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ABSTRACT 

 
 
    In this thesis, factoring of prime ideals in the ring of integers of an algebraic 
extension of  is investigated. Especially, quadratic and cyclotomic extensions 
are considered and their essentials are presented. Fundamental concepts and 
theorems of algebraic number fields, domains and ideals are given. The 
relationship between these concepts are stated, proved and supported by 
examples. Some techniques for proving if a domain is Euclidean are given. A 
quick technique for factoring of prime ideals in quadratic extensions of  is 
given. The theoretical statements for factorization of ideals in a given extension 
are supported by examples. 
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ÖZ 
 

 
      Bu tezde, Rasyonel Sayılar Cisminin genişlemelerinin tamsayılar halkasında 
ideallerin çarpanlara ayrılması araştırıldı. Özellikle, quadratik ve birimin primitif 
kökleriyle oluşturulan genişlemeler ele alındı ve bunlarla ilgili esas teoremler 
ispatlarıyla birlikte sunuldu. Genişlemelerin, halkaların ve ideallerin temel 
teoremleri ele alınarak, bunlar arasındaki ilişkiler örneklerle desteklenerek 
gösterildi. Bir cebirsel alanın öklid alanı olmasının ispat edilmesinde bazı 
teknikler gösterildi. Rasyonel sayılar cisminin quadratik genişlemelerinin 
tamsayılar halkasında ideallerin çarpanlara ayrılmasının bir pratik tekniği verildi. 
İdeallerin çarpanlara ayrılmasının teorisi örneklerle desteklendi.  
 
 
Anahtar Kelimeler: Çarpanlara ayırma, çarpanlara ayırmanın tekliği, ideal, 
cebirsel alan, cebirsel sayı cismi, bir cebirsel sayı cisminde tamsayı halkası, norm, 
iz, diskirminant.  
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CHAPTER 1 
 

INTRODUCTION 
 

     Factorization takes important place in many areas of mathematics. For 
example, it is very powerful technique to use factorization for solving 
Diophantine equations in number theory. Moreover, recently it has important 
applications in some areas such as cryptography, computer science and 
mathematical biology. 
 
     As far as factorization is considered, uniqueness of the factorization has to be 
discussed. In some domain an element may have more then one factorizations. For 
instance, consider { }10 : ,D a b a b= + ∈Z . In this domain, 

6 2 3 (4 10 )(4 10 )= × = + − , 
where each factor can not be factorized any more. So, 6 has at least two 
factorizations in D. D is said to be not unique factorization domain. Domains and 
related concepts will be discussed in chapter 3. 
 
       When one deals with factorization he/she has to remember the famous 
problem, 

, ,

0, 3.

n nThere is no x y z such that x y z

with xyz for any natural number n

∈ +

≠ ≥

Z n=
 

This is known as Fermat’s Last Theorem (FLT ), it could not be proven for 
centuries. 
 
       A proof of FLT for n = 3 was published in 1770 by Leonhard Euler, the most 
prolific mathematicians of all time. Euler’s proof involved using numbers of the 
form 3a b+ −  where ,a b ∈Z . At one point in this argument, he made a claim 
about these numbers which was apparently based on tacit assumption that they 
obey unique factorization. His claim was correct, but the tacit assumption behind 
it was not, and this proof remained incomplete until the missing justification was 
supplied by Legendre some time later. 
 
     A proof for n = 5 was given by Legendre and independently by Dirichlet 
around 1825. The case n = 7 was handled by Lame in 1840. The first general -and 
by far the most significant- attack on the problem was made by E. Kummer in 
1843. Kummer’s basic idea was to consider numbers of the form  
 

2 1
0 1 2 1... p

p p p pa a a aζ ζ ζ −
−+ + + +  

 
where p is prime, 0 1 2 1, , ,..., pa a a a − ∈Z  and pζ is the primitive p’th root of unity. 
These numbers form a sub ring of ^ , denoted by [ ]pζZ .Using them it is possible 
to factor p px y+ completely and the equation p p px y z+ = becomes 
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2 1( )( )( )...( )p p

p p px y x y x y x y zζ ζ ζ −+ + + + = . 
 

Assuming that factorization of any number in [ ]pζZ  is unique, Kummer used this 
form of the equation to prove that p p px y z+ = is impossible if . Kummer 
presented his proof to Dirichlet and Dirichlet pointed out that Kummer had 
neglected to verify the assumption that factorization into irreducibles is unique in 

0xyz ≠

[ p ]ζZ . (Kummer was later to point out a similar flaw in an attempt by Lame.) In 
1847, Cauchy (after having made the same mistake himself ) pointed out that 
factorization is not unique in 23[ ]ζZ . Thus, Fermat’s last theorem remained 
unproved. 
 
    Kummer was undaunted and set about trying to modify [ p ]ζZ  so as to restore 
the uniqueness of factorization. He introduced what he called ideal numbers, and 
the theory he developed was a precursor of the modern theory of ideals [1] and 
also see [2],[3]. Theory of ideals will be discussed in chapter 5. 
 
    Hundreds of mathematicians have tried to prove FLT. Common idea in their 
works was factorization and common mistake was assuming the factorization is 
unique in the domain that they work Tens of books have been written and 
thousands of theorems have been stated about FLT .The most essentially, tens of 
methods and two important approaches ( algebraic and analytic approaches ) have 
been developed in the way of proving FLT. Behind all these, two areas of 
mathematics have been systemized. They are Algebraic Number Theory and 
Analytic Number Theory see [2-8]. 
 
     In this thesis, essentials of factorization with the view of algebraic approach 
are discussed; all facts in the road of understanding of factorization are 
considered. I have studied on theory of factorization, not on application. 
Application desires different kind of study. 
 
     For more basic facts, see [1] and [9-15]. 
 
     In chapter 1, the thesis has been introduced and supported by history. 
 
     In chapter 2, definitions of algebraic numbers, algebraic number fields, the ring 
of integers of an algebraic number field, norm of an algebraic number field, and 
trace of an algebraic number field and discriminant of an algebraic number field; 
essential theorems related with them which take important place in development 
of factorization are given. 
 
     In chapter 3, definitions of domains and some theorems that give relations 
between domains and essential concepts to understand these relations are given.  
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     In this thesis, mainly two important algebraic number fields are considered: 
First one quadratic fields and second one cyclotomic fields. Their essentials are 
discussed in chapter 4. 
 
     In chapter 5, theory of ideals and Dedekind domain are given. 
 
     In chapter 6, methods of factorization of an ideal into prime ideals and related 
theorems are given. 
 
     In chapter 2-6, theory is supported by examples. 
 
     In chapter 7, a short conclusion of the thesis is made.   
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CHAPTER 2 
 

ALGEBRAIC NUMBER FIELDS AND  
SOME ARITHMETIC IN THEM 

 
   Facts and techniques of Abstract Algebra have been applied to solve problems 
of Number Theory for centuries. For example, many great mathematicians have 
used algebraic approach to try to prove Fermat’s Last Theorem (FLT) which is 
very famous in number theory. And also, it is proven by Andrew Wiles by using 
combination of algebraic and analytic approaches. 
 
  In this study, we deal with algebraic approach to understand factorization of 
prime ideal in domains which takes important place in solving many problems of 
Number Theory. 
 
   To roughly understand the idea of algebraic approach let us start with an 
example. 
 
Proposition 2.1 Let p be an odd prime. There exists a unique pair (a, b) of 
integers up to sign and order such that  if and only if . 22 bap += )4(mod1≡p
 
Proof. Assume that , i.e. p = 4n + 1 for some natural number n. )4(mod1≡p
By Wilson’s Theorem,  )(mod1)!1( pp −≡−  
          ⇒  1 x 2 x 3 x... x 2n x  (2n +1) x (2n +2) x ...x (4n – 1) x 4n  )(mod1 p−≡
          ⇒  1 x 2 x 3 x... x 2n x (-2n ) x (-(2n -1)) x ...x ( – 2) x (-1)  )(mod1 p−≡
          ⇒  22222 )2...(321)1( nn− )(mod1 p−≡  
          ⇒  2)2...321( nxxxx )(mod1 p−≡  
So, there exists an integer m such that 2m )(mod1 p−≡ or , 
implying that 

12 +m )(mod0 p≡
kpimim =+− ))((  for some integer k. This means, p divides 

 in . It is clear that p divides neither ))(( imim +− i⎡ ⎤
⎣ ⎦Z )( im −  nor ; so p is 

not prime; hence not irreducible in  
)( im +

i⎡ ⎤
⎣ ⎦Z  since  i⎡ ⎤

⎣ ⎦Z  is Principle Ideal Domain 
(PID). Thus, αβ=p  for some nonunit elements α  and β of . Let [ ]iZ bia +=α  
and bia +=α  for some integers a, b, c and d. 
Since )()()( βα NNpN = , ) . On the other hand, neither 

 or  is 1 because 
)(( 22222 dcbap ++=

22 ba + 22 dc + α  and β are not unit. Since Z is Unique 
Factorization Domain (UFD), . Being UFD of 2222 dcpba +==+ i⎡ ⎤

⎣ ⎦Z  
requires uniqueness of the pair (a,b). 
   Assume that . Since square of an integer is equivalent to either 0 
or 1 mod 4, the sum of two squares is equivalent to 0, 1 or 2 mod 4. Therefore, p 
can not be written as sum of two squares.  

)4(mod3≡p
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   In this proof; some terms such as PID and UFD, some symbols such as )(αN  
and   have been occurred. They are concepts and symbols of Abstract 
Algebra; we are going to discuss them later. 

i⎡ ⎤
⎣ ⎦Z

 
2.1 Extensions 
 
Definition 2.2 (Algebraic Numbers and Algebraic Number Fields) 
 

A complex number which is a root of a polynomial of degree d and not a 
root of any polynomial of degree less then d is called an algebraic number of 
degree d. 

Let α be an algebraic number of degree d. The field containing _  and α  
is called an algebraic number field of degree d. An algebraic number field is 
extension of  generated by _ α  and denoted by _  (α ). 
 
For example; 2 , i and 5−  are algebraic numbers of degree 2. _  ( 2 ),  (i) 
and (

_
_ 5− ) are algebraic number fields. They are quadratic extensions of . 

Here,  (

_

_ 5− ) can be explicitly written as 5 / ,1 2 1 2q q q q⎧ ⎫
⎨ ⎬
⎩ ⎭

∈_+ − . 

         3 3 is an algebraic number of degree 3, and (_ 3 3 ) = 
3 33 9 / , ,1 2 3 1 2 3q q q q q q⎧ ⎫⎪ ⎪

⎨ ⎬
⎪ ⎪⎩ ⎭

+ + ∈_ is a cubic extension of . _

         5
2 i

e
π

α =  (fifth root of unity) is an algebraic number of degree 4 and 

{ }2 3( ) / , , ,
1 2 3 4 1 2 3 4

q q q q q q q qα α α α= + + + ∈_ _  is an extension of   with 

degree of extension 4. 

_

 
Definition 2.3 (Simple Extensions and Polynomials) 
 

Let F be field and E be extension field of F and E∈α . If there exists a 
nonzero [ ]xFxf ∈)(  such that 0)( =αf  then α is said to be algebraic over F. E 
is called algebraic extension of F if every element of E is algebraic over F. 

The polynomial [ ]xFxf ∈)(  such that i) 0)( =αf  ii) is monic ii) for 
any nonzero polynomial 

)(xf
[ ]xFxg ∈)(  with 0)( =αg , )deg()deg( gf ≤  is called 

the minimal polynomial of α  over F, denoted by .  )(, xm Fα

Let F be an algebraic number field and α  be algebraic over F. The 
smallest field containing both α and F is called simple algebraic extension of F 
generated byα , denoted by )(αF . 
 
Theorem 2.4 (Existence and Uniqueness of the Minimal Polynomial) 

Let F be an algebraic number field and α be algebraic over F. Then α  has a 
unique minimal polynomial over F. 
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Proof. Existence is coming from being α  algebraic over F (Definition 2.2). Let 
 be a minimal polynomial of [ ]xFxf ∈)( α  over F and there exists a nonzero 

polynomial  with [ ]xFxg ∈)( )()( xfxg ≠  and 0)( =αg . By division Algorithm 
for polynomials there exist [ ]xFxrxq ∈)(),(  such that  

=)(xg )()()( xrxqxf +  with  )deg()deg( fr <  or . 0)( =xr
By substituting α=x , we have 0)( =αr . Since  is a minimal polynomial of )(xf
α  over F, . So0)( =xr =)(xg )()( xqxf , )()( xfxg ≠ ⇒  . If  is 
constant, then  is not monic, hence can not be the minimal polynomial of 

1)( ≠xq )(xq
)(xg α  

over F. Otherwise,  and so can not be the minimal 
polynomial of 

)deg()deg( fg > )(xg
α  over F which requires uniqueness of the minimal polynomial. 

 
Example 2.5 Let’s find the minimal polynomial of 31 −+=α  over . _

 312 −+=α  ⇒  312 −=−α ⇒     3)1( 22 −=−α ⇒ 042 24 =+− αα
 So, 4 2

, ( ) 2 4m x x xα = − +_ . 
 
Corollary 2.6   Let [ ]xFxf ∈)(  be a minimal polynomial of α  over F and 

0)( =αg  for some [ ]xFxg ∈)( . Then  divides  in)(xf )(xg [ ]xF . 
 
Proof. In the proof of Theorem 2.4 we obtained =)(xg )()( xqxf  for some 

 which directly implies desired result. [ ]xFxq ∈)(
 
Corollary 2.7   Any irreducible polynomial over an algebraic number field has no 
repeated roots in . ^
 
Proof. Let  be irreducible. Assume that  has repeated root 
of

[ ]xFxf ∈)( )(xf
F∈α . Then, 

                                   For some)()()( 2 xgxxf α−= [ ]xFxg ∈)( . 
Therefore,  divides  by Corollary 2.6.Since is irreducible, )(, xm Fα )(xf )(xf

)()( , xmxf Fαβ=  for some F∈β , i.e.  )deg()deg( ,Fmf α= . However,  
/ 2( ) 2( ) ( ) ( ) ( )/f x x g x x gα α= − + − x . 

So, , implying that  divides / ( ) 0f α = )(, xm Fα
/ ( )f x  which is a contradiction 

since /
,deg( ) deg( ) deg( )Ff f mα< = . Thus,  f has no repeated roots in . ^

 

Example 2.8 Let F =  (i) and _ 8
2 i

e
π

α =  (eighth root of unity). 
 Although = ,   = . ( ),m xα _ 14 +x )(, xm Fα ix +2

 
Corollary 2.9    Let F be an algebraic number field, α  be algebraic over F with 

 and deg( ),m dFα = )(αF be the simple extension of F generated byα . 
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Every element )(αβ F∈  can be written uniquely in the form  

                           For some∑
=

−=
d

k

k
ka

1

1αβ Faaa d ∈,...,, 21 . 

 

Proof.  Let )(αβ F∈ . Then 
)(
)(

α
α

β
g
f

=  for some  such 

that

[ ]xFxgxf ∈)(),(

0)( ≠αg . By Corollary 2.6, does not divide . Hence,  
and are relatively prime. So, there exist 

)(, xm Fα )(xg )(, xm Fα

)(xg [ ]xFxqxp ∈)(),(  such that 
+ = 1.  )()( , xmxp Fα )()( xgxq

                             0)(, =αα Fm   ⇒ )(
)(

1 α
α

q
g

=   ⇒ )()( ααβ qf= .  

Let . By division algorithm for polynomials, there exist unique )()()( xqxfxh =
[ ]xFxrxa ∈)(),(  such that  )()()()( , xrxmxaxh F += α  with 

or . Since)deg()deg( ,Fmr α< 0)( =xr 0)(, =αα Fm , )()()()( ααααβ rhqf === . 
Letting  

1
21 ...)( −+++= d

daaaxr αα , 

we have   for some ∑
=

−=
d

k

k
ka

1

1αβ Faaa d ∈,...,, 21 . 

 
Corollary 2.10 Let F be an algebraic number field and E be an extension field of 
F, and let E∈α . )(αF  is a finite extension of F if and only if α  is algebraic over 
F. Moreover, if α  is algebraic over F, then )deg(:)( ,FmFF αα = . 
 
Proof. Assume that α  is algebraic over F. By Corollary 2.9, every element 

)(αβ F∈  can be written uniquely in the form   for 

some . So 

∑
=

−=
d

k

k
ka

1

1αβ

Faaa d ∈,...,, 21 FF :)(α  is finite. Conversely assume that, 

dFF =:)(α  for some . Therefore, Nd ∈ )(αF  is a vector space with the 

base{ }132 ,...,,,,1 −dαααα . From here,  for 
some . Thus, 

12
321 ... −++++= d

d
d qqqq αααα

Fqqqq d ∈,...,,, 321 ⇒ 0... 12
321 =−++++ − dd

dqqqq αααα α  is 
algebraic over F with dm F =)deg( ,α . 
 

Example 2.11 Let  8
2 i

e
π

α =  (eighth root of unity). 
If F =  (i), then_ 2:)( =FF α . But if F =_ , then 4:)( =FF α . 
 
Proposition 2.12 Let , where F, K and E are fields then, F K E⊆ ⊆ ⊆ ^

FKKEFE :.:: = . 
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Proof. Let { }kααα ,...,, 21  and { }lβββ ,...,, 21  be basis for K over F and E over K 
respectively. If E∈α  then it has a unique representation 

∑
=

=
l

i
iia

1
βα , where Kai ∈  for every { }li ,...,2,1∈ . 

On the other hand for every { }li ,...,2,1∈  Kai ∈ has unique representation 

∑
=

=
k

i
iii ba

1
α , where Fbi ∈  for every { }ki ,...,2,1∈ . 

Thus, E∈α  has a unique representation 
 

∑ ∑∑∑∑
= ====

===
l

j

k

i
jii

l

j

k

i
iij

l

i
ii bba

1 1111
βααββα  

This yields 
 

FKKEFE :.:: = . 
 
Proposition 2.13 Let p be a prime and pζ be p’th root of unity.  

1 2 3
, ( ) ... 1

p

p p p
Qm x x x xζ

− − −= + + + + . 

Proof. It is easy to see that 1 2 3( ) ( ) ( ) ... 1 0p p p
p p pζ ζ ζ− − −+ + + + = . For the 

minimality it is enough to prove that  1 2 3
, ( ) ... 1

p

p p p
Qm x x x xζ

− − −= + + + +   is 
irreducible over . _

   Assume that )...)(...(
1
1

0
1

10
1

1 bxbxaxax
x

x m
m

mn
n

n
p

++++++=
−
− −

−
−

− . 

Then

)...)1()1)((...)1()1((
1)1(
1)1(

0
1

10
1

1 bxbxaxax
x

x m
m

mn
n

n
p

++++++++++=
−+
−+ −

−
−

− . 

So, 
1)1(
1)1(

−+
−+

x
x p

 is irreducible over . But  _

px
p
p

x
p

x
x

x pp
p

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

−+
−+ −−

2
...

11)1(
1)1( 21  

which is irreducible over_  by Eisenstein Criterion. This is a contradiction.  
Therefore,  is irreducible over_ . 1 2 3

, ( ) ... 1
p

p p p
Qm x x x xζ

− − −= + + + +

 
Proposition 2.14 Let p be an odd prime and pζ be p’th root of unity.  

1(F p pζ ζ −= +_ )  is an algebraic number field of degree 2/)1( −p . 
 
Proof. By Proposition 2.12 and Corollary 2.10 ( ): ppζ 1= −_ _ . It is easy to see 

that 1( ): ( ) 2p p pζ ζ ζ −+ =_ _ . So, 1( ): (pp pζ ζ 1)/2−+ = −_ _ . 
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Thus,  is an algebraic number field of degree . 1(F p pζ ζ −= +_ ) 2/)1( −p
 
Example 2.15 Let g be the golden ratio and 3ζ  be third root of unity. By some 
simple calculations it can be prove that 

3
3 3 3

1 1( ) ( )
4 4

g gζ ζ ζ 1
2

= + + + + . 

So, 3 3( )Q gζ ζ∈ + . 
 
Example 2.16 Let 8ζ be primitive eighth root of unity. Factorize  in14 +x 8( )ζ_ . 

8
8 1ζ = ⇒  4 2

8( ) 1 ⇒  4
8 1ζ = or 4

8 1ζ = − . ζ =
Since 8ζ is primitive eight root of unity, 4

8 1ζ = − . So, 
3 5 7

8 8 8 8 0ζ ζ ζ ζ+ + + = ,  
    2 6

8 8 0ζ ζ+ = ,  
     3 5 7 3 5 3 7 5 7

8 8 8 8 8 8 8 8 8 8 8 8 0ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ+ + + + + = , 
                        3 5 3 7 5 7 3 5 7

8 8 8 8 8 8 8 8 8 8 8 8 0ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ+ + + =  and  
           3 5 7

8 8 8 8 1ζ ζ ζ ζ = . 
Thus, 

14 +x  = - 4x 3 5 7
8 8 8 8( ) 3xζ ζ ζ ζ+ + +  

   + 3 5 7 3 5 3 7 5 7
8 8 8 8 8 8 8 8 8 8 8 8( ) 2xζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ+ + + + +  

               - 3 5 3 7 5 7 3 5 7
8 8 8 8 8 8 8 8 8 8 8 8( )xζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ+ + +  

               + 3 5 7
8 8 8 8ζ ζ ζ ζ  

            =  3 5
8 8 8( )( )( )(x x x x 7

8 )ζ ζ ζ ζ− − − − . 
 
Definition 2.17 (Embeddings) Let F be a number field. Any one to one ring 
homomorphism (ring monomorphism) of θ  from F to  is called an embedding 
of F in C. Let F be extension of  and 

^
_ θ be an embedding of F in  such that ^

ll =)(θ for all l  (fixes  point wise), then  ∈_ _ θ  is called a -isomorphism of 
F. Let 

_
θ  be -isomorphism and_ ( )F = α_ , then )(αθ is called conjugate of α  

over . _

For example, if (F =_ )D , D is square free integer (quadratic extension), then 
conjugate of Dba + is Dba −  which is some times called algebraic conjugate 
of Dba + . 
 
Properties 2.18 Any embeddingθ  of a number field F in  is a -isomorphism 
of F. 

^ _

 

Proof. Let aq
b

= ∈_  with ,a b ∈Z .Since θ  is ring monomorphism                                          

aabqqb === )()()( θθθ . 
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So, 
qq =)(θ  

Which means θ  is a _ -isomorphism of F. 
 
Theorem 2.19 (The Number of Embeddings of a Number Field) Let 

( )F α=_ be an algebraic number field of degree d over_ . Then, there are 
exactly d embeddings 1θ , 2θ ,..., dθ  of F in^ . Moreover, all conjugates of α  over 

 are_ 11 )( ααθ = , 22 )( ααθ = ,..., dd ααθ =)(  with αα =1  and these are roots of 
minimal polynomial  of )(, xm Qα α over_ .  
 
Proof. Assume that θ  is an embedding of F in ^  with βαθ =)( . Since  

∑
−

=
==

1

0
, )(0

d

i

i
iQ qm ααα with iq ∈_ , 

which implies 

∑ ∑ ∑
−

=

−

=

−

=
====

1

0

1

0

1

0
)()()0(0

d

i

d

i

d

i

i
i

i
i

i
i qqq βαθαθθ . 

Therefore, jαβ =  for some { }dj ,...,2,1∈ , implying there are at most d 

embeddings of F in^ . Let 
j

θ be defined by )())(( jj ff ααθ =  for some 

 where{ dj ,...,2,1∈ } [ ]xFxf ( ∈) . We have to prove that 
j

θ is also an embedding 

of F in  .For this reason we are going to show that ^
j

θ is well-defined. Let 

 such that[ ]xFxgxf ∈)(),( )()( αα gf = , then there exists  such 
that

[ ]xFxh ∈)(
( ) ( ) ( ) ( ),f x g x h x m xα− = _ . Therefore,                            

( ) ( ) ( ) ( ) 0,f g h mj j j jα α α αα− = =_ . 

Hence,  
))(()()())(( αθαααθ ggff jjjj === . 

So, 
j

θ is well-defined and conjugates of α  are jα ’s, which are roots of . ( ),m xα _
 
 
Example 2.20 Let ( 5)F =_ . There are 2 embeddings of F in^  which are 

55:1 →θ  
and 

55:2 −→θ . 
 
 
Example 2.21 Let ( 5F = −_ ) . There are 2 embeddings of F in^  which are 

55:1 −→−θ  
and 

55:2 −−→−θ . 
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Example 2.22 Let 3( 5)F =_ . There are 3 embeddings of F in^  which are 

33
1 55: →θ , 

 
3 3

2 3: 5 5θ ζ→  
and 

23 3
3 3: 5 5θ ζ→  

where 3ζ  is the third primitive root of unity. 
 
2.2  Norms and Traces 
 
       Here are some concepts which take important place in the development of 
factorization. They are discriminants norms and traces. 
 
Definition 2.23 Let F be an algebraic number field of degree d over _  and jθ  for 

 be the embeddings of F in^ . For each element { dj ,...,2,1∈ } F∈α the product 

∏
=

d

j
j

1

)(αθ  

is called norm of α  from F, denoted by )(αFN . 
 

Example 2.24 Let ( 7 )F =_  and )7311(
2
1

+=α . The embeddings of F in  

are 

^

77:1 →θ  
and 

77:2 −→θ . 
So,  

2
29)7311(

2
1)7311(

2
1)()()( 21 =−+== αθαθαFN . 

 
Definition 2.25 Let F be an algebraic number field of degree d over _  and jθ  for 

 be the embeddings of F in^ . For each element { dj ,...,2,1∈ } F∈α the sum 

∑
=

d

j
j

1

)(αθ  

is called trace of α  from F, denoted by )(αFT . 
 

Example 2.26 Let 3(F −=_ )  and )31(
2
1

−+=α . The embeddings of F in^  

are 
33:1 −→−θ  

and 
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33:2 −−→−θ . 
So,  

1)31(
2
1)31(

2
1)()()( 21 =−−−+== αθαθαFN  

and 

1)31(
2
1)31(

2
1)()()( 21 =−−+−+=+= αθαθαFT . 

 
Note that, if  (F =_ )D  where D is a square free integer and 

Dba +=α with , then ,a b∈_
DbaNF

22)( −=α  
and 

aTF 2)( =α . 
Moreover, Dba +=α ⇒ Dba =−α  
         ⇒ Dba 22)( =−α

      ⇒ 02 222 =−+− Dbaaαα
     . ⇒ 0)()(2 =+− αααα FF NT

So the minimal polynomial is 
2

, ( ) ( ) ( )F Fm x x T x Nα α α= − +_ . 
 

Proposition 2.27 Let F be an algebraic number field of degree d over _  
and F∈βα , . Then, 

)(αβFN = )(αFN )(βFN , 
for any    Fq ∈

)()( αα F
d

F NqqN =  
and for any  Fba ∈,

)()()( βαβα FFF bTaTbaT +=+ . 
 

Proof. Let jθ  for  be the embeddings of F in C. Since each of { dj ,...,2,1∈ } jθ  for 
  is a ring homomorphism; { dj ,...,2,1∈ }

)(αβFN =∏  
=

d

j
j

1

)(αβθ

  =  )()(
1

βθαθ j

d

j
j∏

=

  =  ∏
=

d

j
j

1

)(αθ ∏
=

d

j
j

1

)(βθ

  = )(αFN )(βFN , 
 
for any   Fq ∈
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)( αqNF =∏  
=

d

j
j q

1

)( αθ

              =∏  
=

d

j
jq

1

)(αθ

              =  ∏
=

d

j
j

dq
1

)(αθ

              =  )(αF
d Nq

and for any  Fba ∈,

     )( βα baTF + =  ∑
=

+
d

j
j ba

1

)( βαθ

   =  ))()((
1

βθαθ j

d

j
j ba +∑

=

   = +  ∑
=

d

j
ja

1

)(αθ ∑
=

d

j
jb

1

)(βθ

                                                  )()( βα FF bTaT += . 
 
Example 2.28 Let ( 1F = −_ ) . Let us prove that there is no F∈α such that 

)(αFN =3. Let 1−+= baα with ,a b∈_ . Assume that  
)(αFN =3⇒  ,322 =+ ba ,a b∈_ .                                    (2.1) 

By using definition of rational number, last equation can be written as  
222 3ldc =+ , , ,c d l Z∈ .                                             (2.2) 

So, ; implying that both )3(mod022 ≡+ dc )3(mod0≡c  and . So, 
by using this result in (2.2), we get

)3(mod0≡d
)3(mod0≡l . Let 13cc = ,  and , 

applying them in (2.2) we get . By the above manner 
 are all divisible by 3, which means are all divisible by 9. By 

induction it can be concluded that are all divisible by for every natural 
number n. So, are all 0.But l=0 contradicts with (2.1). Thus, there is no 

13dd = 13ll =

1 1 1, ,c d l ∈Z 2
1

2
1

2
1 3ldc =+

111 ,, ldc ldc ,,
ldc ,, n3

ldc ,,
F∈α such that )(αFN =3. 

 
Proposition 2.29 Let p be a prime number and pζ be a primitive p’th root of unity  
and let ( )pF ζ=_ . Then, 

( ) 1F pT ζ = −  and (1 )F pN pζ− = . 
 
 
Proof. By Proposition 2.13, we know that 

1
1 2

,
1

( ) ... 1 ( )
p

p
p p

p
j

m x x x x xζ
jζ

−
− −

=
= + + + + = −∏_ .                    (2.3) 

So,  
1 2 ... 1 0p p

p p pζ ζ ζ− −+ + + + = . 
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Therefore, 

                
1

1
( ) 1

p
j

F p p
j

T ζ ζ
−

=
= = −∑ . 

And also by letting  in (2.3) we get, 1=x
1

1
(1 ) (1 )

p
j

F p p
j

N pζ ζ
−

=
− = − =∏ . 

Proposition 2.30 Let p is a prime number and pζ be a primitive p’th root of unity 
and let ( )pF .ζ=_  Then, for every natural number n which is relatively prime to p 

(1 )n
F pT pζ− = . 

 
Proof.  is a reduced residue system of . Since n and p are 
relatively prime {

{ 1,...,3,2,1 −p }
}

pmod
npnnn )1(,...,3,2, −  is also a reduced residue system of mod p. 

So, for every r { 1,...,3,2,1 }−∈ p  there exists j { }1,...,3,2,1 −∈ p  such that 
rn j

p pζ ζ= and for every { }1,...,3,2,1, 21 −∈ prr  if 21 rr ≠  then 1r n r n
p p

2ζ ζ≠ . Thus, 
1 1 1 1

1 1 1 1
(1 ) (1 ) 1 1 1 ( 1)

p p p p
n jn jn j

F p p p p
j j j j

T pζ ζ ζ ζ
− − − −

= = = =
− = − = − = − − = − − − =∑ ∑ ∑ ∑ p p . 

 
2.3  Discriminants, Algebraic Integers and Integral Bases 
 
Definition 2.31 Let R be a commutative ring and A be sub ring of R. Let be 
a root of monic polynomial f with coefficients in A, x is said to be integral over A. 
The equation f (x)=0 is said to be equation of integral dependence of x over A. If x 
is complex number that is integral over Z , then x is called an algebraic integer. 

x R∈

   The subfields of all algebraic numbers in ^  is denoted by _  and all algebraic 
integers in _  is denoted by A  .  
 
Definition 2.32  Let F be an algebraic number field. The intersection F A∩  is a 
ring which is called the ring of integers in F, denoted by .  FA

So, in any algebraic extension ( )α_  of , the ring of integers of _ ( )α_  is the set 
of elements of  ( )α_ whose minimal polynomials are in [ ]xZ . 
The ring of integers of _  is = . _A Z

Let (F =_ )D  where D is a square free integer. Then, 

1[ ] 1 (mod 4)
2

[ ] 2 3 (mod 4

D if D
F

D if D or

⎧ +
≡⎪⎪= ⎨

⎪ ≡⎪⎩

Z

Z

A

)

     [16]. 

Example 2.33  Let ( 7 )F =_ , then [ 7 ]F =ZA . 

If ( 13)F =_ , then 1 13[ ]
2F

+=ZA . 
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Definition 2.34 Let F be an algebraic number field and   be the ring of 

integers of F. A basis for  over  is called an integral basis for F. 
FA

FA Z
 
Example 2.35  Let ( 7 )F =_ , then [ 7 ]F =ZA  and an integral basis is { }1, 7 . 

If ( 13)F =_ , then 1 13[
2F

+=ZA ] and an integral basis 1 131,
2

⎧ ⎫+⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

. 

 
Definition 2.36 Let ( )F α=_ be an algebraic number field with : ,F d=_  

B={ , ,..., }1 2 dα α α be a basis for F and 1θ , 2θ ,…, dθ be all embeddings of F in . 

Then, The square of determinant of the matrix A is called the discriminant of the 
basis B, where 

^

 
( ) ( )1 1 1

( ) ( )1

d
A

d d d

θ α θ α

θ α θ α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

…

# % #
"

 

 
denoted by disc(B ). So, disc( B ) = , where  is the 

square of determinant of the matrix with entry 

2det( ( ))j iθ α 2det( ( ))j iθ α

( )j iθ α  in i’th row and  j’th 

column. If 2{1, , ,..., }dB α α α 1−=  then we have . Here, 

 is called Vandermonde determinant and has value  

and so, in this case 

1 2disc( ) det( ( ))iB jθ α −=

1det( ( ))i
jθ α − ( )

1 i ji j d
α −α∏

≤ < ≤

disc( B ) = . 2( )
1 i ji j d

α α−∏
≤ < ≤

 
Example 2.37 Let ( 7 )F =_ . The embeddings of F in  are ^

77:1 →θ  
and 

77:2 −→θ . 
So,   

{1, 7}B =  
and 

21 1
disc( ) det

7 7
B

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=
−

=  28. 
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Example 2.38 ( 3F = −_ )  . The embeddings of F in^  are 
33:1 −→−θ  

and 
33:2 −−→−θ . 

 
So,   

1 3{1, }
2

B + −=  

and 
21 1

disc( ) det 1 3 1 3
2 2

B
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

=
+ − − −

=  - 3 

 
 

Definition 2.39 Let F be an algebraic number field and B be an integral basis for 
F. Then, disc(B) is said to be discriminant of F, denoted by F∆ . 
 
 Example 2.40 Let ( 23)F =_ . Then {1, 23}B = is an integral basis for F. So, 

21 1
disc( ) det

23 23
BF∆

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= =
−

= 92. 

 

Example 2.41 Let ( 5)F =_ . Then 1 5{1, }
2

B += is an integral basis for F. So, 

21 1
disc( ) det 1 5 1 5

2 2
BF∆

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

= =
+ −

= 5. 

 
Note that  if (F =_ )D

d 4).

 where D is a square free integer, then 
1 (mod 4)

4 2 3 (mo

D if D
F D if D or

∆
⎧
⎪
⎨
⎪
⎩

≡
=

≡
      

See [16]. 
 

Proposition 2.42 Discriminant of a totally real number field is positive. 
 
Proof. Let ( )F α=_  be a totally real number field with the degree of extension d. 

Then an integral basis of F is 2{1, , ,..., }dα α α 1− . And so, 

F∆ = disc( B ) =  > 0. 2(
1 i ji j d

α α−∏
≤ < ≤

)
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Proposition 2.43 Let (F =_ )D where D is a square free integer. F is norm-
Euclidean with Euclidean function ( ) ( )f NFα α=  if and only if whenever any 

Fσ ∈ is given there exists Fβ ∈A  such that ( )NF σ β 1− < . 

 
Proof. Suppose that F is norm-Euclidean with Euclidean function ( ) ( )f NFα α= . 
Given any Fσ ∈ , there is z∈Z  such that z Fσ ∈A . So, /σ α β= , where 

, Fα β ∈A . Since  F is norm-Euclidean with Euclidean function ( ) ( )f NFα α= , 

there are , Fγ δ ∈A  such that α βγ δ= + , where 0δ =  or ( ) ( )N NF Fδ β< . 

Therefore, 
( ) ( / ) ( ) / ( )N N N NF F F Fσ β δ β δ β− = = <1. 

 
Conversely, given any Fσ ∈  there exists Fβ ∈A  such that ( )NF σ β− <1. Set 

/σ α β= , for some , Fα β ∈A ; then ( ) ( )N NF Fδ β<  where δ α γβ= −  . Thus, F 

is norm-Euclidean with Euclidean function ( ) ( )f NFα α= . 
 
Definition 2.44 Let  be a field and F ⊆ ^ ( ) [ ]f x F x∈  with deg (f ) = d > 1 such 
that 

1
( ) ( )

d

i
i

f x a x α
=

= −∏ , a F∈ and 1 2, ,..., dα α α ∈^ . 

Then the product  2 2 2

1
(d

i j
i j d

a )α α−

≤ < ≤
−∏ is called discriminant of f, denoted by disc(f). 

 
Note that if ( )F α=_ and B be an integral basis for f , then disc ( ) = disc (B )  ,mα _

see [2]. 
 

Example 2.45  Let 3α ζ= be primitive third root of unity. Consider 3( )F ζ=_ . 
One can check that 2 2

, 3( ) 1 ( )( )m x x x x xα 3ζ ζ= + + = − −_ . So, 
disc ( ) = ,mα _

2 2 2 2
3 3 3 3 3

1 2
( ) ( ) 2i j

i j
3ζ ζ ζ ζ ζ

≤ < ≤
ζ− = − = − +∏ .                   (2.4) 

Since 2
3 3 1 0ζ ζ+ + = , we have 2

3 3 1ζ ζ+ = − . If we put this value in (2.4), then  
we get 

disc ( ) = - 3. ,mα _

In generally, if ( )pF ζ=_ where pα ζ= be primitive p’th root of unity for odd 
prime p. Then, 

11

,
0 1

( ) ( )
pp

i i
p

i i
m x x xα ζ

−−

= =
= = −∑ ∏_ , 

and 
disc ( ) = ,mα _

2 ( 1) / 2

1 1
( ) ( 1)i j p p

p p
i j p

p 2ζ ζ − −

≤ < ≤ −
− = −∏   [2]. 
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Theorem 2.46  Let ( )F α=_  be an algebraic number field of degree d over  
and 

_

1 2, ,..., dα α α  be conjugates of α  over _ . Then, 

disc ( ) = ,mα _

( )2 /
,

1
( 1) ( )

d d

i
i

m α α
=

− ∏ _ = ( )2 /
,( 1) ( ( ))

d

FN m α α− _ , 

where  is derivative of . /
,m α _ ,mα _

 

Proof.  ,
1

( ) ( )
d

i
i

m x xα α
=

= −∏_ . So, /
,

1 1
( ) ( )

dd

i
k i

i k

m x xα α
= =

≠

= −∑ ∏_ . 

Therefore,  
/

,
1

( ) ( )
d

k k
i
i k

m α iα α α
=
≠

= −∏_ , 

for all k = 1,2,3,…,d. So, 
/ /

, ,
1 1 1

( ( )) ( ) ( ) (
d

)F i i k i
i i k d i k d

N m mα α kα α α α α
= ≤ < ≤ ≤ < ≤

= = −∏ ∏ ∏_ _ α− , 

Since there are  pairs of ( i,k ) with 1
2

d⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

i k d≤ < ≤  , we have 

( ) 22/
,

1
( ( )) ( 1) (

d

F i
i k d

N m α )kα α α
≤ < ≤

= − −∏_ . 

On the other hand, by definition 2.44 we have, 
disc ( ) = ,mα _

2

1
( )i k

i k d
α α

≤ < ≤
−∏ . 

Thus. combining last two results, one gets 

disc ( ) = ,mα _

( )2 /
,

1
( 1) ( )

d d

i
i

m α α
=

− ∏ _ = ( )2 /
,( 1) ( ( ))

d

FN m α α− _ . 

 
Example 2.47 Let 23(F =_ ) . There are 3 embeddings of F in  which are ^

3 3
1 : 2 2θ → , 

 
3 3

2 3: 2 2θ ζ→  
and 

23 3
3 3: 2 2θ ζ→ , 

where 3ζ is the primitive third root of unity. On the other hand,  

3
3

2 ,
( ) 2m x x= −

_
  and  3

/ 2

2 ,
( ) 3m x x=

_
. 

Thus, by Theorem 2.46 

disc ( 3 2 ,
m

_
) = ( )

3

3
2 / 2 2 23 3 3 3

3 32 ,
( 1) ( ( 2 )) 3( 2 ) 3( 2 ) 3( 2 ) 108FN m ζ ζ− = −

_

2 = − . 
Corollary 2.48 Let ( )F α=_  be an algebraic number field and be the 
minimal polynomial 

, ( )m x_α

α  over _ . Then,  
disc ( ) = ,mα _ ± /

,( (FN m α ))α_ . 
 
Proof. Let deg (  ) = d. By Theorem 2.46  ,mα _
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disc ( ) = ,mα _

( )2 /
,( 1) ( ( ))

d

FN m α α− _ . 
If , then 0 1 (mod 4d or≡ )

))disc ( ) = +,mα _
/

,( (FN m α α_ . 
If , then 2 3 (mod 4d or≡ )

))disc ( ) = -,mα _
/

,( (FN m α α_ . 
Thus, 

disc ( ) = ,mα _ ± /
,( (FN m α ))α_ . 

 
Proposition 2.49 Let F be an algebraic number field with [ ]F α= ZA . Then, 

F∆ = disc ( ). ,mα _

 
Proof. Let degree of extension of F over _  be d . Since [ ]F α= ZA , 

{ }21, , ,..., dB α α α −= 1 be integral basis for F. So, 

disc ( B ) = disc ( ). ,mα _

Thus, 
F∆ = disc ( ). ,mα _
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CHAPTER 3 
 

THEORY OF DOMAINS 
 

If R is a commutative ring with unity and without zero-divisor, then such a 
ring is called a domain. Throughout the study, R will denote a domain unless the 
converse is stated. U(R) will denote unit group. Prior to talk about a factorization 
in a domain, first of all, we need several concepts. Now let us define them. 

 
Definition 3.1 Let a and b be non-zero elements of the domain R.  We say that a 
divides b and denoted by  a ⎢b if there exists an element c in R such that b = a c. 

 

Proposition 3.2 Let u∈R. u∈U(R) if and only if  u ⎢1. 

Prof. Let u∈U(R) then ∃ v∈R such that u.v=1 so u ⎢1. Conversely, let u ⎢1 then by 
Definition 1.1 we write 1= u.r for some r∈R, so  u∈U(R). 

 

Corollary 3.3 For all r∈R , u∈U(R) 

  i)1 ⎢r , 

 ii) u ⎢r and  

 iii)in a field F there is no division problem (any non-zero elements divide each 
other). 

 

Definition 3.4 Let  a, b∈R. b is said to be associate of a if there exists u∈R such 
that  b = au . 

 
Proposition 3.5 The relation of being associate in R is an equivalence relation. 

(for r, s∈R  r ~ s ⇔  s = r.u for some u∈U(R)) 

Prof.    i) For all  r∈R, we have  r = r× 1 . So,   ~ is reflexive. 

ii) Let r ~ s in R, then for some u∈U(R) we write   

    s = r.u ⇒ r = s.u-1 since u∈U(R). So,   ~ is symmetric. 

iii) Let r ~ s and s ~t in R, then for some u,v∈U(R) we write 

            for uv∈U(R). So, ~ is transitive. ),.()..(
.
.

uvrvurt
vst
urs

==⇒
⎭
⎬
⎫

=
=

Consequently, since the relation is equivalence relation, we can say that  a 
and b are associates in R . 
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Proposition 3.6  a and b are non-zero associates in R  if and only if a ⎢b and  

b ⎢a. 

Proof.   (⇒)Let  a and b be associate in R . Then we write b = au and a = bv for 
some  u,v∈U(R) so a ⎢b and b ⎢a. 

(⇐) For a,b∈R let a ⎢b and b ⎢a. We have  b = a.s and a = b.t for some  
s,t∈R. Then, b = a.s= (b.t).s=b.(ts) ⇒b.(1-ts)=0. Since b is non-zero, st=1. So,   
s,t∈U(R). Thus, a and b are associate. 

 

Definition 3.7 A non-zero element a of an integral domain R is called an 
irreducible element  if i) )(RUa ∉  and ii) bca =  implies either b∈U(R)  or  
c∈U(R), for b,c∈R.  

 
Definition 3.8 A non-zero element p of an integral domain R is called a prime 
element  if  

i)  and ii) )(RUp ∉ bcp  implies either bp   or cp , for b,c∈R. 

 

3.1  Unique Factorization Domain (UFD) 
 
Definition 3.9 A domain R is called a Unique Factorization Domain (in short, a 
UFD) if the following two conditions hold : 

i) Every nonunit of R is a finite product of irreducible factors. 

     ii) Every irreducible element is prime  

 

Theorem 3.10 If R is a UFD, then  the factorization of any element in R as a 
finite product of irreducible factors is a unique within order and unit factors. 

Proof. Assume that R is UFD. Let a be an element of R ,   and  
be two factorizations of a, in which ’s and ’s are irreducible. We have to 
prove that 

nppp ...21 mqqq ...21

ip iq
nm =  and in one arrangement of ’s and  are associates for 

every i = 1,2,3,...,n. For this purpose we are going to use induction. 
iq ip iq

Every thing is obvious if a is irreducible. Assume that it is true if a can be 
factored into s irreducible factors. That is, if   and  be two 
factorizations of a, in which ’s and ’s are irreducible, then and in one 
arrangement of ’s and  are associates for every i = 1,2,3,...,s. Now suppose 
that, a can be factored into s + 1 irreducible factors. Let 

sppp ...21 mqqq ...21

ip iq sm =

iq ip iq

a =  =                                          (3.1) 121 ... +sppp mqqq ...21
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where ’s and ’s are irreducible. We have that  divides the product 
. Since prime ,  divides  for some 
ip iq 1p

mqqq ...21 1p 1p kq { }mk ,...,3,2,1∈ . But is 
irreducible so  and are associates. Therefore, 

kq

1p kq 1upqk =  for some unit element 
of R . After substitution  instead of and cancellation, (3.1) gives 1up kq

132 ... +sppp  =                              (3.2) mkk qqqquq ...... 1121 +−

Thus, by induction hypothesis, two factorizations in (3.2) can differ only in the 
order of factors and by unit factors. We know that  and are not unit factors, 
this completes the proof. 

1p kq

 
Definition 3.11 An element d  in an integral domain R is called a greatest 
common divisor of elements a and b in R if the following two conditions hold: 

i) ad  and bd , 

     ii) if for c in R, ac  and bc implies .dc   

 

Theorem 3.12 Let R be a UFD and a,b∈R. Then there exists a greatest common 
divisor of a and b that is uniquely determined to within an arbitrary unit factor. 

Proof. Let  and , where  are irreducible, 

’s and ’s are nonnegative integers; here by  we mean a unit. Set 

  for all i = 1,2,...,n and . 

ne
n

ee pppa ...21
21= nf

n
ff pppb ...21

21= ip

ie if 0
ip

),min( iii feg = ng
n

gg pppd ...21
21=

 Clearly, d divides a and d divides b. Let  where ’s are 
nonnegative integers, such that c divides a and c divides b. Obviously,  and 

 

nh
n

hh pppc ...21
21= ih

ii eh ≤

ii fh ≤

for every i = 1,2,...,n; implying that ii gh ≤  for every i = 1,2,...,n. Then, c divides 
d as desired. 

Now, suppose and  are two greatest common divisor. Then, divides 
 and  divides d. 

d 'd d
'd 'd

Since R is commutative integral domain, d and are associates which 
completes the proof. 

'd

The uniquely determined greatest common divisor of a and b is denoted by 
(a, b). (a, b) is a set in which any two elements are associates. That is, if d is one 
of the greatest common divisor of a and b, then (a, b) ={ du : u∈U(R)}. 

 

Definition 3.13 In a UFD,  two elements a and b are called relatively prime if      

 (a, b)=1.   
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Proposition 3.14 Let R be a domain and a, b, c∈R. Then the following properties 
hold: 

i) c(a, b) and (ca, cb) are associates 

     ii) if (a, b)=1, ca  and cb then  .cab   

    iii) if (a, b)=1, bca  then  .ca   

    iv) if (a, b)=1 and (a, c)=1 then  (a, bc)=1.  

     v) (a, b)=1⇔(an, bn)=1, for all positive integer n. 

 

Proof. 

 i) Let (a, b) = d  and (ca, cb) = e. We want to show that e = dx,  for some  
x∈U(R). 

R)(x  ,)(
                     

               ),(
  c  and  

       and      ),(

∈=⇒
⇒
⇒
⇒
⇒=

xcde
ecd

bacd
cbdcacd
bdaddba

         (3.3) 

On the other hand,  

     
⎭
⎬
⎫

=
=

⇒
⎭
⎬
⎫

⇒=
evcb
euca

cbe
cae

ecbca ),(  for some u,v∈ R.          

(3.4) 

By (3.3) and (3.4) we obtain 

      

.            
0)(            

)(
.            

0)(            
)(

dxvb
dxvbc

vcdxcbevcb
dxua

dxuac
ucdxcaeuca

=⇒
=−⇒

=⇒=
=⇒

=−⇒
=⇒=

          

(3.5)

(3.6)

If we combine (3.5) and (3.6) we have 

          

                  ).(,
                            1
                 0)1(
     )(    ,)(
              ),()( )(  and  )(

RUyx
xy

xyd
Rzzdxd

dbadxbdxadx

∈⇒
=⇒

=−⇒
∈=⇒

=⇒
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Rvuyx
bvc
auc

byax

cb
ca
baii

∈
⎪
⎭

⎪
⎬

⎫

=
=

=+

⇒
⇒
⇒=

,,,  somefor    
11),(   )

.  

That’s why we get 
( ) ( )          .1

( )( ) ( )( )
( )            
( )            

, ( ) ,    Since 

c ax c byc c
bv ax au by

ab vx uy
ab vx uy

So ab c vx uy R

= +=
= +
= +
= +

+ ∈

 

Rzyx
azbc

byax
bca

baiii
∈

⎭
⎬
⎫

=
=+

⇒
⇒=

,,  somefor 
1

             
1),(   )

 .  

Therefore we have  
( )     .1

( ) ( )  
( ) ( )  
( )      

, ,    Since  

c ax byc c
ca x cb y

a cx az y
a cx zy

So a c cx zy R

= +=
= +
= +
= +

+ ∈

 

Rvuyx
cvau
byax

ca
baiv

∈
⎭
⎬
⎫

=+
=+

⇒
⇒

=
=

,,,  somefor 
1
1

1),(       
1),(   )

 . And so, 

                                             

( )( )                     1
( ) ( )           

( ) ( ) ( )( )
( ) ( ) ( )   

, ( , ) 1,   Since  ( ) ( ),

ax by au cv
ax by au ax by cv
a ax by u ax cv bc yv

a ax by u x cv bc yv

Thus a bc ax by u x cv yv R

⎡ ⎤
⎢ ⎥⎣ ⎦

= + +
= + + +
= + + +

= + + +

= + + ∈

 

 
3.2 Principle Ideal Domain (PID) 
 
Definition 3.15 Let R be a domain. R is called Principle Ideal Domain if each 
ideal of R is generated by a single element in R, i.e. for each ideal I=(a)=aR,  
(a∈R). 

 

Theorem 3.16 An irreducible element in a  principle  ideal domain is always 
prime. 
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Proof. Let R be a PID and let p∈R be an irreducible element. Assume that for 
a,b∈R .abp   Suppose  p does not divide a, then we will show that .bp  Since R is 
a PID, there exist c∈R such that  

cRaRpR =+ . 

So , which meanscRp ∈ . somefor   , Rdcdp ∈=  But because of irreducibility of  
p, there are two cases,  either ).(or   )( RUdRUc ∈∈    

Claim : Suppose Then we have).(RUd ∈ cRpR =  which implies  

.pRcRpR =+  

This means that , which contradicts the assumption p does not divide a. 
Hence,  That’s why, 

pRa ∈
).(RUc ∈ RcR =  which implies .RaRpR =+  Then there 

exist  such that  Ryx ∈,

1 ( ) ( ) ( ) ( ) ,   px ay px b ab y b p bx pz b+ = ⇒ + = ⇒ + = ( ,   )p ab ab pz p R⇒ = ∈ .

Therefore bp .   

 
Theorem 3.17 Every PID is a UFD. 

Proof. First of all, let us show the following claim 

Claim 1) If R is a principle ideal ring, then R can not have any infinite  
properly ascending chain of ideals in R.  

 Let ∪ and RaA i= .  ,, RrAba ∈∈ Then we can write RabRaa ji ∈∈   ,  for 
some natural numbers i, j. Since either must be 
contained one of these two ideals. Let us say 

 ,or   RaRaRaRa ijji ⊂⊂ ba,
., Raba i∈  So we have  

ARaarba i ⊂∈−   , . 

Hence, A is an ideal in R. Since R is a principle ideal domain, 
 Thus,   for some  .A aR a R= ∈ .number  natural somefor   kRaaAa k∈⇒∈  For 

this reason,  

...21 ===⇒=⇒⊂⊂= ++ RaRaRaRaaRARaaRA kkkkk  

Consequently, this proves that a principle ideal ring can not have any infinite  
properly ascending chain of ideals. 

 Claim 2) each element Ra ∈  can be written as a finite product of 
irreducible elements. 

 If a is irreducible, then we are done. If not, we write , where 
 If b, c are irreducible, then we are done. If not, one of them (say b) 

can be written as a product of two non-unit elements. That is, , where 
 If x, y are irreducible, then we are done. If not, one of them (say x) 

bca =
).(, RUba ∉

xyb =
).(, RUyx ∉
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can be written as a product of two non-unit elements. This process leads to 
properly ascending chain ideals 

 . . .  )()()( === xba  

that will continue infinitely if a is not a finite product of irreducible elements. Yet, 
in Claim1 we have shown that R has such property. That’s why, a must be written 
as a finite product of irreducible elements.    

     By Theorem 3.16, since every irreducible element in a PID is prime,  any PID 
is a UFD.   

 

3.3 Euclidean Domain  (EUD) 
 
Definition 3.18 A domain E is called a Euclidean domain if there exists a function 

ZE →:φ satisfying the following axioms: 

{ } )()(  then  ,  and  0, If ) ababEEbai φφ ≤−=∈ ∗   

) for each pair of elements  , , 0,   ,  such that  ii a b E b   q r E a bq r∈ ≠ ∃ ∈ = +
then  

     (b)(r) φφ < . 

Some well-known Euclidean domains are ring of integers and polynomial rings 
over a field. If we define ( )   ( ),n n nφ = ∈Z   becomes Euclidean domain. 

Similarly, If we define

Z

[ ]: F xφ →Z  as [ ]( )  degree of ,( for non-zero )f f fφ = ∈F x   
and 1)0( −=φ , then  turns out Euclidean domain. Now, let us give less-
known two Euclidean domains.  

[ ]xF

 

Proposition 3.19 Gaussian Integers ( [ ] { }ZZ ∈+== babiai ,:α ) is a Euclidean 
domain. 

Proof. Let us define a function from Gaussian Integers to Z as follows 

 
2 2

: [ ]
    

i
a bi a b

φ ⎯⎯⎯→

+ → +
Z Z   

First of all, let us observe φ  is multiplicative. For any [ ]idicbia Z∈+=+= βα ,   

            ))()(()))((()( ibcadbdacdicbia ++−=++= φφαβφ  
22 )()( bcadbdac ++−=  

2222 )()()()( bcadbdac +++=  

)()( 222222 dcbdca +++=  

)()( dicbia ++= φφ  
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)()( βφαφ= .                             (3.7) 

There are two cases for non-zero [ ]iZ∈βα , , either .αβ  or β  doesn’t divide α . 

i)Let us assume that for non zero Z∈βα , , .αβ  Then we write 
 [ ]iZ∈= γβγα  somefor  ,

         

( ) ( )
       ( ) ( ),     (by   (3.7))

        ( ).1
,( ) ( ),So

φ α φ βγ
φ β φ γ
φ β

β φ α

=
=
≥

≤

 

ii) Now let us assume β  does not divide α . Then ( )iα
β

∈_  not in . [ ]iZ

 
Figure 3.1 Illustrated lattice diagram for [ ]iZ  

 

If we choose the shortest corner m+ni∈ [ ]iZ , then  

( ) ( ), where m ni p qi p,qα
β = + + + ∈_ , such that 

2
1,p ≤q . 

Thus if we choose as a quotient then the remainder is)( nim + βαρ )( nim +−= . 
Now,  let us check the value of ρ.  

                  ).(
                )(

    ))((
     )()(

       ))((
))(()(

2
1

22

βφ
βφ
βφ

φβφ
βφ

βαφρφ

<
≤

+=
+=

+=
+−=

qp
qip

qip
nim

 

 

 

 

 



 28

Proposition 3.20 [ 2 ] 2 : ,a b a bα⎧
⎨
⎩

= = + ∈Z ⎫
⎬
⎭

Z  is a Euclidean domain. 

Proof. Let us define a function from [ 2] 2 : ,a b a bα⎧ ⎫
⎨ ⎬
⎩ ⎭

= = + ∈Z Z to Z as 

follows 

 
: [ 2 ]

2 2    2 2a b a b

φ ⎯⎯⎯→

+ → −

Z Z
  

First of all, let us observe φ  is multiplicative, too . For any 

2 , 2 [ 2 ]a b c dα β= + = + ∈Z   

)2)()2(())2)(2(()( bcadbdacdcba +++=++= φφαβφ  

22 )(2)2( bcadbdac +−+=  

2222 )(2)(2)(4)( bcadbdac −−+=  

)2(2)2( 22222 cddca −+−=  

2222 22 dcba −−=  

)2()2( dcba ++= φφ  

( ) ( )φ α φ β= .                                         (3.8)                              
      

There are two cases for non-zero , Zα β 2⎡ ⎤∈ ⎣ ⎦ , either .αβ  or β  does not 

divide α . 

i)Let us assume that for non zero Z, ∈βα , .αβ  Then we write 

,  for some 2Zα βγ γ ⎡ ⎤= ∈ ⎣ ⎦
 

( ) ( )
        ( ) ( ),     (by   (3.8))
        ( ).1

, ( ) ( ),So

φ α φ βγ
φ β φ γ
φ β

φ β φ α

=
=
≥

≤

 

ii) Now let us assume β  does not divide α . Then ( 2 )α
β

∈_  not in 2⎡ ⎤
⎣ ⎦Z . 
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Figure 3.2 Illustrated lattice diagram for 2⎡ ⎤

⎣ ⎦Z  

If we choose the shortest corner ( 2 )m n 2⎡ ⎤+ ∈ ⎣ ⎦Z , then  

( 2 ) ( 2 ),  where m n p q p,qα
β

= + + + ∈_ , such that .
2
1  ,p ≤q  

Thus if we choose )2( nm + as a quotient then the remainder 
is βαρ )2( nm +−= . Now,  let us check the value of ρ.  

)()(,

                   ).(
     )2)((

       2)(
     )2()(

       ))2((
))2(()(

4
3

22

22

βφρφ

βφ
βφ

βφ
φβφ

βφ
βαφρφ

<

≤
+≤

−=
+=

+=
+−=

So

qp

qp
qp

qp
nm

 

 
Theorem 3.21  Every Euclidean domain is a PID. 

Proof. Let R be a Euclidean domain and I be its non-zero ideal. Since for all 
)()1(, aIa φφ ≤∈ , Then we have 

{ }(1) ( ) : 0a a Iφ φ≤ ≠ ∈ ⊆ Z . 

Because of the principle of well-ordering of Z , there exists  such that  the 
smallest of this set is 

Ic ∈
)(cφ . That is 

{ }0  ),()( −∈∀≤ Iaac φφ          (3.9) 

Claim : Since R is a Euclidean domain, if )(cI = ,rcqaIa +=⇒∈  for 
some . If we assume that Rrq ∈, 0≠r then we say ).()( cr φφ <  On the other 
hand, since Icqar ∈−= ,  

by (3.9)  we get )()()( crc φφφ <≤  a contradiction. So, .0=r  Thus,  . )(cI =
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Proposition 3.22 Let [a b D Dα = + ∈Z ]  where D is a square free integer. If 

, then 2 2 1a b D− = ± α  is unit in [ ]DZ . 
 
Proof. [a b D Dα = + ∈Z ]  implies ' [a b D Dα = − ∈Z ] . Since 

2 2 ' 1a b D αα− = ±  
'α is an inverse of α  in [ ]DZ . So, α  is unit in [ ]DZ . 

 
Proposition 3.23 Let [a b D Dα = + ∈Z ]  where D is a square free integer. If  

2 2a b D−  is prime, then α  is irreducible in [ ]DZ . 

 
Proof. Assume that 1 2α β β=  for some 1 2, [ Dβ β ∈Z ] . Then, 

1 2( ) ( ) ( )N N Nα β β p= = , 

where p is prime. So, either 1( )N β  or 2( )N β  is 1. Thus,  by proposition 3.20, 

either 1β  or 2β  is unit in [ ]DZ , implying that α  is irreducible in [ ]DZ . 
 
 
Proposition 3.24 Let [ ]a bi iα = + ∈Z . 2a b2+  is prime in  if and only if  Z
α  is prime in . [ ]iZ
 
Proof. If  is prime in , by Proposition 3.23 2a b+ 2 Z α  is irreducible in . On 
the other hand, by Proposition 3.19  is a EUD  and by Theorem 3.21 it is PID. 
So, by Theorem 3.16 

[ ]iZ
[ ]iZ

α  is prime in . [ ]iZ
      Conversely assume that α  is prime in , it follows immediately that 
gcd(a,b) = 1. Let  where p is prime and 

[ ]iZ
2 2a b p+ = n n∈` . So, p divides neither 

a nor b. But then, either a  or abi+ bi− divides p; since otherwise  divides 
n which means , a contradiction. Without loss of generality 
suppose that a  divides p. Thus, 

2a b+ 2

)i

2 2( /( ) 1p n a b+ =
bi+

 
( )( ) (p a bi c di ac bd ad bc= + + = − + + , for some ,c d ∈Z .               (3.9) 

 
By comparing coefficients in (3.9) we get 

 
ac bd p− =                                                   (3.10) 

and 
0ad bc+ = .                                                  (3.11) 

 
Multiplying (3.10) by c and adding the result to d times (3.11) yields 

 
2 2( )a c d pc+ = .                                             (3.12) 
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Since p does not divide a, (3.12) implies a divides c. If gcd (c,d) = p, (3,9) 
requires 1 ( )( / / ) ( / /a bi c p id p c p id p)α= + + = + , forcing α to be unit in , a 
contradiction with primality of 

[ ]iZ
α  in . So, gcd (c,d) = 1, which implies c 

divides a. Hence . Similarly, d
[ ]iZ

c a= b= . Thus, 2 2a b p+ = . 
 

3.4 Polynomial Rings over UFD 
 
 First of all, let us remember polynomial  rings. Let R be a ring, then  the 
set [ ] 2

0 1 2{ ( ) : ( ) ... ; , }n
n iR x f x f x a a x a x a x a R n= = + + + + ∈ `∈ , where x is an 

indeterminate. The set  is a ring under the sum and the product of two 
polynomials. Here, n is called   degree of  f and an is called leading coefficient of 
f. 

 Let R be a ring let S=R[x] be a polynomial ring over R. If we start with S 
and the construct the polynomial ring S[y] over S in indeterminate y,  then S[y] is 
called a polynomial ring in two variables x,y over R. We write this ring  as R[x,y]. 
It follows from the definition that R[x,y]= R[y,x]. A typical element of R[x,y] is of 
the form 

Rayxa ij

m

i

n

j

ji
ij ∈∑ ∑

= =
,

0 0
. 

 
Theorem 3.25 Let R[x] be a polynomial ring over a domain R. Let 

 be non-zero polynomial of  R[x] of degree n and m respectively. 
Let  and let ‘a’ be the leading coefficient of g(x). Then there 
exist unique polynomials in R[x] such that  

)(  and  )( xgxf
}0,1max{ +−= nmk

)(  and  )( xrxq

)()()()( xrxgxqxfak += , 

where r(x)=0, or r(x) has degree less than the degree of g(x). 

 
Proof. If  m < n,  we take q(x)=0 and r(x)=f(x). Hence, let  m > n and k=m-n+1. 
We prove the theorem by induction on m. We assume that it is true for all 
polynomials of degree < m, and we prove it for polynomials of degree m.  

 Now the polynomial has degree at most  m-1, where b  
is the leading coefficient of  f. By induction hypothesis there exist polynomials 

 such that  

)(.)( xgbxxaf nm−−

)( and )( 11 xrxq

)()()())()(( 11
1)1( xrxgxqxgbxxafa nmnm +=− −+−− . 

Then  

)()())(()( 11 xrxgxqxbaxfa nmnmk ++= −− , 
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as desired. Uniqueness follows immediately.  
 In order to show that polynomial rings over a UFD  are UFD,  too. To do 
this we need some preliminaries. 

 

Definition 3.26  Let R be a UFD. Then [ ]xRxf ∈)(  is called primitive if the 
greatest common divisor of its coefficients is a unit. 

 

Corollary 3.27 For any nonzero [ ]xRxf ∈)(  can be written in the form 
, where c is the greatest common divisor of the coefficients of f(x) 

and f
)()( 1 xcfxf =

1(x) is primitive. 

 

Definition 3.28  Let R be a UFD and [ ]xRxf ∈≠ )(0 .  If we write  
where f

),()( 1 xcfxf =
1(x) is primitive, then ‘c’ is called content of f and denoted by c(f). 

 

Corollary 3.29 For any nonzero [ ]xRxf ∈)( ,  f(x) is a primitive if and only if c(f) 
is a unit. 
 
Lemma 3.30 (Gauss) If [ ]xRxgxf ∈)(),( , then c(fg)=c(f)c(g). In particular, the 
product  of two primitive polynomials is primitive.  

Proof. Let )( and  )( gc dfcc == , then we write )()(g and )()( 11 xdgxxcfxf ==  
where  are primitive. Since )( and )( 11 xgxf 1 1( ) ( ) ( ( ))( ( ))f x g x cf x dg x= , we need 
to prove that is primitive. Assume that  is not primitive and 
let p be an irreducible element of R that divides all the coefficients of . 
If  

)()( 11 xgxf )()( 11 xgxf
)()( 11 xgxf

 ).,(  )(g and )( 11 ∑∑ ∈== Rbaxbxxaxf ji
j

j
i

i  Let  be the first 
coefficients of , respectively, that is not divisible by p. The coefficient 

of   is  

ts ba  ,
)()( 11 xgxf

)()(in 11 xgxfx ts+

 . . .  . . . 1111 ++++ −++− tststs bababa  

Since R is a UFD,  p∤asbt. Therefore we obtained a contradiction. Hence, 
 is primitive. )()( 11 xgxf

 
Theorem 3.31  Let R be a UFD. Then The polynomial ring R[x] over R is also a 
UFD  [10].  
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3.5 Construction of Counterexamples  

 
Example 3.32 An irreducible element may not be prime in a domain. 

Let 5R i⎡= ⎣Z ⎤
⎦  and Rii ∈=−=+= 3,52,52 γβα . Now let us 

consider norms of these elements : 

9)()()( === γβα NNN . If γβα ,,  were reducible, then there could be a non-

unit R∈δ  such that 9)(δN  properly, i.e., . There 
is no such solution. That’s why, 

ZbaN in  353)( 22 =+⇒=δ
γβα ,,  are irreducible elements. Now, let us 

demonstrate that they are not prime.  

 .3.39)52)(52( 22 γαγαβ ⇒===−+= ii  

Does this case imply  γα ? 

If we have an affirmative answer, we can write R∈= δαδγ  somefor   , , which 
means  

Ri
i

i ∉
+

=
+

=⇒+=
3

52
52

3)52( δδγ . 

Thus, α  is not a prime element. 

Consequently we have shown that in an arbitrary domain an irreducible 
element may not be prime. 

 
Example 3.33  Every element can not be factorized uniquely in a domain. 

Let 5R i⎡= ⎣Z ⎤
⎦  and Rii ∈=−=+= 3,52,52 γβα  again. In the 

previous example we have seen that γβα ,,  are irreducible elements. has 
two different factorizations as follows: 

R∈9

  αβγ ==−+== 2)52)(52(3.39 ii  

where γβα ,,  are irreducible elements. 

Example 3.34 In a domain the greatest common divisor may not exist. 

Let 3  and 4, 2 2 3R i α β⎡ ⎤ i R= = = + ∈⎣ ⎦Z . First of all, let us write 

down the divisors of βα  and : 

4  ),31(  ,2  ,1 ±±±±±=⇒ iδαδ   and 

)312(  ),31(  ,2  ,1 ii ±±±±±±=⇒ δβδ . 

So common divisors of βα  and  are 
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 ).31(  ,2  ,1 i±±±±  

If we exclude units of ( 3 ) { 1R U i⎡ ⎤= =⎣ ⎦Z },±  then the common divisors are  

 .31  and  31  ,2 ii −+  

Now let us check if there is a greatest common divisor.   By definition 3.10  

i) 2 can not be  a  g.c.d  since  

                 . 
2

31

                   
31

2
)(  ,)31(2
                     2)31(

                                            

),()31()31( and  )31(

i
i

Ri
i

iii

∓
=⇒

±
=⇒

∈±=⇒
±⇒

±⇒±±

δ

δ

δδ

βαβα

 

ii) neither 31 nor i− 31 can not be  a  g.c.d  since  i+

 

 

 

 

 

 

                  . 
2

31 

)(  ,2)31(

                     )31(2

                        

),(22 and  2

i
Ri

i

∓
=⇒

∈=±⇒

±⇒

⇒

δ

δδ

βαβα

As a result βα  and  have a few  common divisors but they haven’t any g.c.d. 

 

Example 3.35  UFD may not be PID. 

 Let us consider the polynomial ring [ ]yxFR ,=  over a field F in two 
variables; x and y.  Then by Theorem 3.28, R is a UFD. On the other hand, The 
ideal [ yxFyxA ,in  )()( ]+=  can not be of the form ( ) for any polynomial 

, Since 
),( yxf

[ yxFyxf ,),( ∈ ]
),( and ),()),(()()( yxdfyyxcfxyxfyx ==⇒=+ , 

where are non-zero constants in F.  It  means that  dc,

0=−⇒= cydx
d
y

c
x , 

which contradicts with independency of the variables x and y. So,   is not a 
PID.  

[ yxF , ]
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Example 3.36  PID may  not  a EUD. 

      { (1 19 ) : ,  
2
bR a a b= + + − ∈Z } is a PID but not EUD. But demonstration 

needs tedious computations. For proof see [17] . 

 

 
 
 
 
 
 
 
 
 
 
                                              

 
 
 
 

Figure 3.3 Containing- relations between domains 
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CHAPTER 4 
 

ESSENTIALS OF QUADRATIC AND  
CYCLOTOMIC FIELDS 

 
 
4.1 Quadratic Fields 
 
Definition 3.1 Let (F =_ )D where D is a square free integer. Then, F is said to 
be a quadratic extension of . Obviously, degree of extension of a quadratic field 
is 2. 

_

 
  We have already learned many things about quadratic fields in Chapter 2.We 
completely determined the ring of integers FA , and the discriminant F∆ for any 
quadratic field F.  
 
Theorem 4.2 (No More Complex Quadratic Euclidean Domains) Let F be a 
complex quadratic field with discriminant F∆ < –12, then FA  is not a Euclidean 
domain. 
 
Proof.  Assume f be a Euclidean function on FA . Suppose that α  ∈ FA  is a 
nonzero, nonunit element such that f (α  ) is minimal.  This means that for any  
β ∈ FA ,  there is  a γ ∈  FA  such that  β – αγ  = δ = 0, ±1,  since either δ = 0 or 

f(δ) < f(α), /F α ≤A 3 .  Therefore,  

NF(α) ≤ 3.                                                           (4.1) 
 
      If F∆ ≡ 0 (mod 4) . In this case,  α = a + b D for a, b∈ Z ,  where  D = F∆ / 4  
is the radicand of F . Thus, by Equation (4.1), 
 

 NF (α) = a2 – b2 D ≤  3. 
 
On the other hand, F∆ < –12 implies –D > 3 .. Hence, for  α ≠ 0, ± 1, a2 – b2 D >3, 
which is a contradiction. 
       If  F∆ ≡ 1 (mod 4). In this case,  α = (a + b D ) / 2 for a, b∈ . If both a,b 
are even, then for a ≠ 0, ± 1, we get 3 ≤ (a / 2)

Z
2 – D(b/2)2 – D(b/2)2 ≤ 3, so           

D = F∆ = –3,  contradicting the hypothesis of the theorem. So, we assume that both 
a and b are odd. And so,(a2 – b2D) / 4 ≤ 3. Hence, for α a ≠ 0,  ± 1,   
 

12 ≤ a2 + 11b2 < a2 – b2 F∆ = a2 – b2D ≤ 12, 
 
which is a contradiction. Therefore,  is not a Euclidean domain. FA

 



 37

 
Theorem 4.2 demonstrates that all Euclidean complex quadratic fields are 
necessarily norm - Euclidean. However, there are known to exist Euclidean real 
quadratic fields that are not norm - Euclidean. Also, there are known to exist 
exactly sixteen real quadratic fields that are norm - Euclidean. These are the fields 

( D_ ) where 
D ∈ {2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 55, 73}     [6]. 

 
Theorem 4.3 (Some Norm – Euclidean Real Quadratic Fields) 
 
If D ∈ {2, 3, 5, 6, 7, 13, 17, 21, 29}, then (F =_ )D is norm -Euclidean. 
 
Proof. Let 
 

2 if D 1 (mod 4),
=

1 if D 2 or3 (mod 4),
ε

⎧⎪
⎨
⎪⎩

≡
≡

 

 
and one can easily observe that any  σ ∈ F can be written as  
 

( / )1 2r r Dσ ε= + , 
where . ,1 2r r ∈_
 
By Proposition 2.43 we have for any 

( / )1 2r r Dσ ε= + , for ,1 2r r ∈_  
there exists a 

( )/x y D Fβ ε= + ∈A , where ,x y∈Z  
such that 

|NF(σ – β)| = |(r1 – x / ε )2 – (r2 – y) 2 D / ε 2| < 1.                            (4.2) 
 
Assume that Equation (4.2) fails for some ,1 2r r ∈_  and ,x y∈Z .Without loss of 

generality  we may suppose that 0 ≤ rj ≤1/2, for  j = 1,2.To prove this; first,   
for j = 1,2 we set, 
 

[ ] 0 –[ ] 1/2,

[ ] 1 1 – [ ] 1/2,

j j

j j j

r if r r jz j r if r r

⎧
⎪
⎨
⎪
⎩

≤ ≤
=

+ ≥ ≥
 

 
where [rj] is the greatest integer less than or equal to rj. Let x = ε z1 + δ1x1,  and  
 y = z2 + δ2y1, for any integers  x1, y1, where  δj = 1 if  zj = [rj]  and  δj = –1  
otherwise for  j = 1,2.  Thus, 

| (r1 – x / ε )2 – (r2 – y) 2 D / ε 2
 |=| (s1 – x1 / ε )2 – (s2 – y1)2 D / ε 2|, 

for any  ,1 1x y ∈Z .,  where  0 ≤ sj = |r1 – zj| ≤ 1/2.  j = 1,2. 

Thus ,without loss of generality  we may suppose that 0 ≤ rj ≤1/2, for  j = 1,2. 
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       So, for all ,  one of the following inequalities must hold for some  ,x y∈Z
0 ≤ rj ≤ 1/2,   j = 1.2,  
 

(r1 – x / ε )2 ≥ 1 + (r2 – y)2 D / ε 2 ,                                            (4.3) 
or 

(r2 – y)2 D / ε 2 / ≥ 1 + (r  – x / 1 ε )2.                                           (4.4) 
 
If rj = 0 for j = 1,2, then (4.3)  and (4.4) both fail for  x = 0 = y.  Thus, at least one 
of the rj is nonzero. Therefore, if  x = 0 = y,  or x = 1,  and  y = 0,  then (3.3) fails 
to hold. Thus, by (3.4) both 
 

                                                             (4.5) 2 2/ 12r D rε ≥ + 2
1

2

and 
2 2

1
/ 1 ( –1/ )2r D rε ε≥ +                                                     (4.6) 

hold. If  x = –ε ,  y = 0,  and (4.3) holds, then 
 

2 2 2
1

2( 1) 1 / 2 ( –1/ ) 2 ( –1)1 2r r D r rε+ ≥ + ≥ + ∈ ≥ + 2
1

2

4

                               (4.7) 

Hence 2  ≥ 1,  from which  r1r 1 =1/2. 
Thus, from (4.7), 

2
22 2 2

1
(1/2 1) 1 / 2 ( –1/ ) 2 (1/2 –1) ,r D rε ε+ ≥ + ≥ + ≥ +  

which implies   . Let  r
1

2 2/ 5/r D ε = 2 = a/b,  where ,a b∈Z are relatively prime. 

If  = 1,  then  4aε 2 D = 5b2,  so a2 |5. Thus,  a = 1. Since D is square free, then  b 
= 2,  so  r2 = ½,  and  D = 5,  which is on the list. 
 
If ε = 2, then  a2D = 5b2, so a = b = 1  is forced, contradicting that  r2 ≤ 1 / 2. 
 
Therefore, when  x = –ε ,  and  y = 0,  (4.3) cannot hold, unless D = 5 (in which 
case (4.3) becomes an equality). Therefore, we may assume that (4.4) holds in this 
case, namely 
 

2 1
2 2 2/ 1 ( –1)r D rε ≥ + ≥ 2. 

2
2Since 1/4,r ≤ hen the last inequality implies that D ≥ 8ε 2.  

Hence, if D < 8ε 2,  then F is norm – Euclidean. For D ≡ 1 (mod 4), this means 
that D < 32, and if  D ≠ 1  (mod 4), then D < 8. This yields the values of D listed 
in the statement of the theorem. 
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Theorem 4.4 (Finitely Many Norm – Euclidean Quadratic Fields) 
 
Let , (F =_ )D , where D > 0 and  is a square free integer ,  and  F∆ ≡ 0 (mod 4),  
then the number of such fields that are norm – Euclidean is finite in number. 
 
Proof. Let F be a norm – Euclidean field of the given type. By proposition 2.43, 
there exists  [ ]x y D D+ ∈] such that for any t ∈Z , 
 

|x2 – D(y – t / D)2| < 1. 
 
which implies, 

|Dx2 – (Dy – t)2| < D. 
 
Since  

(Dy – t)2 – Dx2 ≡ t2 (mod D), 
 

there exist ,x z∈Z such that 
 

x2 – Dx2 ≡ t2  (mod D), and  | z2 – Dx2 | < D.                                    (4.8) 
 
Assume D ≡ 3 (mod 4). 
 
Let 2[( 6 1) / 2] 1t D= − + .One can easily verify that for D ≥ 88, 
 

5D < t2 < 6D. 
 
Therefore, by (4.8), either z2 – Dx2 = t2 – 5D,  or z2 – Dx2 = t2 – 6D.  Therefore, 
 

D(5 – x2) = t2 – z2 ,  or D(6 –x2) = t2 – z2.                                           (4.9) 
 
 
Assume that D ≡ 2 (mod 4). 
 
Let 2[( 3 1) / 2] 1t D= − + .  Again, one can easily verify that if D ≥ 40,  then 
 

2D < t2 < 3D. 
 
So, by (4.8) , as above,  
 

D(2 – x2) = t2 – x2 ,  or D(3 – x2) = t2 – x2 .                                         (4.10) 
 

By some number theoretical manipulations it can be proven that Equations (4.9) 
and (4.10) are impossible. Hence, for sufficiently large D with F∆ ≡ 0 (mod 4),  
we have that F cannot be norm-Euclidean. 
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Example 4.5  Let’s prove that  ( 23)_  is not norm-Euclidean. 
If D = 23, 1 0r =  and ; then ( 3.2 ) becomes 2 7 / 23r =

2 223 (7 23 ) 23x y− − < . 

Since , we have 2 223 (7 23 ) 3 (mod 23)x y− − ≡ −
 

2 223 (7 23 ) 3 20x y or− − = − .                                          (4.11) 
Let , then (11) becomes 7 23z = − y 2 223 3 20x z or− = − . 
If , then neither x nor z is divisible by 3. So, , 
implying that  which is a contradiction. 

2 223 3x z− = − 2 2 1 (mod 3)x z≡ ≡
23 1 0 (mod 3)− ≡

If , then neither x nor z is divisible by 5. So, , 
implying that which is again a contradiction. 

Therefore, there is no solution for equation (4.11). Thus, 

2 223 20x z− = 2 2 1 (mod 5)x z≡ ≡ ±
2 220 23 1,2,3 4 (mod 5)x z or= − ≡

( 23)_  is not norm-
Euclidean 
 
4.2 Cyclotomic Fields 
 
Definition 3.6 Let n be a natural number and nζ be primitive n’th root of unity. 
The extension field ( )nζ_  is called  the n’th cyclotomic field. 
The ring of integers the n’th cyclotomic field is [ n]ζZ . Namely,  

if  ( )F nζ=_ ,then FA = [ n]ζZ    [7]. 
 
Definition 4.6 (Cyclotomic Polynomials) Let n∈` and nζ be primitive n’th root 
of unity. Then, the polynomial 

( ) ( - )
gcd( , ) 1

1

j
x xn n

n j

j n

Φ ζ= ∏
=

≤ <

 

is called the n’th cyclotomic polynomial .The degree of ( )xnΦ is φ(n)  

where φ(n) = 1(1 )n
pi

−∏ , pi ’s are prime divisors of n. 

 
Theorem 4.7 (Irreducibility of the Cyclotomic Polynomial) For any  n∈`
 

Φn (x) =   ( ),m x
nζ _

where nζ be primitive n’th root of unity. So ( )xnΦ is irreducible in [ ]xZ . 
 
Proof. Let us prove first that ( )xnΦ ∈ [ ]xZ . We use induction on n.  
If n =1 1( )xΦ = x-1 ∈ [ ]xZ . Assume that ( )xkΦ  ∈ [ ]xZ  for all k < n. Now we 

have 
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( )xnΦ =
1

( )

nx
f x

−
 

where, by induction hypothesis, f (x) ∈ [ ]xZ  is a monic polynomial. So, by 
dividing out we have Φn (x) ∈ [ ]xZ . 
Also, ∈ ( ),m x

nζ _ [ ]xZ since all powers of nζ  are integral over . Z

 
Claim:   for any j ∈   such that gcd (j, n) = 1, ( ),

jm nn
ζζ =_ 0

( )

Z

Proof. We first prove the result for a prime  j = p which does not divide n.  Since 
 

1 ( ),
nx m x f

nζ− = _ x , 

 
for some f(x) ∈  [ ]xZ ,  we may let the image of xn – 1 under the natural map 
 

[ ]xZ  → ( /pZ )[x] Z
 

be given by the bar notation 
 

- 1 ( ) ( ).,nx m x fnζ= _ x

,

 
Since  

                                                 
-1-1

( -1)/( -1) ( – )
0 -1

nn jjnx x x x
nj j

ζ= =∑ ∏
=

 

and setting x = 1 
 

1
(1 ).

1

n jn
nj

ζ
−

= −∏
=

 

Since p does not divide n, we have 
1
(1 ).

1

n jn
nj

ζ
−

= −∏
=

 

 

Thus, 1j
n

ζ ≠   for any  j = 1,2, …, n –1. Hence j
n

i
n

ζ ζ≠   for any such  i ≠ j,   so 

the roots of xn – 1  are distinct in (Z /p )[x].  Hence,  Z ( ),m xnζ _ and ( )f x have 

no common roots. Assume ( ), 0
p

m n n
ζζ ≠_ , then ( ) 0pf nζ = , so ( ) 0pf nζ = . 

Hence, using the Binomial Theorem ( ) 0p
nf ζ = , so ( ) 0nf ζ = .Therefore, 

( ) 0,m n nζζ ≠_ which  contradicts with ( ) 0, nm
n

ζζ =_ .Thus, claim is true for 

prime j = p which does not divide n. 
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      On the other hand, if j is a product of primes each of which does not divide n, 

then j
n

ζ  is also a root of  which means claim is true for any 

j∈ Z   such that gcd (j, n) = 1.Hence,  

( ),m
nζ _ x

 
( )xnΦ divides .                                              ( 4.12) ( ),m

nζ _ x

So, 
deg( ( )xnΦ ) ≤ deg( ).                                               (4.13) ( ),m

nζ _ x

Since nζ is a root of ( )xnΦ , minimality of implies ( ),m
nζ _ x

deg( ( )xnΦ ) deg( ).                                               (4.14) ≥ ( ),m
nζ _ x

(4.13) and (4.14) implies  
deg( ( )xnΦ )=deg( )=( ),m x

nζ _ ( )nφ .                                          (4.15) 

(4.12) and (4.15) implies  
( )xnΦ = .                                                  (4.16) ( ),m

nζ _ x

 
 
Corollary 4.8   The degree of extension of the cyclotomic field generated by the 
primitive n’th root of unity is ( )nφ . Namely, for any n∈`  

( ) : ( )n nζ φ=_ _ . 
 
Proof. This follows from direct result of Theorem 4.7 
 
 
Theorem 4.9 (Discriminant Divisibility) 
 
Let ( )F nζ=_ . Then, F∆  divides ( )nnφ . 

 
Proof. We have –1 ( ) ( )nx x f xnΦ= , for some f(x) ∈  [ ]xZ . After  differentiating 

both sides,  we get 
/–1 /( ) ( ) ( ) ( )nn x x f x x f xn nΦ Φ= +  

By setting x n= ζ , we obtain 
 

By taking the norm of both sides, 
-1( ) /( ) ( ( )) ( (nnn N n N N f )).F F n n F nn

φ ζ Φ ζ± = = ζ

.

 

-1 / ( ) ( )nn fn n nn
ζ Φ ζ ζ=

By corollary 2.48 and proposition 2.49, we get 
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/( ( )N )F F n n∆ Φ ζ= ± . 

Thus, last two equations imply F∆  divides ( )nnφ . 

 
 
Theorem 4.10 (The Ring of Integers of a Cyclotomic Field)Let n ∈ and `

nζ be primitive n’th root of unity. 
If ( )nF ζ=_ then [ ]F nζ= ZA      [2]. 

Theorem 4.11 (Discriminants of Prime-Power Cyclotomic Fields) Let p be a 
prime number, 

an p= for a natural number a and ( )nF ζ=_ . Then, 

1( ) / 2 ( ( 1) 1)( 1)
a ap p a p

F pφ∆
− − −= −     [2]. 

Example 4.12 Let 8α ζ= be pirimitive eighth root of unitiy and ( )F α=_ . Since 

 and 38 2= (8) 4φ = , by theorem 3.11 .  
22 2 (3(2 1) 1)− −( 1) 2 256F∆ = − =

We can find F∆ also as follws. By example 2.16 and theorem 4.7  

4
, ( ) 1m x xα = +_  and / 3

, ( ) 4m x xα =_ . 
Embeddings of F in^  are 

1 8: 8θ ζ ζ→ , 
 

3
2 8 8:θ ζ ζ→ , 

 
5

3 8 8:θ ζ ζ→  
and 

7
4 8 8:θ ζ ζ→ . 

 
Thus, by theorem 2.46 and proposition 2.49 

( )4
2 / 3 3 3 5 3 7 3

, 8 8 8 8( 1) ( ( )) (4 )(4( ) )(4( ) )(4( ) ) 256F FN m α∆ α ζ ζ ζ ζ= − = =_ . 
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CHAPTER 5 
 

THEORY OF IDEALS 
 
5.1 Properties of Ideals 
 
        The primary goal of this chapter is to achieve the Unique Factorization 
Theorem for Ideals. First, we develop the basic properties of ideals, which will 
include  wide variety of results in arithmetic of ideal theory. 
 
Definition 5.1 Let R be a commutative ring. A nonempty subset I of R is called an 
ideal of R, if it satisfies following two conditions: 
 

(i) If , Iα β ∈ , then  Iα β− ∈ . 
(ii) For every  and for every r R∈ Iα ∈ , r Iα ∈ . 
 

       Note that, first condition makes I be an additive subgroup of R and second 
one makes I be a sub ring of R. 
 
        Ideals may be defined over noncommutative rings, but for our purposes the 
commutative case is sufficient. 
 
       Ideals in a commutative ring R with identity  are called R-ideals for 
convenience sake. We are primarily interested in FA -ideals for a given number 
field F. 
 
      And two ideals are equal if they are equal as sets. Any ideal I in a 
commutative ring with identity having a finite set of generators is said to be 
finitely generated. When there is exactly one such generator α we call I principal, 
and write 
 

( )I α=  
 
 
Example 5.2 Let [ 10 ]R = Z . One can check that 

{ }1 (2) 2 2 10 : ,I a b a b= = + ∈Z  and 

{ }2 (3) 3 3 10 : ,I a b a b= = + ∈Z  

are two ideals of R. 1I  is generated by 2 and 2I  is generated by 3. These are 
examples of principle ideals, namely ideals which are generated by a single 
element. Consider the ideal generated by 6. It is product of two ideals as it is seen 
below, 

{ }(6) 6 6 10 : , (2)(3)a b a b= + ∈ =Z . 

Observe that, (6)  and . (2)⊂ (6) (3)⊂
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Definition 5.3 Let R be a commutative ring and I ,J be two ideals of R. If there 
exists an ideal H of R such that J = HI , then I is said to divide J . 
 
For example, according to example 5.2  (2) divides (6) and (3) divides (6) in  

[ 10 ]Z . 
 
Lemma 5.4 Let R be a commutative ring with identity and I, J be two R- ideals. 
If I divides J, then I contains J.  
 
Proof. If I divides J, then by definition 5.3 there exists an R-ideal H such that  
J = HI . By definition of ideal I contains HI. So, I contains J. 
 
     Converse of this lemma is also true. That is, Let R be a commutative ring with 
identity and I ,J be two R- ideals. If I contains J, then I divides J. We are going to 
discuss the proof later. 
 
An ideal may be generated by more than one element. If I is generated by 

1 2, ,..., rα α α ; then we write I = 1 2( , ,..., )rα α α   This is illustrated by the following 
example. 
 
Example 5.5 Let [ 10 ]R = Z . Consider the ideal generated by 4 and 6 which is 
denoted by (4,6). 

(4,6) = { }4 6 : ,x y x y R+ ∈ . 

Let 10x a b= +  and 10y c d= + , , , ,a b c d ∈Z ; then 

4 6 (4 6 ) (4 6 ) 10x y a c b d+ = + + + , , , ,a b c d ∈Z . 

Since gcd (4,6) = 2, numbers of the form 4 6 , ,p q p q+ ∈Z  are multiples of 2. 

So, 

(4,6) = { }2 2 10 : ,n m n m+ ∈Z = (2). 

       Note that, although (4,6) seems to be generated by two members this example 
shows that it can be generated by a single element; therefore it is a principle ideal 
of R. 
 
Proposition 5.6 Let F be an algebraic number field and  I = (α) and J = (β) be  
principal  FA -ideals. Then, I = J if and only if α and β are associates. 
 
Proof.  By proposition 3.6  α and β are associates if and only if α β  and β α  if 
and only if α β⊆  and β α⊆  if and only if ( ) ( )α β= . Thus, I = J if and only if 
α and β are associates. 
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Proposition 5.7 ( Generalization of  Proposition 5.4 ) Let F be an algebraic 
number field and  I = ( 1 2, ,..., nα α α ) and J = ( 1 2, ,..., nβ β α ) be FA -ideals. Then, 
 I = J if and only if there exists an invertible n n×  matrix ( )nA GL∈ Z  such that 

1

.

n

α

α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

= A
1

.

n

β

β

⎛ ⎞
⎜ ⎟
⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

⎟    [2]. 

 
Example 5.8 Let ( 10 )F =_ .Then FA = [ 10 ]Z . Consider  

(3,1 10 )I = +  and ( 3,2 10 )J = − − . 
 
I = J, since the following matrix equation holds, 
 

3 3

1 10 2 10

-1 0
-1 -1

⎛ ⎞ −⎛ ⎞ ⎛
⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟+ −⎝ ⎠ ⎝⎝ ⎠

= ⎞
⎟⎟
⎠
 with . 

2
-1 0

( )
-1 -1

GL
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∈ Z

  
      There is an other notation to represent FA -ideals. It is Z -module notation. 
We know that every FA -ideal I is a subgroup of the free abelian group FA  of 
rank 

:F d=_ . 
So, I is a free abelian group of rank at most d. Therefore I has Z -basis 
{ }1 2, ,..., ,forr F r dα α α ⊆ A ≤ . Thus, I can be written in -module structure as Z

1 2[ , ,..., ]rI α α α= .                                             (5.1) 
 

Proposition 5.9 Let ( )F α=_  be an algebraic number field with :F d=_ and 

1[ , ,..., ]rI rα α α=  be a FA -ideal. Then, r d= . 
 
Proof. We know that r . Let d≤ { }1 2, ,..., dβ β β be a  -basis for Z FA . If Iα ∈ is 
nonzero, then 1 2, ,..., dαβ αβ αβ  are linearly independent and 1 2, ,..., d Iαβ αβ αβ ∈ . 
So, 1 2{ , ,..., d }αβ αβ αβ is a Z -basis for F. So, for every {1, 2,..., }j d∈ there exist 

 such that 1, 2, ,, ,...,j j r jz z z ∈Z

,
1

r

j i j
i

z iαβ β
=

= ∑ . 

       Assume that d . Then here exist r> 1 2, ,..., dw w w F∈A , not all zero such that 

,
1

0
d

i j j
j

z w
=

=∑ . 

Therefore, for each  {1, 2,..., }j d∈

, ,
1 1

0
r r

i j j i j i j i j j
i i

z w w z wβ β α
= =

= = =∑ ∑ β . 
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Thus, 

1
0

d

j j
j

w αβ
=

=∑  

which is impossible , because { }1 2, ,..., dβ β β is a Z -basis for F. 
Hence d , implying that r dr≤ = . 
 
     As a result of this proposition, in (5.1) r d= . 
 
Note that proposition 5.5 is true for -module structures [2]. Z
 
Proposition 5.10 Let [ ] [1,R D D= = + =Z Z Z ]D  where D be a square free 

integer. ( ) [ ,a b c D a b c D+ + = +Z Z ] with , ,a b c ∈Z , and  is an  0a > 0c >

R-ideal if and only if c divides a, c divides b and  divides . ac 2 2b c D−
 
Proof. Let [ , ]I a b c D= +  and { }: 10 , ,A y x y I x y y 0= + ∈ ∈ >Z . Clearly 

 because c A∈ b c D I+ ∈ . Claim : c  is the least element of A. If not, there 
exists  1 1b c D I+ ∈ csuch that 10 c< < . So, 1 1 ( )b c D ap b c D q+ = + +  for 
some . From here, ,p q ∈Z 1c cq= which implies , a contradiction. 
Therefore,  is the least element of A. Similarly, it can be proven that a is the 
least positive integer in I. 

1c ≥ c
c

       If I is an ideal, then a D I∈ , so c divides a by minimality of c. Also 
( )D b c D cD b D I± + = ± ∈ , so c divides b. Moreover,  

2 2( / )( ) ( ) /b c D b c D b c D c I− + = − ∈

) /
, 

which implies a divides by minimality of a. So,  2 2(b c D c−

ac divides . 2 2b c D−
        Conversely, if c divides a, c divides b and divides , then ac 2 2b c D−

( / ) ( / )( )a D b c a a c b c D I= − + + ∈  
and 

2 2( ) ( ) / ( / )( )b c D D b D cD b c D c b c b c D I+ = + = − + + + ∈ . 
Thus, I is an ideal. 
 
Example 5.11 Let ( 10 )F =_ .Then FA = [ 10 ]Z . Consider  

[1 10 ,1 10 ]+ −  and [2,1 10 ]+ . 
 
 
 

[1 10 ,1 10 ]+ −  = [2,1 10 ]+ ,since the following matrix equation holds, 
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2 1 10
1 10 1 100

1 1
1

⎛ ⎞⎛ ⎞⎛ ⎞ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎝ ⎠⎝ ⎠
=  with . 

2
1 1

( )
1 0

GL
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∈ Z

 
Note that, [1 10 ,1 10 ]+ − ≠ (1 10 ,1 10 )+ − . 
In order to see this, we have  

1 5(1 10 ) (6 10 )(1 10 ) (1 10 ,1 10 )= + + + − ∈ + − . 
So, 

 (1 10 ,1 10 )+ − = FA . 

      But, since 2 does not divide (1 10 ) 9FN + = − ; by proposition 5.10 

[2,1 10 ]+  is not a FA - ideal . 
 
By a product of two FA -ideals, 
 
 I = { α1,….., αr)  and  J = (β1,….βs), 
 
We mean the FA -ideal generated by all products  αj β j namely, 
 
 IJ =  (α1β1, …., α1bs, …., αiβj, …. , αrβ1,    , αrβs). 
 
 
Definition 5.12  Let F  be  a  number field. A  prime FA -ideal is a nonzero ideal 
P ≠ FA  such that,  whenever P divides IJ, where I and J are two FA -ideals , then 
P divides I or P divides J. We call the prime  ideal (0) the trivial ideal.  
 
 
Example 5.13 Let , then ( )F =_ i FA = .  Consider. P = (5,2+i). P is an  [ ]iZ

FA  -ideal by proposition 5.10. Also, by proposition 3.24, P is a prime ideal.  
 
In the view of Lemma 5.4, by Definition 5.12  we can say that a prime ideal P is a  

FA -ideal satisfying the property that whenever IJ P⊆  where I and J are  

FA -ideals  then either I ⊆ P  or J ⊆ P. 
 
Definition 5.14 Let R be a commutative ring with unity, and I ≠ R an R-ideal, I is 
called a maximal ideal if whenever I ⊆ J for any R-ideal J, then I = J, or J = R. 
       Thus, maximal R-ideals are proper R-ideals that are not contained in any other 
proper R-ideals.  
        A nonzero R-ideal I is called minimal if whenever (0) ⊆ J ⊆ I for any R-ideal 
J, then J = (0) or J = I. In other words, a minimal R-ideal is a nonzero R-ideal that 
contains no other nonzero R-ideal. 
 
Theorem 5.15 Let R be a commutative ring with unity. M is maximal ideal if and 
only if is a field  [9]. /R Μ
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Example 5.16  Let R = Z and p be a prime number. Since  is isomorphic to / pZ Z

pZ which is a field, (p) =  is a maximal ideal. pZ
 
Theorem 5.17 Let R be a commutative ring with unity and N R≠  be an R-ideal. 
N is prime ideal if and only if is an integral domain [9]. /R N
 
Corollary 5.18 Let R be a commutative ring with unity. Every maximal R-ideal is 
prime R-ideal. 
 
5.2 Dedekind Domain 
 
Definition 5.19 A Dedekind domain R is an integral domain satisfying the 
following three properties. 

(i) Every ideal of R is finitely generated. 
(ii) Every nonzero prime ideal of R is maximal. 
(iii) R is integrally closed in its quotient field. 

 
A principal ideal domain satisfies all three conditions, and is therefore a Dedekind 
domain. 

F = {α / β : α, β ∈ R, β ≠ 0}. 
 
Observe that condition (iii) above says that if α /β ∈ F is the root of some monic 
polynomial over R, then α /β ∈ R. In other words, β |α in R. 
 
Definition 5.20 The sum of two R-ideals I and J in a commutative ring with 
identity R is given by 

I + J = {α +β : α ∈ I, β ∈ J}, 
 

which is an ideal [8].  If there does not exist any proper ideal H such that H 
divides I and H divides J , then I and J are said to be relatively prime. If I and J 
are relatively prime R-ideals, then I + J = R.
 
Example 5.21 Let ( 10 )F =_ , then [ 10 ]F = ZA . Consider the two principal 

FA -ideals (2) and (3). One can easily prove that (2) and (3) are relatively prime. 
So,  

(2) + (3) = [ 10 ]F = ZA . 
 
Theorem 5.22 (Number Rings are Dedekind Domains) 
 
If F is a number field, then FA  is a Dedekind domain [2].. 
 
Lemma 5.23  If R is a Dedekind domain and I is an R-ideal, then I contains a 
product of prime  R-ideals. 
 

 



 50

Proof. Let S be the set of all R-ideals that do not contain a product of prime ideals. 
If S ≠ ∅, then S has a maximal element M,  Therefore, M cannot be prime, since it 
would otherwise contain a product of primes, namely itself. Thus, there exist r,s∈ 
R such that rs ∈ M, but r∉M and s∉M. Since M is contained in both of the ideals  
M + (r) and M + (s), then both of these latter ideals contain products of prime 
ideals. Therefore, 

(M + (r)) (M + (s)) ⊆ M, 
 

a contradiction, so S is empty. This completes the proof. 
 
Theorem 5.24 In any commutative ring with unity, every proper ideal is 
contained in a maximal ideal. 
 
Proof. Let R be a commutative ring with unity. By Zorn’s Lemma to family of 
proper R-ideals, it is enough to show that a nested union of proper R-ideals is 
another R-ideal. Now, if we have , then 1 2 ... ...jI I I⊂ ⊂ ⊂ ⊂ 1 jjI I∞

==∪  satisfies 

rI I⊆ since j jrI I⊆  for each j. Hence I is a R-ideal and since 1R jI∉  for each j; 
I is proper. 
 
Lemma 5.25  Let R is a Dedekind domain with quotient field F and let I ≠R be an  
R-ideal. Then there exists  α γ ∈ F -R such that γ I ⊆ R. 
 
Proof. Let α ∈ I be a fixed nonzero element. By Lemma 5.23, the principal         
R-ideal (α ) contains a product of prime ideals P1 … Pr, . Suppose that r is 
minimal with respect to being a product of primes in (α). By Theorem 5.24 , 
every proper R-ideal is contained in a maximal ideal, which must be prime by 
Corollary 5.18.Thus, I ⊆ P for some prime R-ideal P. By primality, Pj ⊆ P for 
some j, which we may assume to be j = 1 without loss of generality, By condition 
(ii) of Definition 5.19, P1 = P. Since (α) cannot contain a product of fewer than r 
prime ideals, there is a β ∈ P2 . . . Pr – (α). Therefore, 
 

2
1/ . . . - - .( ) rP P R Fβ α α∈ ⊆ R  

On the other hand, 
 

βP ⊆ PP2 . . . Pr ⊆ (α). 
 
 

So if δ ∈ P, then βδ ∈(α). In particular if δ ∈ I, then βδ ∈ (α), so 
 

.Rβ δ
α

∈  

It means, 

,I I Rβγ
α

= ⊆  

which completes the proof.  
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Theorem 5.26  Let R be a Dedekind domain and let I be a nonzero R-ideal. Then 
there exists a nonzero R-ideal J such that IJ is principal. 
 
Proof. Let I be a nonzero R-ideal with α ∈ I, and let 
 

J = {β ∈ R : βI ⊆ (α)}. 
 
Therefore, J is a nonzero R-ideal containing α and  
 

IJ ⊆ (α). 
 

Now let 1L IJ
α

= , then L ⊆ R. Since I, J are ideals, then so is L. Assume that L is 

a proper R-ideal. By Lemma 5.25, there exists a γ ∈ F-R such that γL ⊆ R.We will 
show that γ is the root of a monic polynomial over R. Since J ⊆ L, given that α∈I, 
then  γJ ⊆ γL ⊆  R.  Hence γJI ⊆ RI ⊆ I, which implies that 
 

γJ ⊆ J  .                                              (5.1) 
Let {β1 . . . . . , βr} be a generating set for the ideal J. From (5.1), there exist  
zi,j ∈ Z   such that for each i = 1, . . . . . , r, 
 

,
1

r
i i j

j
z jγβ β

=
= ∑ . 

 
This gives the homogeneous system of equations 
 

( )
( )

,1,1 1 1, 2 2 1

,2,1 1 2, 2 2 2

.........................................................................

,1,1 1 , 2 2

- . . . 0

- . . . 0

. . . ( - ) 0

r r

r r

r rr

z x z x z x

z x z x z x

z x z x z xr

γ

γ

γ

+ + + =

+ + =

+ + + =

 

 
which has the nontrivial solution xj = β j ,  so the determinant 
 

1,1 1, 2 ,1

2,1 2,2 2,

( ),,1 , 2

( - )
( - )

det

-

r

r

r rr r

z z z
z z z
M
z z z

γ
γ

γ

⎛ ⎞
⎜ ⎟
⎜ ⎟…
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

"

# #

"

 

 
vanishes. Hence, γ satisfies the required monic polynomial over R, which 
contradicts the condition (iii) of Definition 5.19. So, L is a not proper R-ideal. 
Thus, IJ =(α) which requires desired result. 
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Corollary 5.27  Let I, J, L be ideals in a Dedekind domain such that I is nonzero, 
and IJ = IL, then J = L.  
 
Proof. If H is an ideal such that IH = (α), then J(α) = L(α). Since, 
 

L ⊆ L(α) = J(α) ⊆ J, 
And 

J ⊆ J(α) = L(α) ⊆ L, 
Then  L = J. 
 
Corollary 5.28  Let I and J be ideals in a Dedekind domain, then I  divides J if 
and only if I ⊇ J. 
 
Proof. First direction is Lemma 5.4, so was proven. Assume that I ⊇ J. Let L be 
an ideal such that LI is principal, say LI = (α). Then, 1H Lα= J  is an ideal, 

and IH J= . Thus, I  divides J. 
 
 
Theorem 5.29 (Unique Factorization of Ideals) Every proper nonzero ideal in a 
Dedekind domain R is uniquely representable as a product of prime ideals. In 
other words, any R-ideal I  has a unique expression (up to order of the factors) of 
the form 

1 2
1 2 2... nee eI p p p=   

where the Pj are the distinct prime R-ideals containing I, and ej ∈   `
for j =1,2 . . . ,  n. 
 
Proof. First we must show existence. In other words, we must show that every 
ideal is indeed representable as a product of primes. Let S be the set of all nonzero 
proper ideals that are not so representable. If S  ≠ ∅ ,  then S has a maximal 
member M. Since M ≠ R, then by Theorem 5.24 and Corollary 5.18, there exists a 
prime ideal P such that M ⊆ P. Thus, there is an R-ideal H such that M = HP, by 
Corollary 5.28. Thus, H ⊇ M. If H = M, then H = HP, so P = R, by Corollary 3.17, 
a contradiction. Hence, H strictly contains M. By the maximality of M, H must be 
a product of prime ideals. However, M = H P, contradicting that M∈S , so S = ∅ ,  
We have established existence. It remains to show uniqueness of representation. 
 
Let Pj and Qs be (not necessarily distinct) prime R -deals such that, 
 

P1  . . . Pr = Q1  . . . Qs . 
 

Hence, 1 1 2... sP Q Q Q⊇  which implies 1 iP Q⊇  for some { }1,2,...,i ∈ s

1

. Without 
loss of generality assume that 1P Q⊇ . So by Corollary 5.27, we get 
 

P2  . . . Pr = Q2  . . . Q 
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Continuing in this way, we see that by induction,  r = s  and  i iP Q=  
 for each  { }1,2,...,i s∈ . 
 
Corollary 5.30  Let F is a number field, then every proper, nonzero FA -ideal is 
uniquely represent able as a product of prime ideals. 
 
Proof. It is immediate result of  Theorem 5.22 and Theorem 5.29. 
 
Example 5. 31 Let ( 10 )F =_ , then [ 10 ]F = ZA . Consider (2, 10 )P = , 

(3,1 10 )Q = +  and ' (3,1 10 )Q = − . By Proposition 5.10  are all  ', ,P Q Q

FA -ideals; moreover they are prime ideals. One can easily check that 
2(2) P=  and  '(3) QQ=

So, 
2 '(6) (2)(3) P QQ= = . 

This is the unique factorization of deal (6) in FA . 
 
Definition 5.32 Let R is a Dedekind domain, and I, J are R-ideals, then 
 
 gcd (I, J) = I + J 
and 
 lcm (I, J) = I ∩ J. 
 
     Observe that Corollary 5.28 tells us that the lcm (I, J) is actually the largest 
ideal contained in both I and J, whereas gcd (I, J) is the smallest ideal containing 
both I and J. This is because a divisor of an ideal is a larger ideal, and a multiple 
of an ideal means a sub-ideal. If I = (α), we write gcd(α, J) and lcm(α, J). Also, if 
J = (β) as well, we write 
 
 gcd(I, J) = gcd(α,β),  and  lcm(I, J) = lcm(α,β). 
 
Theorem 5.33  Let R be a Dedekind domain, and let I be an R-ideal. If α ∈ is any 
nonzero element, there exists  β ∈ I such that I = (α, β)  [ 2]. 
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CHAPTER 6 
 

FACTORING OF PRIME IDEALS 
IN EXTENSIONS 

 
6.1 Lifting of Prime Ideals 
 
        Let F be an algebraic number field, it is extension of _  with degree of 
extension n. In chapter 5 we have seen that the ring of integers of F, denoted by 

FA , is Dedekind domain; and it is integral closure of . Z
 
 Definition 6.1 Let F be an algebraic number field and FA be the ring of integers 
of F . Let p be a nonzero prime ideal of Z . The lifting (also called the extension) 
of p to FA  is the ideal p FA . Although p FA  need not be a prime ideal of FA , we 
can use the fact that FA  is a Dedekind domain and the unique factorization 
theorem to write 
 

1

i
g

e
F i

i
p P

=
= ∏A  

 
Where the Pi are distinct prime ideals of FA and the ei are positive integers . On 
the other hand, we can start with a nonzero prime ideal Q of FA  and form a prime 
ideal of via. Z
 

p = Q ∩ . Z
 
We say that Q lies over p, or that p is the contraction of Q to . Z
Now suppose that we start with a nonzero prime ideal p of  and lift it to Z FA . 
We will show that the prime ideals P1, ... , Pg that appear in the prime factorization 
of p FA are precisely the prime ideals of FA  that lie over p. 
 
 Proposition 6.2 Let Q be a nonzero prime ideal of FA . Then Q appears in the 
prime factorization of p FA  if and only if Q ∩  = p.  Z
 
Proof. If Q ∩  = p, then p ⊆ Q, hence pZ FA  ⊆ Q because Q is a FA - ideal. So, 
Q divides p FA . Conversely, assume that Q divides (contains) p FA  Then 
 

p = p ∩ Z  ⊆ p FA  ∩ ⊆ Q ∩ Z . Z
 
But in a Dedekind domain, every nonzero prime ideal is maximal, so p= Q ∩ . Z
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Definition 6.3 (Ramification and Relative Degree) Let F be an algebraic 
number field and FA be the ring of integers of F . Let p be a nonzero prime ideal 
of .Let  Z

1

i
g

e
F i

i
p P

=
= ∏A  

 
The positive integer ei is called the ramification index of Pi over p(or over Z ). 
We say that p ramifies in FA  (or in F) if ei > 1 for at least one i. We will prove in 
a moment that FA /Pi is a finite extension of the field /p. The degree fZ i of this 
extension is called the relative degree (or the residue class degree, or the inertial 
degree) of Pi over p (or over ). Z
 
 Proposition 6.4 We can identify /p as a subfield of Z FA /Pi, and FA /Pi is a 
finite  extension of /p.  Z
 
Proof. The map from Z /p to FA /Pi  given by a + p → a + Pi is well-defined and 
injective, because P = Pi ∩ A, and it is a homomorphism by direct verification. 

FA  is a finite-dimensional vector space over /p. It comletes the proof. Z
 
Theorem 6.5 

1
[ / : / ]

g

i i F F
i

e f p p n
=

= =∑ ZA A    [16]. 

6.2 Norms of Ideals 

Definition 6.6 Let F be an algebraic number field and FA be the ring of integers 
of F.The value /F IA  for a FA -ideal I is said to be norm of I, denoted by . ( )N I

Proposition 6.7 Let α be any nonzero element of the ideal I of FA , and let 

( )Fm N α= Z∈ . Then m ∈ I and | FA /m FA | = mn, where n = |F : Q|. 

Proof. m = α β  where β  is a product of conjugates of α . But a conjugate of an 
algebraic integer is an algebraic integer. Thus β  ∈ FA , and since α ∈ I, we have 

m ∈ I. Now, FA is the direct sum of n copies of Z, hence by the first isomorphism 

theorem, FA /m FA  is the direct sum of n copies of Z/mZ. Consequently, 

| FA /m FA | = mn. 

Corollary 6.8   Let I be any nonzero ideal of FA , then N(I) is finite. Moreover, 

N(I) divides m  where n ( )Fm N α= for some α  in I and n = |F : Q| . 
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Proof. Observe that (m) ⊆ I, hence 

/( ) /( ).
/

F

F

m I m
I

≅
A

A
 

Theorem 6.9 Let F be an algebraic number field and I be a nonzero FA -ideal. 

Let { }1 2, ,..., nB α α α=  be a Z -basis for I. Then, 

1/ 2disc( )( ) ( )
F

BN I
∆

=     [2]. 

Corollary 6.10 Let I = (α ) with α ≠ 0, then N(I) = |NF(α )|  [2]. 

 

Example 6.11 Let ( 10 )F =_ , then [ 10 ]F = ZA . Consider (2, 10 )P =  and 

(3,1 10 )Q = − . P and Q are FA -ideals by Proposition 5.10. { }1 2, 10B = is a 

-basis for P. Since , then by Theorem 6.9  Z 40∆ =F

2

1/ 2

2 2
det

10 10
( ) ( ) 2

40
N P

⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠= = . 

And { }2 3,1 10B = −  is a Z -basis for Q. Since 40F∆ = , then by Theorem 6.9  

2

1/ 2

3 3
det

1 10 1 10
( ) ( ) 3

40
N Q

⎛ ⎞
⎜ ⎟⎜ ⎟− +⎝ ⎠= = . 

 

Example 6.12 Let ( 10 )F =_ , then [ 10 ]F = ZA . Consider (1 10 )I = + . It 

is clear that (1 10 ) 9FN + = − . So, by Corollary 6.10 ( ) 9N I = . Let us check this 

result by using Theorem 6.9. { }1 10 ,10 10B = + + be a Z -basis for I. Thus, 

2

1/ 2

1 10 1 10
det

10 10 10 10
( ) ( ) 9

40
N I

⎛ ⎞+ −
⎜ ⎟
⎜ ⎟+ −⎝ ⎠= = . 
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Theorem 6.13  Let I and J be nonzero FA -ideals , then N(IJ) = N(I)N(J)   [4]. 

 

Corollary 6.14  Let I be a nonzero FA  ideal . If N(I) is prime, then I is a prime 
ideal. 

Proof. Suppose I is the product of two ideals I1 and I2. By Theorem 6.13, 
N(I)=N(I1) N(I2), so by hypothesis, N(I1) = 1 or N(I2) = 1. Thus either I1 or I2 is a 
unit of FA . Therefore, the prime factorization of I is I itself, in other words, I is a 
prime ideal. 

Example 6.15 Let ( 10 )F =_ , then [ 10 ]F = ZA . Consider (2, 10 )P =  and 

(3,1 10 )Q = − .By Coroolary 6.14 and Example 6.11 P and Q prime FA -ideals. 

But, Corollary 6.14  does not say anything about primaty of the FA -ideal 

(1 10 )I = + given in the Example 6.12. It may be prime ideal may be not. 

Remark 6.16 (The Norm of a Prime Ideal) 

If we can compute the norm of every nonzero prime FA - ideal P, then by 
multiplicativity, we can calculate the norm of any nonzero ideal. Let p be the 
unique rational prime in P, and recall that the relative degree of P over p is       
f(P) = | FA /P : Z/pZ|. Therefore 

( )( ) / f P
FN P P p= =A   [2]. 

4.3 A Practical Way of Factorization  

    The following result, usually credited to Kummer but sometimes attributed to 
Dedekind, allows, under certain conditions, an efficient factorization of a rational 
prime in a number field. 

Theorem 6.17 Let F be a number field of degree n over Q, and assume that the 

ring FA  of algebraic integers of F is [ ]αZ  for some α ∈ FA . Thus 1, α , α 2, ... 
, α n-1 form an integral basis of FA . Let p be a rational prime, and let f be the 

minimal polynomial of α over Q. Reduce the coefficients of f modulo p to obtain     

f  ∈ Z[X]. Suppose that the factorization of f  into irreducible polynomials over 

Fp is given by 

1
1 ...e r

rf h h=  
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Let fi be any polynomial in Z[X] whose reduction mod p is . Then the ideal ih

Pi = (p, fi(α )) 

is prime, and the prime factorization of (p) in FA  is 

1
1( ) ... re e

rp P P=    [2]. 

Remark 6.18 (Prime Factorization in Quadratic Fields) 

We consider (F =_ )D , where D is a squarefree integer, and factor the ideal (p) 

in the ring FA  of algebraic integers of F. By theorem 6.5, . So, there 

will be three cases: 
1

2i i
i

e f
=

=∑
g

(1) g = 2, e1 = e2 = f1 = f2 = 1. Then (p) =P1 P2, P1 and P2  are FA -ideals and we 
say that p splits in F. 

(2) g = 1, e1 = 1, f1 = 2. Then (p) is a prime ideal of FA , and we say that p 
remains prime in F or that p is inert. 

(3) g = 1, e1 = 2, f1 = 1. Then (p) =  for some prime 2
1P FA - ideal P1, and we say 

that p ramifies in F. 

We will examine all possibilities systematically. 

(a) Assume p is an odd prime not dividing D. Then p does not divide the 
discriminant F∆ , so p does not ramify. 

(a1) If D is a quadratic residue (mod p), then p splits. Say D ≡ n2 (mod p). Then        
x2 – D factors mod p as (x + n) (x – n), so (p) = (p, n + D  ) (p, n – D  ). 

(a2) If D is not a quadratic residue mod p, then x2 – D cannot be the product of 
two linear factors, hence x2 – D is irreducible mod  p and p remains prime. 

 (b) Let p be any prime dividing D. Then p divides the discriminant, hence p 
ramifies.  

Since x2 – D ≡ x2 = xx (mod p), we have (p) = (p, D  )2

This takes care of all odd primes, and also p = 2 with D is even.  

(c) Assume p = 2, D odd. 

(c1) Let D ≡ 3 (mod 4). Then 2 divides the discriminant F∆  = 4 D, so 2 ramifies.  
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We have x2 – D ≡ (x + 1)2 (mod 2), so (2) = (2, 1 + D  )2. 

(c2) Let D ≡ 1 (mod 8), hence D ≡ 1 mod 4.An integral basis is {1, (1 + D  )/ 2}, 
and the discriminant is F∆  = D. Thus 2 does not divide F∆ , so 2 does not ramify.  

We claim that (2) = (2, (1 + D ) / 2). (2, (1- D  ) / 2).  

To verify this note that the right side is (2, 1 – D  , 1 + D  , (1 – D) / 4). This 
coincides with (2) because (1 – D)/4 is an even integer and 1 – D + 1 + D = 2. 

 (c3) Let D ≡ 5 (mod 8), hence D ≡ 1 mod 4, so F∆ = D and 2 does not ramify.  

Consider f(x) = x2 – x + (1 – D ) / 4 over FA  / P, where P is any prime ideal lying 

over (2). The roots of f are (1 ± D  ) / 2, so f has a root in FA , hence in FA /P.  

But there is no root in F2, because (1 – D) / 4 ≡ 1 (mod 2). Thus FA /P and F2 

cannot be isomorphic. If (2) factors as Q1Q2, then the norm of (2) is 4, so Q1 and 
Q2 have norm 2, so the FA /Qi are isomerphic to F2, which contradicts the 

argument just given. Therefore 2 remains prime . 

 

Example 6.19 Let 3 2α = and ( )F α=_ . One can check that 3[ 2 ]F = ZA . 

Obviously, 

3
, ( ) 2m x xα = −_ . 

For p = 7, 3 2x −  is irreducible moddulo 7. So, (7) FA  be a FA -prime ideal. In 
other words 7 remains prime in F or 7 is inert . 

For p = 29 ,  modulo 29 where   is 
irreducible modulo 29. So, (29) 

3 22 ( 3)( 26 20)x x x x− ≡ + + − 2( 26 20x x+ − )

FA = ,  and  are 1 2P P P P1 2 FA -prime ideals.        
g = 2, e e , and 1 2 1= = 1f = 2f1 2 = . Thus, 29 is unramified . 

For p = 31 ,  modulo 31. So, (31) 3 2 ( 4)( 7)( 11)x x x x− ≡ − − + FA = , , 
 and  are 

1 2 3P P P 1P

2P P3 FA -prime ideals. g = 3, e e1 2 3 1e= = = 1f f f, 1 2 3= = = . Thus, 31 
is completely split in  FA . 
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Example 6.20 Let ( 10 )F =_ , then [ 10 ]F = ZA . Namely F is aquadratic 
field with D = 10 and . 40∆ =F

For p = 2; since 2 divides 40F∆ = , 2 ramifies and 2(2) (2, 10 )= . 

For p = 3; since 3 does not divide 40F∆ = and 210 1≡  (mod 3 ), 3 splits and  

(3) (3,1 10 )(3,1 10 )= − + . 

 For p = 5; since 5 divides 40F∆ = , 5 ramifies and 2(5) (5, 10 )= .   

For p=7; since 7 does not divide 40F∆ = and 10 is not quadratic residu modulo 7, 
7 remains prime or it is inert. 

 

Example 6.21 Let ( 5 )F =_ , then [(1 5 ) / 2]F = +ZA . Namely F is 
aquadratic field with D = 5 and 5F . ∆ =

For p = 2; since  (mod 8) , 2 is inert. 5D ≡

For p=3; since 3 does not divide 5F∆ = and 5 is not quadratic residu modulo 3,    
3 remains prime or it is inert. 

 For p = 5; since 5 divides 5F∆ = , 5 ramifies and 2(5) (5, 5 )= .   

For p=7; since 7 does not divide 5F∆ = and 5 is not quadratic residu modulo 7,    
7 remains prime or it is inert. 

 

Example 6.22 Let ( 11)F =_ , then [ 11]F = ZA . Namely F is aquadratic 
field with D = 11 and . 44∆ =F

For p = 2; since 2 divides 44F∆ = , 2 ramifies and 2(2) (2,1 11)= + . 

For p=3; since 3 does not divide 44F∆ = and 11 is not quadratic residu modulo 3,   
3 remains prime or it is inert. 

 For p = 5; since 5 does not divide 44F∆ = and 211 1≡  (mod 5 ), 5 splits and  

(5) (5,1 11)(5,1 11)= − + . 
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For p = 7; since 7 does not divide 44F∆ = and 211 2≡  (mod 7 ), 7 splits and  

(7) (7,2 11)(7,2 11)= − + . 

For p = 11; since 11 divides 44F∆ = , 11 ramifies and 2(11) (11, 11)= .   

 

Example 6.22 Let ( 17 )F =_ , then [(1 17 ) / 2]F = +ZA . Namely F is 
aquadratic field with D = 17 and 17F . ∆ =

For p = 2; since17  (mod 8), 2 splits and 1≡ (2) (2, (1 17 ) / 2)(2, (1 17 ) / 2)= − + . 

For p=3; since 3 does not divide 17F∆ = and 17 is not quadratic residu modulo 3,   
3 remains prime or it is inert. 

 For p=5; since 5 does not divide 17F∆ = and 17 is not quadratic residu modulo 5,   
5 remains prime or it is inert. 

For p=7; since 7 does not divide 17F∆ = and 17 is not quadratic residu modulo 7,   
7 remains prime or it is inert. 

For p=11; since 11 does not divide 17F∆ = and 17 is not quadratic residu   
modulo 11, 11 remains prime or it is inert. 

For p = 13; since 13 does not divide 17F∆ = and 217 2≡  (mod 13 ), 13 splits and  

(13) (13, 2 17 )(13,2 17 )= − + . 

For p = 17; since 11 divides 17F∆ = , 17 ramifies and 2(17) (17, 17 )= .   

 

 

. 
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CHAPTER 7 

DISCUSSION AND CONCLUSION 

     Although, factorization was in theory for centuries, it takes place in 
application on some cricial areas recently. This makes it more important then 
before. 

      In this thesis, theory of factorization is studied. For application related to 
cryptography see [2]. In order to make an appropriate algorithm to solve Chords’ 
Problem, factorization of polynomial is used [18]. To make algorithm more 
powerfull, techniques given in chapter 6 may be used. Note that, Chords’ Problem 
is used in Bioinformatics in order to solve Digest Problem. 

     In this thesis, essential propositions which require to understand factorization 
of ideals in extensions correctly and allmost completely are given in the way of 
logical reasoning. It is allmost enough for the beginners to understand the subject. 
Moreover, there are important techniques to prove if a given domain is Euclidean 
or not, to test if a given prime remains prime in extension or not and some quick 
techniques of factoring prime ideals in quadratic extensions are given. 

    In this thesis, theory is based on simple extensions of , generalization is not 
considered. Generalization is just analogy of facts in simple extensions. If one 
understand what is happining in simple extensions, he/she can understand facts of 
complex extensions and to understand what is happining in complex extensions, 
one should understand facts of simple extensions. 

_

    Lastly, the deficiency of the thesis is lack of techniques of factoring of prime 
ideals in cyclotomic extensions. In order to understand these techniques, more 
complicated theories such as Galaois Theory and theory of Frobenius 
Automorphisms are neded. So, it is required harder and longer sdudy. For more 
explicit information see [2], [4],[5],[19] and [20]. 
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