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ABSTRACT

In this thesis, numerical solution of one-dimensional wave equation in
multilayered cylindrical functionally graded media is investigated. The multilayered
medium consists of N different layers of Functionally Graded Materials (FGMs), i.e.,
it is assumed that the stiffness and the density of each layer are varying continuously in
the radius direction which is perpendicular to the layering direction but isotropic and
homogeneous in the circumferential and axial directions. The inner surface of the
layered medium is subjected to a uniform dynamic in-plane time-dependent normal
stress; whereas, the outer surface of the layered medium is assumed free of surface
traction or fixed. Moreover, the multilayered medium is assumed to be initially at rest
and its layers are assumed to be perfectly bonded to each other. The method of
characteristics is employed to obtain the numerical solutions of this initial-boundary
value problem. The numerical results are obtained and displayed in curves denoting the
variation of normal stress component with time. These curves reveal clearly the
scattering effects caused by the reflections and refractions of waves at the boundaries
and at the interfaces of the layers. The curves also display the effects of non-
homogenity in the wave profiles. The curves further show that the numerical technique
applied in this study is capable of predicting the sharp variations in the field variables

in the neighborhood of the wave fronts.
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BIRINCi DERECEDEN DALGA DENKLEMININ FONKSIYONEL
DERECELENDIRILMIiS SILINDIRIK TABAKADA Ki
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Tez Yoneticisi: Ibrahim ABU-ALSHAIKH

07/

Bu tezde, birinci dereceden dalga denklemlerinin, ¢ok katmanli fonksiyonel
derecelendirilmis silindirik tabakadaki niimerik ¢Ozlimleri arastirilmistir. Bu ¢ok
katmanli tabaka N farkli fonksiyonel derecelendirilmis material katmanindan
olusmaktadir. Burada her katmanin sertliginin ve de yogunlugunun devamli olarak
katman yoniline dik olan yarigcap yoniinde degistigi varsayilir; fakat izotropik ve
homojen, cevrel ve de aksis yonlerinde. Katmanl tabakanin i¢ yiizeyi normal basinct
zamana bagl tek bi¢imli dinamik diizleme maruz birakilir, halbuki katmanli tabakanin
dis yiizeyi ylizey ¢ekmesi agisindan serbest ya da bagli veya i¢ ylizeydeki gerilmelerine
maruz olabilir. Bundan baska, ¢ok katmanli tabaka baslangicta sabit ve her katmaninin
kendi aralarinda miikemmel bir baglilik gosterdigi kabul edilir. Karakteristikler metodu
bu baslangi¢-sinir deger probleminin ¢oziimlerini elde etmek i¢in kullanilir. Sayisal
sonuglar elde edilir ve normal basincin zamanla degisimini belirten egrilerle gosterilir.
Bu egriler, smirlarda ve katmanlarin arayiizlerinde ki yansimalar ve de dalga
kirilmalarinin etkilerini acik bir sekilde gosterir. Ayrica bu egriler, dalga profillerinde
ki homojen olmayan etkileri de gosterir. Ve de bu egriler gosterdi ki, bu ¢aligmada
kullanilan sayisal teknik, dalga civarindaki keskin degisimleri tahmin etmede oldukca

basarili.
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Anahtar Kelimeler: Dalga denklemi, fonksiyonel derecelendirilmis materyaller,
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CHAPTER 1

INTRODUCTION

Functionally graded materials are a new generation of engineering materials
which are continuously or discretely changing their thermal and mechanical properties
at the macroscopic or continuum scale [1]. Functionally graded materials are
increasingly expected to be used in structural applications where high strength-to-
weight and stiffness-to-weight ratios are required. These applications involving severe
thermal gradients, ranging from thermal structures in advanced aircraft and aerospace
engines to microelectronics. Example applications include pressure vessels and pipes in
nuclear reactors can be found in the review papers [2] and [3]. In such applications a
metallic-rich region of a functionally graded material is exposed to low temperature
with a gradual micro structural transition in the direction of the temperature gradient,
while a ceramic-rich region is exposed to high temperature. Among a few recent books
including a comprehensive treatment of the science and technology of functionally
graded materials, one can mention [4] and [5].

Several models for the case where a dynamic load is applied to the outer
boundaries of a functionally graded composite body have been studied in literature.
Five models, for example, are presented in [6]; two of which simulate fiber phases in
which the material is modeled as layers of different volume fractions and three simulate
particle phases whereas the material properties are considered to change continuously
in the thickness direction. Accordingly, two models may be used to deal with transient
dynamic response in the inhomogeneous bodies; they are the homogeneous layered
model and the inhomogeneous continuous model. In the first type, the FGM layer is
subdivided into a large number of homogeneous thin layers each of which has its own
constant volume fraction [7]. In the second kind, the FGM plate is subdivided into
inhomogeneous layers whose material properties are varying continuously in the

direction perpendicular to the layering [8, 9]. In these papers Ohyoshi has developed an



analytical method using linearly inhomogeneous layer elements approach to investigate
waves through inhomogeneous structures.

Due to the fact that the material properties of functionally graded materials are
functions of one or more space variable, wave propagation problems related to
functionally graded materials are generally difficult to analyze without employing some
numerical approaches. Numerical solutions of one-dimensional stress wave propagation
in an FGM plate subjected to shear or normal tractions are discussed in [10-13]. In
these studies, the material properties are assumed to be vary in the thickness direction
and the FGM plate is divided into; linearly inhomogeneous elements [10] or quadratic
inhomogeneous layer elements [11,12], whereas in [13], the material properties of the
FGM plate throughout the thickness direction are assumed to be functions with
arbitrary powers. Two-dimensional transient wave propagation problems in an FGM
plate are, recently, discussed applying a composite wave-propagation algorithm in
[14,15], and using finite elements with graded properties in [16] to simulate elastic
wave propagation in continuously non-homogeneous materials. However, to the
authors' the best knowledge, the transient dynamic response of a multilayered FGM
body subjected to a uniform pressure wavelet has not been investigated in literature.

In this thesis, the method of characteristics is employed to obtain the solutions.
This method has been employed effectively in investigating one and two-dimensional
transient wave propagation problems in multilayered plane, cylindrical and spherical
homogeneous layered media [17-19]. In these references, the multilayered medium
consists of N layers of isotropic, homogeneous and linearly elastic or viscoelastic
material with one or two relaxation times. A brief review on combining the method of
characteristics with Fourier transform to investigate two-dimensional transient wave
propagation in viscoelastic homogeneous layered media can be found in [20-21]. It is
well known that, for one-dimensional homogeneous case the characteristic manifold
consists of straight lines in the zt-plane (here, t: time; z: space variable) and the
canonical equations holding on them are ordinary differential equations which can be
integrated accurately using a numerical method, such as, implicit trapezoidal rule
formula [17-21]. However, in functionally graded material the characteristic manifold
consists of nonlinear curves in the zt-plane and the canonical equations can be
integrated approximately along the characteristic curves by employing a small time

discretization. This step-by-step numerical technique is capable of describing the sharp



variation of disturbance in the neighborhood of the wave front without showing any
sign of instability. Hence, and as will be shown in this study, the method of
characteristics can be used conveniently for one-dimensional transient wave
propagation through functionally graded materials, and we guess that it can be
combined with a transformation technique to handle two-dimensional transient wave
propagation in multilayered functionally graded materials, as well.

In this study, in cylindrical coordinate system, the following one-dimensional
wave equation (hyperbolic differential equation) is required to be solved numerically

by the method of characteristics;

o%u dc c¢\ou di c)u 0%u
C F | =4+ = r 4] == —r:U—r ,OSt, RiSrSRO 1.1
or? (dr rj or (dr rj r ot? (3.1)

where u, = ur(r,t) is the only dependent variable and r (radial-direction in cylindrical
coordinate) and t (time) are the independent variables. ¢ =c(r), 2 = A(r) and p = p(r)
are the data of the problem (material properties).

The above equation is a second order hyperbolic partial differential equation
subjected to the following conditions:

Initial conditions; at t =0:

ou
(r,0)=0.
or (r )

u,(r,0)=0 and

Boundary conditions; atr =R; and r =R,

¢Me 2% _p ot
r r
ur(Ro,t)=0 or caur+iu—r:0
or r

where R, is the inner boundary, R;is the outer boundary, P, is the intensity of the

applied load and f (t) is a prescribed function of t .

It will be shown in the next chapter that the domain of the problem is assumed
to be consists of perfectly bonded different layers. By other mean Eq. (1.1), with the
specified boundary and initial conditions prescribes above, represents the one-
dimensional wave equation of a hollow cylinder that is made of functionally graded
material. Functionally graded means that the material properties within the cylinder’s

domain are functions of the radial direction (r). Thus, the field variables and solutions

of the problem under consideration are functions of t (time) and r, this means that, at



every plane parallel to the inner surface (r = Ri) the wave velocity will be a function of

r.

To this end, we can conclude from the above discussion that, there have been
many works done on wave propagation problems related to, elastic, viscoelastic and
plane FGM materials. However, studies on transient responses (wave propagation
problems) of cylindrical FGM shells have not been found in literature, [22], which will
be the subject of the thesis. In the recent work of Abu-Alshaikh and Kokluce, [23],
similar problem have been solved but the domain of the problem in that paper is
assumed to be plane not cylindrical. Let us now briefly describe the contents of the
thesis. It consists of four chapters:

The second chapter; we present the derivation of Eq. (1.1), that is the
mathematical model of the problem under consideration which is derived from the
basic governing equations of theory of elasticity in cylindrical coordinate system. The
solution of the problem using the method of characteristics. The third chapter contains
numerical examples and discussion of the results. The last chapter contains the

computer program used within the thesis.



CHAPTER 2

2.1 THE FUNDAMENTAL EQUATIONS OF THE LINEAR THEORY OF
ELASTICITY IN CYLINDRICAL COORDINATE SYSTEM

We start our study by reviewing the basic equations of the linear theory of
elasticity in curvilinear coordinates and then derive them in cylindrical coordinate. In
this thesis, the material is modeled as elastic, isotropic and non-homogeneous, that is,
functionally graded material. The plane-strain problem considered in this thesis is

referred to the cylindrical coordinates (r, 6, z), respectively. For the derivation of the

basic governing equations presented in this chapter, see Refs. [ 24, 25, 26 ].

2.1.1 Curvilinear Coordinates

If a set of curvilinear coordinates x* is used to express the basic equations of
the theory of elasticity in place of rectangular coordinates, then all we need is to make
some simple interpretations to find the forms of the basic governing equations related
to the problem under consideration.

Let z',2% 2%, or z*(k=1,2,3) be rectangular coordinates of a geometrical

point, and  x*, x%,x°, or x'(i=12,3) be three variables. If we can establish a

correspondence between z* and x', then we ay that there exists a coordinate

transformation between z* and x'. This can be expressed in the form of three functions

2 =74(x}, x3,x°), (k=12,3). (2.1)
If this correspondence is one-to-one, then there exists a unique inverse of (2.1) in the
form

x“=x"(z4,2%,2%), (k=123). (2.2)

It can be shown that such a unique inverse exists in some neighborhood of z* if the

Jacobean



|0z oxt artlox? artlox
J :det(az—lj= oz’ loxt oz lox* o017 1ox°|#0. (2.3)
o’loxt oz*lox® o6z°/ox°
For a fixed set of values of z',z?,z° the transformation (2.1) gives three non-
coincident surfaces, called curvilinear surfaces, which intersect each other at a single
point P with a fixed x*, x*, x*. This point can therefore be marked with the values of
x* called curvilinear coordinates of P, Fig. 2.1. The intersection of any two of the
surfaces (2.1) gives a line, through P, called a curvilinear coordinate line.
For example, in cylindrical coordinates; the cylindrical coordinates x* are
defined by their relations to rectangular coordinates z':

z' =x'cosx?, z?=x'sinx?, z°=x° (2.4)

3A

v
N

Figure 2.1 Curvilinear Coordinates.

The Jacobean J in this case is



cosx’ —x'sinx* 0
J=|sinx?  x‘cosx* 0|=x', (cos?x?+sin?x?)=1.
0 0 1

Hence a unique inverse to (2.4) exists everywhere except at x* =0, and this
Xt = (zl)2 +(zz)2, x% = arctan(zzlzl), x3 =23, (2.5)
The coordinate surfaces are circular cylinders having the x®—axis, as their axis,
vertical planes through the x*-axis, and planes perpendicular to the x*-axis, Fig. 2.2.
The position vector p of a point P has the rectangular coordinates z*, that is,
p=2"i, (2.6)
where i, (k=1,2,3) are the unit rectangular base vectors. The repeated indices in
diagonal positions (one as superscript and one as subscript) represent summation over
the range (k =1, 2,3) of the indices. When coordinates are rectangular, however, no

need arises for the use of the summation convention in this form, and we may revert

superscripts back to subscript positions if we wish.

Base vectors g, (xl, xZ, x3) are defined by [25].

_op _o". ot . ot . ord .

= = I+ I,+ I 5. 2.7
I T T ek 2T e @7
k
By multiplying both sides of (2.7) by gin we also obtain
z
ox*
i, = . 2.8
e (2.8)

Just as with the rectangular base vectors i, , the curvilinear base vectors g, are tangent

to the curvilinear coordinate lines. This is clear from (2.7) and Fig. 2.2. For cylindrical
coordinates through (2.4) and (2.7) we find that

g, :(cosxz) il+(sinx2)i2,
g, =—(x*sinx?) i, +(x*cosx?) i, (2.9)

g; =1j.
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Figure 2.2 Cylindrical coordinates.

Zl

An infinitesimal vector dp can be expressed as

dp =P ax = g, dx*. (2.10)
OX

We may use (2.10) to calculate the length of such vectors and the angle between

any two of them. For example, the square of the arc length, ds®, of dp is obtained

through
ds?=dp-dp = (gkdxk)~(g|dx' ):vkI (x)dx*dx' (2.11)
where
oz" oz"
=q. -0 =— 25 2.12
Ve =0y -0, X" o O ( )

is called the metric tensor. This name is justified through the fact that when v,, is

known we can calculate the length of any vector and the angle between two vectors.
In general, the curvilinear coordinates may not be orthogonal, that is,
0,0, =V, #0 for k=1. (2.13)



Note that vanishing v, (k #1) is necessary and sufficient for orthogonality of the
curvilinear coordinates.

The reciprocal base vectors g*(x) may be constructed by finding the solution of
the nine equations.
g g, = 5% (2.14)
where &% is the Kronecker delta. It can be verified that the unique solution of (2.14) is
g =v'(x)g, (2.15)
where v is the reduced cofactor in the determinant of v,,, that is,

VK (x):m, v =detv,, . (2.16)
v

From (2.15), by taking the scalar products with g™ andg,, , we obtain
v =g* g™, S*m =Vl . (2.17)
For cylindrical coordinates using (2.9) in (2.12) and (2.16), we find that

1 0 0
A (x*) o,

0 0 1

S (2.18)
V|=]0 v(x') o

0o 0 1

The magnitudes of the base vectors g, and g*, respectively, are
kk
9= e Jo[=Vv (2.19)

where underscores are placed under the indices to suspend the summation.

The passage from rectangular coordinates to curvilinear coordinates may be made by
observing the following two simple rules: (a) The partial differentiation symbol (,) must
be replaced by the covariant differentiation symbol (;), (b) The repeated indices must
be on diagonal positions.

Thus, for example, the Cauchy equations of motion:
n“+p(ﬁ—Qj=o (2.20)

in curvilinear coordinates will have the form



10

Tk|;|+p(f|—\/.|)=0 2.21)

where 7% are the mixed components of the stress tensor and an index following a

semi-colon indicates the covariant partial differentiation, that is, according to [25],

k
i =7t +{mr}rm| —{:}rkm (2.22)

k
where {mr} are the Christoffel symbols of the second kind that can be found as

follows:

The partial derivative of a vector in rectangular coordinates is obtained by

oz' o7 o7

since the rectangular base vectors are constant vectors. However, the same for

ou _aluti,)_au*

k

curvilinear coordinates requires the calculation of the partial derivatives of g, for

ou _olutg, ) au* « 09,
P e i T o
OX OX OX OX
Through (2.7) we can calculate
a9, _ o (e | &,
ox'oxlox, ") oxfox'

Upon replacing i, by (2.8) we find

09, m
Pk _ 2.23
ox! {kl}gm (223)
where
2,n m
m_oz o (2.24)
klI| ox“ox oz"

are known as the Christoffel symbols of the second kind. The Christoffel symbols of

the first kind are also of frequent occurrence; they are defined by [25],

[k, m]svmn{:l} or {E} —v=[Kkl,n]. (2.25)

Using (2.12), we can show that

kl,m =—1 km 4 Vi —— K 2.26
| k ( )
2\ 0Ox ox© ox"

Both symbols are symmetric in two indices, that is
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{E}:{I"l:} [kI,m]=[Ik,m]. (2.27)

We should note that the Christoffel symbols are not tensors.

By use of g*=v"(x)g, we also find [25].

9" :-{m} g~ (2.28)

X! Ik
By use of (2.23) it is now possible to find an expression for the partial derivative of a

vector. Hence,

8_u_i(u"‘g )—ﬂg +u"™ G _ 8Um+ m u'lg
X, OX, "ok T ox* ox* |k "

This may be written, in short,

ou m
87: 'k gm (229)
k

thus, defining the covariant partial derivative of a contravariant vector

m m
U 5‘2“7+{kl}u'. (2.30)

Similarly, by differentiating u=u,_g"™ and using (2.28), we obtain the covariant partial

derivative of a covariant vector

ou, |1
Upy = P _{mk}u' (2.31)
so that
ou m
=g (2:32)

In rectangular coordinates, the Christoffel symbols vanish, thus reducing
covariant partial differentiation to the usual partial differentiation.

The covariant derivative of a contravariant vector is a mixed second-order
tensor, and that of a covariant vector is a covariant second-order tensor.

Christoffel symbols and the covariant derivative of a contravariant vector u* in

cylindrical coordinates are calculated through (2.25) and (2.30)
[12,2]=[21,2]=x, [221]=-x", all other [kl,m]=0,

2L 121 T e another {2 2
{12}_{21}_F’ {22}_—x,a other {kl}_o' (2.33)
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1 1 1
ll—gul Ul;ZZ%—X1 2, U%—%
X X X
ou? 1 ou? 1 ou?
Zl—y-l- 1Uz, ZZ—W I 1, U2;3=§ (234)
3
u%:iik (k=123)
X

The covariant partial derivatives of higher-order tensors are defined in a similar

fashion, for example,

Kl k |
Al = A +{ }A“‘ +{ }Ak”,
ox™ |mn mn
k n k
A = oA _{ }Akn +{ }A”', (2.35)
ox™ |Im mn

_O0A N n
Akl;m = ox™ _{km}Anl _{Im}Akn'

These covariant partial derivatives are third-order tensors.

For a relative scalar ¢, a vector u* and a tensor A% of weight N , the covariant

derivatives include an extra term, for example,

r
o, = 6—¢i— N ¢ (relative scalar), (2.36a)
To0X kr
m aum m | r m H
Ut =—+ u —-N u™ (relative vector), (2.36b)
OX Kl kr
k GAk| n K k r Kk . .
Alim = - Atn + A" =N A’ (relative mixed tensor). (2.36¢)
ox™ |Im mn mr

Applying covariant partial differentiation to v¥ and &%/ we find that
Vi =Vim =8 1m =0. (2.37)
This theorem is known as Ricci’s theorem. Therefore, in the process of covariant
differentiation, v,,,v* and 5% are not affected, that is,
Ak, = (VkmAm);l :VkmAm;I ’
At = (VenA™ ), =V A,
We can easily see that

(AB,,), = A/B,, + A“B

(2.38)

Im;r*

A useful result that can be proved by differentiation is
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%(Iog \/V): {nr]nk}; v =detv,. (2.39)

This result can also be obtained through Ricci’s theorem in the form (\/V);k =0 and by

using (2.29a) and noting that JV is a relative scalar of weight one.
The differential operators gradient, of an absolute scalar ¢ and the divergence

and curl of an absolute vector A are defined as [25]

grad p=%g,,
div A= Ak;k : (2.40)
curl A=¢""A g,
where
kim
ghm _ € (2.41)
Jv
is a third-order absolute tensor known as the &—symbol, and e“™ is the usual
permutation symbol. Also used is the covariant & — symbol
Eam = eklm\/vi (2.42)
Sometimes it is convenient to use the operator V defined by
¢ O
=0 —. 2.43
g - (2.43)
By use of this, we can show that
0
grad 6=V =g, a"ﬁ
divA=V-A=g" (Ag,) 9“-g,A,
=A%y = A 2.44
= [ = 9_(Jva), (2.44)

curlA=VxA= gk£X(Ag')=gkxglA;k’

= eklmAn”gk )

The last expression of div A is obtained as follows:

. S N I AN

W ox

where we used (2.32). For the Laplacian V2 in curvilinear coordinates, we have

OX km ox<



Vg =divgrad ¢ = (vk' %L =¥ (%) - j_ ai (\/VVKI %)

In orthogonal curvilinear coordinates the expressions of these operators are:
2 1)2 2\2 3\2

ds :vll(dx) +v22(dx ) +v33(dx ) :
kk

1 Kk
Vo=—"y 0 =V-0y, V=V;VyVss,
Vi

f =y o o ae(o )
{kkk} 0 (Iog ka)v {Il:n}:o (k =1=m),

W, L o, . 1 o

1
rad + €,
grad 4= g, ox* ST V,, OX? 2 Vgg X% °

div A = (v;,V,Vss) [ (\l Vyplys A ) (\/@ A ) 8()3(3 ( ViV, A )]

curl A :(szvsa) y | ox 2 \/— A® — ~3VV2 A® } 1
+ (V33V11 )7% W\/V—n A(l) _y Vi3 A(B) :lez
y[ 0 0
+ (V11V22) %' %\/EA(Z) _W\/V—MA(D}%

v, ox' v, OX’

V? ¢ = (V11V22V33) lax [NIV22V33 a¢} [ﬁV33V11 5¢j - [ Vi,Vo, O¢

3
Vs OX

14

(2.45)

(2.46)

(2.47)

Cylindrical coordinates (r, 0, z) are defined in terms of rectangular coordinates z* [we

use x'=r,x? =0, x* =z, AD = A, AL = A,, A®) = Al

zt=rcosd, z*=rsing, z°=z,

ds? =dr? +r?d@? + dz?,

1
Vy=Vt=v,=v¥=1 v,=—">=r?%,
v
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Lo + 190, (99
o " reo " a
10 10, oA,

divA=="—(r
W rﬁr(A') rae oz’

curl A — (16A oA, je (%—%Z)eﬁ(la(A@)—E%)
00 oz o or ror r oo

0? ¢ 18¢ 1 0% +62_¢

ol rer rPo0 ot

The infinitesimal strains are given by

(2.48)

Vig=

£y =%(uk;| +uy,) (2.49)

where

m
Uy = Uy, _{kl}um . (2.50)

Often these equations are expressed in terms of the physical components of the vectors
and tensors involved. The physical components i) and u® of % and u* are
related to each other by physical components:

A vector u referred to bases g, (and g) is expressible in terms of its
contravariant (covariant) components by
u=u“g,, u=ug". (2.51)
Since all members of g, and g are not, in general, of unit magnitude we see that all

members u* and u, will not have the same physical dimensions.

For example, if u is a displacement vector then it has the dimension L.

Referred to cylindrical coordinates

|91|ZM:1' |92|:\/E:le 93] = Vg =1

so that the dimension of the components u' and u® are L, but the dimension of u®
L/L=1. Thus, there is a need for finding the physical components of vectors and
tensors. This is accomplished by taking the parallel projections of vectors on unit
vectors lying along the coordinate curves. We define the physical component u® of
the vector u* by

u=u‘e, (2.52)

where e, are the unit vectors defined by
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e =—J_ (2.53)
Yk

Through (2.51) and (2.53) we see that

u=u“g, =u®e, (2.54)

or comparing the components
o

(k) — & k_
u =u*_ v, u —\/7. (2.55)
. Vik

If we want to replace u, by its physical component, then all we need is to lower the

index of u®, that is,
| 40
u, =vyu :kal_

W
where we inserted the summation sign again since the index | is repeated more than
twice, thus bringing an ambiguity in the order of summations.

An equally consistent definition of physical components may be made by
parallel projections on unit vectors lying along g*. To be consistent with a convention
we will always select e, lyingon g,.

The physical components of second-and higher-order tensors may be found by

their relations to vectors and scalars. In nonorthogonal coordinates, several different
types of physical components arise. We consider here only the case of symmetric

second-order mixed tensor ¥ is related to a contravariant vector z* through
Tk = Tk|n|
where n' is also a contravariant vector. Now place z*andn' by their physical

components as given by expressions of the form (2.55)

7 ) n®
- = T | —
Voo T
or
A Vkk
T(k) — Z[kl N - n(')_
I Vi

The physical components 7)) of 7%/ may then be defined by
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PR
=71 : (2.56)

N

When the coordinates are orthogonal

(k)

T

Vick :1/v%; v, =0, k=1

and 7% symmetric we can easily show that

o M (2.57)

=M=, uk= . (2.58)

We now give the expressions of (2.21) and (2.49) in orthogonal curvilinear coordinates

only. In this case we have v,, =0 when k =1, and

ds? = vy, (dx* ) +v,, (dx? ) + vy, (dx®),
Kk (2.59)
v =1/v,,, v=detv, =Vv,V,V.,

k 1 Ny N N,
= — % +;f5km ——— O |-
Imj  2v,, | ox" OX OX,

Using (2.58) and (2.59) in (2.21), we get

0|V
s |1 1 I 1 04V
R {f‘k)(n . ]+ - o
= | Vv ox Vi | ViV OX Vi X (2.60)

X0
+p -V =0

where "' =f'/ v, are the physical components of the body force. To express

(2.49) in physical components of the displacement vector we first express it in the form

Ekl :%(Uk;l +Vn|VkmUn;m) (261)
k ki k k k m

where u* =v-u,, U =u‘;+ ol u. (2.62)

The forms (2.58) can be employed to replace & and u by their physical components

™y and u™). Upon using (2.59) in (2.61) we obtain
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k\/@_EMG u +\/ﬁ o | u

) _
en=¢ = —
N2 vy, x| v, N x| vy,
N N N N - (2.63)
+1 1 3 8VEB u(m) s
2| vy 1t X7 Ny
Similarly
-() 1 o 0
_ (k) U]
r = — v, u" | == v, u , 2.64a
V=3 VeV, {ax'( K j axk( ! H (2.642)
~(m) _E i ~ (k) -
r _225 r o) 2r=vVxu. (2.64h)
k,I
The stress constitutive equations, as usual, are
W0y = 2,6™ms* +2u,6Y) (2.65)

Equations (2.60), (2.63) and (2.64) are all that are needed for the treatment of problems
in any set of orthogonal curvilinear coordinates. The passage from physical
components of vectors and tensors to tensor components is made through such
equations as (2.58).

Navier’s equations in curvilinear coordinates are obtained by combining (2.63)
and (2.65) with (2.60). This is rather than cumbersome. The tensor expression of these
equations is written immediately bye use of the rules stated above. In fact (2.20) in any

curvilinear coordinates may be expressed as
(A, + o, 0"+ 2,0, +p(fk —vkao. (2.66)

A vectorial form of this equation is found if we remember the vector identities

U1 ==(VxVxu),+(VV-u),,

u'w =(VV-u),

where V is the gradient operator. Upon using these identities in (2.66) we get

(A, +24,) VV -u- 14, VxVxu+ p(f-i)=0. (2.67)
By substituting the expressions of the gradient, divergence, and curl operators, this
equation can be expressed in any coordinate system. We now give the forms of these

equations in cylindrical coordinates.
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2.1.2 Cylindrical Coordinates
Cylindrical coordinates (r,8,z) are related to rectangular coordinates (x,y,z)

by x=rcos#, x=rsind, z=z. (2.68)
The square of arc length, ds?, and metric tensor, v,,, are given by
ds® =dr? +r°d@* +dz?,

(2.69)

Vy=1 vy, =r’ viy=1 v,=0 (k=)
Cauchy’s equations of motion, strains, and rotations are obtained by substitutingv,, ,

given above, into (2.60), (2.63) and (2.64b), respectively. Thus,

81” +lafre +aTrz + Trr_TH€+p(fr_ur)=0’ 3\
or r 06 0z r
or,, 10z,  Ot, 2 ;

0 4= + +—1,+plf,-0,)=0, 2.70
o roo o rv Pt =G,) (2.70)
aTrZ +lafez +8TZZ +lrrz+p(fz_uz):0’
or r 00 oz r

ou,
gl’l’:
or
Lo Lo, u
“ roeo r
au,
SZZ= az
1(1 ou, au, ugj (2.71)
So= S\ T A T A T
2\r 08 or r
1(8uZ aurj

&, =7 +—

2\ or 0z
1[au9 18qu

Epg=—| —L+-——F

2\ 0z r 06

where (rrr, Trgren Ty ) (err, Ergreees gzz) and (ur, Uy, uz) denote, respectively, the
physical components of stress, strain, and displacement in cylindrical coordinates, Fig.

2.3.
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Figure 2.3 Stress components acting on an infinitesimal cylindrical volume element.

The stress-strain relations for an isotropic, homogeneous and linearly elastic
material can be expressed in indicial notation as [26]
7, =2ue; + A58, with(i, j=12,3) (2.72)
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where 4, 1 are elastic constants which are known as Lame’s constants. g; is called the

Kronecker’s delta defined as

1 if i=]
5 = e 2.73)
0 ifiz]

In Egs. (2.72, 2.73), indicial notation and rules pertaining to its use are employed. In

indicial notation a repeated index implies summation, for example, &, = &, + &, + &,,.

Thus, the stress-strain relations, Eg. (2.72), can also be written in the use of Eq. (2.73)

explicitly as [26]

Ty =2UE + e, + € +E,), )

Tog = 21Egy + My + 605 +65,),

T, =2u, + Me, +E4+E,), \ (2.74)
Top= 2/18,9 y |

T, =2UE,,

T, =2UE,, J

This completes the summary of the basic equations of the linear theory of
elasticity that will be used in deriving the governing equations of the problem

considered in this thesis.
2.2 FORMULATION OF THE PROBLEM

In this thesis, the dynamic response of layered composites consisting of N
isotropic, elastic and functionally graded cylindrical layers (non-homogeneous) will be
investigated. The composite medium consists of cylindrical layers, see Fig. (2.4). In
this figure, the cylindrical composite is referred to cylindrical coordinate system where
the distance normal to the layering is measured by r. The body is assumed to be
subjected to uniform time-dependent uniform dynamic input at its inner boundary

(r = R, ). The dynamic input is normal traction in the in-plane direction for this plane-
stain problem. The outer surface (r = R,) of the body is assumed to be free of surface

traction or fixed. Moreover, the body is assumed to be initially at rest and the layers of
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the composite body are assumed to be perfectly bonded to each other at the interfaces.
Under these boundary, initial and interface conditions, the responses of the bodies are

ax symmetrical, that is all the field variables are functions of r and t. Moreover, the
only non vanishing displacement component is u,, that is the displacement component
in the direction normal to the layering (r — direction). Thus, the displacement vector

for a typical plane layer can be expressed as:

(2.75)

In view of Eq. (2.75), the stress equations of motion, the strain-displacement
relations and the stress-strain relations given by Egs. (2.70), (2.71) and (2.74),

respectively, for the three-dimensional case reduce our problem to,

2

87” + T —Too — 0 u,

or r ot?
ou

: & =0

or

u,
Y o -0

r 00

Trr = (2/'1 + ﬂ“)grr + igﬁ&
T =QRu+A)g,, + g, (2.76)

T, = A&y + A8,
Where all other stress and strain components are zero and v, is the particle velocity in

the r —direction, i.e.,

ou
v =0 2.77
el (2.77)

In Eq. (2.76) the stiffness c=2u+ A4 and the mass density o of the medium are

assumed to be vary continuously in r —direction, but homogeneous and isotropic in &

and z — directions, that is
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X/

S
<

Figure 2.4 A cylindrical layered medium consists of N different FGM layers subjected to uniform

pressure.

c=c,(a+br)" =(2u, + A,)(@a+br)",

p=p,@+br)", (2.78)
p = po(a+br)"

A= A,(a+br)"

where a and b are dimensionless constants representing the gradients of the typical

FGM layer. c, =24, + A, and p, are the reference stiffness and mass density of the

typical layer, respectively. Similar forms of Eq. (2.78) with a=1 and m=n=1 were
used by Liu et al. [12], with a=1 and m=n=2 Dby Han et al. [10] and with a=1 by
Chiu and Erdogan [13], in investigating one-dimensional transient wave propagation in
an FGM plate subjected to a uniform pressure wavelet at one of its outer boundaries.
This general form of Eq. (2.78) is selected because it is suitable for a multilayered
medium that consists of more than one FGM layer. The advantage of selecting equation
(2.78) in this form will be discussed later in Chapter 4.



24

In view of Eq. (2.78), the constitutive equations, Eqg. (2.75), can be combined in
one equivalent equation (wave equation), in terms of the displacement component u, ,
as

2
9 caur ol +1 C@ur +/1u—r—cu—r—/18ur :,oa U
or or r r or r r or

Since (c=2u+A4) and A are functions of r, only, and u, =u,(r,t) then the last
equation can be written as:

dcou, o%u, diu, Aéu, Au, 2u ou, 2u o°u
— L T ol

+ u =
dr or o drr ror r? r or r* ' p ot?
ou (dc A 2u) u (di A 2u o’u, 0%,
— 4+ |+ =S +e—F=p—~
or \dr r r r\dr r r or ot
ou, (dc cj u, [dﬂ cj o°u, 0%,
—+= |+t =2 |+c—=p—;
or\dr r r\dr r or ot
which can be rearranged as
o%u dc c)ou di c)\u o%u
C—+| —+— | —+| ——— | L+ =p—", 2.79
or? (dr rj or (dr rj r ot? (2.79)

where 0<t, R <r<R; . The last equation that is the same as Eq. (1.1), is one-
dimensional wave equation which is required to be solved, in this thesis, satisfying
boundary, initial and interface conditions. The boundary condition at the inner surface

(r =R;) of the multilayered medium is a time-dependent pressure pulse defined as

RO =c M2 g ), (2.80)
or r

where p, is the intensity of the applied load and f (t)is a prescribed function of t. The
outer surface (r = R,) is assumed to be either free of surface traction, fixed or it can

be assumed to be subjected to the same load applied at the inner surface, Eq. (2.80).
Hence, the free or fixed boundary conditions can be written, respectively, as
7. (R,,t)=0 or u,(R,,t)=0. (2.81)
In the method employed in this study, we note that other alternatives for
boundary conditions, such as mixed-mixed boundary conditions on both surfaces, i.e.,
one component of displacement and the other component of the surface traction can be
handled with equal ease on both surfaces. Furthermore, Eq. (2.80) can be replaced by
Eq. (2.81) at the inner boundary and Eq. (2.81) can be replaced by Eq. (2.80) at the

outer boundary. The layers of the multilayered medium are assumed to be perfectly
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bonded to each other; hence, the interface conditions imply that the normal stress (z,,)
and the displacement (u,) are continuous across the interfaces of the layers. The

multilayered medium is assumed to be initially at rest; hence, all the field variables are
zero at (t <0). The formulation of the problem is thus now complete.

In view of Eq. (2.78), the governing field equations, Eq. (2.77), are to be applied
to each layer and the solutions will be required to satisfy the interface conditions at the
interfaces, the boundary conditions at inner and outer surfaces, Egs. (2.80-2.81), and

quiescent initial condition.

2.3 SOLUTION OF THE PROBLEM

The solution is obtained by employing the method of characteristics. This
numerical technique involves first rewriting the constitutive hyperbolic differential
equation, Eq. (2.79), in view of Eqs. (2.77-2.78) as a system of first order partial

differential equations as:

0Ty ov, A

o Qe A)TE Ve =0

0T g v, ov,

o @A) AgE=0

0&,y OV,

ot or

a;tf v, =0 (2.82a)

oV, _id(zﬂm)g Qu+r)oe,

ot p dr " 0 or
1 dA A ou, A 1 1
—_——Uu, —— +——U, —— T +—7Ty =0
pr dr pr or  r?p or pr

Thus, solving this system is equivalent to solving the second order partial differential

equation given in (2.79). For simplicity, Eq. (2.82a) can also be written in matrix form

+F=0 (2.82b)
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(2.83)

(>

Il

|—

Il
o o o ok
o o o+ o
o o r oo
o O o o
r O O o o

with | being a (5x5) identity matrix. Recalling that c=2x+ A in Eq. (2.82b), B is

(5x5) square matrix that can be expressed as:

0 0 O 0 -—c
0 0 O 0o -1
g=(0 0 0 0 -1} (2.84)
0 0 O 0
0 0 -¢ i
L p pr J
F is a five-dimensional column vector with the elements
_ ; -
__Vr
r
—-C
_Vr
r
F = 0 (2.85)
_Vr
1(dcj 1d p) 1
T g e T T T Y 2_ur__Trr+_z-90
p\dr pr dr rp or pro

|
]
™

(2.86)

In Eqg. (2.82b), comma denotes partial differentiation with respect to the
corresponding variable, i.e.,

A,

u, ==, == 2.87
=t ot =" or (287)
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Before establishing the canonical form of the governing equations, we will
establish the characteristic lines along which these equations are valid. These lines are
governed by the characteristic equation, which can be written as, see Ref. [27]
det(B-VA)=0 (2.88)

where V = %defines the characteristic lines on the (r —t) plane.

Substituting Egs. (2.83, 2.84) into Eq. (2.88), the characteristic equation can be

expressed as

_0 0 0 0 —C_ _V O 0 O 0_
0 0 O 0o -4 0 -V 0 0 0
00 0 0 -1/tg 0 —-v 0 0
00 0 0/1 0 0 0 -V 0
00 = =% 0 0 0 0 -V
L P por 1t -
-V 0 0 0 -c
0O -V 0 0 -2
0o 0 -v 0 -1/_
0 0 0o -V 0
0 0 -c i -V
p o pr
3 3
:—v5+ﬂ+ﬂ:—v3(v2—3]:o. (2.89)
p p p
The roots of the above equation are
V,=c,,V,==¢,,V,=0,V, =0,Vs =0 (2.90)
where

cp:\ﬁ= /ﬂ+2,u:\/(2y0+/10)(a+nbr)m’ 2.1)
p p po(a+br)

where ¢, is the dilatational wave velocity. In some references c, is called pressure or
longitudinal wave. The waves generated by c, propagation in the direction

perpendicular to the layering direction. Thus, for the problem under consideration,
since the inner surface of the cylindrical domain is subjected to uniform radial pressure,
dilatational wave is the only wave generated in the domain.

The characteristic lines are defined by:
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% =V,=c, along CY,
% =V, =—c, along C®,
dr 3
Py =V,=0 along C", (2.92)
%:W =0 along C®,
% =V,=0 along C®.

Integration of Eg. (2.92), gives the families of the characteristic lines
Cc®(i=122345)as
dr
\/(2y0+20)(a+br)'“

C(l’:t:j

p,(@+br)"

dr

[@u + Ap)(@+br)"
po(a+br)’

(2.93)

C‘z):t:J.

C®:r =constant,
C®:r =constant,
C®:r =constant.

We note that C (i =1,2) describe two families of curves with slopes ¢, and
—c, respectively, whereas C®, C® and C® describes a family of straight lines

parallel to the t-axis in the (r—t) plane, see Fig. (2.5). We further, note that for
specific values of m and n the integrations presented in Eq. (2.93) can be found easily
using Mathematica.

The next step in establishing the canonical form of the governing equations is

finding the left-hand eigenvectors I, (i =1, 2, 3, 4,5) defined as

I (B-V,A)=0 (2.94)
where the letter T over a matrix quantity denotes its transpose. Alternately, we can
write

(B"-V, A"l =0. (2.94b)

In view of Egs. (2.83), (2.84) and Eq. (2.91), Eq. (2.94b) can be written explicitly as:



0 0 0 0 —C __V 0 0 0 O_T
00 0 0 -1 6 v 0 0 0
00 0 0 -1V 40 0 -v 0 o
00 0 0 0 6 0 0 -V 0
00 = =% o0 0 0 0 0 -V
-V, 0 0 0 —c]re7 rol
0 -V, 0 0 -] | 0| |g
2
0 o -v, 0 -1 L0 |=|0
0 0 0 -V 0|0l |,
—-c -1 ‘
O O — ? _Vi IS(I) O
i p 4t b
—V, 0 0o 07
0 v, 0o o o |k
—C Iz
0 0 -v, 0 7 Is(i) ~0
o o o -v, —2|L"
oo
| -c -2 -1 0 =V,|-° -
-vi, =0, -vi," =0,
VARG _£|5(i) 0,
o,
_v1,® _i|5(i) _0,
or
—cl,® - 21,0 —1,.0 ~v1. 0 =0,

The solution of this

_I ~

1
|2(1)
I (h)
3

matrix equation for (i =1, 2, 3, 4, 5)gives:

The first eigenvector that can be determined as follows:

fori=landv,=c,

_I(l)_ 0
1

I(l) 0
2

Lo | = —Cp
, -

| @ -A
4

L prc,

s 1| 1

* constant

o O O O o

29

(2.95)

(2.96)
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The second eigenvector that can be written as:

fori=2andV, =—c,

_I (2) ] 0
1
I (2) 0
2 c
1,? | = P |*constant (2.97)
| @ A
4
| @ pIC,
s 11

Similarly, for i =3 where V; =0 we can find the third eigenvector:

O (1]

@

1, | = | - ¢ | * constant (2.98)
@ 0

|5(3) 0 |

for i=4where V, =0 :

_Il(4)_ 1
| @ —-c
2
(4) A *
l, =0 constant. (2.99)
I (4) 0
4
_|5(4)_ i 0 |

for i =5where V; =0 :

L] (0]

1, 0

1, | = | 0| * constant. (2.100)
) 1

|5(5) _0_

We note here that this set of eigenvectors (2.96 — 2.100), should be linearly
independent in order to get non-trivial solution for Eq. (2.82b).
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dr __
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v
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Figure 2.5 Network of characteristic curves on the (r —t) plane.

We now want to obtain the canonical equations. For this purpose, we
premultiply Eq. (2.82b) by 1" to get
I, AU, +I",BU +I",F=0 (2.101)
Using Eq. (2.94a), the last equation can be expressed as:

I, AU, +VU  )+I" E=0 (2.102)

Noting that, V, = % and the total derivative of U with respect to is:

du
_~:Ut_|_ﬂur
dt R |

the above equation, (2.102), can be expressed as

T du T dr
I Ad_t~+|i F=0 along E:Vi(izl—S) (2.103)
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These equations are called the canonical equations which are valid along the

characteristic lines defined by V, =% (i=1-5). In view of Egs. (2.83, 2.85) and Egs.

(2.96-2.100), the canonical equations can be written explicitly as:

fori=1,
Cdr, T
_ _| dt
1 0 0 0 0f|dzy,
; 01 0 0 0f dt
00 —¢, —= 100100 djt"+
PCy 00010 du,
0 0 0 0 1] gt
dv,
dt |
_ ; .
__Vr
r
—Cy 0
A f 0
00 -¢c, — 1} 0 =10,
pre, 0
_Vr _O_
1[dc} 1 dA A 1
| e U 2 U ——7p t—— Ty
p\ dr or dr rep or 1
or simply as:
de,, A du, dv, A 1 dc
—C - +—L+ V, ———¢&,
Pdt pre, dt dt prc, p dr
(2.104)

which is valid along the family curves V =c,

fori=2,
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=
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or simply as:

de,, A du, dv, -1 1dc
c + +—L 4 v,
Pdt  prc, dr dr o prc, pdr

(2.105)
[/1 1dﬁ,j 1 1
u, P Tyt T%,—O,
r‘'e prdr) pr pr
for i =3,
4 ]
) | dt
100 0 0]|dr,
0 10 0 0|l dt
[00—coo]oo1oo%+
000 1 0 du,
000 0 1| gt
) Tl dv,
dt




0o 0 —c 0 0

1(dc)
——| 5 €
p\dr
or simply as:
dr, _dg, 4
— __VI’:
dt dt r
fori=4,
1 0 0
010
{1 “® 9o o} 00 1
0 0O
0 0O
{1 “C oo o}
1(dcj
— 77 |€n
p\dr
or simply as:
dZ'” _Edr_‘gg_i r+ivr:0
dt A dt r ri

and finally,

o r O O O

= O O O O

1d4

-——u, +

or dr

A

u

1

-7

or

rr

T——Ty

o O O O o

34

(2.106)

o O O O o

(2.107)
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for i =5,
fdr,
_ _| dt
1 0 0 0 0f|dz,
01 00O dt
[0 0o 01000100 dgt”+
0001 0ff du,
00 00 1| gt
dv,
dt
_ J ;
__Vr
[
<, 0]
r 0
0o 0 0 1 0] 0 =0},
0
_Vr _OJ
1(dcj 1da A 1
| o e U 2 r T T YTy
p\ dr pr dr rep or or
or simply as:
o (2.108)
dr

Thus, the system of governing partial differential equations, (2.82b), is
transformed into a set of ordinary differential equations, (2.104-2.108) which are valid
along the characteristic lines.

A through description of the method of characteristics is given by Courant and
Hilbert, see Ref [27]. For more details of the derivations of the basic equations used in
the method of characteristics, see Appendix A.

Our aim now, is to solve the canonical equations, (2.104-2.108), by integrating
them numerically along the characteristic lines. For this purpose, the trapezoidal

technique will be used in the following subsection.
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2.4 INTEGRATION OF THE CANONICAL EQUATIONS

The canonical forms of the governing equations valid along the characteristic

lines are given by Egs. (2.104-2.108). These equations which are valid along the
characteristic curves, %:Vi (i=1-5), can be written in a more compact form in

indicial notation as:
du

G; dtj =H,U,, (i, j=1-5) (2.109)

where the repeated index j implies summation, U ; are the components of the unknown

vector defined in Eq. (2.86) and K and F; can be expressed explicitly as:

0 0 -c, 4
pre,
0 O Cy A 1
G, = pre, (2.110)
1 0 -c 0
1 =% o 0
A
0o 0 0 1 o0
1 -1 1de (-4 1di) -4
pr pr pdr (r’p prdr pre,
1ol lde (-2 1dl) 2
pr pr pdr \r’p prdr pre,
H, = 1 (2.111)
0 0 0 0 —
"
2
0 0 0 0 (i—C—J
r ri
0 0 0 0 1

Before proceeding further, we note an important comment about the wave fronts.
A wave front separates the undisturbed region from the disturbed region, or the already
disturbed region from the region having additional disturbance. This means that the
field variables or their derivatives should have finite jumps across the wave fronts.
Therefore, from the definition of characteristic, it follows that the wave fronts should
be members of the characteristic families. Due to zero initial conditions, we have one

wave front in our problems, which is a member of the characteristic family
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=c,,and emanate from the origin (r=R;, t=0). Using the typical

integration element shown in Fig. 2.6, we now integrate the canonical equations, i.e.,

Eq. (2.109), along the characteristic lines as:

A dUJ A
[, —tdt=[HUdt, (2.112)
dt
A A
A(i=34,5)
Fig.2.6 The typical integration element used in the numerical analysis.
0 0 —c, —*
pre,
0 0 c, 4 1
G= pIrc, (2.113)
1 0 - (2,u + /”t) 0 0
—(2u+A) 0 0 0
A
0 0 0 1 0
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“11 -ldu+d) (2142 ’
pr pr p dr r’p prdr pre,
“11 -ldu+d) (214 -
pr pr p dr r’p prdr pre,
H = ~ 2 (2.114)
0 0 0 0 ( ’1+(2“+’1)}
r Ar
0 0 0 0 (ij
.
(0 0 0 0 -1 |

where Aand A are consecutive points along the characteristic lines defined,

respectively, at current and previous time steps as shown in the typical integration

element shown inside Fig. (2.6). Taking into consideration that the coefficients K are
constants and the coefficients F; are functions of r only, the above integration can be

performed easily by using the trapezoidal rule as [29]
At
GyU; (A) = GU (A) = (S{H; (AU, (A)+ Hy (AU (A)}=0. (2.115)
Alternately, this equation can be rewritten as:
WijUj(A)=MijUj(Ai) (i, j=1-5), (2.116)
hereW. =G, —(SYH. (A) and M. =G. +(EYHH, (A 2117
Where, Wy = ij_(?) i (A) an i !J+(7) i !) (2.117)

or in matrix form as

ﬂ £ — _E% i+§ i_i% 1+ M
2pr 2pr " 2pdr pre, 2(r’p mdr 2prc,
4 4 Ml 2 N[ 14 W
2pr 2pr " 2pdr pre, 2(r’p adr 2prc,
T 0 —At@ (2.118)

2 \r
_ _ 2
— 0 0 A=A, c
A 2 r A

0 0 0 1 A
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MM Mde A M(2_102)  Au
2or 2pr P 2pdr prc, 2\r’p prdr 2prc,
At —At At dc A AN A 1dA ANA
— — Ct—— — |5 1+
2pr  2pr 2pdr prc, 2(r°p prdr 2prc,
M= 1 ¢ e 0 é!(&j (2.119)
2\r
_ _ _ 2
1 =¢ 0 0 —At _’1+C_
A 2 \r A
0 0 0 1 At
L 2 i

The elements of K; and F; are given in Egs. (2.113-2.114). In Egs. (2.115-

2.117) there is no summation over the underlined index(i), therefore, Eq. (2.115)

represents five equations defined by i =1-5 and for each value of the index i, there is

a summation over j which takes the values j=1-5. The composite body considered
in this thesis consists of N — different, non-homogeneous and linearly elastic layers. In
the numerical procedure each layer (1, 2, 3,..., N) is subdivided into p —homogeneous

layers, so that the equations derived at the beginning of this chapter will be valid to
each layer. Eqgs. (2.116) were derived for a typical layer which will be considered as the

p" layer and all quantities pertaining to it will be denoted by the subscripts or
superscripts p in between parenthesis, i.e., ¢V, 4 APL 5L and so on...

For the composite domain consistency of N —layers (Lzl, 2, ..., N) each is
subdivided into p layers where p depends on the gradient material properties of each

layer from 1to N, Eq. (2.116) can be written as:

1]

w. Py j(P)('—)(A) -M i j(P)(L)U j(P)(L)(Ai) (2.120)

(,j=1234,5), (L=12.,N), (P=12..)

Where Wij(P)(L) and Mij(P)(L) can be obtained simply by denoting all quantities

appearing in the matrices of Egs. (2.118-2.119) with the subscript or
superscript (P)(L) in parenthesis.

Thus, when the values of U j(p) are known at points Ai (i =1-5), the unknown

vector at point A, {U j(p)(A) j =1-5)}, can be determined form Eq. (2.116) easily by
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a step-by-step numerical procedure discussed below. In other words, using the triangle
element shown inside Fig. 2.6, the field variables at a specific point along any line
parallel to the x, - axis in the solution region can be found in terms of the known field
variables defined on the previous line. For this purpose, we refer to the network of the
characteristic lines, Fig. 2.6. To compute the components of the unknown vector

{Uj(p)(j =1-5)}presented in Eqg. (2.119) at every intersection point between the

characteristic lines on the r—t plane: we start our solution on the network from the
r - axis, where the values of all field variables are zero due to zero initial conditions,
and advance into the solution region by computing U; at the intersection points of the
network between the top and the outer boundary along the lines
t=At, t=2At, t=3At,....... , t=J,,At.....etc. In this computational process, the inner
layer is considered to be layer 1, while the lower layer is considered to be layer N . To

explain this numerical procedure we refer to four different locations of the typical

integration element;

@) When the typical integration element is located at the inner boundary
then the first equation of Egs. (2.120), which is valid along the curve
A— A is replaced by the boundary condition applied at the inner
boundary, that is, when the point A of the typical element is located

at the boundary (r =R, ); Eqgs. (2.120) can be written as:

1]

W, Py j(P)(L)(A) _M i J_(F’)(L)U j(F’)(L)(Ai) (2.121)

(i=2,3,4,5), (j=1-5),
The equation for i=1 is given by the boundary condition of the
inner surface (r=R,), that is by Eq. (2.80). The superscript (P)
in equation (2.121) represents the properties of the first sublayer of
the FGM layer, that is P =1.

(b) Second, if the integration element is an interior element, then the
procedure involves the determination of the values of the unknown

vector at a point A in terms of their values at A, A, and A,

(i =3—-4) using Egs. (2.120).
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(c) Third, if a point A of an integration element is located at an
interface between two different FGM layers then the first two
equations are replaced by the interface continuity conditions,
whereas, in this case the number of field variables becomes double at
that point.

For example, Eq. (2.120) can be written for the interface between

layer Land (L+1) as:

PNy XD Ay PXLY ) (P
w, 0 P a) = m P PO (2.122)

(i=1,34,5), (j=1-5),

(PYL+1)  (PY(L+2) _ (P)(L+1),  (PY(L+2)
w, Xy P ) = M, PXEy XD

(i=2,34,5), (j=1-5)
Where the superscript L donates the layer that precedes the interface and (L +1)
defines the layer that follows it. Egs. (2.122) for i =2 for the L™ layer and for i =1 for
the (L+1)" layer are replaced by the interface conditions imposing that u_ and z,, are

conditions across the interface, which are:
ul(P)(L)(A) _ ul(P)(L”)(A)
u, (P)(L)(A) —u, (P)(L+1)(A)

In the first equation of Eqs. (2.122) P denote the last sublayer of the L™ layer and in

(2.123)

the second equation it denotes the first sublayer of the (N +1)" layer. Furthermore, we

should note that for N layers (L =1,2,..., N ) we have (N —1) interfaces.

(d) Finally, the second equation of Egs. (2.115) is replaced by the
boundary condition applied at the outer boundary, if the typical
integration element lies at that boundary.

Thatisfor L=N Egs. (2.120) becomes

PXNY | XN Ay _ pg (XN (PXN)
w, Py ) =M U, (A) (2.124)

(i=1,34,5), (j=1234,5)
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which is valid for the last sublayer of the N™ layer that is at (r= RO). Thus, Eqg.

(2.124) for i =2 is replaced by the one of the outer boundary conditions given in Eq.
(2.81)

The procedure discussed above is repeated as we proceed along the t—axis, for
example along the line t =2At instead of using the initial conditions along the line
t =0, we use the field variable which is already evaluated in the previous step along
the line t = At. This process is repeated until getting results for a sufficient value of t,

for example t=J__ At where J_,. is the maximum number of intervals considered in

ax
the t-direction. The code of the numerical procedure is written in Fortran 90, see

Appendix B.



43

CHAPTER 3

NUMERICAL RESULTS AND DISCUSSION

In this chapter, we would like to give some numerical examples related to the
formulation presented in chapter 2.

In the following examples, the numerical computations have been carried out
and 1the results are displayed in terms of non-dimensional quantities. These

dimensionless quantities are taken in terms of the thickness of the first layer (h)),

density of the first layer (po(l)) and dilatational wave velocity (cp“)) of the first layer.

Thus these dimensionless quantities are defined as follows:

_ 1) - 2) B ) B .
p(l)_pO =1 (2)_p0( ,u(l)—'uo— (1)_)’0—()
R N G o M = R
po( ) po( ) /10( )+ 2:“0( ) ,10( ) 4 zluo( )
g =t R T
0 B 1 1 0 1 1) ! - y (1) = =
A" + 241" 2o+ 20, hy W
1 ) .
h_ = h(2_) I: :—ri Y = Vr() V_ * = v © 2'_ W — Trl’()
N @ | h(l) f Cp W r Y p(l) " Po w (C D @) )2
(2) (2) (1 A ) ) (3_1)
T_ _ Ty - _ 2'96, - B T@g

YR THH YA
0, (cpa)) 0, (cpa))
In Egs. (3.1), the non-dimensional quantities are shown by putting bars over them. We

recall that the quantities pertaining to layers 1 and 2 are denoted by putting subscripts 1

and 2 or superscripts 1 and 2 in parenthesis, respectively. For example p,Y' and p,?

@ - (2

- )
denote the mass densities, whereas v, and v, denote the dimensionless particle

velocities in layers 1 and 2, respectively. Furthermore, h, and h, represent the

thicknesses of layers 1 and 2, respectively. All the other quantities appearing in Egs.
(3.1) are defined in Chapter 2.
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3.1 Example 1; Verification problem

We consider the solution of Eq. (1.1) for which 4 and c are assumed to
constant functions through the thickness of the cylindrical layer. That is, in Eq. (2.71)
a=1 and b is assumed to be zero. In the numerical examples investigated in this
study, the following values for the non-dimensional material and geometrical properties

are assumed:

1" =0.254, 4,»=0.964, 1,0 =0492, 2, =0972

(3.2)

100(1) :1, p0(2) — 291 Hl :11 I"i :l, ) :1, r; =0

3.2 Example 2:

In this example we consider similar properties presented in Egs. (3.2), but 4
and c are assumed to be linear functions in r —direction and uniform in the other two
directions. That is, in Eq. (2.71) a,b,m and n are assumed to be as follows:

5 1
a=—, b==, m=1 n= 3.3
5 5 1, (3.3)

In this case as we noted from the above non-dimensional quantities the cylindrical
layered media is assumed to be made of functionally graded material whereas the
properties are assumed to be vary linearly through thickness direction.

In these examples (1 & 2), the inner surface (F =1) is assumed to be subjected

to uniform pressure with an initial ramp, see Fig. (3.1), where t; =0.2 and

F30:1,thatis
i, 5t ift<0.2 w
(t)= 1 ift>0.2 (3:4)
f(t)
y N
po """""""

> Fig. 3.1 Time

t

0o —
variation of the load applied at the inner boundary (I =1).

on the hand, the outer surface (F =7 is assumed to be fixed, thatis u, =0.
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The numerical results presented in these examples have been obtained for three
pairs of alternating layers. The innermost layer is taken as layer 1, whereas the
outermost layer is taken as layer 2. In Figs. (3.2-3.7) the variations of the dimensionless

normal stresses I and Lo with non-dimensional time at F:1.5, r=25and r=35

Po Po
are shown for the layered composite with cylindrical layers. In these figures, solid
curves are given for the cases where the homogeneous effects are neglected. These

solutions in the absence of the homogenity effects, that is for a=1 and b=0 have

been investigated in detail in [30]. Our solutions presented in Figs. (3.4-3.5) at r=25
for the homogeneous case fit exactly those solutions presented in [29]. These results
give us more confidence of the method applied in this thesis. On the other hand,
solutions presented by dashed curves are devoted for FGM composites with properties
given in Egs. (3.3). From Figs. (3.2-3.7) one can see clearly that the stress level for the
homogeneous material are greater than those correspond to FGM composite; this is due
to the fact that the outer boundary of the FGM composite is stiffer than the inner
boundary. The curves of Figs. (3.2-3.7), further show the effects of reflections and
refractions from the inner and outer boundaries and from the interfaces. These effects
can be noticed from the sudden changes of stress levels. We note that large changes are
due to the reflections and refractions from the outer and inner boundaries, whereas
small changes in stress levels are due to reflections and refractions from the interfaces

between layers.
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Fig. 3.6 Time variation of the normal stress —= at r = 3.5 for three pairs of alternating

layered cylindrical domain
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Fig. 3.7 Time variation of the normal stress —%% at r =3.5 for three pairs of alternating

layered cylindrical domain.
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3.3 Example 3:

The numerical results presented in Figs. (3.8-3.13) show the time variation of
normally stresses at different locations for six similar layers. The geometrical and
mechanical properties of the six layers are taken similar to Eqgs. (3.2) with subscript or
superscript 1. Whereas the inner boundary is subjected to time pulse given in Eq. (3.4)
and the outer boundary is assumed to be fixed. In Figs. (3.8-3.13), the geometric and
homogeneity effects are seen clearly from the discrepancy between the homogeneous
and non-homogeneous (FGM) solutions. Furthermore, the reflections from the outer
and inner boundaries are seen through the high jumps of stress levels, while the effects
of reflections and refractions from the interfaces are not seen (as in Examples 1 & 2)

because the six layers have the same properties.

1.60
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1.40 ;
¢ ————— FGM

1.20
1.00
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< 0.60 H}-

0.40 A
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Fig. 3.8 Time variation of the normal stress —~ at r =1.5 for six similar cylindrical layers.
Po
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Fig. 3.13 Time variation of the normal stress —%% at r = 3.5 for three pairs of layered
Po
cylindrical domain.
Example 4:

In this problem, we present some results for one-dimensional wave propagation
in an FGM layer consists of nickel (Ni) and silicon (Si). On one surface of the layer is
pure nickel and on the other surface pure silicon, and the material properties in-between
these two surfaces vary smoothly in the radial direction. The material properties of the

constituent materials are given in Table 1:

n(GPa) A(GPa) p(Kg/m?)
Ni (Nickel) 79 129 8900
Si (Silicon) 90 26 3100

Table 3.1: Properties of materials used in example 4

Here we consider four different problems. These problems are: nickel-silicon (Ni/Si) or
silicon-nickel (Si/Ni) FGM composites with free or fixed outer boundary conditions.
The FGM cylindrical layers are assumed to be consisting of two different layers. Thus,
in the use of the non-dimensionalization, the material properties for the two composites
can be computed from Table 1 as:

for the Ni/Si FGM composite with m=n+2, see Fig. 3.14a,
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m=-0.58585 n=-2.58585 a=0.4964, b=0.5036,

_ _ _ _ (3.5)
po =1 p,=0.27526, A,=0.44948, c,=1
and for the Si/Ni FGM composite with m=n+2, see Fig. 3.14b,
m=-0.58588, n=-2.58588, a=1.33492, b=-0.33492,
(3.6)

Py =1 1, =0.39823 A, =0.20354, c,=1,
The variation of non-dimensional density (), stiffness (6) and wave velocity (c_p)

with r for these composites, (3.5-3.6), are shown, respectively, in Fig. 3.14. In these
examples In these examples, the inner surface (F =1) is assumed to be subjected to

uniform trapezoidal with an initial ramp with I5O =1 as seen in the following figure

>t

At 02 (0.2+At)

Time variation of the boundary conditions used in example 4, that is the normal stresses applied at the

inner boundary ( r= 1).

For various combination of boundary conditions and material compositions

shown in Fig. 3.14, the variations of normalized normal stresses z,, /P, and z,, / P, with

non-dimensional time tatr=1.5 are given in Figs. 3.15, 3.16, 3.19, 3.20, 3.23, 3.24,

3.27, and 3.28. The curves in Figs. 3.15, 3.16, 3.23, and 3.24, correspond to free outer
boundary conditions, while the curves of Figs. 3.19, 3.20, 3.27, and 3.28 correspond to

fixed outer boundary conditions. The variations of normalized normal stresses

z,. | P, and 7, / P, with non-dimensional time tatr=25 are given in Figs. 3.17, 3.18,

3.21, 3.22, 3.25, 3.26, 3.29, and 3.30. The curves in Figs. 3.17, 3.18, 3.25, and 3.26,
correspond to free outer boundary conditions, while the curves of Figs. 3.21, 3.22, 3.29,
and 3.30 correspond to fixed outer boundary conditions. The dashed curves in these

Figures, Figs. 3.15-3.30, correspond to FGM layers with material properties given in
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Eq. (3.5) or Eq. (3.6), whereas the solid curves correspond to linear, homogeneous and
isotropic material. The curves corresponding to the homogeneous layer are obtained as
a special case by assigning a=1 and b=0 in Egs. (3.5-3.6). The curves of Figs. 3.15-3.30
clearly show the effects of reflections at the inner and outer surfaces through the
sudden changes in the stress levels. We note further that, reflections and refractions
from the interfaces are also shown through the small sudden changes in the stress
levels. Moreover, we note that the stress levels in the homogeneous layer are higher
than those correspond to the Ni/Si FGM composite, Figs. 3.15-3.22, and they are less
than those correspond to the Si/Ni FGM composite, Figs. 3.23-3.30. these deviations

from the homogeneous material are due to the fact that the inner boundary r=1 is the

stiffer side in the Ni/Si FGM composite, Fig. 3.14a, and if r=1 is the less stiff side
then the stress levels will be higher than those correspond to the homogeneous layer.

Because the wave velocity of the homogeneous layer (c_p =1) is less than that of the

Ni/Si FGM composite, Fig. 3.14a, the stress wave propagates faster in the Ni/Si FGM
composite, Figs. 3.15-3.22. However, the stress wave in the homogeneous layer is
traveling faster than that in the Si/Ni FGM layer, see Figs. 3.23-3.30, this is clearly
pronounced as time increasing. We, further, note that if the outer boundary is free of
surface traction than the compressive waves are reflected as tensile waves from that
boundary, Figs. 3.15-3.18 and Figs. 3.23-3.26, and they are reflected as compressive
waves if the outer boundary is fixed, Figs. 3.19-3.22 and Figs. 3.27-2.30.
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Fig. 3.14a Variation of non-dimensional density ( p ), stiffness (C) and wave velocity (Cp ) with I: in

Ni/Si FGM composite.
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Fig. 3.14b Variation of non-dimensional density (o), stiffness (C) and wave velocity (Cﬁp ) with I_’ in

Si/ Ni FGM composite.
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Fig. 3.19 Variation of (7, / P,) with t in Ni/Si FGM layer and in homogeneous layer at

1.5 under free/fixed boundary conditions.
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Fig. 3.20 Variation of (7, / P,) with t in Ni/Si FGM layer and in homogeneous layer at

I = 1.5 under free/fixed boundary conditions.
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Fig. 3.24 Variation of (rt%,/P0 ) with f in Si/Ni FGM layer and in homogeneous layer at

r =1.5 under free/free boundary conditions.
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Fig. 3.26 Variation of (rt%,/P0 ) with f in Si/Ni FGM layer and in homogeneous layer at

I: = 2.5 under free/free boundary conditions.
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CHAPTER 4

CONCLUSIONS

In this thesis, the one-dimensional transient stress-wave propagation in
multilayered functionally graded media consisting of N different cylindrical layers has
been investigated. The material properties are assumed to be varying smoothly in the
thickness direction. By suitable adjusting the material properties, curves for
homogeneous and linearly elastic multilayered cylindrical media have also been
obtained. The method of characteristics is employed to obtain the numerical solutions
of the considered initial-boundary-value problem. The results show that the applied
numerical technique is capable of predicting the sharp variations at the wave fronts.
Furthermore, this technique properly accounts for the effects caused by reflections and
refractions of waves at the boundaries and interfaces between the layers and the
homogeneity effects in the wave profiles.

Based on the results obtained, one may conclude that, depending on the material
property grading, the location of the receiver point, boundary conditions and the
amplitude of the input pulse, the resultant stress amplitudes may be greater or less than
those applied at the inner boundary. It has been found that these amplitudes become
less than those applied at the inner boundary, when the inner boundary (r =1) is stiffer

that the outer surface (r = R,) and become greater when the outer surface of an FGM

layer is stiffer than the inner surface.
Finally, the method of characteristics can be combined with Fourier or Laplace
transform and used effectively in investigating two-dimensional transient dynamic

response in multilayered FGM media.
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APPENDIX A

METHOD OF CHARACTERISTICS

In this appendix, the derivations of the basic equations used in the method of
characteristics, namely, the characteristic equation and the canonical equations will be
given. Let the system of governing 1-D partial differential equations be given in matrix
form as
AU, +BU,+C=0 (A1)
where A and B are (mxm ) square matrices, C is an m-dimensional vector and U is
m-dimensional unknown vector
). (A.2)
The unknown field variables U,,U,,........ ,U,, are functions of the space variable x and
the time variable t. The system of governing equations, Eqgs, (A.1), is assumed to be
linear, i.e., A and B are function of x and t only and C is a linear function of U ,i.e.,
C=DU+E (A3)
where D is an (mxm) square matrix and E is m-dimensional vector both of which
are functions of x and t, only. Furthermore, comma denotes partial differentiation in Eq.

(A1) ie, U, =oU/dt and U, =0U/oX.

Let x=x(t) define the equation of the singular point (wave front) at which the
field variables and/or their derivatives may suffer discontinuities. The plot of x(t) is
given in Fig. A.1. If f denotes a function of x and t, the jump of f(x,t) at the singular

point is defined and denoted as
[fl=f"—f (A.4)
where the superscripts + and — denote the values of the function on the disturbed and

undisturbed sided of the singular point, respectively.
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Now, assume that U is continuous and the first derivatives of U are
discontinuous on the singular point x=x(t) , ie., [U]=0, |[U,]#0 [U,|#0 on

x=X(t).

Figure A.1 Position of the singular point
Writing Eq. (A.1) on positive and negative sides of x=x(t), noting that
A ,Band C are continuous on x=x(t), and taking the difference, we obtain on x=x(t)
AlU, |+B|Y,|=0. (A5)

The kinematical condition of compability given on x=x(t)

4]
ot 0 X

where V denotes the propagation velocity of the singular point (wave front).
Substituting Eq. (A.6) into Eq. (A.5), we get

B-VAW=0 (A7)
where W = [Q’XJ. This is an eigenvalue problem and W is the eigenvector and V is the
eigenvalue. For non-trivial solution

det(B-V A)=0 (A8)
Equation (A.8) is called the characteristics equation. Solving this equation we find m
roots (characteristics values), i.e, V' = (V® V@ ... V™)_ If the roots are real then
the system is called hyperbolic and each V" corresponds to i" family of characteristic

curves C"'. This characteristic family can be determined by solving the following

equation:
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c® :%:vm —>x=x"(a",t) for i=12,......,m (A.9)
where o are integrat.on constants. The family of the curves C%,C?,.....,.C'™

constitutes the characteristic manifold.
Now we shall put Eg. (A.1) into canonical form. For this purpose, we define the left-

hand eigenvector ¢ corresponding to V@ as

(" (B-VO A)=0 (i=1-m) (A.10)
or
(B"-VO A7) =0 (i=1-m) (A11)

Pre-multiplying Eq. (A.1) by /™" (i=1-m) and substituting
(TB=VOOT A (j=1-m) (A.12)
from Eq. (A.10), we can write

(TAU VO U )+TC=0  on C¥ (A.13)
. i _ dx - . . du
Noting that V =E and the quantity in parenthesis in Eq. (A.13) is equal to o we

can write

ﬁ(i)TAd—g+€(‘)T9:Q (A.14)

which holds along (dx/dt)=V® (i=1-m). Egs. (A.14) are called the canonical

equations. In these equations d / dt denotes the total time derivative along the
characteristic lines. Thus, through the application of the method of the characteristics,
the system of governing partial differential equations. Egs. (A.1), is transformed into a
system of ordinary differential equations, Egs. (A.14), each of which is valid along a

different family of characteristic lines.
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PROGRAM MAIN

IMPLICIT real*8 (a-h,0-2)

PARAMETER(np=6,nl=8,jx=20001)

COMPLEX*16 srxx(jx,np),sryy(jx,np),srzz(jx,np)

COMMON dt,eps,nop,nol,zzz

COMMON/arrays/hz(nl),mm(nl+1)/arry2/rO(nl),a(nl),b(nl),

*pm(nl),pn(nl),yy(np),dz(10001),umO(nl),ul0(nl),
*¢(10001),c0(10001),ro(10001)

open(99,file="Inp333’)

open(88,file="OU333")

open(80,file="OU333.dat")

open(1,file="2LSNf1.dat")

open(2,file="2LSNf2.dat")

open(3,file="2LSNf3.dat")

open(4,file="2LSNf4.dat")

open(5,file="2LSNf5.dat")

CALL INPUT (imax,jmax)

CALL SOLVEE(imax,jmax,srxx,sryy,srzz)

CALL OUT(jmax,srxx,sryy,srzz)

close (99)
close (88)
STOP
END
CCCCCCCCCcrrrrreececececececececececcecececececeecececececececececccecececcecccececececcececececce
SUBROUTINE INPUT(imax,jmax)
CCCCCCCCCCCrrrreececececececeecececececececeeecececececececececececececcecccecececececececececec

IMPLICIT real*8 (a-h,0-z)

PARAMETER(np=6,nl=8)

COMMON dt,eps,nop,nol,zzz
COMMON/arrays/hz(nl),mm(nl+21)/arry2/r0(nl),a(nl),b(nl),
*pm(nl),pn(nl),yy(np),dz(10001),umO(nl),ulo(nl),
*c(10001),c0(10001),ro(10001)
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121

304

read(99,*)nop
read(99,*)(yy(j).jj=1,nop)
read(99,*)jmax,nol
read(99,*)zzz,dt,eps
TH=0.0d0
do jjj=1, nol
read(99,*)hz(jjj)
read(99,*)pm(jjj),pn(ijj)
read(99,)a(ijj).b(ijj)
read(99,*)r0(jjj),umO(jj), ulojj)
enddo
7=7727
mm(1)=1
If=nol-1
Im=nol+1
m=0
do 303 kk=1,nol
z=z+dz1
do k=1,50001
co(k+m)=(2.0d0*umO0(kk)+ul0(kk))*((a(kk)+b(kk)*z)**pm(kK))
ro(k+m)=r0(kk)*((a(kk)+b(kk)*z)**pn(kk))
c(k+m)=dsqrt(co(k+m)/ro(k+m))
dz(k+m)=c(k+m)*dt
write(88,121) kk,k+m,z,ro(k+m),c(k+m)
Format(2(x,16),3(x,e16.8),/)
abb=z
if(abb.ge.hz(kk)) then
go to 304
else
endif
z=z+dz(k+m)+0.000000000000001
enddo
if(kk.LE.If) then
c01=(2.0d0*umO(kk+1)+ulO(kk+1))*((a(kk+1)+b(kk+1)*z)**pm(kk+1))
rol=r0(kk+1)*((a(kk+1)+b(kk+1)*z)**pn(kk+1))
cl=dsqrt(col/rol)
dz1l=cl*dt
mm(kk+1)=m+k
m=m-+k

else
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mm(kk+1)=m+k
endif
303 enddo
imax=mm(Ilm)
Do ii=1,Im
write(88,*) 'mm(,ii,)= ', mm(ii)
enddo
write(88,*)'Imax = 'jimax,’ NOL =", nol
return
End
CCCCCCCCCrrreeeececececececeeceecececececececececececececececececcecececcecececececcecececececec
SUBROUTINE INPFT(tt,pt,dt)
CCCCCCCCCCcrrrreeececececececececeecececececeececececececececececccececcecceccecececececececececece
real*8 tt,pt,ddc,pi,dt
pi=4.0d0*atan(1.0d0)
ddc=dt
if(tt.1t.dt) then
pt=0.0d0
else
endif
ddc=0.2d0
if(tt.le.ddc) then
pt=1.0d0
else
pt=0.0d0
endif
RETURN
END
CCCCCCCCCcrrrreeeececeecececececececececececcecececececececececececececcececceccecececececececececece
SUBROUTINE SOLL(N,NX,A,X)
CCCCCCCCCCrrrreeececececececeececececececceceeecececececececececececececececcecececececececececec
COMPLEX*16 A(NX,NX), X(NX),TEMP,QUOT,SUM
M=N+1
DO 23 1=1,N
23 A(,M)=X(I)
L=N-1
DO 12 K=1,L
JJ=K
BIG=CDABS(A(K,K))
KP1=K+1



DO 7 I=KP1,N

AB=CDABS(A(I,K))

IF((BIG-AB).GE.0.) GO TO 7

BIG=AB

JJ=I

7 CONTINUE

IF((JJ-K).EQ.0) GO TO 10

DO 9 J=K.M

TEMP=A(JJ,J)

AJJJ)=A(K,J)

9 A(KJ)=TEMP

10 DO 11I1=KPL1,N
QUOT=A(I,K)/A(K,K)
DO 11 J=KP1,M

11 A(1LJ)=A(1,J)-QUOT*A(K,J)
DO 12 I=KP1,N

12 A(1,K)=0.

X(N)=A(N,M)/A(N,N)

DO 14 NN=1,L

SUM=0.

I=N-NN

IP1=1+1

DO 13 J=IP1,N

13 SUM=SUM+A(1,J)*X(J)
14 X()=(A(1,M)-SUM)/A(LI)

RETURN

END
CCCCCCCCCCCTereecceeeceeceecececceecececcecececececececececccecececcecccecececcececece

SUBROUTINE SOLVEE(imax,jmax,srxx,sryy,srzz)
CCCCCCCCCCCCCCrreeeeeeeeeeceececeecececeeececececeecececececececcecececcecececece

IMPLICIT real*8 (a-h,0-2)
parameter(np=6,nx=6,nl=8)

COMPLEX*16 sryy(jmax,np),srxx(jmax,np),
*srzz(jmax,np),uf(nl,imax,nx),uff(nl,imax,nx),zz(2*nx-1),
*af(nx,nx),z(nx),ad(nx,nx),z2(nx),gg(2*nx-1,2*nx-1)

COMMON dt,eps,nop,nol,zzz

COMMON/arrays/hz(nl),mm(nl+1)/arry2/rO(nl),a(nl),b(nl),

*pm(nl),pn(nl),yy(np),dz(10001),umO(nl),ul0(nl),

*c(10001),c0(10001),ro(10001)

ns=nx-1
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nns=2*(nx-1)
nnx=2*nx-1
do 70 kl=1,nol
do 70 ij=mm(kl),mm(kl+1)
do 70 kf=1,ns
70 uf(kl,ij,kf)=0.0d0
do 90 j=2,jmax
write(*,*) j
tt=(j-1)*dt
XX=22Z
xx=xx+dz(1)
do 100 nm=1,nol
if(hm.eq.1) then
xx=xx-dz(1)
kk=mm(1)
else
kk=mm(nm)+1
endif
do 100 ig=kk,mm(nm+1)
if(j.eq.2) then
write(80,122) xx,ro(ig),co(iq),c(iq)
122 Format(4(x,e20.10),/)
else
endif
CALL VECTOR(ig,nm,xx,uf,nx,z,imax)
CALL MATRIX(nm,nx,af,xx)
do ikl=1,ns
Write(88,*)z(ikl)
write(88,*) iq,ikl
enddo
if(ig.eq.1) go to 200
if(iq.eg.imax) go to 300
if(ig.eq.mm(nm+1)) go to 500
go to 600
200 do jj=1,ns
af(1,jj)=cmplx(0.0d0,0.0d0)
enddo
af(1,1)=1.0d0
CALL INPFT(tt,pt,dt)



z(1)=1.0d0*pt
CALL SOLL(ns,nx,af,z)
go to 400
300 do jj=1,ns
af(2,jj)=cmplx(0.0d0,0.0d0)
enddo
EITHER:
FOR FREE OUTER BOUNDARY CONDITIONS USE af(2,1)
af(2,1)=1.0d0
OR:
FOR FIXED OUTER BOUNDARY CONDITIONS USE af(2,4)
af(2,4)=1.0d0
CALL INPFT(tt,pt)
2(2)=0.0d0
CALL SOLL(ns,nx,af,z)
go to 400
500 nnm=nm+1
CALL VECTOR(ig,nnm,xx,uf,nx,z2,imax)
CALL MATRIX(nnm,nx,ad,xx)
do 510 lI=1,nns
do 510 jj=1,nns
zz(I)=cmplx(0.0d0,0.0d0)
gg(ll,jj)=cmplx(0.0d0,0.0d0)
510 continue
do 515 kn=3,ns
do 517 jj=1,ns
gg(kn,jj)=af(kn.jj)
gg(1.jj)=af(1,jj)
gg(kn+ns,jj+ns)=ad(kn,jj)
99(7.jj+ns)=ad(2,jj)
51 continue
zz(kn)=z(kn)
zz(kn+ns)=z2(kn)
51 continue
zz(1)=2z(1)
72(7)=22(2)
09(2,1)=1.0d0
09(2,6)=-1.0d0
09(6,4)=1.0d0
09(6,9)=-1.0d0
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CALL SOLL(nhns,nnx,gg,zz)

do 577 jn=1,ns

z(jn)=zz(jn)
57 uff(nnm,ig,jn)=zz(jn+ns)

go to 400
60 CALL SOLL(ns,nx,af,z)
400 do ikj=1,nop

if(abs(yy(ikj)-xx).It.eps) then

srxx(j,ikj)=z(1)

sryy(i,ikj)=z(2)

srzz(j,ikj)=z(4)

else

endif

enddo

do 710 k=1,ns
710 uff(nm,ig,k)=z(k)

xx=xx+dz(iq)+0.000000000000001
100 continue

do 720 ml=1,nol

do 720 is=mm(ml),mm(mi+1)

do 720 k=1,ns

uf(ml,is,k)=uff(ml,is,k)
720 continue
90 continue

RETURN
END
CCCCCCCCCCCCCCrreereeeeeeeceeceececececeeececeececececececececccececececcececce

SUBROUTINE MATRIX(nm,nx,ai,xx)
CCCCCCCCCreereeeeeeeeeeeeeeeeeceeccceecececececeecececceecececcececececccecececce
IMPLICIT real*8 (a-h,0-2)
PARAMETER(np=6,nl=8)
COMPLEX*16 ai(nx,nx)
COMMON dt,eps,nop,nol,zzz
COMMON/arrays/hz(nl),mm(nl+1)/arry2/rO(nl),a(nl),b(nl),
* pm(nl),pn(nl),yy(np),dz(10001),umO(nl),ul0(nl),
*¢(10001),c0(10001),ro(10001)
do 79 kf=1,nx
do 79 kr=1,nx
79 ai(kf,kr)=cmplx(0.0d0,0.0d0)
cp=dsqrt((2.0d0*umO(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/



* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm))))

RO=r0(nm)*((a(nm)+b(nm)*xx)**pn(nm))

TML=(2.0d0*um0(nm)+ul0(nm))*((a(hm)+b(hm)*xx)**pm(nm))

Lamd=ul0(nm)*((a(nm)+b(nm)*xx)**pm(nm))

Dlamd=ul0(nm)*b(nm)*pm(nm)*((a(nm)+b(nm)*xx)**(pm(nm)-1.0d0))

DTML=b(hm)*pm(nm)*(2.0d0*um0(nm)+ul0(nm))*

* ((@(hm)+b(nm)*xx)**(pm(nm)-1.0d0))

ai(1,1)=(-dt/2.0d0/xx/(rO(nm)*((a(nm)+b(nm)*xx)**pn(nm))))

ai(1,2)=(dt/2.0d0/xx/(r0(nm)*((a(nm)+b(nm)*xx)**pn(hm))))

ai(1,3)=(-dsgrt((2.0d0*umO(nm)+ul0(nm))*

* ((a(nm)+b(nm)*xx)**pm(nm))/

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))-

* (dt/2.0d0/(rO(nm)*((a(nm)+b(nm)*xx)**pn(nm))))*

* (b(nm)*pm(nm)*(2.0d0*um0(nm)+ul0(nm))*

* ((@(nm)+b(nm)*xx)**(pm(nm)-1.0d0)))
ai(1,4)=((-ulo(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/

* (r0O(nm)*((a(nm)+b(nm)*xx)**pn(nm)))/

* (dsqrt((2.0d0*um0O(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/

* (rO(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))/xx)+

* (dt/2.0d0/(rO(nm)*((a(hm)+b(hm)*xx)**pn(nm)))/(xx))*

* (((ulo(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/xx)-

* (ulo(nm)*b(nm)*pm(nm)*((a(nm)+b(nm)*xx)**(pm(nm)-1.0d0))))

ai(1,5)=1.0d0+(dt/2.0d0/xx/(rO(nm)*

* ((@(nm)+b(nm)*xx)**pn(nm))))*

* ((ulo(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/

* (dsqrt((2.0d0*um0O(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm))))))

ai(2,1)=(-dt/2.0d0/xx/(rO(nm)*((a(nm)+b(nm)*xx)**pn(nm))))

ai(2,2)=(dt/2.0d0/xx/(r0(nm)*((a(nm)+b(nm)*xx)**pn(nm))))

ai(2,3)=(dsqgrt((2.0d0*um0(nm)~+ul0(nm))*

* ((@(nm)+b(nm)*xx)**pm(nm))/

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))-

* (dt/2.0d0/(rO(nm)*((a(hm)+b(nm)*xx)**pn(nm))))*

* (b(hm)*pm(nm)*(2.0d0*um0(nm)+ul0(nm))*

* ((a(nm)+b(nm)*xx)**(pm(nm)-1.0d0)))

ai(2,4)=((ulo(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/

* (rO(nm)*((a(nm)+b(nm)*xx)**pn(nm)))/

* (dsgrt((2.0d0*um0(nm)+ulo(nm))*((a(nm)+b(nm)*xx)**pm(nm))/
* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))/xx)+

* (dt/2.0d0/(rO(nm)*((a(nm)+b(nm)*xx)**pn(nm)))/(xx))*



* (((ulo(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/xx)-

* (ulo(nm)*b(nm)*pm(nm)*((a(nm)+b(nm)*xx)**(pm(nm)-1.0d0))))

ai(2,5)=1.0d0-(dt/2.0d0/xx/(rO(nm)*

* ((a(nm)+b(nm)*xx)**pn(nm))))*

* ((ulo(nm)*((a(nm)+b(nm)*xx)**pm(nm)))/

* (dsgrt((2.0d0*umO(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm))))))

ai(3,1)=1.0d0

ai(3,2)=-(((2.0d0*um0(nm)+ul0(nm))*

* ((@(nm)+b(nm)*xx)**pm(nm)))/

* (ulo(nm)*((a(nm)+b(nm)*xx)**pm(nm))))

ai(3,5)=(dt/2.0d0/xx)*(((((2.0d0*umO(nm)+ul0(nm))*

* ((a(nm)+b(nm)*xx)**pm(nm)))**2.0d0)/

* (ulo(nm)*((a(nm)+b(nm)*xx)**pm(nmy))))-

* (ulo(nm)*((a(nm)+b(nm)*xx)**pm(nmy))))

ai(4,1)=1.0d0

ai(4,3)=(-(2.0d0*umO(nm)+ul0(nm))*

* ((@(nm)+b(nm)*xx)**pm(nmy)))

ai(4,5)=(-dt/2.0d0/xx)*(ulo(nm)*((a(nm)+b(nm)*xx)**pm(nm)))

ai(5,4)=1.0d0

ai(5,5)=-dt/2.0d0

RETURN

END

CCCCCCCCrreeeeeeeeeeeceeceeeceeceecececececececececececececececcececceccce
SUBROUTINE VECTOR(i,nm,xx,uf,nx,z,imax)

CCCCCCCCCcreeeeeeeceeeeeeeeeeceeecececececececececececcececececccececececcece

IMPLICIT real*8 (a-h,0-z)

PARAMETER(np=6,nl=8)

complex*16 z(nx),uf(nl,imax,nx)

COMMON dt,eps,nop,nol,zzz

COMMON/arrays/hz(nl),mm(nl+1)/arry2/r0(nl),a(nl),b(nl),

*pm(nl),pn(nl),yy(np),dz(10001),umO0(nl),ul0(nl),

*¢(10001),c0(10001),ro(10001)

do jjj=1,nx

z(jjj)=cmplx(0.0d0,0.0d0)

enddo

XX1=xx

XX2=XX

if (i.eq.1) then

go to 700
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80

else

z(1)=uf(nm,i-1,1)*((dt/2.0d0/xx1/

* (r0(nm)*((a(nm)+b(nm)*xx1)**pn(nm)))))-

* uf(nm,i-1,2)*((dt/2.0d0/xx1/

* (r0O(nm)*((a(nm)+b(nm)*xx1)**pn(nm)))))+

* uf(nm,i-1,3)*((-dsqrt((2.0d0*um0(nm)+ul0(hm))*

* ((@(nm)+b(nm)*xx)**pm(nm))/

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))+

* (dt/2.0d0/(rO(nm)*((a(nm)+b(hm)*xx1)**pn(nm))))*

* (b(nm)*pm(nm)*(2.0d0*umO(nm)+ul0(nm))*

* ((a(nm)+b(nm)*xx1)**(pm(nm)-1.0d0))))+

* uf(nm,i-1,4)*(((-ulo(nm)*((a(nm)+b(nm)*xx1)**pm(nm)))/

* (r0O(nm)*((a(nm)+b(nm)*xx1)**pn(nm)))/

* (dsgrt((2.0d0*umO(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/
* (r0O(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))/xx1)-

* (dt/2.0d0/(rO(nm)*((a(hm)+b(nm)*xx1)**pn(nm)))/(xx1))*

* (((ulo(nm)*((a(nm)+b(nm)*xx1)**pm(nm)))/xx1)-

* (ulo(nm)*b(nm)*pm(nm)*((a(nm)+b(nm)*xx1)**(pm(nm)-1.0d0)))))+
* uf(nm,i-1,5)*(1.0d0-(dt/2.0d0/xx1/(rO(nm)*

* ((a(nm)+b(nm)*xx1)**pn(nm))))*

* ((ulo(nm)*((a(nm)+b(nm)*xx1)**pm(nm)))/

* (dsgrt((2.0d0*umO(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/
* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))))

endif

700 if(i.eq.imax) then

go to 800

else

z(2)=uf(nm,i+1,1)*((dt/2.0d0/xx2/

* (r0(nm)*((a(nm)+b(nm)*xx2)**pn(nm)))))-

* uf(nm,i+1,2)*((dt/2.0d0/xx2/(rO(nm)*

* ((a(nm)+b(nm)*xx2)**pn(nm)))))+

* uf(nm,i+1,3)*((dsqrt((2.0d0*um0(nm)+ul0(nm))*

* ((@(nm)+b(nm)*xx)**pm(nm))/

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))+

* (dt/2.0d0/(rO(nm)*((a(nm)+b(nm)*xx2)**pn(nm))))*

* (b(nm)*pm(nm)*(2.0d0*um0(nm)+ul0(nm))*

* ((a(nm)+b(nm)*xx2)**(pm(nm)-1.0d0))))+

* uf(nm,i+1,4)*(((ulo(nm)*((a(nm)+b(nm)*xx2)**pm(nm)))/

* (r0O(nm)*((a(nm)+b(nm)*xx2)**pn(nm)))/

* (dsgrt((2.0d0*umO(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/



* (ro(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))/xx2)-

* (dt/2.0d0/(rO(nm)*((a(hm)+b(nm)*xx2)**pn(nm)))/(xx2))*

* (((ulo(nm)*((a(nm)+b(nm)*xx2)**pm(nm)))/xx2)-

* (ulo(nm)*b(nm)*pm(nm)*((a(nm)+b(nm)*xx2)**(pm(nm)-1.0d0)))))+

* uf(nm,i+1,5)*(1.0d0+(dt/2.0d0/xx2/(r0(nm)*

* ((a(nm)+b(nm)*xx2)**pn(nm))))*

* ((ulo(nm)*((a(nm)+b(nm)*xx2)**pm(nm)))/

* (dsqrt((2.0d0*um0O(nm)+ul0(nm))*((a(nm)+b(nm)*xx)**pm(nm))/

* (r0(nm)*((a(nm)+b(nm)*xx)**pn(nm)))))))

endif

800 continue

z(3)=uf(nm,i,1)-

* uf(nm,i,2)*((((2.0d0*um0O(nm)+ul0(nm))*

* ((a(nm)+b(nm)*xx)**pm(nm)))/

* (uIo(nm)*((a(nm)+b(nm)*xx)**pm(nm)))))-

* uf(nm,i,5)*((dt/2.0d0/xx)*(((((2.0d0*umO(nm)+ul0(nm))*

* ((a(hm)+b(nm)*xx)**pm(nm)))**2.0d0)/

* (ulo(nm)*((a(nm)+b(nm)*xx)**pm(nm))))-

* (uIo(nm)*((a(nm)+b(nm)*xx)**pm(nm)))))

z(4)=uf(nm,i,1)-

* uf(nm,i,3)*(((2.0d0*um0(nm)+ul0(nm))*

* ((a(nm)+b(nm)*xx)**pm(nm))))+

* uf(nm,i,5)*((dt/2.0d0/xx)*

* (uIo(nm)*((a(nm)+b(nm)*xx)**pm(nm))))

z(5)=uf(nm,i,4)+uf(nm,i,5)*(dt/2.0d0)

RETURN

END

CCCCCCCcCcrrreeeceececececececeeeeecececececececececececececececececcececcecececececccecececece
SUBROUTINE OUT (jmax,srxx,sryy,srzz)

CCCCCCCCCCrrrrreeecececececececececececececececececececececececececececececececececececececcecece

IMPLICIT real*8 (a-h,0-2)

parameter(np=6,nl=8)

complex*16 srxx(jmax,np),sryy(jmax,np),srzz(jmax,np)

COMMON dt,eps,nop,nol,zzz

COMMON/arrays/hz(nl),mm(nl+1)/arry2/rO(nl),a(nl),b(nl),

* pm(nl),pn(nl),yy(np),dz(10001),umO(nl),ul0(nl),

*¢(10001),c0(10001),ro(10001)

do ii=1,nop

do jj=2,jmax

ttt=(jj-1)*dt
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sssrxx=dreal (srxx(jj,ii))
sssryy=dreal(sryy(jj,ii))
sssrzz=dreal(srzz(jj,ii))
write(ii,101) ttt,SSSrxx,sssryy,sssrzz
101 format(f14.8,1x,3(1x,f20.10))
enddo

enddo

return

end
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APPENDIX C

EXAMPLE OF INPUT FILE “inp333”:
The following input file is included to the results presented in Figs. 3.22 — 3.29
for the Si/Ni FGM composite.

5
1.00 1.50080412 2.000438265 2.500499031 3.000059837
8001 2

1.0d0 0.0020d0 0.000001d0

2.0d0

-0.5858690d0 -2.5858690d0
1.3349220150d0 -0.3349220150d0
1.0d0 0.398230d0 0.203540d0

3.0d0

-0.5858690d0 -2.5858690d0
1.66984403d0 -0.3349220150d0
1.0d0 0.398230d0  0.203540d0

The first line: (5), shows the number of pointd where solutions are required.

The second line: (1.00 1.50080412 2.000438265 2.500499031 3.000059837), shows
the location of points where solutions are required in (r —direction ).

The third line: (8001  2), J., =8001 and number of layers are 4.

The fourth line: (1.0d0 0.0020d0 0.000001d0), the first entry is the location of the
top surface r =1.0d0 of the layered media. The second entry is At =0.0020d0, the
third entry is & =0.000001d0 which is a stopping criterion.
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Under the fourth line we have four sets, each set pertains to the geometric and material
properties of the four layers, for example, the first entry in each set gives the location of

the outer boundary of that layer. The other three lines give:

m n
a b

Po Hy Ao

, respectively.
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