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ABSTRACT 

 
 

 
This paper discusses an improvement of some concepts of the Leontief's Input-

Output Analysis, when some industries are expected to make a serious loss. If one industry, 
at the end of the estimation period, has serious losses so that could not even cover its 
expenses (say, due to unexpected exchange rates), the standard Leontief Model will not 
describe this process properly. The mathematical base established here would be useful to 
improve the applicability of input-output system for practical goals.  

Firstly, application of that method  has been tried to be shown basically by taking 
into account three industries in that study.  It has been shown how an economy may be 
considered profitable even in the case of that one of those three industries has lost. Then, 
that model has been applied to the n industries by expanding those three industries. 
Eventually, it has been concluded that even if some industries have lost money in economy, 
that economy may be considered profitable if some industries covers the loss of other 
industries.    
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ÖZET 
 
 

 
Bu çalışma bazı endüstrilerin ciddi zarara uğraması beklendiği durumlarda Leontief 

input-output modeline ait bazı kavramların geliştirilmesini tartışıyor. Eğer bir endüstri, 
tahmin sürecinin sonunda  masraflarını bile karşılayamayacak kadar ciddi zarara uğramışsa 
(mesela beklenmeyen kur oranlarından dolayı), standart Leontief modeli bu süreci tam 
olarak açıklayamayacaktır. Burada ortaya konan matematiksel temel input-output 
sisteminin uygulanabilirliğini, pratik amaçlar için, geliştirmede faydalı olacaktır.  

İlk olarak, bu çalışmada üç endüstri ele alınarak basit bir şekilde bu metodun 
uygulaması gösterilmeye çalışıldı. Üç endüstriden birinin kaybetmesi durumunda bile bir 
ekonominin nasıl kar eden bir ekonomi olarak görülebileceği gösterildi. Daha sonra bu 
model n endüstriye genişletilerek uygulandı. Sonuç olarak şuna varıldı: Ekonomide bazı 
endüstrilerin zarar etmesine rağmen, bazı endüstrilerin kaybının diğerleri tarafından 
karşılandığı durumlarda bu ekonomi kar eden bir ekonomi olarak görülebilir.      
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

This thesis is about a model of an economy with n industries. We will study a linear 

system which is called an open Leontief system after Wassily Leontief, who first studied 

this type of system in the 1930s and later won a Nobel Prize in economics for his work [1].  

Linear models of production are perhaps the simplest production models to 

describe. Here, we will describe the simplest of linear models [2]. We will suppose that our 

economy has n goods. Each of goods 1 through n is produced by one production process. A 

production process is simply a list of amounts of goods: so much of good 1, so much of 

good 2, and so on. These quantities are the amounts of input needed to produce one unit of 

process's output. For example, the making of one car requires so much steel, so much 

plastic, so much electricity, and so forth. In fact, some production processes, such as those 

steel or automobiles, use some of their own output to aid in subsequent production. 

The simplicity of the linear production model is due to two facts. First, in these 

models, the amounts of inputs needed to produce two automobiles are exactly twice those 

required for the production of one automobile. Three cars require 3 times as much of the 

inputs, and so on. In the jargon of microeconomics, each production process exhibits 

constant returns to scale. The production of 2, 3 or k cars requires 2, 3 or k times the 

amounts of inputs required for the production of 1 car. Second, in these models there is 

only one way to produce a car. Output cannot be increased by using more of any factor 

alone; more of all the factors are needed, and always in the same proportions. This 

simplifies the analysis of production problems, because the optimal input mix for the  



 

 

 

production of, say, 1000 cars, does not have to be computed. It is simply 1000 times the 

optimal input mix required for the production of 1 car. 

 After giving that information on linear model we can deal with Leontief model that 

we will study. Let’s describe some notations we use. Denote ci  with the consumer demand 

for good i. We want each process to produce an output that is sufficient to meet both 

consumer demand and the input requirements of n industries. For our simple linear 

economy, this is the law of supply and demand: output produced must be used in 

production or in consumption. Let xj denote the amount of output produced by process j. If 

process j produces xj units of output, it will need aijxj units of good i. Adding these terms up 

over all the industries gives the demand for good i: ai1x1+ ai2x2+…+ ainxn+ci. The law of 

supply and demand then requires 

ininiii cxaxaxax ++++= K2211 .                                     (1.1) 

for ni ,...,2,1= . In matrix notation, this system of equations becomes 

CAXX +=                                                   (1.2) 

which is more conveniently written as 

( ) .CXAI =−                                                 (1.3) 

The matrix ( )
ikaA =  for nki ,...,2,1, =  of intermediate factor demands is sometimes called 

the technology matrix. The ( )thji,  entry ija  of technology matrix A indicates how many 

millions of dollars of good i are needed to produce 1 million dollars of good j. It is 

convenient to study solutions of equation  by working with the inverse: 

( ) .1
CAIX

−
−=                                             (1.4)  

In addition to requiring that I-A  be invertible, we also require that the solution to the 

equation be nonnegative whenever C is nonnegative. If we expect each industry to make a 

positive profit, the sum of entries in each column expected to be less than one. Now, we 

consider the case when sum of the entries in some columns may be greater than or equal to 

1. Economically, it could be explained by this way: We expect some industries that may 

have serious losses and/or some of them may be expected to be non profitable (for instance, 

let one of them produces a product for military forces). Observations on the last period for 

the economy of Turkey shows that it really may be happened. At the beginning of the 

second quarter of 2003, the course of 1 dollar was around 1750000 TL (Turkish Lira) but at 

the end of the same quarter, 1 dollar was around 1350000 TL. It is clear that in this case,  



 

 

 

some industries really had serious losses (at least in terms of dollars) and no estimation 

could be made using standard Leontief's input-output model.  

Thus, we will study on that problem. In that thesis we will approach to new 

assumptions on that model. That problem could be seen in developing countries whose 

economies are not stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 2 

 

 

THE ANALYSIS OF THE STANDARD CASE 

 

 

 

Before undertaking an abstract analysis, we will work out an example to illustrate 

the key features of the model. Consider the economy of an organic farm which produces 

two goods: corn and fertilizer. Corn is produced using corn (to plant) and using fertilizer. 

Fertilizer is made from old corn stalks (by feeding the corn to cows who then produce 

useful end products). Suppose that the production of 1 ton of corn requires as inputs 0.1 ton 

of corn and 0.8 ton of fertilizer. The production of 1 ton of fertilizer requires no fertilizer 

and 0.5 ton of corn. 

 We can describe each of the two production processes by pairs of numbers ( )ba, , 

where a represents the corn input and b represents the fertilizer input. The corn production 

process is described by the pair of numbers (0.1, 0.8). The fertilizer production process is 

described by the pair of numbers (0.5, 0). 

 The most important question to ask of this model is: What can be produced for 

consumption? Corn is used both in the production of fertilizer. Fertilizer is used in the 

production of corn. Is there any way of running both process so as leave some corn and 

some fertilizer for individual consumption? If so, what combinations of corn and fertilizer 

for consumption are feasible? 

 Answers to these questions can be found by examining a particular system of linear 

equations. Suppose the two production processes are run so as to produce cx  tons of corn  

 

 



 

 

 

and fx  tons of fertilizer. The amount of corn actually used in the production of corn is 

0.1 cx - the amount of corn needed per ton of corn output times the number of tons to be  

produced. Similarly, the amount of corn used in the production of fertilizer is 0.5 fx  . The 

amount of corn left over for consumption will be the total amount produced minus the 

amounts used for production of corn and fertilizer: fcc xxx 5.01.0 −− , or fc xx 5.09.0 −  

tons. The amount of fertilizer needed in production is cx8.0  tons. Thus the amount left over 

for consumption is cf xx 8.0−  tons. 

 Suppose we want our farm to produce for consumption 4 tons of corn and 2 tons of 

fertilizer. How much total production of corn and fertilizer will be required? Put another 

way, how much total production of corn and fertilizer will the farm have to produce in 

order to have 4 tons of corn and 2 tons of fertilizer left over for consumers? We can answer 

this question by solving the pair of linear equations 

fc xx 5.09.0 −  = 4, 

   fc xx +− 8.0  = 2. 

This system is easily solved. Solve the second equation for fx   in terms of cx : 

      cf xx 8.02 +=                                                         (2.1) 

Substitute this expression for fx  into the first equation: 

( ) 428.05.09.0 =+− cc xx    

and solve for cx  : 

0.5 cx   = 5, so cx  = 10. 

Finally, substitute cx  = 10 back into (2.1) to compute 

.102108.0 =+⋅=fx  

In the general case, the production process for good j can be described by a set of 

input-output coefficients {a1j, a2j,…, anj }, where aij  denotes the input of good i needed to 

output one unit of good j. Keep in mind that the first subscript stands for the input good and 

the second stands for the output good. The production of xj   units of good j requires a1jxj 

units of good 1, a2jxj units of good 2, and so on. 

 



 

 

 

Total output of good i must be allocated between production activities and 

consumption. Denote by ci the consumer demand for good i. This demand is given 

exogenously, which is to say that it is not solved for in the model. An n-tuple ( )nccc ,,, 21 K   

is said to be an admissible n-tuple of consumer demands if all ci’s are nonnegative. We 

want each process to produce an output that is sufficient to meet both consumer demand 

and the input requirements of n industries. For our simple linear economy, this is the law of 

supply and demand: output produced must be used in production or in consumption. Let xj 

denote the amount of output produced by process j. If process j produces xj units of output, 

it will need aijxj units of good i. Adding these terms up over all the industries gives the 

demand for good i: ai1x1+ ai2x2+…+ ainxn+ci. The law of supply and demand then requires 

ininiii cxaxaxax ++++= K2211 .                               (2.2) 

It is convenient to rearrange this equation to say that consumer demand must equal gross 

output less the amount of the good needed as an input for the production processes. For 

good 1, this says 

( ) inn cxaxaxa =−−−− 12121111 K .                            (2.3) 

The analogous equation for good i is 

( ) .1 11,11,11 ininiiiiiiiiii cxaxaxaxaxa =−−−−−−−−
++−−

KK            (2.4) 

 

This leads to the following system of n equations in n unknowns, which summarizes the 

equilibrium output levels for the entire n -industry economy: 

( ) ,1 11212111 cxaxaxa nn =−−−− K  

                             ( ) ,1 22222121 cxaxaxa nn =−−−+− K                              (2.5) 

… 

( ) nnnnnn cxaxaxa =−−−−− 12211 K . 

This linear system is called an open Leontief system. It is said to be open because 

the demand nccc ,,, 21 K  is exogenously given, while the supply of goods is endogenously 

determined, that is, the demand is determined by the equations under study. In this system 

of equations, the ija ’s and the ic ’s are given and we must solve for the ix ’s, the gross 

outputs of the industries. 

In matrix notation, the system of equations (2.5) becomes 



 

 

 

CAXX += ,                                               (2.6) 

which is more conveniently written as 

( ) .CXAI =−                                                (2.7) 

The matrix A of intermediate factor demands is sometimes called the technology 

matrix. Thus, it is convenient to study solutions to (2.7) by working with the inverse: 

( ) .1
CAIX

−
−=                                               (2.8) 

Notice that in addition to requiring that AI −  be invertible, it is also required that 

the solution to (2.7) be nonnegative whenever C is nonnegative. This corresponds to the 

requirement that any solution to our economic system produces nonnegative amounts of 

each commodity. For this happen, all entries of the matrix ( ) 1−
− AI  must be nonnegative. 

Furthermore, the study of this system is complicated by the fact that all economic data in 

the model are contained in the matrix A. It is not enough simply to assume that AI −  has a 

nonnegative inverse. We must find assumptions on A which will imply the desired behavior 

of AI − . 

Since the factors of production have different natural units, it is convenient to 

express them all in monetary terms, say in millions of dollars, in an input-output analysis. 

In this case, the ( )ji, th entry ija of technology matrix A indicates how many million dollars 

of good i are needed to produce 1 million dollars of good j. The sum of the entries in each 

column of A gives the total cost of producing 1 million dollars of the product that column 

represents. 

Since we expect each industry to make a positive accounting profit, the sum of the 

entries in each column should be less than 1. 

 

Theorem 2.1 Let A be a nn × matrix with the properties that each entry is nonnegative and 

the sum of the entries in each column is less than 1. Then, ( ) 1−
− AI exists and contains only 

nonnegative entries [3, 4]. 

 

Proof We conclude this section by proving Theorem 2.1. Let A be a technology matrix that 

satisfies the hypotheses of Theorem 2.1: nonnegative entries and each column sums less  

 



 

 

 

than 1. Then, -A has all its entries and its each column sums between 0 and -1 and AI −  

satisfies the following three properties: 

(a) each off-diagonal entry is less than or equal to zero, 

(b)  each diagonal entry is positive, and 

(c) the sum of the entries in each column is positive. 

Matrices which satisfy these three conditions are a special case of the class of dominant 

diagonal matrices. General definition of a dominant diagonal matrix requires that in each 

column the absolute value of the diagonal entry is at least as large as the sum of the 

absolute values of the other entries in that column. To prove Theorem 2.1, we need only 

prove the following result. 

 

Theorem 2.2 Let B be square matrix which satisfies conditions a,b, and c above. Then, all 

entries of 1−B  are nonnegative. 

 

Proof To keep better track of the signs and sizes of the entries of the matrix B, we write it 

as 





















−−

−−

−−

=

nnnn

n

n

bbb

bbb

bbb

B

K

MOMM

K

K

21

22221

11211

,                                     (2.9) 

where each ijb 0≥  and  0 jj

jh

hj bb <≤∑
≠

 for all j. 

Let C be a vector with all positive entries and consider the system CBX = . To solve the 

system, we perform Gaussian elimination on the augmented matrix [B | C]. Add 111 / bb j  

times row 1 to row j for all 1>j . The result is the new augmented matrix  























+−−−

+−−−

−−

1

11

1
1

11

1
12

11

1
2

1

11

21
21

11

21
212

11

21
22

111211

|0

|

|0

|

c
b

b
cb

b

b
bb

b

b
b

c
b

b
cb

b

b
bb

b

b
b

cbbb

n

nn

n

nn

n

n

nn

n

K

MMOMM

K

K

              (2.10) 

 

 



 

 

 














≡ __

111

|0

|*

cB

cb
.                                           (2.11) 

 The )1()1( −×− nn matrix 
−

B is still dominant diagonal, since its off-diagonal entries 

are still nonpositive and the sum of the entries in its ( )stj 1−  column is  

11

121
1

,1,1
1

11

1
1

11

1

b

bb
bbbb

b

b
bb

b

b
b n

j

jh

hjjj

jh

j

h

hjj

j

jj

++
−









−=








−−+








− ∑∑

≠≠

K

 

                                ∑
≠

−−>
jh

jhjjj bbb
,1

1  

                                                                         0> . 

The new right hand side 
−

c  has all entries positive. Continue applying Gaussian elimination; 

at each stage, the resulting submatrix still satisfies a,b, and c. We conclude that the row 

echelon form of [B | C] has sign pattern 























++

+−+

+−−+

+−−−+

|0000

|

|00

|0

|

MMOMMM

L

L

L

                                             (2.12) 

Back substitution from such a matrix yields a positive solution X to the 

system CBX = . If the nonzero right-hand side C had some zero entries and if A had some 

zero off-diagonal terms, the same argument yields a nonnegative solution of CBX = . The 

entries of 1−B  are all nonnegative numbers. 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 3 

 

 

THE GENERALIZATION OF LEONTIEF MODEL IN CASE N=3 

 

 

  

Now, we are coming the basic matter of our thesis. Until now, we have studied on 

the sum of the entries in each column is less than 1. From now on, we will study on a 

different situation that is some of the sum of the entries in each column is not less than 1. In 

other words, some industries will not be able to make profit. On the contrary, they will lose. 

We will try to determine that general economy may be profitable in spite of heavy losses of 

some industries. We will examine that in basic way in 33×  matrix.  

 There is an economy which is constituted of 3 industries. Two of those industries 

are making profit and the other is losing. We will examine whether the profit of the 

industry 1 is covering the loss of the industry 3. If we are able to demonstrate that covering, 

we will prove that the economy which is constituted of 3 industries a profitable one. 

 

Definition 3.1 Matrix A is a 33×  matrix with the properties that each entry is nonnegative 

and sum of the entries in each column is less than1 except 3rd column. The sum of the 

entries in 3rd column may be greater than or equal to 1 or less than or equal to1. 

We can write the matrix A as 

















333231

232221

131211

aaa

aaa

aaa

.                                         (3.1) 

 

 



 

 

 

 

Then, -A has all its entries and its column sums is less than 0 and AI −  satisfies the 

following properties: 

a) each off-diagonal entry is less than or equal to zero, 

b) each diagonal entry is positive , 

c) the sum of the entries in each column, except 3rd column is positive. The sum of the 

entries in 3rd column may be greater than or equal to 0 or less than or equal to 0. 

We can write the matrix AI −  as 

















−−−

−−−

−−−

333231

232221

131211

1

1

1

aaa

aaa

aaa

.                                        (3.2) 

Let's rearrange the matrix AI −  as the matrix 

















−−

−−

−−

=

333231

232221

131211

bbb

bbb

bbb

B .                                           (3.3) 

where each  0≥ijb  for 3,2,1, =ji  

 

Definition 3.2 The matrix B has the following properties: 

a) each off-diagonal entry is less than or equal to zero, 

b) each diagonal entry is positive , 

c) the sum of the entries in each column except 3rd column is positive. The sum of 

the entries in 3rd column may be greater than or equal to 0 or less than or equal 

to 0. It can be also expressed in the following way  

,03121111 >−−= bbbd  

,03212222 >−−= bbbd  

                                                     ,2313333 bbbd −−=  

d) .0
31

1311
>

−

dd

bb
 

 

 



 

 

 

Theorem 3.1 Let B be a 33×  matrix which satisfies conditions a,b,c, and d above. Then, 

all entries of 1−B  are nonnegative. 

 

Proof To solve this system, we perform Gaussian elimination on the augmented matrix [B | 

C]. We will apply that method until the under parts of the diagonal are 0. 

























+−−−

+−−−

−−

→

1

11

31
313

11

31
3312

11

31
32

1

11

21
213

11

21
2312

11

21
22

1131211

|0

|0

|

c
b

b
cb

b

b
bb

b

b
b

c
b

b
cb

b

b
bb

b

b
b

cbbb

                   (3.4) 





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
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




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















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−

+
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−

+
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|

1

11

21
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12
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11

31
32

1

11

31
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11

21
23

12

11
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12

11

31
32

13

11

31
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1

11
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11

21
2312

11

21
22

1131211

c
b

b
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b
b

b
b
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b
cb

b

b
bb

b

b
b

cbbb

      (3.5) 

 

If we are able to show that the following expression is greater than 0, than we will show 

that all of the entries of  1−B  are nonnegative. 

)( 13

11

21
23

12

11

21
22

12

11

31
32

13

11

31
33 b

b

b
b

b
b

b
b

b
b

b
b

b
b

b
b −−

−

+

+− .                              (3.6) 

We arrange that expression in another way in order to show that it is greater than 0. 

For instance: 

.0)(

13

11

31
3312

11

31
32

13

11

21
2312

11

21
22

1
12

11

21
22 >

−+
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Here, 1
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b

b
b  is positive. To show that the expression above is greater than 0, it will 

be enough to prove the following expression: 
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As we we will use some determinant rules in our following processes, we write that 

rule: 

Lemma   Let's consider such a 22 × matrix: .




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

db
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 If 0, >da and ba >  and cd > , we 

reach that the determinant of that matrix is greater than 0. 
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obtain the determinant (3.8) that is positive (from lemma). 
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Here, we clearly determine that 312111 bbb −−>  and  ,123222 bbb −>−  therefore (from 

lemma) we obtain 
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By the property of the determinant we get, 
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Finally, we proved that 
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therefore, we showed that all of the entries of 1−B  are nonnegative. 

 We conclude that the row echelon form of [B | C] has sign pattern 
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Back substitution from such a matrix yields a positive solution X to the system BX=C.  

 We examined the equation CBX
1−

=  and obtained that the components of X are 

positive and the components of C are already greater than or equal to zero. We want to 

show that the entries of 1−B  are all nonnegative numbers. For simplicity, we write matrix 

1−B  another form that is 
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The CBX
1−

=  has the sign pattern: 
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Indeed, for example, if the term in the first row and the second column is negative ( )0<b  

in 1−B , then taking 031 == cc  and 02 >c   large enough, we can make the product of the  



 

 

 

first row of 1−B
 and C, the result is negative, which is impossible. Therefore, we showed 

that the entries of 1−B  are all nonnegative numbers. 

 In conclusion, we showed that first industry's profit covered third industry's damage 

and the economy is profitable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 4 

 

 

THE MAIN THEOREMS ( n  IS AN ARBITRARY) 

 

 

 

In this thesis, we want to generalize this subject over n-industries. Except for nth 

industry, all the other industries make profit; however, we do not have any exact 

information about nth industry. If it makes profit, we have shown that process above. If it 

does not make profit, we will examine that. 

 

Definition 4.1 The matrix B is a nn × matrix with the following properties: 
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where 0≥ijb  for nji ,,2,1, K=  and let ∑
≠

−=
kh

hkkkk bbd  for nk ,,2,1 K= . Then, 

a) each off-diagonal entry is less than or equal to zero, 

b) each diagonal entry is positive, 

c) the sum of the entries in each column is positive except nth column. There is no 

exact information on the sum of the entries in the nth column. We can write this 

such a way that 

,0,,0,0 121 >>>
−nddd K  

d) At least one of the following determinants are positive, 
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Theorem 4.1 Let B a square matrix which satisfies conditions a, b, c and d above. Then, all 

entries of 1−B  are nonnegative. 

 

Proof Let us consider the case when the first two determinants in condition d are positive 

and for simplicity consider the case 1=k (we replace the first industry instead of k-th 

industry). Let C be a vector with all positive entries and consider the system BX=C. In 

order to solve the system, we apply Gaussian elimination on the augmented matrix   

[B | C]. 
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The off-diagonal entries of 
_

B are still negative, all diagonal entries are positive, and the 

sum of the entries in its ( )stj 1−  column is 
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Thus we obtain that jj dd ≥
' , for all nj ,,2,1 K= . 

Since 
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For the matrix [ 
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| cB ], we apply the same procedure: 
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As in the case of B , the sum ''
kd  of column entries in B will be greater than or equal 

to corresponding sum of the entries in B , and if we apply (4.5) for the last column of B  we 

obtain 
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Let us consider the last entry of the matrix B : 
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If we continue this process, we conclude that the row echelon form of [B | C] has the sign 

pattern 
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where kB  is the algebraic cofactor of k-th entry in the n-th column of B. 

Back substitution from such a matrix yields a positive solution X to the system BX=C. If we 

replace C by ( )T

ke 0,,0,1,0,,0,0 KK= , (k-th coordinate is 1), we obtain that all entries in 

the k-th column of 1−B  are all nonnegative numbers. Since the columns of 1−B  are the 

solution vectors of ieBX =  , for ni ,,2,1 K= , the entries of 1−B  are all nonnegative 

numbers. 

Thus, we obtain that 22 × determinants in condition d are positive, then ( ) 1−
− AI  

exists and contains only nonnegative entries. Now, we assume that 22 ×  determinant is 

0≤ (for all 1,,2,1 −= nk K ) and consider the case when 33×  determinants in condition d 

are positive (for some k and m). Let us take basically 2,1 == mk . If we repeat exactly the 

same procedure, we might get 0'
≤nd  but get  0''

>nd  exactly. If we look at the above 

processions, we can easily see that result. Since each elimination procedure just may 

increase the sum of entries in the last column, we conclude that again 0>d  and 1−B  which 

exists and contains only nonnegative entries. Similarly, if  33×  determinants are not 

positive, then we continue this procedure with the same logic and so on. Thus, we conclude 

that if matrix B satisfies the condition d then 1−B  exists and contains just nonnegative 

entries. This completes the proof of the Theorem 4.1. 



 

 

 

Economically, the condition 
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can be explained by the way that, the  loss of the industry n can be (say ''conditionally'') 

covered by the industry k. 

Similarly, the condition 
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for some k and m, that is nmk << , means that the loss of industry n can be covered by the 

industries k and m. It is clear that (4.15) is a weaker condition than (4.14), it means that if 

the loss of one industry can be covered by another industry, then the loss can be covered by 

two industries as well(!). The next theorem will be suitable for generalizing our study. 

 

Theorem 4.2 Let the matrix B satisfies the following properties: 

a) each off-diagonal entry is less than or equal to zero, 

b) each diagonal entry is positive, 

c) ,0,,0,0 121 >>>
−nddd K  

d)   
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Then, 1−B  exists and contains only nonnegative entries. 

 

In general, if the matrix B satisfies the condition d of the Theorem 4.2, then we define 

that economically the loss of the industry n can be covered by the industries 1,2,…,n-1. 

Now, let us suppose that the number of industries with loss is more than one. For  

simplicity, let first s industries have a positive surplus, but nthss ,,2,1 K++  industries 

have no profit (more exactly the revenue is less than or equal to the cost). Suppose that the  



 

 

 

industries nss ,,2,1 K++  are ordered so that the  loss of industry 1+s  can be covered by 

the industries s,,2,1 K then the  loss of the industry 2+s  can be covered by the industries 

1,,,2,1 +ssK , and so on and the loss of the n-th industry can be covered by the industries 

.1,,2,1 −nK  

 

Theorem 4.3 Let the matrix B satisfies the following properties: 

a) each off-diagonal entry is less than or equal to zero, 

b) each diagonal entry is positive, 

c) the sum of each column 0>kd  for sk ,,2,1 K= , and 0≤kd  for  

:,,2,1 nssk K++=  

      0,,0,0 21 >>> sddd K , .0,,0,0 21 ≤≤≤
++ nss ddd K  

d) the losses of the industries nss ,,2,1 K++  can be covered by the previous 

industries. 

Then, 1−B  exists and contains only nonnegative entries. 

 

We just need to repeat the proof of Theorem 4.1 in order to make the positive of the 

sum of entries in the ( )sts 1+ column (we apply n replaced by ( )1+s  on the proof of 

Theorem 4.1). Then we apply the same procedure to make the sum of entries positive in the 

( )nds 2+  column and so on. That continues to the n-th industry. 

Thus, in spite of heavy losses of some industries or economies, in general, may be 

profitable. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

CHAPTER 5 

 

CONCLUSIONS 

 

 

 

We showed that how an economy can  be considered profitable even if one or more 

than one industries are expected to make a serious loss. Leontief model that discusses on 

stable economies is not sufficient in that cases. We showed that how Leontief model can be 

applied to cases in which some industries make loss, in order that economy to be 

considered profitable in spite of some of its industries’ loss. 

 

The next problems have been considered: 

 

1) We generalized the Leontief Model in case of three industry fields and have 

taken into account how one economy which is consistituted of three 

industries can be seen as a profitable one. 

2) The case of an arbitrary n analysied. We made a detailed analysis for the 

case when one of the industry fields may has losses. 

3) We considered the case when few industry fields may have losses. 

4) We established the relationship between the profitability of the economy (in 

general) and (mathematical) solvability of the problem. 

 

 

In the future, it would be possible to consider the different generalizations of other 
linear models.    
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