< M, Mh =}

Applying the formulas

u(tk+1) - 2u(tk) + ’U,(tk_l)

~ u” (tg1) = O(7),

U(Tap1) — Zui(;n) TulEno) (g, = o),

and
2l) =50 _ 0y = o),

1) —u(l-

(1) :( M) ) - o)
and using the first order of accuracy in ¢ implicit difference scheme for wave equation,
the difference scheme first order of accuracy in ¢ and second order of accuracy in z for
approximate solutions of the nonlocal boundary value problem (3.1) are obtained.

( i an 2Uk k=1 U’“"‘1—2U’°"'1+U""'1 +Uk+1

h2
[1_|__az%+ 2 (k+ 1)1 + ((k +1)7)* sin (nh),
) 1<k<N—1 1<n<M-1, (3-2)

Uk=Uk =0, 0<k<ZN,
U1 U0 —oz(UN—-UN“) Ul=aUN, 0<n< M.

(N+1) x (M +1) system of linear equations are obtained and written in the matrix
form. By resorting the system
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(VU85 + 5+ 087+ 310 (D) U+ (] U2 = ok
ok =21+ (12+‘)" + 22 (k+1)T+ ((k +1)7)?]sin (nh)

1<k<N-1, 1<n<M-1

Uk =U% =0, 0<k<ZN,

UL U0 =a (UN —UM1),U00=aUY, 0<n< M

So,

{AUn+1+BUn+CU_1=D(pn, 0<n< M, (33)

Up =0, Uy =0.

Denote

a’+a 20 2
s =2(1+ 4F k+ 1)1+ ((k+ 1)7)°]sin(nh),
¢n =2 —a) 5 (k+ 17 + ((k + 1)7)]sin (nh)
C 0]
(p?
0n=| ¢n ,
L Pn J (v41)x1
[0 0 0 O 0 0 0 0]
0 a 0 O 0 0 0 O
0 0 a O 0 0 0 O
0 0 0 a 0 0 0 O
P ,
0 0 0 O a 0 0 O
0 0 0 O 0 a 0 O
0 0 0 O 0 0 a O
(000 0 0 o 00 0 0wy
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oo o -
O T O O

=R

and C = A.

o
—Hooo!

(= o I~ N ]

co oo

oo 0 Al

(e I e B e B oo

0 —a
0 O
0 O
0 O
0 0
d 0
¢ d
o« —a (N+1)x(N+1)
0
0
0
0
0 j (N+1)x(N+1)

, s=n—1,n n+1.

0 0
0 0
d 0
c 0
0 c
0 b
0 0
0 0

0

0

1

0

0
(N+1)x(1)

For the solution of the last matrix equation, the modified variant Gauss elimination
method. We seek a solution of the matrix equation by the following form:

U, = Oln+1Un+1 + :Bn+17

n=M-1,..,2,1,0,

where a; , B;, (j =1,..., M —1) are (N +1) x (N +1) square matrices . And o, 5, :

o1 =

[

0
0
0

0
0
0

0
0
0
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Using the equality Us = ag41Us41 + By, (for s =n, n — 1) and the equality
AUn+1 -+ B Un -+ CUn-—l = Dgon’
[A + Ban+1 + Canan+1]Un+1 + [Bﬂn+1 + Canﬁn+1 + C:Bn] = D(p'n.
can be written.

The last equation is satisfied if it is to be selected:

[B:Bn+1 + C'a’nﬁn+l + C/Bn] = D(pm
1<n<M-1.

Formulas for ant1, By1:

Qpy1 = — (B + Can)°1 A,
Buyn = (B+Can) ™' (De,—CB,),n=1,2,3,..M~1.
So,
UM =0,

Up = ns1Unt1 + :Bn+1: n=M-1,..,2,1,0.
Algorithm

1. Step Input time increment 7 = ]—t: and space increment h = ;.
2. Step Use the first order of accuracy difference scheme and write in matrix form:

AUy +BU,+CUy+=Dy,,, 0<n<<M.

3. Step Determine the entries of the matrices A, B, C and D.

4. Step Find o4, 3.

5. Step Compute any1, Bryr-

6. Step; Compute U,-s (n =M —1,...,2,1), (Uy = 0) using the following formula:

Up = an+1Un+1 =+ :8n+1‘

Matlab Implementation of the First Order of Accuracy Difference Scheme

function firstord
close; close;
N=20 ; M=20;
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tau=1/N;

h=pi/M;

al=0.1;

a=-1/(h"2);

b = 1/(tau"2);

¢ = -2/(tau"2);

d = 1+ (1/(tau"2)) + (2/(h"2));

for i=2:N; A(i,i+1)=a; end;

A(N+1,N+1)=0; A;

C=A;

for i=2:N ; B(i,i-1)= b ; end;

for i=2:N ; B(i,i)= c ; end;

for i=2:N ; B(i,i+1)=d ; end;

B(1,1)=1; B(1,N+1)=-al;

B(N+1,1)=-1; B(N+1,2)=1; B(N+1,N) =al ; B(N+1,N+1)=-al; B;
for i=2:N; D(i,i)=1; end ;

D(N+1,N+1)=0; D;

for j=1:M+1;

for k=1:N+1;

s=1+((al"2)+al)/(1-al) "2+ (2*al/(1-al))*(k-1)*tau + ((k-1)*tau)"2;
fii(k,j:j) =2%s * sin((§)*h) ;

end;

end;

alpha(N+1,N+1,1:1)=0;

betha(N+1,1:1) =0 ;

for j=1:M-1;

alpha( :, 3, j+1:j+1 ) = inv(B+C*alpha(;, :, jIN*(-A) ;

betha( :, j+1:j+1 ) = inv(B+C*alpha(;, :, j:j ) Y*(D*fi(s, j:j ).
- C * betha(:, j:j ) );

end;

U(N+1,1, MM ) = 0;

for z = M-1:-1:1 ;

U(:,:, z:z ) = alpha(:,,z+1z+1)* U(:;:z+1iz+1 ) + betha(:,z+1:2-+1);

end;
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forz =1:M;
p(:,z+1:z+1)=U(:,:,z:2);

end;
'EXACT SOLUTION OF THIS PROBLEM’ ;
for j=1:M+1 ;

for k=1:N+1 ;
ss=((al"2)+al)/(1-al)"2+ (2*al/(1-al))*(k-1)*tau + ((k-1)*tau)"2;
es( k, j:j ) = ss™sin( (j-1)*h);
end;

end;

figure ;
m(1,1)=min(min(p))-0.01;
m(2,2)=nan;

surf(m);

hold;

surf(es) ; rotate3d ;
titleCEXACT SOLUTION’);
figure ;
m(1,1)=min(min(p))-0.01;
m(2,2)=nan;

surf(m);

hold;

surf(p) ; rotate3d ;

3.2 The Second Order of Accuracy in Time Difference Scheme

Consider again the nonlocal boundary-value problem (3.1). Applying the formula

U(tpsr) — 2'11,:;516) + u(tp—-1) — ' (t) = O(Tz),

U(Tn1) — 2u’(:n) +u(Ta) o () = O(?),

and using the second order of accuracy in ¢ implicit difference scheme for (2.31) wave
equation, the difference scheme second order of accuracy in ¢ and in z for approximate
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solutions of the nonlocal boundary value problem (3.1) are obtained.

(st 2U"+Uf-i _ Uk, —2URHUE, Uph-2Untl4Unh
T 2h? T
Unﬂ‘”i;z UL LU+ (U 4 U = of
n
2
ok =2[1+ ("‘ +')" + f_ialm' + (kr)?] sin (nh)

\ Uk=UL =0, 0<Ek<N,

a/2U3+1+eU°+a/2 L+ (e+2) UL +a/2U1_ + ¢
=a (—aUN, —dUY - U™ —aU,f"l—cacpn),

UL =aUY, ogngM

where

2

. T
@ = g
7.2 7.2
b = 1+h2+
o
= 5
7.2 7..2
d = -1
Tty
7..2 7.2
e = 1+2—h2+4,

Again the (N 4+ 1) x (M + 1) system of linear equations are obtained and written
in the matrix form. By resorting the system

(U + + [~ UEs
+4(T%+ +g)Ulk+I+T Z+mt ]U’° +(F++1) U
U ) U, + -] Uk =

1<k<N-1,1<n<M-1
{ k= [223(;“;31+4(k+1)r+2(1 1=a) ((k 4+ 1)7)%]sin (nh)
Uk =Uf =0, 0<k<N

a/2U3+1 + eU° +a/2UL ., + (e +2) UL +a/2UL_; + el

=a (—aUN,, —dUY - U ——aUNl—ca,gon),

(| U? = aUY, osnsM

Again the matrix equation (3.3) is obtain with new data:

T = l-i—l-l-l
“\72 2m2  4)°



kT + (k7)?|sin (nh),

2h?

<_

- =
¥ i
2 J
X X
= =
¥ ¥
z J
1 ' 1
coo oo xS Jooo ioo 8.8
cocooco o w 3o cCooco ros8 >3
OO N 3Inwo OO0 R ™»yNO
oo o wzco OO0 | »:RKR OO
oON3 ioocooco cos8®» ioooo
N3N icocooo O 8>y ocoo
o~ o~
sz.OOOW O RO o0 o +
v

N —
NOO ooy T soo ioocoww

1 [l

Il Il
< M

C& I (N+1)x(N+1)

0
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U= | U3 , s=n—1,n, n+1.

L ~s J (N+1)x(1)

For the solution of the last matrix equation, the same algorithm is used for the first
order of accuracy difference scheme.

Matlab Implementation of the Second Order of Accuracy Difference Scheme

function secondorderA
close; close
N=20; M=20;
al=0.1;
tau=1/N; h=pi/M;
x = (1/ (tau"2))+(1/(2%(h"2)))+1/4;
y = (-2 / tau"2)+(1/(h"2)+1/2 ;
z= -1/(4*h"2);
w=-1/(2*h"2);
a=-(tau"2)/(2*h"2);
b=1+(tau"2)/h"2+(tau"2)/2;
c=tau"2/2;
d=-1+(tau"2)/h"2+(tau"2)/2;
e=-1+(tau"2)/(2*h"2)+(tau"2)/4;
for i=1:N-1 ; A(i+1,i)=2 ; end;
for i=1:N-1; A(i+1,i+1) =w ; end;
for i=1:N-1 ; A(i+1,i4+2)= z ; end;
A(N+1,1)=a/2; A(N+1,2)=a/2; A(N+1,N+1)=a*al;
for i=1:N-1; B(i+1,i)=x ; end;
for i=1:N-1; B(i+1,i+1)=y ; end;
for i=1:N-1 ; B(i+1,i+2)= x ; end;
B(1,1)=-1; B(1,N-+1)=al;
B(N+1,1)=e; B(N+1,2)=e+2;
B(N+1,N)=al; B(N+1,N+1)=d*al; B;

OCRETIM KURTLD
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C=A;

for i=2:N; D(i,i)= 1; end ;

D(N+1,1)=c; D(N-+1,N+1)=c*al;

fi(j) finding ’ ; ;

for j=1:M+1;

for k=1:N+1;

s=1+((al"2)+al)/(1-al) "2+ (2*al/(1-al))*(k-1)*tau + ((k-1)*tau)"2;
fii(k,j;j) =2*s * sin((j)*h) ;

end;

end;

alpha(N+1,N+1,1:1)= 0 ;

betha(N+1,1:1) =0 ;

for j=1:M;

alpha(:,:,j+1:j+1)=inv(B+C*alpha(:,:,j:;j)) *(-A) ;
betha(:,j+1:j4+1)=inv(B+C*alpha(:,:,j:j))*(D*fi(:,j:j)- C*betha(:,j:j));
end;

U(N+1,1, M:M ) = 0;

for z = M-1:-1:1;

U(:,:;, z:z ) = alpha(:,;,z+1:z+1)* U(:,;,z+1:z+1 ) + betha(:,z+1:2+1);
end;

forz = 1:M ;

p(:,z+1:2+1)=U(:,:,2:2);

end;

figure;

surf(p) ;

rotatedd ;

3.3 The Second Order of Accuracy in Time Difference Scheme
Generated by A?

Applying the formulas

wW(Tpt1) — 2u1532vn) +u(Ta-1) o (5) = O(h2),

U(Tny2) — 40U(Tns1) + Gui(lfn) ~4u(@n-1) + UEn2) ) (za) = O(K?),
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and

2u(0) — 5u(h) + 4u(2h) — u(3h)
) =5 - - '(0) = O(A?)
2u(1) — 5u(l — h) + 4u(1 — 2h) — u(l — 3h)
) ( ) 5 _ u”(l) — O(h2)
and using the second order of accuracy in ¢ implicit difference scheme (2.30) for wave
equation, the difference scheme second order Of accuracy in ¢ and in z for approximate
solutions of the nonlocal boundary value problem (3.1) are obtained.

Uktl_gukyuk-1 Uk -2UF+Uk
1 2+ : kP2k11+Ukk+ kx k
1
Uf:i2—4U::i% U + 4Uni-l Unfz _ 2Un-{-‘:1 —2U +I+U +1 + Uk+1]
h4

=k, 1<kE<N-1,2<n<M- 2,
| ok S a1t g+ by + (k) sin (nh),

Uk=Uk =0, U=aUY, 0<k<N, 0<n<M,
aU+1—U0+bU1 +aU,§1+c<,on

=oa (—aU¥, —dUY¥ —UN' —aU}Y | —cpl), 1<n< M -1,
\U§=4U§’——5U{°, UJI{’,I_3=4U1’\°,I_2—5UM_1, 0<k<N,

where
2
@ = ope
7.2 ,r2
b 1+ﬁ+_2—’
7..2
cC = —*2—,
7..2 7.2
d = —1+E§+—2—.

Again the (N + 1) x (M + 1) system of linear equations are obtain and written in
the matrix form. By resorting the system

(U + [~ Uk + [~ - 2] UL + [I]Uk-1+[—%+,%+1wk

a5 2] o [ B+ 108+ 0 =
4 gon—2[1+(°‘+‘)’+ 22kt + (kr)’]sin (nh),1 <k < N -1, 2<n<M 2,

Uk =Uk =0, Ug—an:’, 0<k<N, 0<n<M,

aU,iH——Ug—l-bUé +aUL_; + cpd

=a (—aUY, —-dUY —UN1—aUN  —cpl), 1<n<M—1,

\ UF =4UF - 5UF, Uk _,=4Uk_,-5U%_,, 0<Ek<N,

following matrix equations are obtained

AUn+2+BUn+1+CUn+DU_1+EUn_2=R(pn, 2STLSM—2,
Us=0, Uy=0, Uf=4UF—5UF, Uk _,=4Uk_,—5Uk_,,0<k<N.
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U= | U3 ,s=n—-2,n—-1,n,n+1, n+2.

L s 4 (N+1)x(1)

For the solution of the last matrix equation, the modified variant Gauss elimination
method is used. We seek a solution of the matrix equation by the following form

Un = an+1Un+1 + :Bn+1Un+2 + Ynt+1y T = M- 27 vy 27 17 07

where o; , 8, (j=1:M-1) are (N +1) x (N + 1) square matrices and ;-5 are
(N +1) x 1 column matrices. And o4, 8y, ¥1, @2, B2, 7o :

[0 0 0 ... 0
000 ... 0
;=000 .. 0 )
000 .. 0 (N+1)x(N+1)
[0 0 0 .. 0]
000 ... 0
B;=1000 .. 0 ’
000 .. 0] (N+1)x(N+1)
- O - o 0 hy
0 0
Y1 = 0 y Yo = 0 !
| 0] (N+1)x(1) L 0 < (N+1)x(1)
(200 .. 0]
0 % 0 ... 0
az = 0 0 % . 0 9
... ;
000 5 J (N+1)x(N+1)
[ —-;— 0 0. 0]
0 -4 0 .. 0
Bo=| 0 0 -f .. 0
. 1
| 0 0 0 .. —f (N+1)x(N+1)
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Using the equality Uy = @s41Ust1 + BoyaUst2 + Vo1, (fors=n, n—1, n— 2) and
the equality
A Un+2 +B Un+1 +C U, + DU, + EU, 2= R‘pnv giVGS

[A + C:Bn+1 + Danﬂn-}-l + Ean—lan,@n+l + E:Bn—-lﬁn+1] Un+2

+[B 4+ Cony1 + Daganiy + DB, + Eap_10my1 + Ean_1By,
+EB,10n41]Unsr

+C’Y'n,+1 + Dan7n+1 + D7n + Eaﬂ—lan7n+1 + Ean—la’n =+ E:Bn—17n+1
+E’7n-—1 = R(pn'

The last equation is satisfied if it is to be selected:

(A+CBuy1 + DanBryy + Ean100fni1 + EBp1Bni1 =0,

B+ Copy1 + Danogy1 + DB, + Ecn—_10n41 + Eoyn 18, + EB,_10m41 =0,
$ CYpy1 + Dan¥pyy + Dy + EQn100Vn + Eap_10n+ EBy_1Yns1
+E7n-1 = Bepp,

(2<n< M -2.

Formulas for Cnt1, :B'n.+17 Yn+1:

tms1 = [C+ Do+ Ean-yan+EB, 1] [-B— DB, — Ean_1B,],
Boss = —[C+ Dop+Ecn10n+ EB,_1) A,
Yo+l = [C + Dan + Ean—lan -+ E:Bn—l] - [R(,On = D7n + Ean—I’Yn + E’Yn—l] -

For solution of the last difference equation, obtain Usr, Upr—1, Un—2 :

UM = 0,
U1 = ((Bpy—z+5I) — (4] — anr—2) arr-1) " (41 ~ epr—2)) Yoot — Ta-as
Upu—2 = opm—1Up—1+7p-1-

Applying the formulas

Un = an+1Un+1 + ;Bn+1Un+2 + Tot1s T = M - 31 (L) 23 11 07
obtain U, —s (n=M —3,...,2,1,0).

Algorithm

1. Step Input time increment 7 = 7{,— and space increment h = ﬁ

2. Step Use the second order of accuracy difference scheme and write in matrix form;

AUn+2+BUn+1+CUn+DU_1+EUn_2=R(,0n, 2<n<M-2,
3. Step Determine the entries of the matrices 4, B, C, D, FE and R.
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4. Step Find a4, 81,7, and az, B, 7,-

5. Step Compute api1, Byt Vet
6. Step Find UM, UM—la' UM—Z-

7. Step; Compute U,-s (n=M-3,...,2,1), using the following formula:
Un = a'n.+1Un+1 + ;Bn+1Un+2 + ’7n+1'

Matlab Implementation of the Second Order of Accuracy Difference Scheme
Generated by A?

function secondorderAA
close; élose;
N=20; M=20;
al=0.1;
tau=1/N; h=pi/M;
x= (tau"2)/(4*(h"4));
y= -1*(tau"2)*(1/(h"4)+(1/(2%(h"2)))) ;
z= (1/tau"2)+(3*(tau"2))/(2*(h"4))+(tau"2)/h"2+(tau"2) /4;
t= (-2/tau”2)+(2/h"2)+1;
v=1/tau"2;
w=-1/h"2;
=-(tau"2)/(2*h"2);
b=1+(tau"2)/h"2+(tau"2)/2;
c=-tan"2/2;
d=-1+(tau"2)/h"2+(tau"2)/2;
for i=2:N; A(i,i+1) = x ; end ; A(N+1,N+1)=0;
E=A;
for i=2:N ; B(i,i) =w ; end;
for i=2:N ; B(i,i+1)=y ; end;
B(N+1,2)=a; B(N+1,N+1)=a*al;
D=B;
for i=2:N ; C

(i,i-1)=v ; end;
for i=2:N ; C(i,i) =t ; end;
(
(

for i=2:N ; C(i,i+1)= z ; end;
C(1,1)=1 ; C(1,N+1)=-al;

C(N+1,1)=-1; C(N+1,2)=b; C(N+1,N)=al; C(N+1,N+1)=d*al;
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for i=2:N; R(i,i)= 1 ; end; R;

R(N+1,1)=-¢;R(N+1,N+1)=-c*al;

R; ‘

alpha(L:N+1,1:N+1,1:1) = O*eye(N+1) ;
betha(1:N+1,1:N+1,1:1) = 0*eye(N+1) ;

gamma(N+1,1:1)= 0 ;

alpha(1:N+1,1:N+1,2:2) = (4/5)*eye(N+1) ;
betha(1:N+1,1:N+1,2:2) = (-1/5)*eye(N+1);
gamma(N+1,2:2)= 0 ;

for j=2:M-2;

for k=1:N+1;

s=1+((al"2)+al)/(1-al)"2+ (2*al/(1-al))*(k-1)*tau + ((k-1)*tau)"2;
fii(k,j:j) =2*s * sin((j)*h) ;

end;

end;

fii;

for n = 2:M-2 ;

bebek = C + D*alpha(:,: , n:n ) + E*betha(:,;,;n-1 : n-1)...

+ E*alpha(:,:,n-1:n-1)*alpha(:,:, n:n) ;

betha(:,:,n+1m+1 ) = -inv( bebek )*(A) ;

alpha(:,:;,;n+1:n+1) = -inv(bebek )*(B +D*betha(:,:,n:n) ...

+ E * alpha(:,;,n-1:n-1)* betha(:,:,n) ) ;

gamma(:,n+1:n+1) = inv( bebek )*...

(R*fii(:,n:n) - D * gamma(:,n:n)...

-E * alpha(:,:;,n-1:n-1)* gamma(:,n:n) - E*gammal(:, n-1 : n-1) ) ;
end;

U(1:N+1,1:N+1)=nan;

U(1:N+1,M:M ) =0;

U( :, M-1:M-1) = inv( (betha(:,;,M-2:M-2) + 5*eye(N+1)) ...

- (4*eye(N+1)-alpha(:,;,M-2:M-2) )*alpha(:,;,M-1:M-1))...
*((4*eye(N+1)-alpha(:,:,M—2:M-2))*gamnia(: , M-1:M-1)- gamma(: , M-2:M-2) );
U(: , M-2:M-2 ) =alpha(:,;,M-1:M-1)*U(:,M-1:M-1)+gamma(:,M-1:M-1);
'INITIAL VALUES OF U IS OBTAINED HERE’ ;

for z = M-3:-1:1;
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U(:,z:z )=alpha(:,:,z+1:2+1)*U(:,z+1:z+1)+ ...
betha(:,:,z+1:2+1)*U(:,z+2:2+2)+gamma(:,z+1:2+41);
end;

forz=1:M;

p(:,z+1:2+1)=U(:,z:z);

end;

titleCSECOND-ORDER SOLUTION’);
rotate3d ;

figure ;

m(1,1)=min(min(p))-0.01;

m(2,2)=nan;

surf(m);

hold;

surf(p);
rotate3d ;

3.4 Numerical Analysis

Consider the nonlocal boundary-value problem for wave equation

az'gg’ﬂ - 62:;:52,3:) +u(t,z) =21+ ——-—g(‘;i—;;x + #&t + t?]sinz,
0<t<l, O0<z<m), (3.4)
u(0,z) = ou(l, z), u(0,z) = aus(l,z), 0 <z <7,

u(t,0) =u(t,7) =0, 0<t<L

The exact solution is:

a? + o 20
t,z) = t+t% ) sinz.
u(t, z) ((1—a)2+1—a + )sma:

For approximate solutions of the nonlocal boundary-value problem (3.4), the first
and the second order of accuracy difference schemes with 7 = fg, h=f,a=0.1willbe
used. The second order or fourth order difference equations to respect in n with matrix
coefficients have been taken. To solve this difference equations have been applied a
procedure of modification Gauss elimination method. The exact and numerical solutions
are given in the following table 3.1 and figures(3.1, 3.2, 3.3, 3.4)

TABLE

The first line is the exact solution,the second line is the solution of the first order
of accuracy difference scheme, the third line is the solution of second order of accu-
racy difference scheme and the fourth line is the solution of second order of accuracy
difference scheme generated by A2.
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te\Zn| O 0.63 1.26 1.89 2.52 3.14

0 | 0.0798 | 0.1292 | 0.1292 | 0.0798 | 0.0000

0.0 0 | 0.0732 | 0.1185 | 0.1185 | 0.0732 | 0.0000
' 0 | 0.0797 | 0.1289 | 0.1289 | 0.0797 | 0.0000
0 | 0.0797 | 0.1290 | 0.1290 | 0.0797 | 0.0000

0 | 0.1295 | 0.2095 | 0.2095 | 0.1295 | 0.0000

0.2 0 | 0.1127 | 0.1823 | 0.1823 | 0.1127 | 0.0000
' 0 | 0.1292 | 0.2090 | 0.2090 | 0.1292 | 0.0000
0 | 0.1292 | 0.2090 | 0.2090 | 0.1292 | 0.0000

0 | 0.2261 | 0.3659 | 0.3659 | 0.2261 | 0.0000

0.4 0 | 0.1986 | 0.3213 | 0.3213 | 0.1986 | 0.0000
’ 0 | 0.2256 | 0.3651 | 0.3651 | 0.2256 | 0.0000
0 | 0.22567 | 0.36561 | 0.3651 | 0.2257 | 0.0000

0 | 0.3698 | 0.5983 | 0.5983 | 0.3698 | 0.0000

0.6 0 | 0.3307 | 0.5350 | 0.5350 | 0.3307 | 0.0000
' 0 | 03690 } 0.5971 | 0.5971 | 0.3690 | 0.0000
0 | 03692 | 0.5973 | 0.5973 | 0.3692 | 0.0000

0 | 0.5605 | 0.9069 | 0.9069 | 0.5605 | 0.0000

0.8 0 | 0.5085 | 0.8228 | 0.8228 | 0.5085 | 0.0000
' 0 | 0.5594 | 0.9052 | 0.9052 | 0.5594 | 0.0000
0 | 0.5597 | 0.9055 | 0.9065 | 0.5597 | 0.0000

0 | 0.7982 | 1.2916 | 1.2916 | 0.7982 | 0.0000

1.0 0 | 0.7321 | 1.1845 | 1.1845 | 0.7321 | 0.0000
) 0 | 0.7968 | 1.2893 | 1.2893 | 0.7968 | 0.0000
0 | 0.7971 | 1.2898 | 1.2898 | 0.7971 | 0.0000

Table 3.1 Numerical analysis

Thus, the second order of accuracy difference schemes were more accurate compare
with the first order of accuracy difference scheme.
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Utk xn)

3.15

04 1.26

th=ktau 0 0 wr=n*h

Figure 3.1 The exact solution

3.15

tk=k*tau 0 0 wn=n*h

Figure 3.2 The first order of accuracy difference scheme
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Uftk,xn)

1.26

thk=k*tau o0 —

Figure 3.3 The second order of accuracy difference scheme

ersersetrersaeannt

U(tk xn)

th=k*tau Do cn=r*h

Figure 3.4 The second order of accuracy difference scheme generated by A?
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The first figure is the exact solution,the second figure is the solution of the first
order of accuracy difference scheme, the third figure is the solution of second order
of accuracy difference scheme and the fourth figure is the solution of second order of
accuracy difference scheme generated by AZ2.

CONCLUSIONS

This work is devoted to the study of the stability of the nonlocal boundary value
problem for hyperbolic equations. The following original results are obtained:

- the abstract theorem on the stability estimates for solution of the nonlocal bound-
ary problem for hyperbolic equations in the Hilbert space are proved,

- the stability estimates for the solutions of the two types of nonlocal boundary
value problems for hyperbolic equations are obtained,

- the first and second order of accuracy difference schemes generated by the integer
power of A approximately solving this abstract nonlocal boundary value problem are
described ,

-three theorems on the stability estimates for the solutions of these difference schemes
are proved,

- the numerical analysis is given. The theoretical statements for the solution of this
difference schemes are supported by the results of numerical experiments.

Finally,note that, this work is a part of project : “Theory of positive operators and
the stability of difference schemes of approximate solutions of the nonlocal boundary
value problem for partial differential equations” supported by Fatih University in 2001-
2002(P50040101).
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