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ABSTRACT 
 
 
 

 First , I have included and explained some number theoretical facts in the 
beginning.Then classical cryptography has been covered with examples in details.After 
that I exposed the Public Cryptography with examples.At last maple algorithms have 
been written for cryptography.  
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 Başlangıçta, sayılar teorisini ana hatlarıyla açıkladım.  Sonra,  klasik şifreleme 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 
 

Cryptography comes from the Greek words “Kryptos” which means hidden and 

“Graphen” which means to write. Classical cryptosystems,substitution and transposition 

ciphers, were used until modern cryptography were developed.  The earliest known use 

of cryptography is Egyptian Hieroglyphics.  Later,  Julius Caesar used a 

monoalphabetic substitution cipher.  Frequency analysis techniques for breaking 

monoalphabetic substitution ciphers invented around 1000 CE. In 1465, Alberti found 

polyalphabetic ciphers.  Crytography is performed by hand writing until the early 

1900s.  It became a mathematical science in the middle of the 19th century.  The 

cryptographic science was known by Russians, Europians and Arabics.  They used 

cryptography in diplomatic and military communications.  In the beginnig of 20th 

century US, Germans and Japans made use of simple cryptosystems in military and 

diplomacy.  By the invention of telegraph and radio, cryptology was developed.  In the 

World War I, the Red Army  of Russia organized its first cryptographic service.  56 new 

ciphers were created by the Red Army in 1921-1922.   Some ciphering machines were 

developed and started to be used in 1930s. Germans used Enigma machine.  Japans used 

Krieg, Fuller and Burg,Purple Code machines in World War II. In 1939-1940, Enigma 

was broken by American and British cryptographers.  Morover, the Purple Code  was 

broken by Americans and Russians cryptographers.  In 20th century, contemporary 

cryptology has displayed a considerable acceleration by the invention of computers. 

DES, Data Encryption Standart, was created by IBM in the middle of 1970s.  Whitfield  
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Diffie and Martin Hellman  developed Diffie-Hellman key exchange in 1976.  It is 

public key algorithm and depends on discrete logarithm in a finite field.  Later, RSA 

was discovered by Ron Rivest, Adi Shamir and Leonard Adleman in 1977.  RSA is 

based on factoring extremely large numbers.  In 1985, T. El Gamal introduced El Gamal 

cryptosystem.  It depends on discrete logarithm.  In the middle of 1980s, Koblitz and 

Miller invented Elliptic Curve Cryptography(ECC) which is based on discrete logarithm 

on abelian groups. 

To begin with, I exposed number theory and algebra ,that is needed for ancient 

and modern cryptography, with examples. Furthermore, second and third chapter 

provide a general bacground. Then, in chapter 4, I have included and explained classical 

cryptosytems.  Extensive exercises are included for shift, affine and vigénere ciphers in 

detail.  Asymmetric cryptosystems, RSA, Diffie-Hellman key Exchange, El Gamal, 

Massey Omura cryptosystem for message transmission and Digital Signature are 

covered with examples in chapter 5.  Finally,  I wrote maple algorithms for public key 

cryptosystems. 

In the future, I wish to work on algebraic curves, elliptic and hyper elliptic curves  

which challenge to RSA. 
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CHAPTER 2 

 
 

NUMBER THEORY 
 

 

 

2.1   COMPLEXITY OF COMPUTATION 

 Efficiency of algorithms can be measured in different ways.  For example, one 

can consider readibility of an algorithm, or its time and space consumption.  However, 

the running time of an algorithm is the most important issue in cryptology.  As we 

know, enciphering and deciphering algorithms are based on four basic arithmetic 

operations namely addition, subtraction, multiplication, and division.  So, it is 

reasonable to measure the running time of algorithms in terms of arithmetic operations.  

Since numbers in computers are represented in binary system, that is, in bits, time 

complexity of each arithmetic operation is defined as a function of binary digits(bits) of 

numbers to be, for example multiplied or added.  To do this we must introduce the 

concept of bit operation.  Addition of two bits is called a bit operation. 

 While we are adding two binary numbers, first we look top and bottom binary 

digits and there is a carry or not above the top binary digit.  If both top and bottom 

binary digits are zero without carry, then put down zero and move on.  If both bottom 

and top binary digits are zero with a carry, then put down 1, move on.  If one of binary 

digits is 1, the other one is 0 without a carry then put down 1, move on.  If one of binary 

digits is 1, the other one is 0 with a carry, then put down 0 and put the carry next 

column and move on.  If both binary digits are 1 with a carry, then put down 1 and put 

the carry next column and move on.  If both binary digits are 1 without a carry, then put 

down 0 and put the carry next column and move on. 
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 According to the above definition of bit operation, addition of two integers a and 

b requires at most max([log2a]+1, [log2b]+1) bit operations, while multiplication of the 

integers requires  ([log2a]+1)([log2b]+1) bit operations.  

 In general, complexity of computation is defined in terms of big-O notation.  If 

f(n) and g(n) are two positive functions and if     c
ng
nfiml

n
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∞→ )(

)(  where c is constant 

and   different from zero, then we write   f = O(g)   or f is O(g).  For example, let 

1)( 2 ++= nnnf  .  Then )( 2nOf =       since 11lim 2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
∞→ n

nn
n

   .                    

                                             

2.2   DIVISIBILITY and EUCLIDEAN ALGORITHM 

2.2.1   Divisors and Divisibility:  

An integer n divides integer m if and only if knm =   where   0≠n  and k is an 

integer n is said to be a divisior of m. n divides m or m is divisible by n is denoted by 

n⏐m. If n does not divide m, then it is denoted by  n ∤ m .  

By maple 

 divisors(9); 

                      {1,3,9} 

 

Properties of Divisibility: 

n, m, t, and s are any integers  

1) n⏐m implies n⏐-m, -n⏐m, and -n⏐-m. 

2) n⏐m implies n⏐mt . 

3) n⏐m and m⏐s imply n⏐s. 

4) m⏐n and n⏐m imply m = ± n 

5) n⏐m and n⏐s imply n⏐m ± s  

6) n⏐m and n⏐s imply n⏐mx + sy for all x, y ∈ Z  

7) n⏐m implies tn⏐tm for all t ∈ Z  

8) n⏐m and t⏐n imply t⏐m 

9) For all n > 0 and m > 0 , n⏐m implies mn ≤ .  
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A positive integer p greater than 1 is prime if the only divisors of p are ±1 and 

p± . To illustrate, 2, 3, 5, 7, 11, 13, 17, ……are prime numbers. 

 

By maple 

 isprime(p);                         

 

A positive integer greater than 1 is composite number if and only if it is not prime. 

Let p be a prime number and k, m be positive integers.  pk exactly divides m, denoted by 

pk∥m, such that  

i) pk⏐m 

ii) pk+1 ∤m 

Let k, l, m, n be nonnegative integers and p be prime. 

i) pk∥m, and pl ∥n, imply pk+l∥mn 

ii) pk∥m implies pkα∥mα 

iii) Let lk ≠ , pk∥m and pl∥n imply pmin(k,l) ∥m + n  

2.2.2   Unique Factorization : 

Let n be a positive integer grater than 1.  n can be factorized into prime powers 

such that  n =  l
lppp ααα .......21

21
   where lppp ,........,, 21  are distinct primes.   

 

By maple 

 ifactor(n); 

 

The number of positive divisors of n can be computed by 

( )( ) ( )1.......11 21 +++ lααα .  To illustrate, factorization of 360 is equal to 23325.  

Number of positive divisors of 360 is ( )( )( ) 24111213 =+++ . 

2.2.3   The Greatest Common Divisor:   

Let a and b be integers.  There exists a positive integer d such that d⏐a and d⏐b.  

d is said to be common divisor.  If d is the largest divisor common to a and b then d is 

called the greatest common divisor of a and b.  We write d = gcd(a, b).  For example, 

gcd(15,60) = 15, gcd(21,35) = 7 and gcd(27,72,36) = 9. 
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By maple 

 igcd(a, b); 

 

a and b are called coprime or relatively prime integers if gcd(a,b) = 1. 

Let two integers a and b are given.  Let  d be  the smallest positive integer, such 

that a⏐d and b⏐d, then d is called the least common multiple of a and b. We denoted by 

lcm(a, b).  To illustrate, lcm(20,30) = 60 and lcm(33,18) = 198. 

 

By maple 

 ilcm(a, b); 

 

Theorem2.2.1(Koblitz, Neal.):  Let a and b be positive integers. 

    lcm(a, b) = (ab) / gcd(a, b) 

Theorem2.2.2(Koblitz, Neal.):  Time(gcd(a,b)) = O((log2a)3). 

2.2.4   The Euclidean Algorithm: 

Division Algorithm:  

 If a is an integer and b is a positive integer, there exists unique pair of integers q 

and r such that  

   a = bq + r  with 0 ≤ r < b 

If b⏐a then r = 0.  We use Euclidean algorithm in order  to find the greatest common 

divisor of two integers by applying division algorithm. 

Procedure of Euclidean Algorithm:   

We want to find gcd(a, b).  Let a, b be positive integers that b does not divide a and a > 

b.  Let a = r0 by b = r1.  Quotient is q1 and the remainder is r2.  Then we find 

   r0 = r1q1 + r2  where 0 ≤ r2 <r1 

If we repeat the division algorithm, we obtain   

   r1 = r2q2 + r3   where 0 ≤ r3 <r2 

   r2 = r3q3 + r4   where 0 ≤ r4 <r3 

     …………… 

   rk-3 = rk-2qk-2 + rk-1  where 0 ≤ rk-1 <rk-2 

   rk-2 = rk-1qk-1 + rk  where 0 ≤ rk <rk-1 

   rk-1 = rkqk  
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Then, the last nonzero remainder rk is gcd(a, b). 

Example1:  Find the greatest common divisor of 2125 and 63. 

Solution: 

2125 = 63.33 + 46 

         63 = 46.1 + 17 

           46 = 17.2 + 12 

          17 = 12.1 + 5 

           12 = 5.2 + 2 

               5 = 2.2 + 1 

               2 = 1.2 

Hence, gcd(2125,63) = 1. 

Theorem2.2.3(Koblitz, Neal.): Time(finding gcd(a, b) using Euclidean algorithm) = 

O((log2a)3). 

Theorem2.2.4(Rosen, Kenneth H.): If gcd(a, b) = d then there exists integers u and v 

such that d = au + bv. 

Theorem2.2.5(Koblitz, Neal.) :  Time(finding d as linear combination au + bv) = 

O((log2a)3). 

By maple 

 igcdex(a, b, ‘u’, ‘v’); 

                                     1 

 u; v; 

 

Example 2: 

Express 1 as a linear combination of 2125 and 63. 

Solution: 

1 = 5 – 2.2 = 5 – 2(12 – 5.2) 

   = 5.5 – 2.12 = 5(17 – 12.1) – 2.12 

         = 5.17 – 7.12 = 5.17 – 7(46 – 17.2) 

       = 19.17 – 7.46 = 19(63 – 46.1) – 7.46 

        = 19.63 – 26.46 = 19.63 – 26(2125 – 63.33) 

         = 877.63 – 26.2125  
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2.2.5 Euler’s  Teorem 

Definition2.2.1(Rosen, Kenneth H.): Let n be an element of Z+.  The Euler phi-function 

ϕ(n)  denotes the number of positive integers in the interval (0,n) which are coprime to 

n.  In order 

to find the value of ϕ(n), we factorize n into prime powers such that  n =  
l

lppp ααα .......21
21

   . 

Theorem2.2.6(Koblitz, Neal.):  n ∈ Z+ 
    

                                                           
  

                      ( ) ∏
=

−=
l

i ip
nn

1

)11(ϕ                                               

 

ϕ(n) = ϕ( l
lppp ααα .......21

21
 ) = ( ) ( ) ( )1........11 1

2
1

21
1

1
21 −−− −−−

ll pppppp lααα  . 

Special case: 

i) ϕ(1) = 1 

ii) ϕ(p) = p-1   if  p is prime 

iii) ϕ(pα) = ( )1)11( 1 −=− − pp
p

p αα   if  p is prime and α ≥ 1. 

iv) ϕ(n) is multiplicative arithmetic function.  If gcd(a,b) = 1 then ϕ(ab) = 

ϕ(a)ϕ(b). 

v) If gcd = d then  ϕ(ab) = ϕ(a)ϕ(b)(d / ϕ(d)). 

 

By maple 

 phi(n); 

 

Theoem2.2.7(Rosen, Kenneth H.): ( )∑ =
n

d
ndϕ   where n is positive integer .        

For example, ϕ(1) + ϕ(2) +  ϕ (3) + ϕ(4) + ϕ(6) + ϕ(12) = 12. 

Theorem2.2.8(Koblitz, Neal.): Time(ϕ(n)) = O((log2n)3). 

In particular, if n = ab then Time(computing ϕ(n) knowing a and b) = O(log2n). 

Moreover, Time(computing a and b knowing n and ϕ(n)) = O((log2n)3). 

Example3:Let’s find the value of  ϕ(n)  where 1 ≤ n ≤ 10. 
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ϕ(1) = 1     ϕ(2) = 2 – 1 = 1  

ϕ(3) = 3 – 1 = 2    ϕ(4) = ϕ(22) = 22-1(2 - 1) = 2 

ϕ(5) = 5 – 1 =  4    ϕ(6) = ϕ(2.3) = (2 - 1)(3 - 1) = 2 

ϕ(7) = (7 - 1) = 6    ϕ(8) = ϕ(23) = 23-1(2 - 1) = 4   

ϕ(9) = ϕ(32) = 32-1(3-1) = 6  ϕ(10) = ϕ(2.5) = (2 - 1)(5 - 1) = 4 

 
n ϕ(n) N ϕ(n) n ϕ(n) 

11 10 41 40 71 70 

12   4 42 12 72 24 

13 12 43 42 73 72 

14   6 44 20 74 36 

15   8 45 24 75 40 

16   8 46 22 76 36 

17 16 47 46 77 60 

18   6 48 16 78 24 

19 18 49 42 79 78 

20   8 50 20 80 32 

21 12 51 32 81 54 

22 10 52 24 82 40 

23 22 53 52 83 82 

24   8 54 18 84 24 

25 20 55 40 85 64 

26 12 56 24 86 42 

27 18 57 36 87 56 

28 12 58 28 88 40 

29 28 59 58 89 88 

30   8 60 16 90 24 

31 30 61 60 91 72 

32 16 62 30 92 44 

33 20 63 36 93 60 

34 16 64 32 94 46 

35 24 65 48 95 72 

36 12 66 20 96 32 

37 36 67 66 97 96 

38 18 68 32 98 42 

39 24 69 44 99 60 

40 16 70 24 100 40 

 

Some values of Euler’s Phi-Function table 11 ≤ n ≤ 100 
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2.3   CONGRUENCES 

Definition2.3.1: For all a, b ∈Z and n∈ Z+, if n⏐a - b then we say that a is congruent to 

b modulo n, and we write 

a ≡ b (mod n) 

Otherwise, we say that a and b are incongruent modulo n, and we write 

a ≢b (mod n) 

By maple 

 a  mod  n; 

 

Properties of Congruences:  

1) a ≡ a mod n (Reflexive property) 

2) a ≡ b mod n implies b ≡ a (mod n) (Symmetric property) 

3) If  a ≡ b mod n and b ≡ c mod n then a ≡ c mod n (Transitive Property) 

4) If a ≡ a′ mod n and b ≡ b′ mod n then a + b ≡ a′ + b′ mod n,  

      a-b ≡ a′-b′ mod n and  ab ≡ a′b′ mod n  

5) For a ≡ b mod n, ak ≡ bk mod n   where k > 0. 

6) ac ≡ bc mod n, and (c,n) = d imply a ≡ b mod n/d (Cancellation Law) 

7) a ≡ b mod n, a ≡ b mod m, and gcd(m,n) = 1 imply a ≡ b mod mn. 

8) Let a ≡ b (mod n). If gcd(c,n) = 1 then ac-1 ≡ bc-1 mod n. c-1 is arithmetic inverse 

of c modulo n . 

Theorem2.3.1(Rosen, Kenneth H.): The arithmetic inverse a* exists modulo n   i.e  

a.a* ≡ 1 (mod n) if and only if gcd(a,n) = 1. 

Time(finding a* modulo n) = O((log2n)3). 

Let a be an integer. The set of integers is congruent to a modulo m is called 

congruence classes modulo m. It is denoted by â. To rephrase;  

   â = {x ∈ Z ⏐ x ≡ a mod m}. 

Properties of congruence classes: 

1) â = ĉ if and only if a ≡ c mod m  

2) â ≠ ĉ if and only if â ∩ ĉ = ∅ 

3) For modulo m, number of congruence classes is m. 
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Another definition of congruence classes is that the equivalence classes modulo 

m, denoted by Z/mZ, are called residue or congruence classes modulo m. 

For instance Z/5Z 

{…, -15, -10, -5, 0, 5, 10, 15,….} ∪ {…, -14, -9, -4, 1, 6, 11, 16, …}∪ 

{…, -13, -8, -3, 2, 7, 12, 17, …} ∪ {…, -12, -7, -2, 3, 8, 13, 18, .. } ∪ 

{…., -11, -6, -1, 4, 9, 14, 19, ….} = Z 

In general, Z/mZ becomes a ring under addition and multiplication of residue classes. If 

m is prime integer then Z/mZ becomes a field.  

2.3.1   Linear Congruence 

The basic form of linear congruence is in one variable  ax ≡ b mod m where a∈Z , 

b∈Z, and  m∈Z+ . 

1) ax ≡ b mod m has solutions if gcd(a,m) = d and d│b  

i) if d = 1, ax ≡ b mod m has only one incongruent solution. 

ii) if d > 1 then solve )mod()()(
d
m

d
bx

d
a

≡ . 

Let x0 be the solution of  )mod()()(
d
m

d
bx

d
a

≡ . There are d incongruent solutions of  ax 

≡ b mod m such that 

x = x0 + k (m/d)  0 ≤ k ≤ d-1    

       2) ax ≡ b mod m has exactly one solution if m is prime and   a≢ 0 (mod m) 

Theorem2.3.2(Koblitz, Neal.): Time(finding solution of  ax ≡ b mod m) = O((log2m)3). 

Example1:  Let’s find all of the solutions of linear congruences. 

A) 8x  ≡ 1 mod 11 

First, we find gcd(8, 11)  by using Euclidean algorithm such that 

11 = 8.1 + 3 

              8 = 3.2 + 2 

 3 = 2.1 + 1  

Hence, gcd(8, 11) = 1. Next, we compute inverse of 8 by applying extended 

euclidean algorithm such that 

1 = 3 – 2.1 = 3 – (8 – 3.2).1 = 3.3 – 8.1 

                = (11 – 8.1)3 – 8.1 = 11.3 – 8.4 

Therefore,   8-1 = -4 ≡ 7 mod 11. 



 12

Then , we multiply both sides of this congruence by the inverse of 8, which is 7.  

7.8 x ≡ 7.1 mod 11 

                                                           x ≡ 7 mod 11. 

As you see, there is only one solution since gcd(8, 11) = 1 

B) 18x ≡ 81 mod 99 

First, we find gcd(18, 99)  by using Euclidean algorithm such that 

99 = 18.5 + 9 

                                                         18 = 9.2    

Hence, gcd(18, 99) = 9 . It implies that  there exists exactly nine incongruent 

solutions as 9⏐81. 

)
9
99mod()

9
81()

9
18( ≡x  

We consider   2x ≡ 9 mod 11   to find  a particular solution.  By Euclidean algorithm  

11 = 2.5 + 1, 

Therefore,  1 = 11 – 2.5. Hence, inverse of 2 is  -5 ≡ 6 mod 11. 

Then , we multiply both sides of this congruence by the inverse of 2, which is 6. 

   6.2 x ≡ 6.9 mod 11 

          x ≡ 9 mod 11. 

Therefore, solutions of  18x ≡ 81 mod 99  is   9 + (99/9) k  where  0 ≤ k ≤ 8 such that  

x1 = 9 + 11.0 = 9,    x2 = 9 + 11.1 = 20,  x3 = 9 + 11.2 = 31,   

x4 = 9 + 11.3 = 42, x5 = 9 + 11.4 = 53,  x6 = 9 + 11.5 = 64,   

x7 = 9 + 11.6 = 75,  x8 = 9 + 11.7 = 86,  x9 = 9 + 11.8 = 97. 

Theorem2.3.3: (Fermat’s Little Theorem(Koblitz, Neal.)) If p is prime and  p∤a then 

ap-1 ≡1 (mod p).   

Theorem2.3.4: (Euler’s Theorem(Rosen, Kenneth H.)) gcd (a,n) = 1 implies aϕ(n) ≡ 1 

mod n. where ϕ(n) is the notation of Euler’s phi-function. 

To  illustrate, let a = 3 n = 4. Since gcd(3,4) = 1.  3ϕ(4) = 32 = 9 ≡ 1 mod 4. 

Theorem2.3.5: (Wilson’s Theorem(Rosen, Kenneth H.)) (p-1)! ≡ -1 mod p if p is 

prime 

Corollary: p∤a and n ≡ m mod (p-1) imply an ≡ am  mod p where n > m  
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2.3.2   Chinese Remainder Theorem   

Let M = m1,m2, m3,…,mk  where m1,m2, m3,…,mk are pairwise coprime positive 

integers. If i ≠ j gcd (mi, mj) = 1. Let u1, u2, ……, uk be arbitrary integers .  ∃ an integer a 

such that   

a ≡ u1 (mod m1) 

a ≡ u2(mod m2 ) 

…….. 

a ≡ uk ( mod mk) 

has only one solution modulo M 

Proof: Let’s define M1, M2, M3, M 4, ........., Mk 

M1 = M / m1 then ∃ N1 such that M1N1 ≡ 1 mod m1 

M2 = M / m2 then ∃ N2 such that M2N2 ≡ 1 mod m2 

  ……… 

Mk = M / mk then ∃ Nk such that MkNk ≡ 1 mod mk 

Then, compute    a = u1M1N1 + u2M2N2 + …….. + ukMkNk .  Hence    

a ≡ u1M1N1 ≡ u1 (mod m1) 

a ≡ u2M2N2 ≡ u2 (mod m2) 

…….. 

a ≡ ukMkNk ≡ uk (mod mk) 

 

By maple 

 chrem(u, m); 

 

Example2: 

Let’s solve the system x ≡ 6 mod 11 

    x ≡ 2 mod 6 

    x ≡ 1 mod 7 

we have  M = 11.6.7 = 462, then  we compute  M1 = 462/11 = 42,  M2 = 462/6 = 77,  

M3 = 462/7 = 66.To find N1, we solve 42N1≡1 mod 11 which is equal to 9N1 ≡1 mod11. 
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This gives  N1≡5 mod 11. To determine N2, we solve 77N2 ≡1 mod 6 , or equivalently, 

5N2 ≡1 mod 6. We find N2 ≡ 5 mod 6. Finally we solve 66N3 ≡1 mod 7 so as to find N3. 

This yields N3 ≡ 5 mod 7. Therefore, 

a ≡ 6.42.5 + 2.77.5 + 1.66.5 ≡ 2360 ≡ 50 mod 462 

 

2.4   MODULAR EXPONENTION BY THE REPEATED SQUARE METHOD  

Let b, n and m are positive integers and b < m . We write n in binary digits such 

that  

n = ( nknk-1 …… n1n0 )2   =  n0 + 2n1 +……. + 2k-1nk-1 + 2knk . Next we compute the least                          

nonnegative residues of  k
k

k
k nnnn bbbb )(,)(..,,.........)(, 222 1

1
10 −

−

   modulo m.                                          

Finally, we multiply   k
k

k
k nnnn bbbb )().(..........)( 222 1

1
10 −

−

   to find bn. 

Proposition2.4.1: Time (bn mod m) = O((log2 m)2 log2 n). 

By maple 

 b ^ n  mod  m; 

                       or 

 b &^ n mod m; 

 

Example1:  

Let’s use the repeated squaring  method to find 775 modulo 101 

For  n0 = 1, a = 71 ≡ 7 mod 101 

For  n1 = 1,     72 ≡ 49 mod 101 then a = 7.49 = 343 ≡ 40 mod 101 

For  n2 = 0, a = 40 

For  n3 = 1, 78 ≡ 24 mod 101 then a = 40.24 = 960 ≡ 51 mod 101 

For  n4 = 0, a = 51 

For  n5 = 0, a = 51 

For  n6 = 0, 764 = 74.16 = 7816 ≡ 81 mod 101 then a = 51.81 ≡ 91 mod 101 

 

2.5   SOME APPLICATION TO FACTORING 

Proposition2.5.1: Let  b∈Z  and  m∈Z+. 

bm-1 = (b - 1)(bm-1 + bm-2 + ……… + b2 + b + 1) 

Corollary: Let  b∈Z  and  n, m∈Z+. 
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bnm-1 = (bn - 1)(bn(m-1) + bn(m-2) + ……… + b2n + bn + 1) 

Proposition2.5.2: Let a be prime to n, and b, c∈Z+. 

ab ≡ 1 mod m,  ac ≡ 1 mod m  and  gcd(b, c) = d  imply ad ≡ 1 mod m. 

Proposition2.5.3: Let p be prime and p | bn – 1. 

i) p | bd – 1  where  d | n. 

ii) 1) n | p-1  if  p > 2  and  n is odd  

2) 2n | p-1 

Example1: 

To determine whether  223 – 1 = 8388607 is prime or not, we look a prime not 

exceeding 8388607  = 2896,30…..  Thus, we test  p = 47, 139,…….  We obtain the 

prime factorization of 8388607 = 47.178481. 

Example2: 

To factor 515 – 1, we first look for factors of 5d-1 for d = 1, 3, 5 such that 51 – 1 , 53 – 1 , 

55 – 1 .This gives 22, 11, 31, 71 and we obtain 
71.31.11.2

15
2

15 −  = 315121.  Remaining prime 

factor must be congruent to 1 modulo 30.  We look for primes less than 315121  = 

561,3564.  Thus, we test p = 31, 61, 151, 181,…..  We find that 315121 = 181.1741. 

1741 is  also a prime integer.  Thus, 515-1 = 22.11.31.71.181.1714 is the prime 

factorization. 

Example3: 

To factor  712 – 1 = 13841287200, we first try the factors of  7d – 1 for d = 1, 2, 3, 4, 6 

such that 71 – 1 ,72 – 1 , 73 – 1 , 74 – 1 , and 76 – 1  .  We reach 25, 32, 52, 19, 43. 

43.19.5.3.2
01384128720

225   = 2353.  Then as 2353 is not prime, we look for 2353  = 48,5077.  We 

check p = 13, 37,……  We find that  2353 = 13.181.  13 ≡ 1 mod 12. 

Hence, 712 – 1 = 25.32.52.13.19.43.181. 
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CHAPTER 3 

 

 

FINITE FIELD AND QUADRATIC RESIDUES 
 

 

 

Let’s review some basic concepts from algebra. 

 

3.1   GROUPS 

 A set G under a binary operation, denoted by o, is said to be a group if the 

following rules are satisfied. 

1)  Closure law:   x∈G and y∈G then xoy∈G 

2) Associative law:   x∈G, y∈G, z∈G such that  (xoy)oz = xo(yoz) 

3) Existence of identity element: e is an identity element of the binary operation o 

on G such that xoe = eox   for all  x∈G. Under addition operation, identity 

element is 0.  Under   multiplication operation, identity element is 1.          

4) Existence of inverse element:  For any x in G, there is an inverse of x, denoted 

by x-1, in G such that xοx-1= x-1οx = e. In addition operation, inverse of x is –x.  

In multiplication operation, inverse of x is 1/x. 

Example1: Z={0, ±1, ±2, ±3, …………….}   is a group under addition operation. 

Example2: R, the reals, is a group under addition operation. 

Example3: R is not a group under multiplication operation since 0 does not have 

inverse. 

Example4: C \{0} is a group under multiplication operation. 

Example5: Z3 = {0, 1, 2}   is a group under addition operation. 
+ 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 
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3.1.1   Abelian Groups: 

A group G is called abelian if it satisfies the commutative law such that xoy = yox for 

all x∈G, y∈G.  To illustrate, Z is an abelian group under addition. 

3.1.2   Finite And Infinite Groups: 

A group G is called finite group if it has a finitely many elements. Otherwise, it is said 

to be infinite group.  The number of elements in G is called the order of G, denoted by 

|G|. 

3.1.3   Subgroups: 

Let H be a subset of G which is  a group by itself  under the binary operation of G.  

Then it is called a subgroup of G, denoted by H<G.  For example, R is a subgroup of C. 

Example6: Let’s find all subgroups of Z20 = {0, 1, 2, 3, ………,17, 18, 19} 

Z20=‹1›=‹3›=‹7›=‹9›=‹11›=‹13›=‹17›=‹19› 

 

 

 

                                        ‹2›=‹6›=‹14›=‹18›          ‹5›=‹15› 

 

 

 

                     ‹4›=‹8›=‹12›=‹16›                 ‹10› 

 

 

         ‹0› 

 

3.1.4   Cyclic  Groups: 

Let G be a group. If there is an element a in G such that all element in G is a power of a, 

or ‹a›={an; n∈Z}= G, then G is said to be cyclic group  and a is called a generator of G. 

For example, generator of Z2 is 1. There can be several generators in a cyclic group. For 

example, the generators of Z5 are 1,2,3, and 4 and the generators of Z5 \ {0} are 2 and 3. 

Definition3.1.1: If a cyclic group G has distinct elements such that  

{a, a2 , a3 , ……. an-1 , an = e} 

 then it is called a finite cyclic group. Order of a is n . 
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Lemma: Let G be a finite cyclic group of orden n. Let a be a generator of G. 

  i) order of a | n 

  ii) an = e (identity) 

  iii) order of ak = (order of a) / (gcd (k, order of a)) 

Zn X Zm is a cyclic group if and only if gcd (n,m) = 1. 

Each cyclic group is abelian but not vice versa. 

Number of generators of Zp \ {0}is equal to φ(p-1) where p is prime. 

3.2   RINGS 

Let R be a set with two operations (addition and multiplication) satisfying the following 

axioms: 

1) R is  an abelian group under addition. 

2) Under multiplication  R satisfies 

i. closure law 

ii. associative law 

iii. both left and right distributive law over addition such that 

             x(y + z) = xy + xz (left distributive law) 

  (x + y)z = xz + yz (right distributive law) 

Then, R is called a ring. 

Example1: Z is a ring. 

Example2: R is a ring. 

Example3: C is a ring. 

3.2.1   Commutative Ring: 

A ring R is a commutative ring if the property xy = yx is satisfied for all x∈ R, y∈ R. 

For example, Z, R, C are all commutative rings. 

Definition3.2.1: Let a and b be nonzero elements of a ring R.  If ab = 0 then a and b are 

called  zero divisors. 

Example4: R = Z12 , 3.4 = 0. Hence, 3 and 4 are zero divisors. 

3.2.2 Integral Domain: 

A commutative ring with unity ( multiplicative identity), and without zero divisors is 

called an integral domain. 

Corollary: Zp is an integral domain if p is prime. 

To illustrate, Z7 is an integral domain since 7 is prime. 
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Theorem3.2.1(Fraleigh, John B.): A finite integral domain D is a Field. 

3.3   FIELDS 

A field F is a set with addition and multiplication operations if the following axioms are 

satisfied: 

I. F is an abelian group under addition. 

a) Closure law:  a∈F, b∈F such that  a + b∈F 

b) Associative law: a∈F, b∈F, c∈F  such that (a + b) + c = a + (b + c) 

c) Identity element: a is an element of F such that a + 0 = 0 + a for all a∈F 

d) Inverse element: For all a in F there is an element b of F such that a + b 

= b + a = 0 

e) Commutative law: a, b∈F such that a + b = b + a 

II. Under multiplication the following familiar properties are obeyed over F: 

a) Closure law: a∈F, b∈F such that  ab∈F 

b) Associative law: a∈F, b∈F, c∈F  such that a(bc) = (ab)c 

c) Distributive law 

i. a(b + c) = ab + ac 

ii. (a + b)c = ac + bc 

d) Identity element: There is a multiplicative identity 1 such that a1 = 1a = a 

for all a∈ F\{0}   

e) Commutative law: a, b∈F such that ab = ba 

f) Inverse element: There is an multiplicative inverse, denoted by a-1,  for 

all a∈ F\{0}  such that aa-1 = 1 = a-1a. 

Remark: F\{0}, group of nonzero elements, is an abelian group under multiplication 

operation. 

Example1: The set of complex  numbers is a  field. 

Example2: Z2 is a field. 

      

      

   

 

 

Example3: The set of  rational numbers is a   field. 

+ 0 1 

0 0 1 

1 1 0 

∙ 0 1

0 0 0

1 0 1
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3.3.1   General Properties of Fields: 

I)  

A field F is contained in a field K.  In this case, K is called an extension field of F, 

denoted by F ≤ K and  F is said to be a subfield of K.  An extension field K can be 

regarded as a vector space over the field F.  A vector space V, collection of vectors such 

that  V={α, β, γ, ……….}, have to satisfy the following axioms: 

a) closure under addition: for all α, β∈V such that  α + β∈V . 

b) associative under addition: for all α, β, γ∈V such that (α + β) + γ = α 

+ (β + γ). 

c) additive identity: for all α∈V such that α + 0 = 0 + α = α.  (existence 

of zero vector) 

d) additive inverse: for each α in V there is β in V such that α + β = β + 

α = 0.  (existence of additive inverse) 

e) commutative under addition: for all α, β∈V such that α + β = β + α. 

As stated above, any vector space over F, have to be an abelian group under addition 

operation.  Furthermore; 

f) closure under multiplication: for all c∈F, α∈V such that cα∈V 

g) distributive law: for all c∈F, α, β∈V such that c(α + β) = cα + cβ. 

h) associative under multiplication: for all c, c'∈F and α∈V such that (c 

c')α = c(c'α). 

Every vector space has a basis.  The cardinality of a basis of any vector space is called 

the dimension of the vector space. If it is finite dimensional then there exists { α1, α2, 

α3,……., αf}  a basis i.e { c1α1 + c2α2 + c3α3 +…….+ cfαf  : ci∈F}  = K. 

K is isomorphic to  F×F×F×….×F.  Therefore |K| = |F|f. If K is finite field, K is finite 

dimensional vector space over Fp where p is the characteristic of F. 

II)  

  The ring of polynomials over the field F in the variable x is denoted by F[x].  If 

leading coefficient in x is 1 then the polynomial in F[x] is called monic.  f(x) = a0 + a1x 

+……+ anxn is called irreducible if it can not be divided by a nonconstant polynomial of 

lower degree.  For example, 12 +x  is irreducible over R but 12 +x  is reducible over C.  
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Another example is 22 −x  over Q.  It is irreducible over Q since 2  is not rational 

number.  In general px −2  is irreducible over Q if p is prime. 

Theorem3.3.1(Fraleigh, John B.): F[x] is Unique factorization domain. 

III)  

Let K be an extension field of F.  Also let β be an element of the field K.  Then β 

is called algebraic over F if there exists a polynomial f(x) in F[x] such that f(β) = 0.  

Otherwise, β is called transcendental over F.  

Example4: π is not algebraic over Q since there exists no polynomial f(x) ∈ Q[x] such 

that                                           f(π) = 0.  

Example5: i is algebraic over R since i is a root of 12 +x  ∈ R[x]. 

Example6: Q ≤ Q( 2 )={a + b 2 :a,b∈Q} 

 2  is algebraic over Q as 2  is a root of  22 −x  ∈ Q[x]. 

Theorem3.3.2(Fraleigh, John B.):  The set of all algebraic numbers in C is countable.  

Hence, transcendental numbers are uncountable. 

Let F ≤ K, α be in K and α is algebraic over F.  ∃ a polynomial f(x) = a0 + a1x + …….. + 

anxn such that f(α) = 0 where f∈F[x].  It implies that there is a unique monic irreducible 

polynomial Irr(α,F)(x) such that Irr(α,F)(α) = 0. 

Example7: Q ≤ C 

As i∈C, Irr(i,Q)(x) = 12 +x  

Example8: Q ≤ Q( 2 ) 

As  2  ∈Q( 2 ) , Irr( 2 ,Q)(x) = 22 −x  

Theorem3.3.3(Fraleigh, John B.): Let α be an algebraic element in K over F of degree 

k(k = deg(Irr(α,F)(x)). 

Then F(α) = {a0 + a1α + a2α2 + ……..+ akαk
: ai∈F}⊂ K . 

If α′ is another root of Irr(α,F)(x) i.e Irr(α,F)(α′) = 0, it implies that α′ is algebraic over 

F and deg(Irr(α′,F)(x)) = deg(Irr(α,F)(x)) and it is called conjugate of α. 

F(α) is isomorphic to F(α′) since there is an isomorphism between two fields.  

Definition3.3.1: An isomorphisim from F to F itself  is called an automorphism. 
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        K 

 

            F(α)         F(α′) 

 

       F 

IV)  

Let F be a field. And let a polynomial f(x) = a0 + a1x +……..+ anxn   be in F[x]. α 

is a root of order r if f(x) is equal to (x-α)rg(x) where g(x) is a nonzero polynomial in 

F[x].  If r is 1 then α is called simple root.  If r is greater than 1 then α is called a 

multiple root.  r is called α’s multiplicity.  The derivative of polynomial f(x) can be 

calculated as usual :   (h(x))′ = ( (x-α)rg(x))′ = r((x-α)r-1g(x)) + (x-α)rg′(x). 

If r is greater than 1, α is a root of derivative of f(x).  In that case it implies that α is a 

root of gcd(f(x), f′(x)). 

Corollary: Let α be a root of f.  If α is not a root of f′(x), it implies that α is a simple 

root. 

V) 

 Let F be a field.  And let f(x) be contained in F[x].  The splitting field of f is a 

smallest extension field of K[x] such that all roots of f(x) lie in K[x].  To illustrate, 

Q( 13 ) is splitting field of 132 −x  over Q. 

VI) 

 Let F be a field. The characteristic of F is the smallest positive integer p such that 

sum of the multiplicative identity 1, p times equals to zero.  Then p is called 

characteristic of the field F.  If ∃ no such positive integer p then we say that the 

characteristic of the field is zero.  In other words, it is said to be characteristic zero. 

Example9:  

i. char(Q) = 0 

ii. char(R) = 0 

iii. char(C) = 0 

iv. char(Q( 2 )) = 0 

v. char(Z2) = 2 

vi. char(Z13) = 13 
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vii. char(Zp) = p  if p is prime. 
 Group Abelian 

group 

Ring Commutative 

ring 

Integral 

domain 

Field 

Closure under 

addition 

 

√ 

 

 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

Associativity 

of addition 

 

√ 

 

 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

Additive 

identity 

 

√ 

 

 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

Additive 

inverse 

 

√ 

 

 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

Commutative 

of addition 

  

√ 

 

 

√ 

 

√ 

 

√ 

 

√ 

Closure under 

multiplication 

   

√ 

 

 

√ 

 

√ 

 

√ 

Associativity 

of 

multiplication 

   

√ 

 

√ 

 

√ 

 

√ 

Distributive 

law 

   

√ 

 

 

√ 

 

√ 

 

√ 

Commutativity 

of 

multiplication 

    

√ 

 

√ 

 

√ 

Multiplicative 

identity 

     

√ 

 

 

√ 

No zero 

divisors 

     

√ 

 

 

√ 

Multiplicative 

inverse 

      

√ 

 

     Table 3.3.1 
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3.4   FINITE FIELDS 

Finite field is a field consisting of a finite number of elements.  Let Fq be a finite 

field.  q denotes the number of elements in Fq.  Let Fq have characteristic p.  Then Fp is 

the subfield of Fq.  Fq  can be regarded as a finite dimensional vector space over Fp.  

Hence ⏐Fq⏐=⏐Fp⏐f  where f is dimension of the vector space Fq over Fp.  Therefore, q 

is equal to pf where p is prime integer f is positive integer.  Fq\{0}, denoted by *F , 

means under multiplication.  Order of *
qF  is q-1.  Let a be in *

qF .  Then, order of a 

divides q-1.  In other words,  a is a zero of the polynomial  xq-1-1. 

Theorem3.4.1(Fraleigh, John B.): Fq is a splitting field of xq-x over Fp.  

Let f(x) be in F[x].  ∃ a smallest extension field E such that F ≤ E  and  all the roots of  f  

are in E.  Such  E  is called splitting field of f over F.  *
qF  which is an abelian group is 

isomorphic to m

m

k
p

k
p

k
p ZZZ ××× .........2

2

1

1
  where p1, p2,...., pm are distinct prime integers. 

Theorem3.4.2(Fraleigh, John B.): *
qF  is a cyclic group. 

Fq is a cyclic group.  Let a be a generator.  Then, ak is also a generator of *
qF  if and 

only if gcd(k, orda) = 1.  Order of a is q-1.  Number of generators of *
qF  is equal to ϕ(q-

1).  For example, *
11F  has 4 generators such that ϕ(11-1) = ϕ(10) = (2-1)(5-1) = 4.  

{2,6,7,8} is the set of all generators of *
11F . 

Theorem3.4.3(Fraleigh, John B.): Let G be a finite abelian group of order n. G is 

isomorphic to m

m

k
p

k
p

k
p ZZZ ××× .........2

2

1

1
  such that nppp mk

m
kk =.......21

21   where p1, p2,..., 

pm are prime integers. 

3.4.1   Existence  of  a  Finite  field 

As it is stated above, q is equal to pf where p is prime and f is a positive integer. 

Theorem3.4.4(Fraleigh, John B.): The splitting field  of xxxx
fpq −=−  is exactly a 

field such that Fp  ≤  E, E is the set of all roots of  xq-x.  In fact the roots of  xx
fp −  in E 

become a field.  For all fields F there exists an extension field 
−

F , which is called the 

algebraic closure of F, such that if f(x) is in F[x] then it can be written as the product of 

linear polynomials in 
−

F [x].  F is the subset of 
−

F .  Hence Fq can be regarded as the 

roots of  xx
fp −  in the algebraic closure 

−

F  of Fp. 
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Lemma3.4.1: Let E be a field of characteristic p.  Then (α+β)p = αp + βp. 

Corollary: Let E be a field of characteristic p.Then ( ) nnn ppp βαβα +=+   

Theorem3.4.5(Fraleigh, John B.): xx
fp −   is the product of all monic irreducible 

polynomials over Fp of degree d which is a divisor of f. 

Let’s find all irreducible polynomials of degree 2 over Z3. 

)1)(1)(1)(1)(1(
)1)(1)(1)(1()1)(1()1(

222

2222448932

−−−+++−=

=−−−++−=+−=−=−=−

xxxxxxxx
xxxxxxxxxxxxxxxx

 

Hence ∃ only three irreducible polynomials of degree 2 in z3[x]. 

3.4.2   Explicit Construction 

Let F be a field.  Let f(x) be an irreducible polynomial in F[x] since <f(x)> is 

maximal ideal,  F[x] / <f(x)> is a field.  F can be regarded as a subfield of F[x] / <f(x)>  

via the definition a → a + <f(x)>.  Let α be a root of f in F such that  F(α) = {1, 

α,α2,...,αn-1 } = {a1 + a2α + a3α2 + ... + an-1αn-1  :ai ∈ F}  is a basis of the vector space 

F(α) over F where n = deg f. 

Number of distinct monic irreducible polynomials of degree f over Fp is  
f

pp f −    

where p is prime and f is a positive integer.  If p is not prime, number of distinct monic 

irreducible polynomials of degree d in Fp[x] is equal to  
f

dnp
nd

d
f ∑−  where the 

summation is over all divisors d of f. 

Proposition: Let Fq be a finite field.  q is equal to pf where p is prime and f is a positive 

integer. 

G:x→xp .Then G is an automorphism, which is called Frobenius automorpism, of Fq.  It 

is one to one.  And G is onto since #Fq is finite. 

Let γ be an automorphism of Fp
f leaving the element of Fp fixed.There exists i such that 

γ = Gi. 

Lemma3.4.2: If   ς  is an automorphism of Fp
f  then it is identify on Fp. 

3.4.3   Construction of Finite Fields 

Let’s construct F9.  We take monic irreducible polynomials of degree 2 in F3[x].  

List  of all monic polynomials degree 2 are x2, x2 ± 1,  x2 ± x, x2 ± x + 1, x2 ± x + 2.  
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Elements of F3 are 0,1 and 2.  To illustrate, substituting in x2 + 2x + 2 gives the values; 0 

+ 0 + 2 = 2 , 1 + 2 + 2 ≡ mod 3 , 4 + 4 + 2 ≡ 1 mod 3.  Hence x2 + 2x + 2 is irreducible.  

If we do the same procedure for the monic polynomial of degree 2 stated above, we see 

that x2 + 1, x2 ± x + 2  are the only monic irreducible polynomials of degree 2 in F3[x].  

F9\{0} is cyclic and its order is 8.  Let α be a root of  x2 + x + 2.   α2 + α + 2 = 0 ⇒ α2 = 

2α + 1. 

Let’s find elements of F9\{0} by finding powers of α: 

α1 = α , α2 = 2α + 1 , α3 = 2α + 2 , α4 = 2 , α5 = 2α , α6 = α + 2 , α7 = α + 1 , α8 = 1 

Therefore, x2 + x + 2  is primitive. 

Now let’s construct F8.  We take  monic irreducible polynomials of degree 3 in 

F2[x] as 8 = 23.  List of all monic polynomials of degree 3 are x3 + 1 , x3 + x + 1 , x3 + x2 

+ 1 , x3 + x2 + x + 1.  Elements of F2 are 0 and 1.  x3 + x + 1 , x3 + x2 + 1  are the only 

monic irreducible cubic polynomials.  Let α be a root of x3 + x + 1.  α3 + α + 1 = 0  ⇒  

α3 = α + 1. 

Then let’s find the elements of F8\{0}  by finding powers of α: 

α1 = α , α2 = α2 , α3 = α + 1 , α4 = α2 + α , α5 = α2 + α + 1 , α6 = α2 + 1 , α7 = 1. 

 

3.5   PRIMITIVE ROOT 

Lemma: Assume that g is a generator of  *
qF   where q is equal to pf.  

1) If nk is divisible by q-1 then gk is n-th rooth of unity.  

2) Number of n-th rooth of unity = gcd (n, q-1).  

3) If n│q-1 then Fq has primitive n-th rooth of unity.  

4) ξ which is primitive n-th rooth of unity in Fq provides that ξk is primitive n-th 

rooth of unity if and only if k is relatively prime to n.   

Definition3.5.1: j is called n-th rooth of unity if jn =1 in Fq or j is a rooth of xn-1 in Fq.   

Definition3.5.2: ξ is primitive n-th rooth of unity if { ξ, ξ2,………, ξn-1, ξn = 1}  are all 

distinct.  In any field, α is primitive n-th rooth of unity if and only if number of { α , 

α2,......., αn-1, αn = 1} is equal to n.  

Corollary 3.5.1: If n is relatively prime to q-1 then 1 is the only n-th rooth of unity.  

For example; 5-th rooth of unity is 1 in F9 since gcd (5, 8) = 1. 
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Corollary3.5.2: There exists  -1 in Fq such that -1 is a zero x2 + 1 in Fq if and only if q ≡ 

1 (mod 4). 

 

3.6   QUADRATIC RESIDUES  

Let p be prime and p > 2.  Let α be a nonzero element of Fp and relatively prime 

to p.  In other words, α is an element of *
pF . α is called a quadratic residue modulo p if 

x2 ≡ α mod p  has a solution, i.e,  there exists b∈ Fp such that b2 ≡ α mod p.  Otherwise, 

α is called a quadratic non-residue. For example,  let p be 7 .  In order to determine 

quadratic residues of F7, we calculate squares of 1,2,3,4,5,6 mod 7 . We find that 12 ≡ 62 

≡ 1 mod 7, 22 ≡ 52 ≡ 4 mod 7 , 32 ≡ 42 ≡ 2 mod 7 . So  the quadratic residues of F7 are 

1,2,4 and the quadratic non-residues of F7 are 3,5, and 6. There exists exactly (p-1)/2 

quadratic residues and (p-1)/2 quadratic non-residues. In terms of generator we can 

characterize qauadratic  residue in the following way:  

Let g be in Fp and be a generator of  *
pF . gk is a quadratic residue if and only if ∃ 

gl in *
pF  such that (gl)2 ≡ gk mod p where 2l = k if and only if k is even.    

Lemma3.6.1: Let g be a generator of *
pF .   

Quadratic residues are g2, g4, g6, g8,.......,gp-1.  Quadratic non-residues are g, g3, g5, g7, 

g9,.......,gp-2 .  

To illustrate, 3 is a generator of *
7F .   

3, 33 = 6, 35 = 5 are all quadratic non-residues.  32 = 2, 34 = 4, 36 = 1 are all quadratic 

residues. 

3.6.1   Legendre Symbol 

We use legendre symbol to find out an integer is a quadratic residue or not.  Let p 

be an odd prime.  Let a be an integer  

 

        0   if  p divides a;  

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a        1  if a is a quadratic residue modulo p 

      -1  if a is a quadratic non-residue modulo p 
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By maple 

 legendre(a, p);

  

Euler’s   Criterion: 

Let p be prime and p > 2.  Let a be an integer coprime to p. 

   pa
p
a p

mod2
1−

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

proof: 

1.case: If p divides a then  0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a  

pa
pp

mod00 2
1

2
1

≡≡
−−

 

2.case: Assume that p doesn’t divide a.  Let g be a generator of *
pF . 

i. Assume 1=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a .  a is  a quadratic residue modulo p then a = gk where k is 

even.  By 

Fermat’s Little Theorem, ( ) ( )
pgg

pkp
k mod1

1
22

1

≡≡
−⎟

⎠
⎞

⎜
⎝
⎛−

.  Hence 
⎟
⎠
⎞

⎜
⎝
⎛ −

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 2
1p

a
p
a mod p  if  

1=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a . 

ii. Assume 1−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a .  a is  a quadratic non-residue modulo p then a = gk where k 

is odd.  ( ) pg
p

k mod12
1

−≡
−

  since k is odd..  Hence 
⎟
⎠
⎞

⎜
⎝
⎛ −

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 2
1p

a
p
a mod p if  

1−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a . 

In other words, pa
p

mod12
1

±≡
⎟
⎠
⎞

⎜
⎝
⎛ −

. 



 29

To illustrate, let a be 3 and p be 7.  7mod133 −≡ .  According to Euler’s criterion 

.1
7
3

−=⎟
⎠
⎞

⎜
⎝
⎛   So 3 is quadratic non-residue.  Let a be 2 and p be 7. 7mod123 ≡ .  Thus  

1
7
2

=⎟
⎠
⎞

⎜
⎝
⎛   and 2 is a quadratic residue. 

Properties of Legendre symbol: 

Let p be odd prime p∤a, p∤b. 

1) If  paa mod'≡  then  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
p
a

p
a '  

2) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
p
b

p
a

p
ab  

3) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
p
a

p
ab2

  where b is prime to p. 

4) 11
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
p

 and ( ) 2
1

11 −

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ − p

p
 

5)                                   1 if  8mod1±≡p  

 ( ) =−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
8

12

12 p

p
 

      -1 if  8mod3±≡p  

                   6)   Law of quadratic reciprocity: 

  If q is an odd prime then  

 

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

q
p   if  4mod3≡≡ qp  

               ( ) =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⎟
⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ −

2
1

2
1

1
qp

q
p

p
q  

         ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
p        otherwise 

 

3.6.2   Jacobi   Symbol: 

Definition3.6.1:  Let m be an odd integer greater than 2 and a be an integer. 
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k

kp
a

p
a

p
a

m
a

ααα

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛ ........

21

21

  where ............21
21

k
kpppm ααα=  

 

By maple 

 jacobi (a, p);

 

Properties  of  Jacobi  Symbol: 

1) ⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

m
b

m
a

m
ab  

2) ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

m
b

m
a    if  and  only  if  nba mod≡ . 

 

3)                                             1  if  4mod1≡m  

                   ( ) =−=⎟
⎠
⎞

⎜
⎝
⎛ − −

2
1

11 m

m
 

       -1  if   4mod1−≡m  

 

4)                                             1 if 8mod1±≡m                                

  ( ) =−=⎟
⎠
⎞

⎜
⎝
⎛ −

8
12

12 m

m
 

      -1  if  8mod3±≡m  

            5)     Let n and m  be odd integers greater than 2  and  n be relatively prime to m. 

                     ( ) )
2

1)(
2

1(1
−−

−⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ mn

n
m

m
n  
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CHAPTER 4 

 

 

CRYPTOGRAPHY 

 

 
 

4.1   SOME SIMPLE CRYPTOSYSTEMS 

Cryptology is a mathematical science dealing with cryptography and 

cryptanalysis.  The area of enciphering or encryption is said to be cryptography. The 

area of analysis of ciphertext and decryption of ciphertext without knowing key is called 

crytanalysis. Plaintext is the original message or data which is readable and 

unencrypted. Encrypted form of original text or data is called ciphertext. Transforming 

plaintext to disguised message is said to be encryption or enciphering. Rebuilding the 

original message from the ciphertext is called decryption or deciphering. Cipher is an 

algorithm for enciphering or deciphering with a key. A code is any set of words, phrases 

or signs which are transformed into something having special meaning.  A cipher can be 

compared with a code. In cipher, an algorithm and a key are needed for encryption or 

decryption. Otherwise, in code, we need only a codebook to form a codetext or restoring 

plaintext. For example, the dot code, the knot code, the playing card code, the red-blue 

code and the crease code etc.  There are three types of ciphers which are classical, rotor 

machines and contemporary. This chapter, we will describe classical cryptosystems.                        

                                                                     CIPHERS 

  

                       Classical                              Rotor Machines               Contemporary 

Figure 1 - Ciphers 

In classical cryptosystems, we use the same key for encryption and decryption.  A 

plaintext and ciphertext messege units can be single-letter, digraph which is block of 
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two letters, trigraph which is block of three letters etc. Let P be set of all possible 

plaintext message units and let C be set of all possible ciphertext message units. 

Enciphering transformation is a mapping f such that f:P→C. Deciphering transformation 

is a mapping f -1 such that f -1:C→P. Both enciphering and deciphering transformation  

are one-to-one and onto.  Such a system is called a cryptosystem. 

 

 

 

 

 

 

                                            Key                                                Key  

                hello                                            KHOOR                                         hello 

 

                                  

Figure 2 – Classic Cryptography 

 

To encrypt a plaintext, we need to convert plaintext message units P into their 

numerical equivalents. For eaxample, let P be single-letter. Assume that we use 26-

letter alphabet. Letters A-Z correspond to their numerical equivalents 0-25 such that 

A→0, B→1, C →2, D→3, E→4, F→5, G→6, H→7, I→8, J→9, K→10, L→11, 

M→12, N→13, O →14, P→15, Q→16, R→17, S→18, T→19, U→20, V→21, W→22, 

X→3, Y→24, Z →25.  For digraphs, suppose that numerical equivalents of x and y, two 

letters of digraph, be an element of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 19, 20, 21, 22, 23, 24, 25} . We label digraphs by 26x + y. Then each digraph is 

in the interval [ 0,675].  

4.1.1   Substitution  Ciphers  

4.1.1.1   Shift Cipher  

Shift Cipher depends on modular arithmetic. It is defined over Zm. For example, 

since English letter alphabet consists of 26-letter, it is defined over Z26.  K is the key, 0 

≤ K≤ m-1. Letters in the plaintext or ciphertext are converted to their numerical 

equivalents 0,1,2,.......,m-2,m-1 to encrypt or decrypt. For enciphering, numerical 
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equivalent of each letter in original message is shifted by K places such that C ≡ P + K 

(mod m),  where P is the numerical equivalents of plaintext message unit and C is the 

numerical equivalent of ciphertext message unit. Decryption algorithm is   P ≡ C – K 

(mod m).  Caesar Cipher is the special case of shift Cipher. Caesar Cipher is defined 

over Z26 and K is 3. 

 

C ≡ P + K (mod 26) 

and 

P ≡ C - K(mod 26) 

                                                Caesar Cipher  

There are exactly N different shift transformations with an N-letter alphabet. 

Eample 1 : 

By Caesar cipher, we will encrypt plaintext ''caesar cipher was used by julius 

caesar''.  To begin with, we transform letters into their numerical equivalents  

2,0,4,18,0,17,2,8,15,7,4,17,22,0,18,20,18,4,3,1,24,9,20,11,8,20,18,2,0,4,18,0,17   

Next, we use C ≡ P + 3 mod 26, this yields  

5,3,7,21,3,20,5,11,18,10,7,20,25,3,21,23,21,7,6,4,1,12,23,14,11,23,21,5,3,7,21,3,20   

Corresponding letters of ciphertext are  

FDHVDUFLSKHUZDVXVHGEBMXOLXVFDHVDU.  

Example 2: 

Suppose that key is 3 and ciphertext is ''FDHVDUFLSKHULVXQVHFXUH''. 

First, we translate each letter in ciphertext to their numerical equivalents.  

5,3,7,21,3,20,5,11,18,10,7,20,11,21,23,16,21,7,5,23,20,7 . 

Applying  P ≡ C-3 (mod26), we obtain  

2,0,4,18,0,17,2,8,15,7,4,17,8,18,20,13,18,4,2,20,17,4. 

Corresponding letters of plaintext is ''caesarcipherisunsecure''. 

Example 3:  

In this example, we use frequency analysis to decrypt the message ''OZQNZ 

XHFJXFWZXJIHFJXFWHNUMJWYTHTRRZSNHFYJBNYMMNXXTQINJWX''. It 

is enciphered by shift transformation and plaintext message units are on single-letter in 

26-letter alphabet. It is known that the most occurring letter in the plaintext is ''S''.  First 

we count each letter in the ciphertext and the most occurring letter is “X” 
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Letter A B C D E F G H I J K L M 

Number of occurrences 0 1 0 0 0 5 0 5 2 6 0 0 3 

 
Letter N O P Q R S T U V W X Y Z 

Number of occurrences 6 1 0 2 2 1 3 1 0 4 7 3 4 

  

As the most occurring letter in the ciphertext is ''X'', ''X'' corresponds to ''S''.  If this is 

so, then  23 ≡ 18+K(mod 26).  Hence, K ≡ 5(mod 26).  Next, subtract 5 from the 

numerical equivalents of ''OZQNZXHFJXFWZXJIHFJXFWHNUMJWYTHTRR 

ZSNHFYJBNYMMNXXTQINJ WX''.  Be careful that subtraction is in modulo 26.  

''OZQNZXHFJXFWZXJIHFJXFWHNUMJWYTHTRRZSNHFYJBNYMMNXXTQIN

JWX''=14,25,16,13,25,23,7,5,9,23,5,22,25,23,9,8,7,5,9,23,5,22,7,13,20,12,9,22,24,19,7,

19,17,17,25,18,13,7,5,24,9,1,13,24,12,12,13,23,23,19,16,8,13,9,22,23→9,20,11,8,20,18

,2,0,4,18,0,17,20,18,4,3,2,0,4,18,0,17,2,8,15,7,4,17,19,14,2,14,12,12,20,13,8,2,0,19,4,2

2,8,19,7,7,8,18,18,14,11,3,8,4,17,18=''JULIUSCAESARUSEDCAESARCIPHERTOC

OMMUNICATEWITHHISSOLDIERS''.  

Example 4: 

Let plaintext and ciphertext message units be digraph.  For encyription and 

decryption, 27-letter alphabet is used in which A-Z correspond to 0-25 and blank = 26.  

Alice wants to send her message ''be careful'' to Bob.  To encrypt the message, she 

breaks it into groups of two letters and converts the letters into their numerical 

equivalents. And she obtains 

“be” = 31          " ‘blank’c” = 704          “ar” = 17          “ef” = 113          “ul” = 551.  

The key is 300, known by Bob and Alice.  Then she encrypts the message by using shift 

transformation C ≡ P + 300(mod 729), and she obtains 331,275,317,413,122. 

Next, she translates back to letters such that 

331 = 12.7 + 7 = "MH" 

275 = 10.27 + 5 = "KF" 

317 = 11.27 + 20 = "LU" 

413 = 15.27 + 8 = "PI" 

122 = 4.27 + 14 = "ED" 
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Encyrpted message becomes MHKFLUPIED, and  she sends the message to Bob. Bob 

knows that ciphertext is digraph and the key is 300. For decryption, he first translates 

digraphs into their numarical equivalents and this yields  

"MH" = 331,  "KF" = 275,  "LU" = 317,  "PI" = 413,  "ED" = 122.  

Applying shift transformation P ≡ C-300(mod 729) , he obtains 31,704,17,113,551. 

Then, he changes back to letters such that  

31 = 1.27+4 = "be" 

                              704 = 26.27+2 = "    c" 

                                17 = 0.27 + 17 = "ar"  

                              113 = 4.27 + 5 = "ef" 

                              551 = 20.27 + 11 = "ul".  

He obtains the message ''be careful''. 

Example 5: 

The message GVCTXSPSKCMWEQEXLIQEXMGEPWGMIRGIHIEPMRKA 

MXLGVCTXSKVETLCERHGVCTXEREPCWMW was encrypted by shift 

transformation of single-letter plaintext message units in the 26-letter alphabet.  The 

most occurring letter in the ciphertext is ''E''.  ''E'' is the encryption of ''A''.  

“E” in the ciphertext corresponds to “A” in the plaintext such that 4 ≡ 0 + K(mod 26). 

Then  

K ≡ 4(mod 26).  The deciphering transformation is P ≡ C - 4(mod 26), 0 ≤ P ≤ 25.  We 

first change letters in ciphertext into their numerical equivalents. 

6,21,2,19,23,18,15,18,10,2,12,22,4,16,4,23,11,8,16,4,23,12,6,4,15,22,6,12,8,17,6,8,7,8,

4,15,12,17,10,0,12,23,11,6,21,2,19,23,18,10,21,4,19,11,2,4,17,7,6,21,2,19,23,4,17,4,15,

2,22,12,22. 

Next we perform deciphering transformation to recover plaintext, and we obtain 

2,17,24,15,19,14,11,14,6,24,8,18,0,12,0,19,7,4,12,0,19,8,2,0,11,18,2,8,4,13,2,4,3,4,0,11

,8,13,6,22,8,19,7,2,17,24,15,19,14,6,17,0,15,7,24,0,13,3,2,17,24,15,19,0,13,0,11,24,18,

8,18 = “cryp tologyisamathematicalsciencedealingwithcryptographyandcryptanalysis”. 

4.1.1.2   Affine Cipher 

Affine cipher is monoalphabetic and symmetric.  It is the generalization of shift 

cipher such that C ≡ aP + b(mod m),0 ≤ C ≤ m-1 with gcd (a,m) =1 and b∈Zm, a∈Zm
*.  

m is the size of alphabet.  If a = 1 then affine cipher is a shift cipher.  To cryptanalyze, 
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we first convert letters in ciphertext to numerical equivalents.  The relationship P ≡ a-

1(C-b) (mod m), 0 ≤ P ≤ m-1, is used to restore numerical equivalents of original 

message. a-1 is the inverse of a modulo m and an element of Zm
*.  In affine 

transformation, a and b are keys. 

Another special case of affine transformation is linear transformation such that, if  b = 0 

, P ≡ aC(mod m) and C ≡ a-1P(mod m). There are Nφ(N) different affine enciphering 

transformations with an N-letter alphabet.  For digraphs in an N-letter alphabet there are 

N2φ(N2) different afine enciphering transformations. 

Example6:  

Let a = 7 and  b = 9.  We use single message units in the 27-letter alphabet.  In 

this alphabet, the letters A-Z have numarical equivalents 0-25 and blank = 26.  We work 

in Z27 and want to encipher the message ''shift and linear transformations are special 

case of affine transformation''. We first convert letters into their numerical equivalents.  

This becomes  

18,7,8,5,19,26,0,13,3,26,11,8,13,4,0,17,26,19,17,0,13,18,5,14,17,12,0,19,8,14,13,18,26,

0,17,4,26,18,15,4,2,8,0,11,26,2,0,18,4,26,14,5,26,0,5,5,8,13,4,26,19,17,0,13,18,5,14,17,

12,0,19,8,14,13. Applying affine transformation C ≡ 7P + 9(mod 27), we obtain  

0,4,11,17,7,2,9,19,3,2,5,11,19,10,9,20,2,7,20,9,19,0,17,26,20,12,9,7,11,26,19,0,2,9,20,1

0,2,0,6,10,23,11,9,5,2,23,9,0,10,2,26,17,2,9,17,17,11,19,10,2,7,20,9,19,0,17,26,20,12,9,

7,11,26,19.  

Changing back to letters, we obtain  

AELRHCJTDCFLTKJUCHUJTAR   UMJHL  TACJUKCAGKXLJFCXJAKC   RC 

JRRLTKCHUJTAR   UMJHL   T.  

Example7: 

Suppose that a = 3 and b = 2.  We use digraph message units in the 26-letter 

alphabet in which A-Z have numerical equivalents 0-25. The plaintext is the string 

''TherewillbeanexplosionatLeventsubway ''.  To encrypt, we first break it into groups of 

two letters.  ''Th er ew il lb ea ne xp lo si on at le ve nt su bw ay''.  Converting message 

units into their numerical equivalents x and y correspond to the integer 26x + y, we have  

494,121,126,219,287,104,338,598,300,476,117,19,290,550,357,488,48,24. 

Using the affine transformation C ≡ 3P + 2(mod 676), we obtain  

1484,365,380,659,863,314,1016,1796,902,1430,353,59,872,1652,1073,1466,146,74. 
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Converting back to letters , we obtain  

FC, OB, OQ, ZJ, HF, MC, NC, RC, IS, DA, NP, CH, HO, LO, PH, EK, FQ, CW. And 

the ciphertext is “FCOBOQZJHFMCNCRCISDANPCHHOLOPHEKFQCW''.  

Example8: 

Let enciphering keys be a = 5 and b = 27.  We are working in the 28-letter 

alphabet in which A-Z have numerical equivalents 0-25, “blank” = 26 and “.” =27. To 

encrypt, we use trigraph message units. Plaintext is ''Mr. President will be poisoned by 

arsenic''.  Writing plaintext in groups of three,  we obtain  ''Mr.'' , ''   Pr'',''esi'',''den'',''t   

w'',''ill'', ''  be'', ''    po'',''iso'',''ned'', ''   by'',''    ar'',''sen'',''ic.''.  Translating message units 

into thier numerical equivalents x, y and z correspond to the integer 282x + 28y + z, we 

obtain  

9911,20821,3648,2477,15646,6591,20416,20818,6790,10307,20436,20401,14237,6355 

.  Using affine transformation C ≡ 5P + 27(mod 283), this becomes  

5678,16324,18267,12412,12401,11030,14299,16309,12025,7658,14399,14224,5356,98

50. 

Changing back to the letters, we have “HGW”,”UXA”,”XIL”,”PXI”,”PWZ”,”OB   '', 

“SGT”,”UWN”,”PJN”,” JVO”, “SKH”,”SEA”,”GXI”,”MPW”.  

Hence encrypted message is HGWUXAXILPXIPWZOB  SGTUWNPJNJVOSKHSE 

AGXIMPW.  

Example9: 

We work on single letter in the 27-letter alphabet with A-Z correspond to 0-25 

and “blank” = 26.  Suppose that a = 17 and b = 24.  To cryptanalyze the message 

“YBBZCLHE ZJILQHZGHMTCTYWJIYOLXZEHYCVHGAMMLXQZE”, we need 

to find inverse of a modulo 27 as P ≡ a-1(C-b)(mod 27).  By Euclidean algorithm, we 

obtain  

27 = 1.17+10 

17 = 1.10+7  

10 = 1.7+3  

  7 = 2.3+1  

Hence gcd (27,17) = 1  

By Extended Euclidean algorithm, we have  

1 = 7-2.3 
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= 7-2(10-1.7) 

= 3.7-2.10 

= 3(17-1.10)-2.10 

= 3.17-5.10 

= 3.17-5(27-1.17) 

= 8.17-5.27   

Therefore, 17-1 ≡ 8(mod 27).  

First, we convert letters to their numerical equivalents.  

24,1,1,25,2,11,7,4,25,9,8,11,16,7,25,6,7,12,19,2,19,24,22,9,8,24,14,11,23,25,4,7,24,2,2

1,7,6,0,12,12,11,23,16,25,4 .  

Then we obtain by using P ≡ 8(C-24) (mod 27).   

0,5,5,8,13,4,26,2,8,15,7,4,17,26,8,18,26,12,14,13,14,0,11,15,7,0,1,4,19,8,2,26,0,13,3,26

,18,24,12,12,4,19,17,8,2.   

Next we translate back to letters and we have ''affine cipher is monoalphabetic and 

symmetric''.  

Example10: 

We are working in Z26. The letter A-Z have numerical equivalents 0-25 and affine 

cipher operates on single letter.  Intercepted ciphertext is “SOLAIUIBPOBQYLZYJT 

ZIS”. We know that the last word in plaintext is ''him''.  In other words, “ZIS” 

corresponds to ''him''.  This implies, “S” corresponds to ''m'', “I” corresponds to ''i'' and 

“Z” corresponds to ''h''.  By using the affine transformation C ≡ aP + b(mod 26), we will 

find keys, a and b.  

12a + b ≡ 18(mod 26) 

  7a + b ≡ 25(mod 26)   

The solution of this system is a ≡ 9(mod 26) and b ≡ 14(mod 26).  By using Euclidean 

and extended Euclidean algorithm we obtain  

26 = 2.9+8 

  9 = 1.8+1 

  1 = 9-1.8 

     = 9-1(26-2.9) 

     = 3.9-1.26  
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We see that, inverse of 9 is 3 modulo 26.  Letters in the ciphertext correspond to 

18,14,11,0,8, 20,8,1,15,14,1,16,24,11,25,24,9,19,25,8,18.We have C ≡ 9P+14(mod 26) 

and P ≡ 3(C-14) (mod 26).  Correspondence of letters for ciphertext is given in table.  

                            Ciphertext  
A B C D E F G H I J K L M 

0 1 2 3 4 5 6 7 8 9 10 11 12 

10 13 16 19 22 25 2 5 8 11 14 17 20 

K N Q T W Z C F I L O R U 

                            Plaintext 

 

                            Ciphertext 
N O P Q R S T U V W X Y Z 

13 14 15 16 17 18 19 20 21 22 23 24 25 

23 0 3 6 9 12 15 18 21 24 1 4 7 

X A D G J M P S V Y B E H 

                             Plaintext  

By using the correspondence, decryption of ciphertext is ''markisindangerhelphim''.  

Therefore original message is ''Mark is in danger. Help him''.  

Example11: 

We work on trigraph in the 30-letter alphabet in which  A-Z correspond to 0-25, 

“blank” = 26, “'” = 27, “!” = 28, “.” = 29.  

The ciphertext is  

“ADDLUDGYB!AFVSHEERWDGXX'BLGRFYE         DIZUCFYTUYKFQSEG'FN 

KVG      JQJNQIZJ.KM!ECCTU.FYQIQDAFUESMGYIPYKFQQNBM'      DGMG!Y 

BEDQPYKFQDWY'PUC G.UYGX'ZUPQARJ'VFCA!SIGUCUEHSVYKZYXZQ' 

OH'Q BNFYADFRYCUEH'QGCGYJOSPTW”.  

We know that the most frequently occurring trigraphs in the ciphertext are ''KFQ'' and 

''UEH'', in that order. ''KFQ'' and ''UEH'' are encryption of ''THE'' and ''ION'', 

respectively.  What is needed to be done firstly to decrypt the message is that we change 

''KFQ'' , ''UEH'' ,''THE'' and ''ION'' into their numerical equivalents 900x + 30y + z to 

obtain keys a and b .   

''KFQ'' = 900.10 + 30.5 + 16 = 9166 → ''THE'' = 900.19 + 30.7 + 4 = 17314 

''UEH''= 900.20 + 30.4 + 7 = 18127 →''ION'' = 900.8 + 30.14 + 13 = 7633 
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Next, we solve the pair of congruences  

a17314 + b ≡ 9166(mod 27000) 

    a7633 + b ≡ 18127(mod 27000) 

By subtracting two congruences, we obtain 9681a ≡ -8961(mod 27000) .  

Since gcd (9681,27000)=3 and 3│8961 , we solve  

(9681/3)a ≡ (-8961/3) mod(27000/3) 

                                   3227a ≡ -2987(mod 9000)  

and there are three soultions of  a modulo 27000.  

Inverse of 3227 is found by using Euclidean and extended Euclidean algorithm such 

that 

                 9000 = 2.3227 + 2546 

                                         3227 = 1.2546 + 681  

                                         2546 = 3.681 + 503  

                                           681 = 1.503 + 178  

                                           503 = 2.178 + 147  

                                           178 = 1.147 + 31  

                                           147 = 4.31 + 23  

                                    31 = 1.23 + 8  

                                    23 = 2.8 + 7  

                                        8 = 1.7 + 1  

Then  

                                   1 = 8-1.7 

                                         = 8-(23-2.8)  

                                           = 3.8-23  

                                          = 3(31-23)-23  

                                                  = 3.31-4.23  

                                                  = 3.31-4(147-4.31)  

                                                  = 19.31-4.147 

                                                  = 19(178-1.147)-4.147  

                                                  = 19.178-23.147  

                                                  = 19.178-23(503-2.178)  

                                                  = 65.178-23.503  
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                                                  = 65(681-1.503)-23.503  

                                                  = 65.681-88.503  

                                                  = 65.681-88(2546-3.681)  

                                                  = 329.681-88.2546  

                                                  = 329(3227-1.2546)-88.2546  

                                                    = 329.3227-417.2546  

                                                  = 329.3227-417(9000-2.3227)  

                                                  = 1163.3227-417.9000 

Thus , a = 1163(-2987) ≡ 119(mod 9000)  

There are 3 solutions such that  

a ≡ 119 + k 9000, 0 ≤ k ≤ 2 

Hence a1 = 119 , a2 = 9119, a3 = 18119  

For a1 = 119 , b1 = 800  

For a2 = 9119 , b2 = 18800  

For a3 = 18119 , b3 = 9800  

We try all three posibilities.  

Case 1: a1 = 119 

First, we convert trigraphs into their numerical equivalents x,y,and z correspond to 

900x + 30y + z. Next , we need to know inverse of  119 modulo 27000 and (119)-1≡ 

12479(mod 27000). Then, applying affine transformation P ≡ 12479(C-800)(mod 

27000) to numerical equivalents of ciphertext message units, we obtain  

''AAD''  = 3 → 17237 = ''TER''  

''LUD'' = 10503 → 15737= ''ROR''  

''GYB'' = 6121 → 7759 =  ''IST''  

''!AF''  = 25205 → 16995 = ''S    P''  

''VSH''  = 19447 → 9913 = ''LAN''  

''EER'' = 3737 → 11823 = ''NED''  

''WDG'' = 19896 → 23984 = ''    TO''  

''XX ' '' = 21417 → 23543 = ''    EX''  

''BLG'' = 1236 → 13844 = ''PLO''  

''RFY'' = 15474 → 2846 = ''DE    ''  

''E   D'' = 4383 → 257 = ''AIR''  
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''IZU'' = 7970 → 23430 = ''    BA''  

''CFY'' = 1974 → 16346 = ''SE    ''  

''TUY'' = 17724 → 596 = ''AT    ''  

''KFQ''  = 9166 → 17314 = ''THE''  

''SEG''  = 16326 → 23954 = ''     SO''  

'' 'FN'' = 24463 → 18577 = ''UTH''  

''KVG'' = 9636 → 23444 = ''    BO''  

''    JQ'' = 23686 → 15394 = ''RDE''  

''JNQ'' = 8506 → 16174 = ''R.E''  

''IZJ'' = 7959 → 21161 =  ''XPL''  

''.KM'' = 26412 → 13148 =  ''OSI''  

''!EC'' = 25322 → 19038 = ''VES''  

''CTU'' = 2390 → 23610 = ''    HA''  

''.FY'' = 26274 → 19046 = ''VE    ''  

''QIQ'' = 14656 → 1024 = ''BEE''  

''DAF'' = 2705 → 12495 = ''N    P''  

''UES'' = 18138 → 9902 = ''LAC''  

''MGY'' = 11004 → 3716 = ''ED    ''  

''IPY'' =7674 → 1646 = ''BY    ''  

''KFQ'' = 9166 → 17314 = ''THE''  

''QNB'' = 14791 → 11689 = ''M.T''  

''M '     '' =11636 → 6444 = ''HEY''  

''DGM'' = 2892 → 24068 =  ''    WI''  

''G!Y'' = 6264 → 10256 = ''LL    ''  

''BED'' = 1023 → 1817 = ''CAR''  

''WPY'' = 20274 → 16046 = ''RY    ''  

''KFQ'' = 9166 → 17314 = ''THE''  

''DWY'' = 3384 → 7736 = ''IR    ''  

''.PU'' = 26570 → 13830 =  ''PLA'' 

''C    G'' =2586 → 12494 = ''N    O''  
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''.UY'' = 26724 → 18596 =  ''UT     ''  

''GX' '' = 6117 → 11843 = ''NEX''  

''ZUP'' = 23115 → 17885 = ''T    F''  

''QAR'' = 14417 → 15543 = ''RID''  

''J'V'' = 8931 → 749 = ''AY.''  

''FCA'' = 4560 → 22040 = ''YOU''  

''!SI'' = 25748 → 16092 = ''R    M''  

''GUC'' = 6002 → 7758 = ''ISS''  

''UEH'' = 18127 → 7633 = ''ION''  

''SVY'' = 16854 → 24866 = '' 'S    ''  

''KZY'' = 9774 → 17546 = ''TO     ''  

''XZQ'' = 21466 → 14014 = ''PRE''  

'' 'OH'' = 24727 → 19033 = ''VEN''  

'' 'QB'' = 24781 → 17899 = ''T     T''  

''NFY'' = 11874 → 6446 = ''HE    ''  

''ADF'' = 95 → 4305 = ''EXP''  

''RYC'' = 16022 → 10338 = ''LOS''  

''UEH'' = 18127 → 7633 = ''ION''  

'' 'QG'' = 24786 → 26294 = ''.GO''  

''CGY'' = 2004 → 12716 = ''OD    ''  

''JOS'' = 8538 → 10502 = ''LUC''  

''PTW'' = 14092 → 9868 = ''K!!''  

Case 2: a2  = 9119  

First, we convert trigraphs into their numerical equivalents x, y,and z correspond 

to 900x + 30y + z.  Next , we need to know inverse of  9119 modulo 27000 and (9119)-1 

≡ 3479(mod 27000) . Then, applying affine transformation  P ≡ 3479(C-18800)(mod 

27000) to numerical equivalents of ciphertext message units, we obtain  

''AAD'' = 3 → 26237 = ''.ER''  

''LUD'' = 10503 →→ 24737 = '' 'OR''  

''GYB'' = 6121 → 7759 = ''IST''  

''!AF'' = 25205 → 7995 = ''I     P''  
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''VSH'' = 19447 → 9913 = ''LAN''  

''EER'' = 3737 → 2823 = ''DED''  

''WDG'' = 19896 → 5984 = ''GTO''  

''XX ' '' = 21417 → 5543 = ''GEX''  

''BLG'' = 1236 → 22844 = ''ZLO''   

''RFY'' = 15474 → 11846 = ''NE    ''  

''E   D'' = 4383 → 9257 = ''KIR''  

''IZU'' = 7970 → 14430 = ''QBA''  

''CFY'' = 1974 → 25346 = ''!E     ''  

''TUY'' = 17724 → 9596 = ''KT    ''  

''KFQ'' = 9166 → 17314 = ''THE''  

''SEG'' = 16326 → 5954 = ''GSO''  

'' 'FN'' = 24463 → 18577 = ''UTH''  

''KVG'' = 9636 → 5444 = ''GBO'' 

''    JQ'' = 23686 → 15394 = ''RDE''  

''JNQ'' = 8506 → 16174 = ''R.E''  

''IZJ'' = 7959 → 3161 = ''DPL''  

''.KM'' = 26412 → 22148 =  ''YSI''  

''!EC'' = 25322 → 10038 = ''LES''  

''CTU'' = 2390 → 14610 = ''QHA''  

''.FY'' = 26274 → 1046 = ''BE    ''  

''QIQ'' = 14656 → 1024 = ''BEE''  

''DAF'' = 2705 → 3495 = ''D    P''  

''UES'' = 18138 → 18902 = ''VAC''  

''MGY'' = 11004 → 12716 = ''OD    ''  

''IPY'' = 7674 → 10646 = ''LY     ''  

''KFQ'' = 9166 → 17314 = ''THE''  

''QNB'' = 14791 → 11689 = ''M.T''  

''M '     '' = 11636 → 24444 = '' 'EY''  

''DGM'' = 2892 → 6068 = ''GWI''  
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''G!Y'' = 6264 → 19256 = ''VL   ''  

''BED'' = 1023 → 10817 = ''MAR''  

''WPY'' = 20274 → 25046 = '' 'Y    '' 

''KFQ'' = 9166 → 17314 = ''THE''  

''DWY'' = 3384 → 16736 = ''SR    ''  

''.PU'' = 26570 → 4830 = ''FLA''  

''C     G''= 2586 → 21494 = ''X    O''  

''.UY'' = 26724 → 596 =  ''AT    ''  

''GX' '' = 6117 → 20843 = ''XEX''  

''ZUP'' = 23115 → 26885 = ''.     F''  

''QAR'' = 14417 → 6543 = ''HID''  

''J'V'' = 8931 → 9749 = ''KY.'' 

''FCA'' = 4560 → 4040 = ''EOU''  

''!SI'' = 25748 → 7092 = ''H    M''  

''GUC'' = 6002 → 25758 =''!SS'' 

''UEH'' = 18127 → 7633 = ''ION''  

''SVY'' = 16854 → 6866 = ''HS    ''  

''KZY'' = 9774 → 26546 = ''.O    ''  

''XZQ'' = 21466 → 14014 = ''PRE''  

'' 'OH'' = 24727 → 19033 = ''VEN''  

'' 'QB'' = 24781 → 17899 = ''T     T''  

''NFY'' = 11874 → 15446 = ''RE    ''  

''ADF'' = 95 → 22305 =  ''YXP''  

''RYC'' = 16022 → 1338 = ''BOS''  

''UEH'' = 18127 → 7633 = ''ION''  

'' 'QG'' = 24786 → 8294 = ''JGO''  

''CGY'' = 2004 → 21716 = ''YD    '' 

''JOS'' = 8538 → 19502 = ''VUC''  

''PTW'' =14092 → 9868 = ''K!!''   

Case 3: a3 = 18119 
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First, we convert trigraphs into their numerical equivalents x, y,and z correspond 

to 900x + 30y  + z. Next , we need to know inverse of 18119 modulo 27000 and 

(18119)-1 ≡ 21479 (mod 27000). Then, applying affine transformation P ≡ 21479(C-

95800)(mod 27000)  to numerical equivalents of ciphertext message units, we obtain  

''AAD'' = 3 → 8237 = ''JER''  

''LUD'' = 10503 → 6737 = ''HOR''  

''GYB'' = 6121 → 7759 = ''IST''  

''!AF'' = 25205 → 25995 = ''!     P''  

''VSH'' = 19447 → 9913 = ''LAN''  

''EER'' = 3737 → 20823 = ''XED''  

''WDG'' = 19896 → 14984 = ''QTO''  

''XX ' '' = 21417 → 14543 = ''QED''  

''BLG'' = 1236 →  4844 = ''FLO''  

''RFY'' = 15474 → 20846 = ''XE    ''  

''E    D'' = 4383 → 18257 =  ''UIR''  

''IZU'' = 7970 → 5430 = ''GBA''  

''CFY'' = 1974 → 7346 = ''IE    ''  

''TUY'' = 17724 → 18596 = ''UT    ''  

''KFQ'' = 9166 → 17314 = ''THE''  

''SEG'' = 16326 → 14954 = ''QSO''  

'' 'FN'' = 24463 → 18577 = ''UTH''  

''KVG'' = 9636 → 14444 = ''QBO''  

''     JQ'' = 23686 → 15394 = ''RDE''  

''JNQ'' = 8506 → 16174 = ''R.E''  

''IZJ'' = 7959 → 21161 =  ''NPL''  

''.KM'' = 26412 → 4148 = ''ESI''  

''!EC'' = 25322 → 1038 = ''BES''  

''CTU'' = 2390 → 5610 = ''GHA''  

''.FY'' = 26274 → 10046 = ''LE     ''  

''QIQ'' = 14656 → 1024 = ''BEE''  

''DAF'' = 2705 → 21495 = ''X     P''  
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''UES'' = 18138 → 902 = ''BAC'' 

''MGY'' = 11004 → 21716 = ''YD    ''  

''IPY'' = 7674 → 19646 =  ''VY    ''  

''KFQ'' = 9166 → 17314 = ''THE''  

''QNB'' = 14791 → 11689 = ''M.T''  

''M '     '' = 11636 → 15444 = ''REY''  

''DGM'' = 2892 → 10068 = ''QWI''  

''G!Y'' = 6264 → 1256 = ''BL     ''  

''BED'' = 1023 → 19817 = ''WAR''  

''WPY'' = 20274 → 7046 = ''HY    ''  

''KFQ'' = 9166 → 17314 = ''THE''  

''DWY'' = 3384 → 25736 = ''!R    ''  

''.PU'' = 26570 → 22830 = ''ZLA''  

''C    G'' =  2586 → 3494 = ''D    O''  

''.UY'' = 26724 → 9596 = ''KT     ''  

''GX' '' = 6117 → 2843 = ''CEX''  

''ZUP'' = 23115→ 8885 = ''J     F'' 

''QAR'' = 14417 → 24543 = '''ID''  

''J'V'' = 8931 → 18749 = ''UY.'' 

''FCA'' = 4560 → 13040 = ''OOU''  

''!SI'' = 25748 → 25092 = '' '     M'' 

''GUC'' = 6002 → 16758 = ''SSS''  

''UEH'' = 18127 → 7633 = ''ION''  

''SVY'' = 16854 → 15866 = ''RS    ''  

''KZY'' = 9774 → 8546 = ''JO    ''  

''XZQ'' = 21466 → 14014 = ''PRE''  

'' 'OH'' = 24727 → 19033 = ''VEN''  

'' 'QB'' = 24781 → 17899 = ''T    T''  

''NFY'' = 11874 → 24446 = '' 'E     ''  

''ADF'' = 95 → 13305 = ''OXP''  
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''RYC'' = 16022 → 19338 = ''VOS''  

''UEH'' = 18127 → 7633 = ''ION''  

'' 'QG'' = 24786 → 17294 = ''TGO''  

''CGY'' = 2004 → 3716 = ''ED    ''  

''JOS'' = 8538 → 1502 = ''BUC''  

''PTW'' = 14092 → 9868 = ''K!!''  

We see that only the first one P ≡ 12479(C-800)(mod 27000) gives a meaningful 

plaintext.  The message is ''terrorists  planned  to  explode  air base at the  south  

border.explosives  have  been  placed  by  them.  they  will carry  their  plan out  next  

friday.your  mission's to prevent  the  explosion.  good  luck!! 

4.1.1.3   Vigenére  Cipher  

Vigenére cipher was invented by Blaise Vigenére.  Vigenére cipher is a 

polyalphabetic substitution cipher. Several Caesar ciphers in sequence are used in 

vigenére cipher.  Vigenére cipher is defined over Z26 .  A vigenére table is used with a 

keyword for encryption. 

In  table 4.1.1, row is for key character and column is for plaintext character.  

Intersection of row and column gives us ciphertext character.  To illustrate, assume that 

keyword is code and plaintext is '' a  polyalphabetic substitution cipher consist of two or 

more cipher alphabets”. 

First, we write keyword below plaintext repeating it until it equals the length of 

plaintext. 

PLAINTEXT:  apolyalphabeticsubstitutioncipherconsistsoftwoormorecipheralphabets 

KEY: codecodecodecodecodecodecodecodecodecodecodecodecodecodecodecodecod 

The first character of plaintext ''a'', corresponds to''c'', intersection of down column ''a'' 

and over row ''c''.  Second plaintext character ''p'' corresponds to ''d'', intersection of 

down  column ''p'', and over row ''o'' .If we repeat the same procedure we obtain  the 

ciphertext 

''CDRPAOOTJOEIVWFWWPVXKHXXKCQGKDKITQRRUWVXUCIXYCRVOCU

IEWSLGFDPRVDFGHV''.  
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  A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

                            

A  A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

B  B C D E F G H I J K L M N O P Q R S T U V W X Y Z A 

C  C D E F G H I J K L M N O P Q R S T U V W X Y Z A B 

D  D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

E  E F G H I J K L M N O P Q R S T U V W X Y Z A B C D 

F  F G H I J K L M N O P Q R S T U V W X Y Z A B C D E 

G  G H I J K L M N O P Q R S T U V W X Y Z A B C D E F 

H  H I J K L M N O P Q R S T U V W X Y Z A B C D E F G 

I  I J K L M N O P Q R S T U V W X Y Z A B C D E F G H 

J  J K L M N O P Q R S T U V W X Y Z A B C D E F G H I 

K  K L M N O P Q R S T U V W X Y Z A B C D E F G H I J 

L  L M N O P Q R S T U V W X Y Z A B C D E F G H I J K 

M  M N O P Q R S T U V W X Y Z A B C D E F G H I J K L 

N  N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 

O  O P Q R S T U V W X Y Z A B C D E F G H I J K L M N 

P  P Q R S T U V W X Y Z A B C D E F G H I J K L M N O 

Q  Q R S T U V W X Y Z A B C D E F G H I J K L M N O P 

R  R S T U V W X Y Z A B C D E F G H I J K L M N O P Q 

S  S T U V W X Y Z A B C D E F G H I J K L M N O P Q R 

T  T U V W X Y Z A B C D E F G H I J K L M N O P Q R S 

U  U V W X Y Z A B C D E F G H I J K L M N O P Q R S T 

V  V W X Y Z A B C D E F G H I J K L M N O P Q R S T U 

W  W X Y Z A B C D E F G H I J K L M N O P Q R S T U V 

X  X Y Z A B C D E F G H I J K L M N O P Q R S T U V W 

Y  Y Z A B C D E F G H I J K L M N O P Q R S T U V W X 

Z  Z A B C D E F G H I J K L M N O P Q R S T U V W X Y 

                                       Table 4.1.1 

Algebriacially, in Z26, let  P1,P2,P3,.........,Pj be numerical equivalents of plaintext, 

C1, C2, C3, ........., Cj be numerical equivalents of ciphertext and  K1, K2, K3, ........., Kj be 

numerical equivalents of keyword.  Let i is the length of keyword.  Vigenére encryption 

transformation is  Cn ≡ Pn + Kn (mod 26) where  0 < n ≤ j and decryption transformation 

is Pn ≡ Cn - Kn  (mod 26)  where  0 < n ≤ j 

 
a b c d e f g h i j k l m 

.082 .015 .028 .043 .127 .022 .020 .061 .070. .002 .008 .040 .024 

 
n o p q r s t u v w x y z 

.067 .075 .019 .001 .060 .063 .091 .028 .010 .023 .001 .020 .001 

                                     Table 4.1.2 : Frequencies of Letters in English  
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The frequencies of letters in English are different from each other  ''e'' has the 

highest frequency.  To turn out key, we use frequency analysis.  In order to find key 

length using the index of coincidence, we pursue the following procedure.  

1) Write the ciphertext  

2) Below ciphertext write ciphertext again by shifting ; displacements. 

For a displacement one 
C D R P A O O T J O E I V W F W W P V X 

 C D R P A O O T J O E I V W F W W P V 

      *          *    

 
K H X X K C Q G K D K I T Q R R U W V X 

X K H X X K C Q G K D K I T Q R R U W V 

   *            *     

 
U C I X Y C R V O C U I E W S L G F D P 

X U C I X Y C R V O C U I E W S L G F D 

                    

 
R V D F G H V  

P R V D F G H V 

        

For a dispalcement two  
C D R P A O O T J O E I V W F W W P V X 

  C D R P A O O T J O E I V W F W W P 

               *     

 
K H X X K C Q G K D K I T Q R R U W V X 

V X K H X X K C Q G K D K I T Q R R U W 

          *          

 
U C I X Y C R V O C U I E W S L G F D P 

V X U C I X Y C R V O C U I E W S L G F 
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R V D F G H V   

D P R V D F G H V 

         

 

For a displacement 3 
C D R P A O O T J O E I V W F W W P V X 

   C D R P A O O T J O E I V W F W W 

         *       *    

 
K H X X K C Q G K D K I T Q R R U W V X 

P V X K H X X K C Q G K D K I T Q R R U 

  *                  

 
U C I X Y C R V O C U I E W S L G F D P 

W V X U C I X Y C R V O C U I E W S L G 

                    

 
R V D F G H V    

F D P R V D F G H V 

          

 

For a displacement 4 
C D R P A O O T J O E I V W F W W P V X 

    C D R P A O O T J O E I V W F W 

         *           

 
K H X X K C Q G K D K I T Q R R U W V X 

W P V X K H X X K C Q G K D K I T Q R R 

   * *    *            

 
U C I X Y C R V O C U I E W S L G F D P 

U W V X U C I X Y C R V O C U I E W S L 

*   *  *    *           
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R V D F G H V     

G F D P R V D F G H V 

  *         

 

3) Point characters in the same location in above and below lines.  

4) Count characters in the same location.  We obtain that 

Displacement: 1            2           3          4           5 

Coincidences: 4            2           3          9           1 

We see that displacement 4 has the most coincidences.  Hence, length of key is 4. 

Finding the key:    

In ciphertext, we look for occurrences of every fourth letter starting with the first 

in order to find the first letter of the key. We have  
A B C D E F G H I J K L M 

1 0 1 0 1 0 2 0 0 1 3 0 0 

 
N O P Q R S T U V W X Y Z 

0 1 0 0 1 0 1 2 1 1 0 1 0 

The most occurring letters are K, G, U. The best choice is  G = e, and therefore 

the first key is 2 = c. 

We now look for occurrences of every fourth letter starting with second. 
A B C D E F G H I J K L M 

0 0 4 2 0 1 0 2 0 0 0 0 0 

 
N O P Q R S T U V W X Y Z 

0 2 1 1 0 0 0 0 1 3 0 0 0 

The most occurring letters are C, D, H, O, Q. The best choice is  S = e, and 

therefore the first key is 14 = o. 

We now look for occurrences of every fourth letter starting with third. 
A B C D E F G H I J K L M 

0 0 0 2 1 1 0 0 1 0 1 0 0 

 
N O P Q R S T U V W X Y Z 

0 1 0 1 3 1 0 1 3 0 1 0 0 
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The most occurring letters are R, V, D, I. The best choice is  H = e, and therefore 

the first key is 3 = d. 

We now look for occurrences of every fourth letter starting with fourth.  
A B C D E F G H I J K L M 

0 0 0 0 0 1 1 0 3 0 0 1 0 

 
N O P Q R S T U V W X Y Z 

0 0 2 0 1 0 1 0 1 1 4 0 0 

 

The most occurring letters are X, I, P . The best choice is  I = e, and therefore the 

first key is 4 = e. 

Example12:  

We wish to encipher a plaintext:  ''meet me at nine'',  keyword is ''danger'' for 

Vigenére cipher. First, translate letters in plaintext and keyword into their numerical 

equivalents such that  

P1 =12, P2 = 4, P3 = 4, P4 = 19, P5 = 12, P6 = 4, P7 = 0, P8 = 19, P9 = 13, P10 = 8, P11 = 13, 

P12= 4, 

 and  

 K1=3, K2 = 0, K3 =13,  K4 = 6, K5 = 4, K6 = 17  

Using encryption transformation  Cn ≡ Pn + Kn (mod 26)  , we have  

C1 ≡ 12+3 ≡ 15 (mod 26) 

C2 ≡ 4+0 ≡  4 (mod 26) 

C3 ≡ 4+13 ≡ 17 (mod 26)  

C4 ≡ 19+6 ≡ 25 (mod 26)  

C5 ≡ 12+4 ≡ 16 (mod 26)  

C6 ≡ 4+17 ≡ 21 (mod 26)  

C7 ≡ 0+3 ≡ 3 (mod 26)  

C8 ≡ 19+0 ≡ 19 (mod 26)  

C9 ≡ 13+13 ≡ 0 (mod 26)  

C10 ≡ 8+6 ≡ 14 (mod 26) 

C11 ≡ 13+4 ≡ 17 (mod 26)  

C12 ≡ 4+17 ≡ 21 (mod 26)  

Converting back to letters, we obtain ''PERZQVDTAORV''. 
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Example13:  

The message ''XUVKLMFAPGTWALQ'' is encrypted with key ''success''.  To 

decipher, we first convert letters in ciphertext and keyword into their numerical 

equivalents.  

C1 = 23, C2 = 20, C3 = 21, C4 = 10, C5 = 11, C6 = 12, C7 = 5, C8 = 0, C9 = 15, C10 = 6, C11 

= 19, C12 = 22, C13 = 0, C14 = 11, C15 = 16  

and  

K1 = 18, K2 = 20, K3 = 2, K4 = 2, K5 = 4, K6 = 18, K7 = 18  

Applying vigenére decryption transformation  Pn ≡ Cn-Kn (mod 26) , we obtain  

P1 ≡ 23-15 ≡ 5 (mod 26) 

P2 ≡ 20-20 ≡ 0 (mod 26) 

P3 ≡ 21-2 ≡ 19 (mod 26)  

P4 ≡ 10-2 ≡ 8 (mod 26)  

P5 ≡ 11-4 ≡ 7 (mod 26)  

P6 ≡ 12-18 ≡ 20 (mod 26)  

P7 ≡ 5-18 ≡ 13 (mod 26)  

P8 ≡ 0-18 ≡ 8 (mod 26)  

P9 ≡ 15-20 ≡ 21 (mod 26)  

P10 ≡ 6-2 ≡ 4 (mod 26)  

P11 ≡ 19-2 ≡ 17 (mod 26)  

P12 ≡ 22-4 ≡ 18 (mod 26) 

P13 ≡ 0-18 ≡ 8 (mod 26)  

P14 ≡ 11-18 ≡ 19 (mod 26)  

P15 ≡ 16-18 ≡ 24 (mod 26)  

Next, we translate back to letters to obtain.   ''fatihuniversity ''. 

Example14:  

Alice wishes to send the message ''Clacton is a small quiet and beautiful village in 

southeast of London.  Clacton isn't crowded.  We visited Horwich, Ipswich, Cambridge, 

Colchester, London and Canterbury in England.  In London, we went to Madamme 

Tussad's where there were mummies of famous people. We had a tour of the Thames 

River. We went to Bigben and Cambridge University.'' to Bob.  Alice uses 26-letter 

alphabet in which A-Z correspond to 0-25 .  Alice chooses a keyword, ''trip''.  First, she 
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converts letters into their numerical equivalents to encrypt.  As key length is 4, write 

them in groups of four.  

2,11,0,2             19,14,13,8                18,0,18,12              0,11,11,16               20,8,4,19  

0,13,3,1             4,0,20,19                  8,5,20,11                21,8,11,11               0,6,4,8  

13,18,14,20       19,7,4,0                    18,19,14,5              11,14,13,3               14,13,2,11  

0,2,19,14           13,8,18,13                19,2,17,14               22,3,4,3                  22,4,21,8  

18,8,19,4           3,7,14,17                  22,8,2,7                   8,15,18,22              8,2,7,2 

0,12,1,17           8,3,6,4                      2,0,11,2                   7,4,18,19                4,17,11,14   

13,3,14,13         0,13,3,2                    0,13,19,4                 17,1,20,17              24,8,13,4   

13,6,11,0           13,3,8,13                  11,14,13,3               14,13,22,4              22,4,13,19   

19,14,12,0         3,0,12,12                   4,19,20,18              18,0,3,18                22,7,4,17  

4,19,7,4             17,4,22,4                  17,4,12,20               12,12,8,4                18,14,5,5  

0,12,14,20         18,15,4,14                15,11,4,22               4,7,0,3                    0,19,14,20  

17,14,5,19         7,4,19,7                    0,12,4,18,                17,8,21,4                17,22,4,22  

4,13,19,19         14,1,8,6                    1, 4,13,0                  13,3,2,0                  12,1,17,8  

3,6,4,20             13,8,21,4                  17,18,8,19                24.  

and  

Keyword:19,17,8,15  

Applying vigenére enciphering transposition Cn ≡ Pn + Kn(mod 26) , we obtain  

21,2,8,17,12,5,21,23,11,17,0,1,19,2,19,5,13,25,12,8,19,4,11,16,23,17,2,8,1,22,2,0,14,25

,19,0,19,23,12,23,6,9,22,9,12,24,12,15,11,10,22,20,4,5,21,18,7,4,10,0,19,19,1,3,6,25,0,

2,12,19,25,3,15,20,12,18,15,21,3,23,11,25,1,19,22,24,22,6,15,25,10,22,1,6,0,11,1,19,15

,17,19,3,9,6,1,20,14,19,21,5,19,17,0,21,0,8,23,8,19,3,6,20,22,2,19,4,11,17,19,4,1,19,10,

18,2,6,17,25,21,19,6,23,19,15,6,20,16,2,4,5,21,18,7,4,4,19,15,21,21,8,12,5,20,15,22,17,

20,1,23,10,2,7,11,17,11,7,15,24,12,6,23,10,15,19,10,21,4,19,10,21,20,9,5,3,16,19,11,5,

13,20,19,3,22,9,11,6,12,3,8,2,12,11,23,24,8,18,19,10,22,9,10,5,13,8,0,21,1,22,19,3,12,7

,10,25,3,19,10,13,12,11,23,4,1,5,7,18,16,21,20,21,21,15,6,20,10,15,5,18,25,23,22,23,12

,9,6,25,3,19,10,9,16,8,17.  

Next, Alice translates back to letters and she sends the encrypted messages 

''VCIRMFVXLRABTCTFNZMITELQXRCIBWCAOZTATXMXGJWJMYMPLKWU

EFVSHEKATTBDGZACMTZDPUMSPVDXLZBTWYWGPZKWBGALBTPRTDJG

BUOTVFTRAVAIXITDGUWCTELRTEBTKSCGRZVTGXTPGUQCEFVSHEETPV
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VIMFUPWRUBXKCHLRLHPYMGXKPTKVETKVUJFDQTLFNUTDWJLGMDIC

MLXYISTKWJKFNIAVBWTDMHKZDTKNMLXEBIHSQVUVVPGUKPFSZXWX

MJGZDTKJQIR''  to Bob. 

Bob needs keyword to decipher the ciphertext.  To turn out keyword, Bob first finds key 

length.  Below the ciphertext, he writes the ciphertext again by shifting 1. He repeats 

this process for shifting 2, 3, 4, 5, 6 and 7(it is enough to find out key length).  He marks 

characters in the same location in both lines and obtains the following data: 
Shift: 1 2 3 4 5 6 7 

Coincidence: 4 7 7 13 10 12 10 

The most coincidences is shift of 4.  Hence, length of keyword is 4. 

 

Secondly, Bob finds frequency of letters at the 1st, 5th, 9th, 13th,...... letters and he 

obtains 
A B C D E F G H I J K L M 

2 4 0 0 2 2 7 3 1 0 7 6 4 

 
N O P Q R S T U V W X Y Z 

1 1 5 0 2 0 10 1 2 3 6 0 0 

 

The most occurence letter is T, though G, K, X and L are close behind. The best choice 

is X = e, and therefore the first key is 19 = t.  

He now looks at the 2nd, 6th, 10th, .......  letters and he finds 
A B C D E F G H I J K L M 

0 0 3 4 6 7 2 0 2 2 4 0 0 

 
N O P Q R S T U V W X Y Z 

1 0 0 0 4 3 3 5 7 1 3 4 8 

 

The most frequent is Z,  F and V occure 7 times.  The best choice is V = e, hence the 

second key is 17 = r.  

He looks at the 3rd, 7th, 11th, ...... letters and he has 
A B C D E F G H I J K L M 

4 5 4 2 2 0 0 0 3 2 3 3 9 
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N O P Q R S T U V W X Y Z 

2 1 2 3 1 0 6 3 6 6 0 0 0 

 

The most occurrence letter is M, though W, T, V are close behind.  The best choice is M 

= e, and  therefore the third key is 8 = i.   

Finally, he looks at the 4th, 8th, 12th, .......... letters and he obtains 
A B C D E F G H I J K L M 

3 2 3 4 0 1 4 3 8 5 0 3 0 

 
N O P Q R S T U V W X Y Z 

0 0 5 1 4 4 10 2 1 2 4 0 0 

 

T occures 10 times and I occures 8 times.  The best choice is T = e, and so the fourth 

key is 15 = p. 

Finally, Bob finds out the key { 19,17,8,15}  and deciphers the ciphertext using the key 

.  He obtains  

“Clactonisasmallquietandbeautifulvillageinsoutheastoflondonclactonisntcrowdedwevisit

edhorwichipswichcambridgecalchesterlondonandcanterburyinenglandinlondonwewentt

omadammetussadswherethereweremummiesoffamouspeoplewehadatourofthethamesriv

erwewentpobigbenandcambridgeuniversity”. 

 

4.2   ENCIPHERING MATRICES 

 Assume that we use a cryptosystem in which we have an alphabet of N-letter and 

message units are digraphs.  Numerical equivalents of digraphs are elements of  Z/N2Z.  

Each digraph can also be defined as a vector such that  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→

y
x

xy  where x and y are 

element of Z / NZ.  To illustrate, in 26-letter alphabet A-Z correspond to 0-25 then KL 

corresponds to vector ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
10

. 

Let P be plaintext digraph vector, C be ciphertext digraph vector, B be a constant 

vector, and A be NZZ
dc
ba

/∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
.   

Shift transformation is  NBPC mod+≡ . In otherwords, 
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N
fy
ex

N
f
e

y
x

C modmod ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  . 

Linear transformation is NAPC mod≡ . In other words, 

N
dycx
byax

N
y
x

dc
ba

C modmod ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

Afine transformation is NBAPC mod+= .  In otherwords, 

N
fdycx
ebyax

N
f
e

y
x

dc
ba

C modmod ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

Enciphering transformation is a permutation of vectors such that  Av + b mod N 

where A is an invertible nn× matrix, b and v are vectors.  A is defined on Z / NZ.  The 

following equivalences can be proved easily; 

A is invertible(Encrypted message can be decrypted if A is invertible) ⇔ Determinant of 

A is coprime to N   ⇔   A is one-to-one and onto. 

A matrix A has an inverse if and only if  

For  A = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dc
ba

  cdadA −=det  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −−

dc
ba

A
dc
ba

A
A 11 det

det
1  

For  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

332331

232221

131211

aaa
aaa
aaa

A , 

332112322311312213312312322113332211det aaaaaaaaaaaaaaaaaaA −−−++=  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

2221

1211

3132

1112

3231

2221

2123

1113

3331

1311

3133

2123

2322

1312

3233

1213

3332

2322

1

det
1

aa
aa

aa
aa

aa
aa

aa
aa

aa
aa

aa
aa

aa
aa

aa
aa

aa
aa

A
A  

In general, inverse of nn×  matrix can be obtained by Gaussian elimination or LU 

decomposition or Gauss-Jordan elimination. 
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Example1:  

To find inverse of  )29/(
1822
1921

2 ZZMA ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= , we first find determinant of A.  

29mod184019.2218.21det ≡−=−=A .  A has an inverse since 1)29,18gcd( =  and 

29mod2118 1 ≡− .  Hence, 

29mod
62
71

441462
399378

21.21)22.(21
)19.(2118.211

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
≡−A  

4.2.1 Linear  Transformation 

Let plaintext message unit P will be ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

 and ciphertext message unit C be ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
'
'

y
x

.  

Let enciphering matrix be  )/(2 NZZM
dc
ba

A ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  with  1),gcd(det =NA  .  The 

relationship NAPC mod≡  is used to encrypt message. In otherwords,                                                    

N
y
x

dc
ba

y
x

C mod
'
'

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡ . 

For deciphering, we need to know inverse of A.  Linear transformation 

NCAP mod1−≡  is used to convert ciphertext into plaintext.  In otherwords, 

N
y
x

aAcA
bAdA

y
x

P mod
'
'

.)(det.)(det
.)(det.)(det

11

11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

−−

−−

 

Example2: 

 Assume that we use Turkish letter alphabet with 29-letter.  We encipher the 

message “şifrekırıldı” by linear transformation.  Numerical equivalents of Turkish letter 

are 
A B C Ç D E F G Ğ H I İ J K L 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 
M N O Ö P R S Ş T U Ü V Y Z 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 

 

“şifrekırıldı” corresponds to the sequence of vectors .
10
4

,
14
10

,
20
10

,
13
5

,
20
6

,
11
22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 



 60

We can write this vectors as columns of a 62× -matrix which denotes plaintext.  

Applying linear transformation 29modAPC ≡  using the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1822
1921

A , we 

obtain   

29mod
780252815

1312104134
101420132011
410105622

1822
1921

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡C  

    = “DMKZDÜIAJĞKG” 

Example3: 

 Suppose that  two cryptosystems are used to encrypt vectors.  First apply the 

matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
78
23

  working modulo 26 and apply the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
247
413

 working modulo 

27.  Plaintext is on single letter in the 26-letter alphabet in which A-Z correspond to 0-

25 and ciphertext is on single letter in the 27-letter alphabet in which A-Z correspond to 

0-25 and blank = 26.  Alice wants to encipher the message “contactwithtom”.  Apply 

the two rules: 

26mod1PAI ≡  

             IAC 2≡ mod 27 

She obtains 

27mod
151252013426
1211110139

67152014310
24710234258

247
413

26mod
67152014310
24710234258

1219192221914
1478190132

78
23

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

C

I

 

         = ”J   NEANBUBZLBMP”. 

Alice  sends this message to Bob.  And Bob deciphers the message by applying the 

following two rules: 

26Im

27mod
1

1

1
2

odAP

CAI
−

−

≡

≡
 

First, Bob computes inverse of  26mod1A  and 27mod2A   such  that 

26mod
1114
10171

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡−A  and 27mod

2613
19211

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡−A  
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then Bob has 

26mod
1219192221914
078190132

67152014310
24710234258

1114
1017

27mod
67152014310
24710234258

151252013426
1211110139

2613
1921

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

P

I

 

Converting back vectors to letters, Bob obtains the message “contactwithtom”. 

4.2.2   Affine transformation 

 Let plaintext message unit P be ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

 and ciphertext message unit  C be ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
'
'

y
x

 .  

Let enciphering matrix be  )/(2 NZZM
dc
ba

A ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  with 1),gcd(det =NA  and a 

constant vector B be  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
f
e

.  The enciphering transformation is )(mod NBAPC +≡ .  In 

other words, N
f
e

y
x

dc
ba

y
x

mod
'
'

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
.  The deciphering transformation is  

P ≡ A-1C – A-1B ≡ A′+B′ mod N  where  A′ = A-1C and  B′ = – A-1B. 

Example4: 

 Assume that you want to encrypt the message “tom   was   killed   yesterday”  

using affine transformation in the 27-letter alphabet with A-Z correspond to 0-25 and 

blank = 26.  You use the encryption matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

247
413

A  working modulo 272 and 

constant vector ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
153
121

.  Numerical equivalents of digraphs are the integer 

2127 xxx += . 

First, you divide plaintext into digraphs and then compute their numerical equivalents 

such that  

 “to” = 27.19 + 14 = 570   “m     ” = 27.12 + 26 = 350 

 “wa” = 27.22 + 0 = 594   “s     ” = 27.18 + 26 = 512 

 “ki” = 27.10 + 8 = 278   “ll” = 27.11 + 11 = 308 

 “ed” = 27.4 + 3 = 111   “    y” = 27.26 + 24 = 726 

 “es” = 27.4 + 18 = 126   “te” = 27.19 + 4 = 517 
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 “rd” = 27.17 + 3 = 462   “ay” = 27.0 + 24 + 24 

using enciphering transformation  )(mod 2NBAPC +≡ , you obtain that 

227mod
31832112614561150
39118294593414183

153
121

24517726308512350
462126111278594570

247
413

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡C

 

converting back to letters, you have  

 183 = 27.6 + 21 = “GV”   150 = 27.5 + 15 = “FP” 

 414 = 27.15 + 9 = “PJ”   561 = 27.20 + 21 = “UV” 

 593 = 27.21 + 26 = “V     ”               14 = 27.0 + 14 = “AO” 

   94 = 27.3 + 13 = “DN”   126 = 27.4 + 18 = “ES” 

 182 = 27.6 + 20 = “GU”   321 = 27.11 + 24 = “LY” 

 391 = 27.14 + 13 = “ON”   318 = 27.11 + 21 = “LV” 

Hence the ciphertext is “GVFPPJUVV     AODNESGULYONLV”. 

Example5: 

 Alice sent to ciphertext “KIMDZWP    NEUITR.    CXUXBNHKJ”   to  Bob.  

Alice used an  enciphering matrix 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

11725010
9824010
8562010
797516
651331

A working modulo 29 and 

enciphering vector 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

5
17
9
3
24

B .  Alice and Bob use a single letter with 29-letter alphabet 

in which 0-25 correspond to A-Z, blank = 26,  ‘,’ = 27, ‘.’ = 28. First Bob computes  

inverse of A modulo 29 and obtains 29mod

426232724
15119027
142116137
2161013
319121727

1

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

≡−A . 
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Bob uses deciphering transformation 29mod'' BCAP +≡ .  Bob finds out   

 

29mod

8
24
5
6

15

'

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

≡B   and  29mod

20215011
162413163
1513212125
2422768
271162815

'

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

≡CA .  Hence Bob finds out   

 

29mod

.013819
111981127
201826261
1841214

132621141

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

≡P  . 

Finally, converting back to letters, he obtains “Bob,Tom    live    in    Istanbul.” 
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CHAPTER 5 

 

 

PUBLIC KEY CRYPTOGRAPHY 
 

 

 

5.1 THE IDEA OF PUBLIC KEY CRYPTOGRAPHY 

In public key cryptosystems, enciphering and deciphering keys are different from 

each other. Enciphering key is public whereas deciphering key is kept secret. Public key 

cryptosystem is also called asymmetric key cryptosystem.  The most significant point in 

public key cryptosystems is that deciphering the ciphertext is very hard by using the 

ciphertext and enciphering key.  Asymetric-key  algorithms depend on the number 

theory.   Enciphering transformation is a mapping  f  from P, the set of plaintext 

message units, to C, the set of ciphertext message units.  The mapping  f  is one to one 

correspondence and Zn to Zn.  Calculating inverse of  f  is too difficult without knowing 

private key, KD.  F  is called trapdoor function which means that computing inverse of a 

function without additional information is infeasible. 

 
 

    

 
  

    

     

   

   cryptography              AGX58U8F6WWUE             cryptography 

 

 

 

Figure 3 – Public Key Cryptography  
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In 1976, Diffie and Hellman invented public key cryptosystem.  Their asymetric 

key algorithm depends on discrete logarithm.  Then, in 1977, RSA was discovered by 

Ron Rivest, Adi Shamir and Leonard Adleman.  RSA is based on factoring extremely 

large numbers.  In 1985, T. El Gamal invented El Gamal cryptosystem.  It depends on 

the discrete logarithm. 

 

5.2   RSA 

RSA is one of the most common public key cryptosystem that is based on 

factoring extremely large integers.  Ron Rivest, Adi Shamir and Leonard Adleman 

invented RSA in 1977.  In RSA algorithm, modular arithmetic, primality, factorization, 

Chinese remainder theorem, Fermat and Euler theorem are used.   

Now we describe RSA algorithm.  Let  Alice and Bob work in N-letter alphabet.  

Assume that plaintext message units are blocks of k letters and ciphertext message units 

are blocks of l letters where k < l. 

To begin with, Bob generates two distinct extremely large prime integers p and q 

to form n = p.q where n is between Nk  and N l .  p and q are elements of  Z⏐NZ.  We 

compute k and l using the condition 

k ≤ [ logN (n) ] < l 

In other words, we obtain  k < logN (n) < l   from   Nk < n < N l   and this implies   

k ≤ [ logN (n) ] < l. 

 

By maple  

 k : = round(evalf(log[N](n))); 

 l : = k + 1;   

 

Next Bob computes ϕ (n) = (p-1)(q-1) which is Euler phi function.   

 

 

 

 

Then he chooses a number e, relatively prime to ϕ (n) and between 1 and ϕ (n).  e is 

called enciphering exponent.  n and e form enciphering key. Bob publishes n, e and 

By maple  

 phi(n); 
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keeps p, q private.  Alice enciphers her message, P, by using the equation  C ≡ Pe mod n 

.  P is an element of     { 0,1,2,3,……,Nk-1 }.     

 

By maple  

 C : = P &^ e  mod n; 

  

Enciphering transformation is Z⏐NZ to Z⏐NZ.  Alice sends the ciphertext to Bob.  Bob 

needs to know decryption exponent d in order to decipher the ciphertext.  He computes 

d by computing inverse of e modulo ϕ (n) such that  

d e ≡ 1 mod ( (p-1)(q-1) ) 

   d ≡ e-1 mod ( (p-1)(q-1) ) 

 

By maple 

 d : = (1 / e)  mod  ϕ (n); 

 

Consequently, Bob decrypts the message C by solving   

             P ≡ Cd mod n 

This systems works because  

Cd ≡ (Pe)d ≡ Ped mod n 

 since   ed-1 is a multiple of ϕ (n), ed-1 = kϕ (n).  It implies that  

Cd ≡ Ped ≡ P1+ kϕ (n) ≡ P1P kϕ (n) ≡ P(1)k ≡ P  mod n 

Decryption transformation is  Z⏐NZ to Z⏐NZ.   

5.2.1   Summary of RSA Algorithm 

- Bob  selects two distinct extremely large prime integers p and q to form n = p.q 

where n is between  Nk  and N l. 

- Bob chooses e between 1 and ϕ (n) with coprime to ϕ (n). 

- Bob makes n and e public. 

- Alice encrypts her message P using  C ≡ Pe mod n. 

- Alice sends C to Bob.  

- Bob computes inverse of e modulo  ϕ (n). 

- Bob deciphers C using  P ≡ Cd mod n. 
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5.2.2   RSA  Signature  Scheme 

As it is stated above, public key is pairs of (n, e) and the secret key is pairs of 

(n,d).  The signature is P ≡ Cd mod n  and  verification of signature is P ≡ Ce mod n. 

Example 1: 

Plaintext and ciphertext letters are written in 26-letter alphabet.  Plaintext message 

units are digraphs and ciphertext message units are trigrahs.  In other words,  k = 2, l = 

3  and  262 < n < 263 for all n.  We wish to encrypt the message “arrestmike”.  Let’s 

choose p and q to form n between  262 and  263 .  Let p be 61, q be 37 and e be 133.  

Enciphering key (n,e) is (2257, 133).  Now, we find numerical equivalents of plaintext 

blocks.   

“ar” = 17 + 0.26 = 17 

“re” = 4 + 17.26 = 446 

“st” = 19 + 18.26 = 487 

“mi” = 8 + 12.26 = 320 

“ke” = 4 + 10.26 = 264 

Applying Pe mod n, we obtain 

  17133 ≡ 96 mod 2257 

446133 ≡ 1574 mod 2257 

487133 ≡ 487 mod 2257 

320133 ≡ 809 mod 2257 

264133 ≡ 1351 mod 2257 

Converting back to letters, we have 

    96 = 0.262 + 3.26 + 18 = “ADS” 

1574 = 2.262 + 8.26 + 14 = “CIO” 

  487 = 0.262 + 18.26 + 19 = “AST” 

  809 = 1.262 + 5.26 + 3 = “BFD” 

1351 = 1.262 + 25.26 + 25 = “BZZ” 

Hence, the ciphertext is “ADSCIOASTBFDBZZ” 

Example 2:  

Suppose that Alice and Bob use a 40-letter alphabet in which A-Z correspond to 

0-25, “blank” = 26, “.” = 27, “? “= 28, “, “= 29, the numerals 0-9 correspond to 30-39 

for both plaintext and ciphertext.  Bob chooses two distinct primes, p = 123456811 and  



 68

q = 427419669163,  to form n = 52767869313539019193.  k and l are calculated using 

k ≤ logN n < l .  k = 12 and l = 13. Next, he generates a number e = 9507029 , relatively 

prime to ϕ(n) =  52767868885995893 220 .   

 Alice wishes to send her message to Bob.  Her message is “Ron Rivest,Adi 

Shamir and Leonard Adleman found RSA in 1977.”.  To encrypt, Alice first divides her 

message into 12-blocks such that  

“Ron   Rivest,A”  ,    “di   Shamir    an”   ,   “d    Leonard    Ad”   ,   “leman    found   ” , 

“RSA    in    1977.”. 

Next, she computes numerical equivalents of plaintext message units.   

“Ron   Rivest,A” = 7280698525809823560 

“di   Shamir   an” = 1349112136930409613 

“d   Leonard  Ad” = 1533833105451753603 

“leman   found   ” = 4658825404965140946 

“RSA   in   1977.” = 7319232240312316707 

Applying  Pe ≡ C mod n , she obtains 

34499766830122397961, 10891019001444304501, 9639793540902248331, 

21689606995749800046,               2222086672149204714.  

Converting back to letters, she obtains ciphertext 

“CCKGGZ6KQWS,BAZ8Z7YZ59HKMVAW9M50T747ZILBL?TLPH740ZBGAFL6

XU?7?LM74”. 

Alice sends the ciphertext to Bob.  For deciphering, Bob calculates d ≡ e-1 mod 

ϕ(n) and d ≡ 22954230467328982169 mod 52767868885995893220. 

Breaking ciphertext into 13-blocks and computing their numerical equivalents, he 

obtains 

“CCKGGZ6KQWS,B” = 34499766830122397961 

“AZ8Z7YZ59HKMV” = 10891019001444304501 

“AW9M50T747ZIL” = 9639793540902248331 

“BL?TLPH740ZBG” = 21689606995749800046 

“AFL6XU?7?LM74” = 2222086672149204714 

Using  Cd mod n  and converting back to letters, he obtains the original message “Ron 

Rivest,Adi Shamir and Leonard Adleman found RSA in 1977.”. 
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Example 3: 

 Eve  wishes to decipher the encrypted message “ADY.INFKNZSIP,QZWYWI.I 

MQCTLIKNALHHUPG,ESRZMQB,BEQKVRRGW’blank’NRIOAAWFQWDTJ’bla

nk’JODNBCIV’blank’XIVFK.YDKCSACGZ’blank’KTEYS’blank’J,’blank’MH’blank

’ONCQJ,TPFTYNWAGZZCHATNXG’blank’GPJPIM’blank’SXTRFGZFFGQAVFD

VRJPENTZMUS.APBGKABUGKJBAPASG,’blank’DNSQBNPWWDUL’blank’VHC

JIGOWJHNXAKNQISMKDUMJJPMRXVSKYANLVJ’blank’JLG”. Eve knows that 

the enciphering keys are n = 2484247692565459788174759990143993482940467 and 

e = 675184119179267202659. A 29-letter alphabet in which  A-Z correspond to 0-25, 

“blank” = 26, “,” = 27, and “.” = 28 is used.  First, Eve calculates plaintext and 

ciphertext message units using the condition k ≤ [ logN (n) ] < l  and finds out  k = 29 

and l = 30.  As the ciphertext message unit is 30-block, she divides the disguised 

message into 30-blocks and computes their numerical equivalents such that        

C1 = “ADY.INFKNZSIP,QZWYWI.IMQCTLIKN” = 34187648209120461901227908 

6537592963553529. 

C2 = “ALHHUPG,ESRZMQB,BEQKVRRGW   NRIO” = 99613334045663862667441 

7313836473904398305. 

C3 = “AAWFQWDTJ    JODNBCIV     XIVFK.YDKCS” = 6775621821028728226779 

3714374141739289495. 

C4 = “ACGZ    KTEYS    J,    MH     ONCQJ,TPFTYNW” = 198128347485604089120 

731145045025832637917. 

C5 = “AGZZCHATNXG    GPJPIM    SXTRFGZFFGQ” = 6102139271053534044 

07560742854778685798124. 

C6 = “AVFDVRJPENTZMUS.APBGKABUGKJBAP” = 187501885958479431320988 

0227593807653148984. 

C7 = “ASG,    DNSQBNPWWDUL    VHCJIGOWJHNX” = 161499243766425221820 

9508354779268780466837. 

C8 = “AKNQISMKDUMJJPMRXVSKYANLVJ     JLG” = 9268156049878222861142 

84996927688327502446. 

She needs to know deciphering exponent d, p and q.  She finds  p = 565713850319 

10524108581 and q = 43913503110524108407 by factoring n = 248424769256545 

9788174759990143993482940467. Then, she computes d ≡ e-1 mod ϕ(n) and d ≡ 18 
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63780789446309048208593477738960008044899 mod 2484247692565459788118144 

691608972434723480.  Next, she uses  Cd mod n   to decrypt the message such that  

C1
186378078944630904820859347773896000804489 = 1704166571980582248506204309797054492 

017966 mod 2484247692565459788174759990143993482940467. 

Converting back to letters she obtains “The  pyramid of Giza, the Hangi”.  

C2
186378078944630904820859347773896000804489 = 1172109680174424865135091762510006900 

467385 mod 2484247692565459788174759990143993482940467. 

Converting back to letters she obtains “ng  Gardens  of  Babylon,The  Sta”. 

C3
186378078944630904820859347773896000804489 = 1745331042364450733115954184141626384 

346301 mod 2484247692565459788174759990143993482940467. 

Converting back to letters she obtains “tus  of  Zeus  at  Olympia,The Co”. 

C4
186378078944630904820859347773896000804489 = 1018656784697003094047226865818045236 

543313 mod 2484247692565459788174759990143993482940467. 

Converting back to letters she obtains “lossus  of  Rhodes,The Temple  o” . 

C5
186378078944630904820859347773896000804489 = 522150121127696445713936945856846652 

551535  mod 2484247692565459788174759990143993482940467. 

Converting back to letters she obtains “of  Artemis  at  Ephesus,The Maus”. 

C6
186378078944630904820859347773896000804489 = 1273652449474239151981448704244386345 

313506  mod 2484247692565459788174759990143993482940467. 

Converting back to letters she obtains “oleum  at  Halicarnassus  and  Th”. 

C7
186378078944630904820859347773896000804489 = 434733018135420554759942988701176180 

838025 mod 2484247692565459788174759990143993482940467. 

Converting back to letters she obtains “e  Lighthouse  of  Alexandria  ar” . 

C8
186378078944630904820859347773896000804489 = 435457324227160099204791087923411069 

588149 mod 2484247692565459788174759990143993482940467. 

Converting back to letters she obtains “e  seven  wonders  of  the  world.”. 

Hence the original message is “The pyramid of Giza,The Hanging Gardens of Babylon, 

The Status of Zeus at Olympia,The Colossus of Rhodes,The Temple of Artemis at 

Ephesus,The Mausoleum at Halicarnassus and The Lighthouse of Alexandria are seven 

wonders of the world.”.  
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5.3   DISCRETE LOGARITHM 

Discrete logarithm is very significant for public key that is used in Diffie-Hellman 

key exchange, El Gamal cryptosystem, the Massey-Omura cryptosystem for message 

transformation and the Digital Signature Algorithm. 

Definition: Let G be a multiplicative group.  Let a be a generator of G and β be an 

element of  < a >.  Then discrete logarithm of β  to the base a is finding unique 

exponent x such that  β = ax.  

We work in Fq* .  Let a be a generator of Fq*  and β  be in  < a > .  The goal of 

discrete logarithm is to find out  x, 0 ≤ x < q such that β = ax ( mod q ). 

Example 1:  Let q be 17 and  5 be  generators of  F17
* .  4 is the discrete logarithm of 13 

to the base 5.  

Example 2:  In F8
* , let a  be a root of x3 + x + 1 .  The discrete logarithm of 1 to the 

base a  is 7.  

 

5.4   EL GAMAL  

To begin with, Bob chooses an extremely large finite field  Fq and a primitive 

element g in Fq.  Alice wants to send her message to Bob.  She converts her message to 

numerical equivalents P in Fq.  

If P is greater than q then Alice breaks P , 0 ≤ P ≤ q-1, into blocks.  Bob chooses a 

secret integer x,  0 ≤ x ≤ q-1, in order to compute y = gx mod q .  Bob makes (q, g, y) 

public but keeps x private.  Alice generates a secret integer k at random to compute r ≡ 

gk mod q and s ≡ ykP mod q.  k is in the interval [ 0, q-1 ].  Next, Alice sends the pair (r, 

s) to Bob.  Bob decrypts ciphertext by solving the equation  P  = s.r-x mod q .  As  r-x = 

(gk)-x =  (gx)-k = y-k mod q,  s.r-x = y-k.P. y—k ≡ P mod q.  

Finding P is very hard by only knowing s and r .  If somebody knows x, he / she 

can find P.  Hence, the most significant point in El Gamal cryptosystem is keeping x 

secret since computing discrete logarithm is infeasible. 

5.4.1   The El Gamal Signature Scheme 

Let Alice wants to sign a message.  Key generation is same as for El Gamal 

encryption.  First, Alice generates very large finite field  Fq and a primitive element g in 

Fq.  Next, she selects a random integer  x , 1 ≤ x < q-1 and calculates y = gx mod q.  x is 
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private key and y is public key.  She makes  q, g, y  public.  Numerical equivalents of 

plaintext message units, P, is in the range 0 ≤ P ≤ q-1. 

For signing message, Alice generates an integer k in the interval (1, q-1) at 

random with gcd(k, q-1) = 1.  Next, she computes  r ≡ gk mod q.  Finally, she solves the 

equation gP ≡gxrgks mod q or  P ≡xr + ks (mod q-1) or s ≡ (P - xr)k-1 mod q-1 if and 

only if gcd(k, q-1) = 1.  Therefore, signature is the pair (r, s) for P .  In order for Bob to 

verify the signature, Bob checks whether  1 < r < q  and  gP ≡ yrrs mod q since gP 

≡gxrgks mod q. 

 

5.5   DIFFIE-HELLMAN KEY EXCHANGE 

The aim of algorithm is that two users shares their keys securely. Diffie-Hellman 

assumption is based on  discrete logarithm.  Assume that we work in Fq.  Let g be a 

generator of  Fq
*.  g mod q, g2 mod q, g3 mod q, ……, gq-1 mod q   are all distinct and 

correspond to an integer from 1 to q-1.  q and g are public.  Alice selects a random 

number α between 1 and q-1, and computes YAlice ≡ g α mod q.  Bob chooses a random 

number  β  between  1 and q-1, and computes YBob ≡ gβ mod q .  Alice and Bob keep α 

and  β private and make YAlice  and  YBob public.  Alice can calculate the key such that  

(YBob)α mod q = (gβ) α mod q = (g α) β mod q = (YAlice) β mod q. 

Moreover, Bob can calculate the key by following the same procedure; 

(YAlice) β mod q  = (g α) β mod q = (gβ) α mod q = (YBob)α mod q. 

It is a known fact that for large primes, calculating discrete logarithms is very 

hard.  This makes Diffie-Hellman key exchange secure. 

 

5.6  MASSEY-OMURA CRYPTOSYSTEM FOR MESSAGE   TRANSMISSION        

         Massey-Omura cryptosystem depends on discrete logarithm and Shamir 

three-pass protocol. 

          Shamir three-pass protocol works as follows: 

          Bob and Alice choose a finite field  Fq.  It is fixed and public.  Alice selects 

a secret integer eA, encryption exponent, in the range, 1 ≤ eA ≤ q-1, with gcd(eA, q – 1) = 

1.  Bob generates a private integer eB in the range, 1 ≤ eB ≤ q-1, such that gcd(eB, q – 1) 

= 1.  Alice calculates dA, decryption exponent, such that  eA dA ≡ 1 (mod q – 1) by using 
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the Euclidean algorithm.  Bob computes dB such that eB dB ≡ 1 mod q – 1.  Assume that 

P is the plaintext message unit.   

1) Alice calculates P eA and sends it to Bob. 

2) Bob raises P eA  to eB  and returns (P eA ) eB  to Alice.  Next Alice 

raises (P eA eB)  to  dA  which becomes (P eA eB) dA = P eB  and sends to 

Bob.  

3) Finally, Bob raises  P eB   to dB  and  obtains the message P. 

As you see, there is no public key in this system. 

 

5.7   DIGITAL  SIGNATURE 

Digital signature provides to understand whether Alice sent  message or not.  

There are exactly two process of digital signature; the signing and verification.  For key 

generation 

1) Alice chooses 512 bit prime  p and 160 bit prime q which is divisor  of  p-1. 

2) Alice generates a generator g of  Fp
*.  Order of g is q.   

3) Alice chooses an integer x at random in the range, 1 ≤ x ≤ q-1. 

4) Alice computes y = gx mod p.  y is the public key and x is the private key.  Alice 

makes (p, q, y, g) public. 

To sign message; 

1) Alice converts her message to numerical equivalents m, 0 ≤ m ≤ q-1. 

2) Alice chooses a random integer k, 1 < k < q, with gcd(k, q) = 1. 

3) Alice computes r ≡ (gk mod p)mod q.   

4) Alice computes s by solving the equation  s ≡ (m + xr)k-1 mod q. 

Signature is the pair (r, s).   

       For verification of the signature, Bob computes w = s-1 mod q and v = (gmwyrw 

mod p)mod q.  If  v = r , it means that Alice sent the message.
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CHAPTER 6 
 

 
PRIMALITY TEST 

 

 

 

Let  a be a positive integer.  If n is not prime, a is relatively prime to n, and an-1 

≡1(mod n), then n is called a pseudoprime to the base a. For example,there are three 

pseudoprime to the base 2 below 1000.  341 ia a pseudoprime to the base 2 as 2340 ≡1 

(mod 341), 561 is a pseudoprime to the base 2 as 2560≡1  (mod 561) and 645 is a 

pseudoprime to the base 2 as 2644≡1 (mod 645). 

A composite positive integer n is called carmichael number if n satisfies the 

condition  

bn-1≡1 (mod n) for all integers b coprime to n. 

Theorem6.1(Koblitz, Neal.):  Let n be odd and positive integer.  n is charmichael 

number if and only if n is square-free and p-1⎟ n-1   for all prime divisors p of n. 

For example: 1729 = 7.13.19 and 6⎟1728,12⎟1728,18⎟1728. 

41041 = 7.11.13.41 and 6⎟ 41040, 10⎟ 41040, 12⎟ 41040, 40⎟ 41040. 

An odd composite positive integer n is said to be an Euler pseudoprime to base a, 

if gcd(a,n) = 1 and a(n-1)/2 n
n
a mod⎟
⎠
⎞

⎜
⎝
⎛≡  where ⎟

⎠
⎞

⎜
⎝
⎛

n
a  is the Jacobi symbol. 

Theorem6.2(Koblitz, Neal.): If n is an Euler pseudoprime to the base a, then n is a 

pseudoprime to the base a.   

But every pseudoprime is not always an Euler pseudoprime. 

Theorem6.3(Koblitz, Neal.):If n is a strong pseudoprime to the base a then  n is an 

Euler pseudoprime to base a. 

For example, 5461 is a pseudoprime to the base 2 since 25461 ≡ 2(mod 5461). However, 

5461 is not an Euler pseudoprime.  Because
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⎟
⎠
⎞

⎜
⎝
⎛ −

2
15461

2  ≡ 5461mod
5461

2
⎟
⎠
⎞

⎜
⎝
⎛  

    1 ≢-1 mod 5461 

 561 is an Euler pseudoprime to the base 2, because 

⎟
⎠
⎞

⎜
⎝
⎛ −

2
1561

2 ≡ 561mod
561
2

⎟
⎠
⎞

⎜
⎝
⎛  

             1≡1 mod 561. 

561 is also a pseudoprime to the base 2 as 2561≡2 mod 561. 

Generating extremely large primes is very significant in cryptographic algorithms.  

A primality test is an algorithm to reveal if a given number is prime or composite.  

Probabilistic tests are the most famous one.  It relies on some equalities which is true for 

prime numbers. Now we present the Miller-Rabin primality test which is the most 

popular probabilistic test.  Assume that n is an odd prime.  We write n-1 = 2s.d where s 

is an positive integer and d is odd positive integer.  Next, we choose an integer 

a∈(Z/nZ)*.  n is prime if one of the following condition is satisfied: 

       ad ≡ 1 (mod n)  (1) 

     or 

     dr

a 2  ≡ -1 (mod n)   ,   0 ≤ r ≤ s  (2) 

If n is composite and satisfies the above conditions (1) and (2) then n is said to be 

a strong pseudoprime to the base a. 

The Fermat Primality test is a probabilistic test.  We say a number n is prime, if ∃ 

a such that gcd(a,n) = 1 and  an-1 ≡ 1 (mod n).  It is enough to look at the integer a such 

that 1 ≤ a ≤n. 

Another probabilistic test is Solovay-Strassen Primality test .  Let n be a positive 

odd integer.We choose k integers a1, a2,...., ak where 0 < ai < n , 1 ≤ i ≤ k 

⎟
⎠
⎞

⎜
⎝
⎛

n
ai  ≡a(n-1)/2 (mod n )  where ⎟

⎠
⎞

⎜
⎝
⎛

n
ai  is Jacobi symbol.  If the equality does not hold for 

all ai, then n is composite. 
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APPENDIX   A 

 
 

PUBLIC KEY ALGORITHMS BY MAPLE 

 

 

 
A.1   RSA  ALGORITHM  BY  MAPLE 

 with(linalg): with(numtheory): with(StringTools): 

Alphabet and the numeric equivalences of symbols of the alphabet   

 indx:=table(["a"=0,"b"=1,"c"=2,"d"=3,"e"=4,"f"=5,"g"=6,"h"=7,"i"=8,"j"=9,"k"

=10,"l"=11,"m"=12,"n"=13,"o"=14,"p"=15,"q"=16,"r"=17,"s"=18,"t"=19,"u"=20

,"v"=21,"w"=22,"x"=23,"y"=24,"z"=25,"#"=26,"."=27,"?"=28,","=29,"0"=30,"1

"=31,"2"=32,"3"=33,"4"=34,"5"=35,"6"=36,"7"=37,"8"=38,"9"=39]): 

 symb:=table([0="a",1="b",2="c",3="d",4="e",5="f",6="g",7="h",8="i",9="j",10

="k",11="l",12="m",13="n",14="o",15="p",16="q",17="r",18="s",19="t",20="u

",21="v",22="w",23="x",24="y",25="z",26="#",27=".",28="?",29=",",30="0",3

1="1",32="2",33="3",34="4",35="5",36="6",37="7",38="8",39="9"]): 

Conversion a block of text into decimal representation and vice versa  

Suppose we are given a sequence of symbols (plaintext). Many enciphering algorithms 

before encryption  the text convert the text into the convenient for enciphering 

representation. This is usually done by  fragmentation the plainttext into k-blocks and 

conversion these blocks into decimal fragmentation. For example, suppose we are given 

the text "cryptography". Let k =3. Then 3-blocks are: 

  "cry", "pto", "gra", "phy".     

Let the letters in the text are drawn from 26-letter alphabet. Thus each 3-block cab be 

regarded as a 3-digit base-26 number. For instance, the decimal representations of  "cry" 
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is 1818.  Conversely, we can compute the 3-digit base-26 representation of a decimal 

number d as long as  d is less than 263. Functions itoa and atoi can be used for 

conversion a block of text into decimal representation and vice versa. 

converting letter blocks to numerical equivalents 

This procedure converts a sequence of alphabets to an integer base N.  Let N be a size of 

the alphabet. Then any sequence  a1,a2,…..,ak of symbols drawn from the alphabet 

whose length is less than or equal to n can be thought as a number base N and hence can 

be uniquely mapped onto the range 0...Nn-1 as following ∂( a1) + ∂( a2) N + ….. + ∂( ak) 

Nk-1, where ∂( ai) is the numeric eqivalence of the symbol  ai. 

For example, let N = 40,  then "hello" is mapped to 7 + 4.40 + 11.402 + 11.403 + 14.404 

+ 14.405 = 18194054 

 atoi:=proc(txt,N) 

 local i,res,t; 

 res:=0; t:= LowerCase(Reverse(txt)); t:=SubstituteAll(t," ", "#"); 

 for i from 1 while i<= length(t) do 

 res := res + indx[substring(t,i)]*(N^(i-1)); 

 end do; 

 return (res); 

 end: 

for example 

 atoi("yasemin",40); 

98350355533 

converting numbers  back to letters 

This procedure converts the integer m from decimal representation  into N-base 

representation having k digits.   k must be greater than or equal to [lognm] otherwise an 

error message is displayed. 

 itoa:=proc(m,k,N) 

 local res,len,i,lst; 

 lst := convert(m,base,N); 

 res:=[]; 

 len := nops(lst); 

 for i from 1 while i<= k do 
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 res := [op(res),0]; 

 end do; 

 for i from 1 while i<= len do 

 res[i] := lst[i]; 

 end do; 

 for i from 1 while i<= k do 

 res[i] := symb[res[i]]; 

 end do; 

 return Reverse((Implode(res))); 

 end: 

for example 

 itoa(98350355533,7,40); 

“yasemin” 

encryption for RSA algorithm 

 encrypteRSA:=proc(ptxt,N,n,e) 

 local i,k,l,ctext,m,r,blocknumber,ptext; 

 k:=round(evalf(log[N](n))); 

 l:=k+1;ptext:=ptxt; 

 printf("From %d -blocks of letters into %d -blocks of letters\n",k,l); 

 printf("Plaintext: %s\n",ptext); 

 r := length(ptext) mod k; 

 if r > 0 then  

 for i from 1 while i <= k-r do 

 ptext := cat(ptext,"#"); 

 end do; 

 end if; 

 blocknumber:=length(ptext)/k; ctext:=""; 

 for i from 1 while i <= blocknumber do 

 m:=atoi(substring(ptext,(i-1)*k+1..i*k),N); 

 m:= m&^e mod n; 

 ctext := cat(ctext,itoa(m,l,N)); 

 end do; 
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 printf("Ciphertext: %s\n",ctext); 

 end: 

decryption for RSA algorithm 

 decrypteRSA:=proc(ctxt,N,n,d) 

 local i,k,l,ptext,m,txtlen,blocknumber,ctext; 

 k:=round(evalf(log[N](n))); 

 l:=k+1;ctext:=ctxt; 

 printf("From %d -blocks of letters into %d -blocks of letters\n",l,k); 

 printf("Ciphertext: %s\n",ctext); 

 txtlen := length(ctext);   

 blocknumber:=txtlen/l; ptext:=""; 

 for i from 1 while i <= blocknumber do 

 m:=atoi(substring(ctext,(i-1)*l+1..i*l),N); 

 m:= m&^d mod n; 

 ptext := cat(ptext,itoa(m,k,N)); 

 end do; 

 ptext:=SubstituteAll(ptext,"#", " "); 

 printf("Plaintext: %s\n",ptext); 

 end: 

for example 

 encrypteRSA("muberragurel",40,52767869313539019193,9507029); 

From 12 -blocks of letters into 13 -blocks of letters 

Plaintext: muberragurel 

Ciphertext: b2j,5u2vml5vt 

 decrypteRSA("b2j,5u2vml5vt ",40,52767869313539019193,9507029); 

From 13 -blocks of letters into 12 -blocks of letters 

Ciphertext: b2j,5u2vml5vt 

Plaintext: muberragurel 

 encrypteRSA("Ron Rivest,Adi Shamir and Leonard Adleman found RSA in 

1977.",40,52767869313539019193,9507029); 

From 12 -blocks of letters into 13 -blocks of letters 

Plaintext: Ron Rivest,Adi Shamir and Leonard Adleman found RSA in 1977. 
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Ciphertext: 

cckggz6kqws,baz8z7yz59hkmvaw9m50t747zilbl?tlph740zbgafl6xu?7?lm74 

 decrypteRSA("cckggz6kqws,baz8z7yz59hkmvaw9m50t747zilbl?tlph740zbgafl6

xu?7?lm74",40,52767869313539019193,22954230467328982169); 

From 13 -blocks of letters into 12 -blocks of letters 

Ciphertext: 

cckggz6kqws,baz8z7yz59hkmvaw9m50t747zilbl?tlph740zbgafl6xu?7?lm74 

Plaintext: ron rivest,adi shamir and leonard adleman found rsa in 1977. 

 

A.2    DIFFIE-HELLMAN  KEY  EXCHANGE  SYSTEM  BY MAPLE 

 with(numtheory):with(LinearAlgebra:-Modular):with(StringTools): 

           Alphabet and the numerical equivalences of symbols of the alphabet   

 N:=40: #size of the alphabet 

 indx:=table(["a"=0,"b"=1,"c"=2,"d"=3,"e"=4,"f"=5,"g"=6,"h"=7,"i"=8,"j"=9,"k"

=10,"l"=11,"m"=12,"n"=13,"o"=14,"p"=15,"q"=16,"r"=17,"s"=18,"t"=19,"u"=20

,"v"=21,"w"=22,"x"=23,"y"=24,"z"=25,"#"=26,"."=27,"?"=28,"$"=29,"0"=30,"1

"=31,"2"=32,"3"=33,"4"=34,"5"=35,"6"=36,"7"=37,"8"=38,"9"=39]): 

 symb:=table([0="a",1="b",2="c",3="d",4="e",5="f",6="g",7="h",8="i",9="j",10

="k",11="l",12="m",13="n",14="o",15="p",16="q",17="r",18="s",19="t",20="u

",21="v",22="w",23="x",24="y",25="z",26="#",27=".",28="?",29="$",30="0",3

1="1",32="2",33="3",34="4",35="5",36="6",37="7",38="8",39="9"]): 

  converting letter blocks to their numerical equivalents 

 atoi:=proc(txt,N) 

 local i,res,t; 

 res:=0; t:= LowerCase(Reverse(txt)); t:=SubstituteAll(t," ", "#"); 

 for i from 1 while i<= length(t) do 

 res := res + indx[substring(t,i)]*(N^(i-1)); 

 end do; 

 return (res); 

 end: 
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converting  numbers back to letters 

This procedure converts the integer m from decimal representation into N-base   

representation having k digits. k must be greater than or equal to [lognm]   otherwise  an  

error message is displayed.                                

 itoa:=proc(m,k,N) 

 local res,len,i,lst; 

 lst := convert(m,base,N); 

 res:=[]; 

 len := nops(lst); 

 for i from 1 while i<= k do 

 res := [op(res),0]; 

 end do; 

 for i from 1 while i<= len do 

 res[i] := lst[i]; 

 end do; 

 for i from 1 while i<= k do 

 res[i] := symb[res[i]]; 

 end do; 

 return Reverse((Implode(res))); 

 end: 

Generating a key using the Deffie-Hellman key exchange system 

This procedure generates a pair of a secret and public keys for a single user based on 

Deffie-Hellman algorithm. 

 DeffieHellman:=proc(galf,gnr) 

 local q, X, Y,lst; 

 lst:=[]; 

 q:=galf[size](): 

 randomize(): 

#generate keys   

 X:=rand() mod q: lst:=[op(lst),X]:    #keep it secret 

 Y:=gf[output](gf[`^`](gnr,X)): lst:=[op(lst),Y]:  #make it public 
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 printf("Your secret key (X) is:%d\n",X); 

 printf("Your public key (Y) is:%d\n",Y); 

 return lst; 

 end proc: 

Suppose two users want to agree on a public key.  They choose a finite field, for         

example, GF(7,20)  and compute the primitive element of the field. 

 gf:=GF(11,20):g:=gf[PrimitiveElement](): 

and the first user generates a pair of keys and anounces his/her public key 

 KEY:=DeffieHellman(gf,g); 

      Your secret key (X) is:889109933313 

      Your public key (Y) is:512807151746229471124 

KEY:=[ 889109933313, 512807151746229471124] 

 XA:=KEY[1];YA:=KEY[2]; 

XA:= 889109933313 

YA:= 512807151746229471124 

then the second user generates a pair of keys and anounces his/her public key 

 KEY:=DeffieHellman(gf,g); 

       Your secret key (X) is:743949271486 

       Your public key (Y) is:550730814315003042959 

KEY:=[ 743949271486, 550730814315003042959] 

 XB:=KEY[1];YB:=KEY[2]; 

XB:= 743949271486 

YB:= 550730814315003042959 

The following computations show that the users have agreed on a common  public key: 

 SKEY:=gf[output](gf[`^`](gf[input](YB),XA)); 

SKEY:=202810007682204043917 

 SKEY:=gf[output](gf[`^`](gf[input](YA),XB)); 

SKEY:=202810007682204043917 

 SKEY:=SKEY mod N^12; 

SKEY:=1483415682204043917 

 k:=convert(SKEY,base,N^2); 

k:=[717, 1527, 1260, 431, 751, 141] 
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 A:=<<k[1],k[2]>|<k[3],k[4]>>;Ai:=Inverse(N^2,A); 

 

 
 B:=<<k[5],k[6]>>;Bi:=-B;      #additive inverse 

 

 
 Affine Encryption 

 encrypteAffine:=proc(ptxt,N,M,V)    # ptxt is plaintext, N is base, M is 

encryption matrix and V is encryption vector 

 local i,k,ctext,x,y,r,blocknumber,ptext,P,C; 

 k := 2;   #because of diagraph 

 ptext:=ptxt; 

 printf("Plaintext: %s\n",ptext); 

 r := length(ptext) mod 2*k; 

 if r > 0 then  

 for i from 1 while i <= 2*k-r do 

 ptext := cat(ptext,"#"); 

 end do; 

 end if; 

 blocknumber:=length(ptext)/(2*k); ctext:=""; 

 for i from 1 while i <= blocknumber do 

 x:=atoi(substring(ptext,(i-1)*2*k+1..(i-1)*2*k+2),N); 

 y:=atoi(substring(ptext,(i-1)*2*k+3..(i-1)*2*k+4),N);  

 P:= <<x,y>>; C:=AddMultiple(N^2,Multiply(N^2,M,P),V);  

 ctext := cat(ctext,itoa(C[1,1],2,N));ctext := cat(ctext,itoa(C[2,1],2,N));    

 end do; 

A := 717 1260 

1527 431 

 
 
 
 

 
 
 

Ai := 833 620 

839 131 
 
 
 

 
 
 

B := 751 

141 

 
 
 

 
 
 

Bi := -751

-141
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 printf("Ciphertext: %s\n",ctext); 

 end: 

Affine Decryption 

 decrypteAffine:=proc(ctxt,N,Mi,Vi) 

 local i,k,ptext,x,y,blocknumber,ctext,P,C; 

 k := 2; #because of diagraph 

 ctext:=ctxt; 

 printf("Ciphertext: %s\n",ctext); 

 blocknumber:=length(ctext)/(2*k); ptext:=""; 

 for i from 1 while i <= blocknumber do 

 x:=atoi(substring(ctext,(i-1)*2*k+1..(i-1)*2*k+2),N); 

 y:=atoi(substring(ctext,(i-1)*2*k+3..(i-1)*2*k+4),N);  

 C:=<<x,y>>; P:=Multiply(N^2,Mi,AddMultiple(N^2,Vi,C));  

 ptext := cat(ptext,itoa(P[1,1],2,N));ptext := cat(ptext,itoa(P[2,1],2,N));    

 end do; 

 ptext:=SubstituteAll(ptext,"#", " ");printf("Plaintext: %s\n",ptext); 

 end: 

   Now, the users comunicate 

 encrypteAffine("when are you comming?",40,A,B); 

Plaintext: when are you comming? 

Ciphertext: h0i3g15za91j4zzhphuxt38j 

 decrypteAffine("h0i3g15za91j4zzhphuxt38j",40,Ai,Bi); 

Ciphertext: h0i3g15za91j4zzhphuxt38j 

Plaintext: when are you comming?    

 

A.3    EL GAMAL BY MAPLE 

 with(numtheory):with(LinearAlgebra:-Modular):with(StringTools): 

Alphabet and the numerical equivalences of symbols of the alphabet   

 N:=40: #size of the alphabet 

 indx:=table(["a"=0,"b"=1,"c"=2,"d"=3,"e"=4,"f"=5,"g"=6,"h"=7,"i"=8,"j"=9,"k"

=10,"l"=11,"m"=12,"n"=13,"o"=14,"p"=15,"q"=16,"r"=17,"s"=18,"t"=19,"u"=20
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,"v"=21,"w"=22,"x"=23,"y"=24,"z"=25,"#"=26,"."=27,"?"=28,"$"=29,"0"=30,"1

"=31,"2"=32,"3"=33,"4"=34,"5"=35,"6"=36,"7"=37,"8"=38,"9"=39]): 

 symb:=table([0="a",1="b",2="c",3="d",4="e",5="f",6="g",7="h",8="i",9="j",10

="k",11="l",12="m",13="n",14="o",15="p",16="q",17="r",18="s",19="t",20="u

",21="v",22="w",23="x",24="y",25="z",26="#",27=".",28="?",29="$",30="0",3

1="1",32="2",33="3",34="4",35="5",36="6",37="7",38="8",39="9"]): 

 converting letter blocks to numerical equivalents 

 atoi:=proc(txt,N) 

 local i,res,t; 

 res:=0; t:= LowerCase(Reverse(txt)); t:=SubstituteAll(t," ", "#"); 

 for i from 1 while i<= length(t) do 

 res := res + indx[substring(t,i)]*(N^(i-1)); 

 end do; 

 return (res); 

 end: 

converting numbers to letters 

 itoa:=proc(m,k,N) 

 local res,len,i,lst; 

 lst := convert(m,base,N); 

 res:=[]; 

 len := nops(lst); 

 for i from 1 while i<= k do 

 res := [op(res),0]; 

 end do; 

 for i from 1 while i<= len do 

 res[i] := lst[i]; 

 end do; 

 for i from 1 while i<= k do 

 res[i] := symb[res[i]]; 

 end do; 

 return Reverse((Implode(res))); 

 end: 
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Users agree upon a fixed large finite field. 

 q:=3355685403029:Randomize():rnd:=rand(q-1): 

 gf:=GF(q,1):g:=gf[PrimitiveElement](): 

Each user generates a  key and makes it public.  

For example let a user A performs his/her computation as following: 

 a:= rnd(); PK:=gf[`^`](g,a);# PK  means  public key 

##########################################  

Now we want to send A a message. 

a:=3269645449646 

PK:=2576936998293 mod 3355685403029 

 text := "sos":textlength:=length(text): 

 P:=atoi(text,N): y:=gf[input](P);  

Warning: the value of P must be between 1 and q-1 .To send the message to the user, 

we choose a random integer   

y:=29378 mod 3355685403029  

 k:=rnd(); 

and send the following pair of elements of GF(q) to A:  

k:=1482676938101 

 mes := [gf[`^`](g,k), gf[`*`](y,gf[`^`](PK,k))]; # (r,s) 

A encryptes the message as following: 

mes:=[2180885012773 mod 3355685403029, 1107371752052 mod    

3355685403029] 

 mask:=gf[`^`](mes[1],a); 

mask:=2751932742240 mod 3355685403029 

 imask:=gf[inverse](mask); 

imask:=1173959117360 mod 3355685403029 

 y:=gf[`*`](mes[2],imask); 

y:=29378 mod 3355685403029 

 P:=gf[output](y); 

P:=29378 

 itoa(P,textlength,N); 

“sos” 
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A.4   MASSEY-OMURA BY MAPLE 

 with(numtheory):with(LinearAlgebra:-Modular):with(StringTools): 

Alphabet and the numeric equivalences of symbols of the alphabet   

 N:=40: #size of the alphabet 

 indx:=table(["a"=0,"b"=1,"c"=2,"d"=3,"e"=4,"f"=5,"g"=6,"h"=7,"i"=8,"j"=9,"k"

=10,"l"=11,"m"=12,"n"=13,"o"=14,"p"=15,"q"=16,"r"=17,"s"=18,"t"=19,"u"=20

,"v"=21,"w"=22,"x"=23,"y"=24,"z"=25,"#"=26,"."=27,"?"=28,"$"=29,"0"=30,"1

"=31,"2"=32,"3"=33,"4"=34,"5"=35,"6"=36,"7"=37,"8"=38,"9"=39]): 

 symb:=table([0="a",1="b",2="c",3="d",4="e",5="f",6="g",7="h",8="i",9="j",10

="k",11="l",12="m",13="n",14="o",15="p",16="q",17="r",18="s",19="t",20="u

",21="v",22="w",23="x",24="y",25="z",26="#",27=".",28="?",29="$",30="0",3

1="1",32="2",33="3",34="4",35="5",36="6",37="7",38="8",39="9"]): 

Functions itoa and atoi can be used for conversion a block of text into decimal 

representation and vice versa. 

 converting letter blocks to numerical equivalents 

 atoi:=proc(txt,N) 

 local i,res,t; 

 res:=0; t:= LowerCase(Reverse(txt)); t:=SubstituteAll(t," ", "#"); 

 for i from 1 while i<= length(t) do 

 res := res + indx[substring(t,i)]*(N^(i-1)); 

 end do; 

 return (res); 

 end: 

 for example 

 atoi("rr",40); 

697 

 atoi("cry",26); 

1818 

 converting numbers to letters 

 itoa:=proc(m,k,N) 

 local res,len,i,lst; 
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 lst := convert(m,base,N); 

 res:=[]; 

 len := nops(lst); 

 for i from 1 while i<= k do 

 res := [op(res),0]; 

 end do; 

 for i from 1 while i<= len do 

 res[i] := lst[i]; 

 end do; 

 for i from 1 while i<= k do 

 res[i] := symb[res[i]]; 

 end do; 

 return Reverse((Implode(res))); 

 end: 

for example 

 itoa(18194054,5,40); 

“hello” 

Suppose two users want to communicate.  They choose a finite prime field. 

 q:=164328833:Randomize():rnd:=rand(q-1):gf:=GF(q,1): 

The first user generates a secrete key 

 eA:= rnd();igcd(q-1,eA); 

eA:= 30047783 

1 

 igcdex(q-1,eA,'u','dA'):if dA<0 then dA:=dA+q-1: end if:dA:=dA; 

dA:= 20236311 

The second user generates a secrete key 

 eB:= rnd();igcd(q-1,eB); 

eB:= 119743093 

1 

 igcdex(q-1,eB,'u','dB'):if dB<0 then dB:=dB+q-1: end if:dB:=dB; 

dB:= 41811421 

########################################## 
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 text := "hello":textlength:=length(text): 

 Warning: the value of P must be between 1 and q-1 

 P:=atoi(text,N); y:=gf[input](P);  

P := 18194054
 

y:= 18194054 mod 164328833 

now A sends B the element yeA .  

 y:= gf[`^`](y,eA); 

y:= 75197608 mod 164328833 

B recieves  yeA , raises it to the power eB and sends it back to A 

 y:= gf[`^`](y,eB); 

y:= 49265163 mod 164328833 

A recieves   y(eAeB) , raises it to the power dA and sends the result back to B   

 y:= gf[`^`](y,dA); 

y:= 141767915 mod 164328833 

Finally, B unravels the message by raising the element to the power dB 

 y:= gf[`^`](y,dB); 

y:= 18194054 mod 164328833 

 P:=gf[output](y); 

P:= 18194054 

 itoa(P,textlength,N); 

“hello” 
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APPENDIX B 

 
 

FINITE  FIELDS BY MAPLE 

 

 

 

Let us start with creating a finite field.  As we know for any prime p and nonnegative 

integer n, there exists a Galois field  GF(p, n) with pn elements. Let p be 3 and n be 2. 

GF (2,3) is created as following: 

 G1:=GF(2,3): 

Another way of creating a finite field is to use an irreducible polynomial over a prime 

field (see. Kronecker's Theorem).  Let us choose an irreducible polynomial of degree 2 

over the prime field  F3. 

 P1:=x^2 + x + 2: 

To be sure that this polynomial is irreducible over the prime field try to factorize it 

using the following command: 

 Factor(P1) mod 3; 

22 ++ xx  

This polynomial is irreducible over F3. Now we are ready to create an extesion field of 

F3: F3[x]/<x^2+x+2> 

Type the following: 

 G2:=GF(3,2,alpha^2+alpha+2): 

Let us start with choosing an element randomly from a finite field. 

 a:=G2[random](); 

a:= (2a + 2) mod 3 

The size (number of elements) of the field is computed as following:
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 G2[size](); 

9 

As we know if α is algebraic over  F and F (α) is an extension of the field F then the 

basis of the F (α) is   { 1,α , ..., αn-1}  and any element of the field  F (α) can be written 

as a0+a1α + ... + an-1 αn-1, so to display the elements of the field in this form we can use 

operator ConvertOut: 

 x:=G2[ConvertOut](a); 

x:= 2a + 2 

To convert back to a field element we use ConvertIn: 

 G2[ConvertIn](x); 

(2a + 2) mod 3 

Let F be a finite field of characteristic p and alpha is algebraic over F. Then there is a 

correspondence between the elements of the field  F(α) and the range of integers {0, ..., 

pn-1}, where [F [α] : F] = n. 

To find correspondence between elements of the field F(α)  and the range of integers {0, 

..., pn-1} we use operators output and input: 

 G2[output](a); 

8 

 G2[ConvertOut](G2[input](8)); 

2a + 2 

 G2[ConvertOut](G2[input](100)); 

a4 + 2a2 + 1 

Another well-known fact is that nonzero elements of a  finite field Fq is finite group 

with respect to multiplication with  q-1  elements.  This group has a generator that is 

called a primitive element.  To get a primitive element type: 

 PrimElem:=G2[PrimitiveElement](); 

PrimElem:= (2a + 2) mod 3 

Now, let us see how to do arithmetic in a finite field. The general format of operations is 

as following: 

<Field Name>[`<operation>`](parameter1, parameter2)       or  

<Field Name>[`<operation>`](parameter1). 

 a:=G2[random](); b:=G2[random](); 
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a:= (a + 2) mod 3 

b:= a mod 3 

Addition: 

 G2[`+`](a,b); 

(a + 2) mod 3 

Subtraction: 

 G2[`-`](a,b); 

2 mod 3 

Multiplication: 

 G2[`*`](a,b); 

(a + 1) mod 3 

Division: 

 G2[`/`](a,b); 

2a mod 3 

Inverse of an element: 

 InverseOfa:=G2[inverse](a); 

InverseOfa:= (2a + 1) mod 3 

It easy to check that we obtained the inverse of  a  by multiplication of  a and it inverse: 

 G2[`*`](a,InverseOfa); 

1 mod 3 

Power of an element is computed as following: 

 G2[`^`](a,5); 

(a + 2) mod 3 

 G2[`^`](PrimElem,5); 

(a + 1) mod 3 

The order of a nonzero element in the field can be found by typing:  

 G2[order](a); 

4 

 G2[order](PrimElem); 

8 

Zero and identity elements are obtained using the operators zero and one. 

 G2[zero]; 
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0 mod 3 

 G2[one]; 

1 mod 3 

Given an element of a finite field, to find out whether this elemnt is primitive or not we 

use operator isPrimitiveElement 

 a;G2[isPrimitiveElement](a); 

(a + 2) mod 3 

false 

 b;G2[isPrimitiveElement](b); 

a mod 3 

true 

 PrimElem;G2[isPrimitiveElement](PrimElem); 

(2a + 2) mod 3 

true
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