COMPARISON OF GENETIC ALGORITHM AND PARTICLE SWARM
OPTIMIZATION ALGORITHM FOR PERMUTATION FLOW SHOP
SEQUENCING PROBLEM WITH CRITERION OF NUMBER OF
TARDY JOBS

by

Hatice UCAR

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Fatih University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Industrial Engineering

May 2005
Istanbul, Turkey

APPROVAL PAGE

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Mazhar UNSAL
Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. M. Fatih TASGETIREN
Supervisor

Examining Committee Members

Assist. Prof. M. Fatih TASGETIREN

Prof. Dr. Mazhar UNSAL

Assis.Prof. Nurullah ARSLAN

It is approved that this thesis has been written in compliance with the formatting
rules laid down by the Graduate Institute of Sciences and Engineering.

Assis.Prof. Nurullah ARSLAN
Director

Date
May 2005

il

COMPARISON OF GENETIC ALGORITHM AND PARTICLE SWARM
OPTIMIZATION ALGORITHM FOR PERMUTATION FLOW SHOP
SEQUENCING PROBLEM WITH CRITERION OF NUMBER OF TARDY
JOBS

Hatice UCAR

M. S. Thesis - Industrial Engineering
May 2005

Supervisor Assist. Prof. M. Fatih TASGETIREN

ABSTRACT

In this study, we aimed to minimize the number of tardy jobs in permutation flow
shops. The number of tardy jobs criterion is a measure for the number dissatisfied
customers. In other words, it monitors the performance of the managers. In order to
achieve the minimum number of tardy objective, we developed two algorithms; one is a
traditional genetic algorithm and the latter is a discrete particle swarm optimization
algorithm. The algorithms are implemented using the due date configurations of
Demirkol et al.’s data sets. The statistical tests are done to measure the fitness and cpu
values for each algorithm. The performances of both algorithms to find the optimal
processing sequence for the jobs through m machines are compared. It is concluded
from the experiments that the particle swarm optimization algorithm gives promising
solutions by means of the proposed SPV (Smallest Position Value) heuristic rule.

Keywords: Scheduling, Number of Tardy Jobs, Genetic Algorithm, Particle Swarm

Optimization, Smallest Position Value Rule, Permutation Flow Shop

iv

POZITIF GECIKMELI iS SAYISI KRITERLi PERMUTASYON AKIS TiPLi
ATOLYE CIZELGELEME PROBLEMI UZERINDE GENETIiK ALGORITMA
VE PARTIKUL SURU OPTIMiZASYONU YONTEMLERININ MUKAYESESI

Hatice UCAR

Yiiksek Lisans Tezi — Endiistri Miihendisligi
Mayis 2005

Tez Yoneticisi: Yrd. Doc. M. Fatih TASGETIREN

(0Y/

Bu ¢alismada permiitasyon akis tipli atdlyelerdeki pozitif gecikmeli is sayisini
minimuma indirmeyi amagladik. Pozitif gecikmeli is sayist kriteri memnun olmayan
miisterilerin sayisina ait bir Olgiidiir. Diger bir deyisle, bu kriter yoneticilerin
performansia ait bir gostergedir. Minimum sayida gecikmeli i sayisi hedefini
saglayabilmek icin iki algoritma gelistirdik; biri geleneksel bir genetik algoritma digeri
ise kesikli partikiil siirli optimizasyonu algoritmasi. Algoritmalarda Demirkol ve
digerleri’nin data setlerindeki teslim tarihleri kullanildi. Herbir algoritmanin gecikmeli
is sayisina ait degerleri ve iglemci siireleri i¢in istatistiksel Ol¢iimler yapildi. Her iki
algoritmanin m makinadaki en optimal is siralamasini bulmadaki performanslari
karsilagtirildi. Yapilan deneylerde partikiil siirii optimizasyonu algoritmasinin En Kiiciik
Konum (EKK) sezgisel yontemi sayesinde umut verici neticeler verdigi sonucuna
varild.

Anahtar Kelimeler: Cizelgeleme, Pozitif Gecikmeli Is Sayisi, Genetik Algoritma,
Partikiil Siirii Optimizasyonu, En Kii¢iik Konum Kurali, Permutasyon Akis Tipli Atolye

To my family

vi

ACKNOWLEDGEMENT

I would like to thank my thesis supervisor Assist. Prof. Fatih TASGETIREN for
his guidance throughout the research.

I express my sincere appreciation to the faculty member Mehmet SEVKLI for his
invaluable help during the implementation phase of the thesis.

Thanks go to the jury members, Prof. Dr. Mazhar UNSAL and Assist. Prof.
Nurullah ARSLAN for their valuable suggestions and comments.

I express my thanks and appreciation to my family for their understanding, and
patience. I also thank my friends for their motivation. Lastly, but in no sense the least, I

am thankful to my elders who have encouraged and supported me during my education.

vii

TABLE OF CONTENTS

ABSTRACT ...ttt ettt e s e et e et ee s aaeesabeesntseeensseesnsaeesnseeas i1
OZ e ans v
DEDICATIONciittiiieeiteeie ettt ettt ettt e bt e stteeteesabeesbeessseesaeesseenseessseenseessseesseanns v
ACKNOWLEDGEMENT ..ottt ettt eae e sne s vi
TABLE OF CONTENTS ... oottt ettt ettt esaeesbaeseeesseensaesnsaens vii
LIST OF TABLESottt ettt e s ebeesaesseenseenne e X
LIST OF FIGURES ...ttt ettt et et ssaesnaeenneennes X
LIST OF SYSMBOLS AND ABBREVIATIONS.......cceoiieieieieeeeeeee e Xi
CHAPTER 1 ..ottt ettt ettt et esta e s e e st e easaensaeenseennes 1
INTRODUCTION ...ttt ettt ettt ettt et staeseessasseesseesaessaenseensenseenseenes 1
1.1 OVERVIEW L.ttt ettt st et eae e saaeesbaesnaeensaens 1
1.2 PERMUTATION FLOWSHOP SCHEDULING........ccccccveciiiieieeieeeieeeenee 2
1.3 NUMBER OF TARDY JOBS ...ttt 2
1.3.1 Moore/Hodgson AIZOTithm.............cccvieeiiieniiiiciieeeee et 3
1.3.2 Hariri & Potts’ Implementationccoeeeveerieeiiienieeiienie e 4
1.4 EXACT METHODS, HEURISTICS, METAHEURISTICSccceoieiinnnee. 5
CHAPTER 2 ...ttt ettt ettt et e st e s sbeessaesaseenaaeenseennes 9
LITERATURE REVIEW ...ttt et 9

2.1 PERMUTATION FLOWSHOP SCHEDULING WITH THE CRITERION
OF NUMBER OF TARDY JOBS ..ottt 9
2.2 GENETIC ALGORITHMSooiiiiiiiieetee ettt 14
23 PARTICLE SWARM OPTIMIZATION.......ooiiiiiiieieieieeeseee e 17
CHAPTER 3 ..ottt ettt ettt ettt e a e s eaeeteeeaaeenseessseensaesnnaans 21
GENETIC ALGORITHMS ...ttt ettt s 21
3.1 AN OVERVIEW Lottt ettt e 21
3.2 THE PSEUDOCODE OF THE ALGORITHMcccooeiiiriiininiinieieieenne 22
3.3 REPRESENTATION.....cccoiiiiiiiettee ettt ettt 23
3.3.1 Schema TheOTeMcccuviiiiiieciie et e 23
34 SELECTION ..ottt ettt ettt ettt ettt e esateebeesnbeesaesnnean 23
34.1 Roulette Wheel Selection...........cccveeeeiieeiiieeiiiecieece e 24
342 Ranking Selectionccceevuiiiiieiieiiieiecie e 24
343 ElLitist SIeCtIONveiiiiieeeiieeee et 24
344 Tournament SEleCtiONceveeeiierieeiierie ettt 24
345 Steady-State SEIeCtiONccveeeiiiieciieeieeeiee e e 24
3.4.6 Stochastic Universal Selection............ccceeeeeiierieeiiieniieiesie e 25
3.5 CROSSOVER ...ttt ettt ees 25
3.5.1 Single Point CrOSSOVET.........ccvieiierieeiieeiieeieeite et esiee e e siee e eeeeeaee e 25
3.5.2 Cycle CroSSOVET (CX)uuiiiuiiiiiiieeiieeeiieesieeesreeesteeesrveeesaeeesseeesseeennseeens 26
3.5.3 Order CroSSOVET (OX) .oocuiiieiiieeiieeeiieectee ettt e e e ereeeeveeesareeens 26
3.54 Partially Mapped Crossover (PMX)cccvveviieeiiieeiieeeie e 26

3.5.5 Position-Based Crossover (PBX).......ccccoooviieeiiieeiiieeieeceeeeee e 27

viii

3.6 MUTATION ..o e e 27
3.7 INVERSION ...t 28
3.8 REPLACEMENT ..ot 28
3.9 TERMINATION CRITERIAccccooiiiiiiiiiiiiiccceeeeeeee 28
CHAPTER 4 ...ttt st 29
PARTICLE SWARM OPTIMIZATION ALGORITHM........ccccoiiiiiiiiiiiiiiinicieee. 29
4.1 AN OVERVIEW Lo 29
4.2 THE PSEUDOCODE OF THE ALGORITHMcccccccoiiiiiniiiiiiniiie. 31
4.3 NOTATION ... oot 31
4.4 ORIGINAL PSO ALGORITHM......cooiiiiiiiiiiiiinieeieceteeeeeeeeee e 32
4.5 SOLUTION REPRESENTATION.......ccciiiiiiiiiiiiiniiicienicecceciece s 32
4.6 INITIAL POPULATION.....ccciiiiiiiiiiieiieceeseeeeee et 33
477 MAXIMUM VELOCITY ...oooiiiiiiiniiiieieiiceeeceteeeeee e 35
4.8 INERTIA WEIGHToooiiiiiiieeeceeee e 36
4.9 CONSTRICTION FACTORcociiiiiiiiiiiiciiiietctccecieece e 36
4.10 PSO MODELS ...ttt 37
CHAPTER 5 .ottt st 38
EXPERIMENTAL DESIGNooiiiiiiiiiiiiteieeteeeeecieeeeeee et 38
5.1 INTRODUCTION ...ttt 38
5.2 RESULTS .ottt st 40
CHAPTER 6 ..ottt st 57
CONCLUSIONS ...ttt ettt et e e sneens 57

REFERENCES ..ottt st 58

X

LIST OF TABLES

TABLE

1.1 An Example for Moore's Algorithm.ccoooiiiiiiiiiiiii e, 4
1.2.a Implementation of Moore's Algorithm.............cccoeeiiiiiiiiiiinieee e 4
1.2.b Implementation of Moore's Algorithm.............cccoeeeiiiiiiiiiiieniieiececeeee e 4
4.1 Solution Representation of a Particle.........cccoeovveeiiieeiiiieiieeieeceeece e 33
5.1.2 GA FItness STAtISTICS ..eeouvertieriieeiieriieeiee sttt ettt ettt et e et e e 40
5.1.b PSO Fitness StAtISTICSeoueetirieriieiieieriienieeie sttt sttt et sae e e 41
5.2.2 GA CPU StatISTICS ..ecuveeruiiriieniieeieeeite ettt ettt ettt sttt e sbee s e b e 41
5.2.5 PSO CPU SHAtISLICS c.veeuveevieiieiesiieieeiiesiteteeee st et e see it etesteeseesaesseeseeneeseeenseeneenee 41
5.3.a Relative Percent Deviation for Fitness Values.........ccccoeceeiiiniiinininnnnen. 42-46
5.3.b Relative Percent Deviation for CPU Valuescceooeeriieiiiiiiiniiiieiee, 47-50
5.4.a Paired t-test for GA vs PSO fitness......cccooveruieiiiniiniiiierieiecieneeeeeeeee e 51
5.4.b Paired t-test for GA vs PSO fitNessS......c.ceoveruieiiiriiniieiecieeeeeeeee e 52
5.4.c Paired t-test for GA vS PSO fItness...cc.ueeiueeiiiiiiiiiiieieeeeee e 52
5.4.d Paired t-test for GA vS PSO fItNeSS....c.eeeiuiiiiieiieiiieieeeeee e 53
5.5.2 BeSt GA JOD SEQUEINCESeovuiieiiiiiiiiiiieciie ettt ettt ssae et enne 55

5.5.b Best PSO JOD SEQUENCES......ccvieiiieiiieiieeiie ettt eete et eveesreebeessaeeseessae e 56

LIST OF FIGURES

FIGURE

3.1.a Distribution of Individuals in Generation 0ccccceeeveiiiiriieeniiieeeiee e 22
3.1.b Distribution of Individuals in Generation Nccccceeviiiriiiiiieniieienie e 22
5.1 A Boxplot for the Difference of Fitness Valuesc.cccceeevieriiiiiienieeiiieniecieeeens 54
5.2 A Normal Probability Plot for the Difference of Fitness Values..........c.cccccvveennennn. 54

xi

LIST OF SYSMBOLS AND ABBREVIATIONS

SYMBOL/ABBREVIATION
d; : Due date for Job j
Crnax : Completion time of all jobs in the flow shop

PFSP

Fm| > U,

GA

PSO

SPV

CPU

IxM

: Tardiness of Job j

: Total Number of Tardy Jobs

: Permutation Flow Shop Sequencing Problem

: Flowshop Sequencing Problem with Criterion of Number of Tardy Jobs

: Genetic Algorithm

: Particle Swarm Optimization Algorithm

: Smallest Position Value Heuristic Rule

: Central Processing Unit

: J Number of Jobs through m Number of Machines

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Scheduling is of great importance in both manufacturing and service industries. It
significantly improves the productivity and utilization of resources and profitability of
production lines. It has many applications ranging from distribution networks to
machine environment. In this study, we deal with the machine scheduling in

permutation flow shops.

Flow-shop scheduling is one of the most well-known problems in the area of
scheduling. Various dispatching rules, exact and heuristic methods have been proposed
since the pioneering work of Johnson (1954) for the job sequencing problems on single
or two machines, whereas the examples of flow shop scheduling are too few; and the
available ones are mostly concerned with the makespan and/or maximum lateness

minimization. (Hariri & Potts, 1989) developed the first exact algorithm for the NP-hard

number of tardy jobs problem for flow shops, Fm| |ZU1" But, there is no

metaheuristics developed for flow shops with the number of tardy jobs criterion.

We will be the first to apply the metaheuristics to the Fm| |z U, problem. Two

algorithms to be used in the study are the genetic algorithms and the particle swarm
optimization algorithm. GA is mostly used in scheduling problems and recently
(Tasgetiren et al., 2004 a, b, c, d) applied PSO to sequencing problems. We preferred to
use the benchmark suites of (Demirkol, 1998) instead of (Taillard, 1993)’s instances;
since Taillard’s instances don’t include the due dates which are necessary for

determining the number of tardy jobs.

1.2 PERMUTATION FLOWSHOP SCHEDULING

In a flow shop manufacturing system, different machines are set up in series and
each task is performed on those machines. There are n jobs available to be processed on
m number of machines. If the flow shop is a permutation type, a sequence of n jobs is
determined and the jobs undergo through operation on the m machine without changing
their sequence and skipping none of the machines. i.e., the operating sequence of tasks

on each machine doesn’t change.

Given the processing times pjc for job j on machine k, and a job permutation
n={m;,M, ...,Ma}, n jobs (j = 1, 2, ..., n) will be sequenced through m machines

(k=1,2,...,m) using the same permutation.
The assumptions for the permutation flow shop problem are:

e Each task is to be processed once on each machine from machine 1 to m.
e FEach task is done on at most one machine at a time.

e FEach machine can process only one task at a time.

e Preemption is not allowed.

e Set-up times are negligible.

o All tasks release at work center at time zero.

e The operating sequence of tasks is the same on every machine.

1.3 NUMBER OF TARDY JOBS

Minimizing the number of tardy jobs is important for the manufacturer to avoid
from the loss of good will of the customer. When the customer is dissatisfied, he will
prefer another company. Therefore, it is of great interest in industry to minimize the
number of tardy jobs. Studies are mostly done on single machine or two machine
environments. In our study, we aim to determine a sequence that will minimize the

number of tardy jobs in a permutation flow shop.

In order to define a job as tardy or early, we have to compute the completion time

and the tardiness of each job. We compute the completion time, C;, the tardiness, 7; and

the total number of tardy jobs, > U; from the processing order of jobs. So we calculate

the tardiness of jobs j using the formula, 7j = max{0, Cj-dj} . Let’s say c is the total

number of tardy jobs (3 .Uj) counter,

¢, = 0,

forG=1,j<=n,j++)
ifUj = 1(@objistardy) => ¢ = c+1

And if we formulate the number of tardy job minimization we obtain,

n
minimize ZU ;
j=1

subject to

> p,; <d; foralli, i=I,.,m (1.1)

J=1

U, =

J

{O, if C; <d,
1, ifC;>d,
p;»d; 20

1.3.1 Moore/Hodgson Algorithm

Moore’s algorithm constitutes a basis for the number of tardy job minimization
problems. The model was developed for the single machine case; however the model
can be adapted to the m-machine case. As a matter of fact Hariri & Potts solved the
permutation flow shop problem by dividing m-machine into one-machine subgroups
and then applied Moore’s algorithm to the single machine subgroups. Now let’s
mention a little bit about the algorithm and solve an example related to the solution

method.

Step 1. Order the jobs according to the earliest due date rule (EDD). Set ¢ = 0.

Step 2. Compute the tardiness of each job. Find the first tardy job, i. If none of the jobs
is tardy, go to step 4.

Step 3. Find the longest job beginning from the 1% to i™ position and remove it from the
sequence and set ¢ = ¢ + 1. Then go to step 2.

Step 4. Form the schedule where the removed jobs are placed at the end of the

scheduled jobs. The removed jobs are sequenced among themselves in any order.

Let’s illustrate the rule with an example. In the given table the processing time, p;

and the due date, d; of 5 jobs are given.

Table 1.1 An Example for Moore's Algorithm

Jobs, j p; d;
1 5 7
2 8 15
3 3 10
4 4 21
5 6 18

The jobs are ordered in EDD sequence and the tardiness, T; of each job is
calculated. In this schedule, the total number of tardy jobs is 3. Job 2 is found to be the
first tardy job. Among the jobs 1, 3 and 2, job two has the longest processing time. It is
seen that none of the jobs until job 2 is tardy.

Table 1.2.almplementation of Moore's Algorithm

Jobs, j Di G d; T;
1 5 5 7 0
3 3 8 10 0
2 8 16 15 1
5 6 22 18 4
4 4 26 21 5

Job 2 is removed from the schedule and placed to the end of the jobs. The
tardiness of jobs is recalculated. Only job 2 is found to be tardy. This is the last
schedule, since we can’t do any modification on the new table. The total number of
tardy jobs is reduced to 1. The last sequence is as given in Table 1.2.b.

Table 1.2.bImplementation of Moore's Algorithm

Jobs, j pi G d; T;
1 5 7 0
3 3 8 10 0
5 6 14 18 0
4 4 18 21 0
2 8 26 15 11

1.3.2 Hariri & Potts’ Implementation

The permutation flow shop problem with the objective of minimizing the

completion time or the maximum lateness is of much interest in literature. But

permutation flow shop problems with other objectives have received little attention.
Hariri & Potts decided to apply the Branch & Bound Algorithm (B&B) to the NP-hard

number of tardy job minimization problem in permutation flow shops.

In their study, the permutation flow shop is divided into separate single machine
subproblems. In each subproblem, an initial partial sequence is developed for the early
jobs and it is denoted as 6. When ¢ is not empty, C(o, j) shows the earliest completion
time for the jobs in ¢ on machine j (j =1, ..., m). If o is empty, then

j-1
C(o,j)=min, g (z p,)where S denotes the set of jobs not sequenced in . Now the
k=1
permutation flow shop problem is equivalent to single machine subproblems in which
job 1 (i€S) becomes available for processing at time zero, requires a processing time p;
on the machine for its completion and has a due date d, —C(o, j)— Z Dy - Moore’s
k=j+1
algorithm is now applicable to each single machine subproblem. E; and L; give the sets
of early and tardy jobs. A lower bound can be obtained through max{|L,|, ..., | Ly|}.
Two other lower bounds are also obtained. An upper bound for the number of tardy jobs

is generated with a heuristic method. Then, using these lower and upper bounds a B&B

algorithm is developed for the problem.

The algorithms were tested on problems having 2, 4, 6 and 8 machines with 10
jobs, 2, 3, 4 and 5 machines with 15 jobs, having 2, 3 and 4 machines with 20 jobs and 2
and 3 machines with 25 jobs. As m or n increases problems become rapidly harder.

Optimal solution is obtained for the problems with m =4 and n = 15 case.

1.4 EXACT METHODS, HEURISTICS, METAHEURISTICS

Performance of a solution method is determined through the execution time of the
algorithm and the quality of the results. In order to be qualified, a method should give
logical outputs and should achieve the objective of the study optimally.

Minimizing the number of tardy jobs on a single machine is an easy problem

which can be solved polynomially within O(nlogn) time and this kind of problem can

be solved by mathematical (exact) models such as dynamic programming, branch &

bound or integer linear programming algorithms. If the complexity of the problem is a
little bit increased, it is still possible to solve the problem polynomially by making some

assumptions.

Exact methods are able to solve only small sized problems. As a matter of fact
Hariri & Potts’s B&B algorithm is useful when the number of machines and jobs are
less. If we attempt to solve complex problems with exact methods, even we are sure that
we will get the optimal results at last, our lives may not allow completing the runs; since

enumerating the problem takes very long times.

Dispatching rules also work as well for simple problems, but they are not so
efficient for more complex problems. The Shortest Processing Time (SPT) rule used to
be the most effective method for small sized problems until Lodree et al. (2004)

proposed a new sequencing rule named Earliest Adjusted Due Date (EADD) for the

Fm‘rj‘ZU,. problems up to 50 jobs. They derived it by the same way as the way of

Hariri & Potts, dividing the problem into one machine subproblems. The EADD rule is

computationally more expensive than SPT.

Heuristics reveal invaluable solutions. Known heuristic methods start with a
single solution and try to develop better solutions in the next generations from the
solution currently at hand. Worse solutions are not accepted. Therefore, the execution

terminates at the first local minimum being trapped.

Note that, a landscape of an objective function does not have a continual increase
or decrease. Namely, let’s say in a minimization problem, two succeeding minima may
have a maximum point in between. If our solution is closer to the local minimum, then
we have the risk to be trapped at this local minimum. Not accepting the worse solutions
will hinder to overcome the hill and reach the global minimum. Thus, we can say that,

heuristics do not always offer us optimal solutions.

Heuristics were developed for the minimizing the number of tardy jobs in single
machine problems or they were used for initializing the solution or the solution set of

metaheuristics.

Recently metaheuristics are of the greatest interest; since they give the optimal or
near-optimal solutions in a shorter time than exact algorithms do. Mostly used
metaheuristics are the Simulated Annealing, Tabu Search, Genetic Algorithms, Particle

Swarm Optimization, Ant Colony Optimization etc.

In Simulated Annealing and Tabu Search, solutions are obtained from an initially
formed solution; whereas in Genetic Algorithms, Particle Swarm Optimization or Ant
Colony Optimization methods, the solutions are obtained from an initially constructed
population. The general usage of metaheuristics for flow shop problems consists of

minimizing the makespan or maximum tardiness/earliness of jobs.

(Bertel & Billaut, 2004) developed a GA to minimize the weighted number of

tardy jobs in small sized flow shops.

(Tasgetiren et al., 2004d) applied PSO to single machine problems to minimize
the total weighted tardiness. The algorithm is modified for permutation flowshop
sequencing problems with the makespan or tardiness criterion in (Tasgetiren et al., 2004

a,b,c).

The solutions obtained from the metaheuristic methods can be improved by
hybridizing the algorithm with local search. The algorithm starts with a complete
solution and tries to find a better solution by using the neighborhood of the current
solution. We call the solutions as neighbors if the latter solution can be obtained by

modifying the current one.

Metaheuristics are able to solve difficult problems in few minutes. Since in
metaheuristics, worse solutions are given an opportunity, being trapped at local optima
is prevented. Therefore, the solution quality will be increased if metaheuristic methods

are used.

Our study is organized as follows: Chapter 2 gives extensive information about
the literature on permutation flow shop problems with different objectives, with the
subject of number of tardy minimization, genetic algorithm and particle swarm
optimization algorithm usage. In Chapter 3 and 4, the Genetic and Particle Swarm

Optimization Algorithms and their methodology are introduced respectively. The

experimental design and computational results of the study are presented in Chapter 5.

Finally, in Chapter 6 we draw conclusions from results.

CHAPTER 2

LITERATURE REVIEW

2.1 PERMUTATION FLOWSHOP SCHEDULING WITH THE CRITERION
OF NUMBER OF TARDY JOBS

There are many exact, heuristic and metaheuristic methods developed for machine
scheduling. In this study, we are going to focus on the literature about the number of
tardy jobs on a single machine, two-machine and m-machine environment. The goal in
the articles is generally to minimize the number of tardy jobs, or maximize the total

number of on time jobs.

Single machine scheduling constitutes the widest part of the literature. Scheduling
n jobs on one machine is fundamental to scheduling theory and it constitutes a basis for
n job problems with more than one machine. There are also examples of two machine

scheduling; but examples of m-machine environment in the literature are too few.

(Moore, 1968) found that minimizing the number of tardy jobs (3 Ui) is an easy
problem and requires O(nlogn) time to be solved; whereas (Karp, 1972) demonstrated
that the problem of minimizing the weighted number of tardy jobs (3 wiUi) on a single
machine, to be NP-hard. (Lawler, 1976) generalized Moore’s algorithm to the case of

agreeable weights. i.e., p; < p, implies w, > w;,

(Lawler & Moore, 1969) presented a functional equation and applied this function
to resource allocation and sequencing problems including the criterion of weighted
number of tardy jobs. The function is similar to the knapsack problem formulation when

common due date is used. They derived a pseudo polynomial dynamic programming

(DP) algorithm which requires O(n min {Z_/ p,,max {d ; }}) time.

10

(Sahni, 1976) presented an algorithm which requires

O(nminizj p j,zjwj max {d ; }}) time and is a generalized version of Lawler &

Moore’s. In this algorithm, weights are set to be integer.

The DP sequencing method of Lawler & Moore is more efficient than the
methods of (Held & Karp, 1962). It carries out a search 2" whereas the latter has n!
possibilities. (Hariri & Potts, 1994) showed a DP algorithm that solves the weighted
number of tardy jobs problem with up to 300 jobs. They used another term as
“deadline” besides the “due date” term. A job must be completed before its deadline.
Time complexity of the algorithm is O(n2"). DP state-space relaxation technique is used

to derive the lower bounds for the problem.

(Kise et al., 1978) proposed a O(n?) time algorithm for minimizing the number of

tardy jobs with the assumption of 7, <r, = d, <d; whereas Lawler developed a

O(nlogn) for this problem.

Branch & Bound (B&B) algorithm is successful in solving the knapsack-like
problem. (Villareal & Bulfin, 1983) proposed a B&B algorithm with 2 lower bounding
procedures and a dominance theorem. Their method could solve at most 50-job

problems. The algorithm of (Potts & Wassenhove, 1998) requires O(nlogn) time. Their

method is successful in solving problems with up to 100 jobs. Besides, they also
described some lower bounding schemes. (Hallah & Bulfin, 2003) used the B&B
algorithm. Till that time there was not exist any exact algorithm for the problems with
more than 1000 jobs. They developed a heuristic and an exact algorithm for 2500-job
problems. (Lawler & Moore, 1969)’s dynamic programming approach used to solve

problems with up to 1000 jobs.

(Yoo & Martin-Vega, 2001) presented many heuristics and developed a general
algorithmic approach from the Moore/Hodgson algorithm to minimize number of tardy
jobs. They compared their results with other algorithms, GAA obtained rather good
results. They showed that GAA is a viable approach in dynamic problems.

11

(Kethley & Alidaee, 2002) evaluated the performance of various scheduling rules,
heuristics and algorithms on the problem of the minimization of number of tardy jobs

on a single machine.

When precedence constraints are added to the number of tardy jobs on a single
machine problem, it becomes NP-hard. (Steiner, 1997) worked on the weighted version

of the problem and proposed polynomial solutions.

In the relocation problem of (Lin & Cheng, 1999), a reconstruction sequence for a
set of old buildings is determined under a limited budget. They solved the problem with
due date constraints as a resource constrained scheduling problem. They studied on two
problems. In the first problem, they showed that weighted number of tardy jobs on a
single machine problem is NP-hard when common due date is used. In the second
problem, the tardiness issue is studied. When each jobs has individual due dates, the

problem is to be strongly NP-hard.

(Rote & Woeginger, 1998) studied on the l‘sf‘ZU ; problem. Setup is needed

whenever a switch occurs between different family batches. However the problem was
found to be NP-hard, they showed that the problem with uniform family due dates is
solvable in polynomial time.

(Dauzére-Pérés, 1995) proposes a lower bound and a heuristic for the l‘rJ‘Zu i
problem. He relaxed the MILP formulation in order to obtain the lower bound. It is
found to be the first heuristic to minimize the number of late jobs in the general single
machine scheduling problem. The NP-hard problem can be solved in O(nlogn) time
(Moore, 1968), when release dates, rj are equal. He proposes a B&B algorithm where
the release dates are non-equal in another article (Dauzere-Peres and Sevaux). The
algorithm solves most of the instances up to 100 jobs in reasonable CPU times.

(Baptiste et al., 2003) solve problems with 200 jobs with a B&B algorithm.

(Dauzére-Pérés & Sevaux, 1999) was first to propose an algorithm for the NP

hard l‘rj‘z w, U, problem and to introduce the “master sequence” notion. The

algorithm was able to solve problems of more than 100 jobs. They used lagrangean

relaxation algorithm to find both the upper and lower bounds and introduced a new

12

MILP formulation for the problem. In (Sevaux and Dauzere-Peres, 2003), they

improved the lagrangean relaxation algorithm for the l‘rj‘z w, U, problem. The paper

is the first to apply metaheuristics on a single machine scheduling problem.

(Peridy et al., 2001) used a short-term scheduling memory approach to find lower

bounds and then applied a B&B algorithm to the 1‘13‘2 w, U, problem. The short-term

memory stores some of the last jobs processed to avoid repetitions. The method can

solve optimally up to 100 jobs.

(Giiner et al., 1998) considered a dual objective in the one machine problem such
as the minimization of the maximum earliness and the minimization of the number of
tardy jobs. B&B algorithm was presented by connecting Moore’s algorithm. The
algorithm is not practical for problems with more than 25 jobs because of the

combinatorial nature of the problem.

(Chang & Su, 2001) considered another bicriteria scheduling problem with the
aim of minimizing the maximum lateness and the number of tardy jobs. A simple
procedure is introduced to identify 2 critical jobs. They used a B&B algorithm which

can solve problems with 50 jobs.

(Koksalan & Keha, 2003) considered the two single machine bicriteria scheduling
problems which are the minimization of flow time & number of tardy jobs and the
minimization of flow time & maximum earliness. They used a hybrid GA to solve the

problems. The algorithm is successful in solving bicriteria scheduling problems.

The examples given above are about scheduling of one machine with non-
preemption. Preemption case is allowing other jobs to interrupt the processing of a job,

so that job is resumed at a later date. (Lawler, 1990) studied on that kind of problem. He

described a dynamic programming algorithm for 1‘ pmtn,rj‘z w,u, problem. (Gordon

& Kubiak, 1998) examined the complexity of the l‘rj‘z w,U; problem for both the

preemptive and non-preemptive case and he showed that both problems are NP-hard.

Recently (Mosheiov & Sidney, 2004) presented a paper and studied the one

machine scheduling problem from a different perspective. They studied the effect of

13

learning on the 1| |Z U, problem and as a result they found that Moore’s algorithm

doesn’t guarantee optimal schedule when learning curves are assumed.

There are a few articles written about minimizing the number of tardy jobs on two
machines. The F2||ZU; problem complexity is first settled by (Lenstra et al., 1977) to be
strongly NP-hard. (Gupta & Hariri, 1997) presents four special cases which can be
solved polynomially and several heuristics by which problems can be solved near

optimal. The problem with up to 60 jobs can be solved by the algorithms.

(Croce et al., 2000) proposes a B & B algorithm for the two-machine flow-shop
sequencing problem. In the problem, the jobs have to be completed at a common due
date. This problem with a common due date is also proven to be NP-hard. The
proposed algorithm is capable of finding optimal solutions for problems up to 900 jobs.
Bounds are derived from the continuous relaxation of the multidimensional KP

formulation.

In (Lin, 2001), Lin proposes a polynomial time algorithm for some special cases
for two machine flowshop with two objectives. The objectives are the minimization of

the maximum tardiness, Tp.x and the number of tardy jobs, N;.

(Bulfin and Hallah, 2003) applied a heuristic and a B&B algorithm for the
weighted and unweighted number of tardy jobs on two machines problem. KP
formulation was relaxed in order to find the bounds. The algorithm is successful in
solving problems with 100 jobs for both the weighted and unweighted cases. The
previous exact algorithms could solve the unweighted problems up to 25 jobs (Hariri

and Potts, 1989).

Scheduling n jobs on permutation flowshop problems are mainly concerned with
the minimization of the completion time (Iyer et al, 2004), (Reeves et al, 1998),
(Yamada and Reeves), (Bertel and Billaut, 2004). (Taillard, 1990) compared the best
heuristic methods with his Tabu Search (TS) algorithm that he developed for FSSP.
(Ying & Liao, 2004) presented the Ant Colony System (ACS) heuristic to the
minimization of completion time in PFSP. This is the first metaheuristic to apply ACS
to this kind of problem. (Tasgetiren et al., 2004 a, b and c) applied Particle Swarm

Optimization (PSO) algorithm to permutation flowshop sequencing problems. Among

14

these articles, the first one has a single criterion and the last two have two criteria. (Leu
& Hwang, 2002) solved a mixed precast production problem as a resource constrained
flowshop scheduling problem using Genetic Algorithms (GA). (Ruiz et al., 2004)
hybridized GA in order to solve the PFSP with sequence dependent setup times.

To our knowledge, (Hariri & Potts, 1989) presented the first exact algorithm for

the NP-hard Fm| |Z U, problem. They aimed to find a sequence that minimizes the

number of tardy jobs in flowshop problems. They derived a lower bound by dividing m
machines into several one machines. According to the paper, the m-machine problem is
equivalent to a single machine problem with due dates. Moore’s algorithm is applied to

the single machine subproblems to solve the flowshop problem.

The Shortest Processing Time (SPT) rule used to be the most effective method

until (Lodree et al., 2004) proposed a sequencing rule for Fm‘rj ‘Z U, problems up to 50

jobs. The new rule is named as the Earliest Adjusted Due Date (EADD). They derived it
by the same way as the way of Hariri & Potts, dividing the problem into one machine

subproblems. The EADD rule is computationally more expensive than SPT.

(Bertel & Billaut, 2004) developed a GA for an industrial multiprocessor FSSP
with recirculation. The problem is to perform jobs between a release date and a due

date, in order to minimize the weighted number of tardy jobs.

2.2 GENETIC ALGORITHMS

Genetic algorithm (GA) is a well-known and mostly used evolutionary
computation technique, which was developed by John Holland and his PhD students
(Holland, 1975). The idea was inspired from Darwin’s natural selection theorem which

is based on the idea of the survival of the fittest.

Genetic algorithms have an initial population composed of randomly generated
solutions. There are three stochastic operators such as selection, crossover and mutation
which are applied to the set of solutions iteratively to produce hopefully better
solutions. In selection, most fit members survive and the least fit are eliminated.

Differentiation is attained through crossover and mutation. There is a probability for

15

crossover and mutation. (Beasley et al., 1993 a and b) give detailed information about
the fundamental and advanced aspects of GAs in both articles respectively. The
concepts like selection, crossover, mutation, and their techniques are described and
some terms like, deception, epistatis, restricted mating, speciation etc are given.
Starkweather et al. compared six crossover operators over Traveling Salesman Problem
and a warehouse scheduling problem found that the effectiveness of the sequencing

operators changes depending on the problem domain.

Whitley presents the strengths and weaknesses of evolutionary algorithms
covering genetic algorithms, evolution strategies, genetic programming and
evolutionary programming. He gives more experimental forms of GAs including the
parallel island models and parallel cellular genetic algorithms in his articles. He reviews

the theoretical foundations of GA.

Genetic algorithms have a wide range of applications ranging from optimization,

design and machine learning problems to scheduling problems and etc.

The success in solving scheduling applications mostly depends on the choice of
the search algorithm. Choosing an appropriate technique can be possible in two ways:
the generality of the algorithm can be examined or a comparison can be done after
applying many algorithms to the scheduling problem. (Rana et al.) opted to compare the
performance of heuristic, evolutionary and local search approaches on solving a

warehouse scheduling problem.

In this century, industrial robots perform many tasks. The aim of using them is to
reduce the cycle time and to obtain high productivity. An industrial robot has constant
finishing time for each operation, but it is possible to reduce the makespan with an
optimal sequence of tasks. Zacharia and Aspragathos applied GA to cope with this
problem (Zacharia and Aspragathos, 2005)

It is significant to arrange an optimal curriculum schedule for every school. This
is not only required for educational goals, but also for effectively utilizing the faculty
resources. This is a rather difficult task and GA has a great reputation in solving this

problem. There are many articles written over this topic (Wang, 2005).

16

(Chan and Chung, 2004) emphasizes the trade-off between the earliness on time
and the tardiness situations for a distribution network. They develop a multi-criterion
genetic optimization methodology. The proposed algorithm combines analytical

hierarchy process, a multi-criterion decision making tool, with GAs.

Whitley used GAs for setting weights in neural networks (NN). The training data
were used to estimate the output behavior of NN. It is understood that combining GA

with NN gives promising results.

GA has a wide usage in scheduling job shops and flowshops and they give rather
good results for both kinds of problems. There are many articles available in literature.
Generally objective function is set to minimize the make span or minimize the
earliness/tardiness in these articles. In (Leu and Hwang, 2002), a resource constrained
flowshop scheduling model is used to solve a mixed precast production problem. Since
precast production has many tasks which are done in the same order through all tasks, it

is as flowshop process.

Spending less time when executing the optimization algorithms is substantial. In
order to produce high performance for the application’s execution, a genetic algorithm

was proposed to create a partition and schedule in the study of Moore and Rodrigues.

Good properties of search methods are generally integrated so as to find better
solutions in a reasonable amount of time. This kind of algorithms is called as hybrid
algorithms. In (Kim, 2003), a hybrid GA was combined with fuzzy logic for solving
resource-constrained project scheduling. Nearchou added some features of GA and local
search to his Simulated Annealing (SA) algorithm for finding an optimal scheduling for
a flowshop problem with the makespan criterion (Nearchou, 2004). The hybrid GA was
successfully applied to permutation flowshops for solving sequence-dependent set-up
times (Ruiz et al.,, 2004). The parameters were fine tuned by using design of
experiments approach. Hino et al. combined the best characteristics of genetic
algorithms and tabu search to solve the earliness/tardiness problem in a single machine
environment (Hino et al., 2005). Whitley et al. compared several heuristic methods for
scheduling the shipment of customer orders for a warehouse. They aimed to reduce the
shipping time and minimize the inventory. Hybrid GA was appeared to be the best

algorithm for solving the problem.

17

2.3 PARTICLE SWARM OPTIMIZATION

The Particle Swarm Optimization (PSO) algorithm is a new population-based
evolutionary computation technique, which was originally developed by Kennedy &
Eberhart in 1995. It was inspired from the social behavior of animals such as fish
shoaling and bird flocking. It has some tuning parameters which influence the
performance of the algorithm; the exploration and exploitation tradeoff. In the work of
Eberhart, Simpson & Dobbins, it was realized that some of the parameters were
redundant, and they removed from the original algorithm, (Eberhart, 1996). The

mathematical equations of the original version of PSO is as,

Vf& = Vi];/_l +crand()(py, _xid)+czRand()(pgd —X;) (2.1.2)

Xig = Xig TVia (2.1.b)
c1: cognition learning rate

cy: social learning rate

(c1, c are taken to be 2.05 in general)

(Trelea, 2003) gives some insights about parameter selection in PSO. According
to the article, some parameters can be discarded; since they add no value to the
algorithm. Trelea analyzes the deterministic PSO algorithm for its dynamic behavior

and convergence property.

The velocities of particles’ on each dimension are restricted t0 Viax. A larger Viax
facilitates global exploration, while smaller V. facilitates local exploitation. Shi and
Eberhart added the inertia weight as a constant to the velocity in order to control the
exploration and exploitation (Shi and Eberhart, 1998 a and b). The use of inertia weight

improved the performance of the algorithm in many applications.

k

Via = inljiil +erand()p,, —Xx,)+ CZRand()(pgd - X;) (2.2.2)
Xig = Xig TVig (2.2.b)

w: inertia weight

Chatterjee & Siarry proposed a new variation of PSO which introduced a

nonlinear inertia weight for the particle’s old velocity in PSO equations and it improved

18

the convergence as well. It also presented a way for parameter selection and compared

the results with other parameter selection methods

(Clerc, 1999) introduced the constriction factor (K) to PSO. It controls, constrains
velocities and thus insures convergence. The constriction factor negated the need for

Vmax~

v, = kvl + eyrand (V(py —x,4) + ¢, Rand (O)(p oy — x,0))] (2.3.2)

1

2

K=
‘2—40—\/402—4¢>

,where p=c,+c,, ¢>4 (2.3.b)

(Eberhart and Shi, 2001d) demonstrated that although previous evolutionary
paradigms can generally solve static problems, PSO can successfully optimize dynamic
systems. It can not be known when a larger or a smaller inertia weight is needed.
Therefore, that value is set to a dynamic value which starts from 0.9 and descends

linearly till 0.4.

Five or six years after the introduction of PSO Eberhart and Shi reviewed the

development, applications and the written books and articles (Eberhart and Shi, 2001b)

We can see many applications of PSO algorithm in the literature. The first
application was about the network architecture and is available in the articles of (Shi
and Eberhart, 1998), (Kennedy et al., 2001). (Eberhart & Hu, 1999) evolved the neural

network with PSO in order to diagnose the human tremor.

When numerically controlled machines emerged, the productivity was far from
being optimal. As an example to optimize these systems, the metal removal operation

was investigated by Tandon (Tandon, 2000).

(Pavlidis et al., 2004) compared PSO with other computational intelligence
methods in finding the Nash equilibrium in game theory.

Voss and Howland introduce a new method called social programming, which is a
logical extension of PSO, the Group Method of Data Handling and Cartesian

Programming. They used the method for predicting closing stock prices.

19

The (Zhang et al., 2004) research constitutes an alternative solution solving

scheme for resource-constrained project scheduling problem.

(Ghoshal, 2004) compared some metaheuristic techniques such as PSO, a hybrid
PSO and a hybrid GA-SA to optimize the proportional-integral derivative gains, which
are used in multi-area thermal generating plants. He found PSO to be more optimal and

it is achieved in least time.

Recently (Tasgetiren et al., 2004 a, b, ¢ and d) applied PSO to sequencing
problems. In (Tasgetiren et al., 2004d) they used the Smallest Position Value (SPV)
heuristic rule to apply continuous PSO algorithm to all classes of sequencing problems
which are to be NP-hard. The study is the first to apply PSO to single machine
problems. Variable Neighborhood local search technique was embedded in the
algorithm. This had a great impact on the solution quality. The algorithm is modified for
permutation flowshop sequencing problems in (Tasgetiren et al., 2004 a, b and c¢). While

the first article has a single criterion, the last two ones include two criteria.

Other applications include, power and voltage control, ingredient mix
optimization, system design, multi-objective optimization, pattern recognition,
biological system modeling, signal processing, robotic applications, decision-making,

simulation,...etc.

The evolutionary computation paradigms and PSO algorithm were compared in
many articles (Eberhart and Shi, 2001a), (Angeline, 1998) and (Kennedy and Spears,
1998). In the study of Eberhart and Shi, the operators of each paradigm are reviewed.
The objective of comparison is not to determine which algorithm is better; but to
demonstrate how each of them works, and how can they be combined to improve the
performance. Some of the features of GA were incorporated to PSO. (Penev and
Littlefair, 2004) introduced a noval population-based optimization method, called Free
Search, and compared it to different optimization methods including PSO. They say that

PSO has a good convergence speed.

In the work (Carlisle & Dozier, 2001) of Carlisle & Dozier some parameter

settings are recommended such as;

20

Population size = 30
Vo =0, 1fX__ is enforced

ax

¢, =28andc, =13
p=41

They wanted to define a general purpose a PSO swarm, to be used as a base
swarm description. In another study, they showed a method for adapting the particle
swarm optimizer to dynamic environments. The particle resets its previous best record
whenever the environment changes and forgets about its experience to that point. The
type of resetting changes based on the iteration count or the magnitude of change in the
environment. It is concluded that a more gradual reset throughout the population might

provide better convergence.

(Lobjerg et al., 2001) combined PSO with genetic algorithm concepts and
evaluated if it was competitive on function optimization. They employed the concepts
of breeding and subpopulation for velocity and position updates. The method was heavy

computationally due to the additional burden of breeding and subpopulation.

(He et al., 2004) presented a new hybrid particle swarm optimizer with passive
congregation. Passive congregation is a biological term. It insures the integrity in the
swarm by social forces. By means of passive congregation, information can be shared

between particles and this will help avoiding being trapped at local optima.

Like many other evolutionary and classical minimization methods, PSO suffers
from being trapped at local optima. Another new technique to alleviate the local optima
problem was introduced by Parsopoulos et al. The method is called Stretching
Technique. It consists of two-stage objective function. The method is applied after a
local minimum has been found. The local minima were eliminated while the global

minimum is preserved in the method.

Finally, we can say that PSO is a powerful method for optimizing continuous
functions. However, it is not sufficient for solving discrete cases. (Deroussi et al., 2004)
showed the Discrete Particle Swarm Optimizer (DPSO) to solve the combinatorial
optimization problems. He combines local search and path relinking to DPSO and
applies it to the well-known Traveling Salesman Problem. The proposed algorithm

competes with the best iterated local search methods.

CHAPTER 3

GENETIC ALGORITHMS

3.1 AN OVERVIEW

Genetic algorithms (GA) belong to the class of metaheuristics'. It was firstly
introduced by John Holland in 1960. The idea was inspired from a biological issue
which is known to be Darwin’s evolution theorem. The evolutionary ideas of the natural
selection and genetics constitute the basics of GA. The concepts used in the algorithm
are same as the ones which are used in biology, e.g., the genes on each chromosome
correspond to variables of each solution. In the algorithm, the survival of the fittest
among individuals over consecutive generations is simulated when a problem is being

solved.

GAs are good at solving continuous and discrete combinatorial problems. The
probability of getting 'stuck' at local optima is less than the gradient search methods.
But GAs are computationally expensive. It is simple to deal with them; since very good
results can be obtained for different kind of problems, even when a little change is done

on the existing algorithm.

Whereas most stochastic search methods start with a single solution, genetic
algorithms start with a population of solutions. An initial population is formed randomly
or by means of a heuristic algorithm. Solutions are encoded in a form, which are called
chromosomes. Each chromosome shows a complete solution to a problem. They are
each assigned to a fitness score which represents the ability of chromosomes to compete

for mating and staying alive.

" The other well-known metaheuristics are Simulated Annealing and Tabu Search. There are also some
recently used metaheuristics available; the Ant Colony Optimization, Differential Evolution and the
Particle Swarm Optimization.

21

22

Parents are picked up to mate according to their fitness values. The fitter
chromosomes produce more offspring than the less fit chromosomes. The solution set is
then imposed to crossover, mutation and inversion. These stochastic operators are
required for diversifying the solution pool and especially getting better solutions. Since
the size of the population should be maintained statically, some weak individuals in the
population die, and better solutions thrive to stay alive. The cycle continues until some

. 2
certain number of iterations is executed or once the population converges”.

»

Figure 3-1.a Distribution of Individuals in Generation 0

A

»

Figure 3-1.b Distribution of Individuals in Generation N

3.2 THE PSEUDOCODE OF THE ALGORITHM
Genetic Algorithm ()

{
Initialize population P of size A /* a randomly generated population®/
Evaluate) individuals in P /*check the fitness of each chromosome*/

While termination criteria not satisfied do

{ Select 2* n individuals from P

Crossover individuals to produce | offspring

Mutate some individuals in p

Add p offspring to N individuals in P

Evaluate (A +) individuals in P

Select \ individuals from (A + W) individuals in P }
End Genetic Algorithm ()}

* Convergence is defined as the progression of solutions towards uniformity. Similarity among fitness
values increases as the population converges to the best fitness value obtained so far.

23

3.3 REPRESENTATION

Any representation can be used for chromosomes such as; strings of bits, arrays,
trees, lists, or any other object. Mutation and crossover operators are defined according
to the representation used. For example, for permutation flow shop sequencing
problem, each gene on a chromosome is represented as a list of the job numbers; e.g., in
chromosome {9,2,4,1,5,7,3,6,10,8}, the numbers indicate the operating sequence of jobs
on each n machines from 1 to n. In many application, string representation is used; e.g.,

{0,1,0,0,1,1,1}

3.3.1 Schema Theorem

A schema helps determining the similarities among chromosomes. The
similar section of the chromosome is written neatly and the rest part is denoted with *.
e.g., the sequences of genes on those two chromosomes are similar, which are to be {1,

4,6,3,2,5} and {5, 1,6,3,2,4}

In these two chromosomes, it is obviously seen that there is a similarity of

genes at certain locations. The schema of can be represented as {*,*, 6, 3, 2, *}

As the number of schemas increases, the solution pool moves to uniformity;
namely it converges. This means that the fitness of the chromosomes begins to stabilize,

which helps the algorithm stop running.

Schema Theorem has some formulations. With the calculation of the
formulas, it helps to provide information about how GA works and to calculate the

effect of selection, crossover and mutation.

3.4 SELECTION

Selection method is used for two objectives; for determining the mates to
reproduce and for determining the fitter chromosomes which will be maintained in the

next generation.

This method has a magnificent effect on the results. If the selector picks only the

best individual, then the population will quickly converge to that best value. The

24

selector should also pick individuals that are not so good, but have hopefully good

genetic material to avoid from early convergence.

Selection is done according to the fitness scores. By using fitness scores, fitter
chromosomes are chosen to reproduce and weaker ones are eliminated and hence the
population is differentiated and diversified. There are many selection methods

available.

3.4.1 Roulette Wheel Selection

/@)
270

i

Individuals have

probability to be chosen whereas (i) denotes the fitness

of that certain chromosome and }f(i) denotes the sum of the fitness of each
chromosome in the population. The proportion is compared with a randomly generated
number and the chromosomes are selected, whose fitness proportion is close to the

generated value.
3.4.2 Ranking Selection

The fitness of the chromosomes is calculated and the values are sorted in
descending ordered. Then, the selection is done downward.
3.4.3 Elitist Selection

Few of the best individuals are directly inserted to the mating pool. Another
selection method is used for the rest of the pool.
3.4.4 Tournament Selection

In this selection method, the best being solution is picked up among k number of
selected individuals and it is inserted to the mating pool. The best results are attained

when k equals 2.

3.4.5 Steady-State Selection

Different selection strategies can be followed for both mating and replacement.
e.g., Fitness of parents can be taken into account during mating whereas replacement
can be done randomly or the selection can be done according to fitness for both stages,

etc.

25

3.4.6 Stochastic Universal Selection

All individuals have the same probability to be selected.

3.5 CROSSOVER

In crossover, two individuals, called parents combine to produce two more
individuals which are called the children. One chromosome exchanges its subpart with
the latter, which is a mimicking of a biological recombination. But there are also
asexual and single-child type crossovers. Crossover enables to move to promising

regions of the solution space.

The main objective of crossover is to transfer the good characteristics of previous
generation to the subsequent generation. Therefore, it matches generally good parents to

produce better solutions.

3.5.1 Single Point Crossover

Parent chromosomes are broken from the same point and the alleles after that
point are swapped between parents, e.g., let’s say parent {al,a2,a3,a4,a5,a6,a7} and
{b1,b2,b3,b4,b5,b6,b7} chromosomes are broken after the third point. Then the
produced chromosomes will be {al,a2,a3,b4,b5,b6,b7} and {b1,b2,b3,a4,a5,a6,a7}

Goldberg [103] describes another single point crossover which performs well in

flow shop sequencing problems. Both parents are broken randomly at a point.

Pl 2134567 Ol 2143675

*

P2 4362715 02 4321567

As seen in the first offspring, the alleles 2 and 1 are erased from the second parent
and the rest are directly replaced beyond the breaking point of the first parent without
changing the sequence the second parent. The second offspring is reproduced in the

Same way.

26

2-point, 3- point and multi-point crossover have been developed from 1-point

Crossover.

3.5.2 Cycle Crossover (CX)

A single crossover point is selected. From starting at this point, elements from one
parent is inherited to the offspring, as soon as the cycle is completed, the values are

inherited from the other parent. Let’s explain it on the example,

Parent 1 7342156
Crossover points *

Parent 2 3152476
Offspring 7342156

Third point is selected as the crossover point. 4 is inherited from parent 1. We
move on the second parent until we see 4, and inherit the across value to the offspring.
This continues until a cycle is completed. The cycle is completed at location 3. After

than the remaining loci is filled with the elements from the second parent.

3.5.3 Order Crossover (0OX)

This is a 2-point crossover operator. The points are randomly selected. The
offspring inherits the alleles between the selected points from one of the parents. The
remaining locations are filled with the alleles from the alternate parent. The alleles are
inherited from the beginning allele to the end if they don’t appear in the offspring so far.

Filling of offspring loci begins beyond the second crossover point.

Parent 1 7342156
Crossover points * *

Parent 2 3152476
Offspring 16 524 73

3.5.4 Partially Mapped Crossover (PMX)

Two points are selected randomly. The elements among the points are inherited

from one of the parents. Other unfilled loci are inherited from the alternate parent.

27

Parent 1 7342156
Crossover points * *

Parent 2 3152476
Offspring 3442176

At this moment, if we met in the alternate parent the previously inherited
elements, they are replaced with the other elements from the previous parent across

them.

In the example, 4 duplicates; so the offspring is mutated and the second locus of
the child chromosome is changed with 5; since 5 hasn’t appeared in the sequence. So

the new sequence is

Mutated offspring 3542176

3.5.5 Position-Based Crossover (PBX)

Some points are selected randomly and the alleles at these points are inherited
from one of the parents to the offspring. The remaining gene loci are inherited from the
latter parent. To avoid from the duplication of alleles, the gene values aligned with the

crossover points should be replaced with the alleles across the points.

Parent 1 7342156
Crossover points koK *

Parent 2 3152476
Offspring 7142556

As seen in the representation above, the allele 5 duplicates and 3, is not available

in the offspring sequence. Let’s do a mutation on the reproduced chromosome.

Mutated offspring 7142356

3.6 MUTATION

Mutation changes the values of genes at some locations in the chromosome. It

helps randomizing the search with a very low probability and finds solutions that cannot

28

be encountered by crossover. It enables movement in the search space and restores lost

information to the population.

Mutation has less impact near the beginning of a run, and more near the end while

the crossover is more effective at the beginning and less at the end.

3.7 INVERSION

It is rarely used. The order of a part of a chromosome is reversed, e.g.,

{1,2,3,4,5,6,7,8,9} is changed into {1,2,7,6,5,4,3,8,9}.

3.8 REPLACEMENT

During replacement, generally the aim is to eliminate the worst or the most similar
individuals. Because first we want to get children with good properties and second
when the population includes similar individuals, the likelihood of finding new
solutions decreases. It is important to consider carefully the replacement strategy. There

are some approaches for deletion.

3.9 TERMINATION CRITERIA

The algorithm is terminated whenever a certain number of iterations are reached
or the population converges. Each iteration is called a generation. Typically a GA can

be iterated from 50 to 500 or more generations.

CHAPTER 4

PARTICLE SWARM OPTIMIZATION ALGORITHM

4.1 AN OVERVIEW

Particle Swarm Optimization (PSO) is a population based metaheuristic which
was developed by Eberhart and Kennedy, in 1995 and introduced as an alternative to
Genetic Algorithms (GA). It was inspired by the social behavior of flocking organisms
such as bird swarms and fish shoals, which benefit from their previous experience or
from the experience of the previous generation while they are searching for food and

mate.

PSO is a rather successful method for the continuous optimization problems;
however it is very difficult to adapt it for the discrete case. Researches were already
done for the adaptation of the algorithm for the discrete case. These approaches can

solve the combinatorial problems to some extent.

The PSO paradigm resembles to GA at some points. The initialization of the
algorithm is done with a population of random solutions. It searches the optimal value
by updating generations. Solutions are not generated by the crossover and mutation
operators as in GAs. Instead, in PSO new generations are formed by means of velocity
updates. The potential solutions, called particles, fly through the multi-dimensional
search space, and follow the current optimum particles. Execution of the algorithm is
terminated as soon as the maximum number of iteration is or maximum CPU time

exceeded.

There is no replacement in PSO, all particles are kept in the population during the
whole run. PSO does not incorporate the survival of the fittest, whereas all other

evolutionary algorithms do.

29

30

Each particle has a velocity. Particles are carried to new positions with this
velocity. The fitness values of particles are evaluated according to their positions at
each iteration. The velocity, position and fitness of a particle are stored in a short term
memory. The best position and fitness values of the particle are stored in the long term
memory; which is named by Kennedy & Eberhart as autobiographical memory. The
best experience stored in this memory is named as personal best; pbest. The particle
with the best fitness in the neighborhood is named as the local best; /best and the best

particle in the whole swarm is called as the global best; gbest.

PSO has two versions; the local version and the global version. According to the
local neighborhood, each particle moves towards its best previous position, pbest and
towards the best particle in its restricted neighborhood, /best; rather than moving
towards the best of the entire group, gbest. In the global neighborhood, each particle
moves towards its best previous position, pbest and towards the best particle in the

whole swarm, gbest.

There is a communication between particles, each particle shares its information
with others. A particle exchanges its information with the particles in the neighborhood
or a predetermined set of particles in the search space. Therefore; after some number of
iterations the swarm loses its diversity and solutions progress to uniformity. If the

convergence occurs too early, the probability of being stuck in local minima increases.

In recent years, PSO has been successfully applied in many areas. It solves a
variety of optimization problems in a faster and cheaper way than the evolutionary
algorithms in the early iterations, but its computational efficiency may reduce as the
number of generations increases. In addition to this, PSO has few parameters to adjust.

It works well for different kind of problems when the algorithm is slightly modified.

31

4.2 THE PSEUDOCODE OF THE ALGORITHM

Initialize parameters

Initialize population

Find permutation

Evaluate

Do

{
Find the personal best
Find the global best
Update velocity
Update position
Find permutation
Evaluate

Apply local search (optional)
/

While (Termination)

4.3 NOTATION

X! i" particle in the swarm at iteration t; X' = [x’ Xiyer X,]

il127vi29°*9%in
x; : Position value of the i™ particle with respect to the j"™ dimension (j =1,2,...,1).

pop': Set of p particles in the swarm at iteration t, i.e., pop' = [X XX ’]

t

7/ : Permutation of jobs implied by the particle X/; =/ = [ﬁ{l,zrjz,..,fzi’n]

t

z.. . Assignment of job j of the particle 7 in the permutation at iteration ¢.

y
V!': Velocity of particle i at iteration t; ¥, = [vl.’l,v,.’z,...,vi’n]
v, : Velocity of particle i at iteration t with respect to the "™ dimension.

w': Inertia weight; a parameter to control the impact of the previous velocities on the
current velocity.

P': The best position of the particle i with the best fitness until iteration t, personal best;
P =[p}y i]

p;; - Position value of the i™ personal best with respect to the j™ dimension (j =1,2,...,n).
G': The best position of the globally best particle achieved so far, global best;
G' =[g}.g.m8)]

g’ Position value of the global best with respect to the i™ dimension (j =1,2,...n)

32

4.4 ORIGINAL PSO ALGORITHM

Each particle updates its velocity and position according to its previous velocity
and the distances of its current position from its own best experience and the group’s
best experience according to the equation 4.1.a given below:

vi =vi ' +en(phy T —x)+ e (g —xp) (4.1.2)

xk = xkt 4k (4.1.b)

Here, ¢; and c; are cognitive and social components respectively. These terms pull
each particle to pbest and gbest locations. They are both set to 2 for almost all
applications; which is obtained from early experience. High or low values of these

terms may hinder particles to reach the target.

r;, 2 are random numbers uniformly distributed in the interval [0,1]. Particles fly
to new position with this velocity and their new position is calculated by the equation

4.1.b.

4.5 SOLUTION REPRESENTATION

Solution representation is a very important issue in PSO algorithm. The
representation changes depending on the type of the problem. For the PFSP, we present

n number of dimensions for » number of jobs (,j=1/.,n). Each dimension in the

sequence corresponds to a certain job. In addition, the particle X L= [x e X]
corresponds to the position values for » number of jobs in the PFSP problem. The
position values of particles are in fact continuous. To discretize the positions, we use the

SPV rule and by this way, determine processing sequence of jobs in the flow shop.

Table 4.1 illustrates the solution representation of particleXit for the PSO
algorithm for the PFSP together with its corresponding velocity and permutation.

xis =—1.20

According to the proposed SPV rule, the smallest position value is , so the

T

dimension j=5 is assigned to be the first job " = > in the permutation “; the second

33

X!, =—=0.99

smallest position value is , so the dimension j=2 is assigned to be the second

t

% and so on. In other words, dimensions are sorted

t . .
job %2 =2 in the permutation

according to the SPV rule.

This representation is unique in terms of finding new solutions since positions of
each particle are updated at each iteration k& in the PSO algorithm, thus resulting in

different sequences at each iteration %.

Table 4.1 Solution Representation of a Particle

Xj; 1.80 | -0.99 | 3.01 -0.72 | -1.20 | 2.15

Vij 3.89 2.94 3.08 | -0.87 | -0.20 | 3.16

4.6 INITIAL POPULATION

In PSO, the population is initialized randomly and the initial continuous position

values are generated randomly using the following formula: x{ = x, +(x,. — X)*U(0,1)

max

wherex, . =-1.0,x_, =1.0. Initial continuous velocities are generated by similar

max

formula as follows: vy = v, + (Viax = Vinin)*U(0,1) Wherev_ . =-1.0,v_ =1.0. U(0,))is a

ij min > ¥ max
uniform random number between 0 and 1. Continuous velocity values are restricted to

some range, namely vt =[v, ... v,]=[-4.0,4.0] wherev,;, =-v

min max *

As the objective of our problem is to minimize the number of tardy jobs in
permutation flow shops, the fitness function includes the total number of tardy jobs for

the particle i. That is,

f! (ﬂf)z iU(ﬂ't ,m) 4.2)

where 7 is the corresponding permutation of particle X; and U is the number of tardy

jobs from job 1 to n. The complete computational procedure of the PSO algorithm for

the PFSP can be summarized as follows:

Step 1: Initialization

= Set k=0, m=twice the number of dimensions.

= Generate m particles randomly

where X! = [xf,x(:]

= Generate initial velocities of particles randomly {V,O = 1,..,m}where v’

» Apply the SPV rule to find the sequence S/

as

34

explained before, {X = Im}

]

[sﬂs,ﬁ] of particle x/for i=1..,m.

» Evaluate each particle 7 in the swarm using the objective function f,° for i =1,..,m .

» For each particle 7 in the swarm, set PB; =

along with its best fitness value, f”’ = £’ fori=1..,m.

X!, where PB’ =[pb!), =x!,... pb! = x"]

* Find the best fitness value f,°=min{f,.°}for i=1.,mwith its corresponding

position X, .

= Set global best to GB® = X" whereGB’ =|[gh, =x,,,..gb, =x,,] with its fitness

value f% = f”

Step 2: Update iteration counter
" k=fk+1

Step3: Update inertia weight

= wf =k xg where a is decrement factor.

Step 4: Update velocity

k _ k-1 k-1 k-1 _k-1Y, . k-1 k-1
v =wovg +c]r1(pb,-j =X)Jrczrz(gbj =X)

Step 5: Update position

Step 6: Find Sequence

* Apply the SPV rule to find the sequence S/

= [s,’jsﬁ,] fori=1,.,m.

35

Step 7: Update personal best

= FEach particle is evaluated by using its sequence to see if personal best will

improve. That is, if f'< f”for i=1.,m, then personal best is updated as

PBf =xfand f” =f'fori=1.,m.
Step 8: Update global best

* Find the minimum value of personal best.

£ =minlf? Y for i= 1 mlelizi=1.,m)

= If £ < £, then the global best is updated as GB* = X and ¢ = f
Step 9: Stopping criterion

= [f the number of iteration exceeds the maximum number of iteration, or

maximum CPU time, then stop, otherwise go to step 2.

4.7 MAXIMUM VELOCITY

The velocities of particles are constrained to a maximum velocity, V.. If a
velocity on a dimension of a particle exceeds V.., then it is limited to V. Vinax
controls the exploration and exploitation ability of a particle. It helps to search the

regions between the current position and the target position.

Fine-tuning V. is so important that a large value of V,,. facilitates global
exploration, while a smaller V,,,. encourages local exploitation. If V,,,, is set too high or
too small, the particles can’t explore the search space sufficiently and they could stuck

at local optima.

36

4.8 INERTIA WEIGHT

Eberhart & Shi introduced a new concept to PSO in 1998; the inertia weight, w
which highly increased the performance of PSO in a number of applications. Before,
PSO was not searching neighbors sufficiently. Dynamically adjusting the velocity by

means of w provided the local search.

The inertia weight controls the effect of previous velocity of the particle to its

current velocity as seen in the formula is as;

k k-1 k-1 k-1 k-1 k-1

vy =wv; +on(pby —x;)+, (gh; —x;7) (4.3.a)
k k-1 k

X; =X; +V; (4.3.b)

Setting high values to w at the beginning and small values at the end of the search
is found to be better. It is generally reduced linearly from 1.2 to 0.4 during a run, but

these values may change from application to application.

When suitably set, the inertia weight helps to balance the local and global
exploration, thus the optimal value can be obtained in a few iterations. High values

encourage global exploration, while low values facilitate local exploitation.

4.9 CONSTRICTION FACTOR

Maurice Clerc has introduced in 1999 the constriction factor, K, which highly
increases the performance of the algorithm by constraining and controlling the velocity
of the particles. Shi and Eberhart found that when the constriction factor is used with

Vmax constraint, the performance PSO improves.

The velocity formula using K is stated in equation 4.3.a. Clerc used K to be 0.729

in calculations.

v = K[vl.ﬁ,_l +erand ()(py; — X))+ ¢, Rand () (p 4 — X,)] (4.4.2)

37

2

K=
‘2—40—«/<02—4¢

,where p=c,+c,, ¢>4 (4.4.b)

Both the constriction factor, K, and the inertia weight, w, are used to control the
velocities of particles. Therefore, they both prevent the particles from explosion. Since

they have some computational differences, they correspond to different PSO variants.

4.10 PSO MODELS

There are four PSO models defined by Kennedy. The complete velocity update
formula is named as the Full Model. If the cognition component, ¢; is omitted, it is
defined as the Social-Only Model and if social component, ¢, is omitted, then the model
is called the Cognition-Only Model. And the fourth model is the Selfless Model which is
a kind of Social-Only Model. In this model, it selects its global best only from its

neighbors.

CHAPTER S

EXPERIMENTAL DESIGN

5.1 INTRODUCTION

The objective of our study is to determine a sequence of jobs to are processed

through m machines in a permutation flow shop. The sequence should be arranged in

order to minimize the number of tardy jobs. The problem is denoted as Fm| |Z U,in

scheduling.

Since the problem is known to be NP-hard, it is computationally expensive to
solve the problem with exact algorithms such as branch & bound or dynamic

programming algorithms. It is better to develop metaheuristic algorithms.

The selection of the search algorithm has an important impact on quality of
results. We have chosen the well-known genetic algorithm and the particle swarm

optimization algorithm.

Genetic algorithms are mostly heard with scheduling problems, but we cannot say
the same thing for particle swarm optimization. It has been used for optimizing
continuous functions in the past, but recently it is also used for the combinatorial

scheduling problems.

In this study, we have compared the computational performances of these two
algorithms. Two metrics are measured as the performance criteria: the execution time

(cpu) and the number of tardy jobs. If the number of tardy jobs and the cpu time of one

38

39

algorithm is less than the other, this shows the superiority of that algorithm against the

latter one.

The algorithms were coded in Borland C++ and runs were done on a Centrino 1.5
GHz computer with 256 MB memory. 10 replications of 20 instances were run for
20x15, 20x20, 30x15, 30x20, 40x15, 40x20, 50x15 and 50x20 problem sets, e.g., in
20x15 problem, 20 corresponds to the number of jobs and 15 corresponds to the number
of machines. We obtained the data for the due dates from the benchmark suite of

(Demirkol et al., 1998).

(Demirkol et al., 1998) has provided a set of randomly generated test problems
which includes four different due date configurations. The problem sizes range from 20

to 50 jobs with 15 to 20 machines. Results are presented for 160 problem instances.

Experimentally, the parameters are set to some special values. In both algorithms
the population size is taken to be equal to the number of jobs. Based on the experiments,
both algorithms converged after 2500 generations so, we terminated the run after 2500

generations.

The developed genetic algorithm is the traditional one; it includes the
evolutionary stochastic operators: the selection, crossover and the mutation. The
crossover probability is tuned to 70 % and the mutation probability to 5 %. Selection is
done randomly. Initially, a population of size A is constructed probabilistically. At each
generation, two parents with a random selection are determined to produce an offspring

through order-based crossover.

This process is maintained as a loop until # offspring (pop size*crossover

probability) are produced. Some of the offspring are mutated with a certain probability.

The size of the population increased to (’1 tH) at the end of each generation. In order to

maintain the population size of the next generation the same, # individuals are replaced

among (’1 + ,u) individuals. The tournament selection of size 2 is used to establish the

next population. This procedure is repeated until the stopping criterion is achieved.

In the proposed particle swarm optimization algorithm, we generated p particles

randomly. Initial velocities are generated according to the following formula:

40

0 _ *
Vii = Vmin + (Vmax - Vmin) r

. where Vmin = -1.0,v,,, =10

’and 12 is a uniform random
number between 0 and 1. The velocities and the position values are updated at each
iteration. The social and cognitive parameters are taken as c1=c2= 2 consistent with the
literature. Initial inertia weight is set to wO= 1.2 and it decreased linearly until the

weight becomes 0.4.

The following formula is used to construct the initial continuous position values

0 _ . — . — — =
of the particle uniformly: i = Ymin + oy = i)* =-1.0,x,, =10,

max

"I where *min and rl
i1s a uniform random number between 0 and 1. The SPV rule is used to convert a
position vector to a job permutation. The obtained personal best and the global best

values are recorded in the memory.

The particles are mutated with a probability of 5 %. When the algorithm

converges to an optimal value the algorithm stops.

5.2 RESULTS

We compared the cpu time and the fitness values that we collected from the
output files of the algorithms. The statistics of these two performance metrics such as
the average, standard deviation, minimum and the maximum values are calculated in
MS Excel file. The fitness statistics are given in Table 5.1.a and Table 5.1.b. As seen

from the tables, the average fitness values of PSO algorithm are less than those of GA.

Table 5.1.a GA Fitness Statistics

GA FITNESS
JxM AVERAGE STD. DEV MAX | MIN
20X15 17,21 2,53 20 10
20X20 18,37 2,13 20 13
30X15 23,26 4,04 29 14
30X20 25,44 4,20 30 16
40X15 27,27 6,38 36 15
40X20 31,17 5,40 39 20
50X15 31,90 7,76 44 17
50X20 35,99 7,78 47 21

41

Table 5.1.b PSO Fitness Statistics

PSO FITNESS
JxM AVERAGE STD.DEV | MAX | MIN
20X15 16,88 2,71 20 10
20X20 18,24 2,34 20 13
30X15 22,80 4,16 29 14
30X20 25,03 4,29 30 16
40X15 26,87 6,17 36 15
40X20 30,85 5,27 39 | 20
50X15 31,56 7,32 43 18
50X20 35,58 7,38 46 | 21

The cpu statistics are given in Table 5.2.a and Table 5.2.b. PSO seems to be better
for the data sets 20x15, 20x20 and 30x15 problems. GA is faster to solve the rest of the

data set which are more complex.

Table 5.2.a GA CPU Statistics

GA CPU
JxM AVERAGE STD.DEV | MAX | MIN
20X15 1,46 0,60 554 | 1,02
20X20 1,71 0,59 507 | 111
30X15 2,51 0,95 9,15 | 1,66
30X20 1,93 0,07 239 | 1.8

40X15 2,62 0,09 2.8 | 2,45
40X20 2,96 0,05 3,11 | 2.8

50X15 3,69 0,08 426 | 3,45
50X20 423 0,08 45 | 39

Table 5.2.b PSO CPU Statistics

PSO CPU
JxM AVERAGE STD. DEV MAX | MIN
20X15 0,97 0,05 1,08 | 0,90
20X20 1,07 0,05 1,17 1,00
30X15 1,86 0,08 2,00 | 1,69
30X20 2,10 0,23 4,37 1,94
40X15 3,22 0,03 333 | 3,11
40X20 3,64 0,03 3,72 | 3,58
50X15 5,14 0,04 5,27 | 5,01
50X20 5,81 0,05 6,06 | 5,68

We also computed the relative percent deviation for fitness values to see which
algorithm is better to solve the problem. The relative percent deviation (A) is calculated

using the formula:

42

A =Haa“ Hrso 1000, (5.1)

Hpso

Here, £, i, Shows the number of tardy jobs obtained by the related algorithm.

Positive values of A show that PSO performs better than GA. The A values are given
in Table 5.3.a.

Table 5.3.a Relative Percent Deviation for Fitness Values

RELATIVE PERCENT DEVIATION
JOBxM/C REPLICATION NUMBER
1 2 3 4 5 6 7 8 9 10

0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 588 | 0,00 | 0,00 | 0,00 | 0,00
5,88 | 6,25 | 6,25 | 6,25 | 12,50 | 5,88 |12,50] 6,25 | 0,00 | 0,00
12,50 | 0,00 | 6,25 | 6,25 | 6,25 | 6,25 | 6,25 | 6,25 | 0,00 | 0,00
0,00 | 588 | 588 | 0,00 | 588 | 5,88 | 588 | 588 | 588 | 0,00
0,00 | 0,00 | 0,00 | 5,88 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 5,88
-8,33 1 9,09 | 833 | 0,00 | 9,09 | 833 |18,18| 18,18 | 0,00 | -7,69
0,00 | 0,00 | -9,09 | 9,09 | 833 | 0,00 | 9,09 | 9,09 | 9,09 | 10,00
7,14 | 7,14 | 0,00 | -6,67 | 7,14 | 7,69 | 7,14 | 7,14 | 0,00 | 7,14
8,33 | 16,67 | 0,00 | -7,69 | 8,33 | 833 | 0,00 | 833 | 833 | 16,67
0,00 | 0,00 | 0,00 | 6,25 | 0,00 | 6,25 | 0,00 | 6,25 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 5,56 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 5,56
0,00 | 0,00 | 0,00 | 588 | 0,00 | 0,00 | 5,88 | 0,00 | 0,00 | 0,00
0,00 | 0,00 | 5,56 | 0,00 | 556 | 0,00 | 0,00 | 5,56 | 5,56 | 5,56
0,00 | 5,56 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00

20X15

Table 5.3.a Relative Percent Deviation for Fitness Values (continued)

RELATIVE PERCENT DEVIATION

JOBxM/C REPLICATION NUMBER
1 2 3 4 5 6 7 8 9 10
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00]000] 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |000]| 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 7,14 | 7,14 | 0,00 | 0,00 | 0,00 | 6,67 | 7,14 | 1429 | 7,14
714 | 1429 | 7,14 | 0,00 | 0,00 | 7,14 | 7,14 | 0,00 | 6,67 | 0,00
625 | 6,67 | 667 | 0,00 | 0,00 | 0,00 | 0,00] 000 | 0,00 | 667
6,67 | 1429 | 7,14 | 000 | 6,67 | 7,14 |-6,67] 7,14 | 0,00 | 0,00

soxz0 |14 [0.00 [667 [1538] 714 | 7.60 | 7.60 | 7.14 | 0,00 | 7,69
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |000] 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00]000] 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |000] 000 | 0,00 | 0,00
0,00 | 10,00 | 500 | 4,76 | 4,76 | -4,55 | 0,00 | 0,00 | 4,76 | 10,00
9,09 | 0,00 | 0,00 | 0,00 | 0,00 | 455 | 455 | -435 | 1429 | 0,00
9,52 | 1429 | 4,55 | 0,00 | 952 | 0,00 | 476 | 9,52 | 9,09 | 9,52
0,00 | 435 | 0,00 | 909 | 9,09 | 0,00 | 0,00 | 435 | 455 | 455
455 | 0,00 | 455 | 000 | 9,09 | 455 | 0,00] 455 | 0,00 | 0,00
0,00 | -6,67 | 0,00 | 0,00 | 0,00 | 0,00 |-625] -6,67 | 6,67 | 7,14
588 | 6,25 | 0,00 | 0,00 | 1250 625 | 625 | 0,00 | 1333 | 12,50
5,00 | 5,00 | 500 | 1579 500 | 476 | 0,00 | 500 | 0,00 | 0,00
0,00 | 556 | 0,00 | 556 | 0,00 | 0,00 |000] 000 | 556 | 5,56

sox1s |12:30] 625 [000 [1250 [0,00 [-5.56 [0,00 | 5.88 | -556 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |000]| 000 | 0,00 | 0,00
0,00 | 3,57 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 357 | 0,00
0,00 | 3,57 | 0,00 | 0,00 | 0,00 | 0,00]000] 000 | 0,00 | 0,00
435 | 8,70 | 435 | 435 | 0,00 | 870 | 0,00 | 0,00 | 435 | 0,00
435 | 435 | 435 | 0,00 | 0,00 | 0,00 | 455 435 | 9,00 | 435
0,00 | 0,00 | 417 | 000 | -417 | 0,00 | 435 | 435 | 0,00 | 435
0,00 | -4,00 | -4,00 | 417 | 0,00 | 0,00 |-4,00] 0,00 | 0,00 | 0,00
0,00 | 435 | 435 | 000 | 870 | 0,00 | 870 | 435 | 0,00 | 13,04

43

Table 5.3.a Relative Percent Deviation for Fitness Values (continued)

RELATIVE PERCENT DEVIATION

JOBxM/C REPLICATION NUMBER
1 2 3 4 5 6 7 8 9 10
0,00 | 0,00 | 0,00 | 000 | 417 | 400 | 0,00 | 417 | 3,85 | 0,00
4,00 | 0,00 | 8,00 | 000 | 400 | 400 | 400] 400 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |385] 000 | 0,00 | 800
3,85 | 0,00 | 0,00 | 0,00 | 000 | 7,69 | 0,00 | 0,00 | 385 | 0,00
417 | 833 | 417 | 833 | 0,00 | 417 | 417] 417 | 0,00 | 0,00
500 | 526 | 476 | 0,00 | 500 | -4,76 | 0,00 | 526 | 526 | 0,00
0,00 | 588 | 588 | 588 | 0,00 | 588 |-556] 588 | 0,00 | 5,56
526 | 0,00 | 16,67 | 0,00 | 0,00 | 526 [11,11] -5.00 | 526 | -5,00
0,00 | 11,11 | 556 | 526 | 11,11 | 10,53 | 5,56 | -5,00 | 0,00 | 5,56

s0x20 L5388 | 0.00 [556 | 0,00 [12,50 [-5.88 | -5.88 | 5.88 | 12,50 | -5.56
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |000] 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
741 | 741 | 741 [370 | 3,70 | 0,00 | 741 | 741 | 3,70 | 7.41
4,00 | 0,00 | 400 | 3,85 | 0,00 | 4,00 | 0,00 | 0,00 | 0,00 | 0,00
8,00 | 0,00 | 3,85 | 4,00 | 8,00 | 0,00 | 400 | 400 | 385 | 4,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 000 | 0,00 | 0,00
0,00 | 3,70 | 0,00 | 0,00 | 0,00 | 3,70 | 3,70 | 3,70 | 0,00 | 3,70
417 | 0,00 | 833 | 0,00 | 0,00 | -400 [12,50] 833 | 12,50 | 4,17
0,00 | 0,00 | 11,54 | -3.85 | 3.85 | -3,70 | 7.69 | 8,00 | 7.69 | 8,00
8,33 | -3,85 | 8,00 | 3,85 | 8,00 | 800 | 385 | 400 | 800 | 385
400 | 3.85 | 833 | 833 | 400 | 400 | 870] 385 | 8,00 | 8,00
8,00 | 0,00 | 12,00 | 0,00 | 0,00 | 400 | 385 | 0,00 | 400 | 4,00
11,11 | 0,00 | 500 | 0,00 | -526 | -4,76 | -4,76 | -4,76 | 0,00 | -5,00
0,00 |-10,00|-15,00]-10,00| 526 | 0,00 |-526] -5,00 | -5,26 | -5,00
6,25 | 5,88 | -5.88 | 6,25 | 625 | 12,50 |20,00] -5,56 | 6,67 | 0,00
526 | -526 |-1429] 0,00 |-15,00]-10,00] 0,00 | -5,56 | -5,00 | 5,88

sox1s =356 [0.00 [-1053] 1176 [0,00 | 0,00 | 0,00 | -526 [-10.00] 12,50
278 | 2,86 | 0,00 | 2.86 | 0,00 | 2,78 | 0,00 | 2.86 | 2,78 | 0,00
286 | 2,86 | 2,86 | 2,86 | 0,00 | 2,86 | 2,86 | 2,86 | 0,00 | 0,00
2,86 | 2,86 | 0,00 | 2,78 | 0,00 | -2,78 | 0,00 | 0,00 | 0,00 | 0,00
2,86 | 2,86 | 2,86 | 0,00 | 2,86 | 2,86 | 2,86 | 2,78 | 2,86 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 000/ 28 | 0,00 | 0,00
6,90 | 345 | 345 | 357 | 345 | 357 | 357 | 345 | 000 | -3.45
0,00 | 345 | 0,00 | 690 | 3,57 | 690 | 0,00 | 7,14 | 345 | 0,00
741 | 370 | 0,00 | 11,11] 741 | 0,00 | 357 | 741 | 7,14 | 3,70
0,00 | 3,57 | 0,00 | 0,00 | 3,70 | 0,00 |-3,45] 000 | 0,00 | -3,57
357 | 345 | 704 | 000 | 345 | 3,57 |-667] 7.41 | 0,00 | -6,67

44

Table 5.3.a Relative Percent Deviation for Fitness Values (continued)

RELATIVE PERCENT DEVIATION

JOBxM/C REPLICATION NUMBER
1 2 3 4 5 6 7 8 9 10
0,00 | 333 | 0,00 | 69 | 0,00 | 0,00 | 690] 345 | 333 | -323
0,00 | 0,00 | 0,00 | 333 | 0,00 | 6,67 |323] 667 | 0,00 | -323
323 | 323 | 323 [10,00] 000 | 0,00 | 667 | 333 | 667 | 323
3,23 | 000 | 333 | 645 | -323] 0,00 | 333] 3,33 | -323 | 0,00
0,00 | 0,00 | 645 | 333 | 345 | 6,67 | 0,00 -333] 0,00 | -3,33
417 | 0,00 | -435 | -4,17 [-12,00] -4,17 | 0,00 | 0,00 | -4,00 | 435
0,00 | 0,00 | 4,17 | 0,00 | -4,00 | 4,17 | 417 | 000 | 870 | 4,17
0,0 | -3,85 | 833 | -3.85 | 8,00 | 0,00 |-3,85] -3,70 | 0,00 | 0,00
435 | 0,00 | -435 | -435] 455 | 000 | 0,00 | 4,76 | 4,55 | 9,09

sox20 |00 [0.00 [909 | -4,55 [0,00 | -4.76 | -4.35] 0.00 | 0,00 | 9,52
0,00 | 0,00 | 0,00 | 2,63 | 0,00 | 0,00 | 0,00] 000 | 2,63 | 0,00
2,70 | 0,00 | 2,70 | 0,00 | 0,00 | 2,70 | 0,00 | 2,70 | 0,00 | 2,70
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00/ 000 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |000] 000 | 0,00 | 0,00
0,0 | 2,63 | 2,63 | 0,00 | 0,00 | 2,63 | 0,00] 0,00 | 0,00 | 0,00
6,67 | -6,06 | 6,06 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 333 | 0,00
323 | 0,00 | 323 | 000 | 0,00 | 000 | 667 323 | 323 [323
0,0 | 645 | -3,13 | 0,00 | -3,03 | 645 | 0,00 | 3,13 | 0,00 | 0,00
0,00 | 645 | 3,13 | 6,67 | 0,00 | 323 | 6,67] 645 | 645 | 323
6,25 | 000 | 3,13 | 625] 3,03 | 0,00 | 0,00 | 3,03 | 0,00 | 625
6,67 | 333 | 7,04 | 323] 0,00 | 3,33 [345] 690 | 6,67 | 0,00
333 | 333 | 333 | 690 | 000 | 345 [333] 333 | 333 | 7.14
323 | 0,00 | 333] -645] 357 | 323 [345] 000 | 333 | 7,14
6,67 | 333 | 345 111] 333 | 7,04 [1,11] 000 | 333 | 0,00
714 | -6,67 | 3,45 | 704 | 333 | 0,00 |-6,67] 000 | -6,67 | 3,57
12,00 | 0,00 | 4,555 | 0,00 [-11,54] 8,70 | 0,00 |-11,54] -4,17 | -7,69
0,00 | 500 | 4,76 | -4,55 | 0,00 | 5,00 |-4,55] 4,76 | 0,00 | -8,70
-10,53 | -5,26 | 11,11 |-15,00 | -10,00| 526 | 5,26 | 11,11 |-19,05|-10,00
16,00 | 0,00 | -435 | 4,55 [-20,00] 0,00 |-8,70| 8,33 | -8,70 | -4,35

soxis |45 | 455 [476 | 455 [952 [870 [0,00 | 476 | 455 | 476
0,00 | 238 | 2,44 | 000 | 0,00 | 238|732] 000 | 238 | 2,44
0,00 | 238 | 2,38 | 233 | 0,00 | 0,00 | 2,38 | 0,00 | 0,00 | -2,33
0,00 | 732 | 2,38 | 0,00 | 0,00 | 476 | 4,88 | 488 | 4,76 | 488
238 | 233] 488 | 233 | 244 | 238 [488 | 488 | 238 | 2,38
233 | 0,00 | 0,00 | 000 | 0,00 | 488 |238] 238 | 476 | 476
0,00 | 3,03 | 0,00 | 294 | 12,90 | 625 | 2,94 | 0,00 | 3,03 | -3,03
294 | 3,03 | 625 | 294 | 938 | 0,00 | 6,06 | 625 | 3,03 | 2,86
0,00 | 645 | 0,00 | 0,00 | 0,00 | 606 | 625]| 645 | -588 | 6,25
3,03 | 3,03 | 323] 645 | 0,00 | 3,03 |3,03] 303 | 3,03 | 0,00
0,00 | 625 | 3,03 | 000 | 9,68 | 0,00 |3,13] 000 | 6,06 | 6,06

45

Table 5.3.a Relative Percent Deviation for Fitness Values (continued)

RELATIVE PERCENT DEVIATION

JOBxM/C REPLICATION NUMBER

1 2 3 4 5 6 7 8 9 10
588 | 294 | 882 | 588 | 2,78 | 0,00 | 9,09 | 2,94 | 9,09 | 0,00
571 | 286 | 294 | 286 | 571 | 588 | 0,00 | 2,78 | 0,00 | 3,03
9,09 | 3,03 | 0,00 | 2,86 | 0,00 | 3,03 | 3,13 | 2,94 | 3,03 | 2,94
588 | 8,82 | 2,86 | 2,94 | 0,00 | -2.86 | 9,09 | 2,78 | 0,00 | 2,86
0,00 | 0,00 | 0,00 | 6,06 | 58 | -2,86 | 0,00 | 6,06 | 9,09 | 0,00
0,00 | 0,00 | 3,45 | 11,11] -6,67 | -323 | 0,00 | 0,00 | 6,67 | -6,45
16,00 | 0,00 | 476 | -4,17 | 833 | -435 |1429] 8,70 | 4,17 |-1538
417 | 435 | 417 | -7,69 | -3,85 | -3,85 | -7,69 | 0,00 | -3,85 | 0,00
417 | 4,00 | 400 |-10,71] -7.41 | 400 | 0,00 |-11,11] -4,00 | 4,17
sox20 435 | 000 | 0,00 | -400 | 0,00 [-11,54]-4.35 |-1538 | 9,52 | -8.33
222 1 000 | 0,00 | 455 | 222 | 000 | 222 | 222 | 0,00 | 0,00
0,00 | 0,00 | 0,00 | 0,00 | 2,17 | 2,17 | 0,00 | 2,17 | 2,17 | 0,00
2,17 | 2,17 | 0,00 | 444 | 2,17 | 0,00 | 0,00 | 2,17 | 2,17 | 0,00
222 | 0,00 | 0,00 | 2,17 | 0,00 | 0,00 | 2,17] 0,00 | 444 | 444
444 | 217 | 000 | 2,17 | 2,17 | 444 [2,17] 0,00 | 2,17 | 222
541 | 2,70 | 0,00 | 541 | 541 | 541 | 2,70 | 556 | 0,00 | 0,00
0,00 | 2,70 | 2,86 | 541 | 2,70 | 2,70 | 5,56 | 5,56 | -5,26 | 8,57
0,00 | 2,63 | 541 | 2,63 | 2,63 | 2,70 | 2,70 | 2,70 | 2,70 | 0,00
0,00 | -2,78 | 0,00 | -5,56 | 2,86 | 2,63 | 2,94 | 0,00 | 2,86 | -5.41
0,00 | 2,63 | 0,00 | 0,00 | 0,00 | 2,63 | 0,00 | 556 | 2,63 | 0,00

46

The computed relative percent deviation for cpu values of the algorithms are as

seen in Table 5.3.b. In this table, ., 18 taken as the cpu time of the related

algorithm. Positive deviation values show the superiority of PSO against GA.

Table 5.3.b Relative Percent Deviation for CPU Values

RELATIVE PERCENT DEVIATION

JOBxM/C REPLICATION NUMBER
1 2 3 4 5 6 7 8 9 10
204 | 38 | 293 | 140 | 194 | 204 | 489 | 474 | 43,9 | 446
58,1 | 343 | 226 | 419 | 510 | 634 | 478 | 10,7 | 66,7 | 240
209 | 258 | 333 | 1054] 80,6 | 62,6 | 60,9 | 431 | 20,7 | 13,7
215 | 87 | 352 | 146 | 152 | 58 | 446 | 63,0 | 2854 | 2935
1957 | 443,1 | 182,6 | 30,1 | 76,1 | 12,6 | 172 | 462 | 252 | 174
16,7 | 26,1 | 825 | 846 | 478 | 369 | 275 | 13,6 | 185 | 29,1
1075 | 67,4 | 554 | 394 | 544 | 380 | 52,1 | 495 | 26,1 | 26,0
824 | 46,7 | 57,7 | 359 | 99,0 | 101,1 | 271,7 | 3324 | 312,0 | 1859
150,5 | 20,4 | 573 | 359 | 731 | 473 | 26,6 | 225 | 283 | 183

soxis |38 | 315 | 320 | 685 | 214 | 374 | 355 | 59 | 301 | 43,1
226 | 125 | 196 | 136 | 293 | 32,7 | 548 | 223 | 239 | 192
183 | 98,9 | 709 | 587 | 11,7 | 194 | 183 | 413 | 62,5 | 326
854 | 2900 | 79 | 125 | 479 | 1416 | 31,5 | 348 | 438 | 728
17,5 | 16,5 | 43,0 | 293 | 1216 | 37.6 | 495 | 204 | 79,6 | 204
501 | 279 | 247 | 796 | 116,01 | 462 | 98 | 160 | 165 | 63,0
252 | 272] 68 | 355 | 49 | 168 | 59 | 312 | 189 | 198
30,1 | 62,6 | 1478 | 66,7 | 48,9 | 96,1 | 1382 | 1505 | 29,6 | 33,3
446 | 77 | 337] 78 | 409 | 1922] 23,7 | 282 | 204 | 243
394 | 68 | 280 | 32,0 | 43,0 | 912 | 484 | 380 | 121 | 1,0
272 | 11,7 | 13,0 | 109 | 13,6 | 109 | 00 | 12,1 | 108 | 10
183 | 80 | 78 | -1.8 | 184 | -1,7] 09 | 214] 00 | 107
87 | 105 | 97 | 105] 96 | 184 | 41,7 | 09 | 175 | 35
129.4 | 397,1 | 342,0 | 3416 | 1544 | 357 | 373 | 69,0 | 48,0 | 61,8
263 | 36,9 | 584 | 437 | 363 | 31,1 | 932 | 1096 | 157,3 | 24,1
106,8 | 133 | 490 | 223 | 09 | 214 | 233 | 112,7] 252 | 214
573 | 56,6 | 647 | 478 | 63,7 | 60,2 | 709 | 558 | 689 | 442
50,0 | 26,5 | 1143 | 50,0 | 353 | 500 | 480 | 254 | 431 | 737
275 | 150 | 184 | 558 | 392 | 466 | 298 | 230 | 376 | 126
71 | 12,7 | 107 | 186 | 88 | 225 | 333 | 196 | 35 | 248

soxz0 331 [1598 | 842 | 2088 | 833 | 490 | 2621 | 1850 | 2874 | 327
680 | 1.8 | 2006 | 163 | 298 | 113,6 | 62,3 | 101,9 | 133,9 | 136,7
425 | 721 | 333 | 798 | 71,8 | 1049 | 798 | 663 | 110,7 | 33,3
1495 | 882 | 142 | 412 | 150 | 612 | 27,7 | 440 | 415 | 637
573 | 289 | 294 | 122 | 165 | 372 | 592 | 82,5 | 942 | 434
404 | 602 | 482 | 112,6 | 46,1 | 43,9 | 1284 | 22,1 | 46,1 | 495
223 | 573 | 393 | 627 | 648 | 523 | 246 | 225 | 559 | 46,0
534 | 56,1 | 845 | 824 | 412 | 824 | 368 | 77,7 | 655 | 92.1
1184 | 64,9 | 99,0 | 1000 | 1398 | 42,1 | 1175] 728 | 69,0 | 81,7
416 | 357 | 43,0 | 505 | 848 | 92,1 | 765 | 375 | 17,9 | 683
272 | 529 | 46,0 | 476 | 558 | 69,9 | 1283 | 128,7 | 59,0 | 658

47

Table 5.3.b Relative Percent Deviation for CPU Values (continued)

RELATIVE PERCENT DEVIATION

JOBxM/C REPLICATION NUMBER
1 2 3 4 5 6 7 8 9 10
333 | 05 [330 [1008] 141 [57 | -05 | -104 | -67 | 281
200 | 26 | 05 | 27 | -135] 73 | 450 | 130 | 89 | 229
201 | 78 | 202 | 224 | 436 | 88 | 31 | 67 | 42 | -104
73 | 46 | 57] 52] 00 | 979 [330 | 26 | -11,5] 36
47 | 41 | 10 [223 | 254 | 176 | 112] 369 | 381 | 10
82 | 185 | 82 | 15 [297 | 82 | -127] 56 | -66 | -36
62 | 265 | 516 | 539 | 46 | 242 | 73 | 82 | -108 | -9.8
3,0 | 36 | 50] 93 | 342 | 268 | 84 | 160 | 175 | 155
20,7 | 17,9 | 140 | 230 | 192 | 359 | 109 | 134 | 80 | 26

soxis |259:0 3577 3692 [2753 | -0.5 | 7.6 | 763 | 418 | 730 | 390
32,6 | 256 | 1146 | 679 | 1049 | 348 | 341 | 258 | 612 | -44
93 | 60 | 240 | 205 | 185 | 1196 | 674 | 1186 | 459 | 00
31,1 | 346 | 491 | 337 | 372 | 21,7 | 41,7 | 394 | 402 | 143
61,9 | 519 [357 | 240 | 437 | 525 | 590 | 379 | 453 | 306
304 | 366 | 459 | 393 | 599 | 27.6 | 709 | 346 | 440 | 419
508 | 41,8 | 40,7 | 39,8 | 21,3 | 392 | 49,5 | 50,3 | 40,0 | 543
924 | 742 | 758 | 702 | 769 | 523 | 434 | 40,1 | 63,7 | 703
620 | 692 | 641 | 725 | 632 | 51,6 | 912 | 724 | 89,1 | 632
497 | 643 | 311 | 372 | 704 | 558 | 394 | 33,7 | 50,6 | 309
1710 1392 | 44 | 10 | 35 | 33] 77| 1,7] 38 | 209
106 | 44 | 49 | 44 | a8 | 75| 66 | 58 | 34 | 68
63 | 77| 77] 76| 58| 63| 72 | 63 | 68 | -72
126 | -107 | 95 | -126 | 72 | -121] 86 | 67 | 59 | 24
72 | 29 [-117] 82 | 63 | 68 | 73 | -126]| 63 | -7.7
134107 15 | 54] 53 | -112] 53] 49 | 49 | 44
05 | -151] 202 | -183 | 291 [262 | 203 | 89 | 20 | 2,0
70 | 30 25] 05| 56| 67] 00 | 91| 58] -10
151 | 513] 558 | 57 | -123] 62 | 44 | 58 | 49 | 05
10,1 | 38 | 92 [-10 | 62 | 00 | 48 | 58 | 72 | 96

soxz0 L35 | =53 |72 [-isa] 14 | 87] -62]-05]-28]-100
15 | 76 | s8] 67 | 76 | 70 | <132] -100 | 72 | -115
63 | 72| .10 [-130] 72 | 68 | 82 | 41 | 17 | -59
59 | 63| 76 | -141] 68 | -10 | 68 | -7.7 | -102 | -72
115 14| 701 | 85] 58| 72] 76] 20| 85 | 93
72 | 67 | 67 | -110] 41 [-120] 57 | -124] 33 | 95
63 | 98 | 76 | 63| 77| 63 | 59 | 58 | -107] -05
48 | 05 |-1001] 53 | 53 | 87 | 58 | 43 | 48 [-92
81 | 68 | 59 [-121] 54| 20] 83] 53| 17| -54
58 | 53] 63 [-107] 58| 05] 93 | 24| 99 | -86
72 | 53] 63] 58 | 53] 10 [149 61 | 115 | -111

48

Table 5.3.b Relative Percent Deviation for CPU Values (continued)

RELATIVE PERCENT DEVIATION

JOBxM/C REPLICATION NUMBER
1 2 3 4 5 6 7 8 9 10
183 | 20,7 | -164 | 220 | -140 | -183 | 22,0 | -143 | -189 | 21,5
14,5 | <188 | 234 | <188 | <179 | -150 | -194 | -17.8 | 202 | -18,9
17,5 | -180 | <174 | -16,1 | 20,7 | -18,7 | -16,6 | -162 | -183 | -18.6
204 | -155 | 21,7 | <184 | <155 | -16,9 | <181 | 21,4 | -18,6 | -11,9
238 | <158 | 224 | <138 | -19,1 | 225 | <150 | 21,7 | -19.8 | -18.7
17,7 | <137 | <174] <183 | <173 | <194 | 21,5 | <151 | 209 | -18,1
147 | 21,0 | <140 | <186 | <177 | 222 | <156 | 223 | -159 | 192
21,0 | <164 | 22,7 | <147 | -17,0 | <197 | -11,9 | -18,0 | 239 | -152
20,7 | -178 | <145 | <175 | 205 | <179 | <180 | -152 | -174 | 21,1

soxis o135 | 165 | 214 | 143 | 180 | -217 | -16,6 | -174 | -137 | -16.8
213 | <158 | <189 | -17,9 | -19,0 | -18,7 | 20,5 | -17.4 | 224 | -146
226 | <134 | 22,7 | <185 | <196 | 238 | -16,5 | 20,5 | 23,8 | -16,5
222 | -129 | 22,7 | <159 | -17,7 | <188 | 20,8 | -18,8 | -150 | -17.8
220 | <164 | 22,0 | <155 | <194 | 21,7 | <163 | 21,4 | <183 | -17.3
227 | <195 | <193 | <156 | 209 | -172 | -193 | <188 | -19.8 | -23,0
17,7 | -19,6 | 18,6 | -14,9 | -18,0 | 22,8 | <155 | 21,3 | -153 | -16,9
21,8 | <150 | 20,6 | -183 | -193 | -17.4 | <150 | 20,1 | -17,1 | -18,6
19,1 | -17,9 | 213 | <174 | <184 | 21,9 | <159 | <184 | 229 | -147
21,7 | <149 | 215 | <166 | -192 | 238 | -19,7 | -20,4 | -16,4 | -18,9
179 | <187 | 23,0 | <157 | 21,7 | -16,5 | <189 | 224 | -16,1 | 224
14,7 | <182 | -18,0 | -17,5 | 203 | -16,6 | 21,8 | -148 | -184 | -18.7
173 | -192 | -169 | 205 | -163 | 21,7 | -15,5 | -18,8 | -18,0 | -184
17,8 | <184 | <183 | <181 | -192 | -18,6 | -184 | 21,0 | -162 | -18,1
182 | <175 | <181 | <191 | <183 | -18,6 | 20,0 | -173 | 204 | -17,0
18,1 | -18,7 | <182 | <134 | <188 | <182 | -17,0 | 18,1 | -18,8 | -18,1
17,6 | -182 | 18,5 | <183 | -18,7 | -18,6 | -18,6 | -17,9 | -19.9 | -19,0
188 | <172 | <192 | -17,7 | <182 | <183 | -18,9 | -16,9 | -189 | -17.8
18,0 | -193 | -164 | 208 | -16,1 | -18,1 | 22,3 | -150 | -16,5 | -18.8
16,7 | -184 | <192 | <186 | -17,9 | 18,1 | -18,0 | -183 | -18,0 | -184

sox20 |o178 | 189 | -189 | -180 | -174 | -174 | -195 | -19.1 | -173 | -188
18,9 | -18,9 | -18,7 | <188 | -19.4 | -193 | <182 | -19.4 | -193 | -19,1
19,0 | -19,0 | -193 | <175 | -183 | -19.8 | -15,5 | 21,0 | -16,2 | -18,0
18,1 | <196 | <194 | <193 | <194 | <170 | -19,8 | -18,5 | -193 | -192
197 | 21,1 | -16,7 | 235 | -17,0 | 20,0 | 203 | -20,3 | 202 | 20,2
204 | <197 | 219 | 21,7 | -17,7 | <194 | 200 | -19,6 | 202 | -20,2
192 | <199 | 204 | -17,7 | 21,6 | 15,5 | -19,1 | -18,6 | -17.5 | -18,7
202 | -163 | -17.8 | -18,0 | -182 | -188 | -19,6 | 20,5 | 20,5 | -15,5
225 | <179 | <192 | <159 | <184 | 18,1 | -17,8 | -19.4 | 203 | -164
182 | -17,5 | <194 | <158 | -18,0 | -17,5 | <182 | -19,5 | 20,7 | -19,6
204 | -162 | -193 | <180 | -192 | 17,5 | -19,7 | -18,6 | 20,0 | -188

49

Table 5.3.b Relative Percent Deviation for CPU Values (continued)

RELATIVE PERCENT DEVIATION
JOBxM/C REPLICATION NUMBER
1 2 3 4 5 6 7 8 9 10

269 | 269 | 276 | 28,1 | 282 | 287 | 278 | 28,8 | -16,8 | 29,1
320 | 270 | 280 | 276 | 270 | 282 | 257 | 293 | 283 | -27.8
29,1 | 281 | 279 | 284 | 292 | 287 | 27,6 | 269 | 28,9 | 273
276 | 27,7 | 276 | 28,1 | 275 | 288 | 282 | 262 | 28,1 | -28.8
270 | 282 | 284 | 274 | 29,0 | 28,1 | 27,6 | -28,9 | 28,1 | -28,9
281 | 287 | 27,7 | 286 | 276 | 278 | 283 | 29,0 | 282 | 284
283 | 273 | 276 | 284 | 279 | 287 | 289 | 27,1 | 28,5 | 29,0
291 | 27,1 | 286 | 288 | 27,0 | -23.4 | -33,0 | -28,9 | -32,1 | -31,0
281 | 273 | 27,7 | 286 | 292 | 279 | 28,6 | 27,8 | 295 | 28,7
soxys |-247 | -28.11-279 | -27.7 | -27.1 | -284 | -275 | 281 [-27.1 | -257
313 | 31,0 | 286 | 26,7 | 274 | 303 | 274 | 279 | 285 | 28,7
282 | 279 | 278 | 283 | 285 | 276 | 272 | 28,8 | 288 | 28,7
297 | 279 | 283 | 27,8 | -28,0 | 284 | 279 | 27,8 | 28,0 | 28,1
289 | 287 | 284 | 278 | 29,1 | 283 | 287 | 27,8 | 289 | -27.8
26,9 | 290 | 296 | 28,7 | -28,6 | 29,0 | 28,1 | 280 | 279 | 29,8
288 | 294 | 296 | -30,0 | 292 | 26,9 | -30,7 | 26,0 | 28,1 | 27,9
248 | 32,6 | 305 | 284 | 283 | 293 | 29,1 | 313 | 27,7 | 28,1
290 | 295 | 27,7 | 31,7 | 270 | 292 | 30,2 | 29,3 | 28,5 | 283
28,6 | 30,1 | 250 | 275 | 282 | 27,6 | 289 | 283 | 28,6 | -29.3
302 | 26,5 | 28,1 | 288 | 29,0 | 285 | 27,5 | 283 | -31,6 | -33,0
294 | 289 | 260 | 224 | 23,0 | 26,9 | 255 | 26,6 | 27,9 | -25.6
293 | -300 | 25,7 | 274 | 295 | 278 | -25,6 | 264 | 27,0 | 26,7
276 | 266 | 276 | 26,6 | 282 | 273 | 262 | 259 | 264 | 27,1
264 | 271 | 272 | 260 | 255 | 262 | 266 | 27,7 | 283 | -27.3
262 | 280 | 280 | 273 | 278 | 272 | 263 | 26,5 | 27,6 | 283
292 | 259 | 256 | 26,5 | 263 | 258 | 250 | 263 | 26,8 | 272
255 | 263 | 266 | 272 | 26,8 | 27,5 | 27,6 | 269 | 269 | 272
26,1 | 278 | 263 | 253 | 255 | 289 | 288 | 27,9 | 274 | 293
250 | 269 | 262 | 268 | 253 | 26,7 | 28,6 | 248 | 27,1 | 28,5
soxz0 |21 | 27,1 | -27.0 | -267 [26,8 | -269 | -263 | -269 | 262 | -26.1
276 | 26,7 | 25,7 | 28,0 | -282 | 283 | 27,6 | 28,0 | 280 | -27.1
275 | 279 | 284 | 284 | 288 | 282 | 269 | -28,1 | 272 | 28,1
287 | 269 | 276 | 257 | 278 | 277 | 278 | 281 | 27.8 | -27.8
267 | 275 278 | 269 | 269 | 275 | 270 | 274 | 264 | 274
274 | 276 | 275 | 275 | 280 | 275 | 275 | 276 | 26,8 | -26,9
263 | 274 | 274 | 275 | 279 | 283 | 267 | 274 | 272 | 272
272 | 273 | 265 | 272 | 26,6 | 26,6 | 268 | 268 | 27,5 | 274
26,7 | 269 | 276 | 26,6 | -25,5 | -33,0 | 329 | 32,5 | -31.8 | 31,9
295 | 249 | 263 | 264 | 270 | 278 | 264 | 274 | 266 | 272
26,5 | 264 | 264 | 273 | 276 | 259 | 268 | 264 | 276 | -27.8

50

But it is difficult to evaluate the performances only looking to these results.

Therefore, we did a paired t-test in order to draw a significant conclusion, assuming that

the obtained results come from a normal distribution.

51

We do the paired t-test when we want to compare two different independent
observations. It establishes a hypothesis over the difference of the pairs. In the test, we
have two hypotheses, a null hypothesis and an alternative hypothesis. We test the
acceptability of the null hypothesis. If the null hypothesis is rejected, the alternative
hypothesis seems to be accepted. We established our hypotheses as;

Hy:pigy = tpso =0

(5.2)
H, ' pigy = Hpso >0

The t-critical and t-observed values are computed and compared. If t-observed is

greater than t-critical, we reject the null hypothesis.

t —critical =t where « and n—1 are the confidence level and the degrees of

a,n—-12

freedom respectively.

d
SD/\/;

standard deviation, respectively.

t-observed = , wWhere d and s,are the sample mean and the sample

We did separate tests for each data set, including 200 (20 instance*10 replication)
instances. The statistical Statgraphics and Minitab programs are used to apply the tests

and draw the related graphics.

Table 5.4.a Paired t-test for GA vs PSO fitness

20x15
Average = 0,33
Variance = 0,342814
Standard deviation = 0,585503
Minimum = -1,0
Maximum = 2,0
Range =3,0
Stnd. skewness = 4,85824
Stnd. kurtosis = 1,78297

t-test
Null hypothesis: mean = 0,0
Alternative: greater than
Computed t statistic = 7,97076
P-Value = 1,06289E-7

Reject the null hypothesis for alpha = 0,05.

20x20
Average = 0,125
Variance = 0,200377
Standard deviation = 0,447635
Minimum = -1,0
Maximum = 2,0
Range =3,0
Stnd. skewness = 10,9963
Stnd. kurtosis = 17,4157

t-test
Null hypothesis: mean = 0,0
Alternative: greater than
Computed t statistic = 3,94913
P-Value = 0,0000544921
Reject the null hypothesis for alpha = 0,05.

Table 5.4.b Paired t-test for GA vs PSO fitness

30x15
Average = 0,46
Variance = 0,72201
Standard deviation = 0,849712
Minimum = -1,0
Maximum = 3,0
Range = 4,0
Stnd. skewness = 4,59787
Stnd. kurtosis = 1,46099

t-test
Null hypothesis: mean = 0,0
Alternative: greater than
Computed t statistic = 7,65599
P-Value = 9,51225E-8
Reject the null hypothesis for alpha = 0,05.

30x20
Average = 0,41
Variance = 0,584824
Standard deviation = 0,764738
Minimum = -1,0
Maximum = 3,0
Range = 4,0
Stnd. skewness = 4,13262
Stnd. kurtosis = 0,978816
t-test
Null hypothesis: mean = 0,0
Alternative: greater than
Computed t statistic = 7,58204
P-Value = 9,32017E-8

Reject the null hypothesis for alpha = 0,05.

Table 5.4.c Paired t-test for GA vs PSO fitness

40x15
Average = 0,4
Variance = 1,47739
Standard deviation = 1,21548
Minimum = -3,0
Maximum = 3,0
Range =6,0
Stnd. skewness = -1,13584
Stnd. kurtosis = -0,203015
t-test
Null hypothesis: mean = 0,0
Alternative: greater than
Computed t statistic = 4,65402
P-Value = 0,00000304868
Reject the null hypothesis for alpha = 0,05.

40x20
Average = 0,315
Variance = 0,930427
Standard deviation = 0,964587
Minimum = -3,0
Maximum = 3,0
Range =6,0
Stnd. skewness = 0,253956
Stnd. kurtosis = 1,13774
t-test
Null hypothesis: mean = 0,0
Alternative: greater than
Computed t statistic = 4,61832
P-Value = 0,00000354851

Reject the null hypothesis for alpha = 0,05.

52

Table 5.4.d Paired t-test for GA vs PSO fitness

50x15
Average = 0,34
Variance = 2,19538
Standard deviation = 1,48168
Minimum = -5,0
Maximum = 4,0
Range =9,0
Stnd. skewness = -3,63503
Stnd. kurtosis = 1,6892

t-test
Null hypothesis: mean = 0,0
Alternative: greater than
Computed t statistic = 3,24518
P-Value = 0,000688569
Reject the null hypothesis for alpha = 0,05.

50x20
Average = 0,41
Variance = 1,85116
Standard deviation = 1,36057
Minimum = -4,0
Maximum = 3,0
Range = 7,0
Stnd. skewness = -3,50104
Stnd. kurtosis = 2,68294

t-test
Null hypothesis: mean = 0,0
Alternative: greater than
Computed t statistic = 4,26165
P-Value = 0,0000157335
Reject the null hypothesis for alpha = 0,05.

53

In all data sets, it is seen that the difference of the fitness values of the genetic

algorithm and the particle swarm optimization algorithm is greater than zero, which

means that PSO gives more promising results with respect to GA.

A sample box and whiskers plot is depicted for the 20x15 problem instances in

Figure 5-1. As seen in the figure, the difference is located at the right of the zero. This

approved the acceptability of the alternative hypothesis which states that PSO gives

better yield than that of GA.

54

Mean GA -Mean P50 for Data Set 1

{with Ho and 95% t-confidence interval for the mean)

Differences

Figure 5-1 A Boxplot for the Difference of Fitness Values

The Figure 5-2 shows a normal probability plot for a data set (40 jobx15 machine)
among 8 data sets. The difference values draw a straight pattern which supports the

normality assumption.

Normal Probability for Data Set 5

99,9 F' ‘ ‘ ‘ ‘ ‘ B

percentage
hn 0 O
S O W
I I I
1 1

20 - .
5 L _
1+ i i

0,1 %[1] 1 | | | | 1

3 2 -1 0 1 2 3
Difterence

Figure 5-2 A Normal Probability Plot for the Difference of Fitness Values

55

In Table 5.5.a and Table 5.5.b, the best sequences for n number of jobs and m
number of machines are given. The J x M column depicts the number of jobs and
machines. j is for the number of jobs and m is for the number of machines. The
sequences are formed randomly from different seeds for both GA and the PSO. In the

seed column, the seeds that find the best sequences are stated.

Table 5.5.a Best GA Job Sequences

JxM | SEED | FITNESS GA JOB SEQUENCE
20X15 | 856767 10 181891014130327171956114 1615 12
20X20 | 856773 13 1741221801031396145117115168 19
511162013823242518228101214271915129219220
30X15 | 856773 14 Soaa0 1
20x20 | 856771 o |11234214719132128016324125252086 1527102229
1719 18 26
32214331337152336191698277212622620 1238115
40X15 | 856765 15 30292517 180 134 104 3 31 24 28 35 39
871341227111914632383 2615242332390 1725 1837
40X20 | 856770 20 5162130 12835 10 29 22 20 36 34 39 31
31484934 18 27354 20 32 23 40 21 38 24 442 6 1 25 10 33 37
50X15 | 856773 17 |287591730261539343 14 16224536 12 11 13 1946 41 47 8
42290
120153 1140 16253342 612723 14212 194322243 13 44
50X20 | 856765 21 3820245872931 280 1726 34 35 47 10 18 36 45 30 39 37 46
4148 49

56

Table 5.5.b Best PSO Job Sequences

JxM | SEED | FITNESS PSO JOB SEQUENCE
20X15 | 856774 10 181618010147231961213151151794
20X20 | 856774 13 174212100181119319615145167 13 8
ox1s | 856774 4 |25151611138272023 1212222428 1418102629 196210
4795317
1171561702192421289 132327322412 10 18 20 1 29 16
30X20 | 856773 16 T
2833322713 150361423 6163726 182122838 12175 11
40X15 | 856773 15 2043420230193124103 173539259
121062227939 1925438 112632324 14 1530 2 34 23 33 37
40X20 | 856765 20 05121201731297 163528 1836 8 13
9013218302044 2344731 214948403924 258383352
50X15 | 856772 18 | 3471043453715 14 1746 26 36342 3522 13 11 29 27 28 41 6
1216 19
0124044 11137201625333232 64727 14433921713 19
50X20 | 856771 21 3230223824 834535263641 17 10454628 154 9 18 31 42

4829 49

CHAPTER 6

CONCLUSIONS

Minimization of number of tardy jobs is an important objective in both
manufacturing and service industries. When the customers are supplied on the
scheduled time, they will have good feelings about the company. In our study we aimed

to minimize the number of tardy jobs in permutation flow shops.

To the best of our knowledge, our study stands to be the first to apply the genetic
and the particle swarm optimization algorithms to this NP-hard sequencing problem.
We used the traditional genetic algorithm and the discrete particle swarm optimization
algorithm. However, PSO is used for optimizing continuous functions; we enabled it to
be applied to the discrete case by using a simple SPV (Smallest Position Value)

heuristic rule.

After implementing the GA and PSO algorithms to the data sets, we compared the
fitness values and the cpu times to see the performance of each algorithm to solve the

problem. This comparison was very fair.

From the statistics, graphs and hypothesis tests that we obtain from MS Excel,
Minitab and Statgraphics programs, we saw that the PSO algorithm gave promising
results for finding better sequences. The cpu results of PSO is superior to GA for the

data sets of 20x15, 20x20 and 30x15. For the rest of data sets GA leads PSO.

We used in the study the due dates given in the data set of Demirkol et al. It will
be more meaningful if we generate the due dates which are more realistic. It is also
among our further studies to develop more meaningful upper and lower bounds for due
dates. This study is still one of a few studies in this area and it will be more valuable if

we brush it with further studies.

57

REFERENCES

Angeline, P., Evolutionary Optimization versus Particle Swarm Optimization:
Philosophy and Performance Difference, the 7th Annual Conference on Evolutionary
Programming, San Diego, USA, 1998.

Baptiste, P., Peridy, L., Pinson, E., A branch and bound to minimize the number of late
jobs on a single machine with release time constraints, European Journal of
Operational Research, Vol. 144, pp: 1-11, 2003.

Bean, J. C., Genetic Algorithm and Random Keys for Sequencing and Optimization,
ORSA Journal on Computing, Vol. 6 (2), pp: 154-160, 1994

Beasley, D., Bull D. R., Martin, R. R., An Overview of Genetic Algorithms: Part 1,
Fundamentals. University Computing, Vol. 15 (2), pp: 58 -69, 1993.

Beasley, D., Bull D. R., Martin, R. R., An Overview of Genetic Algorithms: Part 2,
Research Topics. University Computing, Vol. 15 (4), pp: 170-181, 1993

Bertel, S., Billaut, J., C., A genetic algorithm for an industrial multiprocessor flowshop
scheduling problem with recirculation, European Journal of Operational Research,
Vol. 159, pp: 651-662, 2004.

Bolat, A., Al-Harkan, 1., Al-Harbi, B., Flow-shop scheduling for three serial stations
with the last two duplicate, Computers & Operations Research, Vol. 32, pp: 647—
667, 2005.

Bulfin, R.L., Hallah, R., Minimizing the weighted number of tardy jobs on a two-
machine flow shop, Computers & Operations Research, Vol. 30, pp: 1887-1900,
2003.

Carlisle, A., and Dozier, G., Adapting Particle Swarm Optimization to dynamic
environments ,WAC 2002 Proceedings,Orlando,Florida, June 9-13, 2002

Carlisle, A., and Dozier, G., An Off-the-Shelf PSO, Proceedings of the Workshop on
Particle Swarm Optimization, Indianapolis. In: Purdue School of Engineering &
Technology, 2001.

Cavory, G., Dupas, R., Goncalves, G., A genetic approach to solving the problem of
cyclic job shop scheduling with linear constraints, European Journal of Operational
Research, Vol. 161, pp:73-85, 2005

58

59

Chan, F., T., S., Chung, S.H., Multicriterion genetic optimization for due date assigned
distribution network problems, Decision Support Systems, 2004.

Chang, P., Su, L., Scheduling n Jobs on One Machine to Minimize the Maximum
Lateness with Minimum Number of Tardy Jobs, Computers & Industrial
Engineering, Vol. 40, pp: 349-360, 2001

Clerc, M., The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization. Proceedings, 1999 ICEC, Washington, DC, pp 1951-1957,
1999.

Croce, F. D., Gupta, J., N., D., Roberto Tadei, Minimizing tardy jobs in a flowshop with
common due date, European Journal of Operational Research, Vol.120, pp: 375-381,
2000.

Dauzére-Pérés, S., Minimizing late jobs in the general one machine scheduling problem,
European Journal of Operational Research, Vol. 81 pp: 134-142, 1995.

Dauzére-Pérés, S., Sevaux, M., A Branch and Bound Method to Minimize the Number
of Late Jobs on a Single Machine In National contribution for the 15th triennal
conference, IFORS'99, Beijin, P.R. of China, 16-20 August 1999

Dauzére-Pérés, S., Sevaux, M., Using Lagrangean Relaxation to Minimize the
(Weighted) Number of Late Jobs on a Single Machine, 1999.

Demirkol E., Mehta S. and Uzsoy R., Benchmarks for shop scheduling problems,
European Journal of Operational Research, Vol. 109, pp: 137-141, 1998

Devore, J. L., Probability and Statistics for Engineering and the Sciences, Duxbury
Thomson Learning, Pacific Grove, CA, 2001

Eberhart, R. C.& Hu, X., Human Tremor Analysis Using Particle Swarm Optimization.,
Proc. Congress on Evolutionary computation, Wachington, DC, pp 1927-1930,
Piscataway, NJ: IEEE Service Center, 1999

Eberhart, R. C., and Kennedy, J., A new optimizer using particle swarm theory.
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, Nagoya, Japan, Piscataway, NJ: IEEE Service Center, pp: 39-43, 1995.

Eberhart, R. C., and Shi, Y., Comparison between Genetic Algorithms and Particle
Swarm Optimization. In V. W. Porto, N. Saravanan, D. Waagen, A. E. Eiben, Eds.
Evolutionary Programming VII: Proc. Seventh Ann. Conf. on Evolutionary
Programming Conf., San Diego, CA. Berlin: Springer-Verlag, 2001.

Eberhart, R. C., and Shi, Y., Particle Swarm Optimization: Developments, Applications
and Resources, Proc. congress on evolutionary computation 2001 IEEE service
center, Piscataway, NJ., Seoul, Korea., 2001

60

Eberhart, R. C., and Shi, Y., Tracking and Optimizing Dynamic Systems with Particle
Swarms, Proc. Congress on Evolutionary computation, Seoul, Korea. Piscataway,
NIJ: IEEE Service Center, 2001

Eberhart, R. C., Simpson, P. K., and Dobbins, R. W., Computational Intelligent PC
Tools, Boston, MA: Academic Press Professional, 1996

Eberhart, R.C., and Shi, Y., Comparing Inertia Weights and Constriction Factors in
Particle Swarm Optimization, Congress on Evolutionary Computing, Vol. 1, pp. 84-
88,2000

Gao, Y., Rong, H., Huang, J., Z., Adaptive grid job scheduling with genetic algorithms,
Future Generation Computer Systems, 2004

Ghoshal, S. P., Optimizations of PID gains by particle swarm optimizations in fuzzy
based automatic generation control, Electric Power Systems Research Vol. 72, pp:
203-212, 2004

Gongalves, J., Mendes, J., Resende, M., G., C., A hybrid genetic algorithm for the job
shop scheduling problem, European Journal of Operational Research, 2004

Gordon, V., Kubiak, W., Single Machine Scheduling with Release and Due Date
Assignment to Minimize the Weighted Number of Tardy Jobs, Information
Processing Letters, Vol. 68, pp: 153-159, 1998.

Giiner, E., Erol, S., Tani, K., One machine scheduling to minimize the maximum
earliness with minimum number of tardy jobs, Int. J. Production Economics, Vol. 55,
pp: 213-219, 1998.

Gupta, J. N. D., Hariri, A.M.A., Two-machine flowshop scheduling to minimize the
number of tardy jobs, Journal of the Operational Research Society, Vol. 48, pp: 212—
220, 1997

Hallah R., M., Bulfin, R., L., Minimizing the weighted number of tardy jobs on a single
machine, European Journal of Operational Research, Vol. 145, pp: 45-56, 2003

Hariri, A.M.A., Potts, C.N., A Branch and Bound Algorithm to Minimize the Number
of Late Jobs in a Permutation Flowshop, European Journal of Operational Research,
Vol. 38 pp: 228-237, 1989

Hariri, A.M.A., Potts, C.N., Single machine scheduling with deadlines to minimize the
weighted number of tardy jobs, Management Science, Vol. 40, pp: 1712-1719, 1994

He, S., Wu, Q. H., Wen, J. Y., Saunders, J. R., Paton, R. C., A Particle Swarm
Optimizer With Passive Congregation, BioSystems, 2004

Held, M., Karp, R. M., A Dynamic Programming Approach to Sequencing Problems,
Journal of the Society for Industrial and Applied Mathematics, Vol. 10(1), pp: 196-
210, 1962

61

Hino, C. M., Ronconi, D. P., Mendes A. B., Minimizing earliness and tardiness
penalties in a single-machine problem with a common due date, European Journal of
Operational Research, Vol. 160, pp: 190-201, 2005

Holland, J., Adaptation in natural and artificial system. Ann Arbor, MI: The University
of Michigan Press, 1975

Iyer, S., K., Saxena, B., Improved Genetic Algorithm for the Permutation Flowshop
Scheduling Problem, Computers & Operations Research, Vol. 31, pp: 593-606, 2004

Karp, R., M. Reducibility Among Combinatorial Problems.. In: R. E. Miller and J. W.
Thatcher, Eds., Complexity of Computer Computations, pp. 85.103, Plenum Press,
New York, NY, USA, 1972.

Kennedy, J. and Spears, W., Matching Algorithms to Problems: An Experimental Test
of the Particle Swarm and some Genetic Algorithms on the Multimodal Problem
Generator, IEEE International Conference on Evolutionary Computation, Anchorage,

Alaska, USA, 1998

Kennedy, J. Eberhart, R. C., Shi, Y., Swarm Intelligence, San Francisco: Morgan
Kaufmann Publishers, 2001

Kennedy, J., and Eberhart, R. C., Particle Swarm Optimization, Proceedings of IEEE
International Conference on Neural Networks, IV, 1942-1948. Piscataway, NJ: IEEE
Service Center, 1995

Kennedy, J., Eberhart, R. C., and Shi, Y., Swarm Intelligence, San Francisco: Morgan
Kaufmann Publishers, 2001

Kennedy, J., Eberhart, R., Particle Swarm Optimization, IEEE International Conference
on Neural Networks, IEEE Service Center, Piscataway, NJ, Volume: 4, pp. 1942-
1948, 1995

Kethley, R., B., Alidaee, B., Single machine scheduling to minimize total weighted late
work: a comparison of scheduling rules and search algorithms, Computers &
Industrial Engineering, Vol. 43, pp: 509-528, 2002

Kim, K. W., Gen, M., Yamazaki, G. Hybrid genetic algorithm with fuzzy logic for
resource-constrained project scheduling, Applied Soft Computing, 2003

Kise, H., Ibaraki, T., Mine, H, A solvable case of the one machine scheduling problem
with ready and due times, Operations Research, Vol. 26 (1), pp: 121-126, 1978

Koksalan, M., Keha, A. B., Using genetic algorithms for single-machine bicriteria
scheduling problems, European Journal of Operational Research, Vol. 145, pp: 543—
556, 2003

Lawler, E. L., Moore, C. U., A Functional Equation and its Application to Resource
Allocation and Sequencing Problems, Management Science, Vol. 16, pp. 77.84, 1969

62

Lawler, E., L. Sequencing to minimize the weighted number of tardy jobs, RAIRO
Rech. Optr, Vol. 10, pp: 27-33, 1976.

Lawler, E., L., A Dynamic Programming Algorithm for Preemptive Scheduling of a
Single Machine to Minimize the Number of Late Jobs, Annals of Operations
Research, Vol. 26, pp: 125-133, 1990

Lenstra, J.K., Rinnooy Kan, A.H.G., Bruker, P., Complexity of machine scheduling
problems, Annals of Discrete Mathematics, Vol. 1, pp: 343-362, 1977

Leu, S., Hwang, S., GA-based resource-constrained flow-shop scheduling model for
mixed precast production, Automation in Construction, Vol. 11, pp: 439—-452, 2002.

Lin, B.M.T., Cheng, T.C.E., Minimizing the weighted number of tardy jobs and
maximum tardiness in relocation problem with due date constraints, European
Journal of Operational Research, Vol. 116, pp: 183-193, 1999

Lin, B.M.T., Scheduling in the two-machine flowshop with due date constraints Int. J.
Production Economics, Vol. 70, pp: 117-123, 2001

Lebjerg, M., Rasmussen, T.K., Krink, K., Hybrid particle swarm optimizer with
breeding and subpopulations, In: Proceedings of the Third Genetic and Evolutionary
Computation Conference (GECCO-2001), Vol. 1. pp. 469476, 2001

Lodree, E., Jang, W., Klein, C., M., A New Rule for Minimizing the Nuimber of Tardy
Jobs in Dynamic Flowshops, European Journal of Operational Research, Vol. 159,
pp: 258-263, 2004

Moore, J. M., A n Job, One Machine Sequencing Algorithm for Minimizing the
Number of Late Jobs, Management Science, Vol. 15, No. 1, pp. 102.109, 1968.

Mosheiov, G., Sidney, J. B., Note on Scheduling with General Learning Curves to
Minimize the Number of Tardy Jobs, Journal of Operational Research Society, pp: 1-
3, 2004

Nearchou, A. C., A novel metaheuristic approach for the flowshop scheduling problem,
Engineering Applications of Artificial Intelligence, Vol. 17, pp: 289-300, 2004

Pavlidis, N.G., Parsopoulos, K.E, Vrahatis, M. N., Computing Nash Equilibria Through
Computational Intelligence Methods, 2004

Penev, K., Littlefair, G., Free Search—a comparative analysis, Information Sciences,
2004

Peridy, L., Pinson, E., Rivreau, D., Using Short-Term Memory to Minimize the
Weighted Number of Late Jobs on a Single Machine, European Journal of
Operational Research, Vol. 148, pp: 591-603, 2001

Pinedo, M., Chao, X., Operations Scheduling: with Applications in Manufacturing and
Services, Boston, Mass.: Irwin/McGraw-Hill, 1999

63

Pinedo, M., Scheduling: Theory, Algorithms, and Systems, Englewood Cliffs, N.J.:
Prentice Hall, 1995

Potts, C.N., Wassenhove, L. N., Algorithms for scheduling a single machine to
minimize the weighted number of late jobs. Management Science Vol. 34, pp: 843—
858, 1988.

Reeves, C., R., Yamada, T, Genetic Algorithms, Path Relinking and the Flowshop
Sequencing Problem, Evolutionary Computation journal (MIT press), Vol.6 No.l,
pp. 230-234, 1998

Rote, G., Woeginger, G. J., Minimizing the Number of Tardy Jobs on a Single Machine
with Batch Setup Times, START Project Y43-MAT Combinatorial Approximation
Algorithms, 1998

Ruiz, R., Maroto, C., Alcaraz, J., Solving the flowshop scheduling problem with
sequence-dependent setup times using advanced metaheuristics, European Journal of
Operational Research, 2004

Sahni, S. K., Algorithms for Scheduling Independent Jobs, J. Assoc. Comput. Mach,
Vol. 23, pp: 116-127, 1976

Sevaux, M., Dauzere-Peres, S., Genetic algorithms to Minimize the Weighted Number
of Late Jobs on a Single Machine, European Journal of Operational Research, Vol.
151, pp: 296-306, 2003

Shi, Y., Eberhart, R. C., Parameter selection in particle swarm optimization,
Evolutionary Programming VII, Lecture Notes in Computer Science, vol. 1447.
Springer, pp. 591-600, 1998

Shi, Y., Eberhart, R.C., A modified particle swarm optimizer, Proceedings of the IEEE
International Conference on Evolutionary Computation, pp. 303-308, 1998

Sipper, D., Bulfin, R. L., Production: Planning, Control and Integration, McGraw Hill,
1998

Steiner, G., Minimizing the number of tardy jobs with precedence constraints and
agreeable due dates, Discrete Applied Mathematics, Vol. 72, pp: 167- 177, 1997

Taillard, E., “Benchmarks For Basic Scheduling Problems”, European Journal of
Operational Research, Vol. 64, pp. 278-285, 1993.

Taillard, E., Some Efficient Heuristic Methods for the FlowShop Sequencing Problem,
European Journal of Operational Research, Vol. 47, pp: 65-74, 1990

Tandon, V., Closing the gap between CAD/CAM and optimized CNC end milling,
Master’s thesis, Purdue School of Engineering and Technology, Indiana University,
Purdue University Indianapolis, 2000

64

Tasgetiren M. F., Sevkli M., Yun-Chia Liang, Gencyilmaz G, 2004, Particle Swarm
Optimization Algorithm for the Single Machine Total Weighted Tardiness Problem,
World Congress on Evolutionary Computation, CEC2004,p.1412-1419.

Tasgetiren, M. F, Liang Y. C., A Binary Particle Swarm Optimization Algorithm for
Lot Sizing Problem, Journal of Economic and Social Research, Vol.5 No.2, 2003.

Tasgetiren, M. F., Liang Y. C., Sevkli M., Yenisey, M. M., Particle Swarm
Optimization and Differential Evolution Algorithms for Job Shop Scheduling, 2005
(submitted)

Tasgetiren. M. F., Liang Y. C., Sevkli, M., Gencyilmaz, G., Particle Swarm
Optimization Algorithm for Permutation Flowshop Sequencing Problem, 4th
International Workshop on Ant Colony Optimization and Swarm Intelligence,
ANTS2004, LNCS 3172 by Springer-Verlag, pp.382-390, September 5-8, 2004

Tasgetiren. M. F., Liang Y. C., Sevkli, M., Gencyilmaz, G., Particle Swarm
Optimization Algorithm for Makespan and Total Flowtime Minimization in
Permutation Flowshop Sequencing Problem, European Journal of Operational
Research, 2004

Tasgetiren. M. F., Liang Y. C., Sevkli, M., Gencyilmaz, G., Particle Swarm
Optimization Algorithm for Makespan and Maximum Lateness Minimization in
Permutation Flowshop Sequencing Problem, 4th International Symposium on
Intelligent Manufacturing Systems, IMS2004, pp.431-441, Sakarya, Turkey, 6-8 Sep
2004

Tasgetiren. M. F., Liang Y. C., Sevkli, M., Gencyilmaz, G., Particle Swarm
Optimization and Differential Evolution Algorithms for the Single Machine Total
Weighted Tardiness Problem, 2005 (Submitted)

Tasgetiren. M. F., Sevkli, M., Liang Y. C., Gencyilmaz, G., Particle Swarm
Optimization Algorithm for Single Machine Total Weighted Tardiness Problem, 4th
International Symposium on Intelligent Manufacturing Systems, IMS2004, pp.431-
441, Sakarya, Turkey 6-8 Sep 2004

Trelea, 1. C., The Particle Swarm Optimization Algorithm: Convergence Analysis and
Parameter Selection, Information Processing Letters, Vol. 85, pp: 317-325, 2003

Tsujimura, Y., Mafune, Y., Gen, M., Effects of Symbiotic Evolution in Genetic
Algorithms for Job-Shop Scheduling, Proceedings of the 34th Hawaii International
Conference on System Sciences, 2001

Villarreal, F., J., Bulfin, R., L., Scheduling a single machine to minimize the weighted
number of tardy jobs, IIE Transactions, Vol 15, pp: 337-343, 1983

Wang, H., Wu, K., Hybrid genetic algorithm for optimization problems with
permutation property, Computers & Operations Research, Vol. 31, pp: 2453-2471,
2004

65

Wang, Y., A GA-based methodology to determine an optimal curriculum for schools,
Expert Systems with Applications, Vol. 28, pp: 163-174, 2005

Werner J. C., Aydin, M. E., Fogarty, T., C., Evolving genetic algorithm for Job Shop
Scheduling problems, Proceedings of ACDM, 2000

Yinga, K. Liaoa, C., An Ant Colony System for Permutation Flow-Shop Sequencing,
Computers & Operations Research, Vol. 31, pp: 791-801, 2004

Yoo, W. S., Martin-Vega, L. A., Scheduling Single Machine Problems for On-time
Delivery, Computers & Industrial Engineering, Vol. 39, pp: 371-392, 2001

Zacharia, P. T., Aspragathos, N. A., Optimal robot task scheduling based on genetic
algorithms, Robotics and Computer-Integrated Manufacturing, Vol. 21, pp: 67-79,
2005

Zhang, H., Li, H., Huang, F., Particle Swarm Optimization-Based Schemes for
Resource-Constrained Project Scheduling, Automation in Construction, 2004

