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DIFFERENCE SCHEMES OF NONLOCAL BOUNDARY VALUE
PROBLEMS FOR ELLIPTIC EQUATIONS

Nejla ALTAY

M. S. Thesis - Mathematics
June 2004

Supervisor: Prof. Dr. Allaberen ASHYRALYEV
ABSTRACT

In the present work the nonlocal boundary problem for a difference equation in a
Banach space E with strongly positive operator 4

—iz[u,c+1 —2u, +u,_ |+ Au,=p, 1<k<N-1,
T

Uy =Uy,~Uy +4u, —3uy =uy_, —4u, , +3uy,Nt =1,

is considered. Applying the operator approach we obtain the stability estimates, almost
coercive stability estimates and coercive stability estimates for the solution of this
nonlocal boundary problem. In applications this abstract result permits us to obtain the
stability estimates, almost coercive stability estimates and coercive stability estimates
for the solution of the difference schemes for elliptic equations. This result is based on
the positivity of the difference operator generated by nonlocal boundary conditions. The
theoretical statements for the solution of this difference schemes are supported by the
results of numerical experiments.

Keywords: Elliptic Difference Equation, Difference Schemes, Stability.



iv

ELiPTiK DENKLEMLERIN LOKAL OLMAYAN SINIR DEGER
PROBLEMLERININ FARK METODLARI

Nejla ALTAY

Yiiksek Lisans Tezi — Matematik
Haziran 2004

Tez Yoneticisi: Prof. Dr. Allaberen ASHYRALYEV
0z

Bu caligmada Banach uzaymda verilen fark denkleminin kuvvetli A4 pozitif
operatorlii lokal olmayan sinir deger problemi

—Lz[u,chl —2u, +uk_1]+Auk= @ 1<k<N-1,
T

Uy =Uy,—Uy T4u, —3uy=uy_, —4uy_  +3u, , Nt =1,
ele almmusgtir. Operatér yaklagimimi uygulayarak bu lokal olmayan simir deger
probleminin cSziimiiniin kararlilik kestirimlerini, hemen hemen koersitif kestirimlerini
ve koersif kestirimlerini elde ettik. Uygulamalarda bu sonug, eliptik denklemlerin fark
metodlarinin ¢6ziimii i¢in kararlilik kestirimlerini, hemen hemen koersif kestirimlerini
ve koersif kestirimlerini elde etmemizi sagladi. Bu fark metodlarinin ¢6ziimii igin
yapilan teorik sonuglarin dogrulugu, yapilan numerik denemelerle desteklenmisgtir.

Anahtar kelimeler: Eliptik Fark Denklemi, Fark Metodlan, Kararlilik.
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Chapter 1

INTRODUCTION

It is known that most problems in fluid mechanics (dynamics, elasticity) and other areas
of physics lead to partial differential equations of the elliptic type. These equations can be
derived as models of physical systems and are considered as the methods for solving boundary
value problems.

A problem is called well-posed if for each set of data there exists exactly one solution and
this solution is dependent on the data continuously. Our goal in this work is to investigate the
well-posedness of difference schemes for well-posed of the nonlocal boundary value problems
for equations of elliptic type.

It is known that the mixed problem for elliptic equations can be solved by Fourier series
method, by Fourier transform method and by Laplace transform method.

Now let us give some examples.

First let us consider the simple nonlocal boundary value problem for elliptic equation

( 0%y B2 3 A .
w—{—ﬁ:(—% + 3t + 11t —6)sinz, 0<t<1, 0<z <,

) w(t,0) =ult,m) =0, 0<t<1, (1.1)

[ #(0,2) = u(l,) , w(0,2) =u(l,z), 0<z <.

For the solution of the problem (1.1), we use the method of separation of variables or so called
Fourier series method. In order to solve the problem we need to separate u(t, z) into two parts

u(t, z) = v(t, z) + w(t, ),

where v(t, z) is the solution of the problem

( 0% 0%
o+ -—=0,0<t<
5 +8$2 0,0<tL], 0<z<m,
\ o(t,0) = v(t,m) =0, 0<t<l, (1.2)
[ v(0,z) =v(L,z) , »:(0,2) =w(l,z), 0<z<m,



and w(t, z) is the solution of the problem

([ 0%w  Ow 3 2 )
WJFW:(_% +3t° + 11t —6)sinz, 0<t<1, 0<z <,

) w(t,0) =w(t,7)=0, 0<t<l, (1.3)

| w(0,2) = w(l,z) , w(0,2) =w(l,z), 0<z <

First we will obtain the solution of the problem (1.2). By the method of separation of variables,

we obtain
v(t,z) =T ()X (x)

‘We have that

T”(t) Xll(x) _
) T X@)
or T"(t) _ X" (z) .

Tt ~  X(z)

and using the boundary conditions, we obtain

We have that
X”(m) = —AX(z),

X(0)=X(n)=0.
If X > 0, then the boundary value problem
X"(z) — XX (z) =0, X(0) =X(n) =0

has only trivial solution X (z) = 0.

So, we consider only the case A < 0. The nontrivial solutions of the boundary value

problem
X"(z) —AX(z) =0, X(0) =X(m)=0

Xi(z) = Agcos (kz) + By sin(kz) , where k=1,2,3,---.

If we use the boundary conditions then we obtain
Xi(z) = sin (kz), where k =1,2,3,- - -.

Now to get T'(t) we can write

T"(t) .
@)
or
T"(t) + XT(t) = 0.
So,
Ty (t) = Ey exp(kt) + Fy exp(—Fkt).
Thus,

v(t,z) = Z’uk(t, z) = Z(E’“ exp(kt) + Fj exp(—kt)) sinkz.
k=1 k=1



Using the nonlocal boundary conditions, we obtain
'Ut(O’ x) = ’l}t(l,.’B)

or
Ek=Fk=0 foranyk.

Hence
v(t,z) = 0.

Second we will obtain the solution for (1.3). Let

o
w(t,z) = Z Dy (t) sin k.
k=1

Then
Wyt + Wz = DY () sin kx — k? Dy (t) sin kx
= (—2t% + 3> + 11t — 6) sinz.
If k£ # 1, then

Di(t) — K2 Dg(t) = 0.

So we obtain
.Dk (t) = clekt + Cge—kt.

Using the boundary conditions we get ¢; = co = 0.
So Dg(t) =0 for any k # 1.

If k = 1, then
DI (t) — Dy (t) = -2t + 3t 4+ 11t — 6.

D () can be found as
Di(t) = cre’ + cpe™ + (2t — 3t% +1).

Now by using the nonlocal boundary conditions, we obtain that
w(t,z) = (2t> — 3t* + t) sinz.
Thus,
u(t, z) = v(t, z) +w(t, )
=0+ (23 — 3¢> +t) sinz

or
u(t,z) = (2t — 3t* + t) sinz

is the solution of the given nonlocal boundary value problem (1.1).
Note that using the same manner one obtains the solution of the following nonlocal bound-

ary value problem for the multidimensional elliptic equation

4

B2ult, X 2,
—&ulta) zlaJa—l = f(t,z),
r—

z=(T1,...,%,) €EN0<tLT,
) _

w(0,2) = u(T,z) + ¢(z), z € Q,

ut(0,2) = (T, z) +9(2),z € Q

L u(t,z) =0,z€ 8



where o, and f(t,z) (t €[0,T], z € Q), o(z),¥(z) (z € Q) are given smooth functions. Here
Q is the unit open cube in the n-dimensional Euclidean space R" (0 < z < 1,1 < k < n)

with boundary B
S, Q=QUS.

However, the method of separation of variables can be used only in the case when it has con-
stant coefficients. It is well-known that the most useful method for solving partial differential
equations with dependent coefficients in ¢ and in the space variables is difference method.

Second, we consider the nonlocal boundary value problem for elliptic equation
{

0u  0%u 3 9 9

EP—JFW:%% -3t +1)+ (12t —6)z°,0<t< 1,0<z <,

\ ut,0) = ug(t,0) =0, 0<t<I, (1.4)

[ (0,z) =u(l,2), w(0,z)=w(l,z), 0<z<m
Here, we will use the Laplace transform method (in z) to solve the problem (1.4). Let

u(t, s) = L{u(t,z)}.

So our problem becomes

O%u(t,s) o 2(2t3 —3t2 +¢t)  2(12t —6)
T + 3 U(t, S) = s 4+ 33 .
Now the homogenous equation is

ugs + s2u(t, s) = 0.

Then
u(t,s) = ¢y sin st + cg cos st .

And for the particular solution we will use the UC method. Let
uP(t,8) = At> + B+ Ct+ D

substituting in the equation we get

2(2t3 — 3¢2 2 -
6AL+2B + s2(AP + B 4 Ct 4 D) = 22 =38 +s° | 212t = 6)

s3 s3
d
" A=2 p=-8 =2 bp-=

=% B=-m C=m D=0
So

. 4., 6., 2

u(t, 8) = c¢; sin st + cg cos st + =t — 3t + 5t
s s s

Now, using the nonlocal boundary conditions we can write

4 6 2
u(t,s) = gt:‘ - 3—3t2 + 5t

Finally taking the inverse of Laplace we obtain

— [ 2 3 1
umm=L1wma}=%l{ﬁﬁ“gﬁ+§4



= 26327 — 3t°z” + tz°.
Hence
ult, ) = (26° — 3t2 + 1)z
is the solution of the given nonlocal boundary value problem (1.4).

Note that using the same manner one obtains the solution of the following nonlocal bound-
ary value problem for the multidimensional elliptic equation

4

a2 8x2

[
_Pulta) | Elarw = f(t,z),
r=

| u(t,z) =0, z € ST,

where a, and f(t,z) (t € [0,T], z € §+), o(z),%(z) (z € ﬁ+) are given smooth functions.
Here 2 T is the open set in the n-dimensional Euclidean space R™ (0 < zp < 00,1 < k < n)
with boundary

s, @ =0tust.
However, Laplace transform method can be used only in the case when it has constant coeffi-
cients. It is well-known that the most useful method for solving partial differential equations
with dependent coefficients in ¢ and in the space variables is difference method.

Third, we consider a mixed nonlocal boundary value problem for elliptic equation

' Q?ﬁ + 9—22 = (12t — 6) exp(—z2) + (2t* — 312 + £)(—2 + 42?) exp(—7?)
o2 Ox? P *P ’

0<t<l, —oo<z<o0,

u(t,—o0) = u(t,00) =0, 0<t<1,

| u(0,7) = u(l,z), u(0,z) =wu(l,z), —oo<z <00

Here we will use the Fourier transform method to solve the problem (1.5).

We take the Fourier transform of both sides of the equation

Ugs + Ugg = (12t — 6) exp(—z?) + (2£* — 3t% + 1) (=2 + 42?) exp(—2z?).
Then, we have
F{ug} + Flugg} = F{(12t — 6) exp(—22)} + F{(2t® — 3t* + £)(~2 + 42?) exp(—z?)}.

From that it follows
(Fuw(t,2)}) + (is)*F{u(t, z)}
= (12t — 6) F{exp(—2z?)} + (23 — 3t 4 t)(—s®F{exp(—2z?)}).



Now let u(t, s) = F{u(t,z)}. So our problem becomes

d?u(t, s)
ot?

= (12t — 6)F{exp(—z?)} + (2t> — 3t* + t)(—s*F{exp(—z?)}).

— s2u(t, s)

Now the homogenous equation is
ug(t, s) — s2u(t,s) = 0.

Then

ult,s) = c1e + ce™ L.

For the particular equation we will use the UC method. Let
uP(t,s) = At* + Bt* 4+ Ct+ D.
Substituting in the equation we get
6At + 2B — s2(At3 + B2 + Ct + D) = (12t — 6) — s2(2£3 — 32 + £)) F{e *'}.
Hence

= 2F{e"*},
—3F{e™"},
F{e™™},

0.

QW
Il

So the solution is ,
u(t,s) = cre®t + coe™ + (262 — 32 + t)F{e ™ }.

Now using the nonlocal boundary conditions we get u(t, s) as
ult,s) = (263 — 3¢ + ) F{e " }.

Finally taking the inverse of Fourier transformation we obtain the solution for the problem
(1.5) as
u(t,z) = (23 — 3t2 + t)e .

Note that using the same manner one obtains the solution of the following nonlocal bound-
ary value problem for the 2m-th order multidimensional elliptic equation

¢ 2 &
~5# > ar g = £ (8, ),
r|=2m

OStST,m,’FERﬂ',l’I"]=7'1—|—----|-7-n,

U(O,m) =u (T7 .'17) + (,0(33),112 € Rna

ut(O,x) = ut(Tv .’,U) + ’(/)(ZE), z € R",

\

where a,, f(t,z) (t € [0,T], z € R"), ¢(z),¢¥(z) (z € R™) are given smooth functions.
However, the Fourier transform method can be used only in the case when it has constant



coefficients. It is well-known that the most useful method for solving partial differential
equations with dependent coefficients in ¢ and in the space variables is difference method.

In the present work the nonlocal boundary problem for difference equation in a Banach
space E with strongly positive operator A

— L [uky1 — 2ug +up_a] + Aug = @, 1 <E <N -1,

ug = uy, —ug+4u; —3ug=un_9—4duny_1+3uy, NT=1,

is considered. Applying the operator approach we obtain the stability estimates, almost coer-
cive stability estimates and coercive stability estimates for solution of this nonlocal boundary
problem. In applications this abstract result permits us to obtain the stability estimates,
almost coercive stability estimates and coercive stability estimates for the solution of the
difference schemes for elliptic equations.This result is based on the positivity of the differ-
ence operator generated by nonlocal boundary conditions. The theoretical statements for the
solution of this difference schemes are supported by the results of numerical experiments.

Let us briefly describe the contents of the various sections. It consists of six chapters.

First chapter is the introduction.

Second chapter presents positive operators and fractional spaces, analytic semigroups that
is needed for this work.

Third chapter consists of five sections. A brief survey of all investigations in this area can
be found in the first section. In the second section the Green’s function is constructed.
Third section is devoted to the study of the positivity of the operator A with constant
coefficients generated by the nonlocal boundary value problem in Cj Banach space.
In the fourth section the positivity of the difference operator with variable coefficients
generated by the nonlocal boundary value problem in Cj, Banach space is studied. In the
last section the positivity of difference operators in the C3¥ Holder space is established.

Fourth chapter is about the well posedness of the second order of accuracy difference
schemes.

Fifth chapter is the applications. The first and second order of accuracy difference schemes
are studied. A matlab program is given to conclude that the second order of accuracy
is more accurate. The tables and figures are included.

Sixth chapter is the conclusions.



Chapter 2

POSITIVE OPERATORS AND
FRACTIONAL SPACES
ANALYTIC SEMIGROUPS

Now let us give the definition of positive operators and introduce the fractional spaces that
will be needed in the sequel.

Definition 2.1. The operator A is said to be strongly positive if its spectrum o (A4) lies in
the interior of the sector of angle ¢, 0 < 2¢ < 7, symmetric with respect to the real axis, and
if on the edges of this sector, Sy (¢) = {pe® : 0 < p< oo } and S5 (¢) = {pe™™ : 0 < p < o0},
and outside of the resolvent (A — A)™! is subject to the bound

M (¢)
E-E s 1+ Al

H(A~A)‘1H 2.1)
The infimum of all such angles ¢ is called the spectral angle of the strongly positive operator
A and is denoted by ¢ (A) = ¢ (A, E). Since the spectrum o (A) is a closed set, it lies inside
the sector formed by the rays S; (¢ (4)) and Ss (¢ (4)), and some neighborhood of the apex
of this sector does not intersect o (A). We shall consider contours I' = T' (¢, ) composed by
the rays Sy (¢), S2 (¢) and an arc of circle of radius r centered at the origin; ¢ and r will be
chosen so that o (A) < |o| < 7/2 and the arc of circle of radius r lies in the resolvent set p (4)
of the operator A.

Definition 2.2. A family U(t), ¢ > 0, of bounded linear operators is a strongly continuous
semigroup if the following conditions are satisfied:

1 UG+7)=U®U) =U@U®R), t20, >0 U =1L

2. For each fixed vy € E the function U(t)vg is continuous in ¢ for ¢ > 0.

From the strong continuity of the operator function U(t) it follows that its norm is uni-
formly bounded on any bounded segment [0, T']. Next, from the semigroup property it follows
that when ¢ — oo this norm grows no faster than an exponential. Specifically, one has the

estimate
UG g < Me™, 0. (2.2)



Definition 2.3. The operator U’(0), defined by the formula

1 _ : —1 .
U'(0)vg = A%lj)l}l_oAt [U(At) — Ivg
on the elements vg € E for which the limit on the right hand side exists, is called the generator
of the semigroup U (t).

The operator U’(0) has a dense domain in E and for any p > w in the case of a real space
E, or any complex p with Re 4 > w in the case of a complex space E, the operator uI — U’(0)
has a bounded inverse, i.e., U'(0) is closed.

Theorem 2.1. Let B be an operator with dense domain acting in a complex Banach space
E. In order for B to be the generator of a strongly continuous semigroup U(t) satisfying the
estimate (2.2), it is necessary and sufficient that any complex number A with Re A > w,belong
to the resolvent set of B and that the following estimate holds:

|(AI - B <M@Red—w)™, n=12,... (2.3)

—n
) HE—)E
Note that one may assume that the estimates (2.3) are satisfied only for some sequence
Am such that Re A\, — oo as m — oo.
In the case of a real Banach space E the estimates (2.3) must hold for all real A > w.

In what follows a semigroup with generator —A will be denoted by exp{—tA}. By passing
from the problem with the operator A to the problem with the operator A+ I one can ensure
that the norm of this semigroup decreases exponentially, i.e., the following estimate holds:

lexp{—tA}||p g < Me™®, M >0, §>0. (2.4)

Definition 2.4. A strongly continuous semigroup U(t) acting in a complex Banach space
E is said to be analytic if it can be continued from the half line 0 < ¢ < oo to an operator
function U(z) that is analytic in some sector

Sa={z:|argz|<a, 0<|z|<o0}, 0<a<12r-

and is strongly continuous in its closure S,.

Generators of analytic semigroups acting in a complex Banach space E admit the following
characterization in terms of their resolvents.

Theorem 2.2. Let B be an operator with dense domain acting in a complez Banach space
E In order for B to be the generator of analytic semigroup it is necessary and sufficient that
there ezists real numbers w and T > 0 such that all complez X satisfying ReA > w and |\| > 7

belong to the resolvent set of B and the following estimate holds:

|(AI-B < MM

I P

Let f(2) be an analytic function on the set bounded by such a contour T, and suppose
that f satisfies estimate

|f (2)] < M |2~



10

for some € > 0. Then the operator Cauchy-Riesz integral
1 -1
) =5 [ 16— )7 e (2.5

converges in the operator norm and defines a bounded linear operator f (A), a function of the
strongly positive operator A. If f (z) is continuous in a neighborhood of the origin, then in
(2.5) we shall consider that r =0, i.e., I' = S1 (¢) U S2 ().

As in the case of a bounded operator A one shows that f (A) does not depend on the choice
of the contour I in the domain of analyticity of the function f (z), and that the correspondence
between the function f (z) and the operator f (A) is linear and multiplicative.

The function f(z) = 2~* defines a bounded operator A~ whenever o > 0. Here the
contour I' is chosen with » > 0. By the multiplicativity property, A~@th) = pA-eg-B —
AP A~ for any powers of the strongly positive operator A, and not only for negative integer
ones. From this identity it follows (when «+ $ is an integer) that the equation A™%z = 0 has
the unique solution z = 0. Hence, the positive powers A% = (A_O‘)—1 of the strongly positive
operator are defined. The operator A% (o > 0) are unbounded if A is unbounded, they have
dense domains D (A?) and one has the continuous embedding D (A%) C D (4P) if B < a.

The theory of fractional powers of operators can be constructed for a wider class of positive
operators. For such operators the estimate (2.1) is required to hold for some ¢ and not only
from the interval [0, /2], but from the larger interval [0, 7).

Now let us consider the function f (z) = e~%*. For any ¢ > 0 this function tends to zero
faster than any power z~% as |z| — oo and its values lie inside any sector bounded by a
contour I'. Therefore, formula (2.5) can be used to define the function exp {—tA} of the
strongly positive operator A. By multiplicativity, the semigroup property holds:

exp {— (t1 + t2) A} = exp {~t1A} exp {—t24}, 1,12 > 0.

Consider the function ¥ (2) = 2% % for some « > 0 and ¢ > 0. Since, obviously,

U (2) — 0 faster than any negative power of z as |z| = 0o, ¥ (z) defines the operator function
1

C(A) =g | 2% (z — A) 7 de. (2.6)

Let us show that the operator exp{—tA} maps E into D (A%) and A%exp {—tA} =

T (A). Let = be an arbitrary element of E. By the multiplicativity property, (2.5) implies

that 1
AT (A)z = — [ e (2 — A)" ' zdz = exp {~tA}z,
21 T

which proves our assertion. Thus, we have the formula

A%exp {—tA} = L / 2% (2 — A) "l dz. (2.7)
2me Jr

In the above argument we must assume that the contour I' contains an arc of radius r,
since we applied the operator A~%, which corresponds to the function 27®. The final formula
(2.7) is valid for any (small) » > 0. Since the integrand in (2.7) is continuous at the point
z =0, letting z — 0 we obtain the formula

o i ) -1
A%exp {—tA} = —1—[ / petedetre ¢ (pe“’s — A) dp

271 oo
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oo . —'I: . _1
+/ pae—za¢e—tpe ¢ (pe—z¢ _ A) dp]
0
for some 0 < ¢ < w/2. From this and the estimate (2.1) it follows that

”Aa exp {_tA}“E—>E < M(d’) /oo pa—le—tpcosqbdp — M(¢) F(Ot) e,
T 0

m(cos @)™ (2:8)

In particular, we have the estimate

M (8)

lexp {—tA}| g < (2.9)

Let us show that the estimate (2.8) can be sharpened by a factor that decays exponentially
when ¢ — +o0.

Let A be a strongly positive operator. We claim that for sufficiently small § > 0 the
operator A— 4 is also strongly positive, and ¢ (A — §) = ¢ (A). Indeed, let A € I" (¢). Consider
the equation Az — (A — §) z = y for an arbitrary y € E. The substitution Az — Az = z yields
the equation z + § (A — A)™* z = y. Since

lso-a|,  <em@

E—

if A € T'(¢), we see that for § < [2M (¢)] the equation for z has a unique solution, and
llz]l < 2]lyl]. Consequently, the equation for z has a unique solution, and

= < M (9) (A + 117 ll2l] < 2M (#) [\ + 17" Iy
This means that the operator A — (A + 8) has a bounded inverse for 0 < § < [2M (¢)]™* and

|- a-ar|,_, <2M@n+1

Thus, we have shown that A —§ is a strongly positive operator. Hence, by (2.9), we have the
estimate

2M
lexp {~ (4~ 8) ] < 2,
This obviously yields
2M _
lexp {—At}] 5 < 2D o-st, (2.10)

T
where we can put § = [2M (¢)]*.
Let ¢ > 1. Then, using the semigroup property, we can write

exp{—tA} =exp{—A}exp{—(t—1) A}.
Next, applying the estimates (2.8) with ¢ = 1 and (2.10), we obtain

M(¢) 2M (¢) o= 0(t=1)
7 (cosp)® '

| A% exp {—tA}| g, <

Hence, the following estimate holds for ¢ > 1:
|A% exp {~t A}l < M1 (¢) e~

If 0 < t <1, then estimate (2.8) prevails. Combining these two estimates, we conclude that

| A% exp {~tA}|, < M () €47, (2.11)
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for some M (¢) > 0 and & > 0.

Further, formula (2.5) allows us to establish that the operator- valued function exp {—tA}
is differentiable in the operator norm for ¢ > 0 and

%exp {(—tA} = —Aexp {—tA} . (2.12)

In particular, this implies that exp {—tA} is continuous in the operator norm. Using the
semigroup property we deduce that the derivative of exp {—tA} is also continuous in the
operator norm for ¢ > 0. Finally, formula (2.12) shows that the operator-valued function
exp {—tA} has derivative of arbitrary order in the operator norm for ¢ > 0.

Now let z € D (A). Then the (E—valued) function exp {—tA} z has a derivative for ¢t > 0
and, by (2.12),

% exp {—tA}z = —exp {—tA} Az. (2.13)

Next, for  as above we can write
(z—Alz=zlz+z(z- A Az.

Using formula (2.5), we obtain exp {—tA}z = 5= [re [z lz + 271 (z — A) " Ydz.

¥

Figure 2.1: The contour

Using the Cauchy theorem, we get

exp{—tA}z = —1— / e %2 (z— A7 Azdz + z.
2mi Jp

The estimate (2.1) shows that in the last equality one can pass to the limit under the
integral sign when ¢ — +-0. Hence, the limit

. _ 1 -1 -1
tglfo exp{—tAlz=z+ s /1“ 27 (2 — A)" Azdz.
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exists (in the norm of E). By Cauchy’s theorem, the integral

9= [ Ay dsdr= L [T (o - A) Asd
- 27T’L T z a 27T’L —o—i00 raz.

for some o > 0. Hence, by (2.1),

M [ dt
19l < %/_w PR Azl g -

Since ¥ does not depend on o, it follows that ¢ = 0. Hence, we proved that

tglilo exp{—tAlz =z (2.14)

for any z € D (A). Since the norm ||exp {—tA}|| z_, 5 is uniformly bounded for ¢ > 0, the
limit relation (2.14) holds for any = € E.

Thus, if we extend the operator- valued function U (t) = exp{—tA}, t > 0, at t = 0
by U (0) = I, we obtain a strongly continuous semigroup. From the estimate (2.11) (with
a = 0) it follows that this semigroup is analytic. Finally, let us show that its generator is
U’ (0) = —A. From (2.10) and the estimate (2.10) we derive the identity

t
U(t):z;—:v=—/0 U (s) Azds

for z € D (A). Since U (t) is strongly continuous to the left at the point ¢ = 0, this implies
that z € D (U’ (0)) and U’ (0)z = —Az. Hence, U’ (0) is an extension of the operator —A.
By the estimate (2.10), the operator U’ (0) + A and —A + X have bounded inverses for any
A < 0. Therefore, U’ (0) = —A.

We have shown that the operator valued function exp {—tA} is an analytic semigroup with
generator —A and with an exponentially decaying norm. Operators —A that generate such
semigroups were called strongly positive operators.

Let A be a strongly positive operator. With the help of A we introduce the fractional
space Eq(F,A),0 < a < 1, consisting of all v € E for which the following norm is finite:

0]l = sup X* | AQA + A) || g + o]l g -
A>0



Chapter 3

POSITIVITY OF DIFFERENCE
OPERATORS GENERATED BY
THE NONLOCAL BOUNDARY
CONDITIONS

3.1 Introduction

Let us consider a differential operator A* defined by the formula

d2
Azu:—()d2+(5u (3.1)
with domain D(A%) = {u € C?[0,1] : u(0) = u(1),«'(0) = u'(1)} . Here a(z) is the smooth

function defined on the segment [0, 1] and a(z) > 0,4 > 0.

Let us define the grid space [0, 1}, = {zx = kh,0 < k < N,Nh =1}, N is a fixed positive
integer. The number A is called the step of the grid space. A function " = {gok}év defined
on [0, 1], will be called a grid function. To the operator A% defined by the formula (3.1) we
assign the difference operator A7 defined by the formula

N-1

-2 -
At = {caoy R g b oy, )
1

which acts on grid functions defined on [0, 1], with

ugp =uy and —ug +4u; — 3ug = uny—9 — dun_1 + 3uy.

We denote Cp, = C[0,1]; and CF = C?[0,1], the Banach spaces of all grid functions
= {vg }} "'defined on [0, 1];, equipped with the norms

|+

- I'Uk+r_'vk|
= max o+  max (kirZ ]
Cc¢  1<k<N-1 1<k<k+r<N—1  (r7)e

Ch - 15119115%—1 ol

|+

In the present chapter we will investigate the resolvent of the operator —A%, i.e., solving the
equation

Ayl 4\t = gt (3.3)

14
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or
U1 — 2Ug + Ug—1

72 + dug + Aug = fr,

ar = a(zx), fr =f(zK), 1<E<SN -1,
ug = uy, — ug+4u; —3ug =uy-—2 —4uny—1 + 3un.

The positivity of difference operator A7 defined by the formula (3.2) in Cj and Holder spaces
Cy is established.

3.2 Green’s Function

In this section we will study the strong positivity in C}, of the operator A} defined by formula
(3.2) in the case a(z) = 1.
Lemma 3.1. Let A > 0. Then the equation (3.3) is uniquely solvable, and the following

formula holds
N

N-1
uh = (A + X7 = {Z J(k, ;A + 5)fjh} : (3.4)

=1 0

where

J(k,1; A+ 6) = J(k, N — ;A +6)
__1+ph (RN-8 —4RN-2 + R—4) (- 2 — ph RN-2)1
24 3uh 2u 2+ 3uh
for k=0and k= N;

4 _ l+ph (R2-4R+1)(R—2 + RN-172) 2—ph _N_o_1
Tk, jiA+0) = =973 % I= o)

for2<j<N-2and k=0,%k=N,

14 ph 14+ puh
2+ 3uh 2 + ph

J(k, 1,2+ 6) = 2u)"Y{R*1(2(R + 3) + R*(R - 3))
+RN"*(4 — R)(1 + R) + RV**73(1 —4R)(1 + R)

FRIN-F3(3R 1 — 2R(3R +1))}(1 — RY)"N(I — 2N pN-2y-1,

2+ 3uh
JU, N =LA +6) = —21:3‘;}; %}‘%(2;;)—1{1%’“(1% —4)(R+1)
+RN*1(—2(R+3) + R?(3 — R)) + RN™*-3(1 - 3R+ 2R%*(3R + 1))
HRN SR - (R4 D} - BN - g R
Tk ih+0) = 5 o) (R 1P (2 4 B2

+(~1+ 3R+ R*(3 — R))(RN 72 4 RN*F=372) 4 2(1 — 3R)(R*N~277F 4 RPN —2-7+k)
+2RI-*(RN — 1) (R -3+ RN%(-1+3R))}
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X(l -‘-RN)_I(l _ 2_.u'h RN—Z)—]

for2<j<N-2and1<k<N-—1. Here

R=(1+ph) " = % (hr+8)+ VEF HET (T 7)) .

Proof. We see that the problem (33.3) can be obviously rewritten as the equivalent nonlocal
boundary value problem for the first order linear difference equations

=t g =z, 1<k SN,
ug = uN, — up+4u; —3ug =un-2 —4uny_1 + 3un,
— BB e = (L+ ph)fr, 1<E<N-L
From that there follows the system of recursion formulas
ug = Rug_1 +hRz,, 1<k<N,
2 = Rzp_1 + hfy, 1<k<N-1.

Hence

ko
ug = Rrug + Z RF-lpz 1<k <N,

=1

N-1
ze=RN"*zy + 3> RIFRf;, 1<kE<N-1.
7=k

From the first formula and the condition uy = ug it follows that

N
un = RNug + ZRN“”lhz,-.

i=1

Since 1 — RN # 0, it follows that

N N

1 ; 1 ;

UN =Ug = 1= RN E RN_H'lhzi = 11— RN {hRZN + E RN_H_thi}
i=1 =1

i=1 i=1 J=t

1 N ) N-1 ) N-1 o
= TgW (hR +Y RN “2""1h> av+ Y hRNTHL N RIZig

1 (R_R2N+1) = 2 . N+j—2i+1
=1—RN{ i-R? th+th Z}R TR
J: 1=

N-1
_ 1(1 — R2) [R(l _ R2N)th + Z B2 [RN—j+1 _ RN+j+1] fj] 7

-7 2



and for kK, 1<k<N-1:

N—-1
_ 1 k+1 k+N—it1 kit
uk—l_RN{hR ay + » ) RFFN=H L, +§:R ~Hlhg
=1 =1
Rk (R—R2N+1) N-1 y N )
= ~j+1 _ pN+j+17] ¢,
(1—RN){ > th+j;h [ REEEL

k N-1

+ZRN+IC 2Z+1hz + Z z hZRk+] 2'L+1f

i=1 i=1 j=i

[Rk+1 + RN—lc+1] hen

T1_R?

TT—EY 1 —RN-T)
Zh2ZRk+_j 21+1f + Z h2ZRk+‘7 2z+1f
j=k+1 =1
[Rk:+1 + RN—k+1] i

N-1
2 N—j+1 N 1
RNl)Zh R J R+J+]f

4

11— R?

RF
TE-EM-

N-1
1_lR2 Z h2 RliE—il+1 _ Rk+J+1)f
j=1

Now by using the formulas for uy, up, ux and the condition
—ug +4ur — 3ug = uy_o — duny_1 + 3un

we can write
R+ RN+1

1—R2 hZN

tug + unN = 2
N-1

2 By .
taoEm a2 T R
j=1

Uy +UN-1 = (R?2 + RM)hzy

1-R?

N-1
(R+ RN 2 (pN—j+1 _ pN+j+1
(1-RN)(1- R?) ;h (B - BT £

+1—R2

—= (R®+ RN Yhzy

2
Uy +UN—92 = 1 —R2

N-1
Z h2 RN—j-H . RN+j+1] fj
j:].

Z h2 (R]1—3[+1 +R[N 1—j+1 _ R2+‘7 RN+‘7) f

J
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2 N-2) N-1
(R°+R Y h2 (RN - pNHIL)
j=1

(1—RN)(1— R2
;N
o Z 12 (Rlz—j]+1 4+ RIN-2-jl+1 _ pi+3 _ RN—1+j) fi
~R? &
2 3 N-1
=1—R2(R +R Yhzyn
(B2 +RV"2) X 5 Nt pNijil
- B = B > B (RVTIH - RN
j=1
N-1
+1 — Z h2 (Rj—l +RN——1—j _Rj+3 _ RN—1+j) f]

i=1

+1_1—R2 ((R? — 1) f1h? + (R? — 1) fy—1h?) .

Since
ug +un—2 + 3 (uo + un) = 4(u1 +un—1),

we have that ( ) N 2)
R+ R~
R3 N-1 h
(RP+RY77) ZN+(1_RN)(1_R2)

2
1— R?
N-1
x Z K2 (RN—J’+1 - RN+j+1) fi
j=1
N-1
_l__]_:__;___RE Zl h2 (Rj—l +RN_1_j _ Rj+3 - RN—1+j) f]
j=

R+ RN+!
—hz(fl + fN—l) + 61_—}%2;?,2]\!

N-1
T N6 — Zh2 (RV-3+1 _ pV+i+1)
(- EN{ - 1) &

4(R+ RN

8
(R% + RM)hzy + D)

T1-R?

N-1
% Z h2(RN_j+1 _RN+j+l)fj
=1

N-1
4 . . . .
+1———R2 E h2(R‘7 -I—RN—] ——Rj+2 — RN+J)fj.
Jj=1

Hence from here 2y can be found as

B —hR?(—1+ R%)(~1+ RM)(f1 + fn—1)
“N = -1+ R)R(—1+ RN)(—3R2 + R3 — RN + 3RN 1)

N-1 . .
(6R? — 4R3 + R* + RN — 4R'N) jz h(RN=I+1 — RN+i+L)f;
T 1T R)R(—1+ RV)(_3R? 1+ B® — RN & 3RV
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N-1 R X .
Rz(—l +RN) z h (Rj—l +RN—1—_7 — RI+8 _ RN—1+_1) fj
Jj=1

2(—1+ R)R(-1+ RN)(—3R? + R® — RN + 3RN+1)

N-1 S .

4R%(—1+ RV) ¥ h(R/ + RN-7 — Ri*2 _ RN+))f;
i=1

9(—1+ R)R(—1 + RV)(—3R2 + R® — RN + 3RN-1)

Now using the formulas for zy and ug = uy we obtain

h2(—4R3 + R* + RY — 4RN*L)(f; + fn_1)

Uy =ug = — 2(R_1)(—~3R2+R3—RN+3RN+1)
& h2RU(R?— 4R+ 1)(RY + RY) .
5 2R —1)(-3R? + R® — RN + 3RN+1)"7
1+ ph (RN-3—4RN-2 1 R—4) 2 ph o1
= — I—‘ .
2+ 3uh 244 ( 2+3p,hR ) (f1+fN 1)
_Nif 1+ ph (R2—4R+1)(Rj—2+RN~J'—2)( _2oph vy
2+ 3uh 24 2+ 3uh 7

=2

The formula for uy in the case k = 0 and k= N is proved. Now, consider 1 < k¥ < N —1.We

have that 1

T1-R?
Rk
1— RN)(1 - RN-1)

o [R"“ + RV —’“+1] P

=2

-1

B2 [RN—j+1 _ RN+j+1] f]

+

Il

N-1
Z h‘Z(R]k-—j]-l-l _ Rk+j+1)fj
=1

= (—h%(~1+ R)(R*(3R® — 2R* — R® — 6R3 + 12RN*+2 _ RN+1 L 4RN+3
__4RN+4) + RN—k(RN+1 +2RN+3 _ 4R* — 3R® 4+ RS — 3RN+2 | 6RN+4))f1
+h2(—1 + R)(RF(3R? + R* — 3RS — RN*! 4 3RN*2 _ gpN+3 _ gpN+4
+6RZNF2) L RN—R(RN+L _gRN+2 _4RN+3 4 9R* + 6R® + RS — 3R%)) fx—1)
x(2(R—1)R(1 — R*) (-1 + R™) (—3R? + R? — RN 4 3pN+1))~!

N—-2
+ > W*(R*TE(R —1)(—1+ 3R — 3R? + R® + 6RN )
=2

—RNT2Hi-k(1 L 4R — 4R® + R* — 8RN*! 4 6RN %) — RN+2+k-i(1 4 3R + 3R?
_6R3 + 3R4 _ 8RN+1 + 6RN+2) . R2N+2—j~k:(R _ 1)4
+RY*(2(R - 1)R*(3R? — R®* + RN — R?N — RN*! — gpN+2 4 pN+3
+3RMN ) f.(2(R~ 1)R(1 — R%) (—1+ RY) (~3R%* + R? — RN 4+ 3RN*1))~!

1

+1—R2
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_ 1+ph 1+ph 9
T 24+ 3uh 2+ uh

+RN~*(4 — R)(1 + R) + RN**=3(1 —4R)(1 + R)

)"HR*(2(R + 3) + R3(R - 3))

+R*Nk3(3R -1 —2R%(3R+1))}(1 — RV)™1(I - 2‘—‘?3” “2)71p

14 ph 1+ph
2+ 3uh 2+ ph

+RNF-1(_2(R+3) + R%(3— R)) + R¥N**=3(1 — 3R+ 2R*(3R + 1))

(20) " H{R*R-9(R+1)

FRAN AR~ 1)(R 4+ D} - BY) (1 - 2B gy

24 3uh
1+ ph 1+ ph =2
9,)~! R — 1)3(Ri+*—2 ON—2—j—k
A ]2:;{( P(RE2 4R )

+(=1+ 3R+ R*(3 — R))(RN %72 4 RN*F=I72) 4 2(1 — 3R)(R*N 27~k  RPN-277%h)
+2RVM(RN —1) (R— 3+ R"2(-1+3R))}

2 — ph

(1= RN 1 -5 3uh

St RN-H)~1 f.h,

Lemma 3.1 is proved.

The grid function J(k, ;A + &) is called the Green’s function of the resolvent equation
(3.3). Notice that
Jk,j;0+8) =JG,k;A+6) >0

1

< < N.
TA+4’ 1sj<ks

N-1
> J(k, ;A +6)h =
i=1

Thus, we obtain the formula for the resolvent (A + A”) in the case A > 0. In the same way
we can obtain a formula as (33.4) for the resolvent (Al + AF ) in the case of complex A. But

we need to obtain that 1+ 2uh, 2+ 3ph, 1 — RY, and 1 — —gféﬁmRN ~2 are not equal to zero.

3.3 Positivity of Difference Operator A, in Cj.

Theorem 3.1. For all\, A € R, = {): |arg )| < ,0 < ¢ < 7/2} the resolvent (AI + Ap)7H
defined by the formula (5.1) is subject to the bound

< M(p,8)(1+ )7,

Cp—Ch

H(AI + Ay

where M(p,d) does not depend on h.

The proof of this theorem is based on the following lemmas:

Lemma 3.2. If Re A > 0, then Repy > 0.



Proof. (Ashyralyev and Kendirli, 2000) We have

2

Reu:Re()\—i—é)g——l—Re\/h A+ 8)2 4 (A+9)

7

- g(Re(A+6))+Re\//\+51/hzz(>\+5)+1.

We denote A + § = re®, here r = |\ + 6| and |¢| < /2. Then

h? , 12
Z(A+5)+1=’rle“ﬁ1 with r; = _4_()\_{_5)+1
lp1| < w/4. Therefore
h2
ReVA+dy/—=(A+8)+120.

Lemma 3.3. The following estimate holds
sl > VIA+4].

Proof. (Ashyralyev and Kendirli, 2000) Using the formula for 4 we have that

I

Lemma 3.2 is proved.

-

h h?
=% VA [T+ +1

Now, using the notations of Lemma 3.2, we have

2 R .
g\/,\+a+ %(Hd) +1|= g\/;ew/2+'rlewl

h h
= \/(Eﬁcos g + 71 cos )2 + (iﬁsing + 71 sinp;)?

h2
= T—4~—+T‘%+h TTICOS((p/z—(pl)Zrlzl

since |¢/2 — ;| < 7/2.

Lemma 3.3 is proved.

Lemma 3.4. The following estimate holds

1
R| < <1
1Al < 1+ +/|A+élhcose

where |p| < 7/2.

21
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Proof. (Ashyralyev and Kendirli, 2000) We have

1
IRl = VA +hRep)? + (hImp)?

Since Re p = |p| cos p,where |¢| < 7/2, we obtain

1
R<{—m———.
7] < 14 |p|hcose

Hence by Lemma 3.3 we obtain the proof of Lemma 3.4.

Lemma 3.5.
N+p—-1>0

ifA€R,={X:|arg)| <7 —,0<p<7/2,0<|A}.

Proof. (Alibekov, 1978) It is enough to show that y(A) # 0. It is obvious that y(Ag) > 0
for large enough absolute values of Ag.

Assume that v(\) = 0. Let |1 + u| = 1. Denote b = h?X where b € R,,.

First case: Imb = 0. Then argb = 0. So arg A = 0. This implies that arg x = 0. Hence p
is real. So if |1 4+ p| = 1 then p = 0. This implies that A = 0. But this is a contradiction since
in the domain A # 0.

Second case: Imb > 0. From the formula

P = %(b+ NCET)

it follows that p € Ri when b € Ri.

Now since

[1+pl=1
then
a—@=arg(l+ u).
Since
argu = a
we have that
arg “2 = 2a.
Then from the formula
p? = b(L+p)

it follows that
arg p’ = argb+arg(l + p).

Then
2a = argb + (o — ).

So
argb=a+¢p=m.

However since b € R;‘; this implies that |argb| < 7.

Hence this makes a contradiction. So

|14 p| > 1.
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Therefore we have proved that
1+p#0,

2+p#0,
and (1+p)?Y —1#0.

Lemma 3.6. For all A € R, U {0}the following inequality holds

|1+ p < 21sin (m — )| 7" 2+ pl
Proof. (Alibekov, 1978) Let
u:%(#A+vﬁK@?ﬁﬁDeRw
since A € R, then 1+ u € R,. So

|arg(l +p)| < 7 — .

Let
1+ p = pexp(if)
then
|1+ pl = |pexp(EB)| = |p| -
Hence
24+pu=14+p+1=pexp(if)+1=pcosB+1+4ifBsinf
and
12+ p| = v/(pcos B+ 1)? + (psin f)? = /(p? + 1+ 2pcos B.
Let
Ko = 2[sin (7 — )| 7" > 2,
then

p < Kov/1+2pcos B+ p?
is obvious when |8| < 7/2. Now let

/2 < |Bl <7 — .

Then
sin(n/2 < |B| < ™ — )
sin (7 — ) < sin|f] < 1.
Since
Ky = 2(sin(m — <,0))_1
then

2
E(Sinﬂ<1.
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Taking the square we have A
K—g <sin?f <1
1<4< K2sin? 8 < K¢
KZsin?f8>1
K2sin?f-1>0

1— K2sin? 8 < 0. (3.5)
Now for the inequality
p? < K2(1+2pcos B+ p?) = K2 +2K2pcos B + KZp?
since Ky > 1 then

K2+ (2K2cosB)p+ (K2 —1)p% >0 (3.6)

will hold for all p = |1 + u| > 1 if the discriminant of (3.6) < 0. This condition is satisfied

since the discriminant is
4KE(—KZsin® f+1) <0

from (3.5).
Hence the lemma is proved.

Lemma 3.7.
| (1+p -1t < M) = constant AER, (3.7)

Proof. (Alibekov, 1978) Consider this function

vy = [pl (|1 + ] - 1)7! is a continuous function since |1+ p| > 1.
Let us consider the limits when g — 0 and g — oco.
Now let 1 — 0.
L2
u= §(h A+ Vh2A(4 + h2X))

Now
c1 ]hz)\|1/2 <|pl < e |h2)\|1/2 where ¢1, ¢y are constants.

Since u is too small from that follows

1
arg p = arg(h*A)1/? = ‘arg Al/z‘ = larg A

hence when y — 0 then A — 0.

Denote




since

jargp| = 27 farg A < T 2)
p = pexp(iy)
. . p -1
lim v,y = lim <¢
0 ) p—0 , y— HEX V1+2pcosy+p2—1

p(\/1+2pCOS’y+p2+1) V1+2pcosy +p? +1

pg(l) 1+2pcosy+p2—1 2co8y+p

lim =

1 1 1 1
y—HEX COSY  cos ZEX  cos (Z52) £

Now consider limit when y — oco.

__ln
W= T p—1
ulingo i +|z: 1771 7 Z — since 4 is too large.
—
7
Hence the inequality (3.7) is satisfied.
Lemma 3.8. The following inequality holds

2 — uh <1
2+ 3uh| —

where h is sufficiently small.

Proof. Let = pe*. h is sufficiently small, then ph is also small since
argp =2 targ (A +6),

p = p(cos B + isin B).
Then
|arg po| = |B] < /2.

Now

1 2 — ph(cos B + isin ) ‘ /(2= phcos B)? + (phsinB)?

2+ 3ph(cos B +isinf)| /(2 + 3phcos B)2 + (3phsin B)2

_ 4 — 4phcos B + p2h? cos? B + p2h?sin? B
"\ 4+ 9p2h2 cos? B + 12ph cos B + 9p2h2 sin? B

[ 4—4phcosf + p?h?
V44 902h2 + 12phcosf ~

25
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Lemma 3.9. The following estimate holds

14 ph <1
2+ 3uhy —

Proof. Let u = pe* = p(cos B +isinB). Then
1+ ph(cosB+isinB) | | (14 phcospB)? + (phsinf)?
2+ 3ph(cos B +isinB)| | (2+ 3phcosB)? + (3phsinB)?

27,2
:\/1+2phcosﬂ+ph <1

4 + 12ph cos 8 + 9p2h2 —
Lemma 3.10. The following inequalities hold:

2—ph Ly_o\ "
l1-————R
( 2+ 3ph

[CEy:2 B

>0,

where h is sufficiently small.
Proof. The proof of this lemma is based on the triangle inequality and on the estimates

of lemmas 3.4 and 3.9.

In the sequel for the proof of strong positivity of the difference operator in Cj, we will need
to consider the following nonlocal boundary value problem

(3.8)

Uug = un, —Ug + 4u) — 3ug = uy—g — duy—1 + 3un + 2ho.

Theorem 3.2. Let A € R,.Then for the solution of the nonlocal boundary value problem the
following inequality holds

1
OISL}%XNIUH < M(é,9) (m 1 £llg, + M(3,¢) |¢|) ,

where M(8,p) does not depend on f,¢ and h.

Proof. Let uy be a solution of the general nonlocal boundary value problem (3.1) and wy
be a solution of the nonlocal boundary value problem (3.1) in the case a; = 1. Then we can
write

U = Wk + Uk,

where v, is the solution of the following nonlocal boundary value problem
_”kil—2;k+‘vk—1 +(§+ Nvg =0,

vg =vN, —v2+4v;—3vy=ovN_3—4dun_1+ 3vN+ 2he.
Using the formula

2 1+ph (RF1+ RV-1"F)g

" 2—ph pN—
w2+ 3uh (1_mf;_hRN 2)

v = A<ELSN-1
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for the solution of v; and by Lemmas 3.9 and 3.10, we obtain

M3, ¢)
|l

[og] < ———

4]

1<k<N 1

Theorem 3.2 is proved.

3.4 Positivity of Difference Operator A7 in C},

Now we will investigate the strong positivity of difference operator A7 defined by the formula
(3.2) in Ch. In the sequel we will need the following difference analogue of Nirenberg’s
inequality which was obtained by Sobolevskii and Neginskii (Neginskii and Sobolevskii, 1970):

Uk+1 — Uk
—_— 3.9
OS%N—I h (3.9)
-2 -
<K |a max [ e = 205 + U +a ! max |ul,
1<k<N-1 h? 0<k<N

where K is a constant, & > 0 is a small number.

We consider the difference operator A7 defined by the formula (3.2). If ay = a =const,
then using the substitution A + § = aA; and the results of previous sections, we can obtain

the estimate
< M(p,8)(1+|A)7

Cp—C,

H(AI+ Ai)“l‘

or
<
3, el < M6.0) (1 11, + 1)
and the coercive estimate

lug1 — 2ug + up—1]
< .
15%31%(_1 ¥ < M (p,6) 1<k<N ) | fxl (3.10)

for the solutions of the difference equation with constant coefficients. Here M (¢, d) does not
depend on A and A.

Now, let a(z) be a continuous function on [0,1] = Q. Similarly to (Alibekov, 1978), using
the method of frozen coefficients and the coercive estimate for the solutions of the difference
equation with constant coefficients, we obtain the following theorem.

Theorem 3.3. Let h be a sufficiently small number. Then for all A € Ry, and |\| > Ko(8,¢) >
0 the resolvent (AI + AZ)~! is subject to the bound

H(AI + A7)

< M(,8)1+ )

Cp—=Cp
where M (p,d) does not depend on h.

Proof. Given ¢ > 0, there exists a system {Q;},j = 1,...,r of intervals and two half-
intervals (containing 0 and 1, respectively) that covers the segment [0,1] and such that
la(z1) — a (z2)| < €, 1,22 € Q; because of the compactness of [0, 1] . For this system we con-
struct a partition of unity, that is, a system of smooth nonnegative functions §; (z) ( = 1, ..., 7)

with supé; () C Qj,£;(0) = €;(1),€5(0) = &5(1) and & (2) + ... +&,(2) =1 Q= [0,1].
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It is clear that for positivity of the difference operator (3.2) it suffices to establish the
estimate

0<k<NI ukl < Al +1 1<heN— 1|fk| (3:-11)
for the solutions of difference equation (3.3).
Using wy = £;(zx)ux, we obtain
wp = wy, —wz+4w —3we =wy_2—4wn_1+ 3wy + ¢,
where
¢ = —(&;(2h) — £;(0))ug + 4(£,;(h) — £;(0))us
—(&;(1 —2h) = &;(1))un—2 +4(§;(h) — &;(1))un-1
and w4
(64 \) wi Wh41 'U;Ic Wk—1
h
€;(zr) — &;(zp— — Up—
= &;(zk) fr —ak{ i) hJ( k1) hu'“ L
N £i(Tpy1) — 262(;%) + Ej(wk—l)uk N £; ($k+1)h’“ £;(zk) -Uk;+1h~ U } .

Then we have the following nonlocal boundary value problem

s W41 — 2wy + W1

6+ Nw w3 =Fl, j=1,--4m (3.12)
wp = wy, — ws+ 4w, — 3wy =wy_g—4dwy_1+ 3wy + ¢,
where ¢/ = a(z’) and
j £i(zr) — &(Th—1) up — ug—
Flzzgj(mk)fk_ak{J hJ . hkl

h2 h ) h
] Wgy1 — 2WE + We—1
h?2 '

n §j($k+1) - 2§j($k) + fj(mk—l)uk I fj($k+1) - fj(wk) Ukt1 — uk}

+ [ak —d

Since (3.12) is a difference equation with constant coeflicients, we have the estimates

(1+ X)) max, |wel < K(%,) [ Jmax |FE 4+ (@A) [¢|] , A€R,,  (313)
L W1 — 2;:;16 WL\ ¢ Mg, 6) [1511?53'137(_1 ‘Fgl + (1+]A]) ]¢|] : (3.14)

Using the definition of Q; and the continuity of a(zx) as well as the smoothness of £;(z),
we obtain

‘Fjl <M9075)|: |fk|+ max luk|+ max |'Urk-}-1——'uk|]

1<Ic<N 1 1<Ic<N 1 0<k<N 0<k<N-1 h
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Wgt1 — 2Wg + Wg—1
2

€ m
1<k<N-1

and
¢ < M(p,0)h max |ug|.
] < M(p,9) nggNl ¢l

Assume that 0 < e < 1\7(%;:377 then from the last estimate it follows that

Ei(Trp1)ursy — 285 (zr)ug + &5 (Th—1)up-1
h2

max
1<k<N-1

M (¢, 6)
~ 1—eM(p,9) {1<k<N 1|f’°| og}caéxN [l

lukg1 — u + 1+ [A)he,

0<k<N-1 h
M(ep,d)
¥ ¥
1<k<N 1‘F l 1 —eM(p,d) [1<k<N 1[‘ka Ogca%mekl
|ugs1 — ug|
02X A +(1+ I/\I)hog}caéxN || -

From this and the estimate (3.13) it follows that, for any j =1, ...,7,

) S, |€; (zx)ux|

M(ep,6)

< K(0: 0T 3710 5 — e M{(p,0) L<k<N il
lugy1 — ug| -
LT R + (14 (1 + [A\)h) n}caéxN Iukl]

With the triangle inequality, we have

Uk+1 — 2Uk + Up—1
< )
1<heN-1 2 < Ki(y,9) [1<k<N ) | fx] (3.15)
[ugs1 — ugl
02X | A + (1 + (1 +[A)R) olgl}caéleukI’

| g1 — ugl

< it o
(1+ P‘l) S lukl Mi(e:9) [1<Ic<N 1 | fel + 0<hon-1 h (3.16)

+ (1 + (1 +|ADh) Orsr}caéxN |uk|] .

Now using the inequality (3.9) we obtain

|1 — Ug]
— (1 [l — Bel
F= I <hEN- 1|fk|+ +(1+ADR) H}ca&XNl uk| + 0<k<N—1 h

< Kali,d) |, g |1l +07 (1 (0 IADR) g

U1 — 2Ug + U1
72

+a
1<k<N-1
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Hence for small o from the last inequality and the inequality (3.15) it follows that

F < Mali,d) o (L (14 D) bl + s 18]

1<Ic<N 1

Therefore from (3.16) it follows

1+|/\|) max [ukl<M2((Pa6)[ P+ @+ DR oghon ¥ fuel + | max |

5).

Hence for all A,
M2((P, 5)
200 — M2 (QD, (5)h

we have the estimate (3.11). Theorem 3.3 is proved.

Al > —1=Kq(p,0)

3.5 Structure of the Fractional Spaces and Positivity of Difference Opera-
tors in C}

The operator A¥ commutes with its resolvent (A + Aﬁ)_l. Therefore, by Theorem 3.3 we

obtain that the operator A? is positive in the fractional spaces E,(Ch, A7) generated by the

dlfference operator A7. Recall that Eo(Ch, A7) is the set of all grid functions uP for which the

h h

is finite. Since for fixed h the operator A7 is bounded, this norm is finite for all grid functions.

AZ(\ + AZ) Ml

= sup A*
Ea{Ch,AL)  A>0

Let C,f (0 < B < 1) denote the Banach space of all grid functions uh = {uk}{v ~1 with
u1 = un—1 equipped with the norm

HuhH = max  JuE Ul +”uh
P 1<k<k+j<N-1  (§T)P

Ch

The main result of this section is the following theorem on the structure of the fractional
spaces Ey(Ch, A7).

Theorem 3.4. For 0 < o < 1/2 the norms of the spaces Eq(Ch, AZ) and C2* are equivalent
uniformly in h, 0 < h < ho.

The results of Theorems 3.3 and 3.4 permit us to obtain the positivity in C,2L°‘ norms of
the operators A7.

Theorem 3.5. Let h be a sufficiently small number. Then for all A € Ry, |A| > Kq (§,0) >0
and 0 < a < 1/2 the resolvent (A + AZ) ™" is subject to the bound

M{(p,9)

||(A+A > czece ~ a(l - 2a)

@+ p~ (3.17)

where M (¢, 8) does not depend on h and o
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The proof of Theorem 3.4 relies on certain properties of Green’s function J(k, j; A 4 d) of
the resolvent equation (3.3). In the case a(z) = a? we have that

N
N-1
(AF + X1t = {Z J(k,j§>\+5)fjh1} ; (3.18)

J=1 0

where
Jk, ;0 +6) = J(k,N —1; A+ 9)

_ 1+ph (RV3—4RV24+ R—4) (I
2+ 3ph 2

for k=0and k= N;

2 — /.th
2+ 3,uh1

—2)—1

1+phy (R?—4R+1)(RI™2 + RN-172) 72— 6k RN-2)1
2+ 3uhy 2u 2+ 3uhy

for2<j<N-2and k=0, k=N;

14+ phy 14+ phy
2+ 3ph1 2+ phy

+RN"*(4— R)(1 + R) + R¥**=3(1 —4R)(1 + R)

J(k,j; A+ 06) = —

J(k, ;X +6) = (2p) " H{RF(2(R + 3) + R*(R - 3))

+R2N-k=3(3R — 1 - 2R?’(3R+1))}(1 — RN)"}(I - 2_—Mh1~RN“2)"1,

1+ phy 1+ phy
2+ 3uhy 2 4+ phy

+RN-F-1(_2(R+3) + R*(3 — R)) + RN**3(1 - 3R+ 2R?(3R + 1))

Je, N —1; A +68) = — 2p) " YR*(R—-4)(R+1)

+RNE3(4R —1)(R+1)}(1 — RN)H(I -~ 2_—’””RN—2)~1,
14 phy 14 phy
2+ 3uhy 2+ phy
+(=1+ 3R+ R*(3 — R))(RV #4924 RV*F772) 4 9(1 — 3R)(R*V~*+~F
+R2N-2-5+k) L oRlI—k(RN — 1) (R—3 + RN 2(~1 +3R))}

J(k, 3 A+ 6) = u) (R — 1)3(RITF-2 4 RAN-2-1-k)

x(1 — RN)—l(l _ 2 —phy RN—2)—1

for2<j<N-2and1<k< N —1 Here
R=(1+ph1) by =a A,

W= % (hl(A+6) - \/(A+6)(4+h%()\+6))> .

A direct consequence of the last formula is

N-1
J( &by = ——. .
; (ks J; X+ 6y = 3 (3.19)
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Now, we will give the proof of Theorem 3.4.

First we consider the case a(z) = a®. Let a > 0. For any A > 0 we have the obvious

identity
)

A+d

1
At o

By formulas (3.18), (3.19) and the identity (3.20) we can write

AEN+ AB) 1R = ) [ — (A + 4%)” ] L (3.20)

N—-1
{AF O+ A0 e = AD Tk s A+ 6) [fm — fil b+ ——

=1

ey 3.21
A+ (3:21)
Let k = 0. Then using (3.21) for m = 1, we obtain

N-1
{AE O+ 407 Mo = A Y J0,50+0) [ — filbn + 5
j=1

. Nf 1+ phy (R2—4R+1)(Rf—2+RN—J’—2)(I_ 2~ phy

il h
—2 24 3uhy 24 2+3,uh ) [fl f]] 1

2 - ,uh1
2+ 3,uh1

1+phy (RN 34+ 1)4R-1)

2+ 3yh1 2/1, f

+A (I - 7 f ~ fa- 1]h1+/\j_5

L = £l

Z 1+ phy ( 4R+1)Rj‘2(1__ 2 — phy
2+ 3uhy 2u 2+ 3phy

v = filh

-3 2 N—j—2 _
'—“—AZ 1+ phy (R2—4R+1)R (I— 2 —puhy
— 2+ 3ph 2u 2+ 3uhy

_ Ll+ph (RE—4R+1)(1+RNY
2+ 3uhy 21 2+ 3uhy

1+ phy (R?—4R+1)(RV* 4+ 1) 2—phy _noo 1
2+3uh1 24 (I_2+3uh R ) [fN 1_fN 2]h1+

)
ot

We have that
1

N-3
a _ 1 Atdlh -2
A {Aa: (A-I—A ) fh}ol < M A1+a Z ( +\/| |[MIICOS‘P) Ifl _f_1|h1
j=3
N3 (1+\/|A+6[h1cos YN—i-2
+alte Z a4 |fv—1 = film
- Il
1 1 A%6
I+a = _ 1+a _*_ —
+A P l|f1 falh1 + A m |]fN—l fn—alh1 + A—{—élfl”
N-3
M(p,6 Z e ((j ~ 1)11)**my
j= 1)2
1
1+ 1+2a h < h
A \/mh’l + 1] Hf caa = Mi (e, 9) Hf cpe .
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Thus,

A7 [{45 O+ 457! M| < Mie,0) | £

(3.22)

c2e’
The proof of the estimate

A7 {45 0+ 4D) 7" )| < M, 0) | 7]

c2e
follows the scheme of the proof of the estimate (3.22) and is based on the formula (3.21) for
m=N —1.Let 1 <k < N — 1. Then using (3.21) for m = k, we obtain

N-1

{AZ O+ AD T Y =2 Tk, 55 A+ 8) [fe — fil b1 +
j=1

)
il

_)‘1+,uh1 1+ uhy
2 ¥ 3 2 F phn

k— Ny—1 2—phi N_a\ -
+RN¥k=3(1 —4R)(1 + R)}(1 — RY) (I—mR 2 fe— Al

) "H{RF1(2(R+ 3) + R*(R - 3))

1+ pht 1+ ph ~1 N—k
A 2 +R 4—-R)(1+R
A 3 2 g ) { (4-R)(1+R)

2——,uh1

N—2y—1rs _
2+3,uh1R Y e — fa—1l

+R*N-F-3(3R—1—-2R*3R+1))}(1 — RN)™1(I -

_ 14+ phy 14 phy
2 + 3uhy 2 + phy

+RINF3(4R — 1)(R+1)}(1 — RN) M (I - 2"—’””1RN"2)‘1 [fx = fn-al b

@Qu)"H{+R¥ %1 (—2(R +3) + R?*(3 - R))

1+ phy 14 phy

- 2u) " HRF(R-4)(R+1
2+3uh12+uh1(“) {R*( J(R+1)

+RNtk=3(1 3R+ 2R?(BR+1))}(1 - RM)"'(I - ——R
1

1+/Lh1 1+Mh1

N
e _ 1)\3 pit+k—2
3T 3uhn 21 by oM A D {(R-1)°R

RY=-3H~1 [f1 — filh

1+ phy 1+ phy -1 3 p2N—2—j—k
2 -1 J
2 S 2y ) AY {(R-1°R
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+(=1+ 3R+ R*(3— R))RN*F9-2 L o(1 — 3R)(R*N 27tk

_ 2—uh PN
x (1 — RM) 1(1—2_1_?th11 N7 [fv—1 = filh
1+ phy 1+Mh1 1)‘2{ 1) R2N =23k

2+ 3phy 2+ ,U.hl
+(-1+3R+ R*(3 - R))RN““—J—2 +2(1 — 3R)(R2N 27tk
—:—1RN_2)_1 [fx — fn-1] Pt

1+ phy 1+,uh1
2+3/Lh12+ﬂh1

N-2
p)7IA S 2RVTHI(RY — 1) (R -3+ RY7(—1+ 3R))
7=2

2 — puhy

)
1— Ny—1 1— N—-2 . h
x(L=R")"( 2+3“th )7H [fe — £4] 1t e
The proof of the estimate

A [{AE O+ AD) 7 | < M, 8) | £

200
Ch

follows the scheme of the proof of the estimate (3.22) and is based on the last formula. Thus,
for any A >0 and k =0,...,N we establish the validity of the inequality

ez O+ 457 12| < Male,0) |17

e
cy

This means that

[0

Now let us prove the opposite inequality. For any positive operator A7 we can write

< Ma(e,5) | 7|

Ba(Ch,A2) cze’

ON-1
v = / S (gt + 8) AL (t+ AT fihadt.
o J=1

Consequently

CON-1
fe = for = /Zt““ (k,§;t+8) — J (k+r,5;t + )| 1AL (¢ + AF) ™" fihdt,

whence
0o N-1
o= Ferrl < [ £ 1T (kdst+8) = T (k r st + )| ke | .
j=t1 Ea(Ch-47)
Let
b N-1
Ty = [rhi] 2"‘/1& N T (B, st +6) — I (k + 7 4 £+ 8)| hadt.
i=1

The proof of estimate
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|fi = foar| h

Tpe <Th||f
|’I‘h1|

follows the scheme of the paper (Ashyralyev and Sobolevskii, 1994) and is based on the

Lemmas 3.2 , 3.3 and 3.4. Thus, for any 1 < kK < k+r < N — 1 we have established the

inequality

Eq(Ch,AZ)

e < |7

Ba(Ch,A%)

This means that the following inequality holds:

| = = 17

Eo(CrAZ)

Theorem 3.2 in the case a(z) = a? is proved. Now, let a(z) be a continuous functions and let
z, zg € [0, 1] be arbitrary fixed points. It is easy to show that

|(4F — A7) (A) 7 < M.
Therefore, using the formula
(A:L' + )\) lfh A.’Bo (A:L'o _{_)\) fh
XA+ AD) T [AZ — AT (A%0) T A0 (A% 4 )T fh

we derive

Ao Az (4g + N7 < [

Ea(Ch,A3")

+MA 1](,\ + A%)7! h

Ch—Ch Fa(Ch,A “°°) Eo(Ch,AZ0)

From that it follows
< M Hf b

|+

Eq (ChyAzO) Ea(ch )Aio) ‘

Theorem 3.4 is proved.

The results of this chapter and the abstract results of papers (Ashyralyev and Kendirli,
2002), (Ashyralyev, 1992), (Ashyralyev, 2003), (Skubachevskii, 1997) permit us to investi-
gate the well posedness of the nonlocal boundary value problems for elliptic differential and
difference equations in the Banach spaces.



Chapter 4

THE WELL POSEDNESS OF THE
SECOND ORDER OF
ACCURACY DIFFERENCE
SCHEMES

4.1 Introduction and the Main Theorem

Coercivity inequalities in Holder norms with a weight for the solutions of an abstract differ-
ential equation of elliptic type were established for the first time in (Sobolevskii, 1965). Fur-
ther in (Sobolevskii, 1971), (Sobolevskii, 1977), (Grisvard, 1986), (Sobolevskii and Tiunchik,
1982), (Polichka and Tiunchik, 1982), (Primakova and Sobolevskii, 1974), (Ashyralyev, 1992),
(Sobolevskii, 1997), (Ashyralyev, 1995), (Ashyralyev and Kendirli, 2002), (Ashyralyev and
Sobolevskii, 2004), (Ashyralyev, 2003), (Gershteyn and Sobolevskii, 1974), (Ashyralyev, 1989),
(Ashyralyev and Amanov, 1996), (Alibekov, 1978), (Skubachevskii, 1997) the coercive inequal-
ities in Holder norms with a weight and without a weight were obtained for the solutions of
various local and nonlocal boundary value problems for differential and difference equations
of elliptic type.

In this chapter we consider the nonlocal boundary value problem
'—;12'[’Uzk+1 — 2up + ug—1] + Aug = ¢, 1 <kE< N -1,
(4.1)
ug = uy, —ug+4u; —3uy=uy—2—4duy_1+3uy, N7=1
in an arbitrary Banach space F with a positive operator A.

It is known (Sobolevskii, 1977) that for a positive operator A it follows that B = %(’TA +
A(4 + 72 4)) is strongly positive and R = (I + 7B)~! which is defined on the whole space
E is a bounded operator. Furthermore, we have that

| R* |ese< M(1+67)% kr || BR* |gop< M,k > 1,6 >0, (4.2)
B¢ pk+r _ 1k (r7)®
| B°(R R)]lE——)ESM———(kT)a_I_ﬂ,].Sk<]€+7‘SN,Oéa,ﬁgl, (4.3)
From (4.2) it follows that
(I = R¥Y Y gor < M,||(I — (21 — 7B)(2I +37B)*RN"2)"|z5 < M. (4.4)

36
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For any ¢, 1 < k < N — 1 the solution of the problem (4.1) exists and the following

formula holds
N-1

up =Y Gk, f)p;r, 0<ELN, (4.5)
j=1
where
G(k,1) = G(k,N — 1)

= —C (RN —4RN2 4+ R—4)(2B)'(I - DRV~
fork=0and k= N;

G(k,j) = —C(R? — 4R+ 1)(R~2 + RN=9-%)(2B)~'(I - DRV"%)~!
for2<j<N-—-2andk=0,k=N;
G(k,1) = CC1(2B)"H{R*1(2(R + 3) + R*(R - 3))
+RV %4 — R)(1 + R) + RN**3(1 —4R)(1 + R)
+R*-F3(3R —1-2R*(3R+1))}(1 — RY)""(I - DRV %),
G(k,N —1) = —CC1(2B) " Y{R¥(R - 4)(R+1)
+RN*1(—2(R+3) + R} (3 — R)) + RN"*3(1 — 3R + 2R*(3R + 1))
+R™N-F3(4R — 1)(R+ 1)}(1 — RY)~1(I - DRY=?%)71,
G(k,j) = CC1(2B) " H{(R — 1)3(RI+*~2 4 RAN-2777F)
+(=1+ 3R+ R%(3 — R))(RNF+i-2 | pN+k=3=2) | 9(1 — 3R)(R*N-2+i-F
+R2N-2-7+ky 4 oRI-F(RN _ 1) (R—3 + R¥"%(-1+3R))}(1 — RY)"}(I - DRN?)"!
for2<j<N-2and1<k<N-1. Here
C=(I+7B)2I+3rB)™},C, = (I +7B)@2I+71B)"Y,D = (2I — 7B)(2I + 37B) ™},

where I is the unit operator.

Really, we see that the problem (<.1) can be obviously rewritten as the equivalent nonlocal
boundary value problem for the first order linear difference equations

kol 4 Bug =2z, 1<k<N,
uy = Ug, —U2 + du1 — 3ug = uy—s —4duy—_1 + dupn,

— 8175 | Bz = (1 + 7B)gy, 1<k<N-1
From that there follows the system of recursion formulas

{ up = Rug_1 + 7Rz, 1<k<N,

2z = Rzpy1 + 79y, 1<kE<N-1.
Hence

k .
up = RFug + > RFtlrz,1 <k < N,

=1

N-1
2z =RN"*zy+ Y RIFrp,1<k<N-1
j=k



From the first formula and the condition uy = g it follows that

N
uny = RNug + Z RN=#1lr,
i=1

and

N
uy =up = (I —R")™' ) RV,
=1

N-1
1 )
={_ g~ {TRZN + E RN_’"HTzi}

=1

N-1
R (IS S

=1

N—1 o N-1
+ Z T RN-+1 Z RJ_"rgoj
i=1 j=i

J

— (I_RN)—l {(R R2N+1)(I R2 ’I"ZN + Z 7_2 RN+_7 —2i+1 }
=1

= (I - RY)"'(I - R) ' [R(1 — R¥)rzy

N-1
+ Z 7_2 [RN—j-l—l _ RN+j+1] (pj} ,
j=1

andfork, 1<k<N-1:

N-1
up = (I — RN)~ {hR’““zN + ) RFtNiH, } + ZR" Hlh
=1 =1

= (I—RN)—l(I_R2)—1RIc {(R_R2N+1)(I__ Rz)_lTZN

N-1
+ Z 7_2 [RN—-j-l-l . RN+j+1] (P]}
j=1

k N-1

+ZRN+IC 2’L+17_z + Z Z T2Rk+j 2z+1

i=1 j=i

— (I _ R2)—1 [Rk+1 +RN—k+1] TZN

=

~1
(I — RM)"Y(1 — RN 72 [RN—]+1 _ RN+J+1] ®;
j=1

k 7 N-1 k
+ Z 7_2 Z Rk+J—2z+1fj + Z 7_2 Z Rk+] —2z+1(’0j
j=1 =l j=htl =

— (I_R2)——1 [Rk-l-l _I__RN—IC-I-l] TZN
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N-1
+(I _ RN)—l(I _ RZ)-—IRIC Z 7_2 [RN—-j+1 _ RN—l—j-!—l] @
i=1

=

-1
+(I—-RHPS 2 (R[’“‘ﬂ“ - R’“+j+1> ;.
j=1

By using the formulas (4.6), (4.7), and the condition —uz+4u; —3ug = uy-2—4un—1+3un
we obtain (4.5).

4.2 Well-Posedness of the Nonlocal Difference Problem

Let F,(E) be the linear space of mesh functions ¢" = {¢x}N ! with values in the Banach
space E. Next on F,(E) we denote C-(E) and CZ(FE) - Banach spaces with the norms

e lle, = = 15%%—1 | ox 1z
_ 1
(K% Hog(E) = ”C.,(E) + 1Sk<II£Fa;‘)(SN—1 | rir — o llE ('r_T)T’

The nonlocal boundary value problem (4.1) is said to be stable in F,.(E) if we have the
inequality
I u” gy < MU g, ()
where M is independent not only of ¢ but also of 7.

Theorem 4.1. The nonlocal boundary value problem (4.1) is stable in C;(E) and C2(E)
norms.

The proof of Theorem 4.1 is based on the stability inequality in C(E) and CZ(E) norms
for the solutions of the second order of accuracy difference scheme for the boundary value
problem

(4.8)

-—T%-[’u,k_{_l — 2ug + ug—1] + Aug = @y,
1SkSN—1,U0=(,0, U,N=¢

for elliptic difference equations in an arbitrary Banach space E with a positive operator A
and on the estimates
|l uo lz< M || 0" llc. (),

| wo |z < M || " llcem) -

The proof of these estimates is based on the formula

ug=7B7IC (RN —4RY"2+ R—4) 27'(I - DRV "))y + o1}

—(I+7B)B2C(R? —4R+I)(I - RN 52711 - DRV ") (pn_1 +1)

N-2
+ z rB~C(R? — 4R+ I)RI=2271(I — DRY %) (p; — ¢;)
=2
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N-2
+ 3 TB7'C(R? — 4R+ )RV (I - DRV (pn_y — ;)
=2

and on the estimates (4.2) and (4.3).
The nonlocal boundary value problem (-.1) is said to be coercively stable (well posed) in

F.(F) if we have the coercive inequality

| {2 meen — 2+ e D Dy (A Y < MU g,

Fr(E)
where M is independent not only of ¢” but also of 7.

Since the nonlocal boundary value problem
—u" () + Au(t) = () (0<t<1), u(0) =u(l), «'(0) = /(1)

in the space C(E) of continuous functions defined on [0,1] and with values in E is not well-
posed for the general positive operator A and space E , then the well-posedness of the differ-
ence nonlocal boundary value in C.(E) norm does not take place uniformly with respect to
7 > 0. This means that the coercive norm

o7 g,y = {2 (i — 20 + we-) ™ lom + 1 47 llg, )
() ) (

tends to co as 7 — 01. The investigation of the difference problem (4.1) permits us to establish
the order of growth of this norm to oo.

Theorem 4.2. For the solution of the difference problem ({.1) we have almost coercive in-
equality

) 1
19 oy < M 12,16 1l 3 sl 17 ey
where M does not depend on ¢y, 1l < k< N—1andrT.

The proof of Theorem 4.2 is based on the almost coercive stability inequality in C,(E) for
the solution of the boundary value problem (4.8) and on the estimate

) 1
[ Augllp £ M min {111 — 14| B ”E—»El} %" lle, m)-

The proof of this estimate follows the scheme of the paper (Ashyralyev, 1992) and relies on
the formula

Aug =TBRC (RN"3 ~4RN"2 4+ R—4)271(I - DRV )" Hop, + oy_1} (4.9)

N-2
~ " 7BRO(R? — 4R+ 1)(RI™2 + RN 772)271(1 - DRV =)™ o
=2

and on the estimates (4.2) and (4.3).
Theorem 4.3. Let o5_1 — @1 € Eo. Then the coercivity inequality holds:

U1 — 2up + up—1 | V-1
| {=—= b llos + 1 Au7 llce

< gy 167 low + e = o U]

where M does not depend on ¢, L <k<N-—-1, aand .
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The proof of Theorem 4.3 is based on the coercive stability inequality in CZ(E) for the
solution of the boundary value problem (4.8) and on the estimate

I A“o - 801”Ea < )[” @ ||C$ + 1l o1 — PN ”Ea]'

ol — «a

The proof of this estimate follows the scheme of the paper (Ashyralyev, 1992) and relies
on the formula

Aug —p; = TBRC(RN 3 —4RN"2 Lt R—4)27Y(I - DRY ")~ + on_1}
~C(R* —4R+1)(I = RY™*)27'(I - DRV )™ (oy_1— 1)
N-2
+ Y TBRC(R? — 4R+ 1)RI22"1(I = DRV %)™ (¢, — ¢;)
j=2
-

+ > TBRC(R® — 4R+ 1)RN=772271(I - DR¥ %)™ (on_; — ;)
j=2

and on the estimates (4.2) and (4.3).

Theorem 4.4. The nonlocal boundary value problem (4.1) is well-posed in C.(Ey).

The proof of this theorem is based on the abstract theorem on the well-posedness in
C:(E,) of the local boundary value difference problem (4.8) and on the estimate

M
< i T
| 4ug 15, < s 167 Nl

for the solution of the problem (4.1). The proof of these estimates follows the scheme of the
paper (Ashyralyev, 1992) and relies on the formula (4.9).

4.3 Applications

First, we consider the nonlocal boundary value problem for two-dimensional elliptic equations

—%%—a(m)g—zﬁ+5U=f(y,w),0<y< Lo<z <1,
u(0,z) = u(l,z),uy(0,z) = uy(l,z), 0 <z <1, (4.10)

u(y,0) = u(y, 1), ue(y,0) =us(y,1), 0<y <1,

where a(z) and f(y,z) are given sufficiently smooth functions and a(z) > 0, § > 0 is a
sufficiently large number.

We introduce the Banach spaces CP[0,1] (0 < 8 < 1) of all continuous functions ¢(z)
satisfying a Holder condition for which the following norms are finite:
e+ 1) — (@)

= -+ sSu 3
e llosro,u=ll ¢ llcro, 0<oianr<l TP
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where C[0,1] is the space of all continuous functions ¢(x) defined on [0,1] with the usual
norm

Il @ llcp,u= Joax, lo(z)]-

It is known that the differential expression
A%y = —a(z)v"(z) + dv(z)

defines a positive operator A% acting in C#[0,1] with domain C#+2[0,1] and satisfying the
conditions v(0) = v(1), vz(0) = vg(1).

Let us associate with the nonlocal boundary value problem (:1.1() the corresponding dif-
ference problem

(_1 1 (,n+1 n—1 _
—or(ufyy — 20} +uf_y) —aP i (upT - 2uf +up ) 4 dup = ¢,

QDZ‘ = f(ykamn)ﬂ a = a(xn)7 Y = k'T, Ty = nh7
) 1<k<N-1,1<n<M—1,Nr=1Mh=1, (4.11)

uf =y, - uf o+ dud — U = Ry — duf_ +3uR,0<n< M,

| uf =, —uf +dug - 3ul = - 4T 43w 0SB SN

We introduce the Banach spaces C, C,f of grid functions " = {go"}{w ~1 with norms
By n T | ™ — " |
le" loy= max  [¢" [ ¢ llgp=ll ¥ low + B e

The difference operator

n+l _ 9 n n—1 M-1
Apul = {—a” (u ;:2 tu ) +t5u"}
1

acting in the space of grid functions " = {o"}} satisfying the conditions p? = ™, —@?+
4ol — 300 = M—2 — 4pM-1 3¢M is a positive operator. Therefore we can replace the
difference problem (4.10) by the abstract boundary value difference problem (4.1). Using
the results of the papers (Ashyralyev and Kendirli, 2000), (Ashyralyev and Kendirli, 2001),
(Ashyralyev and Yenial-Altay, 2004) and of theorems 4.1,4.2, 4.3 and 4.4 we obtain that

Theorem 4.5. Let 7 and h be a sufficiently small numbers. For the solution of the difference
problem (4.11) the following inequalities are valid:

157 g () < M) |67 Ny ) 0 S @ < 1,5 20,

Lon w0 1 h
H{ Sk -2t b0} o< M 1™ laon,
1 n TN
R ETT R S S s
< M(aa IB)[H QOT’h ”c'g(cfz) + ” ‘10’1L - (piﬁf—l ”Cf+2°‘]10 < 2a+,3 < ]-a:B >0,

where M, M(B) and M(c, 8) are independent of ¢™", h and 7.
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Second, let © be the unit open cube in the n-dimensional Euclidean space R* (0 < zx <
1,1 < k < n) with boundary S, © = QUS. In [0,1]xQ we consider the mixed boundary-value
problem for the multidimensional elliptic equation

2y = 2u(y,x
~5 — 5 o) 5% + uly,2) = (1)

= (z1,... Q.0 1
ﬁ z=(z1,...,2n) €Q,0<y <1, (412)

u(0,z) = u(l,z),uy(0,2) = uy(1,2), f(0,2) — f(1,5) =0, z € Q,

{ u(y,z) =0, z € S,

where oy(z) (z € Q) and f(y,z) (y € (0,1), =z € Q) are given smooth functions and
a,(z) > 0, § > 0 is a sufficiently large number.

We introduce the Banach spaces 001( Q) B=(B1,---:8,),0<z <1, k=1,...,n)ofall
continuous functions satisfying a Holder condition with the indicator 8 = (By,...,8,), Bk €
(0,1), 1 < k < n and with weight :vﬂ"(l — 2 —h)PR, 0 <z <z +he < 1,1 <k <n which
is equipped with the norm

I f ”05’1(6):” f ”C(ﬁ)

+ sup If(xla"‘7zn)_f($1+h17"‘7$n+h’n)l
0<zp<zp+hr<1,1<k<n

XHh Br ﬂk 1—xk—hk)

where C(Q) stands for the Banach space of all continuous functions defined on Q, equipped
with the norm

sv= max | f(z)|-
I £ lloy=max|7 ()
It is known that the differential expression
n
0%u(y, z)
A%y =— Z ar(w)W + dv(y, x)

r=1

defines a positive operator A® acting on 0631 (Q) with domain D(A%) C (}'2_'""43 (Q) and satisfying
the condition v =0 on S.

The discretization of problem (4.12) is carried out in two steps. In the first step let us
define the grid sets

Q= {z = T = (Fama, - - -, hamy),m = (M1, - - -, M),
0<m, < Np,hyN,=L,r=1,---,n},
Q=N S8, =0,N8.
We introduce the Banach spacesNCh = Ch(ﬁh),Cg = Cgl (Q) of grid functions o"(z) =
{p(h1mz1,- - -, hnmy)} defined on Qp, equipped with the norms

hy h
(K% ”c(nh) fé%xhho ()],
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6" llga @y =l " o

+ sup |g0h(:z:1,...,mn)—goh(a:1+h1,...,:cn+hn)|
0<zp<zp+hr<1,1<k<n

n
x T rePh i (1 — i — ha)P
k=1

To the differential operator A generated by the problem (<1.12) we assign the difference operator
A7 by the formula

n

Al = =Y ar(@) (W ) (413)

r=1 i
acting in the space of grid functions u”(z), satisfying the conditions ul(z) = 0 for all z € Sj,.

With the help of A% we arrive at the nonlocal boundary-value problem

~ 88 4 Az (y, ) = fAy,e), 0Sy <L, o €,
fh(O x) fh(]-ax)a HAES ﬁh; . (414)
v*(0,7) = vh(l,a:),'vg(o,zc) = vg’;(l,a:),:v € Qp,

for an infinite system of ordinary differential equations.

In the second step we replace problem (4.14) by the difference scheme (4.1)

4 uk+1(x) Zui‘(m)+u,c (=)

+ AZul = ol(z),x € O,
h - M-1 _ i
on(m)_{f(ykawn)}l 7yk_kT71SkSN_la NT'“la
4 (4.15)
(Plll(m) = 50}]{]_1(.’13),.’,6 € Qh7

[ ul(z) = ul(z), —ul +4ul —3ul =l _, — dule | +3ul,z € Q.

It is known that A7 is a positive operator in C (ﬁh) and 051 (Q1,). Therefore we can replace
the difference problem (4.15) by the abstract boundary value difference problem (4.1). Using
the results of the papers (Sobolevskii, 1971), (Sobolevskii, 1977), (Alibekov, 1978) and of
Theorems 4.1, 4.2, 4.3 and 4.4 we obtain that

Theorem 4.6. Let T and |h| be a sufficiently small numbers. Then the solutions of difference
scheme (4.15) satisfy the following estimates:

™ 1l ()< MB) 0" Ml g (cp) 0 Sa<Lel20,
N-1

1 1 N
” {7_2(u2+1 - 2“2 + uz—l)}l ”CT(Ch)< Mln |h| ” P ¢ ”C-,-(C'h)u

1 h A N-1
H{ Sk -nd b0} Lo
< M(O{,,B) ” (pT’h ”Cg(cﬁ);o <20+ ]ﬂ' <1,B82>0,

where M, M (B) and M (e, 8) are independent of @™" h and 7.
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The proof of theorem 4.6 is based on the abstract theorems 4.1, 4.2 and 4.3 and positivity
of difference operator AF defined by the formula (4.13) in C (€,) and Co1(Qh)

Third, we consider the boundary value problem on the range {0 < y <1, £ € R"} for
2m-order multidimensional elliptic equations

I7ly,
W D e@)gh i+ 0uyn) = f9)

O<y<l, z,reRY|r|=ri+- - +7rp, (4.16)

u(0,z) =u(l,z), uy(0,2) =uy(l,z),z €R",

\

where a,(z) and f(y,z) are given sufficiently smooth functions and 6 > 0 is a sufficiently
large number.

We will assume that the symbol

B(&) = Y ar(z) (€)™ ... (i) € = (€1, &) € RT

[r|=2m
of the differential operator of the form
5]7"! 4.17
Z ar(@ ozt ... 8z (4.17)
lr|=2m
acting on functions defined on the space R", satisfies the inequalities

0 < My[¢™ < (=1)™B®(€) < Malé|"™ < o0

for € # 0.

The discretization of problem (4.16) is carried out in two steps. In the first step let us
give the difference operator A} by the formula

Aful = )" bEDhul + bul. (4.18)
am<r|<S

The coefficients are chosen in such a way that the operator Af approximates in a specified
way the operator
alrl
Z ar 6wrn + 6

[r|=2m

We shall assume that for |£,h| < 7 the symbol A(€h, k) of the operator A7 — § satisfies the
inequalities .
(—1)™A®(Eh, B) = MyEPP™, |arg A(Eh, B)| < ¢ < ¢ < Ch (4.19)

With the help of A7 we arrive at the boundary value problem

d2 h ,
-42—”@” %) 4 AT (y, ) = P (y,2),0 <y <1,

v*(0,z) = vh(l,z),v?’}(o,x) = 'ug(l,m),:z: € R}

(4.20)

for an infinite system of ordinary differential equations.
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In the second step we replace problem (4.20) by the difference scheme

— [“k+1 2ult +uft_,] + Afuf =l 1<k<N-1,
(4.21)

uf =uly, —ult+4dul —3ul =ul_, — 4l +3uf, Nr=1

Let us give a number of corollaries of the abstract theorems given in the above.

Theorem 4.7. Let 7 and h be a sufficiently small numbers. Then the solutions of the difference
schemes (/].21) satisfy the following stability estimates:

u™h <M | ™" 0<a<1,0<8<1,
107 g 02 < M 97" g (cp)20 < <8
where M does not depend on ©™", a, B, h and 7.

The proof of Theorem 4.7 is based on the abstract theorem 4.1, the positivity of the
operator A7 in C,f and on the fact that for any 0 < 8 < ﬁ the norms in the spaces

Ep(Af,Ch) and O',%mﬁ are equivalent uniformly in A (see (Ashyralyev and Sobolevskii, 1994),
(Smirnitskii and Sobolevskii, 1981) ) and on the following theorem on the structure of the

fractional spaces Eq((A7) 3 Ch).

Theorem 4.8. (Ashyralyev, 1992) Let A be a strongly positive operator in a Banach space
E with spectral angle $(A, E) < 5. Then for 0 < a < 1 the norms of the spaces Ea(A%,E)

and Ez (A, E) are equivalent.
Now, we consider the coercive stability of (4.21).

Theorem 4.9. Let 7 and h be a sufficiently small numbers. Then the solutions of the differ-
ence schemes ({.21) satisfy the following almost coercive stability estimate:

I {r2(up sy — 20} + up_ DI lloron < Min—— Il ™" lle, s

where M does not depend on @™, h and 7.

The proof of Theorem 4.9 is based on the abstract Theorem 4.2, the positivity of the
operator A? in C;, (Ashyralyev and Sobolevskii, 1994) and (Smirnitskii and Sobolevskii, 1981)
and on the almost coercivity inequality for an elliptic operator A7 in Cj, and on the estimate

1
< .
}_M1n7_+h

Theorem 4.10. Let 7 and h be a sufficiently small numbers. Then the solutions of the
difference schemes (4.21) satisfy the coercivity estimates:

. 1
win {1n 2,1+ fia ] B N, e,

| {2 (ukgr — 2uft +up_) 1 e (cf)

< M@ Bl gy (og) + 1 9 = o lggran], 0 S <10 << 1,
where M(a, B) does not depend on ™", h and T.

The proof of Theorem 4.10 is based on the abstract Theorems 4.3 and 4.4, the p0s1t1v1ty
of the operator A7 in Cﬂ and the coercivity inequality for an elliptic operator A 1n Ch,
0 < B < 1 and on the fact that for any 0 < 8 < -1 the norms in the spaces E/g((Ah) ,Ch)

and C,Tﬁ are equivalent uniformly in h (Ashyralyev and Sobolevskii, 1994) and (Smirnitskii
and Sobolevskii, 1981).



Chapter 5

APPLICATIONS

5.1 Introduction
We consider the nonlocal boundary value problem for elliptic equation

[ _Pults) _ SMulbs) _ 1942 4 12 — 2+ 12(1 — )] sin,

J 0<t<1,0<z<m,
(5.1)
14(0,z) = u(l,z), w(0,z) = w(l,2), 0 <z <,

[ w(t,0) =u(t,m)=0,0<t <1
The exact solution is:
u(t,z) = t*(1 — t)%sin .

For approximate solutions of the nonlocal boundary value problem (5.1), we will use the
first and second order of accuracy difference schemes. To solve this difference equations we
have applied a procedure of modified Gauss elimination method. This method is explained
in the following subsections.Two computer programs are written in Matlab and a table of
analysis with the figures are given.

5.2 The First Order of Accuracy Difference Scheme

Consider the nonlocal boundary value problem (5.1) for elliptic equation. For approximate
solution of the nonlocal boundary value problem (5.1), consider the grid space depending on
the small parameters 7 and h:

[Oal]TX[O"’T]h = {(tkuwn):tk=k71 1<k<N-1, Nr=1,
Tpn = nh, 1<n<M-1,Mh=nm}.

Applying the formulas
u(tpr1) = 2u(te) +ulte—1)

2 "ty) = O(r?), (52)
W(zn41) —2ui(l§n)+“(”n—1) —u'(zn) = O(R?),

47
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and

M —4(0) = O(r), (5.3)
U(l) — 771-‘(1 — T) _ u’(l) — O(T)

the first order of accuracy in ¢ for approximate solutions of the nonlocal boundary value
problem for elliptic equation (5.1) are obtained.

4

4

\

Ukt _aukyuk?

Uk Uk+UE_,
72 2 = [

+ —12(k7)? + 12(k7) — 2 + (k7)*(1 — (k7))?]sin (nh)

1<k<N-1, 1<n<M-1,
Uk =Uk =0, 0<k<N,

U0 =UN -UN-0<n< M. |
(5.4

Here we have(IN + 1) x (M + 1) system of linear equations and we will write them in the

matrix form. By resorting the system

( () Upsa + (=5 = ZUE+ [ UE_L + (5) UFH + [H] UF! = o,
ok = [—12(k7)? + 12(kT) — 2 + (k7)%(1 — (k7))?]sin (nh),
! 1<k<N-1, 1<n<M-1,

Uk=Uf =0, 0<k<N,

(U0 =(UY -UY-1),08=UY,0<n< M

So,

AUpt1+BU,+CUp_; =Dy, 0<n<M,
Uy=0, Uy =0.

Denote
1 1 -2 2
=\w) T\#) T mr)

©F = [=12(k7)? + 12(k7) — 2 + (k7)2(1 — (k7))*]sin (nh),

@
o
_ 2
(;011, - (Pn )

N
Pn 1 (Ny1)x1



0 0 0
0 a O
0 0 a
0 0 0
A= ... .. ..
0 0 O
0 0 O
0 0 O
| 0 0 O
[ 1 0 0
b ¢ b
0 b ¢
0 0 b
B=1| .. .. ..
0 0 0
0 0 O
0 0 O
| -1 1 0
and C = A.
[ 0
0
D= 0
0
| 0
- 0
Uy
Uy
Us= | U3
yN-1
A

0 0
0 0
0 0
a 0
0 a
0 0
0 0
0 0
0 0
0 0
b 0
c 0
0 c
0 b
0 0
0 0
4 (N+1)x(1)

[en I e B e B ]

o0 o

o O OO

O O o

o

0 07

0 0

0 O

0 0

0 0

0 O

a 0

0 0 (N+1)x(N+1)
0 —17

0 0

0 0

0 0

0 O

b 0

c b

1 —1] (N+1)x(N+1)
4 (N+1)x(N+1)

, s=n—-1nn+1
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For the solution of the last matrix equation, the modified variant Gauss elimination method
is used. We seek a solution of the matrix equation by the following form:

U, = an+1Un+1 + ,Bn+1a

n=M-1,..,21,0,

where o (j = 1,..,M —1) isa (N + 1) x (N + 1) square matrix and 8; (j = 1,..., M — 1) is

a (N + 1) x (1) matrix. And a1, 8, are

o] =

0
0
0

0
0
0

<o

o OO

=1

(N+1)x (N+1)
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Using the equality
Us = as41Usy1 + Byyp, (for s=n, n —1)

and the equality
AUn+1 +BU,+CU,1= D(,Dn,
we can write

[A + Ban+1 + C'Ofnc'fn+1]Un-i—l + [B,Bn+1 + Canﬁn+1 + Cﬁn] = D‘Pn

The last equation is satisfied if it is to be selected
A+ Bagy1 + Capanty =0,

[BBpy1+CanBri1 +CBy]l =Dyp,, 1<n<M-1.

Formulas for a1, B,01:

onp1 = —(B+Cap) ' A,
Bup1 = (B+Can)™ (Dg, —CB,),n=1,2,3,..M - 1.
So, r
Uy =0,
Un :an+1Un+1 +,Bn+1, 'I’LZM— 1, ...,2, 1,0.
Algorithm

. Step Input time increment 7 = % and space increment h = .

. Step Use the first order of accuracy difference scheme and write in matrix form:

AUpy1+BU,+CUp_1 =Dyp,, 0<n<M.

. Step Determine the entries of the matrices A, B, C and D.
. Step Find a3, 5;.

. Step Compute ant1, Byy1-
. Step Compute U,’s (n=M —1,...,2,1), (UM = 6) using the following formula:

Un = any1Uny1 + ,Bn+1-



Matlab Implementation of the First Order of Accuracy Difference Scheme

function firstord
close; close;
N=50; M=50;
tau=1/N;
h=pi/M;
a=1/(h"2);
b = 1/(tau"2);
¢ = -2/(tau"2)-2/(h"2);
for i=2:N; A(i,i)=a; end;
A(N+1,N+1)=0; A;
C=A;
for i=2:N ; B(i,i-1)= b ; end;
for i=2:N ; B(i,i)= c ; end;
for i=2:N ; B(i,i+1)= b ; end;
B(1,1)=1; B(1,N+1)=-1;
B(N+1,1)=-1; B(N+1,2)=1; B(N+1,N) =1 ; B(N+1,N+1)=-1; B;
for i=2:N; D(i,i)=1; end ;
D(N+1,N+1)=0; D;
for j=1:M+1,;
for k=1:N+1;
t=(k-1)*tau;
x=(j-1)*h;
s=t"4-2%t"3-11%t"2+12%¢-2;
fii(k,j:j)=-s*sin(x) ;
end;
end;
alpha(N+1,N+1,1:1)= 0 ;
betha(N+1,1:1) =0 ;
for j=1:M-1;
alpha( 3, 3, j+1:j+1 ) = inv(B+C*alpha(:, :, j:j))*(-A) ;
betha( :, j+1:j+1 ) = inv(B+C*alpha(:, :, j:j ) )*(D*fi(:, j:j )- C * betha(:, j:j ) );

end;
U( N+1,1, M\:M ) = 0;
for z = M-1:-1:1 ;

U(:,:, z:z ) = alpha(:,:,z+1:24+1)* U(:,:,2+1:24+1 ) + betha(:,z+1:2+1);

end;
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forz = 1:M ;

p(s,z+1:2+1)=U(:,:,z:2);

end;

"EXACT SOLUTION OF THIS PROBLEM’ ;
for j=1:M+1;

for k=1:N+1 ;

t=(k-1)*tau;

x=(j-1)*h;

es(k,j:j)=(t"2)*((1-t)"2) *sin(x);

end;

end;

figure ;

surf(es) ;

titleCEXACT SOLUTION’);

axis tight;

figure ;

surf(p) ;

title("THE DIFFERENCE SCHEMES SOLUTION");
axis tight;

5.3 The Second Order of Accuracy Difference Scheme

Consider again the nonlocal boundary-value problem (5.1). Applying the formulas (5.2), (5.1)

and
—u(27) + 4u(r) — 3u(0)

' (0) = o +0(r%),
(1) = u(l —27) — 4u2’(ll ~7) + 3u(l) +0(),

the difference scheme second order of accuracy in ¢ and in z for approximate solutions of the
nonlocal boundary value problem (5.1)

( Ugt—2uk4UE~? +U£+1_2U5+U£—1 —
p= 72 = ¥n

ok = [<12(k7)? + 12(kT) — 2 + (kT)2(1 — (k7))?]sin (nh)

Uk =Uk =0, 0<k<N,

| —3U2+4UL - U2 =UN"2+4UY 1 +3UY, 0<n< M,

is obtained. Here
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1

¢ = 33

1

b=
2 2
€= T2 Ry

We have again the (N + 1) x (M + 1) system of linear equations.We will write them in
the matrix form. By resorting the system we obtain the matrix equation with new data:

‘sz = [—12(k7)? + 12(kT) — 2 + (k7)%(1 — (k7))?]sin (nh),

f
n

Pn = Pn )
Prn J(Nt1)x1

[0 0 0 O 0 0 0 07

0 a 0 O 0 0 0 O

0 0 a O 0 0 0 O

0 0 0 a 0 0 0 O

0 0 0 O a 0 0 O

0 0 0 O 0 a 0 O

0O 0 0 O 0 0 a O
[0 0 0 0 . 00 0 0 Ju, v

"1 0 0 0 0 0 0 —17

b ¢ b 0 0 0 0 O

0 b ¢ b 0O 0 0 O

0 0 b ¢ 0 0 0 O

B=| o o o . S ,

0 0 0 O c b 0 0

0 0 0 O b ¢ b 0

0 0 0 O 0 b ¢ b

[ -3 4 -1 0 . 0 -1 4 =31, v
and C = A.
0 0 O 0 07
0 1 0 0 0
D= 0 0 1 0 0 ,
0 0 O 1 0
[ 0 0 O 0 0 |

(N+1)x(N+1)
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U= | U3 , s=n—1n,n+1

L. 8

(N+1)x(1)

For the solution of the last matrix equation, the same algorithm is used for the second
order of accuracy difference scheme.

Matlab Implementation of the Second Order of Accuracy Difference Scheme

function secondord
close; close;
N=50; M=50;
tau=1/N;
h=pi/M;
a=1/(h"2);
b = 1/(tau"2);
¢ = -2/(tau"2)-2/(h"2);
for i=2:N; A(i,i)=a; end;
A(N+1,N+1)=0; A;
C=A;
for i=2:N ; B(i,i-1)= b ; end;
for i=2:N ; B(i,i)= c ; end;
for i=2:N ; B(i,i+1)= b ; end;
B(1,1)=1; B(1,N+1)=-1;
B(N+1,1)=-3; B(N+1,2)=4; B(N++1,3)=-1; B(N-+1,N-1)=-1; B(N+1,N)=4;
B(N+1,N+1)=-3; B;
for i=2:N; D(i,i)=1; end ;
D(N+1,N+1)=0; D;
for j=1:M+1;
for k=1:N+1;
t=(k-1)*tau;
x=(j-1)*h;
§=t4-2%6"3-11%4"24+12%4-2;
fii(k,j:j)=-s*sin(x) ;
end;

end;
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alpha(N+1,N+1,1:1)= 0 ;

betha(N+1,1:1) =0 ;

for j=1:M-1;

alpha( :, 1, j+1:j+1 ) = inv(B+C*alpha(;, :, j:j))*(-A) ;
betha( :, j+1:j+1 ) = inv(B-+C*alpha(:, :, j;j ) )*(D*fi(:, j:j )- C * betha(:, jij ) );
end;

U(N+1,1, MM ) = 0;

for z = M-1:-1:1 ;

U(:,:, z:z ) = alpha(:,;,z+1:2+1)* U(:,;,z+1:z+1 ) + betha(:,z+1:z+1);
end;

forz = 1:M ;

p(s,z+1:24+1)=U(:,:,2:2);

end;

"EXACT SOLUTION OF THIS PROBLEM’ ;

for j=1:M+1;

for k=1:N+1 ;

t=(k-1)*tau;

x=(j-1)*h;

es(k,j:j)=(t"2)*((1-t) "2)*sin(x);

end;

end;

figure ;

surf(es) ;

titleCEXACT SOLUTION’);

axis tight;

figure ;

surf(p) ;

titleCTHE DIFFERENCE SCHEMES SOLUTION’);
axis tight;

5.4 Numerical Analysis

Consider the nonlocal boundary value problem for elliptic equation (5.1). For the approximate
solutions of the nonlocal boundary value problem (5.1), the first and the second order of
accuracy difference schemes with 7 = %, h = & will be used. The exact and numerical

solutions are given in the table 5.1 and figures 5.1, 5.2 and 5.3.
TABLE

The first line is the exact solution, the second line is the solution of the first order of
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accuracy difference scheme and the third line is the solution of second order of accuracy
difference scheme .

Table 5.1 Numerical analysis

te\zn| O 0.63 1.26 1.89 2.52 3.14
0 0 0 0 0 0
0.0 0 | 0.0260 0.0412 0.0410 0.0248 0
0 | 0.0036 0.0043 0.0036 0.0013 0
0 | 0.0150 0.0243 0.0243 0.0150 0
0.2 0 | 0.0380 0.0621 0.0628 0.0392 0
0 | 0.0172 0.0279 0.0281 0.0174 0
0 | 0.0339 0.0548 0.0548 0.0339 0
0.4 0 | 0.0544 | 0.0905 0.0923 0.0586 0
0 | 0.0343 0.0576 0.0590 0.0377 0
0 | 0.0339 0.0548 0.0548 0.0339 0
0.6 0 | 0.0544 | 0.0905 0.0923 0.0586 0
0 | 0.0343 0.0576 0.0590 0.0377 0
0 | 0.0150 0.0243 0.0243 0.0150 0
0.8 0 | 0.0380 0.0621 0.0628 0.0392 0
0 | 0.0172 0.0279 0.0281 0.0174 0
0 0 0 0 0 0
1.0 0 | 0.0260 0.0412 0.0410 0.0248 0
0 | 0.0036 0.0043 0.0036 0.0013 0

Thus, the second order of accuracy difference scheme is more accurate comparing the first
order of accuracy difference scheme.

EXACT SOLUTION

@‘ Q‘}\

///
y // fﬂ e. ; t‘ ‘m\\
1 li # 64 “““3“ \‘%&\g%%“
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% 99%@*‘%‘*“ ‘\i\\\\ )
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Figure 5.1: Exact solution
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Figure 5.2: The first order of accuracy difference scheme
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THE DIFFERENCE SCHEMES SOLUTION
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Figure 5.3: The second order of accuracy difference schemes

Now we will consider the special case of the nonlocal boundary value problem for elliptic
equation

Pulto) | Pulbz) _ [ o3 4 342 4 11t — 6]sing, 0 <t<1,0<z <,

U(O,.’L‘) = U(l,ﬂ?), ’I_Lt(o,.’l?) = 'U,t(l,iB), 0<z<m, (56)
u(t,0) = u(t,n) =0, 0<t < 1.

The exact solution is
u(t,z) = (2t> — 3t + t) sinz.

Applying the modified Gauss elimination method we obtain the following results for the
first and second order of accuracy difference schemes of the problem (5.6).
TABLE

For the approximate solutions of the nonlocal boundary value problem (5.6), the first and
second order of accuracy difference schemes with 7 = 51—0, h = &5 are used.

In the table the first line is the error of the first order of accuracy and the second line is
the error of the second order of accuracy.

Table 5.2 Numerical analysis



te\zn| O 0.63 1.26 1.89 2.52 3.14

0 0 0 0 0 0

0.0 0 0 0 0 0 0
0.2 0 | 0.0049 0.002 | 0.0017 0.0047 0
’ 0 | 0.0049 0.002 | 0.0017 0.0047 0
0.4 0 | 0.0024 | 0.001 0.0008 0.0023 0
) 0 | 0.0024 0.001 0.0008 0.0023 0
0.6 0 | 0.0024 0.001 0.0008 0.0023 0
' 0 | 0.0024 0.001 0.0008 0.0023 0
0.8 0 | 0.0049 0.002 0.0017 0.0047 0
' 0 | 0.0049 0.002 0.0017 0.0047 0
0 0 0 0 0 0

1.0 0 0 0 0 0 0

From table 5.2. we conclude that in this case the result values of the first and the second
order of accuracy are almost the same. Instead, in this case the first difference scheme has
also second order of accuracy. Really,

u(r,zn) —u(0,2n) u(l,zn) —u(l- T, Tp)

T T
= U (Oaxn) + Uy (an)

= (ugs (0,2n) + uee (1, 25)) + O (7).

T
2
We obtain that

ut(t, Tp) = (12t — 6) sinzy,,

utt(oamn) = —6sinzy,,
ug (1, ) = 6sinzy,
utt(O, Tn) + utt(l, :Bn) = 0.

Hence the error of approximation of this difference scheme is two. The values of first and
second order of accuracy difference schemes are almost the same. Therefore the second order
of accuracy is not more accurate than the first order of accuracy for this problem.

However for the problem (5.1) we have
u(t, zn) = t2(1 — t)? sin z,,,

ug(t, zn) = 2(1 — £)2 — 8(1 — t)t + 2t%,

up (0, 2p) = 2sinzy,
up(l, ) = 2sinzy,
u (0, 2) + v (1, 2p) = 4sinz, # 0.

Hence the error of approximation of this difference scheme is one. Therefore for this problem
the second order of accuracy is more accurate.



Chapter 6

CONCLUSIONS

This work is devoted to the study of the stability of the nonlocal boundary value problem for
elliptic equations. The following original results are obtained:

- the abstract theorems on the stability estimates, almost coercive stability estimates and
coercive stability estimates for the solution of the nonlocal boundary problem for elliptic
difference equation in the Banach space are proved,

- theorems on the stability estimates, almost coercive stability estimates and coercive
stability estimates for the solution of difference schemes for elliptic equations are proved,

- the positivity of the second order difference operator in Cj and CF is proved,
- the structure of the interpolation space is investigated,

- the theoretical statements for the solution of this difference schemes are supported by
the results of numerical experiments

- two papers from this work are submitted for publication in the journals.
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