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ABSTRACT

This thesis demonstrates effectiveness of different facial expressions for a template |
matching based face recognition system. We used the well known nearest neighbor
approach in our study. 8 different expressions of each individual are utilized to study the
effect of various facial expressions on the recognition performance of the system.
Simulations results are reported on CNNL database that consists of more than 600
individuals each having 10 different images.
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Bu tezde farkl: yiiz ifadelerinin kalip (sablon) esleme yontemiyle yliz tanimadaki
etkinlikleri gosterilmektedir. Calismamizda yaygin yiiz tanima ySntemlerinden biri olan
Nearest Neighbor yaklagimim kullandik. Tanimlama performansi ¢aligmalarimiz igin 8
farkli resimle ifade edilen kisilerin degisik yiiz ifadeleri kullanildi. Simiilasyon
sonuglarimz herbiri 10 farkli resimle ifade edilen CNNL veri bankasindaki resimler
kullanilarak rapor edilmistir.
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CHAPTER 1

INTRODUCTION

Biometrics is a field in which humans are being recognized by their biological
features. This field has been recently drawing a lot of attention because of its
applications to vision and security systems.

Identification systems based on biological features have been used in our daily
life for quite some time. For example; fingerprint analysis is being utilized by law
enforcement agencies in order to identify the criminals, systems based on retina scan are
also successfully implemented for identifying individuals. Recently, DNA samples
taken from human body are being accepted as legitimate evidence in the court rooms
(Anil K. 2000).

The reason that faces recognition became very popular is that; it does not need a
sophisticated system in order to obtain people’s face image. For example, for a
fingerprint recognition process; person has to put his/her finger onto a scanner
voluntarily. For iris recognition, a high quality picture of the subject eyes has to.be
obtained. A typical face recognition system, on the other hand, does not need this kind
of sophisticated systems (Anil K. 2000).

In order to state what face recognition is, there are two fundamental concepts to
be explained in advance: A face database and a face recognition algorithm.

Face database is, in its simplest term, collection of human face images. In
general images in the database can come from different size orientation and illumination

backgrounds. Subjects in the database can be represented by one or multiple images.



A face recognition algorithm is a method which is applied to an input face image
in order to find the similarity between the input and database images. Typically a
predetermined similarity measure is used (like Euclidian or city block distance) in order
to perform this task.

After explaining the two fundamental concepts in face recognition, we are now
ready to face recognition problem: Given a face recognition algorithm, a face
recognition algorithm takes an input image and (possibly by comparing it to all the
images in the database) decides whether the input face image belongs to the database or
not.

There are so many difficulties associated with a typical face recognition system.
First, face images contained in the database can differ in size and orientation. Secondly,
the changes in the light illumination of the environment in wﬁich the images are
obtained can cause problems for the recognition system. Thirdly, different hair styles
make-up existence or non-existence of facial hair (mustache and beard) can affect the
face recognition system in a significant way. In fact, it is shown that a difference
between two images of a same person with different facial expressions can be
sometimes larger than the difference between two images of the two different

individuals with similar facial expressions (Belhumeur, 1997).



CHAPTER 2

BACKGROUND of FACE RECOGNITION

Face recognition has been subject of an extensive research in recent years and
many algorithms have been proposed in order to identity a face. These methods can
roughly be classified into four main areas: geometrical features base methods, template
matching methods, statistical methods, and neural network based methods (also known

as learning based methods).

2.1 GEOMETRICAL FEATURES MATCHING METHODS

Geometrical features methods are based on extracting relative size and distances
of important facial features and forming a feature vector based on these values in order
to identify an individual. This was the first method applied to face recognition. In 1964,
Goldstein used this method and extracted manuaﬂy identified feature points from a face.
in order to identify that individual. Later, Kanade extended the idea and developed first
automated face recognition system, i.e. the facial features were extracted automatically
by the computer in this system.

There are two main points of this approach which need to be given careful
attention:

Selection of a set of features which éan properly cha:racteﬁze a face.

A reliable and fast algorithm method that can accurately and quickly extract this
set of features by computers.

Kaya and Kobayashi (1972) used Euclidean distances between manually
identified points in the images to characterize faces. When they were deciding on which
kind of features they were going to use, they considered some factors such as given
below (R. Brunelli 1992);

e cstimation must be as easy as possible;
e light dependencies must be as small as possible;

e facial expressions dependencies must be as small as possible;



e information content must be as high as possible.

Examples of facial features are distances and angles between geometric points
such as eyes, eyebrows, mouth, nose and chin. These features differ from one to another
person and can be represent that person.

Following figure shows a pictorial representation of some of these features on a
face image (R. Brunelli 1992).

.+ ®Eyebrows thickness and vertical position
_yatthe eye center position.

L Zyg@matic breadth lane.

..® Bloganal breadth line,

" & Nose vertical position and width (bold

horizontal line),
» Blewen radii describing the chin shape = » Mouth vertical position, width and heigh
{there is eleven thin Line chin shape {in bold black square).
features).

Figure 2.1 Some Feature Points Used to Represent a Face: 22 geometrical features
extracted in this face (R. Brunelli 1992).

Kanade used a method called integral projection in order to extract these facial
features. In integral: projection methods, we first generate a vector that represeﬁts each
Tow by the summation of all pixels resulting in that row (per row). After that we apply
the same process to obtain a column vector representing each column in the image by
one value which is equal to summation of the pixel values in that particular column.

Kanade showed integral projection vectors can be used to identify the; position

of some important facial features like eyes and nose, in a face image (R.Brunelli 1992).

2.2 TEMPLATE MATCHING METHODS

Template matching is a useful operation in pattern recognition which is used to

determine the similarity between two data (signals, vectors, strings or 2D picture



pattern) of the same type. Matching algorithm calculates or measures similarities and
dissimilarities between training database and test database using templates matching.
Template matching could be applied to whole picture or could be applied to some parts
of the picture (Anil K. 2000). Generally templates are chosen from high similarity part
of the pictures or it is chosen from high dissimilarity parts of pictures, from another way
low similarities could be template as well (Anil K. 2000). Template patterns are
accepted as reference patterns or reference sets from training data. A test picture (or not
recognized pictures) is identified by using template patterns. Therefore, it is necessary
to calculate pattern similarities or dissimilarities between training patterns and test
pictures (R.Brunelli 1993).

In general this is done by comparing the test pattern to the template pattern in all
different size and orientation levels. Note that it is also important to use a suitable
metric in this comparison in order to get an accurate value of measurements. This
process is also known as cross-correlating the training pattern with the test pattern
(R.Brunelli 1993) (R.Brunelli 1997).

The template matching procedure can be applied to a signal, vector, string, two
dimensional or multiple dimensional data. In face recognition two dimensional
templates are used most popularly. | .

For face recognition, a whole image can be used to form a template or one or -
more distinctive parts, like eyes and nose, can be used as templates. In later case the
number of templates can be more than one.

Compared to geometrical features based method, template matching methods are
in general less time consuming and easy to implement (since we do not need to extract
so many features for each face). It is also shown that (R. Brunelli 1992) the template
matching algorithms perform better in ideﬁtiﬁcation compared to geometrical feature

based ones.



CHAPTER 3

DATABASE

‘We have conducted all of our simulations on CNNL face database. A brief
explanation of the database is given next. Detailed discussion of the construction of the
database can be found in [Artiklar, 2002].

CNNL face database consists of over 1200 individuals between ages of 15 to 60
years old. Subjects come from different ethnic backgrounds such as Caucasian-
American, African-American, Asian, Indian, Middle Eastern, etc. Out of 1200
individuals, 733 are men and 467 are women. Figure 1 shows the distribution of ethnic

backgrounds over 1200 individuals in our database.

CNNL Face Database

7%

E Caucasian-White

EJ African-American
O Middle-Eastern
ElAsian

H Indian-Pakistan
Cther

Figure 3.1 The distribution of ethnic-backgrounds of 1200 individuals in the CNNL
database.

The images were collected in a laboratory setting so as to minimize the amount
of pre-processing that is necessary in order to reduce the effect of tilt rotation,

translation, scaling, etc.



Memory Set Test Set

Figure 3.2 Memory images of person 1 in the database

Memory Set Test Set

Figure 3.3 Memory images of person 2 in the database.



Each individual is represented by 8 expressions in the database: Blank, smile
angry, surprise, blank1, blank2, blank3, and blank4. Two additional expressions, blank
and arbitrary, are obtained separately to generate additional test sets. For the arbitrary
test expression, the subject is asked to give an expression that makes it difficult for
computer to recognize the person. Both database and test sets are snapped as gray scale
images at dimension of 115 x 82. Figure 3.2 and 3.3 show these images of an individual
from our database (Artiklar 2002).



CHAPTER 4

GOALS and OBJECTIVE

This chapter presents the gbals of this thesis. We start by mentioning that our
aim in this thesis is not to develop a new face recognition algorithm but rather to
perform experiments regarding relevance of different facial expressions on recognition
performance of a typical classification method.

We will achieve our goal by implementing simple yet powerful recognition
algorithm known as Nearest Neighbor algorithm. Although simple, Nearest Neighbor
algorithm can achieve close to optimal solution (bounden by Bayesian from above and
twice as worse as Bayesian from below) in its extremes (Duda 2000).

‘Our objectives, from this point on, will be divided in 3 parts. In the first part; we
will compare the effect of 3 different distance measures on the performance of our face
recognition algorithm. In the second part, the effect of including one expression versus'
multiple expressions into memory and their effect on performance of the algorithm will
be investigated. In the third part, we will reduce the size of database pictures gradually

and measure the system’s performance (T. Sim 2000).

4.1 COMPARISON of METRICS

It is well known that different metrics affect the performance of a system in
different ways depending on the type of application being applied. In this thesis, we
investigate the effect of 3 distance measures on the classification performance of a face
recognition system, namely Euclidean, City Block and Lg s norm.

The reason for experimenting on Euclidian and City Block is due to their
widespread use in image processing community. We have added Ly 5 to our list because

some papers mentioned this metric.
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4.2 MULTIPLE IMAGE REPRESENTATION

In the second part of our thesis, we investigate the effect of expression or
expressions on recognition performance of the Nearest Neighbor algorithm. To achieve
this objective, we first include one expression per individual into the memory and
measure the system’s performance against test sets. We then increase the number of
expressions per individuals to two, three and four in all possible combinations. We will
run extensive simulations as to demonstrate which combination in each case (in the
cases of one, two, three, four expressions in memory) is best suited too represent an
individual. In addition to that, the performancé of the Nearest Neighbor algorithm will

be watched against the increase in the number of images per individual in the memory.

4.3 REDUCTION SIZE AND TIME EFFECTS

As mentioned earlier, Nearest Neighbor algorithm has good recognition
performance over face images nevertheless classification time increases by the size of
data linearly. Therefore, representing an individual with more than one image will result
in longer classification time.

It is expected that as the size of face images decreases the performance of the
recognition system should deteriorate accordingly. However it is also known that
images taken in real environment contain a certain percentage of noise. Hence reducing,‘
the size of an image, in this case, would correspond to eliminating some portion of noise
and might even increase the performance of the system. In order to experiment on this
subject, we will gradually decrease the size of the database pictures and look at the

affect of this process on the classification performance (T. Sim 2000).

/

4.4 COMPUTER CONFIGURATION

These experiments will be performed on AMD XP of the 2.1 GHz computer.
Computer system has 512 MB RAM and 7200 rpm hard drive. Our simulations are run
using Matlab R13 software.

CPU Speed Ram Operating System | Matlab Edition
AMDXP | 21GHz | 512MB Windows 2000 Matlab R13

Figure 4.1 Computer configuration and software program.‘



CHAPTER 5

ALGORITHMS

Our goal in this study is not to develop a new face recognition algorithm but to
study characteristics of human face through different facial expressions. Hence, we will
use well known nearest neighbor algorithm in classification tests. One thing to be
determined, though, is as to choose which metric needs to be used when implementing
the nearest neighbor. L; norm which also known as Euclidian distance is the one that
most popularly used among image processing community because of its convenient
analytical properties. However, several researchers reported that beside the benefits,
Euclidian distance tends to overemphasize the extremes in the image and suggested the
use of L; norm instead.

In the remainder of this thesis we will first investigate the most appropriate
distance measure among some of the well-known metrics for the face recognition‘
applications and then study the effect of different facial expressions on the recognition

performance of a face identification system.

5.1 FORMAT of THE EXPERIMENTS

We have conducted extensive simu}ations on CNNL database for our study. All
images are retained in their original form and no dimensionality reduction or
preprocessing is applied prior to application of algorithms. (Note that images in our
database were already taken under controlled envjronment to eliminate such
preprocessing). The format of reporting simulation results is described below.

We have partitioned database into sets of 200, 400, and 600 images that are
selected randomly' from the database to form a memory set. Depending on the
experiment, one, two, three or four images per person are included in the memory. The
blank and arbitrary expressions of those individuals in the test image dataset are used to

form test sets.

11
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When reporting a result, we have repeated each experiments 5 times (where in
each case images in the memory set are selected randomly) and averaged the results.
Performance of algorithms is always measured based on the best matching memory

image for an input test image

5.2 EUCLIDIAN DISTANCE vs. CITY BLOCK

In this section, we will investigate on 3 different metrics that can be used in face
. recognition systems: Euclidian distance (Z; norm), City Block distance (Z; norm) and
Lps norm. Note that these metrics are by no means the only ones used in image
processing community, yet the first two are quite popular among the researchers. The
reason for adding the Ly s norm into our list is because it has been reported that for two-
dimensional images Lg s has outperformed the previous two with a clear margin by Sim
at all (T. Sim 2000).

All 3 distance measures mentioned above are known as L, similarity measures in

the literature and are defined as follows.

Let image 1’ represent a 2 dimensional matrix of size n x m where I' € Z""
for gray level images and superscript i refers to index of the image in the database. Let
also I(x,y) denote the gray level pixel value of the image at row x and column y. Then,
the distance between two images I’ and I is defined in terms of L, similarity measure

as:

1
n_m p
L, -1)= (ZZ\I () -1, y>|")
x=l y=1

Below, we demonstrate simulation results in order to compare these three
metrics. For the simulations, we have included only one image per person in the
memory set which was the blank expression of subjects. This memory set is then tested
against blank and arbitrary test expressions as to measure the classification performance
of the system.

Figure 5.1 demonstrates the performance of the recognition algorithm while 200,
400 and 600 people were included in the memory (one blank expression per person) and
being tested against blank test expressions. From the figure, we could see that for the
case of 200, Euclidian diétance measure has performed 98.4% accuracy which is

slightly better than the other two, whereas for 400 case, all 3 metrics seem to be
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performing around 97%. For the case of 600 images though, Lg s distance performs little
better than the other two with 96.9%.

Comparision of Metrics
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Figure 5.1 Comparison of metrics using blank test expression.
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Figure 5.2 Comparison of metrics using arbitrary test expression

Figure 5.2 demonstrates the performance of the similar cases against arbitrary
test images. Here, we see that for 200 images in the memory, Lo performs 92.4%,
which is better than the other two with around 1% margin. For the case of 400, all three
perform equally well and for 600 images case, City Block distance slightly outperforms
the other two with 88.5%. ‘

The next figure compares the time that it takes for each metric to process a test
image. As it can be seen from the Figure 5.3, the processing time of identifying a test
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image against a database of 200 individuals for the case of City Block metric is 0.22
sec. This value is 0.37 sec for the remaining two metrics. For databases of 400 and 600
images, we again see the similar trend.

The following comments can be made after analysis of below figures: In terms
of recognition performance, none of the 3 metrics clearly outperformed the other two in
all cases. On the other hand, by looking at the time requirement, we could say that for
applications that need faster fetlieval time, City Block distance seems to be a better
choice since it performs very close to others in most cases but requires a lot less time to
process a test image. However, note that Euclidian distance has analytical properties
that make it suitable for the cases where algorithm developments require extensive

math. Due to this reason, this metric is quite popularly used.

Time Comparision of Metrics

Second (s)

200 Person 400 Person 600 Person

Figure 5.3 Comparison between processing time of an input image forLO-5 , L and
LZ

metrics

For the remaining of this thesis, we will investigate which facial expressions are
best suited in order to represent a human face. Since our goal is to compare one
expression with the others, the choice of the metric used in distance calculations will not
affect the outcome. Hence, in our case, we have decided to use Euclidian distance due to

its analytical properties in the remaining simulations.



CHAPTER 6

EFFEC‘T of FACIAL EXPRESSIONS

In this chapter, we investigate the role of facial expressions in representation of
human face. In particular, we look for which expressions are better suited for
classification of an individual. In order to do so, we have conducted the following set of
experiments: We have first included only one expression in the memory and performed
classification experiments against blank and arbitrary test images. This case is called
case 1. In this, our aim was to determine which particular expression was the most
effective in representation.

In the second case, we included two eXpressions per individual into the memory
and repeated the simulation. This is referred as case 2. Here, our goal was to understand
which combination would be the most appropriate in representation of a human face.

Next, we increased the number of images representing each subject to 3 and 4, h
which will be referred as case 3 and 4 respectively and performed similar expressions in

order to see the effect of multiple expressions on the system performance.
6.1 EXPERIMENTAL RESULT on FACIAL EXPRESSIONS

6.1.1 Case 1 4

In this section we demonstrate, through simulation results, which expression (or
expressions if used together) is the most useful in identifying humans. In order to
answer this question, we first included only one expression of each individual in the
memory. These were blank, smile, angry and sufprise expressions. We have then
measured the performance of the algorithm on blank and arbitrary test images.
Simulation results for both test image cases are given below.

In the below simulations, the Figure 6.1(a) shows classification performance
results for the case of blank test expressions and the Figure 6.1(b) demonstrates results

for the arbitrary test expressions. For the blank test images case, the blank memory

15
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expression performs the best as compare to remaining three with 97.8% recognition rate
when 200 individuals are used to form the memory set. Angry expression gives a
performance of 96.9% and is the second best. The smile and surprise expressions come

in the third and fourth places respectively.

One Memory Expression per Person vs. Blank Test Image
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80

100
:\;
© 95
g
t —e— Blank
8 90 .
@ —&— Smile
o

Al

5 85 —a—Angry
§ —B— Surprise
2
(7]
)
(&)

200 Person 400 Person 600 Person

(b)

Figure 6.1 Recognition performances for including one expression in the memory
for the cases of (a) blank test image and (b) arbitrary test image

For the case of arbitrary test images, we see a similar pattern. Blank expression
performs the highest with 93.2%, which is followed by angry expression performing at
91.0%. The remaining two expressions of smile and surprise give recognition rates of

90.3% and 86.6% and come in third and fourth places respectively.
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Note that during the collection of database, subjects are asked to give an unusual
expression when snapshot is taken for the arbitrary test image. Hence this expression is
quite different from the other expressions. However, the fact that the blank expression is
the best performing expression in the case of both test images clearly indicates that this
expression is the most suitable one in the identification of a human face.

The fact that angry expression comes as the second best is to be expected
because subjects tend to exaggerate the smile expression when they are asked to pose
since it is easier to imitate. This causes large amount of changes around mouth area of
the face and in turn makes it little harder to recognize him/her. Angry poses, on the
other hand, cause changes around eyebrows/eye region of the face and are minor when
compared to those in the smile case. It also worth mentioning that during the generation
of the database, subjects generally commented on difficulty of posing angry expression

when they are not in that mood naturally.

6.1.2 Case 2

For this case, we have included 2 expressions per individual in the memory. By
doing so, we wanted to find which combination of expressions are the most effective in
recognition and also to see if there is a significant performance increase as compared to

case 1.

Two Memory Expression Per Person vs. Blank Test Image
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Figure 6.2 Recognition performances for including two expressions in the memory
when tested against blank test image set.

Figure 6.2 shows simulation results for the following combination of

expressions: blank-smile (b-s), blank-angry (b-a), blank-surprise (b-u), smile-angry (s-
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a), smile-surprise (s-u), angry-surprise (a-u), and blank-blank (b2-b4). Note that for the
last case, we have selected 2 blank expressions among blankl, blank2, blank3, and
blank4 expressions of a subject.

The Figure 6.2 shows performance results when the system is tested against
blank test images. From the figure, we see that blank-angry combination is
outperforming the rest with 99.3% when 200 people are included in the memory. The
same combination consistently performed in the first piace when number of people in
the memory is increased to 400, and 600. This was expected due to the reasons
explained in case 1. Surprisingly enough, blank-surprise combination seems to be
performing the second best after the blank angry combination. Unfortunately, we could
not bring a clear explanation to this because our expectation was toward having either
blank-smile or blank2-blank4 combination to be in this place. We have been conducting
more simulations to better understand this case. Blank2-blank4 and blank-smile
combinations performed in the third and fourth places with 98.8% and 98.2%
recognition rates for the case of 200 subjects in the memory. Simulation results for

arbitrary test images of this case are given in the Figure 6.3 below.

Two Memory Expression Per Person vs. Arbitray Test Image
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Figure 6.3 Recognition performances for including two expressions in the memory
when tested against arbitrary test image set.

For the arbitrary test images, the combinations of angry-surprise, blank-surprise,
and blank-smile are ranked in top three places by 95%, 94.5% and 94.0% classification
rates respectively for the case of 200 people. For 400, the best 3 performers are smile-
angry, blank-surprise and blank-angry combinations with 93.9%, 93.7% and 93.5%
respectively. As for the case of 600, blank-surprise, angry-surprise and smile-angry
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combinations gave the highest recognition rates with 92.4%, 91.8 and 91.4%
respectively.

By looking at the best performing combinations for both test image cases, we
see that blank expression is the main contributor when system is tested against blank
test images whereas surprise expression (although not as a main contributor) seems to
be quite effective for the case of arbitrary test set.

In the case of blank test images, the overall performance of the system is
increased by 1.5% when number of images representing each individual is increased to
two (i.e. as compared to case 1). This increase is 1.8% when arbitrary test images are
used to test the system. Considering that the processing time is doubled when an
additional expression is included in the memory, the amount of performance increase
does not seem to be significant. This might be of importance for the type of applicaﬁons
that require faster retrieval time and could tolerate small amount of decrease in
performance. _

In order to look at contributions of individual of expressions to the system
performance in all cases, we have plotted below figures.

The below figure summarizes the contribution of individual expressions to the
performance of the system when 200, 400 and 600 people are included in the memory.
For example the first three columns with different colors in Figure 6.4(a) represent the -
contribution of blank expressions to the system performance for 200, 400, 600 cases
when blank-smile combination is used to form the memory set and the next 3 columns
show the similar contribution made by the smile expression etc.

Note how contributions of individual expressions are close to be evenly
distributed for the case of arbitrary test images whereas in the case of blank test images
blank and angry expressions contribute moée to the system performance than the other
expressions associated with them.

In the Figure 6.4(a), the distribution between blank and angry expressions in the
third and fourth columns is in favor of the argument we have made earlier. Here, the
first one gets around 60% hit whereas the second one gets around 38%. This difference
is clearly a lot more for the blank-smile and the blank-surprise cases. This, in turn,
implies how close these two expressions are to each other. Also, note how the
percentage is close to being equal for the blank2-blank4 case where the rates are around

45% and 55% respectively.
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Figure 6.4 Contributions of individual expressions in the case of 2 expressions per
individual tested against (a) blank test images set (b) arbitrary test
images set.

6.1.3 Case 3

Simulation results for the case of including 3 expressions per person are given
below: Here, the possible coﬁbinations are blank-smile-angry (b-s-a), blank-smile-
surprise (b-s-u), smile-angry-surprise (s-a-u) and blank1-blank2-blank3 (b1-b2-b3).
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Three Memory Expression per Person vs, Blank Test Image
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Figure 6.5 Recognition performances for case of including three expressions in the
memory when tested against (a) blank test image set (b) arbitrary test
image set. '

Figure 6.5(a) indicates that, for the case of blank test images, b-s-u combination
performs better for 200 and 400 memory siz/es with 99.4% and 99.1%. For 600 memory
case, though, b-s-a combination outperforms the remaining three with 98.8%. Note how
the all-blank (b1-b2-b3) combination is always the least performing. This is because
having multiple images of same individual with similar expressions causes distances to
be in a close range and hence makes the recognition more difficult. We will have more
to say on this when we go to case 4.

In the case of arbitrary test images, smile-angry-surprise and blank-smile-angry
combinations perform the best with 96.2% and 95.8% respectively for the case of 200
people. When number of individuals is increased to 400 and then 600 in the memory,

blank-smile-surprise and smile-angry-surprise expressions perform in the top two
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places. Again, blank1-blank2-blank3 combination performs lowest due to the reason

explain above.
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Figure 6.6 Contributions of individual expressions in the case of 3 expressions per
individual tested against (a) blank test images set (b) arbitrary test
images set.

The figure above shows the individual contributions of each expression to the
system performance for both blank and arbitrary test image cases.

For the case of blank test images, Figure 6.6(a) shows that when blank-smile-
angry expressions are included in the memory, blank and angry expressions are
contributing to the performance more with around 55% and 30% whereas the
contribution of the smile is around 10%. In the next 3 columns when blank-smile-
surprise expressions are used, blank expressions contributes to the overall performance

with around 70% whereas the contributions of smile and surprise expressions stays
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around 15%. Note also how the individual contributions of blank1, blank2, and blank3
are close to each other, which is in the range of 25% to 40% as compared to the other
cases. In the case of arbitrary test images, shown in Figure 6.6(b), the contributions are
distributed more of evenly as expected.

6.1.4 Case 4

In the final case of our simulations, we have included 4 images per person in the
memory and performed the classification experiments. Here, we have only
experimented on two combinations which are blank-smile-angry-surprise (b-s-a-u) and
blank1-blank2-blank3-blank4 (b1-b2-b3-b4) cases. Figure below shows the results of
this simulation for both blank and arbitrary test image cases.
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Figure 6.7 Recognition performances for case of including four expressions in the
memory when tested against (a) blank test image set (b) arbitrary test
image set.
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In the Figure 6.7(a), b-s-a-u combination performs with 99.7% as compare to
99.6% classification in b1-b2-b3-b4 combination when 200 people are used to form a
memory set. The performance difference between these two cases increases as number
of individuals in memory increases to 400 and 600. In the case of 600, b-s-a-u
combination performs with 99.1% whereas the performance of b1-b2-b3-b4 drops to
98.3%. The similar argument is there when system is tested against arbitrary test images
as well (see Figure 6.7(b)).
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Figure 6.8.Contributions of individual expressions in the case of 4 expressions per
individual tested against (a) blank test images set (b) arbitrary test
images set

It is clear from these and previous set of simulations that when subjects are
represented with multiple images in the memory, recognition performance of the system
is increased if different facial eXpressions of individuals are used. This again supports
the fact given (Artiklar, 2003), i.e. for face images; the difference between same
expressions of different individuals can be less than the difference between different

expressions of same individuals. By including more images of the same type
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expression, we cause distance measures to be closer when an input image is introduced
to the system, which in turn makes the selection of the winner difficult.

Finally the individual contributions of each expression to the system
performance are given in the Figure 6.8.

Figure 6.8 indicates that when b-a-s-u combination is used to form a memory
set, surprise and smile expressions are the least effective when blank test images are
considered and all four expressions are closely effective when arbitrary test images are
concerned. As for similar expression case, contributions of individual expressions are

close to equal as it was in the previous cases.



CHAPTER 7

REDUCED SIZE AND TIME EFFECT

In this section, we investigate the relation between reduced size images and their
effect on classification performance. The underlying goal in performing this study is to
reveal the fact that whether a linear reduction in the size of a face database pictures
would correspond to a linear decrease in the performance of a recognition algorithm as
well. If that is not the case, we will then search to find an optimal image size as to
compensate for both high classification performance and low recognition time together.

Changing size of images is done by the help of process known as interpolation.
In another word, interpolation is the process by which we estimate an image value at a
location in between image pixels when its size is altered. For example, if one resizes an
image so it contains less pixels than it did originally, the interpolation method obtains
values of pixels in the new image for the additional pixels through interpolation. There’
are so many interpolation methods, among them; bicubic, bilinear and nearest neighbor
are the most popularly used ones.

After some initial experiments, we chose bilinear interpolation method in order
to be used in reducing the size of face images. Detailed explanation of bilinear method
can be found in any image processing book. Below, we give a brief explanation of this
method. /

The interpolation methods generally work in a similar way. To determine a
value of an interpolated pixel, you find the point in the input image that the output pixel
corresponds. You then assign a value to the output pixel by computing a weighted
average of some set of pixels around of that point. The weightings are based on the
distance each pixel is from that point. For bilinear interpolation, the output pixel value
is a weighted average of pixels‘in the nearest 2-by-2 neighborhood. If (x' y') denote the
coordinates of a point in the transformed (or reduced) image, and v(x' y') denote the
gray level assigned to it. “For bilinear interpolation, the assigned gray level pixel value

is given by;

26



27

v(x,y)=ax +by +cxy +d
where the four coefficients are determined from the four equations in four unknowns
that can be written using the four nearest neighbors of point (x' y)” (R. C. Gonzales
2002).

We run simulations of the reduced size experiment for four different cases. In
the first case, only one expression per person is included in memory. We then
mtroduced two, three and four expressions into the memory for the other cases.

For each of these cases, we reduce size of database images along with the test
sets in the amounts of 50%, 25%, 10%, 9%, 8%, 7%, 6%, 5%, and 4% of the original
size and then measure the performance of the system for each case against the test sets
(i.e. 82x115 x 50% = 41x58).

Differently from previous chapter, we only used one combination of expressions
for each case. This is because of the fact that our goal is not to compare different
combinations but rather look at the relationship between image size and systems
performance. Therefore, we decided on blank type memory expression for the case of
one memory expression per individual. For two memory expressions per individual,
blank-angry combination is selected. For three memory expressions per individual,
blank-smile-angry combination and for four memory expressions, blank—smile—angry—k

surprise expression combinations are selected.

Reducing Size (%) Column x Row (pixel)
100 82 x115
50 41 x 58
25 ! 21 x29
10 8x12
9 7x10

8 7x9
7 6x8
6 5x7
5 4x6
4 3x5

Table 7.1.Reduced Row and Column Size of Image Expression
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Table 7.1 shows various reduction values applied to the original image in
percent and corresponding pixel by pixel representations. Note that the reduction values
are not uniformly distributed, i.e. we jump from 100% to 50% then to 25%. The
remaining reduction size though are very closely distributed such as 10%, 9%, 8%, 7%,
6%, 5% and 4%. This is because the performance of the system does not change in
significant amount for the initial reduction sizes and hence we have used large
difference steps between them. On the other hand, when it comes to 10% and lower
reduction sizes, there is sharp performance deterioration. In order to demonstrate this,
we have chosen smaller step sizes for these cases.

The format of the running simulations are as follows. We have partitioned the
database into randomly selected sets of 200, 400 and 600 individuals. Memory sets are
formed by including one, two, three or four expressions of each subject into the memory
depending on the case. We have, then, applied all the reduction sizes given in the table
7.1 to the memory set and tested it against blank and arbitrary test sets. Of course, test
sets were also subjected to the same reduction in size as memory images. In order to
report the results, we run each of the above simulation 5 times where memory sets of

each run were formed randomly. We have, then, averaged the results for reporting.

7.1 CASE 1: ONE EXPRESSION IN THE MEMORY PER INDIVIDUAL

In the case of one expression per individual, we have selected blank expression
of each subject to be included in the memory. The system is, then, tested for both blank
and arbitrary test.sets for all the reduction sizes given in Table 7.1.

Figure 7.1 demonstrates performance of the algorithm for this case. It stays close
to 97% until the size is reduced to 8% of thé original image size. From this point on, we
experience sharp performance decrease.

The largest change is from 5% to 4% which corresponds to around 10 percent
deterioration. For instance the change is from 93.2% to 87.0% for 200 people. For 400
people, it is from 90.3% to 81.1% and for 600 people performance is decreased from
88.2% to 80.0%.
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Figure 7.1 Original and Reduced Size Classification Performances for One Memory

Expression vs. Blank Type Test Expression.

Figure 7.2 shows performance against the arbitrary test image set for the same
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cases. There is no significant change in performance until the size is reduced to 8% of

original. Generally performance stays around 90% for 200, 400 and 600 people.
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Figure 7.2 Original and Reduced Size Classification Performances for One Memory

Expression vs. Arbitrary Type Test Expression.

Significant fall starts from 7% of original size by around 2 percent deterioration

for all cases. But noteworthy decrease is at 4% of original size by 11-17 percent

deteriorations. The similar argument is true for all 3 memory sizes in Figure 7.2.
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According to these simulation results, both blank and arbitrary type test
expression performances do not change from 100% to 10% of originalt size.
Performances start to fall down at 7% of original size significantly. Notice, there is a
slight increase in performance until 7% of original size in some cases. This is because
of the noise embedded to face images due to imperfections in the environment and in
the image acquisition set-up. The size reduction can be considered as a low-pass

filtering operation which averages out some of these noises and causes the performance

to increase.
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Figure 7.3 Original and Reduced Size Classification Time for One Memory
Expressions in Second.

The change in the performance is smoother as the size of the images varies in
the case of blank type test images when compared to that in the arbitrary case.

Figure 7.3 shows the time that it takés to classify a test image under all specified
reduced image sets. For example the first 3 columns show that the classification time of
a test image, when 200 individuals are included in the memory, is 0.38 second. These
values are 0.68 and 1.04 second when the number of subjects in the memory is
increased to 400 and 600 individuals. Notice that as the amount of reduction applied to
memory images increases, the difference between classification times of a test image in
all three memory size cases approach to each other. This is because number of pixels
becomes close to each other after 10% of original size (Table 7.1). In another word,
after %10 or lower reduction of the original size, the number of pixels representing an

image became very small and does not make too much of difference in terms of a PC
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with gigahertz of processing speed to process them. Finally after the 10% and lower
reduction of the original size, classification times become 0.02 second for 200 and 400

individuals, 0.03 second for 600 individuals.

7.2 CASE 2: TWO EXPRESSIONS IN THE MEMORY PER INDIVIDUAL

This section demonstrates simulation results for the case when two expressions,
blank and angry, are used to form the memory set.

Figure 7.4 demonstrates performance of algorithm for blank type test expression
as the size of the images varies. From the figure, system performance is around the 99%
when the original size images are used in the memory. Until 10% of original size, there
is no significant change in performance. Performances start to decreases at the 7% of
original size around 1 percent deterioration. Dramatic performance loss is at 4% of

original size by around 10 percent deterioration for all three size memory cases.
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Figure 7.4 Original and Reduced Size Classification Performances for Two Memory
Expression vs. Blank Type Test Expression.

Figure 7.5 shows the performance of arbitrary test set for the cases of same
reduced image sets. The performance of the system is around 93% for all three memory
sizes when the original size irhages are used. From 100% of original size to 10% of
original size there is no significant change in performance. Between 10% and 8%, we
see a small fluctuation in performance yet this value is not very large. Starting from 7%
of original size there is a significant decrease in classification performance by 1.5
percent deterioration. As in the case of blank type test images the largest performance

loss is at the 4% of original size. At this point, performance decreases around 10 percent
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as compared to that in original size case. We see a similar trend in terms of change in

performance for all three memory size cases.
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Figure 7.5 Original and Reduced Size Classification Performances for Two Memory
Expression vs. Arbitrary Type Test Expression.
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Figure 7.6 Original and Reduced Size Classification Times for Two Memory
Expression.

Figure 7.6 show the timing requirements of this case. The classification time of a
test image for the case of original size pictures is 0.68 second when measured against
200 individuals in the memory in Figure 7.6. These values are 1.42 and 2.22 second
when the number of subjects in the memory is increased to 400 and 600 individuals.
Classification timp becomes almost constant with 10% of original size. 50% of original

size classification times become approximately 4 times faster. At the 25% of original
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size, classification times become approximately 11 times faster for all three size
memory cases. After the 10% and lower reduction of original size classification times
become approximately thirty times faster. Finally for 200 individuals, 10% and lower
reduction of the original size classification time is 0.02 second. For 400 individuals,
classification time is 0.04 second and for 600 individuals, classification time is 0.06
second.

By looking at the Figures 7.6, it seems that reducing the database images to 10%
of their original size give both satisfactory classification performance and fast retrieval

time.

7.3 CASE 3: THREE EXPRESSIONS IN THE MEMORY PER INDIVIDUAL

In the case of three expressions used per individual, we have selected blank-
angry-smile expressions combination of each subject to be included in the memory. The
system is, then, tested for both blank and arbitrary test sets.

Figure 7.7 demonstrates performance of the algorithm for this case. Results are
similar as in the previous blank type memory cases. There is no significant change in
performance up to 10% of the original size. Sharp performance decreases are seen from
7% to 4% of original image sizes. 4% of original size has the largest performance loss.

Classification performances decrease around 10 percent at the 4% of original size for all

three memory sizes.
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Figure 7.7 Original and Reduced Size Classification Performances for Three
Memory Expression vs. Blank Type Test Expression.
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Figure 7.8 Original and Reduced Size Classification Performances for Three

Memory Expression vs. Arbitrary Type Test Expression.

Figure 7.8 shows similar classification results for arbitrary type test expression.

There is no change performance significant until the 9% of original size. Starting from

7% of original size, we start to observe performance deterioration. 4% of original sizes

decrease the performances by around 10 percent deterioration for all three memory size.
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Figure 7.9 Original and Reduced Size Classification Times for Three Memory

Expressions.

Figure 7.9 represents classification time requirement of this case. The above

figure is very close to what we had in previous 2 cases. The classification times are 1.1,

2.2 and 3.5 seconds when the original size images are used to form memory sets of 200,
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400 and 600 individuals. When image sizes are reduced to 10% of their original size or

lower, classification times become thirty times faster approximately.

7.4 CASE 2: FOUR EXPRESSIONS IN THE MEMORY PER INDIVIDUAL

We performed similar experiments by including 4 expressions in the memory
which were blank, smile, angry and surprise expressions combination.

Figures 7.10 and 7.11 shows classification performance of this case for blank
and arbitrary test sets and Figure 7.12 shows the time that it takes for an input image to
be classified for specified reduced memory sets. By looking at the figures, we can
conclude that an additional expression into the memory does not change the overall
behavior of the algorithm in terms of performance. An obvious difference is seen in
terms of classification time given in Figure 7.12 when compared to previous cases.
Because of the additional expression in the memory, it takes longer for the system to
classify the input test image. Classification times are 1.45, 3.05 and 4.82 seconds when
original size images are used to form memory sets of 200, 400 and 600 individuals.
Eventhough these classification times are four times more when one memory images
used in memory but under the 10% of original size; classification times become 0.04,

0.08 and 0.14 seconds for all three size memory cases.
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Figure 7.10 Original and Reduced Size Classification Performances for Four Memory
Expression vs. Blank Type Test Expression.
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Four Memory Images vs Arbitrary Type Test Image
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Figure 7.11 Original and Reduced Size Classification Performances for Four Memory

Expression vs. Arbitrary Type Test Expression.
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CHAPTER 8

SUN[MARY AND FUTURE WORK

8.1 SUMMARY

The objective of this thesis was to study the effect of expressions on
performance of a face recognition system and to demonstrate the relation between size
of images retrieval time of the system. In order to achieve these goals, we have
demonstrated the following facts:

L; and Ly s norms take almost same time to process an input image and their
effect on the classification performance is also very close. Hence one does not yield a
better distance computation than the other. The L; norm, on the other hand, needs
almost as half of the time as compared to other two in order to calculate a distance
between an input and a database image. The effect of the L; norm on the performance is
a little worse than the other two in most cases but the difference is very small. This
feature of L; norm would make it very appropriate for real time applications.

Second, in the representation of human face, we have found that blank and angry
expressions are the most effective. These two performed the highest when only one
expression is used to describe a face. We have also showed that using multiple images
increases the performance of the system. H;)wever, the increase was not as significant as
we expected. When represented with multiple images, blank, angry, and surprise
expressions were proved to be the most effective. The surprise expression was mainly a
contributor for arbitrary test images. We have showed that representing a face by
different facial expressions improves the performance of the system when compared to

that of using similar expressions.
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Third, we showed that reducing the size of database images from their original
size does not necessarily yields a worse classification performance. In fact, reducing the
size of images as much as 10% of their original still yielded a very close performance
compared to that in the full size. The retrieval time however was improved as much as

thirty times.

8.2 FUTURE WORK

Multiple expressions of an individual can be averaged to get an approximate
image and can be used in identification task. This approach can help to lower the
retrieval time of an input image since it has to only be compared to one average image
of each individual in the database rather than multiple expressions of each. However,
the classification performance of the system can deteriorate.

Another improvement to this study is to consider normalization of face images.
In our study, we have used database images in their original form. However there were
variations in term translation, rotation and light illumination among database images
due to imperfect conditions during the collection of this database. Artiklar has showed
that normalizing images in terms of slight translation and rotation can improve
classification performance of recognition algorithm (Artiklar, 2002). Further
improvement can be obtained by considering normalization procedure that can take care .

of some of the illumination changes embedded in database images.
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APPENDIX

MATLAB FUNCTIONS

A.1 COMPARISON of METRICS

A.1.1 CB, ED and Lo.s Norm Comparison Function

%Metrics: Compare test database and memory dabase by a Metrics.
%[ index,winner]=MetoneM(metric,i Type,pnumber,Mtype, Ttype, HT)

%OUTPUTS:

%index : index number reading pictures from database

%winner: this array PNUMBERx10 array include 10 winners and distances from memory database for
%every test images.

% INPUTS:

%pnumber : numbers of picture are going to read from the memorydatabase and testdatabase.
%lengthpic : this is the length of the only one picture matrix.

Y%pertypeM-pertypeT : this is the type of the picture is going to read from test and memory location.
%metric: this value select a metrics;

%CB=City Block

%ED=Euclidean Distance

%NM=L 0.5 norm

function [index,winner|[=MetoneM(metric,iType,pnumber,Mtype, Ttype, HT)

lengthpic=9430;
% chosing index number random or normal type
if iType="n'
index=1:pnumber;
else iType==T' /
index1=su(pnumber);
index=sort(index1);
end
matmemory=RMreader(pnumber,lengthpic,Mtype,index); % 100 pictures are reading and as a length 9430 in
memory database
winner=zeros(pnumber*2,10);

for perftestpic=1:pnumber
% read test images
% read files from the directory and load in mfilename pointer.
tname=sprintf('C: \hmages\\test\\lmage%d%s raw', index(:,perftestpic), Ttype);
fpmem=fopen(tname,'r’);

% check to error fp pointer

if (fpmem<0)
error('Files or a file could not read on this path')
exit(0);

end



% reading to memory files to imgmem (1x9430) row matrix.
[testimg,countmem]=fread(fpmem,[1 inf]);

% writing to whole row matrix into the test-files matris.

- fclose(fpmemn);

0/,
/0

perfdistance=0;

if metric=="CB'
%City Block: measuring the distance test image and memory images
for imempic=1:pnumber

perfabs=abs(testimg-matmemory(imempic,:));
[sp,sf]=size(perfabs);

perfint=sum(perfabs);

perfdistance(:, imempic)=perfint;

end

end

if metric=="ED'
%Euclidean Distance: measuring the distance test image and memory images
for imempic=1:pnumber

perfabs=(testimg-matmemory(imempic,:)).*2;
perfabs=sqrt(perfabs);

[sp,sfl=size(perfabs);

perfint=sum(perfabs);

perfdistance(:, imempic)=perfint;

end

end

if metric==NM'
%L0.5 norm: measuring the distance test image and memory images
for imempic=1:pnumber

perfabs=sqrt(abs(testimg-matmemory(imempic,:)));
perfabs=(perfabs)."2;

[sp,sf]=size(perfabs);

perfint=sum(perfabs);

perfdistance(:, imempic)=perfint;

end
end

%finding first 10 winner

for i=1:10
[mini indice]=min(perfdistance);
winl(1,i)=indice;
win2(1,i)=mini;
perfdistance(:,indice)}=9999999;

end

%writing first 10 winner in winner matrix
winner{(perftestpic*2)-1,:)=winl(l,:);
winner{(perftestpic*2),:}=win2(1,:);
perfiestpic
end
cle
% writing to performance result excel files
filename1 XLS=sprintf{'MetriconeMperform-%s-%s-%d-%d.xls', Mtype, Ttype,pnumber,HT);
fid=fopen(filename1XLS,'w");
fprintf(fid, DATABASE INDEX NUMBER AND Metrics Block DISTANCES \n\n');
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if iType ="n'
fprintf(fid,'database index number selected normaly’)
for i=1:pnumber*2
fprintf(fid, n’);
fprintf(fid,'%3.2\t',winner(i,:));
end
end

if iType ="'
fprintf(fid,'database index number selected randomly’)
for i=1:pnumber*2
fprintf{fid,"n");
fprintf(fid,'%3.2f\t',winner(i,:));
end
end

felose(fid);

A.1.2 Result of Comparision Function

%MetoneMR: This function use outputs of MetoneM function. Calculate
%classification,misclassification,classification time and Classification

%Percentage.
%[claspictures,misclaspictures,time,PERcentage]=MetoneMR (i Type,pnumber,Mtype, Ttype, HT);

%OUTPUTS:

%claspictures : Classified pictures index values.
Y%emisclaspictures : Misclassified pictures index values.
Ytime : Classification time.

%PERcentage  : Classification Percentage.

function [claspictures,misclaspictures,time,PER centage]=MetoneMR(iType,pnumber,Mtype, Ttype,HT);

t = clock;
[index,winner]=MetoneM(metric,i Type,pnumber,Mtype, Ttype, HT);
time=etime(clock,t);

COMindex=1:pnumber;

winnerR=zeros(1,pnumber);
winnerR=winnerR';

for i=0:pnumber-1 .
winnerR(i+1,:)=winner(2*i+1,1);
end

% finding misclassification pictures and their index niumber
claspictures=0;
misclaspictures=0;
Mismatrix=0;
for j=1:pnumber
if winnerR(j)==COMindex(j)
claspictures=claspictures+1;
else winnerR(j)~=COMindex(j)
misclaspictures=misclaspictures+1;
Mismatrix(j,:)=1;
end
end

% calculation of total mismatched picture number
totalmismatched=sum(Mismatrix);
mismatchindex=find(Mismatrix);
mismatched=winnerR({mismatchindex);

%calculation of Percentage of The Performance
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PERcentage=100*(pnumber-totalmismatched)/pnumber;

% writing to result excel files
filenameX LS=sprintf('MetoneMresult-%s-%s-%d-%d.xls", Mtype, Ttype,pnumber,HT);

fid=fopen(filenameXLS,'w");

fprintf{fid,'Classified pictures number %3.2f \n',claspictures);
fprintf(fid,'Matching Performance Time is %4.3f second \n',time);
fprintf(fid,"Matching Performance Percentage is %3.2f percent \n',PERcentage);

fprintf(fid,'Misclassified Pictures Index\n');
fprintf(fid,'%3.2f\n',mismatchindex);

fprintf{fid, Mismatched Pictures \n');
fprintf{(fid,'%3.2f\n',mismatched);

%index for random pictures number
indres=1:pnumber;
indres(2,:)=index;

indres=indres";

if iType=="r'
fprintf{fid, Database Picture Index \n");
for i=1:pnumber
fprintf(fid,"n');
fprintf{fid,'%3.3£\t',indres(i,:));
end
end

fclose(fid);

A.1.3 Summary of Result Function

%MetoneMTestSUMM : This funtion run simulation 5 times and calculate average
%value for this simulation results, than writes average results in excel file.
%MetoneM TestSUMM(iType,pnumber,Mtype, Ttype, TR);

function MetoneM TestSUMM(iType,pnumber,Mtype, Ttype, TR);

for HT=1:TR '
[claspictures,misclaspictures,time, PER centage]=MetoneMR (iType,pnumber,Mtype, Ttype, HT);
b(HT,:)=claspictures;
d(HT,:)=misclaspictures;
Ttime(HT,: }=time;
PERcent(HT,:)=PERcentage;

end

Class=sum(b)/TR;

misClass=sum(d)/TR;

TTime=sum(Ttime)/TR;

PerCent=sum(PERcent)/TR;

fileNameX LS=sprintf('MetoneMSummaryRes-%s-%s-%d.x1s',Mtype, Ttype,pnumber);
fid=fopen(fileNameXLS, 'w");

fprintf(fid,'Summary of the %d Times Face Recognition Simulation \n\n',TR);
fpﬁntf(ﬁd,' Average of The Classfied Pictures Number is %3.2f \n',Class);
fprintf(fid,” Average of The MIS-Classfied Pictures Number is %3.2f \n',misClass);
fprintf(fid,’ Average Classification Time is %3.2f ‘n',TTime);

fprintf(fid,' Average Classification Percentage is %3.2f \n',PerCent);

felose(fid);
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A.2 ONE MEMORY IMAGE SIMULATION FUNCTIONS (E.D.)

A.2.1 One Memory Main Function .

%EDoneMRedSi: This function reads one memory image and test image and

%than compare them.
%[index,winner]=EDoneMRedSi(iType,pnumber,Mtype, Ttype HT reduceP,method)

%OUTPUTS: ) )

%index :index number reading pictures from database.

%winner: this array PNUMBERx10 array include 10 winners and distances from memory database for
%every test images.

% INPUTS:

%iType : To define index type to read database images. )

%pnumber : Numbers of picture are going to read from the memorydatabase and testdatabase.

% Mtype, Ttype : This is the type of the picture is going to read from test and memory location.

%HT : This value show to program "how many times this simulation will run for different index database."
YreduceP : Shows to reduce percentage for row and column.

%method : Shows to interpratation method like ;'bilinear’,'bicubic’, nearest'.

function [index,winner]=EDoneMRedSi(iType,pnumber,Mtype, Ttype,HT,reduceP,method)
lengthpic=9430;

% chosing index number random or normal type
if iType=="n'
index=1:pnumber;
else iType==T'
indexname = sprintf’C:\MATLABG6pS5\\work\\randomDA T A\indexfile-%d-%d.data’,H{T,pnumber);
index=textread(indexname,'%f");
index=index";
end

matmemory=RMreducesize(pnumber, lengthpic, Mtype, index,reduceP,method); % 100 pictures are reading and as a
length 9430 in memory database

winner=zeros(pnumber*2,10);

for perftestpic=1:pnumber

% read test images
% read files from the directory and load in mfilename pointer.
tname=sprintf{('C:\images\\test\\image%d%s.raw’, index(:,perftestpic), Ttype);

fpmem=fopen(tname,'r');

% check to error fp pointer

if (fpmem<0)
error('Files or a file could not read on this path")
exit(0);

end

% reading to memory files to imgmem (1x9430) row matrix.
[testimg,countmem]=fread(fpmem,[1 inf]);
o/ .

o/,

if reduceP ~= 100;
testimg=resizeres(testimg,reduceP,method);
else reduceP == 100;




testimg=testimg;
end

o/,
/o

o/
VY

% writing to whole row matrix into the test-files matris.

fclose(fpmem); .

o/
/o

perfdistance=0;

%measuring the distance test image and memory images
for imempic=1:pnumber ’

perfabs=(testimg-matmemory(imempic,:)).*2;
perfabs=sqrt(perfabs);

[sp,sf]=size(perfabs);

%this line cancelled to average of distance
Y%perfint=sum{perfabs)/sf;
perfint=sum(perfabs);

perfdistance(:, imempic)=perfint;

end
%finding first 10 winner
fori=1:10
[mini indice]=min(perfdistance);
winl(1,i)=indice;
win2(1,i)=mini;
perfdistance(:,indice)=9999999;
end

%writing first 10 winner in winner matrix
winner((perftestpic*2)-1,:}=winl1(l1,:);
winner((perftestpic*2),:}=win2(1,:);
perftestpic
end
cle
% writing to performance result excel files
filename1XLS=sprintf"EDoneMRedSiperform-%s-%s-%d-%d-%d.x1s', Mtype, Ttype,pnumber,reduceP HT);
fid=fopen(filename1XLS,'w");
fprintf(fid, DATABASE INDEX NUMBER AND City Block DISTANCES \n\n');
ifiType ="n"
fprintf(fid,'database index number selected normaly")
for i=1:pnumber*2
fprintf(fid,\n’);
fprintf(fid,'%3.2f\t',winner(i,:));
end
end /

if iType =T
fprintf(fid,'database index number selected randomly’)
for i=1:pnumber*2
fprintf(fid,"n");
fprintf(fid,'%3.2f\t',winner(i,:));
end
end

fclose(fid);

A.2.2 Result of Main Function

%EDoneMRRedSi : This function use outputs of the EDoneMRedSi function.
%Takes the winner matrix from EDoneMRedSi functions. Calculate
%Classification, Misclassificaition,Classification Time and Classification
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%Percentage.

%] claspictures,misclaspictures,time,PER centage]=EDoneMRRedSi(iType,pnumber,Mtype, Ttype,HT,reduceP,metho
d);

%OUTPUTS:

%claspictures : gives the classification number based on index number.

%misclaspictures : this outputs gives misclassification index.

Ytime : gives classificaiton time.

%PERcentage  : calculate the classification performance percentage.

%INPUTS:
%iType : To define index type to read database images.
Y%pnumber : Numbers of picture are going to read from the memorydatabase and testdatabase.
p . . .
% Mtype, Ttype : This is the type of the picture is going to read from test and memory location.
%HT : This value show to program "how many times this simulation will run for different index database.”
Y%reduceP : Shows to reduce percentage for row and column.
%method : Shows to interpratation method like ;'bilinear’, bicubic’, nearest'.
function

[claspictures,misclaspictures,time,PER centage]=EDoneMRRedSi(iType,pnumber,Mtype, Ttype,HT,reduceP,method);

t = clock;
[index,winner}]<EDoneMRedSi(iType,pnumber,Mtype, Ttype, HT,reduceP,method);
time=etime(clock,t);

COMindex=1:pnumber;

winnerR=zeros(1,pnumber);
winnerR=winnerR'";

for i=0:pnumber-1
winnerR(i+1,:)=winner(2*i+1,1);
end

% finding misclassification pictures and their index number
claspictures=0;
misclaspictures=0;
Mismatrix=0;
for j=1:pnumber
if winnerR(j)==COMindex(j)
claspictures=claspictures+1;
else winnerR(j)~=COMindex(j)
misclaspictures=misclaspictures+1;
Mismatrix(j,:)=1;
end
end

% calculation of total mismatched picture number
totalmismatched=sum(Mismatrix); /
mismatchindex=find(Mismatrix);
mismatched=winnerR(mismatchindex);

%calculation of Percentage of The Performance
PERcentage=100*(pnumber-totalmismatched)/pnumber;

% writing to result excel files
filenameXLS=sprintf"EDoneMRedSiresult-%s-%s-%d-%d-%d.x1s',Mtype, Ttype,pnurmber,reduceP,HT);

fid=fopen(filenameXLS,'w");

fprintf(fid,'Classified pictures number %3.2f \n',claspictures);

fprintf(fid,' Matching Performance Time is %4.3f second \n',time);

fprintf(fid,' Matching Performance Percentage is %3.2f percent \n',PERcentage);

fprintf(fid, Misclassified Pictures Index\n');
fprintf(fid,'%3.2f\n',mismatchindex);
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fprintf(fid, Mismatched Pictures \n');
fprintf{fid,'%3.2f\n';mismatched);

%index for random pictures number
indres=1:pnumber;
indres(2,:)=index;

indres=indres’;

if iType=="r'
fprintf(fid, Database Picture Index \n');
for i=1:pnumber
fprintf(fid,"\n");
fprintf(fid,'%3.3f\t',indres(i,:));
end
end

felose(fid);

A.2.3 Summary of Result Function

%EDoneMTestSUMMRedSi : Run 5 times EDoneMRRedSi function and takes the outputs of EDoneMRRedSi
%and calculate Reduced Size Row and Column,Classified and Mis-Classified Pictures

%Number, Time and Classification Percentage, and finally writes all results

%in excel files.

%EDoneMTestSUMMRedSi(iType,pnumber,Mtype, Ttype, TR, reduceP,method);

%INPUTS:

Y%iType- : To define index type to read database images.

Y%pnumber : Numbers of picture are going to read from the memorydatabase and testdatabase.

% Mtype, Ttype : This is the type of the picture is going to read from test and memory location.

%TR : This value show to program "how many times this simulation will run for different index database.”
Y%reduceP : Shows to reduce percentage for row and column.

%method : Shows to interpratation method like ;'bilinear’, bicubic','nearest’.

function EDoneMTestSUMMRedSi(iType,pnumber,Mtype, Ttype, TR, reduceP,method);
for HT=1:TR

[claspictures,misclaspictures,time,PER centage]=EDoneMRR edSi(iType,pnumber,Mtype, Ttype,HT,reduceP,method);
b(HT,:)=claspictures;
d(HT,:)=misclaspictures;
Ttime(HT,:)=time;
PERcent(HT,:)=PERcentage;
end
Class=sum(b)/TR; ,
misClass=sum(d)/TR; !
TTime=sum(Ttime)/TR;
PerCent=sum(PERcent)/TR;

rrow=82;

rcolumn=115;
rprow=round((rrow*reduceP)/100);
rpcolumn=round((rcolumn*reduceP)/100);

fileNameXLS=sprintf('EDoneMRedSiSummaryR es-%s-%s-%d-%s-%d.x1s', Mtype, Ttype,reduceP,method, pnumber);
fid=fopen(fileNameXLS,'w");

fprintf(fid,'Summary of the %d Times Face Recognition Simulation \n\n',TR);

fprintf(fid,’ Reduce Percentage of 82x115 is %3.2f \n',reduceP);

fprintf(fid,’ Reduce Pixel Values of Row Column %3.2f \n',rprow,rpcolumn);
fprintf(fid,’ Average of The Classfied Pictures Number is %3.2f \n',Class);
fprintf(fid,' Average of The MIS-Classfied Pictures Number is %3.2f \n',misClass);
fprintf(fid," Average Classification Time is %3.2f \n',TTime);

fprintf(fid,’ Average Classification Percentage is %3.2f \n',PerCent);
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fclose(fid);

A.3 TWO MEMORY IMAGES SIMULATION FUNCTIONS (E.D.)

A.3.1 Two Memory Main Function

%EDtwoMRedSi: This function reads two memory image and one test image and
%than compare them. o
%[index,winner]=EDtwoMRedSi(iType,pnumber,M 1type,M2type, Ttype, HT,reduceP,method);

%OUTPUTS:

%index :index number reading pictures from database.

%winner: this array PNUMBERx10 array include 10 winners and distances from memory database for
Y%every test images.

% INPUTS:

%iType : To define index type to read database images.

Y%pnumber : Numbers of picture are going to read from the memorydatabase and testdatabase.

%M ltype : This is the first type memory picture.

%M2type : This is the second type memory picture.

%Ttype : Test database picture type.

%HT : This value show to program "how many times this simulation will run for different index database."
%reduceP : Shows to reduce percentage for row and colurmm.

%method : Shows to interpratation method like ;'bilinear’,’bicubic’,'nearest'.

function [index,winner]=EDtwoMRedSi(iType,pnumber,M1type, M2type, Ttype,HT,reduceP,method);
lengthpic=9430;

% chosing index number random or normal type
if iType=="n'
index=1:pnumber;
else iType==T'
indexname = sprintf('C:\MATLABGpS\\work\\rrandomDA TA\indexfile-%d-%d.data’, HT,pnumber);
index=textread(indexname,'%f');
index=index’;
end
matmemory]=RMreducesize(pnumber, lengthpic, M1type, index,reduceP,method); % 100 pictures are reading and as
a length 9430 in memory database
matmemory2=RMreducesize(pnumber, lengthpic, M2type, index,reduceP,method); % 100 pictures are reading and as

a length 9430 in memory database
matmemory=[matmemory];matmemory2];

winner=zeros{pnumber*2,10);

for perftestpic=1:pnumber

% read test images

% read files from the directory and load in mfilename pointer.
tname=sprintf('C:\\images\\test\\image%d%s.raw', index(:,perftestpic), Ttype);
fpmem=fopen(tname,'r');

% check to error fp pointer

if (fpmem<0) .
error('Files or a file could not read on this path')
exit(0);

end

% reading to memory files to imgmem (1x9430) row matrix.
[testimg,countmem]=fread(fpmem,[1 inf]});

/0




if reduceP ~= 100;
testimg=resizeres(testimg,reduceP,method);
else reduceP == 100;
testimg=testimg;

end
(1 V4
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o/
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% writing to whole row matrix into the test-files matris.
fclose(fpmem);
0,

perfdistance=0;

%measuring the distance test image and memory images
for imempic=1:pnumber*2

perfabs=(testimg-matmemory(imempic,:)).*2;
perfabs=sqrt(perfabs);

[sp.sf]=size(perfabs);

%this line cancelled to average of distance
%perfint=sum(perfabs)/sf;
perfint=sum(perfabs);

perfdistance(:, imempic)=perfint;

end

%finding first 10 winner

for i=1:10
[mini indice]=min(perfdistance);
winl(1,i)=indice;
win2(1,i)=mini;
perfdistance(:,indice)=9999999;

end

Yowriting first 10 winner in winner matrix
winner((perftestpic*2)-1,:)=win1(l1,:);
winner((perftestpic*2),:}=win2(1,:);
perftestpic
end
cle
% writing to performance result excel files
filename 1 XLS=sprintf'EDtwoMRedSiperform-%s-%s-%s-%d-%d-
%d.xls',M1type,M2type, Ttype,pnumber,reduceP, HT);
fid=fopen(filename1XLS,'w");
fprintf(fid, DATABASE INDEX NUMBER AND City Block DISTANCES \n\n');
if iType ="n'
fprintf(fid,'database index number selected normaly’)
for i=1:pnumber*2 /
fprintf(fid,"n");
fprintf(fid,'%3.2f\t',winner(i,:));
end
end

if iType ="'
fprintf(fid,'database index number selected randomly')
for i=1:pnumber*2
fprintf(fid,\n");
fprintf(fid,'%3.2f\t',winner(i,:));
end
end

felose(fid);
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A.3.2 Result of Main Function for Two Memory Images

%EDwoMRRedSi : This function use outputs of the EDtwoMRedSi function.

%Takes the winner matrix from EDoneMRedSi functions. Calculate

%Classification, Misclassificaition,Classification Time and Classification

%Percentage.

% Tclas, TMisClas,time, TFiMemory, TSeMemory,PER centage]=EDtwoMRRedSi(iType,pnumber,M1type, M2type, Tt
ype,HT,reduceP,method);

%OUTPUTS:

%Tclas  : gives the classification nuniber based on index number.
%TMisClas : this outputs gives misclassification index.

%time  : gives classificaiton time.

%TFiMemory : Total first memory winner results.

%TSeMemory : Total second memory winner results.
%PERcentage : calculate the classification performance percentage.

% INPUTS: ~

%iType : To define index type to read database images.

%pnumber : Numbers of picture are going to read from the memorydatabase and testdatabase.

%M]type : This is the first type memory picture.

%M2type : This is the second type memory picture.

%Ttype : Test database picture type.

%HT : This value show to program "how many times this simulation will run for different index database."
YreduceP : Shows to reduce percentage for row and colurmmn.

%method : Shows to interpratation method like ;'bilinear’,'bicubic', nearest'.

function

[Tclas, TMisClas, time, TFiMemory, TSeMemory,PER centage]=EDtwoMRRedSi(iType,pnumber,M1type,M2type, Tty
pe,HT,reduceP,method);

t = clock;
[index,winner]=EDtwoMRedSi(iType,pnumber,M 1 type, M2type, Ttype, HT,reduceP,method);
time=etime(clock,t);

COMindex=1:pnumber;

winnerR=zeros(1,pnumber);
winnerR=winnerR";

for i=0:pnumber-1
winnerR(i+1,:}=winner(2*i+1,1);
end

% finding misclassification pictures and their index number
claspictures=0;
misclaspictures=0; /
FiMemory=0;
SMemory=0;
Mismatrix=0;
for j=1:pnumber
if winnerR(j)==COMindex(j)
claspictures=claspictures+1;
FiMemory(j,:)=1;
elseif (winnerR(j)-pnumber)==COMindex(j)
claspictures=claspictures+1;
SMemory(j,:)=1;
else winnerR(j)~=COMindex(j)
misclaspictures=misclaspictures+1;
Mismatrix(j,:)=1;
end
end
% calculation of total matched picture number
Tclas=claspictures;

% calculation of total mismatched picture number



totalmismatched=sum(Mismatrix);
TMisClas=misclaspictures;
mismatchindex=find(Mismatrix);
mismatched=index(mismatchindex);

%calculation of second memory set
totalmatchFiMemory=sum(FiMemory);
TFiMemory=totalmatchFiMemory;
matchFiMemoryIndex=find(FiMemory);
matchedFiMemory=index(matchFiMemorylndex);

Y%calculation of second memory set
totalmatchSeMemory=sum(SMemory);
TSeMemory=totalmatchSeMemory
matchSeMemorylndex=find(SMemoryy);
matchedSeMemory=index(matchSeMemorylndex);

%calculation of Percentage of The Performance
PERcentage=100*(pnumber-totalmismatched)/pnumber; ‘

% writing to result excel files
filenameXLS=sprintf'EDtwoMRRedSi-%s-%s-%s-%d-%d-%d.x1s',M 1 type, M2type, Ttype,pnumber,reduceP, HT);

fid=fopen(filenameXLS,'w');

fprintf(fid, Matching Performance Time is %4.3f second \n',time});

fprintf(fid,' Matching Performance Percentage is %3.2f percent \n',PERcentage);

fprintf(fid,'Total match performance from First Memory (M1) is %3.2f \n',totalmatchFiMemory);
fprintf(fid, Total match performance from Second Memory (M2) is %3.2f \n',totalmatchSeMemory);
0/,

0o/

fprintf{(fid, Misclassified Pictures Index\n');
fprintf(fid,'%3.2f\n’,mismatchindex);

fprintf{fid, Mismatched Pictures \n');
fprintf{fid,'%3.2f\n',mismatched);
/.

fprintf{fid, Classified Pictures Index Number From First Memory Set\n');
fprintf(fid,'%3.3f\n’,; matchFiMemoryIndex);

fprintf(fid,'Classified Pictures From First Memory Set\n");
fprintf(fid,'%3.3f\n’,;matchedFiMemory);
0/

l)/

fprmtf(ﬁd 'Classified Pictures Index Number From Second Memory Set\n');
fprintf(fid,'%3.3f\n',;matchSeMemorylndex); /

fprintf(fid, Classified Pictures From Second Memory Set\n");
fprmtf(ﬁd '%3.3f\n',matchedSeMemory);

Iu

o/
/0

%index for random pictures number
indres=1:pnumber;
indres(2,:)=index;

indres=indres";

if iType=="r'
fprintf(fid,'Database Picture Index \n');
for i=1:pnumber
fprintf(fid,"n");
fprintf(fid,'%3.3f\t' indres(i,:));
end
end

felose(fid);
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A.3.3 Summary of Result Function For Two Memory Images

%EDtwoMTestSUMMRedSi : Run 5 times EDoneMRRedSi function and takes the outputs of EDoneMRRedSi and
calculate Reduced Size Row and Column,Classified and Mis-Classified Pictures

%Number, Time and Classification Percentage, and finally writes all results

%in excel files.

% INPUTS: .

%iType : To define index type to read database images.

Y%puumber : Numbers of picture are going to read from the memorydatabase and testdatabase.

%Mltype : This is the first type memory picture.

%M2type : This is the second type memory picture.

%Ttype : Test database picture type.

%TR : This value show to program "how many times this simulation will run for different index database."
Y%reduceP : Shows to reduce percentage for row and column.

Y%method : Shows to interpratation method like ;'bilinear’,'bicubic’,'nearest’.

function EDtwoMTestSUMMRedSi(iType,pnumber,M1type,M2type, Ttype, TR, reduceP,method);
for HT=1:TR

[Tclas,TMisClas,time, TFiMemory, TSeMemory,PER centage]=EDtwoMRRedSi(iType,pnumber,M1type,M2type, Tty
pe,HT,reduceP,method);
b(HT,:)=Tclas;
d(HT,:)=TMisClas;
de(HT,:)=TFiMemory;
f(HT,:)=TSeMemory;
Ttime(HT,: )=time;
PERcent(HT,:}=PERcentage;
end
Class=sum(b)/TR;
misClass=sum(d)/TR;
FirstMemoryClas=sum(de)/TR;
SecMemoryClas=sum(f)/TR;
TTime=sum{Ttime)/TR;
PerCent=sum(PERcent)/TR;

PercentFirst=(FirstMemoryClas*100)/pnumber;
PercentSecond=(SecMemoryClas*100)/pnumber;
rrow=82;

rcolumn=115;

rprow=round((rrow*reduceP)/100);
rpeolumn=round((rcolumn*reduceP)/100); /

4
fileNameXLS=sprintf'EDtwoMRedSiSummaryR es-%s-%s-%s-%d-%s-
%d.x1s',M1type,M2type, Ttype,reduceP,method,pnumber);
fid=fopen(fileNameXLS,'w");

fprintf(fid,'Summary of the %d Times Face Recognition Simulation \n\n',TR);

fprintf(fid,' Reduce Percentage of 82x115 is %3.2f \n',reduceP);
fprintf{fid,' Reduce Pixel Values of Row Column %3.2f \n',rprow,rpcolumn);

fprintf(fid,’ Average of The Classfied Pictures Number is %3.2f \n',Class);
fprintf(fid,’ Average of The MIS-Classfied Pictures Number is %3.2f \n',;misClass);

fprintf(fid,' Average of The Classfied Pictures Number from First Memory %3.2f \n',FirstMemoryClas);
forintf(fid,’ Average of The Classfied Pictures Number from First Memory as Percentage %3.2f \n',PercentFirst);

fprintf(fid,’ Average of The Classfied Pictures Number from Second Memory %3.2f \n',SecMemoryClas);
fprintf(fid,’ Average of The Classfied Pictures Number from Second Memory as Percentage %3.2f
\n',PercentSecond);



fprintf{fid,’ Average Classification Time is %3.2f \n',TTime);
fprintf(fid,' Average Classification Percentage is %3.2f \n',PerCent);

felose(fid);

A.4 THREE MEMORY IMAGES SIMULATION FUNCTIONS (E.D.)

A.4.1 Three Memory Main Function

%EDthreeMRedSi: This function reads three memory image and one test image and
%than compare them. .
%[ index,winner]=EDthreeMRedSi(iType,pnumber,M1type,M2type,M3type, Ttype, HT,reduceP,method);

%OUTPUTS:
%index :index number reading pictures from database.
%winner: this array PNUMBERx10 array include 10 winners and distances from memory database for
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Y%every test images.

% INPUTS:

%iType : To define index type to read database images.

%pnumber : Numbers of picture are going to read from the memorydatabase and testdatabase.
%M ltype : This is the first type memory picture.

%M2type : This is the second type memory picture.

%M3type : This is the third type memory picture.

%Ttype : Test database picture type.

%HT : This value show to program "how many times this simulation will run for different index database.”
%reduceP : Shows to reduce percentage for row and column.

%method : Shows to interpratation method like ;bilinear’,'bicubic’,' nearest'.

function [index,winner]=EDthreeMRedSi(iType,pnumber,M1type,M2type,M3type, Ttype,HT,reduceP,method);

lengthpic=9430;

% chosing index number random or normal type
if iType="n'
index=1:pnumber;
else iType==T'
indexname = sprintf'C:\MATLAB6pS\work\\randomDATA\indexfile-%d-%d.data’,H T,pnumber);
index=textread(indexname, %f');
index=index";
end

matmemoryl=RMreducesize(pnumber, lengthpic, M1type, index,reduceP,method);
matmemory2=RMreducesize(pnumber, lengthpic, M2type, index,reduceP,method);
matmemory3=RMreducesize(pnumber, lengthpic, M3type, index,reduceP,method);
matmemory={matmemory] ;matmemory2;matmemory3]; ;

winner=zeros(pnumber*2,10);
for perftestpic=1:pnumber

9% read test irnages e sfe e e sfe afeofe ic ok b 2 o o e fe o s sfe s dfe fe ok s fe 3k af sfe 36 3 abeafe o e ab afe e 3 afe e e sfedfe e sfe e

% read files from the directory and load in mfilename pointer.
tname=sprintf('C:\\images\\test\\image%d%s.raw’, index(:,perftestpic), Ttype);
fpmem=~fopen(tname,'r");

% check to error fp pointer

if (fpmem<0)
error('Files or a file could not read on this path')
exit(0);

end

% reading to memory files to imgmem (1x9430) row matrix.
[testimg,countmem]=fread(fpmem,[1 inf]);
o/,

/0




o/,
(4

if reduceP ~= 100;
testimg=resizeres(testimg,reduceP,method);
else reduceP = 100;
testimg=testimg;
end

0/,
/0

o/
o

% writing to whole row matrix into the test-files matris.

fclose(fpmem);

/0

perfdistance=0;

%measuring the distance test image and memory images
for imempic=1:pnumber*3

perfabs=(testimg-matmemory(imempic,:)).*2;
perfabs=sqrt(perfabs);

[sp,sf]=size(perfabs);

%this line cancelled to average of distance
Y%perfint=sum(perfabs)/sf;
perfint=sum(perfabs);

perfdistance(:, imempic)=perfint;

end

%finding first 10 winner

for i=1:10
[mini indice]=min(perfdistance);
winl(1,i)=indice;
win2(1,i)=mini;
perfdistance(:,indice)=9999999;

end

Yowriting first 10 winner in winner matrix
winner((perftestpic*2)-1,:)=win1(1,:);
winner((perftestpic*2),:}=win2(1,:);
perftestpic
end
cle
% writing to performance result excel files
filename 1 XLS=sprintf('EDthreeMR edSiperform-%s-%s-%s-%s-%d-%d-
%d.xls',M1type,M2type,M3type, Ttype,pnumber,reduceP,HT); -
fid=fopen(filename1XLS,'w");
fprintf(fid, DATABASE INDEX NUMBER AND City Block DISTANCES \n\n");
if iType ="'
fprintf(fid,'database index number selected normaly’)
for i=1:pnumber*2
fprintf(fid,\n");
fprintf(fid,'%3.2f\t',winner(i,:));
end
end

if iType ="'
fprintf(fid,'database index number selected randomly")
for i=1:pnumber*2
fprintf{fid, n");
fprintf(fid,'%3.2f\t', winner(i,:));
end
end

felose(fid);

A.4.2 Result of Main Function For Three Memory Images

%EDthreeMRRedSi : This function use outputs of the EDthreeMRRedSi function. -
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%Takes the winner matrix from EDthreeMRRedSifunctions. Calculate

%Classification, Misclassificaition,Classification Time, First,Second,Third Memory Image Classification Results and
Total Classification Percentage.

%] claspictures,misclaspictures,time,FiMemory,SeMemory, ThMemory,PERcentage]=EDthreeMRRedSi(iType,pnum
ber,M1type,M2type,M3type, Ttype,HT,reduceP,method);

%OUTPUTS:

%claspictures : Classified picture number.

%misclaspictures : misclassified pictures number.

Yetime : Classification Time

%FiMemory : Classified Pictures Result from First Memory Images.
%SeMemory : Classified Pictures Result from Second Memory Images.
%ThMemory : Classified Pictures Result from Third Memory Images.
%PERcentage  : Total Classification Performance Percentage.

% INPUTS:

%iType : To define index type to read database images.

Ypnumber : Numbers of picture are going to read from the memorydatabase and testdatabase.
%Mltype : This is the first type memory picture.

Y%M2type : This is the second type memory picture.

%M3type : This is the third type memory picture.

%Ttype : Test database picture type.

%HT : This value show to program "how many times this simulation will run for different index database.”
%reduceP : Shows to reduce percentage for row and colummn.

%method : Shows to interpratation method like ;'bilinear’, bicubic','nearest'.

function

[claspictures,misclaspictures,time,FiMemory,SeMemory, ThMemory,PERcentage]=EDthreeMRRedSi(iType,pnumbe
r,M1type,M2type, M3type, Ttype, HT,reduceP,method),

t= clock;
[index,winner]=EDthreeMRedSi(iType,pnumber,M1type,M2type,M3type, Ttype, HT,reduceP,method);
time=etime(clock,t); 2

COMindex=1:pnumber;

winnerR=zeros(1,pnumber);
winnerR=winnerR';

for i=0:pnumber-1
winnerR(i+1,:)=winner(2*i+1,1);
end

% finding misclassification pictures and their index number
claspictures=0;
misclaspictures=0;
Fimem=0; ,
Smem=0;
Tmem=0;
Mismatrix=0;
for j=1:pnumber
if winnerR(j)==COMindex(j)
claspictures=claspictures+1;
Fimem(j,:)=1;
elseif (winnerR(j)-pnumber)==COMindex(j)
claspictures=claspictures+1;
Smem(j,:)=1;.
elseif (winnerR(j)-2*pnumber)==COMindex(j)
claspictures=claspictures+1;
Tmem(j,:)=1;
else winnerR(j)~=COMindex(j)
misclaspictures=misclaspictures+1;
Mismatrix(j,:)=1;
end
end
% calculation of total matched picture



totalmatched=claspictures;

% calculation of total mismatched picture number
totalmismatched=misclaspictures;
mismatchindex=find(Mismatrix);
mismatched=index(mismatchindex);

%Calculation of First Memory
totalmatchFiMemory=sum(Fimem);
FiMemory=totalmatchFiMemory;
matchFiMemoryIndex=find(Fimemy);
matchedFiMemory=index(matchFiMemorylndex);
percentFimem=(totalmatchFiMemory*100)/pnumber;

%calculation of second memory set
totalmatchSeMemory=sum(Smemy);
SeMemory=totalmatchSeMemory;
matchSeMemorylndex=find(Smerm);
matchedSeMemory=index(matchSeMemoryIndex);
percentSemem=(totalmatchSeMemory*100)/pnumber;

%calculation of third memory set
totalmatchThMemory=sum{Tmem);
ThMemory=totalmatchThMemory;
matchThMemorylndex=find(Tmem);
matchedThMemory=index(matchThMemoryIndex);
percentThmem=(totalmatchThMemory*100)/pnumber;

%calculation of Percentage of The Performance
PERcentage=100*(pnumber-totalmismatched)/pnumber;

% writing to result excel files
filenameXL.S=sprintf{'EDThreeMRRedSi-%s-%s-%s-%s-%d-%d-
%d.x1s', M1type,M2type,M3type, Ttype,pnumber,reduceP,HT);

fid=fopen(filenameXLS,'w");

fprintf(fid,'Total Classified Pictures is %3.2f\n',totalmatched);

fprintf{(fid, Total Mis-Classified Pictures is %3.2f \n',totalmismatched);
fprintf(fid,'Matching Performance Time is %4.3f second \n',time);

fprintf{fid,'Matching Performance Percentage is %3.2f percent \n',PERcentage);
fprintf(fid, Total First Memory Classified Pictures is %3.2f \n',totalmatchFiMemory);
fprintf(fid,'Total Second Memory Classified Pictures is %3.2f \n',totalmatchSeMemory);
fprintf{fid,'Total Third Memory Classified Pictures is %3.2f\n',totalmatchThMemory);

fprintf{fid,'Classified Pictures Indexing Number From First'Memory Set\n");
fprintf(fid,'%3.3f\n’,;matchFiMemoryIndex); ’

fprintf(fid,'Classified Pictures From First Memory Set as Percentage \n');
fprintf{(fid,'%3.3f\n',;matchedFiMemory);

fprintf(fid,'Classified Pictures Indexing Number From Second Memory Set\n');
fprintf{fid,'%3.3fin',matchSeMemorylndex);

fprintf(fid,'Classified Pictures From Second Memory Set\n');
fprintf(fid,'%3.3f\n',;matchedSeMemory);
0/

fprintf(fid,'Classified Pictures fndexing Number From Third Memory Set\n');
fprintf(fid,'%3.3f\n’;matchThMemorylndex);

fprintf{fid,'Classified Pictures From Third Memory Set\n');
fprintf{fid,'%3.3f\n',;matchedThMemory);

fprintf(fid,'Misclassified Pictures Indexing number\n’);
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forintf(fid,'%3.2f\n’,mismatchindex);

fprintf(fid, Mismatched Pictures \n');
fprintf(fid,'%3.2f\n’,;mismatched);

%index for random pictures number
indres=1:pnumber;
indres(2,:)=index;

indres=indres";

ifiType=="
fprintf(fid, Database Picture Index \n");
for i=1:pnumber
fprintf(fid,"n");
fprintf(fid, %3.3f\t',indres(i,:));
end
end

felose(fid);

A.4.3 Summary of Result Function for Three Memory Images

%EDthreeMTestSUMMRedSi : Run 5 times EDoneMRRedSi function and takes outputs of the EDthreeMRRedSi
function calculate Classification, Misclassificaition,Classification Time, First,Second, Third Memory Image
Classification Results and Total Classification Percentage and finally writes all results in excel files.

% INPUTS:

%iType : To define index type to read database images.

%pnumber : Numbers of picture are going to read from the memorydatabase and testdatabase.

%M ltype : This is the first type memory picture.

%M2type : This is the second type memory picture.

%M3type : This is the third type memory picture.

%Ttype : Test database picture type.

%TR : This value show to program "how many times this simulation will run for different index database.”
Y%reduceP : Shows to reduce percentage for row and column.

%method : Shows to interpratation method like ;'bilinear’,bicubic’,'nearest'.

function EDthreeMTestSUMMRedSi(iType,pnumber,M1type M2type,M3type, Ttype, TR reduceP,method);
for HT=1:TR

[claspictures,misclaspictures,time,FiMemory,SeMemory, ThMemory,PER centage]=EDthreeMRRedSi(iType,pnumbe
r,M1type,M2type,M3type, Ttype,HT,reduceP,method);
b(HT,:)=claspictures;
d(HT,:)=misclaspictures;
de(HT,:)=FiMemory; ,
f(HT,:)=SeMemory; /
g(HT,:)=ThMemory;
Ttime(HT,:)=time;
PERcent(HT,:}=PERcentage;
end
Class=sum(b)/TR;
misClass=sum(d)/TR;

FirstMemoryClas=sum(de)/TR;
PercentFirst=(FirstMemoryClas*100)/pnumber;
SecMemoryClas=sum(f)/TR;
PercentSecond=(SecMemoryClas*100)/pnumber;
ThirdMemoryClass=sum(g)/TR; ‘
PercentThird=(ThirdMemoryClass*100)/pnumber;

TTime=sum(Ttime)/TR;
PerCent=sum(PERcent)/TR;

rrow=82;
rcolumn=115;
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rprow=round((rrow*reduceP)/100);
rpcolurmm=round((rcolumn*reduceP)/100);

fileNameXLS=sprintf{'EDthreeMR edSiSummaryR es-%s-%s-%s-%s-%d-%s-
%d.xl1s",M1type,M2type,M3type, Ttype,reduceP,method, pnumber);
fid=fopen(fileNameXLS,'w");

fprintf(fid,'Summary of the %d Times Face Recognition Simulation \n\n',TR);

fprintf{fid,' Reduce Percentage of 82x115 is %3.2f \n’,reduceP);
fprintf(fid,” Reduce Pixel Values of Row Column %3.2f \n',rprow,rpcolumn);

fprintf(fid,’ Average of The Classfied Pictures Number is %3.2f \n',Class);
fprintf(fid,’ Average of The MIS-Classfied Pictures Number is %3.2f \n',misClass);

fprintf{(fid, Average of The Classfied Pictures Number from First Memory %3.2f \n',FirstMemoryClas);
fprintf(fid,' Average of The Classfied Pictures Number from First Memory as Percentage %3.2f \n',PercentFirst);

fprintf(fid,’ Average of The Classfied Pictures Number from Second Memory %3.2f \n',SecMemoryClas);
fprintf(fid,’ Average of The Classfied Pictures Number from Second Memory as Percentage %3.2f
\n',PercentSecond);

fprintf(fid,’ Average of The Classfied Pictures Number from Third Memory %3.2f \n',ThirdMemoryClass);
fprintf(fid," Average of The Classfied Pictures Number from Thitrd Memory as Percentage %3.2f \n',PercentThird);

fprintf{fid,’ Average Classification Time is %3.2f \n', TTime);
fprintf(fid,' Average Classification Percentage is %3.2f \n',PerCent);

felose(fid);

A.5 FOUR MEMORY IMAGES SIMULATION FUNCTIONS (E.D.)

A.5.1 Four Memory Main Function

%EDfourMRedSi: This function reads four memory image and one test image and
%than compare them.
%[index,winner]=EDfourMRedSi(iType,pnumber,M 1type, M2type,M3type, Ttype, HT,reduceP,method);

%OUTPUTS:

%index :index number reading pictures from database.

Y%winner: this array PNUMBERXx10 array include 10 winners and distances from memory database for
%every test images.

% INPUTS:

%iType : To define index type to read database images.

Y%pnumber : Numbers of picture are going to read from the memorydatabase and testdatabase.
%M ltype : This is the first type memory picture.

Y%M2type : This is the second type memory picture.

%M3type : This is the third type memory picture.

%Mdtype : This is the fourth type memory picture.

%Ttype : Test database picture type. .

%HT : This value show to program "how many times this simulation will run for different index database."
%reduceP : Shows to reduce percentage for row and column.

%method : Shows to interpratation method like ;'bilinear’,'bicubic’,'nearest'.

function

[index,winner]=EDfourMRedSi(iType,pnumber,M 1 type, M2type,M3type,M4type, Ttype,H T,reduceP,method);
lengthpic=9430;
% chosing index number random or normal type

if iType=="n'
index=1:pnumber;



else iType=="T'
indexname = sprintf('C:\MATLABGp5\\work\wrandomDATA\indexfile-%d-%d.data’, HT,pnumber);
index=textread(indexname,'%f');
index=index";

end

matmemoryl=RMreducesize(pnumber, lengthpic, M1type, index,reduceP,method);
matmemory2=RMreducesize(pnumber, lengthpic, M2type, index,reduceP,method);
matmemory3=RMreducesize(pnumber, lengthpic, M3type, index,reduceP,method);
matmemory4=RMreducesize(pnumber, lengthpic, M4type, index,reduceP,method);
matmemory=[matmemory1 ;matmemory2;matmemory3;matmemory4];

winner=zeros(pnumber*2,10);
for perftestpic=1:pnumber
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% read files from the directory and load in mfilename pointer.
tname=sprintf('C:\\images\test\image%d%s.raw’, index(:,perftestpic), Ttype};
fpmem=fopen(tname,'r');

% check to error fp pointer

if (fpmem<0)
error('Files or a file could not read on this path')
exit(0);

end

% reading to memory files to imgmem (1x9430) row matrix.
[testimg,countmem]=fread(fpmem,[1 inf]);
0/,

if reduceP ~= 100;
testimg=resizeres(testimg,reduceP,method);
else reduceP == 100;
testimg=testimg;
end
%

o/
/0

% writing to whole row matrix into the test-files matris.

fclose(fpmem);
96*****************************************************************

perfdistance=0;

%measuring the distance test image and memory images
for imempic=1:pnumber*4 ;

perfabs=(testimg-matmemory(imempic,:)).*2;
perfabs=sqrt(perfabs);

[sp,sf]=size(perfabs);

%this line cancelled to average of distance
%perfint=sum(perfabs)/sf;
perfint=sum(perfabs);

perfdistance(:, imempic)=perfint;

end

%finding first 10 winner

for i=1:10 )
[mini indice]=min(perfdistance);
winl(1,i)=indice;
win2(1,i)=mini;
perfdistance(:,indice)=9999999;

end

%writing first 10 winner in winner matrix
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winner((perftestpic*2)-1,:)=win1(1,:);
winner((perftestpic*2),:)=win2(1,:);
perftestpic
end
cle
% writing to performance result excel files
filename 1 XLS=sprintfEDfourMRedSiperform-%s-%s-%s-%s-%s-%d-%d-
%d.xls M 1type,M2type,M3type,M4type, Ttype,pnumber,reduceP, HT);
fid=fopen(filename1XLS,'w");
fprintf{fid, DATABASE INDEX NUMBER AND City Block DISTANCES ‘\n\n');
if iType ==n'
fprintf(fid,'database index number selected normaly’)
for i=1:pnumber*2 ’
fprintf{fid,"n’);
fprintf(fid,'%3.2f\t",winner(i,:));
end
end

if iType ="'
fprintf{fid,'database index number selected randomly’)
for i=1:pnumber*2
fprintf(fid,"n");
fprintf(fid,'%3.2f\t',winner(i,:));
end
end

felose(fid);
A.5.2 Result of Main Function For Four Memory Images

%EDfourMRRedSi : This function use outputs of the EDfourMRRedSi function.

%Takes the winner matrix from EDfourMRRedSifunctions. Calculate

%Classification, Misclassificaition,Classification Time, First,Second, Third,Fourth Memory Image Classification
Results and Total Classification

%Percentage.

‘ %{claspictures,misclaspictures,time, TFiMemory, TSeMemory, TThMemory, TFouMemory,PERcentage]=EDfourMR
RedSi(iType,pnumber,M1type,M2type, M3type,M4type, Ttype, HT,reduceP,method); ’

% INPUTS:

%iType : To define index type to read database images.

Y%pnumber : Numbers of picture are going to read from the memorydatabase and testdatabase.
%Mltype : This is the first type memory picture.

%M2type : This is the second type memory picture.

%M3type : This is the third type memory picture. ,

%MAtype : This is the fourth type memory picture.

%Ttype : Test database picture type.

%HT : This value show to program "how many times this simulation will run for different index database.”
%reduceP : Shows to reduce percentage for row and column.

Y%method : Shows to interpratation method like ;'bilinear', bicubic','nearest’.

function

[claspictures,misclaspictures,time, TFiMemory, TSeMemory, TThMemory, TFouMemory,PER centage]=EDfourMRRe
dSi(iType,pnumber,M1type,M2type, M3type,M4type, Ttype, HT reduceP,method);

t = clock;
[index,winner]=EDfourMRedSi(iType,pnumber,M1type,M2type, M3type M4type, Ttype, HT,reduceP,method);
time=etime(clock,t);

COMindex=1:pnumber;
winnerR=zeros(1,pnumber);
winnerR=winnerR';

for i=0:pnumber-1



winnerR(i+1,:)=winner(2*i+1,1);
end

% finding misclassification pictures and their index number
claspictures=(0);
misclaspictures=0;
Fimem=0;
Smem=0;
Tmem=0;
Foumem=0;
Mismatrix=0;
for j=1:pnumber
if winnerR(j)==COMindex(j)
claspictures=claspictures+1;
Fimem(j,:}=1;
elseif (winnerR(j)-pnumber)==COMindex(j)
claspictures=claspictures+1;
Smem(j,:)=1;
elseif (winnerR(j)-2*pnumber)==COMindex(j)
claspictures=claspictures+1;
Tmem(j,:}=1;
elseif (winnerR(j)-3 *pnumber)==COMindex(j)
claspictures=claspictures+1;
Foumem(j,:)=1;
else winnerR(j}~=COMindex(j)
misclaspictures=misclaspictures+1;
Mismatrix(j,:)=1;
end
end
% calculation of total mismatched picture number GENERAL RESULTS
totalmismatched=sum(Mismatrix);
mismatchindex=find(Mismatrix);
mismatched=index(mismatchindex);

%calculation of first memory set
TFiMemory=sum(Fimem};
matchFiMemoryIndex=find(Fimem);
matchedFiMemory=index(matchFiMemoryIndex);
percentFimem=(TFiMemory*100)/pnumber;

%calculation of second memory set
TSeMemory=sum{(Smem);
matchSeMemoryIndex=find(Smem);
matchedSeMemory=index(matchSeMemorylndex);
percentSemem=(TSeMemory*100)/pnumber;

%calculation of third memory set
TThMemory=sum({Tmem); /
matchThMemoryIndex=find(Tmem);
matchedThMemory=index(rhatchThMemoryIndex);
percentThmem=(TThMemory*100)/pnumber;

Y%calculation of fourth memory set
TFouMemory=sum(Foumem);
matchFouMemoryIndex=find(Foumem);
matchedFouMemory=index(matchFouMemoryIndex);
percentFoumem=(TFouMemory*100)/pnumber;

%calculation of Percentage of The Performance

PERcentage=100 *(pnumber-totalmismatchéd)/pnumber;

% writing to result excel files .
filenameXLS=sprintf'EDfourMRRedSi-%s-%s-%s-%s-%%s-%d-%d-
%d.xls',M1type,M2type,M3type,M4type, Ttype,pnumber,reduceP,HT);

fid=fopen(filenameXLS,'w");
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fprintf(fid, Matching Performance Time is %4.3f second \n',time);
fprintf{fid, Matching Performance Percentage is %3.2f percent \n’,PERcentage);

fprintf{fid, Total First Memory Classified Pictures is %3.2f \n',TFiMemory);
fprintf{fid, Total Second Memory Classified Pictures is %3.2f \n',TSeMemory);
fprintf(fid, Total Third Memory Classified Pictures is %3.2f \n',TThMemory);
fprintf(fid, Total Fourth Memory Classified Pictures is %3.2f \n',TFouMemory);

o/,
/0

96**************************************************************************

fprintf(fid,'Classified Pictures From First Memory Set as Percentage \n');
fprintf(fid,'%3.3f\n',percentFimem);
o/

forintf(fid,'Classified Pictures From Second Memory Set as Percentage \n');
fprintf{fid,'%3.3f\n',percentSemem);
(174

fprintf{fid,'Classified Pictures From Third Memory Set as Percentage \n');
fprintf(fid,'%3.3f\n',percent Thmem);

fprintf{fid,'Classified Pictures From Fourth Memory Set as Percentage \n");
fprintf{fid,'%3.3f\n’,percentFoumem);

96************************************************* se e ofede 3¢ sfe o 3¢ oo dfe e
%
fprintf{fid, Misclassified Pictures Index\n);
fprintf{fid,'%3.2f\n',mismatchindex);

fprintf{fid,' Mismatched Pictures \n');
fprintf(fid,'%3.2f\n’,mismatched);

o/,
/0

fprintf(fid,'Classified Pictures Index Number From First Memory Set\n");
fprintf{fid,'%3.3f\n’,matchFiMemorylndex);

fprintf(fid,'Classified Pictures From First Memory Set\n');
fprintf{fid,'%3.3f\n’;matchedFiMemory);
o/

fprintf{fid,'Classified Pictures Index Number From Second Memory Set\n');
fprintf(fid,'%3.3f\n',matchSeMemoryIndex);

fprintf(fid,'Classified Pictures From Second Memory Set\n’);
fprintf{fid,'%3.3f\n',matchedSeMemory);
o/

fprintf{(fid,'Classified Pictures Index Number From Third Memory Set\n); '
fprintf(fid,'%3.3f\n';matchThMemoryIndex);

fprintf{fid,'Classified Pictures From Third Memory Set\n");
fprintf(fid,'%3.3f\n',matched ThMemory);

[174
fprintf(fid,'Classified Pictures Index Number From Fourth Memory Set\n");
fprintf{fid,'%3.3f\n',matchFouMemoryIndex);

fprintf(ﬁd,’Classiﬁed Pictures From Fourth Memory Set\n");
fprintf(fid,'%3.3f\n',matchedFouMemory);
0/,

/o

%index for random pictures number
indres=1:pnumber;
indres(2,:)=index;

indres=indres';

if iType =="r'
fprintf(fid,'Database Picture Index \n');
for i=1:pnumber
fprintf(fid,\n");
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fprintf(fid,'%3.3f\t",indres(i,:));
end
end

fclose(fid);

A.5.3 Summary of Result Function For Four Memory Images

%EDthreeM TestSUMMRedSi : Run 5 times EDoneMRRedSi function and takes outputs of the EDfourMRRedSi
function calculate Classification, Misclassificaition,Classification Time, First,Second, Third,Fourth Memory Image
Classification Results and Total Classification Percentage and finally writes all results in excel files.

%EDfourM TestSUMMR edSi(iType,pnumber,M 1 type,M2type,M3type, M4type, Ttype, TR, reduceP method);

% INPUTS:

%iType : To define index type to read database images.

Y%pnumber : Numbers of picture are going to read from the memorydatabase and testdatabase.
%M 1type : This is the first type memory picture.

%M2type : This is the second type memory picture.

%M3type : This is the third type memory picture.

%M4type : This is the fourth type memory picture.

%Ttype : Test database picture type.

%HT : This value show to program "how many times this simulation will run for different index database."
%reduceP : Shows to reduce percentage for row and column.

%method : Shows to interpratation method like ;'bilinear', bicubic','nearest'.

function EDfourM TestSUMMRedSi(iType,pnumber,M 1 type, M2type, M3type,M4type, Ttype, TR, reduceP,method);

for HT=1:TR
[claspictures,misclaspictures,time, TFiMemory, TSeMemory, TThMemory, TFouMemory,PERcentage]=EDfourMRRe
dSi(iType,pnumber,M1type,M2type, M3type,M4type, Ttype, HT,reduceP,method);
b(HT,:)=claspictures;
d(HT,:)=misclaspictures;
de(HT,:)=TFiMemory;
f(HT,:)=TSeMemory;
g(HT,:)=TThMemory;
h(HT,:)=TFouMemory;
Ttime(HT,:)=time;
PERcent(HT,:)=PERcentage;
end
Class=sum(b)/TR;
misClass=sum(d)/TR;

FirstMemoryClas=sum(de)/TR;
PercentFirst=(FirstMemoryClas*100)/pnumber;

SecMemoryClas=sum(f)/TR; ‘
PercentSecond=(SecMemoryClas*100)/pnumber; 4

ThirdMemoryClass=sum(g)/TR;
PercentThird=(ThirdMemoryClass*100)/pnumber;

FourthMemoryClass=sum(h)/TR;
PercentFourth=(FourthMemoryClass*100)/pnumber;

TTime=sum(Ttime)/TR;

PerCent=sum(PERcent)/TR;
fileNameXLS=sprintf'EDFourthMSummaryR esR edSi-%s-%s-%5-%s-%s-Yod-%os-
%d.xls', M 1type,M2type,M3type,M4type, Ttype,reduceP,method,pnumber);
fid=fopen(fileNameXLS,'w");

fprintf(fid,'Summary of the %d Times Face Recognition Simulation \n\n',TR);

forintf(fid,’ Average of The Classfied Pictures Number is %3.2f \n',Class);
forintf(fid,” Average of The MIS-Classfied Pictures Number is %3.2f \n',misClass);
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fprintf{fid,' Average of The Classfied Pictures Number from First Memory %3.2f \n',FirstMemoryClas);
fprintf(fid,' Average of The Classfied Pictures Number from First Memory as Percentage %3.2f \n',PercentFirst);

fprintf{fid,' Average of The Classfied Pictures Number from Second Memory %3.2f \n',SecMemoryClas);
fprintf(fid,’ Average of The Classfied Pictures Number from Second Memory as Percentage %3.2f
\n',PercentSecond);

fprintf{fid,’ Average of The Classfied Pictures Number from Third Memory %3.2f \n’,ThirdMemoryClass);
fprintf{fid," Average of The Classfied Pictures Nurnber from Third Memory as Percentage %3.2f \n',PercentThird);

fprintf(fid,' Average of The Classfied Pictures Number from Fourth Memory %3.2f \n',FourthMemoryClass);
fprintf(fid," Average of The Classfied Pictures Nurnber from Fourth Memory as Percentage %3.2f
\n',PercentFourth);

fprintf(fid,’ Average Classification Time is %3.2f \n',TTime);
fprintf(fid,' Average Classification Percentage is %3.2f \n',PerCent);

fclose(fid);
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