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ABSTRACT 
 In this thesis, numerical solution of one-dimensional wave equation in 

multilayered cylindrical functionally graded media is investigated. The multilayered 

medium consists of  different layers of Functionally Graded Materials (FGMs), i.e., 

it is assumed that the stiffness and the density of each layer are varying continuously in 

the radius direction which is perpendicular to the layering direction but isotropic and 

homogeneous in the circumferential and axial directions. The inner surface of the 

layered medium is subjected to a uniform dynamic in-plane time-dependent normal 

stress; whereas, the outer surface of the layered medium is assumed free of surface 

traction or fixed. Moreover, the multilayered medium is assumed to be initially at rest 

and its layers are assumed to be perfectly bonded to each other. The method of 

characteristics is employed to obtain the numerical solutions of this initial-boundary 

value problem. The numerical results are obtained and displayed in curves denoting the 

variation of normal stress component with time. These curves reveal clearly the 

scattering effects caused by the reflections and refractions of waves at the boundaries 

and at the interfaces of the layers. The curves also display the effects of non-

homogenity in the wave profiles. The curves further show that the numerical technique 

applied in this study is capable of predicting the sharp variations in the field variables 

in the neighborhood of the wave fronts.    
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ÖZ 
 Bu tezde, birinci dereceden dalga denklemlerinin, çok katmanlı fonksiyonel 

derecelendirilmiş silindirik tabakadaki nümerik çözümleri araştırılmıştır. Bu çok 

katmanlı tabaka  farklı fonksiyonel derecelendirilmiş material katmanından 

oluşmaktadır. Burada  her katmanın sertliğinin ve de yoğunluğunun devamlı olarak 

katman yönüne dik olan yarıçap yönünde değiştiği varsayılır; fakat izotropik ve 

homojen, çevrel ve de aksis yönlerinde. Katmanlı tabakanın iç yüzeyi normal basıncı 

zamana bağlı tek biçimli dinamik düzleme maruz bırakılır, halbuki katmanlı tabakanın 

dış yüzeyi yüzey çekmesi açısından serbest ya da bağlı veya iç yüzeydeki gerilmelerine 

maruz olabilir. Bundan başka, çok katmanlı tabaka başlangıçta sabit ve her katmanının 

kendi aralarında mükemmel bir bağlılık gösterdiği kabul edilir. Karakteristikler metodu 

bu başlangıç-sınır değer probleminin çözümlerini elde etmek için kullanılır. Sayısal 

sonuçlar elde edilir ve normal basıncın zamanla değişimini belirten eğrilerle gösterilir. 

Bu eğriler, sınırlarda ve katmanların arayüzlerinde ki yansımalar ve de dalga 

kırılmalarının etkilerini açık bir şekilde gösterir. Ayrıca bu eğriler, dalga profillerinde 

ki homojen olmayan etkileri de gösterir. Ve de bu eğriler gösterdi ki, bu çalışmada 

kullanılan sayısal teknik, dalga civarındaki keskin değişimleri tahmin etmede oldukça 

başarılı.           

N
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Anahtar Kelimeler: Dalga denklemi, fonksiyonel derecelendirilmiş materyaller, 

karakteristikler metodu, silindirik katmanlı tabaka. 
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CHAPTER 1 
 

INTRODUCTION 

  

Functionally graded materials are a new generation of engineering materials 

which are continuously or discretely changing their thermal and mechanical properties 

at the macroscopic or continuum scale [1]. Functionally graded materials are 

increasingly expected to be used in structural applications where high strength-to-

weight and stiffness-to-weight ratios are required. These applications involving severe 

thermal gradients, ranging from thermal structures in advanced aircraft and aerospace 

engines to microelectronics. Example applications include pressure vessels and pipes in 

nuclear reactors can be found in the review papers [2] and [3]. In such applications a 

metallic-rich region of a functionally graded material is exposed to low temperature 

with a gradual micro structural transition in the direction of the temperature gradient, 

while a ceramic-rich region is exposed to high temperature. Among a few recent books 

including a comprehensive treatment of the science and technology of functionally 

graded materials, one can mention [4] and [5].  

Several models for the case where a dynamic load is applied to the outer 

boundaries of a functionally graded composite body have been studied in literature. 

Five models, for example, are presented in [6]; two of which simulate fiber phases in 

which the material is modeled as layers of different volume fractions and three simulate 

particle phases whereas the material properties are considered to change continuously 

in the thickness direction. Accordingly, two models may be used to deal with transient 

dynamic response in the inhomogeneous bodies; they are the homogeneous layered 

model and the inhomogeneous continuous model. In the first type, the FGM layer is 

subdivided into a large number of homogeneous thin layers each of which has its own 

constant volume fraction [7]. In the second kind, the FGM plate is subdivided into 

inhomogeneous layers whose material properties are varying continuously in the 

direction perpendicular to the layering [8, 9]. In these papers Ohyoshi has developed an 
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analytical method using linearly inhomogeneous layer elements approach to investigate 

waves through inhomogeneous structures.  

Due to the fact that the material properties of functionally graded materials are 

functions of one or more space variable, wave propagation problems related to 

functionally graded materials are generally difficult to analyze without employing some 

numerical approaches. Numerical solutions of one-dimensional stress wave propagation 

in an FGM plate subjected to shear or normal tractions are discussed in [10-13]. In 

these studies, the material properties are assumed to be vary in the thickness direction 

and the FGM plate is divided into; linearly inhomogeneous elements [10] or quadratic 

inhomogeneous layer elements [11,12], whereas in [13], the material properties of the 

FGM plate throughout the thickness direction are assumed to be functions with 

arbitrary powers. Two-dimensional transient wave propagation problems in an FGM 

plate are, recently, discussed applying a composite wave-propagation algorithm in 

[14,15],  and using finite elements with graded properties in [16] to simulate elastic 

wave propagation in continuously non-homogeneous materials. However, to the 

authors' the best knowledge, the transient dynamic response of a multilayered FGM 

body subjected to a uniform pressure wavelet has not been investigated in literature. 

In this thesis, the method of characteristics is employed to obtain the solutions. 

This method has been employed effectively in investigating one and two-dimensional 

transient wave propagation problems in multilayered plane, cylindrical and spherical 

homogeneous layered media [17-19]. In these references, the multilayered medium 

consists of  layers of isotropic, homogeneous and linearly elastic or viscoelastic 

material with one or two relaxation times. A brief review on combining the method of 

characteristics with Fourier transform to investigate two-dimensional transient wave 

propagation in viscoelastic homogeneous layered media can be found in [20-21]. It is 

well known that, for one-dimensional homogeneous case the characteristic manifold 

consists of straight lines in the -plane (here, t : time; : space variable) and the 

canonical equations holding on them are ordinary differential equations which can be 

integrated accurately using a numerical method, such as, implicit trapezoidal rule 

formula [17-21]. However, in functionally graded material the characteristic manifold 

consists of nonlinear curves in the -plane and the canonical equations can be 

integrated approximately along the characteristic curves by employing a small time 

discretization. This step-by-step numerical technique is capable of describing the sharp 

N

zt z

zt
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variation of disturbance in the neighborhood of the wave front without showing any 

sign of instability. Hence, and as will be shown in this study, the method of 

characteristics can be used conveniently for one-dimensional transient wave 

propagation through functionally graded materials, and we guess that it can be 

combined with a transformation technique to handle two-dimensional transient wave 

propagation in multilayered functionally graded materials, as well. 

In this study, in cylindrical coordinate system, the following one-dimensional 

wave equation (hyperbolic differential equation) is required to be solved numerically 

by the method of characteristics;  

2

2

2

2

t
u

r
u

r
c

dr
d

r
u

r
c

dr
dc

r
u

c rrrr

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛ −+

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ ++

∂
∂

ρλ  , oi RrRt ≤≤≤ ,0      (1.1) 

where  is the only dependent variable and ( truu rr ,= ) r  (radial-direction in cylindrical 

coordinate) and t  (time) are the independent variables. ( ) rrcc ( )λλ == ,  and ( )rρρ =  

are the data of the problem (material properties).  

The above equation is a second order hyperbolic partial differential equation 

subjected to the following conditions: 

Initial conditions; at : 0=t

( ) 00, =rur  and ( ) 00, =
∂
∂ r

r
ur . 

Boundary conditions; at  and  iRr = oRr =  

( )tfP
r

u
r
uc o

rr =+
∂
∂ λ , 

( ) 0, =tRu or    or    0=+
∂

∂
r

u
r

u
c rr λ  

where  is the inner boundary, is the outer boundary,  is the intensity of the 

applied load and  is a prescribed function of t .    

iR oR oP

( )tf

It will be shown in the next chapter that the domain of the problem is assumed 

to be consists of perfectly bonded different layers. By other mean Eq. (1.1), with the 

specified boundary and initial conditions prescribes above, represents the one-

dimensional wave equation of a hollow cylinder that is made of functionally graded 

material. Functionally graded means that the material properties within the cylinder’s 

domain are functions of the radial direction ( )r . Thus, the field variables and solutions 

of the problem under consideration are functions of  t (time) and r , this means that, at 
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every plane parallel to the inner surface ( )iRr =  the wave velocity will be a function of 

r . 

        To this end, we can conclude from the above discussion that, there have been 

many works done on wave propagation problems related to, elastic, viscoelastic and 

plane FGM materials. However, studies on transient responses (wave propagation 

problems) of cylindrical FGM shells have not been found in literature, [22], which will 

be the subject of the thesis. In the recent work of Abu-Alshaikh and Kokluce, [23], 

similar problem have been solved but the domain of the problem in that paper is 

assumed to be plane not cylindrical. Let us now briefly describe the contents of the 

thesis. It consists of four chapters: 

 The second chapter; we present the derivation of Eq. (1.1), that is the 

mathematical model of the problem under consideration which is derived from the 

basic governing equations of theory of elasticity in cylindrical coordinate system. The 

solution of the problem using the method of characteristics. The third chapter contains 

numerical examples and discussion of the results. The last chapter contains the 

computer program used within the thesis.     
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CHAPTER 2 

 
2.1 THE FUNDAMENTAL EQUATIONS OF THE LINEAR THEORY OF 

ELASTICITY IN CYLINDRICAL COORDINATE SYSTEM 

 
 We start our study by reviewing the basic equations of the linear theory of 

elasticity in curvilinear coordinates and then derive them in cylindrical coordinate. In 

this thesis, the material is modeled as elastic, isotropic and non-homogeneous, that is, 

functionally graded material. The plane-strain problem considered in this thesis is 

referred to the cylindrical coordinates ),,( zr θ , respectively. For the derivation of the 

basic governing equations presented in this chapter, see Refs. [ 24, 25, 26 ]. 

 

2.1.1 Curvilinear Coordinates  

If a set of curvilinear coordinates  is used to express the basic equations of 

the theory of elasticity in place of rectangular coordinates, then all we need is to make 

some simple interpretations to find the forms of the basic governing equations related 

to the problem under consideration.  

kx

 Let  or  be rectangular coordinates of a geometrical 

point, and   or 

,,, 321 zzz ( 3,2,1=kz k )

,,, 321 xxx ( )3,2,1=ixi  be three variables. If we can establish a 

correspondence between  and , then we ay that there exists a coordinate 

transformation between kz nd ix . This can be expressed in the form of three functions 

( 1= xzz kk

kz ix

 a

=kxx .           (2.1) 

If this correspondence is one-to

kzzzk .           (2.2) 

It can be shown that such a un

) ( )3,2,1,,, 32

-one, then there exists a unique inverse of (2.1) in the 

form 

= xxk ( ) ( )3,2,1,,, 321 =

ique inverse exists in some neighborhood of kz  if the 

Jacobean    
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0
///
///
///

det
332313

322212

312111

≠
∂∂∂∂∂∂
∂∂∂∂∂∂
∂∂∂∂∂∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
xzxzxz
xzxzxz
xzxzxz

x
zJ l

k

.        (2.3) 

 For a fixed set of values of  the transformation (2.1) gives three non-

coincident surfaces, called curvilinear surfaces, which intersect each other at a single 

point  with a fixed . This point can therefore be marked with the values of  

 called curvilinear coordinates of P , Fig. 2.1. The intersection of any two of the 

surfaces (2.1) gives a line, through , called a curvilinear coordinate line. 

321 ,, zzz

P 321 ,, xxx
kx

P

 For example, in cylindrical coordinates; the cylindrical coordinates  are 

defined by their relations to rectangular coordinates 

kx
iz : 

33212211 ,sin,cos xzxxzxxz ===           (2.4) 

 
The Jacobean  in this case is J

3x

1x
2x

P

3z

1z

2z

 

p
 

 

 Figure 2.1 Curvilinear Coordinates. 
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1212

212

100
0cossin
0sincos

xxxx
xxx

J =
−

= , ( ) 1sincos 2222 =+ xx .  

Hence a unique inverse to (2.4) exists everywhere except at  and this  ,01 =x

( ) ( ) ( ) 3312222211 ,/arctan, zxzzxzzx ==+= .         (2.5) 

The coordinate surfaces are circular cylinders having the axis, as their axis, 

vertical planes through the -axis, and planes perpendicular to the -axis, Fig. 2.2. 

−3x
3x 3x

 The position vector p of a point P  has the rectangular coordinates , that is,  kz

p kz= i                         (2.6) k

where i   are the unit rectangular base vectors. The repeated indices in 

diagonal positions (one as superscript and one as subscript) represent summation over 

the range   of the indices. When coordinates are rectangular, however, no 

need arises for the use of the summation convention in this form, and we may revert 

superscripts back to subscript positions if we wish. 

k ( 3,2,1=k )

)( 3,2,1=k

 Base vectors g  k ( )321 ,, xxx  are defined by [25]. 

g =k k

m

k x
z

x ∂
∂

=
∂
∂p i m kx

z
∂
∂

=
1

 i 1 + kx
z

∂
∂ 2

 i +2 kx
z

∂
∂ 3

 i 3 .        (2.7) 

By multiplying both sides of (2.7) by n

k

z
x

∂
∂  we also obtain  

i =n n

k

z
x

∂
∂ g k .                         (2.8) 

Just as with the rectangular base vectors i , the curvilinear base vectors g are tangent 

to the curvilinear coordinate lines. This is clear from (2.7) and Fig. 2.2. For cylindrical 

coordinates through (2.4) and (2.7) we find that     

k k

g 1  = ( )2cos x  i +1 ( )2sin x  i , 2

g  =2 ( )21 sin xx−  i +1 ( )21 cos xx  i ,          (2.9) 2

g  = i . 3 3
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3z

1z

g  3

g  2

i 3 g 1p 3x
2z  i 2

i 1 2x
1x

 

Figure 2.2  Cylindrical coordinates.    

 

An infinitesimal vector  can be expressed as   pd

=
∂
∂

= k
k dx

x
d pp  g k

kdx .         (2.10) 

 

 We may use (2.10) to calculate the length of such vectors and the angle between 

any two of them. For example, the square of the arc length, , of  is obtained 

through  

2ds pd

( ) ( ) lk
kl

l
l

k
k dxdxvdxdxddds )(2 xggpp =⋅=⋅=       (2.11) 

where  

mnl

n

k

m

lkkl x
z

x
z δν

∂
∂

∂
∂

=⋅≡ gg           (2.12) 

 is called the metric tensor. This name is justified through the fact that when  is 

known we can calculate the length of any vector and the angle between two vectors.   

klv

 In general, the curvilinear coordinates may not be orthogonal, that is,  

10 ≠≠=⋅ kvkllk for    gg .          (2.13) 
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Note that vanishing  is necessary and sufficient for orthogonality of the 

curvilinear coordinates. 

( 1 ≠kvkl )

 The reciprocal base vectors ( )xg k  may be constructed by finding the solution of 

the nine equations.  

l
k

l
k δ=⋅gg             (2.14) 

where  is the Kronecker delta. It can be verified that the unique solution of (2.14) is l
kδ

( ) l
klk v g xg =                                         (2.15) 

where  is the reduced cofactor in the determinant of , that is,     klv klv

( ) kl
klkl vv

v
vv det,cofactor x ≡= .          (2.16) 

From (2.15), by taking the scalar products with , we obtain  mand  ggm

lm
kl

m
kmkkm vvv =⋅= δ,gg .                     (2.17) 

 For cylindrical coordinates using (2.9) in (2.12) and (2.16), we find that  

( )

( ) .
100
0/10
001

,
100
00
001

21

21

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

xv

xv

kl

kl

                         (2.18) 

The magnitudes of the base vectors  , respectively, are  k
k gg and  

−−

−−

==
kkk

kkk vv gg ,                        (2.19) 

where underscores are placed under the indices to suspend the summation.    

The passage from rectangular coordinates to curvilinear coordinates may be made by 

observing the following two simple rules: (a) The partial differentiation symbol (,) must 

be replaced by the covariant differentiation symbol (;), (b) The repeated indices must 

be on diagonal positions. 

 Thus, for example, the Cauchy equations of motion:  

0, =⎟
⎠
⎞

⎜
⎝
⎛ −+

•

lllkl vfρτ                                                                        (2.20) 

in curvilinear coordinates will have the form  
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0; =⎟
⎠
⎞

⎜
⎝
⎛ −+

•

llll
k vfρτ           (2.21) 

where  are the mixed components of the stress tensor and an index following a 

semi-colon indicates the covariant partial differentiation, that is, according to [25],  

l
kτ

m
k

l
m

rl
k

rl
k

rl
m

mr
k

ττττ
⎭
⎬
⎫

⎩
⎨
⎧

−
⎭
⎬
⎫

⎩
⎨
⎧

+≡ ,;          (2.22) 

where are the Christoffel symbols of the second kind that can be found as 

follows: 

⎭
⎬
⎫

⎩
⎨
⎧

mr
k

 The partial derivative of a vector in rectangular coordinates is obtained by  

( )   
kl

k

l
k

k

l z
u

z
u

z
ii

∂
∂

=
∂

∂
=

∂
∂u  

since the rectangular base vectors are constant vectors. However, the same for 

curvilinear coordinates requires the calculation of the partial derivatives of g k  for 

( )   
l
kk

kl

k

l
k

k

l x
u

x
u

x
u

x ∂
∂

+
∂
∂

=
∂

∂
=

∂
∂ gggu . 

Through (2.7) we can calculate  

nlk

n

n
k

n

l
l
k

xx
z

x
z

xx
iig

∂∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
∂
∂ 2

. 

Upon replacing  by (2.8) we find ni

ml
k

kl
m

x
gg

⎭
⎬
⎫

⎩
⎨
⎧

=
∂
∂            (2.23) 

where   

n

m

lk

n

z
x

xx
z

kl
m

∂
∂

∂∂
∂

≡
⎭
⎬
⎫

⎩
⎨
⎧ 2

           (2.24) 

are known as the Christoffel symbols of the second kind. The Christoffel symbols of 

the first kind are also of frequent occurrence; they are defined by [25], 

 r  .        (2.25) [ ]
⎭
⎬
⎫

⎩
⎨
⎧

≡
kl
n

vmkl mn,   o ][ nklv
kl
m

mn ,≡
⎭
⎬
⎫

⎩
⎨
⎧

Using (2.12), we can show that   

[ ] ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

+
∂
∂

= m
kl

k
lm

l
km

x
v

x
v

x
vmkl

2
1, .                          (2.26) 

Both symbols are symmetric in two indices, that is  
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⎭
⎬
⎫

⎩
⎨
⎧
kl
m

= , [ ] .         (2.27) 
⎭
⎬
⎫

⎩
⎨
⎧
lk
m [ mlkmkl ,, = ]

We should note that the Christoffel symbols are not tensors. 

By use of  g =  we also find [25].  k ( ) l
klv gx

⎭
⎬
⎫

⎩
⎨
⎧

−=
∂

∂
lk
m

xl

 mg kg .           (2.28) 

By use of (2.23) it is now possible to find an expression for the partial derivative of a 

vector. Hence,  

( ) m
l

k

m

k
mm

mk

m

m
m

kk

u
kl
m

x
u

x
u

x
uu

xx
ggggu

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

+
∂
∂

=
∂
∂

+
∂
∂

=
∂
∂

=
∂
∂ . 

This may be written, in short,  

kx∂
∂u =            (2.29) mk

mu g;

thus, defining the covariant partial derivative of a contravariant vector  

l
k

m

k
m u

kl
m

x
uu

⎭
⎬
⎫

⎩
⎨
⎧

+
∂
∂

≡; .           (2.30) 

Similarly, by differentiating  and using (2.28), we obtain the covariant partial 

derivative of a covariant vector  

m
mu gu =

lk
m

km u
mk
l

x
uu

⎭
⎬
⎫

⎩
⎨
⎧

−
∂
∂

≡;           (2.31) 

so that  

m
k km

u
x

gu
;

=
∂
∂ .           (2.32) 

In rectangular coordinates, the Christoffel symbols vanish, thus reducing 

covariant partial differentiation to the usual partial differentiation. 

The covariant derivative of a contravariant vector is a mixed second-order 

tensor, and that of a covariant vector is a covariant second-order tensor.  

 Christoffel symbols and the covariant derivative of a contravariant vector  in 

cylindrical coordinates are calculated through (2.25) and (2.30) 

ku

[ ] [ ] ,2,212,12 1x==   all other [ ] ,1,22 1x−= [ ] 0, =mkl ,      

,
22
1

,1
21
2

12
2 1

1 x
x

−=
⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

 all other  ,                (2.33) 0=
⎭
⎬
⎫

⎩
⎨
⎧
kl
m
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( ) ⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=
∂
∂

=

∂
∂

=+
∂
∂

=+
∂
∂

=

∂
∂

=−
∂
∂

=
∂
∂

=

3,2,1

,1,1

,,

3

;
3

3

2

3;
21

12

2

2;
22

11

2

1;
2

3

1

3;
121

2

1

2;
1

1

1

1;
1

k
x
uu

x
uuu

xx
uuu

xx
uu

x
uuux

x
uu

x
uu

kk

.         (2.34) 

The covariant partial derivatives of higher-order tensors are defined in a similar 

fashion, for example,  

.

,

,

;

;

;

knnlm
kl

mkl

nl
n

k
m

l
k

ml
k

knnl
m

kl

m
kl

A
lm
n

A
km
n

x
AA

A
mn
k

A
lm
n

x
AA

A
mn
l

A
mn
k

x
AA

⎭
⎬
⎫

⎩
⎨
⎧

−
⎭
⎬
⎫

⎩
⎨
⎧

−
∂
∂

≡

⎭
⎬
⎫

⎩
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

−
∂
∂

≡

⎭
⎬
⎫

⎩
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

+
∂
∂

≡

              (2.35) 

These covariant partial derivatives are third-order tensors.  

 For a relative scalar φ , a vector  and a tensor  of weight , the covariant 

derivatives include an extra term, for example,  

ku l
kA N

φφφ
⎭
⎬
⎫

⎩
⎨
⎧

−
∂
∂

≡
kr
r

N
xkk;  (relative scalar),                                                                     (2.36a) 

ml
k

m

k
m u

kr
r

Nu
kl
m

x
uu

⎭
⎬
⎫

⎩
⎨
⎧

−
⎭
⎬
⎫

⎩
⎨
⎧

+
∂
∂

≡;  (relative vector),                                                 (2.36b) 

l
k

l
n

n
k

m
l

k

ml
k A

mr
r

NA
mn
k

A
lm
n

x
AA

⎭
⎬
⎫

⎩
⎨
⎧

−
⎭
⎬
⎫

⎩
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

−
∂
∂

≡;  (relative mixed tensor).             (2.36c) 

Applying covariant partial differentiation to   and  we find that  klv l
kδ

0;;; === ml
k

m
kl

mkl vv δ .                (2.37) 

This theorem is known as Ricci’s theorem. Therefore, in the process of covariant 

differentiation,  and  are not affected, that is,  kl
kl vv , l

kδ

( )
( ) .

,

;;;

;;;

l
m

kml
m

kmlk

lm
km

lm
km

l
k

AvAvA

AvAvA

==

==
         (2.38) 

We can easily see that  

( ) rlm
k

lmr
k

rlm
k BABABA ;;; += . 

A useful result that can be proved by differentiation is 
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( ) klk vv
mk
m

v
x

det;log ≡
⎭
⎬
⎫

⎩
⎨
⎧

=
∂
∂ .          (2.39) 

This result can also be obtained through Ricci’s theorem in the form ( ) 0; =kv  and by 

using (2.29a) and noting that v  is a relative scalar of weight one. 

 The differential operators gradient, of an absolute scalar φ  and the divergence 

and curl of an absolute vector A are defined as [25] 

klm
klm

k
k

kk

A

A
x

gA

A

g

;

;

curl

,div

,grad

ε

φφ

=

=
∂
∂

≡

                                           (2.40) 

where  

v

klm
klm εε ≡             (2.41) 

is a third-order absolute tensor known as the ,symbol−ε  and  is the usual 

permutation symbol. Also used is the covariant 

klme

symbol−ε  

veklmklm ≡ε ,            (2.42) 

Sometimes it is convenient to use the operator ∇ defined by  

∇ k
k

x∂
∂

≡ g .           (2.43) 

By use of this, we can show that  

,)(div

grad

;k
l

l
k

l
l

k
k

kk

AA
x

x

ggggAA

g

⋅=
∂
∂

=⋅∇=

∂
∂

=∇≡
φφφ

 

                     ( k
kk

k Av
xv

A
∂
∂

==
1

; ) ,         (2.44) 

=×∇≡ AAcurl kl
lkl

lk
k AA

x ;)( gggg ×=×
∂
∂ , 

           . k
lm

klm Ae g;≡

The last expression of div A is obtained as follows: 

( ) ( k
kk

k
k

k
m

k

k

k
k Av

xv
v

x
A

x
AA

km
k

x
AA

∂
∂

=
∂
∂

+
∂
∂

=
⎭
⎬
⎫

⎩
⎨
⎧

+
∂
∂

=
1log; )                          

where we used (2.32). For the Laplacian  in curvilinear coordinates, we have  2∇
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.1grad  div
;;

2
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=≡∇ l
kl

k
k

l
kl

k
l

kl

x
vv

xvx
v

x
v φφφφφ                (2.45) 

In orthogonal curvilinear coordinates the expressions of these operators are:  

( ) ( ) ( )
,,,1
,

332211

23
33

22
22

21
11

2

vvvvv
v

v

dxvdxvdxvds

k
kkk

kk

kk
===

++=

−−

−−

−− gg        (2.46) 

( ),0,log

,log,
2

1

mlk
lm
k

v
xkk

k

v
xkl

k
x

v

vkk
l

kkk

kkll

kk

ll

≠≠=
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

∂
∂

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

∂
∂

=
⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−

−−

−−

−−

−−

−

−

−−
      (2.47) 

( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ,

 curl

, div

,111grad 

3
1

112
2

221
2

1
2211

2
3

331
1

113
2

1
1133

1
2

223
3

332
2

1
3322

3
22113

2
11332

1
33221

2
1

332211

33
33

22
22

11
11

e 

e 

e A

A

eee

⎥⎦
⎤

⎢⎣
⎡

∂
∂

−
∂
∂

+

⎥⎦
⎤

⎢⎣
⎡

∂
∂

−
∂
∂

+

⎥⎦
⎤

⎢⎣
⎡

∂
∂

−
∂
∂

=

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

+
∂
∂

=

∂
∂

+
∂
∂

+
∂
∂

=

−

−

−

−

Av
x

Av
x

vv

Av
x

Av
x

vv

Av
x

Av
x

vv

Avv
x

Avv
x

Avv
x

vvv

xvxvxv
φφφφ

 

2∇ ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

= −
3

33

2211
32

22

1133
21

11

3322
1

2
1

332211 xv
vv

xxv
vv

xxv
vv

x
vvv φφφφ . 

Cylindrical coordinates ( )zr ,, θ  are defined in terms of rectangular coordinates  [we 

use 

kz
( ) ( ) ( )

zr AAAAAAzxxrx ≡≡≡≡≡≡ 321321 ,,,,, θθ ]. 

,0other  all
22
1

,1
21
2

12
2

,11

,

,,sin,cos

2
2222

33
33

11
11

22222

321

=
⎭
⎬
⎫

⎩
⎨
⎧

−=
⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

======

++=

===

lm
k

r
r

r
v

vvvvv

dzdrdrds

zzrzrz

θ

θθ
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( )

( )

.11

,111 curl

,11 div

,1
r

grad 

2

2

2

2

22

2
2

zrrrr

A
r

rA
rrr

A
z

A
z

AA
r

z
AA

r
rA

rr

zr

z
rzr

r
z

z
r

r

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=∇

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂

∂
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=

∂
∂

+
∂
∂

+
∂
∂

=

∂
∂

+
∂
∂

+
∂
∂

=

φ
θ
φφφφ

θθ

θ

φ
θ
φφφ

θθ
θ

θ

θ

eeeA

A

eee z

    (2.48) 

The infinitesimal strains are given by 

( )kllkkl uu ;;2
1

+=ε                                              (2.49) 

where  

mlklk u
kl
m

uu
⎭
⎬
⎫

⎩
⎨
⎧

−≡ ,; .           (2.50) 

Often these equations are expressed in terms of the physical components of the vectors 

and tensors involved. The physical components ( )
( )l

kτ  and ( )ku  of  and  are 

related to each other by physical components: 

l
kτ ku

 A vector u referred to bases  (and ) is expressible in terms of its 

contravariant (covariant) components by  

kg kg

k
kk

k uu gugu == , .          (2.51) 

Since all members of  and  are not, in general, of unit magnitude we see that all 

members  and  will not have the same physical dimensions. 

kg kg

ku ku

For example, if u is a displacement vector then it has the dimension  .L

Referred to cylindrical coordinates 

1,,1 333
1

222111 ====== vxvv ggg  

so that the dimension of the components  and  are , but the dimension of  is  1u 3u L 2u

.1/ =LL  Thus, there is a need for finding the physical components of vectors and 

tensors. This is accomplished by taking the parallel projections of vectors on unit 

vectors lying along the coordinate curves. We define the physical component ( )ku  of 

the vector  by ku

k
ku eu ≡             (2.52) 

where  are the unit vectors defined by ke
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−−

≡
kk

k
k v

ge .            (2.53) 

Through (2.51) and (2.53) we see that  
( )

k
k

k
k uu egu ==           (2.54) 

or comparing the components  

( )
( )

−−

−−

==
kk

k
k

kk
kk

v
uuvuu , .          (2.55) 

If we want to replace  by its physical component, then all we need is to lower the 

index of , that is, 

ku

ku
( )

∑==
l ll

l

kl
l

klk v
uvuvu  

where we inserted the summation sign again since the index l  is repeated more than 

twice, thus bringing an ambiguity in the order of summations.  

An equally consistent definition of physical components may be made by 

parallel projections on unit vectors lying along . To be consistent with a convention 

we will always select  lying on .   

kg

ke kg

 The physical components of second-and higher-order tensors may be found by 

their relations to vectors and scalars. In nonorthogonal coordinates, several different 

types of physical components arise. We consider here only the case of symmetric 

second-order mixed tensor  is related to a contravariant vector  through l
kτ kτ

l
l

kk nττ =  

where  is also a contravariant vector. Now place  by their physical 

components as given by expressions of the form (2.55)  

ln lk n and τ

( ) ( )

∑=

−−
l ll

l

l
k

kk

k

v
n

v
ττ  

or 

( ) ( )l

l ll

kk

l
kk n

v

v
∑ −−= ττ . 

The physical components  may then be defined by  ( )
( ) l

k
l

k ττ  of 
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( )
( )

ll

kk
l

k
l

k

v

v
−−=ττ .                  (2.56)          

When the coordinates are orthogonal  

1,0;/1 ≠==
−−−−

kvvv klkkkk  

and  symmetric we can easily show that  l
k τ

( )
( )

−−

−−

−−−−

−−−−

===
ll

kk
l

k
llkk

kl

llkk

kl
l

k

v

v
vv

vv
ττττ  ,           (2.57) 

( )
( )

( )

−−−−

−− ==
kk

k
k

kk

ll
l

k
l

k

v
uu

v

v
,ττ .        (2.58) 

We now give the expressions of (2.21) and (2.49) in orthogonal curvilinear coordinates 

only. In this case we have when  0=klv 1 ≠k , and  

( ) ( ) ( )
, det,/1

,

332211

23
33

22
22

21
11

2

vvvvvvv

dxvdxvdxvds

klkk
kk

=≡=

++=

−−

−−
                  (2.59) 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−

∂

∂
+

∂

∂
=

⎭
⎬
⎫

⎩
⎨
⎧

−−−−−−

−−

lm
k

ll

kml

mm

klm

kk

kk x

v

x

v

x

v

vlm
k

δδδ
2

1 . 

Using (2.58) and (2.59) in (2.21), we get  

( )
( )

( )
( )

( )
( )

( )
( )

0
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      (2.60) 

where ( )
−−

= ll
ll vff /  are the physical components of the body force. To express  

(2.49) in physical components of the displacement vector we first express it in the form 

( m
nkm

nll
k

l
k uvvu ;;

2
1

+=ε )          (2.61) 

where .           (2.62) m
l

k
l

k
l

klk u
ml
k

uuuvu
⎭
⎬
⎫

⎩
⎨
⎧

+≡= ,;,

The forms (2.58) can be employed to replace ε  and u by their physical components 

 and . Upon using (2.59) in (2.61) we obtain ( )
( )l

kε ( )ku
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Similarly   
( )

( )
( ) ( )
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( ) ( )
( )∑=
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k
mlk

m

rr
,

~~
 

2
1 ε ur2

~
×∇= .                           (2.64b)                         

The stress constitutive equations, as usual, are 
( )

( )
( )

( )
( )

( )l
k

l
k

m
m

l
k εμδελτ εε 2+=          (2.65) 

Equations (2.60), (2.63) and (2.64) are all that are needed for the treatment of problems 

in any set of orthogonal curvilinear coordinates. The passage from physical 

components of vectors and tensors to tensor components is made through such 

equations as (2.58). 

 Navier’s equations in curvilinear coordinates are obtained by combining (2.63) 

and (2.65) with (2.60). This is rather than cumbersome. The tensor expression of these 

equations is written immediately bye use of the rules stated above. In fact (2.20) in any 

curvilinear coordinates may be expressed as  

( ) 0;; =⎟
⎠
⎞

⎜
⎝
⎛ −+++

⋅

kkl
l

klk
l Vfuu ρμμλ εεε .          (2.66) 

A vectorial form of this equation is found if we remember the vector identities 

( ) (
( )kkl

l

kkl
l

k

u

u

u

uu

⋅∇∇=

⋅∇∇+×∇×∇−=

;

; ,)
 

where ∇  is the gradient operator. Upon using these identities in (2.66) we get 

( )εε μλ 2+ -u⋅∇∇ εμ +×∇×∇ u ( ) 0=ü-fρ .       (2.67) 

By substituting the expressions of the gradient, divergence, and curl operators, this 

equation can be expressed in any coordinate system. We now give the forms of these 

equations in cylindrical coordinates.  
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2.1.2 Cylindrical Coordinates 

 Cylindrical coordinates ( )zr ,,θ  are related to rectangular coordinates ( )  

by 

zyx ,,

zzrxrx === ,sin,cos θθ .        (2.68) 

The square of arc length, , and metric tensor, , are given by  2ds klv

( ).10,1,,1

,

33
2

2211

22222

≠====

++=

kvvrvv

dzdrdrds

kl

θ
         (2.69) 

Cauchy’s equations of motion, strains, and rotations are obtained by substituting ,  klv

given above, into (2.60), (2.63) and (2.64b), respectively. Thus,  

θ
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                                                              (2.71) 

where ( ) ( )zzrrrzzrrr εεεττ θθ ,...,,,,...,,  and (τ )zr uuu ,, θ  denote, respectively, the 

physical components of stress, strain, and displacement in cylindrical coordinates, Fig. 

2.3. 
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Figure 2.3   Stress components acting on an infinitesimal cylindrical volume element.  
 

 The stress-strain relations for an isotropic, homogeneous and linearly elastic 

material can be expressed in indicial notation as [26] 

kkijijij ελδμετ += 2     with ( )3,2,1, =ji                   (2.72) 
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where μλ,  are elastic constants which are known as Lame’s constants. ijδ  is called the 

Kronecker’s delta defined as  

 

⎩
⎨
⎧

≠
=

   j  i  if        0
j = i   if        1

ijδ .                      (2.73) 

 

In Eqs. (2.72, 2.73), indicial notation and rules pertaining to its use are employed. In 

indicial notation a repeated index implies summation, for example, zzrrkk εεεε θθ ++= . 

Thus, the stress-strain relations, Eq. (2.72), can also be written in the use of Eq. (2.73) 

explicitly as [26] 
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=
=
=

+++=
+++=

+++=

                     (2.74) 

 

 This completes the summary of the basic equations of the linear theory of 

elasticity that will be used in deriving the governing equations of the problem 

considered in this thesis. 

 

2.2  FORMULATION OF THE PROBLEM 

 

        In this thesis, the dynamic response of layered composites consisting of  

isotropic, elastic and functionally graded cylindrical layers (non-homogeneous) will be 

investigated. The composite medium consists of cylindrical layers, see Fig. (2.4). In 

this figure, the cylindrical composite is referred to cylindrical coordinate system where 

the distance normal to the layering is measured by 

N

r . The body is assumed to be 

subjected to uniform time-dependent uniform dynamic input at its inner boundary 

. The dynamic input is normal traction in the in-plane direction for this plane-

stain problem. The outer surface 

( iRr = )

)( oRr = of the body is assumed to be free of surface 

traction or fixed. Moreover, the body is assumed to be initially at rest and the layers of 
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the composite body are assumed to be perfectly bonded to each other at the interfaces. 

Under these boundary, initial and interface conditions, the responses of the bodies are 

ax symmetrical, that is all the field variables are functions of r  and t . Moreover, the 

only non vanishing displacement component is , that is the displacement component 

in the direction normal to the layering 

ru

( )directionr − . Thus, the displacement vector 

for a typical plane layer can be expressed as: 

.0
),,(

==
=

z

rr

uu
truu

θ

                                                            (2.75) 

In view of Eq. (2.75), the stress equations of motion, the strain-displacement 

relations and the stress-strain relations given by Eqs. (2.70), (2.71) and (2.74), 

respectively, for the three-dimensional case reduce our problem to,                    
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                                           (2.76)                         

Where all other stress and strain components are zero and  is the particle velocity in 

the , i.e.,  

rv

directionr −

0=−
∂

∂
r

r v
t

u                  (2.77)  

 

In Eq. (2.76) the stiffness λμ += 2c  and the mass density ρ  of the medium are 

assumed to be vary continuously in −r direction, but homogeneous and isotropic in θ  

and directions, that is −z
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Figure 2.4 A cylindrical layered medium consists of N different FGM layers subjected to uniform 

pressure. 

( ) ,))(2( 000
mm brabracc ++=+= λμ                                             

,)(0
nrba += ρρ           (2.78) 

( )
( )m

m

bra

bra

+=

+=

0

0

λλ

μμ
 

where  and  are dimensionless constants representing the gradients of the typical 

FGM layer. 

a b

000 2 λμ +=c  and 0ρ  are the reference stiffness and mass density of the 

typical layer, respectively. Similar forms of Eq. (2.78) with 1=a  and  were 

used by Liu et al. [12], with 

1== nm

1=a  and 2== nm   by Han et al. [10] and with 1=a  by 

Chiu and Erdogan [13], in investigating one-dimensional transient wave propagation in 

an FGM plate subjected to a uniform pressure wavelet at one of its outer boundaries. 

This general form of Eq. (2.78) is selected because it is suitable for a multilayered 

medium that consists of more than one FGM layer. The advantage of selecting equation 

(2.78) in this form will be discussed later in Chapter 4. 

irr =

orr =
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        In view of Eq. (2.78), the constitutive equations, Eq. (2.75), can be combined in 

one equivalent equation (wave equation), in terms of the displacement component , 

as 
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Since ( )λμ += 2c   and λ  are functions of r , only, and ( truu rr , )=  then the last 

equation can be written as: 
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which can be rearranged as  
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 where . The last equation that is the same as Eq. (1.1), is one-

dimensional wave equation which is required to be solved, in this thesis, satisfying 

boundary, initial and interface conditions. The boundary condition at the inner surface 

 of the multilayered medium is a time-dependent pressure pulse defined as 

oi RrRt ≤≤≤ ,0

)( iRr =

),(),( 0 tfp
r

u
r
uctR rr

irr −=+
∂
∂

= λτ                                            (2.80) 

where  is the intensity of the applied load and is a prescribed function of t . The 

outer surface 

0p )(tf

)( oRr =  is assumed to be either free of surface traction, fixed or it can 

be assumed to be subjected to the same load applied at the inner surface, Eq. (2.80). 

Hence, the free or fixed boundary conditions can be written, respectively, as    

0),( =tRorrτ   or                                         (2.81) .0),( =tRu or

 In the method employed in this study, we note that other alternatives for 

boundary conditions, such as mixed-mixed boundary conditions on both surfaces, i.e., 

one component of displacement and the other component of the surface traction can be 

handled with equal ease on both surfaces. Furthermore, Eq. (2.80) can be replaced by 

Eq. (2.81) at the inner boundary and Eq. (2.81) can be replaced by Eq. (2.80) at the 

outer boundary. The layers of the multilayered medium are assumed to be perfectly 
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bonded to each other; hence, the interface conditions imply that the normal stress ( rrτ ) 

and the displacement ( ) are continuous across the interfaces of the layers. The 

multilayered medium is assumed to be initially at rest; hence, all the field variables are 

zero at . The formulation of the problem is thus now complete. 

ru

)0( ≤t

 In view of Eq. (2.78), the governing field equations, Eq. (2.77), are to be applied 

to each layer and the solutions will be required to satisfy the interface conditions at the 

interfaces, the boundary conditions at inner and outer surfaces, Eqs. (2.80-2.81), and 

quiescent initial condition. 

 

2.3 SOLUTION OF THE PROBLEM  

 The solution is obtained by employing the method of characteristics. This 

numerical technique involves first rewriting the constitutive hyperbolic differential 

equation, Eq. (2.79), in view of Eqs. (2.77-2.78) as a system of first order partial 

differential equations as:                                                           
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              (2.82a) 

Thus, solving this system is equivalent to solving the second order partial differential 

equation given in (2.79). For simplicity, Eq. (2.82a) can also be written in matrix form 

as: 

0,, =++ FUBUA rt                                                                                               (2.82b)     

where 
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with I  being a (5x5) identity matrix. Recalling that λμ += 2c  in Eq. (2.82b), B  is 

(5x5) square matrix that can be expressed as: 
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F is a five-dimensional column vector with the elements                                                                     
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and U  is a five-dimensional column vector containing the unknown field variables: 

U =  ,                                                                (2.86) 
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          In Eq. (2.82b), comma denotes partial differentiation with respect to the 

corresponding variable, i.e., 
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=, .                                          (2.87) 
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 Before establishing the canonical form of the governing equations, we will 

establish the characteristic lines along which these equations are valid. These lines are 

governed by the characteristic equation, which can be written as, see Ref. [27] 

0)det( =− AVB                                                              (2.88) 

where 
dt
drV = defines the characteristic lines on the )( tr − plane.  

        Substituting Eqs. (2.83, 2.84) into Eq. (2.88), the characteristic equation can be 

expressed as 
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The roots of the above equation are 

0,0,0,, 54321 ===−== VVVcVcV pp                    (2.90) 
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      (2.91) 

where  is the dilatational wave velocity. In some references  is called pressure or 

longitudinal wave. The waves generated by  propagation in the direction 

perpendicular to the layering direction. Thus, for the problem under consideration, 

since the inner surface of the cylindrical domain is subjected to uniform radial pressure, 

dilatational wave is the only wave generated in the domain.    

pc pc

pc

The characteristic lines are defined by: 
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pcV
dt
dr

== 1      along   ,                                     )1(C
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04 == V
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05 == V
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dr       along   . )5(C

Integration of Eq. (2.92), gives the families of the characteristic lines 
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)3(C : r   = constant, 
)4(C : r   = constant, 
)5(C : r   = constant. 

We note that   describe two families of curves with slopes and 

 respectively, whereas ,  and  describes a family of straight lines 

parallel to the t -axis in the (

)(iC )2,1( =i pc  

pc− )3(C )4(C )5(C

tr − ) plane, see Fig. (2.5). We further, note that for 

specific values of  and  the integrations presented in Eq. (2.93) can be found easily 

using Mathematica. 

m n

            The next step in establishing the canonical form of the governing equations is 

finding the left-hand eigenvectors )5,4,3,2,1( =il i  defined as 

( )T
i il B V A− = 0                                                                    (2.94a) 

where the letter T over a matrix quantity denotes its transpose. Alternately, we can 

write 

( )T T T
iiB V A l− 0= .                                                               (2.94b)  

In view of Eqs. (2.83), (2.84) and Eq. (2.91), Eq. (2.94b) can be written explicitly as: 
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The solution of this matrix equation for ( )5,4,3,2,1=i gives: 

The first eigenvector that can be determined as follows: 

for  and                                        1=i pcV =1
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 The second eigenvector that can be written as: 

for  and 2=i pcV −=2     
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Similarly, for 3=i  where  we can find the third eigenvector:  03 =V
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for where  : 4=i 04 =V
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for where  : 5=i 05 =V
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We note here that this set of eigenvectors (2.96 – 2.100), should be linearly 

independent in order to get non-trivial solution for Eq. (2.82b).  
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Figure 2.5 Network of characteristic curves on the ( )tr −  plane. 

 

We now want to obtain the canonical equations. For this purpose, we 

premultiply Eq. (2.82b) by  to get T
il
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ri
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ti
T                  (2.101) 

Using Eq. (2.94a), the last equation can be expressed as: 

( ) 0,', =++ FlUVUAl i
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T                   (2.102) 

Noting that, 
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drVi =  and the total derivative of U  with respect to is:  
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          These equations are called the canonical equations which are valid along the 

characteristic lines defined by ( 51−== i
dt
dxVi ) . In view of Eqs. (2.83, 2.85) and Eqs. 

(2.96-2.100), the canonical equations can be written explicitly as: 

for ,                           1=i
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or simply as: 
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which is valid along the family curves pcV =             

for , 2=i
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for , 3=i
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or simply as:                                     
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or simply as:                                       
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and finally,  
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for , 5=i
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or simply as:                                       

0=− r
r v

dr
du

                                                                            (2.108) 

        Thus, the system of governing partial differential equations, (2.82b), is 

transformed into a set of ordinary differential equations, (2.104–2.108) which are valid 

along the characteristic lines. 

 A through description of the method of characteristics is given by Courant and 

Hilbert, see Ref [27]. For more details of the derivations of the basic equations used in 

the method of characteristics, see Appendix A. 

  Our aim now, is to solve the canonical equations, (2.104–2.108), by integrating 

them numerically along the characteristic lines. For this purpose, the trapezoidal 

technique will be used in the following subsection. 
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2.4 INTEGRATION OF THE CANONICAL EQUATIONS  

 

           The canonical forms of the governing equations valid along the characteristic 

lines are given by Eqs. (2.104–2.108). These equations which are valid along the 

characteristic curves, )51( −== iV
dt
dz

i , can be written in a more compact form in 

indicial notation as: 
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ij                                                  (2.109) 

where the repeated index j  implies summation, jU are the components of the unknown 

vector defined in Eq. (2.86) and  ijK and ijF n be pressed explicitly as:   ca x e
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        Before proceeding further, we note an important comment about the wave fronts. 

A wave front separates the undisturbed region from the disturbed region, or the already 

disturbed region from the region having additional disturbance. This means that the 

field variables or their derivatives should have finite jumps across the wave fronts. 

Therefore, from the definition of characteristic, it follows that the wave fronts should 

be members of the characteristic families. Due to zero initial conditions, we have one 

wave front in our problems, which is a member of the characteristic family 
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,1 pc
dt
drV == and emanate from the origin ).0,( == tRr i  Using the typical 

integration element shown in Fig. 2.6, we now integrate the canonical equations, i.e., 

Eq. (2.109), along the characteristic lines as: 

∫ ∫=
A

A

A

A
jij

j
ij

i i

dtUHdt
dt

dU
G ,                                               (2.112) 
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Fig.2.6  The typical integration element used in the numerical analysis. 
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where A and are consecutive points along the characteristic lines defined, 

respectively, at current and previous time steps as shown in the typical integration 

element shown inside Fig. (2.6). Taking into consideration that the coefficients  are 

constants and the coefficients  are functions of 

iA

ijK

ijF r  only, the above integration can be 

performed easily by using the trapezoidal rule as [29] 
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Alternately, this equation can be rewritten as: 
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or in matrix form as 
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The elements of  and  are given in Eqs. (2.113-2.114). In Eqs. (2.115-

2.117) there is no summation over the underlined index

ijK ijF

( )i , therefore, Eq. (2.115) 

represents five equations defined by 51−=i  and for each value of the index , there is 

a summation over  which takes the values 

i

j 51 −=j . The composite body considered 

in this thesis consists of different, non-homogeneous and linearly elastic layers. In 

the numerical procedure each layer 

−N

( )N,...,3,2,1  is subdivided into −p homogeneous 

layers, so that the equations derived at the beginning of this chapter will be valid to 

each layer. Eqs. (2.116) were derived for a typical layer which will be considered as the 

 layer and all quantities pertaining to it will be denoted by the subscripts or 

superscripts 

thp

p in between parenthesis, i.e. , ( )( ) ( ) ( )( ) ( )( )  and so on... LPLPPLPc ρλμ ,,,

For the composite domain consistency of −N layers ( )NL ...,,2,1=  each is 

subdivided into p layers where p depends on the gradient material properties of each 

layer from 1 to , Eq. (2.116) can be written as: N
( )( ) ( )( ) ( )( ) ( )( ) )()( iAUiMAUiW LP

j
LP

j
LP

j
LP

j
−−−

=                  (2.120) 

( ) ( ) ( ),...2,1,,...,2,1,5,4,3,2,1, === PNLji  

Where  and  can be obtained simply by denoting all quantities 

appearing in the matrices of Eqs. (2.118-2.119) with the subscript or 

superscript

( )( )LP
jiW

−

( )( )LP
jiM

−

( )( )LP  in parenthesis.  

Thus, when the values of ( )p
jU  are known at points  (iA

−

)51−=i , the unknown 

vector at point A, ( ) )({ AU p
j  )}51−=j , can be determined form Eq. (2.116) easily by 
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a step-by-step numerical procedure discussed below. In other words, using the triangle 

element shown inside Fig. 2.6, the field variables at a specific point along any line 

parallel to the - axis in the solution region can be found in terms of the known field 

variables defined on the previous line. For this purpose, we refer to the network of the 

characteristic lines, Fig. 2.6. To compute the components of the unknown vector 

( presented in Eq. (2.119) at every intersection point between the 

characteristic lines on the 

rx

( )p
jU{ )}51−=j

tr −  plane: we start our solution on the network from the   

r - axis, where the values of all field variables are zero due to zero initial conditions, 

and advance into the solution region by computing Uj at the intersection points of the 

network between the top and the outer boundary along the lines 

etc. In this computational process, the inner 

layer is considered to be layer 1, while the lower layer is considered to be layer . To 

explain this numerical procedure we refer to four different locations of the typical 

integration element; 

max,  2 ,  3 ,.......,  .....t t t t t t t J t= Δ = Δ = Δ = Δ

N

 

(a)  When the typical integration element is located at the inner boundary 

then the first equation of Eqs. (2.120), which is valid along the curve 

1AA −  is replaced by the boundary condition applied at the inner 

boundary, that is, when the point A of the typical element is located 

at the boundary ( )iRr = ; Eqs. (2.120) can be written as:  

                 ( )( ) ( )( ) ( )( ) ( )( ) )()( iAUiMAUiW LP
j

LP
j

LP
j

LP
j

−−−

=              (2.121)  

( ) ( ),51,5,4,3,2 −== ji  

The equation for 1=i  is given by the boundary condition of the                       

inner surface ( )oRr = , that is by Eq. (2.80). The superscript ( )P                        

in equation (2.121) represents the properties of the first sublayer of 

the FGM layer, that is 1=P .  

(b)  Second, if the integration element is an interior element, then the 

procedure involves the determination of the values of the unknown 

vector at a point A  in terms of their values at 1A , 2A  and iA , 

)43 using Eqs. (2.120). ( −=i
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(c)  Third, if a point A  of an integration element is located at an 

interface between two different FGM layers then the first two 

equations are replaced by the interface continuity conditions, 

whereas, in this case the number of field variables becomes double at 

that point.  

For example, Eq. (2.120) can be written for the interface between 

layer and L ( )1+L  as:  

                   ( )( ) ( )( ) ( )( ) ( )( ) )()( iAUiMAUW LP
j

LP
j

LP
j

LP
ij

−−

=                                   (2.122) 

                              ( ) ( ),51,5,4,3,1 −== ji  
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j
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ij

−−

++++ =  

( ) ( )5,1,5,4,3,2 −== ji                          

Where the superscript  donates the layer that precedes the interface and L ( )1+L  

defines the layer that follows it. Eqs. (2.122) for 2=i  for the  layer and for  for 

the  layer are replaced by the interface conditions imposing that  and 

thL 1=i
thL )1( + ru rrτ are 

conditions across the interface, which are:  
( )( ) ( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( )AuAu

AuAu
LPLP

LPLP

1
44

1
11

+

+

=

=
                 (2.123) 

In the first equation of Eqs. (2.122) P  denote the last sublayer of the  layer and in 

the second equation it denotes the first sublayer of the  layer. Furthermore, we 

should note that for  layers (

thL
thN )1( +

N NL ,...,2,1= ) we have )1( −N interfaces.  

 

(d) Finally, the second equation of Eqs. (2.115) is replaced by the 

boundary condition applied at the outer boundary, if the typical 

integration element lies at that boundary.  

That is for NL =  Eqs. (2.120) becomes 
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−−

=                 (2.124)    

( ) ( )5,4,3,2,1,5,4,3,1 == ji   
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which is valid for the last sublayer of the  layer that is at ( . Thus, Eq. 

(2.124) for  is replaced by the one of the outer boundary conditions given in Eq. 

(2.81) 

thN )

t

t

oRr =

2=i

The procedure discussed above is repeated as we proceed along the axis, for 

example along the line  instead of using the initial conditions along the line 

, we use the field variable which is already evaluated in the previous step along 

the line t . This process is repeated until getting results for a sufficient value of t, 

for example  where  is the maximum number of intervals considered in 

the -direction. The code of the numerical procedure is written in Fortran 90, see 

Appendix B. 
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CHAPTER 3 

 
  NUMERICAL RESULTS AND DISCUSSION 

 

In this chapter, we would like to give some numerical examples related to the 

formulation presented in chapter 2.  

  In the following examples, the numerical computations have been carried out 

and 1the results are displayed in terms of non-dimensional quantities. These 

dimensionless quantities are taken in terms of the thickness of the first layer ( ), 

density of the first layer ( ) and dilatational wave velocity (

( )1h

( )1
0ρ ( )1

pc ) of the first layer. 

Thus these dimensionless quantities are defined as follows:   

( )
( )

( )
( )

( )

( )
( )

( )

( ) ( )
( )

( )

( ) ( )

( )
( )

( ) ( )
( )

( )

( ) ( )

( )

( )
( )

( )

( )

1,,
2

,
2

,
2

,
2

,,1

1

1
1

1

1

1
0

1
0

2
02

01
0

1
0

2
02

0

1
0

1
0

1
01

01
0

1
0

1
01

01
0

2
02

01
0

1
01

0

===
+

=
+

=

+
=

+
====

−−−−

−−−−

h
h

h
h

tc
t p

μλ
λλ

μλ
μμ

μλ
λλ

μλ
μμ

ρ
ρρ

ρ
ρρ

 

( )
( )

( ) ( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

( ) ( )( )211
0

22

211
0

11

211
0

22

211
0

11

1

22

1

11

11

2
2

,,

,,,,,

ppp

rr
rr

p

rr
rr

p

r
r

p

r
r

i
i

ccc

cc
vv

c
vv

h
rr

h
h

h

ρ
ττ

ρ
ττ

ρ
ττ

ρ
ττ

θθ
θθ

θθ
θθ ===

=====

−−−

−−−−−

             (3.1) 

In Eqs. (3.1), the non-dimensional quantities are shown by putting bars over them. We 

recall that the quantities pertaining to layers 1 and 2 are denoted by putting subscripts 1 

and 2 or superscripts 1 and 2 in parenthesis, respectively. For example  and   

denote the mass densities, whereas 

( )
−

1
0ρ ( )

−
2

0ρ

( )1−

rv and 
( )2−

rv denote the dimensionless particle 

velocities in layers 1 and 2, respectively. Furthermore,  and  represent the 

thicknesses of layers 1 and 2, respectively. All the other quantities appearing in Eqs. 

(3.1) are defined in Chapter 2.  

( )1h ( )2h
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3.1 Example 1; Verification problem 3.1 Example 1; Verification problem 

 We consider the solution of Eq. (1.1) for which  We consider the solution of Eq. (1.1) for which λ  and  are assumed to 

constant functions through the thickness of the cylindrical layer. That is, in Eq. (2.71) 

 and  is assumed to be zero. In the numerical examples investigated in this 

study, the following values for the non-dimensional material and geometrical properties 

are assumed:  

c

1=a b

                                   (3.2) 
( ) ( ) ( ) ( )

( ) ( ) 6,1,1,1,9.2,1

972.0,492.0,964.0,254.0

21
2

0
1

0

2
0

1
0

2
0

1
0

======

====
−−−−−−

−−−−

oi rhrhρρ

λλμμ

3.2 Example 2: 

 In this example we consider similar properties presented in Eqs. (3.2), but λ  

and  are assumed to be linear functions in c −r direction and uniform in the other two 

directions. That is, in Eq. (2.71) ,b ,  and  are assumed to be as follows: a m n

,1,1,
6
1,

6
5

==== nmba                      (3.3) 

In this case as we noted from the above non-dimensional quantities the cylindrical 

layered media is assumed to be made of functionally graded material whereas the 

properties are assumed to be vary linearly through thickness direction.  

 In these examples (1 & 2), the inner surface ( 1=
−
r ) is assumed to be subjected 

to uniform pressure with an initial ramp, see Fig. (3.1), where  and       2.00 =
−
t

10 =
−

P , that is  

( )tf

( )
⎭
⎬
⎫
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>
≤

=
2.0 if1
2.0 if5

t
tt

tf                                                                                               (3.4) 

   

tt
ot

 
op  

 

 

 
Fig. 3.1 Time 

variation of the load applied at the inner boundary ( 1=
−
r ). 

 

on the hand, the outer surface ( 7=
−
r ) is assumed to be fixed, that is  u .  0=r
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The numerical results presented in these examples have been obtained for three 

pairs of alternating layers. The innermost layer is taken as layer 1, whereas the 

outermost layer is taken as layer 2. In Figs. (3.2-3.7) the variations of the dimensionless 

normal stresses  
0ρ

τ rr  and 
0ρ

τθθ  with non-dimensional time at   

are shown for the layered composite with cylindrical layers. In these figures, solid 

curves are given for the cases where the homogeneous effects are neglected.  These 

solutions in the absence of the homogenity effects, that is for  and  have 

been investigated in detail in [30]. Our solutions presented in Figs. (3.4-3.5) at  

for the homogeneous case fit exactly those solutions presented in [29]. These results 

give us more confidence of the method applied in this thesis. On the other hand, 

solutions presented by dashed curves are devoted for FGM composites with properties 

given in Eqs. (3.3). From Figs. (3.2-3.7) one can see clearly that the stress level for the 

homogeneous material are greater than those correspond to FGM composite; this is due 

to the fact that the outer boundary of the FGM composite is stiffer than the inner 

boundary. The curves of Figs. (3.2-3.7), further show the effects of reflections and 

refractions from the inner and outer boundaries and from the interfaces. These effects 

can be noticed from the sudden changes of stress levels. We note that large changes are 

due to the reflections and refractions from the outer and inner boundaries, whereas 

small changes in stress levels are due to reflections and refractions from the interfaces 

between layers. 

5.3and    5.2,5.1 ===
−−−
rrr

1=a 0=b

5.2=
−
r
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Fig. 3.2 Time variation of the normal stress  
0ρ

τ rr at 5.1=
−
r  for three pairs of alternating     

layered cylindrical domain. 
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Fig. 3.3 Time variation of the normal stress  
0ρ

τθθ at 5.1=
−
r  for three pairs of alternating     

layered cylindrical domain. 
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Fig. 3.4 Time variation of the normal stress   
0ρ

τ rr at 5.2=
−
r  for three pairs of alternating     

layered cylindrical domain 

 

 

Fig. 3.5 Time variation of the normal stress  
0ρ

τθθ at 5.2=
−
r  for three pairs of alternating     

layered cylindrical domain. 
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Fig. 3.6 Time variation of the normal stress   
0ρ

τ rr at 5.3=
−
r  for three pairs of alternating     

layered cylindrical domain 
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Fig. 3.7 Time variation of the normal stress  
0ρ

τθθ at 5.3=
−
r  for three pairs of alternating     

layered cylindrical domain. 
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3.3 Example 3: 

The numerical results presented in Figs. (3.8-3.13) show the time variation of 

normally stresses at different locations for six similar layers. The geometrical and 

mechanical properties of the six layers are taken similar to Eqs. (3.2) with subscript or 

superscript 1. Whereas the inner boundary is subjected to time pulse given in Eq. (3.4) 

and the outer boundary is assumed to be fixed. In Figs. (3.8-3.13), the geometric and 

homogeneity effects are seen clearly from the discrepancy between the homogeneous 

and non-homogeneous (FGM) solutions. Furthermore, the reflections from the outer 

and inner boundaries are seen through the high jumps of stress levels, while the effects 

of reflections and refractions from the interfaces are not seen (as in Examples 1 & 2) 

because the six layers have the same properties.      
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Fig. 3.8 Time variation of the normal stress   
0ρ

τ rr at 5.1=
−
r  for six similar cylindrical layers. 
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Fig. 3.9 Time variation of the normal stress  
0ρ

τθθ at 5.1=
−
r  for three pairs of  layered 

cylindrical domain 
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Fig. 3.10 Time variation of the normal stress   
0ρ

τ rr at 5.2=
−
r  for three pairs of  layered 

cylindrical domain 
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Fig. 3.11 Time variation of the normal stress  
0ρ

τθθ at 5.2=
−
r  for three pairs of  layered 

cylindrical domain. 
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Fig. 3.12 Time variation of the normal stress   
0ρ

τ rr at 5.3=
−
r  for three pairs of  layered 

cylindrical domain 
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Fig. 3.13 Time variation of the normal stress  
0ρ

τθθ at 5.3=
−
r  for three pairs of layered 

cylindrical domain. 
 

Example 4: 

In this problem, we present some results for one-dimensional wave propagation 

in an FGM layer consists of nickel (Ni) and silicon (Si). On one surface of the layer is 

pure nickel and on the other surface pure silicon, and the material properties in-between 

these two surfaces vary smoothly in the radial direction. The material properties of the 

constituent materials are given in Table 1: 

    ( )GPaμ  ( )GPaλ  ( )3/ mKgρ  

Ni (Nickel) 79 129 8900 

Si (Silicon) 90 46 3100 
                Table 3.1:  Properties of materials used in example 4 
Here we consider four different problems. These problems are: nickel-silicon (Ni/Si) or 

silicon-nickel (Si/Ni) FGM composites with free or fixed outer boundary conditions. 

The FGM cylindrical layers are assumed to be consisting of two different layers. Thus, 

in the use of the non-dimensionalization, the material properties for the two composites 

can be computed from Table 1 as: 

for the Ni/Si FGM composite with 2+= nm , see Fig. 3.14a,  
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,1,44948.0,27526.0,1

,5036.0,4964.0,58585.2,58585.0

0000 ====

==−=−=
−−−−

c

banm

λμρ
                                 (3.5) 

and for the Si/Ni FGM composite with  2+= nm , see Fig. 3.14b, 

 

,1,20354.0,39823.0,1

,33492.0,33492.1,58588.2,58588.0

0000 ====

−==−=−=
−−−−

c

banm

λμρ
                           (3.6) 

The variation of non-dimensional density ( −
ρ ), stiffness (

−
c ) and wave velocity (

−

pc ) 

with 
−
r  for these composites, (3.5-3.6), are shown, respectively, in Fig. 3.14. In these 

examples In these examples, the inner surface ( 1=
−
r ) is assumed to be subjected to 

uniform trapezoidal with an initial ramp with  as seen in the following figure   10 =
−

P

tt

( )tf  
                                                                                               

 
 

         

 

 
tΔ  t(0.2+ Δ ) 0.2  

 Time variation of the boundary conditions used in example 4, that is the normal stresses applied at the 

inner boundary ( 1=
−
r ). 

 

 For various combination of boundary conditions and material compositions 

shown in Fig. 3.14, the variations of normalized normal stresses 00 /and  / PPrr θθττ  with 

non-dimensional time  are given in Figs. 3.15, 3.16, 3.19, 3.20, 3.23, 3.24, 

3.27, and 3.28. The curves in Figs. 3.15, 3.16, 3.23, and 3.24, correspond to free outer 

boundary conditions, while the curves of Figs. 3.19, 3.20, 3.27, and 3.28 correspond to 

fixed outer boundary conditions. The variations of normalized normal stresses 

5.1at =
−−
rt

00 /and  / PPrr θθττ  with non-dimensional time  are given in Figs. 3.17, 3.18, 

3.21, 3.22, 3.25, 3.26, 3.29, and 3.30. The curves in Figs. 3.17, 3.18, 3.25, and 3.26, 

correspond to free outer boundary conditions, while the curves of Figs. 3.21, 3.22, 3.29, 

and 3.30 correspond to fixed outer boundary conditions. The dashed curves in these 

Figures, Figs. 3.15-3.30, correspond to FGM layers with material properties given in 

5.2at =
−−
rt
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Eq. (3.5) or Eq. (3.6), whereas the solid curves correspond to linear, homogeneous and 

isotropic material. The curves corresponding to the homogeneous layer are obtained as 

a special case by assigning a=1 and b=0 in Eqs. (3.5-3.6). The curves of Figs. 3.15-3.30 

clearly show the effects of reflections at the inner and outer surfaces through the 

sudden changes in the stress levels. We note further that, reflections and refractions 

from the interfaces are also shown through the small sudden changes in the stress 

levels. Moreover, we note that the stress levels in the homogeneous layer are higher 

than those correspond to the Ni/Si FGM composite, Figs. 3.15-3.22, and they are less 

than those correspond to the Si/Ni FGM composite, Figs. 3.23-3.30. these deviations 

from the homogeneous material are due to the fact that the inner boundary 1=
−
r  is the 

stiffer side in the Ni/Si FGM composite, Fig. 3.14a, and if  1=
−
r  is the less stiff side 

then the stress levels will be higher than those correspond to the homogeneous layer. 

Because the wave velocity of the homogeneous layer ( 1=
−

pc ) is less than that of the 

Ni/Si FGM composite, Fig. 3.14a, the stress wave propagates faster in the Ni/Si FGM 

composite, Figs. 3.15-3.22. However, the stress wave in the homogeneous layer is 

traveling faster than that in the Si/Ni FGM layer, see Figs. 3.23-3.30, this is clearly 

pronounced as time increasing. We, further, note that if the outer boundary is free of 

surface traction than the compressive waves are reflected as tensile waves from that 

boundary, Figs. 3.15-3.18 and Figs. 3.23-3.26, and they are reflected as compressive 

waves if the outer boundary is fixed, Figs. 3.19-3.22 and Figs. 3.27-2.30. 
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Fig. 3.14a Variation of non-dimensional density (
−
ρ ), stiffness (

−
c ) and wave velocity ( ) with 

−

pc
−
r  in 

Ni/Si FGM composite.  
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Fig. 3.14b Variation of non-dimensional density (
−
ρ ), stiffness (

−
c ) and wave velocity ( ) with 

−

pc
−
r  in 

Si/ Ni FGM composite. 
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Fig. 3.15 Variation of ( 0/ Prrτ ) with 
−
t  in Ni/Si FGM layer and in homogeneous layer at  

under free/free boundary conditions.  5.1=
−
r

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00
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 /
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Fig. 3.16 Variation of ( 0/ Pθθτ ) with 
−
t  in Ni/Si FGM layer and in homogeneous layer at  

under free/free boundary conditions.  5.1=
−
r
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Fig. 3.17 Variation of ( 0/ Prrτ ) with 
−
t  in Ni/Si FGM layer and in homogeneous layer at  

under free/free boundary conditions.  5.2=
−
r
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Fig. 3.18 Variation of ( 0/ Pθθτ ) with 
−
t  in Ni/Si FGM layer and in homogeneous layer at  

under free/free boundary conditions. 5.2=
−
r
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Fig. 3.19 Variation of ( 0/ Prrτ ) with 
−
t  in Ni/Si FGM layer and in homogeneous layer at  

under free/fixed boundary conditions.  5.1=
−
r
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Fig. 3.20 Variation of ( 0/ Pθθτ ) with 
−
t  in Ni/Si FGM layer and in homogeneous layer at 

under free/fixed boundary conditions. 5.1=
−
r
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Fig. 3.21 Variation of ( 0/ Prrτ ) with 
−
t  in Ni/Si FGM layer and in homogeneous layer at  

under free/fixed boundary conditions. 5.2=
−
r

 

Fig. 3.22 Variation of 
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d bound d5.2=
−
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0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00
-1.00

0.00

1.00

2.00

−τ
   

 /

Fig. 3.23 Variation of ( 0/ Prrτ ) with 
−
t  in Si/Ni FGM layer and in homogeneous layer at  

under free/free boundary conditions.  5.1=
−
r
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Fig. 3.24 Variation of ( 0/ Pθθτ ) with 
−
t  in Si/Ni FGM layer and in homogeneous layer at  

under free/free boundary conditions. 5.1=
−
r
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Fig. 3.25 Variation of ( 0/ Prrτ ) with 
−
t  in Si/Ni FGM layer and in homogeneous layer at  

under free/free boundary conditions. 5.2=
−
r
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Fig. 3.26 Variation of ( 0/ Pθθτ ) with 
−
t  in Si/Ni FGM layer and in homogeneous layer at  

under free/free boundary conditions. 5.2=
−
r
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Fig. 3.27 Variation of ( 0/ Prrτ ) with 
−
t  in Si/Ni FGM layer and in homogeneous layer at  

 

5.1=
−
r under free/fixed boundary conditions. 

Fig. 3.28 Variation of 
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Fig. 3.29 Variation of ( 0/ Prrτ ) with 
−
t  in Si/Ni FGM layer and in homogeneous layer at  

d bound

Fig. 3.30

5.2=
−
r under free/fixe ary conditions. 

 Variation of ( 0/ Pθθ
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−
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CHAPTER 4 

CONCLUSIONS  
 

the one-dimensional transient stress-wave propagation in 

ultilayered functionally graded media consisting of  different cylindrical layers has 

been in

a

 

plitu

 

In this thesis, 

m  N

vestigated. The material properties are assumed to be varying smoothly in the 

thickness direction. By suitable adjusting the m terial properties, curves for 

homogeneous and linearly elastic multilayered cylindrical media have also been 

obtained. The method of characteristics is employed to obtain the numerical solutions 

of the considered initial-boundary-value problem. The results show that the applied 

numerical technique is capable of predicting the sharp variations at the wave fronts. 

Furthermore, this technique properly accounts for the effects caused by reflections and 

refractions of waves at the boundaries and interfaces between the layers and the 

homogeneity effects in the wave profiles.  

   Based on the results obtained, one may conclude that, depending on the material 

property grading, the location of the receiver point, boundary conditions and the

am de of the input pulse, the resultant stress amplitudes may be greater or less than 

those applied at the inner boundary. It has been found that these amplitudes become 

less than those applied at the inner boundary, when the inner boundary ( 1=r ) is stiffer 

that the outer surface ( 0Rr = ) and become greater when the outer surface of an FGM 

layer is stiffer than the inner surface.  

 Finally, the method of characteristics can be combined with Fourier or Laplace 

transform and used effectively in investigating two-dimensional transient dynamic 

response in multilayered FGM media.         
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APPENDIX A 
 

METHOD OF CHARACTERIS

of the basic equations used in the method of 

haracteristics, namely, the characteristic equation and the canonical equations will be 

TICS 

 
 In this appendix, the derivations 

c

given. Let the system of governing 1-D partial differential equations be given in matrix 

form as  

0CUBUA ,, =++ xt             (A.1) 

where are ( ) square matrices, C is an m-dimensional vector and UBand  A mm × is 

m-dimensional unknown vector  
T

m )U..,U(U =          (A ) 

The unknown field variables 1,U

21 ,......U, .    .2

U,........,U  are functions of the space variable x and 

the time variable t. The

m2

 system of governing equations, Eqs, (A.1), is assumed to be 

linear, i.e., Band  A are function of x and t only and C is a linear function of  U ,i.e.,  

EUDC +=             (A.3) 

where D  is an ( m ) square matrix and m × E is m-dimensional vector both of which 

are functions of x and t, only. Furthermore, comma denotes partial differentiation in Eq. 

(A.1), i.e., tt ∂∂=U,  and /U xx ∂∂= /UU, . 

 Let x=x(t) define the equation of the singular point (wave front) at which the 

field variables and/or their d y erivatives ma suffer discontinuities. The plot of x(t) is 

enote the values of the function on the disturbed and 

undisturbed

given in Fig. A.1. If f denotes a function of x and t, the jump of f(x,t) at the singular 

point is defined and denoted as  
-ff[f] −= +             (A.4) 

where the superscripts + and – d

 sided of the singular point, respectively.  
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 Now, assume that U is continuous and the first derivatives of U are 

discontinuous on the singular point x=x(t) , i.e., [ ] [ ] [ ]  0U0U,0U ,, ≠≠= xt on 

x=x(t). 

 

 

t  

   

 

 

 

 

 

 
 Writing Eq. (A.1) on positive and negative sides of x=x(t), noting that 

Cand  B,A  are continuous on x=x(t), and taking the difference, we obtain on x=x(t) 

[ ] [ ] 0UBUA ,, =+ xt .           (A.5) 

The kinematical condition of compability given on x=x(t) 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

x
UV

t
U                       (A.6) 

where V denotes the propagation velocity of the singular point (wave front). 

Substituting Eq. (A.6) into Eq. (A.5), we get  

( ) 0WAVB =−            (A.7) 

where [ ]x,UW = . This is an eigenvalue problem and W  is the eigenvector and V is the 

eigenvalue. For non-trivial solution 

( ) 0AVBdet =−            (A.8) 

Equation (A.8) is called the characteristics equation. Solving this equation we find m 

roots (characteristics values), i.e, ( ) ( ) ( ) ( ) )V,......,V,V(V m21i = . If the roots are real then 

the system is called hyperbolic and each ( )iV  corresponds to  family of characteristic 

curves . This characteristic family can be determined by solving the following 

equation: 

thi
( )iC

_+

x=x(t) 

x 

Figure A.1 Position of the singular point
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( ) ( ) ( ) ( ) m.,1,2,......ifor    )t,(xxV
dt
dx:C iiii ==→= α                  (A.9) 

where   are integrat.on constants. The family of the curves ( )iα ( ) ( ) ( )m21 C,......,C,C  

constitutes the characteristic manifold.  

Now we shall put Eq. (A.1) into canonical form. For this purpose, we define the left-

hand eigenvector ( )il  corresponding to ( )iV  as  
( ) ( ) m)-1i(0AVB (i)T ==−il        (A.10) 

or 

( ) ( ) )m-1i(0AVB T(i)T ==− il        (A.11) 

Pre-multiplying Eq. (A.1) by ( )Til  (i=1-m) and substituting  
( ) ( ) m)-1i(AVB T(i)T == ii ll        (A.12) 

from Eq. (A.10), we can write 
( ) ( ) ( ) ( )iT

,
i

,
T C   on0C)UVU(A =++ i

xt
i ll .     (A.13) 

Noting that ( )

dt
dxV i =  and the quantity in parenthesis in Eq. (A.13) is equal to  

dt
Ud , we 

can write  

( ) ( ) 0C
dt
UdA TT =+ ii ll         (A.14) 

which holds along ( ) )m1i(Vdt)/  (dx i −== . Eqs. (A.14) are called the canonical 

equations.  In these equations d / dt denotes the total time derivative along the 

characteristic lines. Thus, through the application of the method of the characteristics, 

the system of governing partial differential equations. Eqs. (A.1), is transformed into a 

system of ordinary differential equations, Eqs. (A.14), each of which is valid along a 

different family of characteristic lines.  
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APPENDIX B 
 

 

PROGRAM MAIN 
      IMPLICIT real*8 (a-h,o-z) 

      PARAMETER(np=6,nl=8,jx=20001) 

      COMPLEX*16 srxx(jx,np),sryy(jx,np),srzz(jx,np) 

      COMMON dt,eps,nop,nol,zzz 

      COMMON/arrays/hz(nl),mm(nl+1)/arry2/r0(nl),a(nl),b(nl), 

     *pm(nl),pn(nl),yy(np),dz(10001),um0(nl),ul0(nl), 

     *c(10001),co(10001),ro(10001)      

       open(99,file='Inp333') 

       open(88,file='OU333') 

       open(80,file='OU333.dat') 

       open(1,file='2LSNf1.dat') 

       open(2,file='2LSNf2.dat') 

       open(3,file='2LSNf3.dat') 

       open(4,file='2LSNf4.dat') 

       open(5,file='2LSNf5.dat')       

       CALL INPUT(imax,jmax) 

       CALL SOLVEE(imax,jmax,srxx,sryy,srzz) 

       CALL OUT(jmax,srxx,sryy,srzz)  

         close (99) 

         close (88)  

          STOP 

          END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      SUBROUTINE INPUT(imax,jmax) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      IMPLICIT real*8 (a-h,o-z)  

      PARAMETER(np=6,nl=8)          

      COMMON dt,eps,nop,nol,zzz 

 COMMON/arrays/hz(nl),mm(nl+1)/arry2/r0(nl),a(nl),b(nl), 

 *pm(nl),pn(nl),yy(np),dz(10001),um0(nl),ul0(nl), 

 *c(10001),co(10001),ro(10001) 
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       read(99,*)nop 

       read(99,*)(yy(jj),jj=1,nop) 

       read(99,*)jmax,nol 

       read(99,*)zzz,dt,eps 

       TH=0.0d0 

       do jjj=1, nol 

       read(99,*)hz(jjj) 

       read(99,*)pm(jjj),pn(jjj)  

       read(99,*)a(jjj),b(jjj)  

       read(99,*)r0(jjj),um0(jjj), ul0(jjj) 

       enddo 

        z=zzz 

        mm(1)=1 

        lf=nol-1 

        lm=nol+1 

        m=0 

        do 303   kk=1,nol 

        z=z+dz1 

        do    k=1,50001 

        co(k+m)=(2.0d0*um0(kk)+ul0(kk))*((a(kk)+b(kk)*z)**pm(kk)) 

        ro(k+m)=r0(kk)*((a(kk)+b(kk)*z)**pn(kk)) 

        c(k+m)=dsqrt(co(k+m)/ro(k+m)) 

        dz(k+m)=c(k+m)*dt 

       write(88,121) kk,k+m,z,ro(k+m),c(k+m) 

121     Format(2(x,I6),3(x,e16.8),/) 

        abb=z 

        if(abb.ge.hz(kk)) then 

        go to 304 

        else  

        endif 

        z=z+dz(k+m)+0.000000000000001 

        enddo        

304   if(kk.LE.lf) then 

        co1=(2.0d0*um0(kk+1)+ul0(kk+1))*((a(kk+1)+b(kk+1)*z)**pm(kk+1)) 

        ro1=r0(kk+1)*((a(kk+1)+b(kk+1)*z)**pn(kk+1)) 

        c1=dsqrt(co1/ro1) 

        dz1=c1*dt 

        mm(kk+1)=m+k 

        m=m+k 

        else 
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        mm(kk+1)=m+k 

        endif 

303  enddo  

        imax=mm(lm) 

        Do ii=1,lm 

        write(88,*) 'mm(',ii,')=  ', mm(ii) 

        enddo 

        write(88,*)'Imax = ',imax,'    NOL = ', nol   

       return 

       End 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

        SUBROUTINE INPFT(tt,pt,dt) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      real*8 tt,pt,ddc,pi,dt 

       pi=4.0d0*atan(1.0d0) 

       ddc=dt 

       if(tt.lt.dt) then 

       pt=0.0d0 

       else 

      endif 

      ddc=0.2d0  

      if(tt.le.ddc) then 

      pt=1.0d0 

        else  

       pt=0.0d0 

       endif 

      RETURN 

      END  

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      SUBROUTINE SOLL(N,NX,A,X) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      COMPLEX*16 A(NX,NX), X(NX),TEMP,QUOT,SUM 

       M=N+1 

       DO 23 I=1,N 

23     A(I,M)=X(I) 

       L=N-1 

       DO 12 K=1,L 

       JJ=K 

       BIG=CDABS(A(K,K)) 

       KP1=K+1    
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       DO 7 I=KP1,N 

       AB=CDABS(A(I,K)) 

       IF((BIG-AB).GE.0.) GO TO 7 

       BIG=AB   

       JJ=I  

 7     CONTINUE 

       IF((JJ-K).EQ.0) GO TO 10 

       DO 9 J=K,M 

       TEMP=A(JJ,J) 

       A(JJ,J)=A(K,J) 

 9     A(K,J)=TEMP 

10     DO 11 I=KP1,N 

       QUOT=A(I,K)/A(K,K) 

       DO 11 J=KP1,M 

11     A(I,J)=A(I,J)-QUOT*A(K,J) 

       DO 12 I=KP1,N    

12     A(I,K)=0. 

       X(N)=A(N,M)/A(N,N) 

       DO 14 NN=1,L 

       SUM=0.   

       I=N-NN 

       IP1=I+1    

       DO 13 J=IP1,N 

13     SUM=SUM+A(I,J)*X(J) 

14     X(I)=(A(I,M)-SUM)/A(I,I) 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

       SUBROUTINE SOLVEE(imax,jmax,srxx,sryy,srzz) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      IMPLICIT real*8 (a-h,o-z)   

      parameter(np=6,nx=6,nl=8) 

      COMPLEX*16 sryy(jmax,np),srxx(jmax,np), 

     *srzz(jmax,np),uf(nl,imax,nx),uff(nl,imax,nx),zz(2*nx-1), 

     *af(nx,nx),z(nx),ad(nx,nx),z2(nx),gg(2*nx-1,2*nx-1)            

      COMMON dt,eps,nop,nol,zzz 

      COMMON/arrays/hz(nl),mm(nl+1)/arry2/r0(nl),a(nl),b(nl), 

      *pm(nl),pn(nl),yy(np),dz(10001),um0(nl),ul0(nl), 

      *c(10001),co(10001),ro(10001) 

      ns=nx-1  
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      nns=2*(nx-1)  

      nnx=2*nx-1 

      do  70  kl=1,nol 

      do  70  ij=mm(kl),mm(kl+1) 

      do  70  kf=1,ns 

70   uf(kl,ij,kf)=0.0d0 

       do  90  j=2,jmax 

      write(*,*) j 

      tt=(j-1)*dt 

      xx=zzz 

      xx=xx+dz(1) 

      do   100  nm=1,nol 

      if(nm.eq.1) then 

      xx=xx-dz(1) 

      kk=mm(1) 

      else 

      kk=mm(nm)+1 

      endif 

      do   100  iq=kk,mm(nm+1) 

      if(j.eq.2) then 

      write(80,122) xx,ro(iq),co(iq),c(iq) 

122 Format(4(x,e20.10),/) 

      else 

      endif 

      CALL VECTOR(iq,nm,xx,uf,nx,z,imax) 

      CALL MATRIX(nm,nx,af,xx)   

      do ikl=1,ns 

      Write(88,*)z(ikl) 

      write(88,*)(af(ikl,jjj),jjj=1,ns) 

      write(88,*) iq,ikl 

      enddo 

      if(iq.eq.1) go to 200 

      if(iq.eq.imax) go to 300 

      if(iq.eq.mm(nm+1)) go to 500 

      go to 600                 

 200  do jj=1,ns 

      af(1,jj)=cmplx(0.0d0,0.0d0) 

      enddo 

      af(1,1)=1.0d0 

      CALL INPFT(tt,pt,dt) 
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      z(1)=1.0d0*pt 

      CALL SOLL(ns,nx,af,z) 

      go to 400 

300 do jj=1,ns 

      af(2,jj)=cmplx(0.0d0,0.0d0)  

      enddo 

 EITHER: 

 FOR FREE OUTER BOUNDARY CONDITIONS USE af(2,1) 

     af(2,1)=1.0d0 

 OR: 

FOR FIXED OUTER BOUNDARY CONDITIONS USE af(2,4) 

     af(2,4)=1.0d0 

     CALL INPFT(tt,pt) 

     z(2)=0.0d0     

    CALL SOLL(ns,nx,af,z) 

     go to 400 

500 nnm=nm+1 

   CALL VECTOR(iq,nnm,xx,uf,nx,z2,imax) 

   CALL MATRIX(nnm,nx,ad,xx)       

  do 510 ll=1,nns 

  do 510 jj=1,nns 

  zz(ll)=cmplx(0.0d0,0.0d0) 

  gg(ll,jj)=cmplx(0.0d0,0.0d0) 

510     continue 

    do 515  kn=3,ns 

    do 517  jj=1,ns 

    gg(kn,jj)=af(kn,jj) 

    gg(1,jj)=af(1,jj)        

    gg(kn+ns,jj+ns)=ad(kn,jj) 

    gg(7,jj+ns)=ad(2,jj) 

51 continue 

    zz(kn)=z(kn) 

    zz(kn+ns)=z2(kn) 

51 continue 

    zz(1)=z(1) 

    zz(7)=z2(2) 

    gg(2,1)=1.0d0 

    gg(2,6)=-1.0d0        

    gg(6,4)=1.0d0 

    gg(6,9)=-1.0d0 
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    CALL  SOLL(nns,nnx,gg,zz) 

    do  577  jn=1,ns 

    z(jn)=zz(jn) 

57  uff(nnm,iq,jn)=zz(jn+ns)        

     go to 400  

60 CALL SOLL(ns,nx,af,z)  

400 do  ikj=1,nop     

    if(abs(yy(ikj)-xx).lt.eps) then 

    srxx(j,ikj)=z(1) 

    sryy(j,ikj)=z(2) 

    srzz(j,ikj)=z(4)        

    else  

    endif         

    enddo  

    do  710  k=1,ns 

710 uff(nm,iq,k)=z(k) 

    xx=xx+dz(iq)+0.000000000000001 

100 continue 

   do    720  ml=1,nol 

   do    720  is=mm(ml),mm(ml+1) 

   do    720  k=1,ns 

  uf(ml,is,k)=uff(ml,is,k) 

720 continue   

90   continue 

  RETURN 

 END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      SUBROUTINE MATRIX(nm,nx,ai,xx) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC  

 IMPLICIT real*8 (a-h,o-z) 

 PARAMETER(np=6,nl=8)     

 COMPLEX*16 ai(nx,nx) 

 COMMON dt,eps,nop,nol,zzz 

COMMON/arrays/hz(nl),mm(nl+1)/arry2/r0(nl),a(nl),b(nl), 

* pm(nl),pn(nl),yy(np),dz(10001),um0(nl),ul0(nl), 

* c(10001),co(10001),ro(10001) 

do  79  kf=1,nx 

do  79  kr=1,nx 

79  ai(kf,kr)=cmplx(0.0d0,0.0d0)       

cp=dsqrt((2.0d0*um0(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/    
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* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))) 

RO=r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)) 

TML=(2.0d0*um0(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm)) 

Lamd=ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm)) 

Dlamd=ul0(nm)*b(nm)*pm(nm)*((a(nm)+b(nm)*xx)**(pm(nm)-1.0d0)) 

DTML=b(nm)*pm(nm)*(2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx)**(pm(nm)-1.0d0)) 

ai(1,1)=(-dt/2.0d0/xx/(r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))) 

ai(1,2)=(dt/2.0d0/xx/(r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))) 

ai(1,3)=(-dsqrt((2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx)**pm(nm))/    

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))- 

* (dt/2.0d0/(r0(nm)*((a(nm)+b(nm)*xx)**pn(nm))))* 

* (b(nm)*pm(nm)*(2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx)**(pm(nm)-1.0d0))) 

  ai(1,4)=((-ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/ 

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))/ 

* (dsqrt((2.0d0*um0(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/    

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))/xx)+ 

* (dt/2.0d0/(r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))/(xx))*  

* (((ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/xx)- 

* (ul0(nm)*b(nm)*pm(nm)*((a(nm)+b(nm)*xx)**(pm(nm)-1.0d0)))) 

ai(1,5)=1.0d0+(dt/2.0d0/xx/(r0(nm)* 

* ((a(nm)+b(nm)*xx)**pn(nm))))* 

* ((ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/ 

* (dsqrt((2.0d0*um0(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/    

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))) 

ai(2,1)=(-dt/2.0d0/xx/(r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))) 

ai(2,2)=(dt/2.0d0/xx/(r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))) 

ai(2,3)=(dsqrt((2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx)**pm(nm))/    

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))- 

* (dt/2.0d0/(r0(nm)*((a(nm)+b(nm)*xx)**pn(nm))))* 

* (b(nm)*pm(nm)*(2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx)**(pm(nm)-1.0d0))) 

ai(2,4)=((ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/ 

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))/ 

 * (dsqrt((2.0d0*um0(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/    

 * (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))/xx)+ 

 * (dt/2.0d0/(r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))/(xx))*  
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 * (((ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/xx)- 

 * (ul0(nm)*b(nm)*pm(nm)*((a(nm)+b(nm)*xx)**(pm(nm)-1.0d0)))) 

 ai(2,5)=1.0d0-(dt/2.0d0/xx/(r0(nm)* 

 * ((a(nm)+b(nm)*xx)**pn(nm))))* 

* ((ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/ 

* (dsqrt((2.0d0*um0(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/    

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))) 

ai(3,1)=1.0d0 

ai(3,2)=-(((2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx)**pm(nm)))/ 

* (ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm)))) 

ai(3,5)=(dt/2.0d0/xx)*(((((2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx)**pm(nm)))**2.0d0)/ 

* (ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm))))- 

* (ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm)))) 

ai(4,1)=1.0d0 

ai(4,3)=(-(2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx)**pm(nm))) 

ai(4,5)=(-dt/2.0d0/xx)*(ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm))) 

ai(5,4)=1.0d0 

ai(5,5)=-dt/2.0d0 

RETURN 

END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC        

      SUBROUTINE VECTOR(i,nm,xx,uf,nx,z,imax) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC       

IMPLICIT real*8 (a-h,o-z) 

PARAMETER(np=6,nl=8) 

complex*16 z(nx),uf(nl,imax,nx) 

COMMON dt,eps,nop,nol,zzz 

COMMON/arrays/hz(nl),mm(nl+1)/arry2/r0(nl),a(nl),b(nl), 

*pm(nl),pn(nl),yy(np),dz(10001),um0(nl),ul0(nl), 

*c(10001),co(10001),ro(10001) 

 do  jjj=1,nx 

z(jjj)=cmplx(0.0d0,0.0d0) 

 enddo 

xx1=xx 

xx2=xx 

if (i.eq.1) then 

go to 700 
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else 

z(1)=uf(nm,i-1,1)*((dt/2.0d0/xx1/ 

* (r0(nm)*((a(nm)+b(nm)*xx1)**pn(nm)))))- 

* uf(nm,i-1,2)*((dt/2.0d0/xx1/ 

* (r0(nm)*((a(nm)+b(nm)*xx1)**pn(nm)))))+ 

* uf(nm,i-1,3)*((-dsqrt((2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx)**pm(nm))/    

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))+ 

* (dt/2.0d0/(r0(nm)*((a(nm)+b(nm)*xx1)**pn(nm))))* 

* (b(nm)*pm(nm)*(2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx1)**(pm(nm)-1.0d0))))+ 

* uf(nm,i-1,4)*(((-ul0(nm)*((a(nm)+b(nm)*xx1)**pm(nm)))/ 

* (r0(nm)*((a(nm)+b(nm)*xx1)**pn(nm)))/ 

* (dsqrt((2.0d0*um0(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/    

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))/xx1)- 

* (dt/2.0d0/(r0(nm)*((a(nm)+b(nm)*xx1)**pn(nm)))/(xx1))*  

* (((ul0(nm)*((a(nm)+b(nm)*xx1)**pm(nm)))/xx1)- 

* (ul0(nm)*b(nm)*pm(nm)*((a(nm)+b(nm)*xx1)**(pm(nm)-1.0d0)))))+ 

* uf(nm,i-1,5)*(1.0d0-(dt/2.0d0/xx1/(r0(nm)* 

* ((a(nm)+b(nm)*xx1)**pn(nm))))* 

* ((ul0(nm)*((a(nm)+b(nm)*xx1)**pm(nm)))/ 

* (dsqrt((2.0d0*um0(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/    

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm))))))) 

endif 

700     if(i.eq.imax) then  

go to 800 

else   

z(2)=uf(nm,i+1,1)*((dt/2.0d0/xx2/ 

* (r0(nm)*((a(nm)+b(nm)*xx2)**pn(nm)))))- 

* uf(nm,i+1,2)*((dt/2.0d0/xx2/(r0(nm)* 

* ((a(nm)+b(nm)*xx2)**pn(nm)))))+ 

* uf(nm,i+1,3)*((dsqrt((2.0d0*um0(nm)+ul0(nm))* 

 * ((a(nm)+b(nm)*xx)**pm(nm))/    

 * (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))+ 

* (dt/2.0d0/(r0(nm)*((a(nm)+b(nm)*xx2)**pn(nm))))* 

* (b(nm)*pm(nm)*(2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx2)**(pm(nm)-1.0d0))))+ 

* uf(nm,i+1,4)*(((ul0(nm)*((a(nm)+b(nm)*xx2)**pm(nm)))/ 

* (r0(nm)*((a(nm)+b(nm)*xx2)**pn(nm)))/ 

* (dsqrt((2.0d0*um0(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/    
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* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))/xx2)- 

* (dt/2.0d0/(r0(nm)*((a(nm)+b(nm)*xx2)**pn(nm)))/(xx2))*  

* (((ul0(nm)*((a(nm)+b(nm)*xx2)**pm(nm)))/xx2)- 

* (ul0(nm)*b(nm)*pm(nm)*((a(nm)+b(nm)*xx2)**(pm(nm)-1.0d0)))))+ 

* uf(nm,i+1,5)*(1.0d0+(dt/2.0d0/xx2/(r0(nm)* 

* ((a(nm)+b(nm)*xx2)**pn(nm))))* 

* ((ul0(nm)*((a(nm)+b(nm)*xx2)**pm(nm)))/ 

* (dsqrt((2.0d0*um0(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/    

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))))   

  endif 

800     continue  

z(3)=uf(nm,i,1)- 

*  uf(nm,i,2)*((((2.0d0*um0(nm)+ul0(nm))* 

 * ((a(nm)+b(nm)*xx)**pm(nm)))/ 

* (ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm)))))- 

* uf(nm,i,5)*((dt/2.0d0/xx)*(((((2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx)**pm(nm)))**2.0d0)/ 

* (ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm))))- 

* (ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm))))) 

z(4)=uf(nm,i,1)- 

* uf(nm,i,3)*(((2.0d0*um0(nm)+ul0(nm))* 

* ((a(nm)+b(nm)*xx)**pm(nm))))+ 

* uf(nm,i,5)*((dt/2.0d0/xx)* 

* (ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm)))) 

z(5)=uf(nm,i,4)+uf(nm,i,5)*(dt/2.0d0) 

RETURN 

END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

       SUBROUTINE OUT(jmax,srxx,sryy,srzz)  

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC      

IMPLICIT real*8 (a-h,o-z)         

parameter(np=6,nl=8)        

complex*16 srxx(jmax,np),sryy(jmax,np),srzz(jmax,np) 

COMMON dt,eps,nop,nol,zzz 

COMMON/arrays/hz(nl),mm(nl+1)/arry2/r0(nl),a(nl),b(nl), 

* pm(nl),pn(nl),yy(np),dz(10001),um0(nl),ul0(nl), 

* c(10001),co(10001),ro(10001) 

do ii=1,nop 

do jj=2,jmax     

ttt=(jj-1)*dt 
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sssrxx=dreal(srxx(jj,ii)) 

sssryy=dreal(sryy(jj,ii)) 

sssrzz=dreal(srzz(jj,ii)) 

write(ii,101) ttt,sssrxx,sssryy,sssrzz 

101    format(f14.8,1x,3(1x,f20.10))     

enddo 

enddo 

return 

end 
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APPENDIX C 
 

EXAMPLE OF INPUT FILE “inp333”: 

The following input file is included to the results presented in Figs. 3.22 – 3.29 

for the Si/Ni FGM composite. 

 

5    

1.00  1.50080412  2.000438265  2.500499031  3.000059837 

8001     2 

1.0d0    0.0020d0    0.000001d0 

 

2.0d0 

-0.5858690d0   -2.5858690d0 

1.3349220150d0    -0.3349220150d0 

1.0d0    0.398230d0     0.203540d0 

 

3.0d0 

-0.5858690d0   -2.5858690d0 

1.66984403d0    -0.3349220150d0 

1.0d0    0.398230d0     0.203540d0 

 

The first line: (5), shows the number of pointd where solutions are required.  

The second line: (1.00  1.50080412  2.000438265  2.500499031  3.000059837), shows                        

the location of points where solutions are required in ( direction−r ).   

The third line: (8001     2), 8001max =J  and number of layers are 4. 

The fourth line: (1.0d0    0.0020d0    0.000001d0), the first entry is the location of the 

top surface  of the layered media. The second entry is d00.1=r d00020.0=Δt , the 

third entry is 0.000001d0=ε which is a stopping criterion. 
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Under the fourth line we have four sets, each set pertains to the geometric and material 

properties of the four layers, for example, the first entry in each set gives the location of 

the outer boundary of that layer. The other three lines give:  

000 λμρ
ba
nm

 

, respectively. 
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