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ABSTRACT

In this thesis, factoring of prime ideals in the ring of integers of an algebraic
extension of 0 is investigated. Especially, quadratic and cyclotomic extensions
are considered and their essentials are presented. Fundamental concepts and
theorems of algebraic number fields, domains and ideals are given. The
relationship between these concepts are stated, proved and supported by
examples. Some techniques for proving if a domain is Euclidean are given. A
quick technique for factoring of prime ideals in quadratic extensions of [l is

given. The theoretical statements for factorization of ideals in a given extension
are supported by examples.
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Bu tezde, Rasyonel Sayilar Cisminin genislemelerinin tamsayilar halkasinda
ideallerin ¢arpanlara ayrilmas: arastirildi. Ozellikle, quadratik ve birimin primitif
kokleriyle olusturulan genislemeler ele alindi ve bunlarla ilgili esas teoremler
ispatlartyla birlikte sunuldu. Genislemelerin, halkalarin ve ideallerin temel
teoremleri ele alinarak, bunlar arasindaki iliskiler orneklerle desteklenerek
gosterildi. Bir cebirsel alanin 6klid alani olmasinin ispat edilmesinde bazi
teknikler gosterildi. Rasyonel sayilar cisminin quadratik genislemelerinin
tamsayilar halkasinda ideallerin ¢arpanlara ayrilmasinin bir pratik teknigi verildi.
Ideallerin ¢arpanlara ayrilmasinin teorisi drneklerle desteklendi.

Anahtar Kelimeler: Carpanlara ayirma, carpanlara ayirmanin tekligi, ideal,
cebirsel alan, cebirsel say1 cismi, bir cebirsel say1 cisminde tamsay1 halkasi, norm,
iz, diskirminant.
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CHAPTER 1

INTRODUCTION

Factorization takes important place in many areas of mathematics. For
example, it is very powerful technique to use factorization for solving
Diophantine equations in number theory. Moreover, recently it has important
applications in some areas such as cryptography, computer science and
mathematical biology.

As far as factorization is considered, uniqueness of the factorization has to be
discussed. In some domain an element may have more then one factorizations. For

instance, consider D = {a +by10: a,be Z} . In this domain,

6=2x3=(4+10)(4-+/10),

where each factor can not be factorized any more. So, 6 has at least two
factorizations in D. D is said to be not unique factorization domain. Domains and
related concepts will be discussed in chapter 3.

When one deals with factorization he/she has to remember the famous
problem,
Thereis nox,y,z e Z such that x"+y" =z"

with xyz # 0, for any natural number n > 3.

This is known as Fermat’s Last Theorem (FLT ), it could not be proven for
centuries.

A proof of FLT for n = 3 was published in 1770 by Leonhard Euler, the most
prolific mathematicians of all time. Euler’s proof involved using numbers of the
form a+b+y/ -3 where a,beZ. At one point in this argument, he made a claim

about these numbers which was apparently based on tacit assumption that they
obey unique factorization. His claim was correct, but the tacit assumption behind
it was not, and this proof remained incomplete until the missing justification was
supplied by Legendre some time later.

A proof for n = 5 was given by Legendre and independently by Dirichlet
around 1825. The case n = 7 was handled by Lame in 1840. The first general -and
by far the most significant- attack on the problem was made by E. Kummer in
1843. Kummer’s basic idea was to consider numbers of the form

a,+agd, +a, +..+a, ¢

where p is prime, a,,a,,a,,...,8,, € Z and ¢ is the primitive p’th root of unity.
These numbers form a sub ring of C, denoted by Z[¢,].Using them it is possible

to factor X" + Yy’ completely and the equation X* + y* = z° becomes



X+ Y)X+E )X+ Y)..(x+ 4, y)=2".

Assuming that factorization of any number in Z[{] is unique, Kummer used this

form of the equation to prove that X" + y* =z is impossible if xyz # 0. Kummer

presented his proof to Dirichlet and Dirichlet pointed out that Kummer had
neglected to verify the assumption that factorization into irreducibles is unique in
Z[£,]. (Kummer was later to point out a similar flaw in an attempt by Lame.) In

1847, Cauchy (after having made the same mistake himself ) pointed out that
factorization is not unique in Z[¢S,,]. Thus, Fermat’s last theorem remained

unproved.

Kummer was undaunted and set about trying to modify Z[¢ ] so as to restore

the uniqueness of factorization. He introduced what he called ideal numbers, and
the theory he developed was a precursor of the modern theory of ideals [1] and
also see [2],[3]. Theory of ideals will be discussed in chapter 5.

Hundreds of mathematicians have tried to prove FLT. Common idea in their
works was factorization and common mistake was assuming the factorization is
unique in the domain that they work Tens of books have been written and
thousands of theorems have been stated about FLT .The most essentially, tens of
methods and two important approaches ( algebraic and analytic approaches ) have
been developed in the way of proving FLT. Behind all these, two areas of
mathematics have been systemized. They are Algebraic Number Theory and
Analytic Number Theory see [2-8].

In this thesis, essentials of factorization with the view of algebraic approach
are discussed; all facts in the road of understanding of factorization are
considered. I have studied on theory of factorization, not on application.
Application desires different kind of study.

For more basic facts, see [1] and [9-15].
In chapter 1, the thesis has been introduced and supported by history.

In chapter 2, definitions of algebraic numbers, algebraic number fields, the ring
of integers of an algebraic number field, norm of an algebraic number field, and
trace of an algebraic number field and discriminant of an algebraic number field;
essential theorems related with them which take important place in development
of factorization are given.

In chapter 3, definitions of domains and some theorems that give relations
between domains and essential concepts to understand these relations are given.



In this thesis, mainly two important algebraic number fields are considered:
First one quadratic fields and second one cyclotomic fields. Their essentials are
discussed in chapter 4.

In chapter 5, theory of ideals and Dedekind domain are given.

In chapter 6, methods of factorization of an ideal into prime ideals and related
theorems are given.

In chapter 2-6, theory is supported by examples.

In chapter 7, a short conclusion of the thesis is made.



CHAPTER 2

ALGEBRAIC NUMBER FIELDS AND
SOME ARITHMETIC IN THEM

Facts and techniques of Abstract Algebra have been applied to solve problems
of Number Theory for centuries. For example, many great mathematicians have
used algebraic approach to try to prove Fermat’s Last Theorem (FLT) which is
very famous in number theory. And also, it is proven by Andrew Wiles by using
combination of algebraic and analytic approaches.

In this study, we deal with algebraic approach to understand factorization of
prime ideal in domains which takes important place in solving many problems of
Number Theory.

To roughly understand the idea of algebraic approach let us start with an
example.

Proposition 2.1 Let p be an odd prime. There exists a unique pair (a, b) of
integers up to sign and order such that p=a* +b” ifand only if p=1 (mod 4).

Proof. Assume that p=1 (mod 4), i.e. p=4n+ 1 for some natural number n.
By Wilson’s Theorem, (p—1)!=-1 (mod p)
= 1x2x3x.x2nx 2n+1)x(2n +2) x ..X (4n—1) x 4n = -1 (mod p)
= 1x2x3x.x2nx(-2n) x (-(2n-1)) x ..X(—=2) x (-1) =—1 (mod p)
= (=1)°"172°3”...(2n)* = -1 (mod p)
= (Ix2x3X...x2n)*> = —1 (mod p)
So, there exists an integer m such that m* =—1(mod p)orm* +1 =0 (mod p),
implying that (m—i)(m+i)=kp for some integer k. This means, p divides
(m—i)(m+i) inZ[i]. It is clear that p divides neither (m—1i) nor(m+i); so p is
not prime; hence not irreducible in  Z[i] since Z[i] is Principle Ideal Domain

(PID). Thus, p =af for some nonunit elements « and ,Bon[i]. Let aa =a+hi
and a=a+bi for some integers a, b, c and d.
Since N(p) = N(a)N(B), p°> =(a* +b*)(c* +d?). On the other hand, neither
a’+b’ or ¢*+d? is 1 because a and Pare not unit. Since Z is Unique
Factorization Domain (UFD), a’+b*>=p=c*+d’. Being UFD of Z[i]
requires uniqueness of the pair (a,b).

Assume that p=3 (mod 4). Since square of an integer is equivalent to either 0

or 1 mod 4, the sum of two squares is equivalent to 0, 1 or 2 mod 4. Therefore, p
can not be written as sum of two squares.



In this proof; some terms such as PID and UFD, some symbols such as N(«)
and Z[i] have been occurred. They are concepts and symbols of Abstract

Algebra; we are going to discuss them later.

2.1 Extensions
Definition 2.2 (Algebraic Numbers and Algebraic Number Fields)

A complex number which is a root of a polynomial of degree d and not a
root of any polynomial of degree less then d is called an algebraic number of
degree d.

Let a be an algebraic number of degree d. The field containing Q and «

is called an algebraic number field of degree d. An algebraic number field is
extension of Q generated by & and denoted by Q ().

For example;\/z , 1and =5 are algebraic numbers of degree 2. Q (\/E ),Q (i)
and Q(+/—5) are algebraic number fields. They are quadratic extensions of Q.

Here, Q (+/—5) can be explicitly written as{q1 +0)V -5/ .9, GQ}.
A¥3is an algebraic number of degree 3, and Q (3\@ ) =
{ q1+q22’/§+q3§/§/q1,q2,q3 eQ }is a cubic extension of Q.

24

a =e > (fifth root of unity) is an algebraic number of degree 4 and

2

Q(a) = {q1 + q2a + q3a + q4a3 / ql,qz,q3,q4 S Q} is an extension of Q with

degree of extension 4.

Definition 2.3 (Simple Extensions and Polynomials)

Let F be field and E be extension field of F anda € E . If there exists a
nonzero f(Xx)e F[X] such that f(a)=0 then «is said to be algebraic over F. E
is called algebraic extension of F if every element of E is algebraic over F.

The polynomial f(x) € F[X] such that i) f(a)=0 ii) f(x)is monic ii) for
any nonzero polynomial g(X)e€ F[X] withg(a) =0, deg(f)<deg(g) is called
the minimal polynomial of & over F, denoted bym,, . (X).

Let F be an algebraic number field and « be algebraic over F. The

smallest field containing both « and F is called simple algebraic extension of F
generated by « , denoted by F ().

Theorem 2.4 (Existence and Uniqueness of the Minimal Polynomial)
Let F be an algebraic number field and o be algebraic over F. Then o has a
unique minimal polynomial over F.



Proof. Existence is coming from being « algebraic over F (Definition 2.2). Let
f (x) € F[x] be a minimal polynomial of & over F and there exists a nonzero
polynomial ¢g(X)e F[X] with g(x)# f(X) andg(a)=0. By division Algorithm
for polynomials there exist q(X),r(X) F[X] such that
g(x) = f(X)q(x)+r(x) with deg(r)<deg(f) or r(x)=0.

By substituting X =, we haver(a)=0. Since f(x) is a minimal polynomial of
a over F,r(x)=0. Sog(x)=f(X)q(x), gx)= f(x) = qx)=1. If q(x) 1is
constant, then g(X) is not monic, hence can not be the minimal polynomial of «
over F. Otherwise, deg(g)>deg(f) and so g(X)can not be the minimal
polynomial of & over F which requires uniqueness of the minimal polynomial.

Example 2.5 Let’s find the minimal polynomial of & =+/1++/—3 overQ.
a?=14+4-3 = a?-1=4/-3= @*-)? =3 = a*-20% +4=0
So,m, o (X)=x*—2x* +4.

Corollary 2.6 Let f(X)e F[X] be a minimal polynomial of « over F and
g(a) =0 for some g(x) € F[X]. Then f(x) divides g(X) in F[X].

Proof. In the proof of Theorem 2.4 we obtained g(x)= f(x)q(x) for some
g(x) e F[X] which directly implies desired result.

Corollary 2.7 Any irreducible polynomial over an algebraic number field has no
repeated roots inC .

Proof. Let f(X)e F[X] be irreducible. Assume that f(x) has repeated root
ofa € F . Then,
f(X) = (x—a)’g(x) For some g(X) e F[X].
Therefore, m, . (x) divides f(x) by Corollary 2.6.Since f(x)is irreducible,
f(x)=pm,(x) forsome B eF,ie. deg(f)=deg(m, ). However,
F () =2(x-a)g () +(x-a)* g’ (x) .
So, f/(a) =0, implying that m, ¢ (x) divides f '(x) which is a contradiction

since deg(f’) <deg(f)= deg(m, ). Thus, fhas no repeated roots in C.
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Example 2.8 Let F= Q (i) and o =e ® (eighth root of unity).
Although ma,Q(X)=X4 +1, m,(X)=x>+i.

Corollary 2.9 Let F be an algebraic number field, & be algebraic over F with
deg(m 2 E )=d and F(«)be the simple extension of F generated by «r .



Every element £ € F(«) can be written uniquely in the form

d
A=Y a.a"" Forsomea,,a,,..a, €F.
k=1

Proof. LetfeF(a). Then f =% for some f(X),g(x)e F[X] such
a
thatg(a) # 0. By Corollary 2.6, m, . (x) does not divide g(x). Hence, m_ . (X)
and g(x)are relatively prime. So, there exist p(X),q(X)e F[X] such that
POOM,, ¢ (X) +q(X)g(x) = 1.
1
M e(@)=0 = ——=q(a) = B=f(a)aa).
g9(a)
Leth(x) = f(x)q(x). By division algorithm for polynomials, there exist unique
a(x),r(x)eF[x]  such that h(x)=a()m,  (x)+r(x)  with
deg(r) <deg(m,)orr(x)=0. Sincem,(a)=0,8= f(a)q(a)=h(a)=r(a).

Letting

d-1
r(x)y=a, +a,a+..+a,a0 ,

d
we have f :zakak’l for some a,,a,,...,a,; €F.
k=1

Corollary 2.10 Let F be an algebraic number field and E be an extension field of
F,and leta € E. F() is a finite extension of F if and only if & is algebraic over

F. Moreover, if « is algebraic over F, then|F(a) : F| =deg(Mm, ).

Proof. Assume that o is algebraic over F. By Corollary 2.9, every element

d
peF(a) can be written uniquely in the form  g=> a.a*' for
k=1

somea,,a,,...,a; €F. So |F(a):F| is finite. Conversely assume that,

|F(05): F|=d for somed € N. Therefore, F(a) is a vector space with the

-1 for

base{l,a,az,a3,...,ad’l}‘. From here, a® =q,+0,a+0,a’ +...+Q
somed,,q,,0s,....04 €F = q, +Q,a+qa’ +...+qua”" —a® =0. Thus, a is

algebraic over F withdeg(m, . )=d.

2
Example 2.11 Let o =e ® (eighth root of unity).
IfF= Q (i), then|F(a): F|=2. Butif F=Q, then|F(a): F|=4.

Proposition 2.12 LetF ¢ K < E c C, where F, K and E are fields then,
[E:F|=|E:K||K:F|.




Proof. Let {al,az,...,ak} and {ﬂl,ﬂz,...,,[)’| } be basis for K over F and E over K

respectively. If a € E then it has a unique representation
I
a =) ajB;i,where a; e K foreveryi e {1,2,...,1}.
i=1
On the other hand for every i {1,2,..., I} aj € K has unique representation

k
aj = Zbiai , where b; e F for everyi € {1,2,...,k}.
i=1
Thus, a € E has a unique representation

| | k | k
=285 =20 Z i =2, 2 biaiBj
i=1 j=1 i=1 j=1i=1
This yields

[E:F|=|E:K||K:F|.

Proposition 2.13 Let p be a prime and ¢, be p’th root of unity.

m, o(X)= XPEXPT? - XPT ]

Proof. It is easy to see that({,)" +({,)" " +({,)" +..+1=0. For the
minimality it is enough to prove that m, ,(X)=x""+ XPP4XPP 4+ 41 s

irreducible over Q.

P_1
Assume that > =(x" ray X" rag) (XM by XM by).
Then
p_
(G52 Al Y (x+D"+a,_ X+ D"+ ag)((x+ DM by (x+ DM+ 4 by)
(x+1)—1
p_
0 x+h7 -1 is irreducible over Q . But
(x+1)-1

p_
L N N T X+ p
(x+1)—1 1 p-2

which is irreducible over Q by Eisenstein Criterion. This is a contradiction.
Therefore, M, ,(X)= XP+XP? + X7 +...+1 is irreducible over Q.

Proposition 2.14 Let p be an odd prime and ¢ be p’th root of unity.
F :Q(;’p +§’p_1) is an algebraic number field of degree(p—1)/2.

Proof. By Proposition 2.12 and Corollary 2.10‘Q(§p):(@‘= p—1. It is easy to see
that Q(gp):Q(ngr;p—l)‘:z. So, _1):Q‘:(p—l)/2.




Thus, F :Q(gp +§p_1) is an algebraic number field of degree(p—1)/2.

Example 2.15 Let g be the golden ratio and £, be third root of unity. By some
simple calculations it can be prove that

1 1 Ll
§3ZZ(Q+§3)+Z(9+§3) +E'
So,5,€Q(g+¢)).

Example 2.16 Let £, be primitive eighth root of unity. Factorize x* +1in Q<) -
{88 =1= (4’84)2 =1= 4’84 :10r§84 =-1.
Since ¢ is primitive eight root of unity, £,* =—1. So,
C+g+¢+¢ =0,
¢y +¢0 =0,
Cils +46s +4 6 +¢0C +606 +4°¢ =0,
$i8i Gy 466y +¢6i ¢y +¢.¢’¢ =0 and
$6i ¢y =1.
Thus,
xV 1= xt (GG )X
+ (68 +4 8+ +8¢ 4G+ )X
- (665 6% +68 G + G 6 G S X
+ 08 Sy Sy
= (X={IX=¢HX=¢)X=¢").

Definition 2.17 (Embeddings) Let F be a number field. Any one to one ring
homomorphism (ring monomorphism) of & from F to C is called an embedding
of F in C. Let F be extension of Q and #be an embedding of F in C such that

d()=Ifor all e Q (fixes Q point wise), then & is called a Q -isomorphism of
F. Let 8 be Q-isomorphism and F =Q(a), then #(«)is called conjugate of «
overQ.

For example, ifF = Q(\/B ), D is square free integer (quadratic extension), then

conjugate of a+ bvDis a—bvD which is some times called algebraic conjugate
ofa+bvD.

Properties 2.18 Any embedding € of a number field F in C is a Q -isomorphism
of F.

Proof. Let q= % e Q with a,b eZ .Since @ is ring monomorphism

bO(q)=6(bg)=0(a)=a.
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So,
0(a)=q
Which means & is a QQ -isomorphism of F.

Theorem 2.19 (The Number of Embeddings of a Number Field) Let
F =Q(a)be an algebraic number field of degree d overQ. Then, there are

exactly d embeddings 6,6, ,...,64 of F inC . Moreover, all conjugates of & over
Q ared(a)=a,0(a) =ay,....04 (@) =ayg with o] = a and these are roots of

minimal polynomial m, o (X) of & overQ.

Proof. Assume that 6 is an embedding of F in C withf(a) = . Since
d-1 .
0=my q(a)= > dia' withq € Q,
i=0
which implies

d-1 . d-1 .od-1 .
0=0(0)=0(> gia")= D> qifa) = > gif".
i=0 i=0 i=0
Therefore, f=a j for someje{1,2,...,d}, implying there are at most d

embeddings of F inC. Let Hj be defined by 0j(f(a))=f(aj) for some
je{l,2,..,d} where f(x) € F[x]. We have to prove that HJ_ is also an embedding
of F inC .For this reason we are going to show that GJ_ is well-defined. Let

f(X),9(x) € F[X] such that f (o) = g(«), then there exists h(X) e F[X] such
that f(X)—g(X)= h(X)ma Q(X) . Therefore,

f(aj)—g(aj):h(aj)ma’Q(aj):O.
Hence,
6;(f(a)=f(aj)=g(a})=0;(g(a)).

So, 6?]_ is well-defined and conjugates of & are« j’s, which are roots of m, Q(X)'

Example 2.20 Let F =Q(+/5) . There are 2 embeddings of F inC which are

(912\/5—)\/5
921\/5—)—\/5.

and

Example 2.21 Let F =Q(+/ —5) . There are 2 embeddings of F inC which are

011\/—_5%\/3
921\/—_5—)—\/—_5.

and
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Example 2.22 Let F :Q(%/g ). There are 3 embeddings of F inC which are

6’1 Z%—)%,
0,:3/5 >¢s
0,:45 >¢ s

where ¢, is the third primitive root of unity.

and

2.2 Norms and Traces

Here are some concepts which take important place in the development of
factorization. They are discriminants norms and traces.

Definition 2.23 Let F be an algebraic number field of degree d over Q and 6, for
je {l,2,...,d} be the embeddings of F inC . For each element « € F the product

[16/@
j=1

is called norm of & from F, denoted by N- ().

Example 2.24 Let F=Q(v/7) anda = %(1 1+34/7). The embeddings of F in C

are
6’1:\/7—>\/7
and
492:\/7—>—\/7.
So,

N () = 6,(2)0,(a) =%(11+3\/7)%(1 1-34/7) =?.

Definition 2.25 Let F be an algebraic number field of degree d over Q and 6; for
je {l,2,...,d} be the embeddings of F inC . For each element « € F the sum

d
zej (@)
-1

is called trace of & from F, denoted by T (&) .

Example 2.26 Let F=Q(V/-3) anda = %(l +4/—3). The embeddings of F inC
are

6’1:\/—_3—>\/—_3

and
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1922\/—_3—>—\/—_3.

So,
N (@) = 6 (@)0, (@) = (43=3) (1 -V=3) =1
and

T. (@) = 6,(a) + b,() =%(1+\/—_3)+%(1—J—_3):1.

Note that, if F =Q(\/E ) where D is a square free integer and
a =a+by/D witha,beQ, then
N (a)=a’-b’D
and
T-(a)=2a.

Moreover, a —a+bVD = a-a=bJD

= (a—-a)’ =b’D

=a’-2aa+a*-b’D=0

=a’ -T.(a)a+N.(a)=0.
So the minimal polynomial is

m, o (X) =X =T.(a)x+N_(a).

Proposition 2.27 Let F be an algebraic number field of degree d over Q
anda, f € F . Then,

Ne(@f)=Ne (@) Ne(B),
forany ge F

Ne(ga) =q°Ne (@)
and for any a,be F
T-(aa+bp)=aT. (a)+bT-(p).

Proof. Let 6, for je {1,2,...,d} be the embeddings of F in C. Since each of g, for

je {l,2,...,d} is a ring homomorphism;

Ne(aB) =] [6;(ap)

j(a)aj(ﬂ)

d

j(a) Hej V5]

j=1

j=1
[1e
j=1
[T
j=1
=Ne (@) Ne(B),

forany ge F
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Ne(Qe)=] | 6;(qa)

d
il
d
[Tad;(@)
j=1
i
=q'[[6;(@)
j=1
:quF(a)
and forany a,be F

Te(@aa+bp)=) 0,(ac +bp)

d
2
d
Z(aﬁ,- (@)+b6;(5))
j=1
=aZej (@)+b) 6,(B)
j=l1 j=1

=aT. (a) +bT-(B).

Example 2.28 LetF =Q(+/—1). Let us prove that there is no « € F such that
Np()=3.Let @ =a+bv—-1witha,beQ. Assume that

N-(a)=3= a’+b’=3,a,beqQ. (2.1)
By using definition of rational number, last equation can be written as
c*+d*=31",cd,leZ. (2.2)

So,c*+d* =0 (mod 3); implying that both ¢ =0 (mod 3) and d =0 (mod 3). So,
by using this result in (2.2), we getl =0 (mod 3). Letc=3c,, d =3d, andl =3I,
C,,d,,l, € Zapplying them in (2.2) we getc,” +d,’> =31>. By the above manner
C.d,,l, are all divisible by 3, which means c,d,lare all divisible by 9. By
induction it can be concluded that c,d,lare all divisible by 3"for every natural
number n. So, c¢,d,lare all 0.But I=0 contradicts with (2.1). Thus, there is no
a € F such that N (a)=3.

Proposition 2.29 Let p be a prime number and ¢’ be a primitive p’th root of unity
and letF =Q(¢,) - Then,

T.(¢)=-TandN.(1-¢))=p.

Proof. By Proposition 2.13, we know that
p-1 ,
mCPqQ(x)=x"‘1+x”‘2+...+x+1=g(x—§pj). (2.3)

So,
R A e  E
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Therefore,
T¢)=5¢,) =1,
And also by letting X =1 in (2.3) we get,
N-1-¢)=TTa-¢))=p.
Proposition 2.30 Let p is a prime number and ¢, be a primitive p’th root of unity

and let F =Q(¢,). Then, for every natural number n which is relatively prime to p

T.0-¢)=p.

Proof. {1,2,3,..., p—l} is a reduced residue system ofmod p. Since n and p are
relatively prime {n,2n,3n,...,(p — l)n} is also a reduced residue system of mod p.
So, for every re {1,2,3,..., p-— 1} there exists je {1,2,3,..., p-— 1} such that
¢,"=¢, and for every 1,1, € {1,2,3,..,p—1} if I, =1, then £, # ¢ ™. Thus,
p-1 . p-1 p-1 ) p-1 :
T.(1-¢")=20-¢,")=21-2¢ "=p-1-2¢, ' =p-1-(-D)=p.
j=l j=1 j=1

2.3 Discriminants, Algebraic Integers and Integral Bases

Definition 2.31 Let R be a commutative ring and A be sub ring of R. Let XxeR be
a root of monic polynomial f with coefficients in A, X is said to be integral over A.
The equation f (X)=0 is said to be equation of integral dependence of x over A. If X
is complex number that is integral over Z , then X is called an algebraic integer.

The subfields of all algebraic numbers in C is denoted by Q and all algebraic
integers in Q is denoted byﬂ .

Definition 2.32 Let F be an algebraic number field. The intersection F A is a
ring which is called the ring of integers in F, denoted by QlF .

So, in any algebraic extension Q(«) of Q, the ring of integers of Q(«) is the set
of elements of Q(«) whose minimal polynomials are in Z[X].

The ring of integers of Q is QlQ= Z.

LetF=Q(+/D) where Dis a square free integer. Then,

1+\/B
2

Z]

~ ] if D=1 (mod 4)

[16].

F
Z[\/D] if D=2 or 3 (mod 4)

Example 2.33 LetF=Q(/7), then 2 =7[J7].

If F=QW13), then 2 =Z[1+\F].
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Definition 2.34 Let F be an algebraic number field and 2~ be the ring of

F
integers of F. A basis for Q[F over Z is called an integral basis for F.

Example 2.35 LetF =Q(/7), then 2 =7[+/7] and an integral basis is {1,ﬁ }

1+\/B
2 }

If F :Q(\/ﬁ ), then QlF =Z[1+\2/E] and an integral basis {1,

Definition 2.36 Let F=Q(a)be an algebraic number field with ‘F:Q‘:d,
B= {0{1,05 ,...,ad}be a basis for F and 6,,6,,...,04 be all embeddings of F inC .

Then, The square of determinant of the matrix A is called the discriminant of the
basis B, where

O()) ... ()
A=l P
O (ag) - Oq(ay)

denoted by disc(B ). So, disc( B ) = det(Hj (ai))z, where det(Hj (ai ))2 is the
square of determinant of the matrix with entry Hj (ai) in i’th row and j’th
column. If B:{l,a,az,...,ad_l} then we have disc(B):det(Hj(ai_l))z. Here,

det(4. (ai_l)) is called Vandermonde determinant and has value (o —a7)
j I<i< j<d J

and so, in this case

disc(B)= TJ (ai—aj)2.
I<i<j<d

Example 2.37 Let F=Q(+/7) . The embeddings of F in C are

6, T A7
and
o, T 7.
So,
B={l/7}
and

11 P
disc(B):det{ J = 28.
N
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Example 2.38 F=Q(+/—3) . The embeddings of F inC are

6,:V-3>+-3
and
0, :N-3 > —/-3.
So,
B={, V3
2
and
1 12
disc(B)=det 14J 3 1-J3 =-3
2 2

Definition 2.39 Let F be an algebraic number field and B be an integral basis for
F. Then, disc(B) is said to be discriminant of F, denoted by A .

Example 2.40 Let F=Q(+/23). Then B={l,/23}is an integral basis for F. So,

11 )
AF =disc(B)=det =92.
23 —/23

Example 2.41 Let F=Q(+/5). Then B={l, 1+f} is an integral basis for F. So,

11 2
AF :dlSC(B)Zdet 1+\/§ 1_\/; =5.
2 2

Note that if F=Q(~/D) where Dis a square free integer, then
D if D=1 (mod4)

AF = B
4D if D=2or3 (mod4).
See [16].

Proposition 2.42 Discriminant of a totally real number field is positive.
Proof. Let F =Q(«) be a totally real number field with the degree of extension d.

Then an integral basis of F is {l,a,az,...,ad_l} . And so,

A-=dise(B)= ] (ai—aj)2>0.
I<i<j<d
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Proposition 2.43 Let F =Q(~/D)where D is a square free integer. F is norm-
Euclidean with Euclidean function f(a)=N E (o) if and only if whenever any

o €F is given there exists ,BteF such that ‘ N = (o-—ﬂ)‘<1 .

Proof. Suppose that F is norm-Euclidean with Euclidean function f(a)=N g(a).
Given any o€k, there is zeZ such that ZGEQ(F . So, o=a/p, where

a,f eQLF . Since F is norm-Euclidean with Euclidean function f (@)= NF (),
there are y,6€Ar such that a=pfy+5, where 5=0 or ‘NF(5)‘<‘NF(/3)‘.

Therefore,
INE(@=B)|=NL(6/B)=N(8)/N(H)<LI.

Conversely, given anyo eF there exists BeAr such that ‘NF(O'— ﬁ)‘<1. Set
o=a/f, forsomea, S ; then ‘NF(é)‘<‘NF(,B)‘ where =a—yf . Thus, F

is norm-Euclidean with Euclidean function f(a)=N g@).

Definition 2.44 Let F < C be a field and f(x) e F[x] with deg (f)=d > 1 such
that

d
f(x)=a][(x-¢,), aeFande,,q,,...a, €C.
i=1
Then the product a*~ [] (a, —a,)’ is called discriminant of f, denoted by disc(f).
I<i<j<d
Note that if F=Q(«) and B be an integral basis for f, then disc (m, ) = disc (B)
see [2].

Example 2.45 Let o = £, be primitive third root of unity. Consider F =Q({,).
One can check that m_ (X) =X +x+1=(x-¢,)(x=¢,") . So,

disc(m,o)= ] (£'=¢.)) =({, <) =47 -2+, (2.4)

I<i<j<2
Since £+, +1=0, we have £, +¢, =—1. If we put this value in (2.4), then

we get
disc (m, 4 ) =-3.

In generally, if F =Q({,) where a = ¢ be primitive p’th root of unity for odd
prime p. Then,

m,o00=3X =[1(x-¢,).

and

dise (m,g)= [ (¢,'=¢,)=(=D"""p"* [2.

I<i<j<p-1



Theorem 2.46 Let F=Q(«) be an algebraic number field of degree d over Q
and «,,0,,...,a, be conjugates of a over Q. Then,

d
2

dise (m, ) = (DT gfa)= 0N g,

where m’__ is derivative of m_

Q Q-

d

d
Proof. m_,(x)= ﬁ(x —a).So, m' ()= [[(x-a).
i=1 k=l =1
ik
Therefore,
d
m/a,Q(ak) = l:l(ak _ai) 5
2k

forallk=1,2,3,...,d. So,
d
NF(m/a,Q(a)) zl:llm/a,Q(ai) :] H (ai _ak) H (ai _ak) >

<i<k<d 1<i<k<d

d
Since there are [ J pairs of ( 1,k ) with 1<i<k <d , we have
2

N, @) =D T (e -

I<i<k<d

On the other hand, by definition 2.44 we have,
disc (ma,Q) = H (ai _ak)z .

1<i<k<d

Thus. combining last two results, one gets
d
2

dise (m, )= DI, g(@)= DN, (' o(@).

Example 2.47 Let F =Q(§/7 ). There are 3 embeddings of F inC which are

6’1:3/5—>i/3,
0,:2 >¢ 2
0,:32>¢2,

where ¢, is the primitive third root of unity. On the other hand,
My, (0= x*-2 and m/ym(x) =3x>.
Thus, by Theorem 2.46
disc (m,; )= 1 N.(m' . 2)=-3R2)"3(£,¥2)"3(,V2)* =-108.
Corollary 2.48 Let F =Q(c) be an algebraic number field and m_ , (x) be the

minimal polynomial & over Q. Then,
disc (m, o) =+ N (m'_ ().

and

Proof. Let deg (m,, ) = d. By Theorem 2.46



dise (m, )= (DN, (M, o(@).
Ifd=0or1(mod4), then
disc (M, o) =+N.(m', 4(a)).
If d =2 or 3 (mod 4), then
disc (m, o) =-N.(m'_,(@)).
Thus,
disc (m, o) =+ N (M ().

Proposition 2.49 Let F be an algebraic number field with 2. =Z[«]. Then,
A =disc (m, ).

Proof. Let degree of extension of F over Q be d . Since U, =Z[«],
B= {1,0{,0{2,...,05"'1 } be integral basis for F. So,
disc (B)=disc(m,_ ).
Thus,
A =disc (m, ).

19
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CHAPTER 3

THEORY OF DOMAINS

If R is a commutative ring with unity and without zero-divisor, then such a
ring is called a domain. Throughout the study, R will denote a domain unless the
converse is stated. U(R) will denote unit group. Prior to talk about a factorization
in a domain, first of all, we need several concepts. Now let us define them.

Definition 3.1 Let a and b be non-zero elements of the domain R. We say that a
divides b and denoted by a| b if there exists an element ¢ in R such thatb = a c.

Proposition 3.2 Let ueR. ueU(R) if and only if ul 1.

Prof. Let ueU(R) then 3 veR such that u.v=1 so ul 1. Conversely, let u| 1 then by
Definition 1.1 we write 1= u.r for some reR, so ueU(R).

Corollary 3.3 For all reR , ueU(R)
illr,
iiyulrand

iii)in a field F there is no division problem (any non-zero elements divide each
other).

Definition 3.4 Let a, beR. b is said to be associate of a if there exists UeR such
that b=au.

Proposition 3.5 The relation of being associate in R is an equivalence relation.
(forr,seR r~s < s=r.u for some ueU(R))
Prof. i)Forall reR, we have r=rx1.So, ~isreflexive.
il) Let r ~ s in R, then for some ue U(R) we write
s=r.u= r=s.u"since ueU(R). So, ~is symmetric.
iil) Letr ~s and s ~t in R, then for some u,veU(R) we write
S=ru . ..
(= S.V} = t=(r.u)v=r.(uv), for uveU(R). So, ~ is transitive.

Consequently, since the relation is equivalence relation, we can say that a
and b are associates in R .
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Proposition 3.6 a and b are non-zero associates in R if and only if al b and
bla.

Proof. (=)Let a and b be associate in R . Then we write b = au and a = bv for
some uyveU(R)soalbandb]a.

(<) For abeR let alb and b|a. We have b = a.s and a = b.t for some
s,teR. Then, b = a.s= (b.t).s=b.(ts) =b.(1-t5)=0. Since b is non-zero, st=1. So,
s,teU(R). Thus, a and b are associate.

Definition 3.7 A non-zero clement a of an integral domain R is called an
irreducible element if i) agU(R) and ii)) a=bc implies either be U(R) or

ceU(R), for b,ceR.

Definition 3.8 A non-zero element p of an integral domain R is called a prime
element if

1) peU(R) and ii) p|bC implies either p|b or p|C, for b,ceR.

3.1 Unique Factorization Domain (UFD)

Definition 3.9 A domain R is called a Unique Factorization Domain (in short, a
UFD) if the following two conditions hold :

1) Every nonunit of R is a finite product of irreducible factors.

il) Every irreducible element is prime

Theorem 3.10 If R is a UFD, then the factorization of any e¢lement in R as a
finite product of irreducible factors is a unique within order and unit factors.

Proof. Assume that R is UFD. Let a be an element of R, p,p,...p, and q,0,...q,,
be two factorizations of a, in which p,’s and Q;’s are irreducible. We have to
prove that m=n and in one arrangement of Q,’s p,and ¢, are associates for
every i = 1,2,3,....,n. For this purpose we are going to use induction.

Every thing is obvious if a is irreducible. Assume that it is true if @ can be
factored into s irreducible factors. That is, if p,p,...p, and q,q,...q, be two

factorizations of a, in which p,’s and ¢, ’s are irreducible, then m =S and in one
arrangement of g,’s p,and ¢, are associates for every i = 1,2,3.....5. Now suppose
that, a can be factored into s + 1 irreducible factors. Let

a= p;PyPsy = 4,94y (3.1)
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where p;’s and Q;’s are irreducible. We have that p, divides the product
q,9,...9,,. Since p,prime , p, divides g, for some ke{1,2,3,...,m}. But q,1s
irreducible so p, andq, are associates. Therefore, g, = up, for some unit element

of R . After substitution up, instead of g, and cancellation, (3.1) gives

P, P5.--Psy = UQ,Q,...0, sy Uy (3.2)

Thus, by induction hypothesis, two factorizations in (3.2) can differ only in the
order of factors and by unit factors. We know that p, and g, are not unit factors,

this completes the proof.

Definition 3.11 An clement d in an integral domain R is called a greatest
common divisor of elements a and b in R if the following two conditions hold:

i) d|a and db,

ii) if for ¢ in R, c|a and C|b implies C|d.

Theorem 3.12 Let R be a UFD and a,beR. Then there exists a greatest common
divisor of a and b that is uniquely determined to within an arbitrary unit factor.

Proof. Let a=p,* p,”...p," and b=p,"p,"..p,", where p, are irreducible,

n n

. . 0 .
e;’s and f,’s are nonnegative integers; here by p,” we mean a unit. Set
9,

g, =min(e,, f,) foralli=1,2,..,nand d = p,* p,%...p

n

Clearly, d divides a and d divides b. Let ¢c=p,"p,”...p," where h s are
nonnegative integers, such that ¢ divides a and ¢ divides b. Obviously, h, <e, and

h < f,

for every i = 1,2,...,n; implying that h, < g, for every i = 1,2,...,n. Then, ¢ divides
d as desired.

Now, suppose d and d’ are two greatest common divisor. Then, d divides
d and d divides d.

Since R is commutative integral domain, d and d are associates which
completes the proof.

The uniquely determined greatest common divisor of a and b is denoted by
(@, b). (a, b) is a set in which any two elements are associates. That is, if d is one
of the greatest common divisor of @ and b, then (a, b) ={ du : ueU(R)}.

Definition 3.13 In a UFD, two elements a and b are called relatively prime if
(a, b)=1.
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Proposition 3.14 Let R be a domain and a, b, ceR. Then the following properties
hold:
i) c(a, b) and (ca, cb) are associates

ii) if (a, b)=1, alc and b|c then ablc.
iii) if (a, b)=1, aloc then alc.

iv) if (a, b)=1 and (a, ¢)=1 then (a, bc)=1.
V) (a, b)=1<(@", b"=1, for all positive integer n.

Proof.
i) Let (&, b) = d and (ca, ch) = e. We want to show that e = dx, for some

xeU(R).
(a,b)=d = dja and dfp
= cd|ca and cd|ch
= cd|(a,b) (3.3)
= cd|e
=e=(cd)x, (xeR)

On the other hand,

eca] ca=eu
(ca,ch)=e= = for some u,ve R.
e|cb cb=ev

(3.4)
By (3.3) and (3.4) we obtain
ca=eu = ca=(cdx)u
=c(a—-dxu)=0 (3.5)
= a=dxu.
cb =ev = cb = (cdx)v
= c(b—dxv)=0 (3.6)
= b =dxv.
If we combine (3.5) and (3.6) we have
(dx)ja and (dx)b = (dx)|(a,b)=d
=d=(dx)z, (zeR)
=d(l-xy)=0
= Xxy=1
= X,y € U(R).



i) (a,b)=1=ax+by=1
alc = c=au for some X,y,u,veR.
blc = c=bhv

That’s why we get
c=c.1=c(ax)+c(by)
=(bv)(ax)+(au)(by)
=ab(vx+uy)
= ab(vx+uy)
So, (ab)|c, Since vx+uyeR

i) (a,b)=1=ax+by=1

forsome X,y,zeR.
aoc = bc=az } y

Therefore we have
c=c.1=c(ax+by)
=(ca)x+(ch)y
=a(cxX)+(az)y
=a(cx+zy)
So, ajc, Since cx+zyeR

Iv) (a,b)=1=ax+by=1
(a,c)=1=au+cv=1

1=(ax+by)(au+cv)

}for some X,Y,U,veR.And so,
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= (ax-+by)au+(ax+by)cv
=a(ax+by)u+ax(cv)+(be)(yv)
=a[ (ax+by)u+x(cv) |+be(yv)

Thus, (a,bc)=1, Since (ax+by)u+x(cv),yveR

3.2 Principle Ideal Domain (PID)

Definition 3.15 Let R be a domain. R is called Principle Ideal Domain if each
ideal of R is generated by a single element in R, i.e. for each ideal I=(a)=aR,

(aeR).

Theorem 3.16 An irreducible element in a principle ideal domain is always

prime.
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Proof. Let R be a PID and let peR be an irreducible element. Assume that for
a,beR p|ab. Suppose p does not divide a, then we will show that p|b. Since R is

a PID, there exist € €R such that
PR +aR =cR.

So p ecR, which means p = cd, for some d € R. But because of irreducibility of
p, there are two cases, either c e U(R) ord e U (R).

Claim : Suppose d € U (R).Then we have pR = cR which implies
PR +cR = pR.

This means that a € pR, which contradicts the assumption p does not divide a.
Hence, ¢ €U (R). That’s why, cCR=R which implies pR +aR = R. Then there
exist X,y € R such that

px+ay =1= (px)b+(ab)y =b= p(bx)+(pz)=b, (p|ab=>ab=pz, peR).
Therefore p|b.

Theorem 3.17 Every PID is a UFD.
Proof. First of all, let us show the following claim

Claim 1) If R is a principle ideal ring, then R can not have any infinite
properly ascending chain of ideals in R.

Let A= UaiRand a,b e A, r e R.Then we can writea € 3,R, b e a;R for
some natural numbers i, J. Since either a,R < a;R ora;Rc R, a,bmust be

contained one of these two ideals. Let us say a,b € a,R. So we have
a—-b,areaRcA.

Hence, A is an ideal in R. Since R is a principle ideal domain,
A=aR forsome aeR. Thus, ac€ A= aeaR forsome natural number k. For

this reason,
A=aRcaRcA=aR=aR=>aR=4a,,,R=4a,,R=..

Consequently, this proves that a principle ideal ring can not have any infinite
properly ascending chain of ideals.

Claim 2) each element @ € R can be written as a finite product of
irreducible elements.

If a is irreducible, then we are done. If not, we write a=Dbc, where
a,b U (R). If b, ¢ are irreducible, then we are done. If not, one of them (say b)
can be written as a product of two non-unit elements. That is, b =xy, where
X,y ¢ U(R). If X, y are irreducible, then we are done. If not, one of them (say X)
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can be written as a product of two non-unit elements. This process leads to
properly ascending chain ideals

@=0)=0=..

that will continue infinitely if @ is not a finite product of irreducible elements. Yet,
in Claim1 we have shown that R has such property. That’s why, a must be written
as a finite product of irreducible elements.

By Theorem 3.16, since every irreducible element in a PID is prime, any PID
is a UFD.

3.3 Euclidean Domain (EUD)

Definition 3.18 A domain E is called a Euclidean domain if there exists a function
¢ : E — Z satisfying the following axioms:

i)Ifa,b e E* = E—{0} andb

a, then 4(b) < 4(a)

il) for each pair of elements a,be E,b#0, 3 q,r € E suchthata=bq+r
then

$(r) < $(b).

Some well-known Euclidean domains are ring of integers and polynomial rings
over a field. If we define ¢(n):|n| (neZ), Z becomes Euclidean domain.

Similarly, If we define¢g: F [X] —Z as ¢(f)= degree of f,( for non-zerof e F [X])

and ¢(0)=-1, then F[X] turns out Euclidean domain. Now, let us give less-
known two Euclidean domains.

Proposition 3.19 Gaussian Integers (Z[i]={a =a+bi:a,b € Z}) is a Euclidean
domain.

Proof. Let us define a function from Gaussian Integers to Z as follows
¢ 2| ——Z
a+bi—a?+b?
First of all, let us observe ¢ is multiplicative. Forany a =a+bi,f=c+die Z[i]
#(aff) = gp((a+bi)(c+di)) = g((ac —bd) + (ad + bc)i)

=(ac—bd)* +(ad + bc)*

=(ac)’ +(bd)* +(ad)’ + (bc)

=a’(c® +d)> +b*(c*+d?)

= ¢(a+bi)g(c+di)
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= P(a)p(f) . (3.7)

There are two cases for non-zero «, f € Z[i], either ﬂ|a. or £ doesn’t divide « .

i)Let us assume that for non zero o, f € 7Z, ,B|a. Then we write

a = fy, forsome y € Z]i]

a)=9(br)
=9(P(y), (by (3.7)
2¢(f).1

S0,(B)<p(a),

ii) Now let us assume /8 does not divide & . Then = € Q(i) not in zi].

C D
-
* 1
: T
3 L * -
a7 r
g 1 . *
]
1 2 ... |
A 1 1 B
] ]

Figure 3.1 lllustrated lattice diagram for Zz]i]

If we choose the shortest corner m+ni eZ[i], then

%:(m+ni)+(p+qi), where p,qe@Q, such that

1
<—.
P[4 ;

b

Thus if we choose (m+ ni) as a quotient then the remainderis p =a —(M+ni)f .
Now, let us check the value of p.

#(p) = pa — (M +ni)B)
= $((p+0i)B)
= $(B)p(p +ai)
=$(B)(p* +0%)
<g(B)L
<@(p).
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Proposition 3.20 Z[\/2 ]:{a:a+ b2 :a,beZ} is a Euclidean domain.

Proof. Let us define a function from Z[\/z]:{a:a+b\/§ :a,beZ}to Z as

follows
$:ZN2——Z
a+b\/3—>‘a2—2b2‘
First of all, let us observe ¢ is multiplicative, too . For any

a=a+bVy2,B=c+dv2 eZ[2]
d(af) = p((a+bv2)(c+d~2)) = g((ac + 2bd ) + (ad +bc)v/2)

=|(ac+2bd)? —2(ad + bc)Z‘
—|(ac)? + 4(bd)* — 2(ad)> —2(bc)2‘

—la%(c? —2d?) +2(2d> —cz)‘

=|a? —2b2Hc2 —2d2‘

= g(a+bV2)g(c+d2)
=Pd(a)p(f). (3.8)

There are two cases for non-zero «,f EZ[\/E }, either ﬂ|a. or £ does not
divide o .

I)Let us assume that for non zero «, f € Z, f|la. Then we write

a = Py, forsome y € Z[\/E}

Ha)=¢By)
=9(B)g(y), by (3.8))
>9(B).1

S0.4(B) <),

i) Now let us assume S does not divide « . Then % € Q(\/E ) not in Z[\/E } .
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ny2
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// 3+4j% D/I c
e ot MY Ay

o g S

» Y
/ 1 2 3 4 5B 3y o 1 = <
Figure 3.2 Illustrated lattice diagram for Z[\/ﬂ
If we choose the shortest corner (m+ 2 )e Z[\/E } , then
%=(m+n\/5)+(p+q\/3), where p,q € Q, such that [p|, q| S%.

Thus if we choose (m + 2 ) as a quotient then the remainder
sp=a—-(Mm+ n\/E)ﬁ. Now, let us check the value of p.

(p)=la—(M+m2)p)
= ¢((p+av2)B)
= ¢(B)p(p +UN2)
= 4(8)p” -20°|
<g(B)(P* +29°)
<p(p).2

80,¢(p) < ()

Theorem 3.21 Every Euclidean domain is a PID.

Proof. Let R be a Euclidean domain and | be its non-zero ideal. Since for all
ael,g(l)<¢(a), Then we have

g)<{p@):0+aecl}cZ.

Because of the principle of well-ordering of Z, there exists C € | such that the
smallest of this set is ¢(c). That is

#(c) < ¢(a), Vae | —{0} (3.9)

Claim : 1 =(c) Since R is a Euclidean domain, if ael = a=cq+r, for
some (,r € R. If we assume that r #0then we say@(r) < #(c). On the other
hand, since r=a—-cqel,

by (3.9) we get ¢(C) < ¢(r) < ¢(c) a contradiction. So, r =0. Thus, | =(c).
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Proposition 3.22 Let o = a+byJD e Z[\/B] where D is a square free integer. If
a>—b>D =+1, then « is unitin Z[~D].

Proof. a = a+b\/3 IS Z[\/B] implies a = a—b\/B S Z[\/B]. Since
a’-b’D=aa *1
o is an inverse of « in Z[\/B]. So, « is unit in Z[\/B].

Proposition 3.23 Let a = a+bJD e Z[\/B] where D is a square free integer. If
|a2 —b2D| is prime, then « is irreducible in Z[\/B ].

Proof. Assume that & = g, 4, for some £, 5, € Z[\/B ]. Then,
IN(@)|=|N(B)|[NBY|=p,

where p is prime. So, either |N(ﬂ1)| or |N(ﬁ2)| is 1. Thus, by proposition 3.20,

either 3, or S, is unitin Z[v/D], implying that e is irreducible in Z[</D].

Proposition 3.24 Let « = a+bi e Z[i].a* +b” is prime in Z if and only if
a is prime in Z[i].

Proof. If a® +b? is prime in Z, by Proposition 3.23 ¢ is irreducible in Z[i]. On
the other hand, by Proposition 3.19 ZJ[i] is a EUD and by Theorem 3.21 it is PID.
So, by Theorem 3.16 « is prime in Z[i].

Conversely assume that o is prime in Z[i], it follows immediately that

ged(a,b) = 1. Let a>+b? = pn where p is prime and neN. So, p divides neither

a nor b. But then, either a+bi or a—bi divides p; since otherwisea” +b? divides
n which means p(n/(a’+b?)=1, a contradiction. Without loss of generality
suppose that a+bi divides p. Thus,

p=(a+bi)c+di)=ac—bd +(ad +bc)i, for some c,d €Z. (3.9

By comparing coefficients in (3.9) we get

ac—bd=p (3.10)
and
ad+bc=0. (3.11)

Multiplying (3.10) by ¢ and adding the result to d times (3.11) yields

a(c’+d?)=pc. (3.12)
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Since p does not divide a, (3.12) implies a divides c. If ged (c,d) = p, (3,9)
requires 1= (a+bi)(c/ p+id/p)=a(c/ p+id/p), forcing « to be unit in Z[i], a
contradiction with primality of & in Z[i]. So, ged (c,d) = 1, which implies C

divides a. Hence ¢ =a. Similarly, d =b. Thus, a’ +b* = p.

3.4 Polynomial Rings over UFD

First of all, let us remember polynomial rings. Let R be a ring, then the
set R[x]={f(x):f(x)=a,+ax+a,x*+..+aXx";a eR,neN}, where X is an
indeterminate. The set 1is a ring under the sum and the product of two

polynomials. Here, n is called degree of fand a, is called leading coefficient of
f.

Let R be a ring let S=R[X] be a polynomial ring over R. If we start with S
and the construct the polynomial ring S[y] over S in indeterminate y, then S[y] is
called a polynomial ring in two variables X,y over R. We write this ring as R[X,y].
It follows from the definition that R[X,y]= R[Y,X]. A typical element of R[X,y] is of
the form

- Zaijxiyj,aijER.

m
i=0 j=0

Theorem 3.25 Let R[X] be a polynomial ring over a domain R. Let
f(x) and g(x) be non-zero polynomial of R[X] of degree n and m respectively.

Let k = max{m—-n+1,0} and let ‘@’ be the leading coefficient of g(x). Then there
exist unique polynomials g(x) and r(x)in R[x] such that

a“f () =q(0g(0) +1(x),
where r(x)=0, or r(x) has degree less than the degree of g(x).

Proof. If m <n, we take q(x)=0 and r(x)=f(x). Hence, let m > n and k=m-n+1.
We prove the theorem by induction on m. We assume that it is true for all
polynomials of degree < m, and we prove it for polynomials of degree m.

Now the polynomial af (x) —bx™".g(x)has degree at most m-1, where b
is the leading coefficient of f. By induction hypothesis there exist polynomials
q; (X) and r; (X) such that

a™ D" @af (x) —bx™ " g(x)) = 4, (X)g(X) + 1 (X) .
Then
akf (x) = (ba™"x™ " +q;(x))g(x) + 1 (x),
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as desired. Uniqueness follows immediately.

In order to show that polynomial rings over a UFD are UFD, too. To do
this we need some preliminaries.

Definition 3.26 Let R be a UFD. Then f(x)e R[x] is called primitive if the
greatest common divisor of its coefficients is a unit.

Corollary 3.27 For any nonzero f(X)e R[X] can be written in the form
f(x) =cf;(X), where c is the greatest common divisor of the coefficients of f(x)
and f,(x) is primitive.

Definition 3.28 Let R be a UFD and0 # f(x) e R[x]. If we write f(x) = cf,(x),
where f;(x) is primitive, then ‘C’ is called content of f and denoted by c(f).

Corollary 3.29 For any nonzero f(x) e R[X], f(X) is a primitive if and only if c(f)
is a unit.

Lemma 3.30 (Gauss) If f(x),g(x) € R[x], then c(fg)=c(f)c(g). In particular, the
product of two primitive polynomials is primitive.

Proof. Let c =c(f) and d =c(g), then we write f (X) = cf;(x) and g(x) = dg,(X)
where f;(X)and g;(X) are primitive. Since f(x)g(x) = (cf,(x))(dg,(X)), we need
to prove that f;(X)g;(X)is primitive. Assume that f;(x)g;(X) is not primitive and
let p be an irreducible element of R that divides all the coefficients of f;(X)g;(X).

If  f,(x)=> ax' andg;(x)= > b;jx} (a;,b; €R). Let agb; be the first
coefficients of f;(X)g;(X), respectively, that is not divisible by p. The coefficient
of x*"lin f,(x)g,(x) is

ot ag by Faghy +ag b+

Since R is a UFD, pfash,. Therefore we obtained a contradiction. Hence,
f(X)g;(X) is primitive.

Theorem 3.31 Let R be a UFD. Then The polynomial ring R[x] over R is also a
UFD [10].
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3.5 Construction of Counterexamples

Example 3.32 An irreducible element may not be prime in a domain.

Let R:Z[i\/g} and @ =2+i5,8=2—-iV/5,7 =3 e R. Now let us
consider norms of these elements :
N(x)=N(f)=N(y)=9. If a,pf,y were reducible, then there could be a non-
unit 5 € R such that N(8)9 properly, i.e., N(6)=3=a” +5b> =3inZ. There

is no such solution. That’s why, «,f,y are irreducible elements. Now, let us
demonstrate that they are not prime.

aff =2 +iV5)2-i5)=9=33=y2 = a|y’.

Does this case imply 0{|}/ ?

If we have an affirmative answer, we can write y = ad, for some 6 € R, which

means

3 2405
2405 3

¢R.

y=Q+i5)6=6=

Thus, « is not a prime element.

Consequently we have shown that in an arbitrary domain an irreducible
element may not be prime.

Example 3.33 Every element can not be factorized uniquely in a domain.

Let R:Z[i\/gJ and a=2+i\/§,ﬂ=2—i\/§,7=3€R again. In the

previous example we have seen that «, 3,y are irreducible elements. 9 € R has
two different factorizations as follows:

9=33=2+iV5)2-iV5)=y* =ap
where a, f,y are irreducible elements.

Example 3.34 In a domain the greatest common divisor may not exist.

Let R:Z[i\/g} and a=4,ﬂ:2+2i\/§e R . First of all, let us write

down the divisors of « and £ :

5‘05:»5:11, +2, +(1+i/3), +4 and

5‘,B:>5:i1, +2, +(1£iV3), £2(1+1V/3).

So common divisors of « and S are
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+1, £2, +(1£i/3).
If we exclude units of R=U (Z[i\/g }) = {t1}, then the common divisors are

2, 1+iy/3 and 1—i/3.

Now let us check if there is a greatest common divisor. By definition 3.10

i) 2 cannotbe a g.c.d since
(1£iV3)er and (1£i3)| = (1£iV3)|(a. B)
= (1£iV3)2
=2=(1+i/3)8, (§eR)
=0= 2
1+i3
=0 = 11;\/5.

i) neither 1—i+/3 nor 1+iv/3 cannotbe a g.c.d since
2l and 2|8 = 2|(a, B)

(1%i/3)
= (1+i/3) =265, (5 €R)
lii\/g

.

=2

=0 =

As aresult o and f have a few common divisors but they haven’t any g.c.d.

Example 3.35 UFD may not be PID.

Let us consider the polynomial ring R = F[X, y] over a field F in two
variables; X and y. Then by Theorem 3.28, R is a UFD. On the other hand, The
ideal A=(X)+(y)inF [X, y] can not be of the form ( f(x, y)) for any polynomial
f(x,y) € F[x,y], Since

)+ (y)=(f(x,y) = x=cf(x,y)and y =df (x,Y),
where c,d are non-zero constants in F. It means that

5=l:dx—cy=0,
c d
which contradicts with independency of the variables X and y. So, F[X, y] isnot a

PID.



Example 3.36 PID may not a EUD.

R={a+ %(1 ++=19):a,beZ }is a PID but not EUD. But demonstration

needs tedious computations. For proof see [17] .

DOMAINS

(UNIQUE FACTORIZATON DOMAIN |

EUCLIDEAN

DOLIATNE

Figure 3.3 Containing- relations between domains
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CHAPTER 4

ESSENTIALS OF QUADRATIC AND
CYCLOTOMIC FIELDS

4.1 Quadratic Fields

Definition 3.1 Let F =Q(«/ D) where D is a square free integer. Then, F is said to
be a quadratic extension of Q. Obviously, degree of extension of a quadratic field
is 2.

We have already learned many things about quadratic fields in Chapter 2.We

completely determined the ring of integers QLF , and the discriminant A, for any
quadratic field F.

Theorem 4.2 (No More Complex Quadratic Euclidean Domains) Let F be a
complex quadratic field with discriminant A_ < —12, then Q(F is not a Euclidean

domain.

Proof. Assume f be a Euclidean function on %A . Suppose that a € 2 is a

nonzero, nonunit element such that f (o ) is minimal. This means that for any
pe Ape, there is a y e A such that f-ay = 6=0, £1, since either 6= 0 or

f(0) <f(a),

A /<a>‘£3. Therefore,
Nr(o) < 3. (4.1)

If A.=0 (mod 4) . In this case, o.=a+b~/D fora, be Z, where D= 4./ 4
is the radicand of F . Thus, by Equation (4.1),

Ne(a)=a’-b’D < 3.

On the other hand, 4. <-12 implies -D >3 .. Hence, for o # 0, £ 1, a’—b*D >3,
which is a contradiction.
If A =1 (mod 4). In this case, a.=(a+b~+/D)/2fora, be Z.Ifboth ab

are even, then for a # 0, + 1, we get 3 < (a / 2)* — D(b/2)* — D(b/2)* < 3, so
D =A_= -3, contradicting the hypothesis of the theorem. So, we assume that both

aand b are odd. And so,(a>—b’D)/4 < 3. Hence, foraa=0, * 1,
12<a’+11b*<a’—b* A =a*-b’D< 12,

which is a contradiction. Therefore, QlF is not a Euclidean domain.
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Theorem 4.2 demonstrates that all Euclidean complex quadratic fields are
necessarily norm - Euclidean. However, there are known to exist Euclidean real
quadratic fields that are not norm - Euclidean. Also, there are known to exist
exactly sixteen real quadratic fields that are norm - Euclidean. These are the fields

QD) where
De{23,56,7,11,13,17,19, 21, 29, 33, 37, 41, 55, 73}  [6].

Theorem 4.3 (Some Norm — Euclidean Real Quadratic Fields)
IfD € {2,3,5,6,7,13,17, 21,29}, then F =Q(\/E) is norm -Euclidean.
Proof. Let

2 if D=1 (mod 4),
g:
1 if D=2 or3 (mod 4),

and one can easily observe that any o € F can be written as

o*=r1+(r2/g)\/3,
where 1€ Q.

By Proposition 2.43 we have for any
o=1+(ry/&W D, for 1,r,eQ
there exists a
B=(x+yD)/seUr , where X,yeZ

such that
INk(o—B)|=|(r1—x/ &) —(r,—y)’D/ & <1. 4.2)

Assume that Equation (4.2) fails for some r 1 €Q andx,yeZ .Without loss of

generality we may suppose that 0 < r; <1/2, for j=1,2.To prove this; first,
forj=1,2 we set,

[rj] ifOSrj—[rj]SI/z,
Z.=
Volrpetif 12— [r121/2,

where [r;] is the greatest integer less than or equal to rj. Let X = £2; + §X;, and
y = 2o+ &Y, for any integers Xi, Y1, where §=11f z;=[rj] and §=-1
otherwise for j=1,2. Thus,

|(ri=x/ ey —(r—y)’D/ | (s1-x1/ €)= (s2—-y1)’ D/ &7,
for any Xl,yleZ., where 0<sj=|r —z|<1/2. j=1.2.

Thus ,without loss of generality we may suppose that 0 <r; <1/2, for j=1,2.



38

So, for all x,yeZ, one of the following inequalities must hold for some
0<r<172, j=12,

(n—-x/e)Y=1+(rn-y?>D/¢&?, (4.3)
or
(t—-y)’D/ /214 @ —x/ ¢) (4.4)

If rj=0 for j = 1,2, then (4.3) and (4.4) both fail for x=0=Yy. Thus, at least one
of the rj is nonzero. Therefore, if X=0=y, orx=1, and y =0, then (3.3) fails
to hold. Thus, by (3.4) both

2 2
r D/e?>1+ N 4.5)
and
r22 D/&221+(r,~1/£)? (4.6)

hold. If x=—¢, y=0, and (4.3) holds, then

(41022141, D/e? 22+ (r —1/€)* 2 2+(r, ~1)’ (4.7)

Hence 2r1 > 1, from which r; =1/2.
Thus, from (4.7),

(1/2+1)221+r22D/8222+(r1—1/5)222+(1/2—1)2,
which implies rlzD/ g2=5/4 .Let r, =ab, where a,beZ are relatively prime.

If €=1, then 4a’ D =5b? soa’|5. Thus, a= 1. Since D is square free, then b
=2, s0 np="%, and D =15, which is on the list.

If £=2, then a’D=5b% soa=b=1 is forced, contradicting that r, <1/2.
Therefore, when x=—-¢, and y =0, (4.3) cannot hold, unless D = 5 (in which

case (4.3) becomes an equality). Therefore, we may assume that (4.4) holds in this
case, namely

r°D/221+(r -1 22.

Since r o1 4, hen the last inequality implies that D > 8 £°.

Hence, if D < 8¢?, then F is norm — Euclidean. For D = 1 (mod 4), this means
that D <32, and if D #1 (mod 4), then D < 8. This yields the values of D listed
in the statement of the theorem.



39

Theorem 4.4 (Finitely Many Norm — Euclidean Quadratic Fields)

Let, F=Q(/D), where D > 0 and is a square free integer , and A.= 0 (mod 4),
then the number of such fields that are norm — Euclidean is finite in number.

Proof. Let F be a norm — Euclidean field of the given type. By proposition 2.43,
there exists X+ y\/B € Z[\/B ]such that for any t e Z,

X*—~D(y—t/D)y} <1.

which implies,
IDx* — (Dy — t)’| < D.

Since
(Dy —t)* — DX* = t* (mod D),

there exist X,z eZ such that
x> —Dx*=t* (mod D), and | z2—Dx*| <D. (4.8)
Assume D = 3 (mod 4).

Let t =2[(+/ 6D —1)/2]+1.0ne can easily verify that for D > 88,
5D <t*<6D.
Therefore, by (4.8), either 2 — Dx* = t* — 5D, or 2> — Dx* =t — 6D. Therefore,

DG -x)=t"—7*, or D(6 X*) =t —7". (4.9)

Assume that D =2 (mod 4).

Lett= 2[(\/3_D —1)/2]+1. Again, one can easily verify that if D > 40, then
2D <t*<3D.
So, by (4.8) , as above,
DR-x)=t"—x*, or DB -x)=t"—x*. (4.10)

By some number theoretical manipulations it can be proven that Equations (4.9)
and (4.10) are impossible. Hence, for sufficiently large D with A= 0 (mod 4),

we have that F cannot be norm-Euclidean.
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Example 4.5 Let’s prove that Q(+/23) is not norm-Euclidean.
IfD=23,r =0 and r, =7/23; then ( 3.2 ) becomes

|23x* = (7-23y)*| < 23.
Since 23x* —(7-23y)* =-3 (mod 23), we have

23x* —(7-23y)* =-3 0r 20. (4.11)
Let z=7-23y, then (11) becomes 23x* —z* =-3 or 20.
If 23x* —z” =3, then neither X nor z is divisible by 3. So, x2=z2=1 (mod3),
implying that 23—1=0 (mod 3) which is a contradiction.
If 23X2 - Z2 =20, then neither X nor z is divisible by 5. So, x2=72=+1 (mod 5),
implying that 20=23x2-72=1,2,30r 4 (mod 5) which is again a contradiction.
Therefore, there is no solution for equation (4.11). Thus, Q(+/23) is not norm-
Euclidean

4.2 Cyclotomic Fields

Definition 3.6 Let n be a natural number and {j,be primitive n’th root of unity.
The extension field Q(Sp) is called the n’th cyclotomic field.
The ring of integers the n’th cyclotomic field is Z[{p]. Namely,

if F=Q(&n) . then Q[F=Z[§n] [7].

Definition 4.6 (Cyclotomic Polynomials) Let ne Nand £, be primitive n’th root
of unity. Then, the polynomial

o= [ (x-{nd)
ged(n, j)=1

I<j<n
is called the n’th cyclotomic polynomial . The degree of @(X) is ¢(n)

where ¢(n) =n1(1 —L) . B ’s are prime divisors of n.
b

Theorem 4.7 (Irreducibility of the Cyclotomic Polynomial) For any ne N

@, (X) = an,Q(X)

where ¢, be primitive n’th root of unity. So @, (X) is irreducible in Z[X].

Proof. Let us prove first that @, (x) € Z[X]. We use induction on n.
If n=1 @ (x)=Xx-1 € Z[X]. Assume that @k (X) € Z[x] for all k <n. Now we

have
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xn—l

f(x)
where, by induction hypothesis, f (X) € Z[x] is a monic polynomial. So, by
dividing out we have @&, (X) € Z[X].
Also, m ‘ Q(X) € Z[X]since all powers of (', are integral overZ .
n-

Dn(X)=

Claim: m . (én }Y=0 foranyje Z such that ged (j, n) = 1,
n»
Proof. We first prove the result for a prime j = p which does not divide n. Since

n

X —lzmgn’Q(x)f(x),

for some f(X) € Z[x], we may let the image of X" — 1 under the natural map
Z[X] > (Z/pZ)IX]
be given by the bar notation

X" T =mgn, QOO F ().
Since
N n-1 ; n-1 j
xN-n/(x-)= ¥ xI=1(x-¢"),
i=0 J—l n
and setting X =1

Since p does not divide n, we have

- n-1 j
n=T1101-¢ 7).
=1

Thus, g“rj];ti forany j=1,2,...,n-1. Hence {rj];t (:1 for any such i#j, so
the roots of X" — 1 are distinct in (Z /pZ)[x]. Hence, m¢p,Q(x)and ?(X) have

no common roots. Assume méun Q(g”s) #0, then f(;np):o, SO T(g”np)=0.

Hence, using the Binomial Theorem ?({n)p :6, SO ?(g”n)zﬁ.Therefore,

mén, Q< n);tOwhich contradicts with m Q(§ )=0.Thus, claim is true for
n-

4

prime j = p which does not divide n.
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On the other hand, if j is a product of primes each of which does not divide n,

then ¢ J is also a root of m Q(x) which means claim is true for any
n >

¢n
je Z such that gcd (j, n) = 1.Hence,

@, (X) divides mé,n,Q(X) . (4.12)
So,
deg(@p (x) )< deg( mé,n’Q(X) ). (4.13)
Since ¢ is a root of @, (X) , minimality of m £nQ (X) implies
deg(@p (X)) = deg( an,Q(X) ). (4.14)
(4.13) and (4.14) implies
deg( @y (x) )=deg(m o) (X))=¢(n). (4.15)
(4.12) and (4.15) implies
Dp(X) = mén,Q(X)' (4.16)

Corollary 4.8 The degree of extension of the cyclotomic field generated by the
primitive n’th root of unity is ¢(n). Namely, for any ne N

Q&) Q| =¢(n).

Proof. This follows from direct result of Theorem 4.7

Theorem 4.9 (Discriminant Divisibility)

LetF =Q(¢n). Then, A divides n#(").

Proof. We have xM—1 =ch(X) f(x), for some f(X) € Z[x]. After differentiating
both sides, we get

=0 000+, (0100
By setting x={p, we obtain
e an €.
By taking the norm of both sides,
=N (n;”rf) =N (@) (€ )NE(F ).

By corollary 2.48 and proposition 2.49, we get
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_ /
A =N (@ (&),

Thus, last two equations imply AF divides n?(M

Theorem 4.10 (The Ring of Integers of a Cyclotomic Field)Let n € Nand
¢y be primitive n’th root of unity.

If F=Q( )then A, =Z[¢,] [2].

Theorem 4.11 (Discriminants of Prime-Power Cyclotomic Fields) Let p be a
prime number,

n= p®for a natural number a and F =Q(¢,). Then,
A = (_1)¢<pa>/2 ppa_l(a(p—l)—l) 2]
F .

Example 4.12 Let o = ¢, be pirimitive eighth root of unitiy and F =Q(«) . Since
8=2" and ¢(8) =4, by theorem 3.11 A_ = (~1)*2* ¢ =256

We can find A4, also as follws. By example 2.16 and theorem 4.7

m,o(X)=x"+1and m’_ (x)=4x".

Embeddings of F inC are
0:¢, >,

0,:5—>¢,
63 :418 —>é/85
and

0,:¢, ¢

Thus, by theorem 2.46 and proposition 2.49
A = DPINLM g(@) = (48, )4 A NG )) = 256.



44

CHAPTER 5
THEORY OF IDEALS

5.1 Properties of Ideals

The primary goal of this chapter is to achieve the Unique Factorization
Theorem for Ideals. First, we develop the basic properties of ideals, which will
include wide variety of results in arithmetic of ideal theory.

Definition 5.1 Let R be a commutative ring. A nonempty subset | of R is called an
ideal of R, if it satisfies following two conditions:

(i) Ifa,fel, then a—-pfel.
(i)  Forevery reR and forevery ael, rael.

Note that, first condition makes | be an additive subgroup of R and second
one makes | be a sub ring of R.

Ideals may be defined over noncommutative rings, but for our purposes the
commutative case is sufficient.

Ideals in a commutative ring R with identity are called R-ideals for
convenience sake. We are primarily interested in 2 -ideals for a given number

field F.

And two ideals are equal if they are equal as sets. Any ideal | in a
commutative ring with identity having a finite set of generators is said to be
finitely generated. When there is exactly one such generator o we call | principal,
and write

| = ()

Example 5.2 Let R= Z[\/ﬁ ]. One can check that
! :(2):{2a+2b\/10 :a,bez} and

B :(3)={3a+3bm: a,beZ}

are two ideals of R. I, is generated by 2 and |, is generated by 3. These are

1
examples of principle ideals, namely ideals which are generated by a single
element. Consider the ideal generated by 6. It is product of two ideals as it is seen
below,

(6)= {6a+6bmz abe Z} - (2)(3).
Observe that, (6) = (2) and (6) < (3).
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Definition 5.3 Let R be a commutative ring and | ,J be two ideals of R. If there
exists an ideal H of R such that J=HI , then | is said to divide J .

For example, according to example 5.2 (2) divides (6) and (3) divides (6) in

Z[\J10].

Lemma 5.4 Let R be a commutative ring with identity and I, J be two R- ideals.
If | divides J, then | contains J.

Proof. If | divides J, then by definition 5.3 there exists an R-ideal H such that
J = HI . By definition of ideal | contains HI. So, | contains J.

Converse of this lemma is also true. That is, Let R be a commutative ring with
identity and | ,J be two R- ideals. If | contains J, then | divides J. We are going to

discuss the proof later.

An ideal may be generated by more than one element. If | is generated by
a,,0,,...,a, ; then we write | = (¢, a,,...,a,) This is illustrated by the following
example.

Example 5.5 Let R = Z[\/ﬁ ]. Consider the ideal generated by 4 and 6 which is
denoted by (4,6).
(4,6)= {4x+6y:x,yeR}.

Let x=a+by/10 and y=C+d\/E, a,b,c,d € Z; then
4X+6Yy = (4a+6C)+(4b+6d)\10 , a,b,c,d e Z.
Since ged (4,6) = 2, numbers of the form 4 p + 64, p,q € Z are multiples of 2.
So,
(4,6) = {2n+2m\@:n,m EZ}= ).

Note that, although (4,6) seems to be generated by two members this example

shows that it can be generated by a single element; therefore it is a principle ideal
of R.

Proposition 5.6 Let F be an algebraic number field and | = (@) and J = (f) be
principal A -ideals. Then, | =J if and only if & and f are associates.

Proof. By proposition 3.6 « and £ are associates if and only if a| £ and ,B|a if
and only if o c f and S c « if and only if (&) =(f). Thus, | =J if and only if
a and fare associates.
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Proposition 5.7 ( Generalization of Proposition 5.4 ) Let F be an algebraic
number field and | = (¢, a,,....a,)and J= (B, B,,...,a, ) be A -ideals. Then,

| = J if and only if there exists an invertible Nxn matrix A€ GL,(Z) such that
o, B
=A|. [2].

ay an

Example 5.8 Let F =Q(+/10).Then A= Z[/10]. Consider
| =(3,1++/10) and J =(=3,2-+/10).

| =J, since the following matrix equation holds,

)] e

There is an other notation to represent 2l -ideals. It is Z -module notation.
We know that every 2l -ideal | is a subgroup of the free abelian group 2. of
rank

|F :Q| =d.
So, | is a free abelian group of rank at most d. Therefore | has Z -basis
{al,az,...,ar} c 2 ,for r<d. Thus, | can be written in Z -module structure as

| =[a),05,....,,]. (5.1)

Proposition 5.9 Let F =Q(«) be an algebraic number field with |F :Q| =d and
| =[a,,,,....,a,] be a A -ideal. Then, r =d.

Proof. We know that r <d . Let {ﬁl,ﬂz,...,ﬂd } bea Z-basis for A . If aelis
nonzero, then af,,ap,,...,af; are linearly independent and af,,af,,....af €1 .
So, {apf,apf,,....,apf}1s a Z -basis for F. So, for every je{l,2,...,d} there exist
2y j»25,j>+ 2y j € Z such that

.

ap; =Zzi,jﬂi .
i=1
Assume that d > r. Then here exist W;,W,,...,W, € 2, not all zero such that

d
j:
Therefore, for each je{1,2,...,d}

r r
0=27; ;W; 5 =W; 2. 7; ; 5; =W,af3;.
i=1 i=1
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Thus,
d
j=1

which is impossible , because { B> Bosees By } is a Z -basis for F.
Hence d <r, implying that r=d.

As a result of this proposition, in (5.1) r=d.

Note that proposition 5.5 is true for Z -module structures [2].

Proposition 5.10 Let R = Z[\/B] =7+JDZ= [1,«/6] where D be a square free
integer. aZ+(b+cyvD)Z =[a,b+cy/ D] with a,b,ceZ, a>0and ¢ >0 is an
R-ideal if and only if ¢ divides a, ¢ divides b and ac divides b* —c’D.

Proof. Let | :[a,b+c\/3] and A:{y:x+y\/ﬁel X,y eZ, y>0}.Clearly

ce A because b+cyD el . Claim: ¢ is the least element of A. If not, there
exists b, +01\/B € |l such that 0<c, <c. So, b, +C1\/E = ap+(b+C\/B)q for
some P,q € Z.From here, ¢, =cqwhich implies ¢, > C, a contradiction.

Therefore, C is the least element of A. Similarly, it can be proven that a is the
least positive integer in I.

If | is an ideal, then avD el , o C divides a by minimality of c. Also
+/D (b+ /D )=cD+ byvD el , so ¢ divides b. Moreover,
(b/c—vD)b+cyD)=(b*-c*D)/cel,
which implies a divides (b* —c¢*D)/c by minimality of a. So,
acdivides b* —c’D.
Conversely, if ¢ divides a, ¢ divides b and acdivides b*> —¢*D, then
aJD =—(b/c)a+(a/c)b+cy/D)el

and

(b+cVD)WD =byD +cD=(-b?+c?*D)/c+(b/c)b+c/D)el .

Thus, | is an ideal.

Example 5.11 Let F =Q(+/10) .Then A= Z[V/10]. Consider

[1++/10,1-+/10] and [2,1+/10].

[1++/10,1-+/10] = [2,1++/10],since the following matrix equation holds,
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2\ (1 1)1y ), (1]
[Hm J_[l . ][l—x/ﬁ ]wnh [1 O]eGLz(Z).

Note that, [1++/10,1-+/10] %= (1+/10,1-10).

In order to see this, we have

1=51+10)+(6+~+/10)1-+/10) € 1+~/10,1-4/10)..
(1++10,1-v10)=2 .

But, since 2 does not divide N (1++/10)=-9; by proposition 5.10
[2,1++/10] isnota A - ideal .

So,

By a product of two A -ideals,

[={a,...., %) and J = (A,....[%),

We mean the 2 -ideal generated by all products ¢; fj namely,

U= (ap, ... ailbs, ..., aif, ..., &P, , caf).

Definition 5.12 Let F be a number field. A prime 2 -ideal is a nonzero ideal
P # 2 such that, whenever P divides 1J, where I and J are two 2 -ideals , then
P divides | or P divides J. We call the prime ideal (0) the trivial ideal.

Example 5.13 Let F =Q(i), then 2= Z[i]. Consider. P = (5,2+i). P is an
2 -1deal by proposition 5.10. Also, by proposition 3.24, P is a prime ideal.

In the view of Lemma 5.4, by Definition 5.12 we can say that a prime ideal P is a
2 ¢ -ideal satisfying the property that whenever 1J < P where | and J are

A -ideals then either Ic P orJc P.

Definition 5.14 Let R be a commutative ring with unity, and | # R an R-ideal, | is
called a maximal ideal if whenever |  J for any R-ideal J, then | =J, or J=R.
Thus, maximal R-ideals are proper R-ideals that are not contained in any other
proper R-ideals.
A nonzero R-ideal | is called minimal if whenever (0) < J < | for any R-ideal
J, then J = (0) or J = I. In other words, a minimal R-ideal is a nonzero R-ideal that
contains no other nonzero R-ideal.

Theorem 5.15 Let R be a commutative ring with unity. M is maximal ideal if and
only if R/Mis a field [9].
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Example 5.16 LetR =Z and p be a prime number. Since Z/ pZ is isomorphic to
Z , which is a field, (p) = pZ is a maximal ideal.

Theorem 5.17 Let R be a commutative ring with unity and N # R be an R-ideal.
N is prime ideal if and only if R/ N is an integral domain [9].

Corollary 5.18 Let R be a commutative ring with unity. Every maximal R-ideal is
prime R-ideal.

5.2 Dedekind Domain

Definition 5.19 A Dedekind domain R is an integral domain satisfying the
following three properties.

(1) Every ideal of R is finitely generated.

(i1) Every nonzero prime ideal of R is maximal.

(iii) R is integrally closed in its quotient field.

A principal ideal domain satisfies all three conditions, and is therefore a Dedekind
domain.
F={a/p:a feR,p=0}.

Observe that condition (iii) above says that if & /f € F is the root of some monic
polynomial over R, then «/f € R. In other words, £ |a in R.

Definition 5.20 The sum of two R-ideals | and J in a commutative ring with
identity R is given by
I+J={a+tf:acl, fel},

which is an ideal [8]. If there does not exist any proper ideal H such that H
divides | and H divides J , then | and J are said to be relatively prime. If | and J
are relatively prime R-ideals, then | + J=R.

Example 5.21 Let F = @(m ), then A = Z[\/ﬁ ]. Consider the two principal
A -ideals (2) and (3). One can easily prove that (2) and (3) are relatively prime.
So,

2)+(3)= A =Z[\10].

Theorem 5.22 (Number Rings are Dedekind Domains)
If F is a number field, then %A is a Dedekind domain [2]..

Lemma 5.23 If R is a Dedekind domain and | is an R-ideal, then | contains a
product of prime R-ideals.
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Proof. Let S be the set of all R-ideals that do not contain a product of prime ideals.
If S # &, then S has a maximal element M, Therefore, M cannot be prime, since it
would otherwise contain a product of primes, namely itself. Thus, there exist r,Se
R such that rs € M, but r¢ M and s¢ M. Since M is contained in both of the ideals
M + (r) and M + (), then both of these latter ideals contain products of prime
ideals. Therefore,

M+ (@) (M +(s) = M,

a contradiction, so S is empty. This completes the proof.

Theorem 5.24 In any commutative ring with unity, every proper ideal is
contained in a maximal ideal.

Proof. Let R be a commutative ring with unity. By Zorn’s Lemma to family of
proper R-ideals, it is enough to show that a nested union of proper R-ideals is
=11
rl < I since rl; c I for each j. Hence | is a R-ideal and since 1 ¢ I ; for each j;

another R-ideal. Now, if we have |, c I, c...c Il ..., then |1 =/ satisfies

| is proper.

Lemma 5.25 Let R is a Dedekind domain with quotient field F and let | #R be an
R-ideal. Then there exists « ¥ € F -R such that y1 c R.

Proof. Let € | be a fixed nonzero element. By Lemma 5.23, the principal
R-ideal (& ) contains a product of prime ideals P; ... Py, . Suppose that r is
minimal with respect to being a product of primes in (o). By Theorem 5.24 ,
every proper R-ideal is contained in a maximal ideal, which must be prime by
Corollary 5.18.Thus, | < P for some prime R-ideal P. By primality, P; — P for
some j, which we may assume to be j = 1 without loss of generality, By condition
(i1) of Definition 5.19, P, = P. Since () cannot contain a product of fewer than r
prime ideals, there isa f € P, . .. P, — (). Therefore,

plac P, ..P-RCF-R

(a)
On the other hand,
PP PP,...Prc(@).

So if § € P, then S (). In particular if 6 € |, then S5 € (), so

It means,

which completes the proof.
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Theorem 5.26 Let R be a Dedekind domain and let | be a nonzero R-ideal. Then
there exists a nonzero R-ideal J such that 1J is principal.

Proof. Let | be a nonzero R-ideal with « € I, and let

J={feR:plc(a)}.
Therefore, J is a nonzero R-ideal containing o and

UJc(a).

Now let L:i 1J, then L — R. Since I, J are ideals, then so is L. Assume that L is
o

a proper R-ideal. By Lemma 5.25, there exists a y € F-R such that . < R.We will
show that yis the root of a monic polynomial over R. Since J — L, given that ael,
then J < /L < R. Hence I < RI < |, which implies that

Hcd . (5.1)
Let{fi..... , i} be a generating set for the ideal J. From (5.1), there exist
Zije Z suchthatforeachi=1,..... , 1,

This gives the homogeneous system of equations

22’1X1+(22)2 -7/)X2 e +22, rXr =0

2 )X +Zp Xt (2 r - 7)Xr =0

which has the nontrivial solution Xj = f;j , so the determinant

(Zy,1-7) 712 v Ipy
det| 21 (Zop-7)- Zny
M .

Zr Zr o Ly r-7)

vanishes. Hence, y satisfies the required monic polynomial over R, which
contradicts the condition (iii) of Definition 5.19. So, L is a not proper R-ideal.
Thus, 1J =(&) which requires desired result.
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Corollary 5.27 Let |, J, L be ideals in a Dedekind domain such that | is nonzero,
and IJ=1IL, thenJ=L.

Proof. If H is an ideal such that IH = (), then J(a) = L(«). Since,

Lcl(a)=da)
And

Jcda)=L@clL,
Then L=J.

Corollary 5.28 Let | and J be ideals in a Dedekind domain, then | divides J if
and only if | © J.

Proof. First direction is Lemma 5.4, so was proven. Assume that | o J. Let L be

an ideal such that L1 is principal, say LI = (). Then, H :éLJ is an ideal,
and IH =J . Thus, | divides J.

Theorem 5.29 (Unique Factorization of Ideals) Every proper nonzero ideal in a
Dedekind domain R is uniquely representable as a product of prime ideals. In
other words, any R-ideal | has a unique expression (up to order of the factors) of
the form

e e €
I=p"p,2..py"

where the Pj are the distinct prime R-ideals containing I, and ¢j € N
forj=12..., n.

Proof. First we must show existence. In other words, we must show that every
ideal is indeed representable as a product of primes. Let S be the set of all nonzero
proper ideals that are not so representable. If S # &, then S has a maximal
member M. Since M # R, then by Theorem 5.24 and Corollary 5.18, there exists a
prime ideal P such that M < P. Thus, there is an R-ideal H such that M = HP, by
Corollary 5.28. Thus, H > M. If H =M, then H = HP, so P =R, by Corollary 3.17,
a contradiction. Hence, H strictly contains M. By the maximality of M, H must be
a product of prime ideals. However, M = H P, contradicting that MeS,so S=J,
We have established existence. It remains to show uniqueness of representation.

Let P; and Qs be (not necessarily distinct) prime R -deals such that,

Pl ...Pr:Ql Qs

Hence, P, ©Q,Q,...Q, which implies P, © Q; for some i€ {1,2,...,5} . Without
loss of generality assume that P, © Q,. So by Corollary 5.27, we get

P ...Pr=Q ...0Q



53

Continuing in this way, we see that by induction, r=s and P, =Q,
foreach ie {1,2,...,8} )

Corollary 5.30 Let F is a number field, then every proper, nonzero 2 -ideal is
uniquely represent able as a product of prime ideals.

Proof. It is immediate result of Theorem 5.22 and Theorem 5.29.

Example 5. 31 Let F=Q(+10), then A =Z[\10]. Consider P =(2,4/10),

Q= (3,1+\/E) and Q = (3,1—@). By Proposition 5.10 P,Q,Q" are all
A ¢ -ideals; moreover they are prime ideals. One can easily check that
(2)=P? and (3)=QQ
So,
(6)=(2)3)=P’QQ.

This is the unique factorization of deal (6) in 2.

Definition 5.32 Let R is a Dedekind domain, and I, J are R-ideals, then

ged(,)=1+J
and
lem(l, ))=1nJ.

Observe that Corollary 5.28 tells us that the lem (I, J) is actually the largest
ideal contained in both | and J, whereas gcd (I, J) is the smallest ideal containing
both | and J. This is because a divisor of an ideal is a larger ideal, and a multiple
of an ideal means a sub-ideal. If | = (@), we write gcd(e, J) and lem(«, J). Also, if
J = (p) as well, we write

gcd(l, J) = ged(,p), and lem(l, J) = lem( e, f).

Theorem 5.33 Let R be a Dedekind domain, and let | be an R-ideal. If o € is any
nonzero element, there exists £ € | such that | = (¢, ) [ 2].
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CHAPTER 6

FACTORING OF PRIME IDEALS
IN EXTENSIONS

6.1 Lifting of Prime Ideals

Let F be an algebraic number field, it is extension of Q with degree of
extension N. In chapter 5 we have seen that the ring of integers of F, denoted by
A, is Dedekind domain; and it is integral closure of Z .

Definition 6.1 Let F be an algebraic number field and 2 be the ring of integers

of F . Let p be a nonzero prime ideal of Z . The lifting (also called the extension)
of p toA is the ideal p2. . Although p2(. need not be a prime ideal of A, we

can use the fact that A is a Dedekind domain and the unique factorization

theorem to write
g N
pAr =[P
i=1

Where the P; are distinct prime ideals of 2 and the e; are positive integers . On
the other hand, we can start with a nonzero prime ideal Q of 2 and form a prime

ideal of Z via.

p=QN Z.

We say that Q lies over p, or that p is the contraction of Q to Z .

Now suppose that we start with a nonzero prime ideal p of Z and lift it to .
We will show that the prime ideals Py, ... , Py that appear in the prime factorization
of p%A . are precisely the prime ideals of 2( that lie over p.

Proposition 6.2 Let Q be a nonzero prime ideal of 2. Then Q appears in the
prime factorization of p2A ifand only if Q N Z =p.

Proof. f Q N Z = p, then p < Q, hence pA < Q because Q is a A - ideal. So,
Q divides p2(- . Conversely, assume that Q divides (contains) p2( Then

But in a Dedekind domain, every nonzero prime ideal is maximal, so p=Q N Z.
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Definition 6.3 (Ramification and Relative Degree) Let F be an algebraic
number field and 2 be the ring of integers of F . Let p be a nonzero prime ideal

of Z Let

g
pE = H F)iei
i=1

The positive integer €; is called the ramification index of P; over p(or over Z).
We say that p ramifies in 2. (or in F) if € > 1 for at least one i. We will prove in

a moment that 2_/P; is a finite extension of the field Z /p. The degree f; of this

extension is called the relative degree (or the residue class degree, or the inertial
degree) of Pj over p (or over Z ).

Proposition 6.4 We can identify Z/p as a subfield of 2(-/P;, and A /P; is a
finite extension of Z /p.

Proof. The map from Z /p to A /P; given by a + p — a + P; is well-defined and

injective, because P = P; m A, and it is a homomorphism by direct verification.
2 is a finite-dimensional vector space over Z/p. It comletes the proof.

Theorem 6.5

g
e fi=[A/pAE :Z/pl=n [l6].
i=l

6.2 Norms of Ideals

Definition 6.6 Let F be an algebraic number field and 2(; be the ring of integers
of F.The value |Ql,: /1 | for a A -ideal | is said to be norm of |, denoted by N(I).

Proposition 6.7 Let « be any nonzero element of the ideal | of 2(, and let
M=Ng(a)eZ.Thenm e I and |- /mA-|=m", where n = |F : Q|.

Proof. m= o £ where £ is a product of conjugates of « . But a conjugate of an
algebraic integer is an algebraic integer. Thus £ € 2(, and since o € |, we have

m € |. Now, 2 1is the direct sum of n copies of Z, hence by the first isomorphism
theorem, A /m%2A; 1is the direct sum of n copies of Z/mZ. Consequently,

[Ae/MAL|=mn.

Corollary 6.8 Let | be any nonzero ideal of 2, then N(I) is finite. Moreover,

N(l) divides m" where m= N («) for some « inlandn=|F: Q.



Proof. Observe that (m) < I, hence

A /(M) _
=,

Theorem 6.9 Let F be an algebraic number field and | be a nonzero 2 -ideal.
Let B= {al,az,...,an} be a Z -basis for |. Then,

disc(B) )1/2

N == )
F

Corollary 6.10 Let | = (@) with & # 0, then N(I) = Ng()| [2].

56

Example 6.11 Let F =Q(+/10), then 2 =Z[+/10]. Consider P =(2,4/10) and

Q=3,1-+10). P and Q are A -ideals by Proposition 5.10. B, = {2,\/ 10 } isa
Z -basis for P. Since A =40, then by Theorem 6.9

det
2.

2 2 Y
(M_MJ )1/2:

N(P) = (——-

And B, = {3,1 — 10} is a Z -basis for Q. Since A =40, then by Theorem 6.9

d{ 3 3 JZ

(]

1-+101 10

N(Q) =( J:O”_ NCEEY

Example 6.12 Let F =Q(+/10), then 2 =Z[\/10]. Consider | =(1++/10). 1t

is clear that N (1++/10)=-9. So, by Corollary 6.10 N(1)=9. Let us check this

result by using Theorem 6.9. B = {1 +4/10,10++/10 } be a Z -basis for . Thus,

dt[1+\/1o 1-410 Jz
(]
N = ( 10+\/140010—\/1o V2o
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Theorem 6.13 Let | and J be nonzero 2. -ideals , then N(1J) = N(I)N(J) [4].

Corollary 6.14 Let | be a nonzero 2 ideal . If N(I) is prime, then | is a prime
ideal.

Proof. Suppose | is the product of two ideals I; and I,. By Theorem 6.13,
N(D)=N(l) N(I,), so by hypothesis, N(I;) = 1 or N(l,) = 1. Thus either I, or I, is a
unit of 2. Therefore, the prime factorization of | is | itself, in other words, | is a
prime ideal.

Example 6.15 Let F =Q(+/10), then 2 =Z[+/10]. Consider P =(2,4/10) and
Q= (3,1—\/5) .By Coroolary 6.14 and Example 6.11 P and Q prime % -ideals.

But, Corollary 6.14 does not say anything about primaty of the 2 -ideal
| =(1++/10)given in the Example 6.12. It may be prime ideal may be not.

Remark 6.16 (The Norm of a Prime Ideal)

If we can compute the norm of every nonzero prime 2 - ideal P, then by

multiplicativity, we can calculate the norm of any nonzero ideal. Let p be the
unique rational prime in P, and recall that the relative degree of P over p is

f(P) = |Ag /P : Z/pZ|. Therefore
N(P)=|2¢ /P|=p"® [2].

4.3 A Practical Way of Factorization

The following result, usually credited to Kummer but sometimes attributed to
Dedekind, allows, under certain conditions, an efficient factorization of a rational
prime in a number field.

Theorem 6.17 Let F be a number field of degree n over QQ, and assume that the

ring 2 of algebraic integers of F is Z[a] for some o € .. Thus 1, o, a’, ..

, a™! form an integral basis of 2. Let p be a rational prime, and let f be the

minimal polynomial of & over Q. Reduce the coefficients of f modulo p to obtain
f e Z[X]. Suppose that the factorization of f into irreducible polynomials over

[Fp is given by

Fohe..hf
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Let f; be any polynomial in Z[X] whose reduction mod p is h;. Then the ideal

Pi=(p, fi(a))

is prime, and the prime factorization of (p) in A is

(p)=Po..P% [2].
Remark 6.18 (Prime Factorization in Quadratic Fields)

We consider F = Q(\/B ), where D is a squarefree integer, and factor the ideal (p)

g

in the ring A of algebraic integers of F. By theorem 6.5, ZGi f; =2. So, there
i=l

will be three cases:

(1)g=2,e;=e,=1f; =f, = 1. Then (p) =P, P, P, and P, are 2 -ideals and we
say that p splits in F.

(2)g=1,e, =1, f;=2. Then (p) is a prime ideal of A, and we say that p
remains prime in F or that p is inert.

(3)g=1,e;,=2,f,=1. Then (p) = Plz for some prime 2 - ideal Py, and we say
that p ramifies in F.

We will examine all possibilities systematically.

(a) Assume p is an odd prime not dividing D. Then p does not divide the
discriminant A, so p does not ramify.

(al) If D is a quadratic residue (mod p), then p splits. Say D = n? (mod p). Then
x* — D factors mod p as (X + n) (x—n), so (p) = (p, n + JD )(p, n— JD ).

(a2) If D is not a quadratic residue mod p, then x* — D cannot be the product of
two linear factors, hence x> — D is irreducible mod p and p remains prime.

(b) Let p be any prime dividing D. Then p divides the discriminant, hence p
ramifies.

Since X* — D = x* = xx (mod p), we have (p) = (p, JD )
This takes care of all odd primes, and also p = 2 with D is even.
(c) Assume p =2, D odd.

(cl) Let D =3 (mod 4). Then 2 divides the discriminant A =4 D, so 2 ramifies.
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We have x>~ D= (x + 1)* (mod 2), s0 (2) = (2, 1 + /D )~

(c2) Let D =1 (mod 8), hence D = 1 mod 4.An integral basis is {1, (1 + JD ) 2%,
and the discriminant is A- = D. Thus 2 does not divide 4, so 2 does not ramify.

We claim that (2) = (2, (1 + v/D )/2). (2, (1- VD )/2).

To verify this note that the right side is 2, 1 — /D , 1+ +D , (1 — D)/ 4). This
coincides with (2) because (1 — D)/4 is an even integer and 1 — JD+1+J/D=2.

(c3) Let D =5 (mod 8), hence D = 1 mod 4, so 4c =D and 2 does not ramify.

Consider f(X) =x*—x+ (1 =D )/ 4 over A /P, where P is any prime ideal lying
over (2). The roots of f are (1 + JD )/2,sofhasarootin 2(, hence in A /P.

But there is no root in I, because (1 — D) /4 =1 (mod 2). Thus /P and [,
cannot be isomorphic. If (2) factors as Q;Q-, then the norm of (2) is 4, so Q,; and

Q> have norm 2, so the %A /Qj are isomerphic to [, which contradicts the

argument just given. Therefore 2 remains prime .

Example 6.19 Let @ =/2 and F = Q(a) . One can check that A = Z[Y/2].
Obviously,

m, o(X)=x>-2.

For p=7, x’ -2 is irreducible moddulo 7. So, (7) 2 be a 2, -prime ideal. In
other words 7 remains prime in F or 7 is inert .

Forp=29, x’ =2 = (x+3)(x* + 26X —20) modulo 29 where (x*+26x—20) is
irreducible modulo 29. So, (29) A= BP,, P, and P, are 2 -prime ideals.
g=2,e =e,=1, f,=1and f, =2. Thus, 29 is unramified .

Forp=31, x> =2=(x—4)(x="7)(x+11) modulo 31. So, (31) A= PPRP;, P,
P, and P, are 2 -prime ideals.g=3, ¢, =e, =¢e; =1, f,=f, = f; =1. Thus, 31
is completely splitin 2.
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Example 6.20 Let F =Q(+/10), then A = Z[\/ﬁ ]. Namely F is aquadratic
field with D = 10 and 4 =40.

For p = 2; since 2 divides 4 =40, 2 ramifies and (2) = (2,~/ 10)%.

For p = 3; since 3 does not divide 4 =40and 10= 1 (mod 3), 3 splits and

3)=3,1-410)3,1++/10).
For p =5; since 5 divides 4 =40, 5 ramifies and (5) = (5, 10)2.

For p=7; since 7 does not divide A =40and 10 is not quadratic residu modulo 7,

7 remains prime or it is inert.

Example 6.21 Let F =Q(+/5), then 2 =Z[(1++/5)/2]. Namely F is
aquadratic field with D =5 and 4¢ =5.

Forp=2;since D=5 (mod 8), 2 is inert.

For p=3; since 3 does not divide A- =5and 5 is not quadratic residu modulo 3,

3 remains prime or it is inert.
oo s .. . 2
For p =5; since 5 divides 4 =5, 5 ramifies and (5) = (5,\/5) .

For p=7; since 7 does not divide A- =5and 5 is not quadratic residu modulo 7,
7 remains prime or it is inert.

Example 6.22 Let F =Q(v/11), then A =Z[+/11]. Namely F is aquadratic
field with D =11 and 4 =44.

For p=2; since 2 divides Ar =44, 2 ramifies and (2) =(2,1+ \/ﬁ)2 .

For p=3; since 3 does not divide A- =44 and 11 is not quadratic residu modulo 3,
3 remains prime or it is inert.

For p = 5; since 5 does not divide A- =44and 11=1% (mod 5 ), 5 splits and

(5)=(5,1-/11)(5,1++/11).
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For p=7; since 7 does not divide 4- =44and 11= 2% (mod 7)), 7 splits and
(1) =(7.2-J11)(7.2+11).

For p=11; since 11 divides 4 =44, 11 ramifies and (11)=(1 l,x/ﬁ)2 .

Example 6.22 Let F =Q(«v/17), then A =Z[(1++/17)/2]. Namely F is
aquadratic field with D =17 and 4 =17.

For p=2; sincel7=1 (mod 8), 2 splits and (2) = (2,(1-+/17)/2)2,(1++/17)/2).

For p=3; since 3 does not divide A =17 and 17 is not quadratic residu modulo 3,
3 remains prime or it is inert.

For p=5; since 5 does not divide A =17 and 17 is not quadratic residu modulo 5,

5 remains prime or it is inert.

For p=7; since 7 does not divide A =17 and 17 is not quadratic residu modulo 7,
7 remains prime or it is inert.

For p=11; since 11 does not divide A =17 and 17 is not quadratic residu
modulo 11, 11 remains prime or it is inert.

For p = 13; since 13 does not divide A =17 and 17 =27? (mod 13 ), 13 splits and
(13)=(13,2-+17)(13,2++/17).

For p=17; since 11 divides A =17, 17 ramifies and (17) = (17, 17)%.
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CHAPTER 7
DISCUSSION AND CONCLUSION

Although, factorization was in theory for centuries, it takes place in
application on some cricial areas recently. This makes it more important then
before.

In this thesis, theory of factorization is studied. For application related to
cryptography see [2]. In order to make an appropriate algorithm to solve Chords’
Problem, factorization of polynomial is used [18]. To make algorithm more
powerfull, techniques given in chapter 6 may be used. Note that, Chords’ Problem
is used in Bioinformatics in order to solve Digest Problem.

In this thesis, essential propositions which require to understand factorization
of ideals in extensions correctly and allmost completely are given in the way of
logical reasoning. It is allmost enough for the beginners to understand the subject.
Moreover, there are important techniques to prove if a given domain is Euclidean
or not, to test if a given prime remains prime in extension or not and some quick
techniques of factoring prime ideals in quadratic extensions are given.

In this thesis, theory is based on simple extensions of Q, generalization is not

considered. Generalization is just analogy of facts in simple extensions. If one
understand what is happining in simple extensions, he/she can understand facts of
complex extensions and to understand what is happining in complex extensions,
one should understand facts of simple extensions.

Lastly, the deficiency of the thesis is lack of techniques of factoring of prime
ideals in cyclotomic extensions. In order to understand these techniques, more
complicated theories such as Galaois Theory and theory of Frobenius
Automorphisms are neded. So, it is required harder and longer sdudy. For more
explicit information see [2], [4],[5],[19] and [20].
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