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ABSTRACT

Magnetic nanoparticles have attracted great inteckge to their mesoscopic
properties and their potential for applications.eTwidely used and the well known
magnetic nanoparticle is the magnetite ;(B2¢. In this study, the theory of the
Superparamagnetic Resonance (SPR) and its appticatm superparamagnetic ;Bg
nanoparticles in a size range of 1.1-11 nm werdietll The size and surface effects on
temperature and frequency dependent magnetic piegpeof these particles were
investigated. We used a theoretical formalism bameda distribution of diameters or
volumes of the nanoparticles following lognormaloposed by Berger et al. The
nanoparticles are considered as single magneticaithsmwith random orientations of
magnetic moments and thermal fluctuations of arogpid axes. The individual line shape
function is derived from the damped precession gguadf Landau-Lifshitz. Magnetic

properties of the samples were strongly temperatné size dependent. When the



temperature is decreased, while the SPR line wgltimcreasing the resonance field is
decreasing. This means the anisotropy field issasing by decreasing the temperature. At
high T's, the SPR line shape is governed by thee camisotropy and the thermal
fluctuations. On decreasing T, as the shell spiosease their magnetic susceptibility, they
produce an effective field on the core, leading ttecrease of Brom its high T value. As
the shell spins begin to order, the effective anigry increases following its surface value
more closely. So, the results can be interpreted bymple model, in which each single-
domain nanopatrticle is considered as a core-spsiés, with uniaxial anisotropy on the
core and surface anisotropy on the shell. Als;meali microwave frequency dependence
was observed. Furthermore, the blocking temperatfitke particles is also increasing by

the particle size.

Keywords: SPR, superparamagnetism, spinel structure, namdpsa, FgO..



MANYET IK NANO PARCACIKLARDA
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Oz

Manyetik nano parcaciklar, uygulama alanlarinin iggih ve mesoskopik
Ozelliklerinden dolay! ¢cok yaygin olarak galimaktadir. En yaygin kullanilan ve en iyi
bilinen magnetic nano parcaciklardan birisi miksaat(FeO,). Bu calsmada,
Superparamanyetik Rezonans (SPR) teorisi ve l1.h+filarasinda buydkliklere sahip
superparamanyetik E@, numunelerindeki uygulamasi incelentini Sicaklga ve frekansa
bagli manyetik Ozellikleri olan bu nano parcaciklardaiyiklik ve vyuzey etkileri
arastinimistir. Kullanilan teorik yaklggm Berger ve cajma arkadglarina ait parcacik
caplarinin veya hacimlerinin lognormal gilamina dayanmaktadir. Rastgele yonglmi
manyetik momentler ve anisotropi ekseninin isisalgalanmalaridan dolayr bu
nanoparcaciklarin tek alanh (single domain) oldukkabul edilmgtir. Tek cizgi fonsiyonu
Landau-Lifshitz’'in s6nimli presesyon denklemindeldee edilmitir.  Numunelerin
manyetik Ozelliklerinin buyukltklerine ve sicakh siddetli bgzimh oldugu gozlenmgtir.
Sicaklik dgerken SPR cizgi gegligi artarken rezonans alani azajtm Bunun anlami
disen sicaklikla anisotropy alaninin artmasidir. Yéksecakliklarda SPR cizgsekli

cekirdek anisotrpisi ve Isisal dalgalanmalardanlestiistir. Azalan sicaklikla birlikte



Vi

kabuk spinleri numunelerin manyetik alinggnmin artiracaklari icin bunlar c¢ekirdek
Uzerinde etkin bir manyetik alan etururlar ve buda rezonans alaninin fiksek
sicaklardaki dgerinden daha kucik derlere sahip olmasina sebep olur. Kabuk spinleri
dizenli hale geldikge etkin anisotropi artar vesyialaninin sahip olgu desere yaklair.
Dolayisiyla bu sonuglari basit bir model ile acyehiliriz. Bu modele gore her bir tek
alanli nano parcaciklar, ¢ekirdek-kabuk yapiliesiger olarak dgiindlebilir. ilave olarak
lineer mikrodalga frekans BhaligI ve blok sicakiinin parcacik blyukgil ile arttg

gozlenmitir.

Anahtar Kelimeler: SPR, sliperparamanyetizma, spinel yapilar, nanapiddar, FeO,.
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CHAPTER 1

INTRODUCTION

Magnetism is a subject, which has been studieddarly three thousands years.
The navigational magnetic compass was the firdinelogical product resulting from
this study. The first known magnetic material isgmetite (FeO,4). Although its history
is not certainly known, its power to attract iroassknown to have been before Christ.
The name of magnet came from Magnesia, a distfritudkey and the Greeks coined it
by referring to this district. William Gilbert madée first effective scientific study of
magnetism in 1600 [1]. People did not know that edectric current produces a
magnetic field until it was discovered by H. C. §ed in 1820 and the discovery of
electromagnet followed five years later. With fthcontributions by Faraday,

Maxwell, Hertz and many others, the new sciencgl@ftromagnetism developed.

During the 1930’s researches on ‘soft ferrites’'toared, primarily in Japan and
Netherlands. However, it was not until 1945 thak.JSnoek of the Phillips Research
Laboratories in Netherlands succeeded in produeingoft ferrite’ for commercial
applications. The term “ferrite” is derived frothe Latin word “ferrum”, meaning
iron. Ferrites are homogeneous ceramic materiailposed of various oxides

containing iron oxide as their main constituent.

Magnetic nanoparticles have attracted great intedlas to their mesoscopic
properties and their potential for applicationsefiéhare a lot of studies on magnetic
properties of many kinds of nanoparticles. Theyehawide field of applications, such
as; recording tapes, permanent magnets, hard eiscding media, flexible recording
media, read-write heads, active components of flards, color imaging, magnetic
refregration, detoxification of biological fluidsnagnetically controlled transport of
anti-cancer drugs, magnetic resonance imaging (M&intrast enhancement and

magnetic cell separation, etc [2-11].



In this study, size and surface effects on tempegaand frequency dependent
magnetic properties of superparamagnetgOr@anoparticles in a size range of 1.1-11

nm are investigated by Superparamagnetic Resor{&mée) technique.

In this study, the theory of magnetism will be exped firstly and basically in
the first chapter. Then the nanoparticles’ magneis going to be studied with details.
The following chapter contains synthesis and chiareation of samples and the SPR
measurements. After experimental part, the way lu# theoretical analysis of
experimental results will be given. In Chapter §perimental and theoretical fit results
explained in the name of results and discussiomallif we have conclusions in our

study.



CHAPTER 2

THEORY OF MAGNETISM

2.1 MAGNETIC POLES

The law of interaction between magnetic poles wasodered independently by
Michell in 1750, and by Coulomb in 1785. They fouhd following empirical equation
that the force between two magnetic poles is prtopmal to the product of their pole

strengthsp, and inversely proportional to the square of tiséatice between them:

E = ple (cgs). (2.1)

This is analogous to Coulomb’s law for electric ifes; with one important difference
that single magnetic pole (magnetic monopole) dussexist. Above equation can be

written in Sl units as follows:

o1 plzpz (Sl) (2.2)
am, r

where 4, is called the permeability of free space, andthasvalue4/rx10™" Wh/Am

(weber/ampere meter). To understand what causefibe we can think of the first

pole generating a magnetic field, H, which in texerts a force on the second pole. So
F= [%] p, = Hip, (cgs) (23)

giving, by definition,



H=2L (cgs) and H=—L_ (s)) (2.4)
r TH!

Figure 2.1Magnetic field lines in a bar magnet [12].

So, a field of strength is one, which exerts adar€one dyne on a unit pole. By
convention, the North Pole is te®urceof magnetic field, and the South Pole is the
sink, it can be seen in Fig. 2.1. The units of magnégid fstrength are oersteds (Oe) in
cgs units and ampere/meter (A/m) in Sl units; 1=0@.000/4) A/m. The symbol H

denotes the magnetic field strength andaied simply magnetic field.

2.2 MAGNETIC FLUX

The conveying of field of magnetic pole to a distptace by something called
as amagnetic flux,¢. Rigorously the flux is defined the surface in&gf the normal
component of the magnetic field. This means thatamount of flux passing through
unit area perpendicular to the field is equal ® field strength. So the field strength is

equal to amount of flux per unit area,

¢=HA (cgs) and ¢=UHA  (SI) (2.5)

and units of it are oersted.&rgmaxwell) in cgs units and weber in S| units. Magn
flux is important because a changing flux generateslectric current in any circuit,
which it intersects. In fact we define the ‘eleatative force’,s, equal to the rate of

change of the flux linked with the circuit:



d¢
g=-—Z, 2.6
ot (2.6)

The above equation is known as Faraday’s law aft@magnetic induction.
The minus sign in Egn 2.6 shows that the curretstge a magnetic field that acts in the

opposite direction to the magnetic flux (This iotm as Lenz’s law).

2.3 MAGNETIC MOMENT

Next we need to introduce the concept of magnetiment, which is moment of
dipole of couple exerted on either a bar magnea @urrent loop when it is in an
external field. Again we can define the magnetiamaat either in terms of poles, or in

terms of currents.

F=pH

+p

Figure 2.2Bar magnet in a uniform field [1].

Imagine a bar magnet is at an angléo a magnetic fieldH, as shown in Fig 2.2. The
force on each pole iB = pH. So, the moment acting on the magnet, which isthes

force times the perpendicular distance from theeresf mass, is
pH sin9|§+ pH sinHIE: plH sin@ (2.7)

When H =1 Oe and =90", the moment is given by



m=pl _ (2.8)

wherem is themagnetic momertf the magnet.

Alternatively, if we want to explain the magnetioment in terms of currents
then we can look at the current loop in a uniforgmetic field like in the following
Fig. 2.3. A rectangular loop carrying a currens lplaced in a medium with a uniform
magnetic induction or magnetic flux density whishdienoted by a symbol of B. Both
magnetic field strength H and magnetic inductiomi® called simply magnetic field
and the difference between them will be explainetbw (Fig. 2.3 (a)). No magnetic

force acts on sides 1 and 3 because those wirgmeakel to the field.

¢ .
< A
> @ I . b/2 .
B \ >
. | | '
- Y® @) i a < * ®
. | —
; B
© v
<€-------- 6 --------- >
(a) (b)

Figure 2.3 (a)Overhead view of rectangular current loop in aarm magnetic field,
which is parallel to sides 1 and 3 and perpendicialasides 2 and 4b) edge view of
loop [13].

However, magnetic forces do act on sides 2 and cause these sides are
oriented perpendicular to the field. The magnitudeforces is from a well-known

equation of magnetic force acting on a currentytiagrconductor, as follows

F, =F, = laB. (2.9)



Note that the two forces point in opposite direcsidout are not directed along the same
line of action as in the Fig. 2.3. (b). If the logpivoted so that it can rotate about point
O, these two forces produce a torque about O titates the loop in the clock-wise

direction. The magnitude of this Torqag,, is

b

b
2 Fes

Toox = F> > = (IaB)g+(IaB)g = labB, (2.10)

max

where moment arm about O is b/2 for each forceaBse the area enclosed by the loop

is A= a .b, then we can express the maximum toague
T =I|AB. (2.11)

Remember that this maximum resultant torque idvaiily when the magnetic
field is parallel to the plane of the loop. Now let suppose that the magnetic field
makes an anglé <90° with a line perpendicular to the plane of the l@spshown in

Fig. 2.4. Note that the moment arm qfdbout the poinD is equal to(a/2)siné as the

moment arm g Becauser, = F, = 1bBthe net torque abo@ has the magnitude

7= F1%Sin0+ Fsgsiné? = IbB[%SinHj + IbB(%SinHj = |abBSirg

7. =I|ABSing (2.12)

where A = ab is the area of a rectangular loop.



A convenient expression for the torque exerted doop placed in a uniform

magnetic field B is

r .. =IAxB (2.13)

L

N

)

S

/CDID\V =\
J"l’@ oV

Figure 2.4 Edge view of the loop sighting downsides [13].

whereA, the vector shown in Fig. 2.4, is perpendiculath® plane of the loop has a
magnitude equal to the area of the loop. The doeaif A is determined by using right
hand rule. The producAlis defined to be the magnetic dipole mommn{often simply

called “magnetic moment”) of the loop [13]:

S
I
>

(2.14)

The SI unit of the magnetic dipole moment is ampeetef (A.m?). By using the Eqn.
2.13 and 2.14, we can express the torque in tefrmagnetic moment as follows:

r=mxB. (2.15)

In this sense it will be better to examine the pb&t energy of dipole moment
in a uniform magnetic field. Returning to Fig. 2tBe energy of magnetic dipole is
defined to be zero when the dipole is perpendidulanagnetic field. So the work done

(in ergs) in turning through an ang® against the field is



dE=2(pH sinH)%dH:mHsinajH (2.16)

and the energy of dipole at an angléo a magnetic field is

g
E= ImHsinQdQ:—mH cosd = -m[H (2.17)

ml2

This energy expression is in cgs units and it caexpressed in Sl units as
E=-umH (2.18)

where 1, is the permeability of free space.

2.4 MAGNETIC MOMENT OF ELECTRONS

There are two kinds of electron motion, orbital @pih, and each has magnetic

moment associated with it.

The orbital motion of an electron around the nugleanstitutes a tiny current
loop (because it is a moving charge), and the ntagm@ment of electron is associated
with this orbital motion. Consider an electron nayin a constant speed V in a circular
orbit of radius r about the nucleus as shown Fif. Because the electron travels the
distance of 2r (the circumstance of circle) in a period T, wbital speed iy = 2rr/T.
The current | associated with this orbiting electrs its charge e divided by T. using

T=2rnr/v, we have

=" (2.19)
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The magnetic moment associated with this curres s equal to current times

area of the loop from Eqg. 2.14, whe® = 7r *is the area enclosed by the orbit.

Therefore we can write

U= IA:[ﬂjnz “Lewr. (2.20)
27T 2
L
v

Figure 2.5 An electron moving in a circular orbit of radiufias angular momentum L

in one direction and a magnetic momgini the opposite direction [12].

(here uis the electronic or atomic magnetic moment). Beeathe magnitude of

angular momentum of electron is= m,vr the magnetic moment can be expressed as

H=Nn (2.21)
where y is the proportionality constant and called as gagnetic rati{y: ﬁ} [1].

An additional assumption of Bohr theory was angatamentum of the electron must
be integral multiple ofz (which is equal t%h—) where h is Planck’s constant.
n

Therefore,
myVr =nn. (2.22)

Combining Egs. 2.20 and 2.22, we have
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Li(orbity == (2.23)
2m

3
for the magnetic moment of electron in the first(1) Bohr orbit.

The electron behaves as if it were spinning aliswdwn axis, as well as moving
in an orbit about the nucleus, associated withsfie are definite amounts of magnetic
moment and angular momentum. It is found experialgnand theoretically that the

magnetic moment due to electron’s spin is equal to

L(Spin) = % = 0.927x10erg/ Oe. (2.24)

e

Thus the magnetic moment due to spin and that@uwaotion in the first Bohr orbit are
exactly equal. Because it is such a fundamentahtgyathis amount of magnetic
moment is given a special symbgl, and a special name, tieBohr Magnetor12].
Thus,

Uy =0.927x10erg/ Oe. (2.25)

2.5 MAGNETIZATION AND FIELD

The quantity of the magnetic moment per unit volutescribes the extent to
which the magnets are magnetized. It is calledrtensity of magnetizatioror simply

themagnetizatioras follows,

(2.26)

<
11
< ™

wherev is the volume.
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In free space (vacuum) there is no magnetizafide magnetic field can be

described by the vector fiel@andH which are linearly related by

B =y H (2.27)

The magnetic field8 has unit of Tesla (T). In a magnetic solid thatieh betweerB
andH is more complicated and the two vector fields mayeéry different in magnitude

and direction. The general relationship is

B=u,(H+M) (2.28)

In the special case that the magnetizahbiis linearly related to the magnetic fiettl

and we write

M = yH (2.29)

where y is dimensionless quantity called the magnetic etsaility and we can

rewrite the Eq. 2.28 as follows

B =y L+ Y)H = prop, H (2.30)

where u, =1+ x is the relative permeability of the material. Wenaow characterize
the magnetic behavior of various kinds of substarmetheir corresponding values of

x and y, ( The classification will be studied later with reatetail ):

1. Empty spaceyy = O, since there is no matter to magnetize, and1
2. Diamagnetic.y is small and negative, ang slightly less than 1
3. Paramagnetic and antiferromagneticis small and positive, ang slightly greater

than 1

4. Ferromagnetic and ferrimagnetig: and 4, are large and positive [1].
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2.6 THE HYSTERESIS LOOP AND MAGNETIC PROPERTIES

A great deal of information can be learned aboatrttagnetic properties of a
material by studying its hysteresis loop. A hystexeloop shows the relationship
between the induced magnetic flux densByand the magnetic field strength
(magnetizing force field). It is often referred as the B-H loop. An example for the

hysteresis loop is shown below.

The loop is generated by measuring the magnetic Bluof a ferromagnetic
material while the magnetizing foré¢ is changed. A ferromagnetic material that has
never been previously magnetized or has been tgblpalemagnetized will follow the
dashed line a#l is increased. As the line demonstrates, the greéhte amount of
current appliedH+), the stronger the magnetic field in the compor{&). At point
"a" almost all of the magnetic domains are aligaed an additional increase in the
magnetizing force will produce very little increaisemagnetic flux. The material has
reached the point of magnetic saturation. Whers reduced back down to zero, the
curve will move from point "a" to point "b." At thipoint, it can be seen that some
magnetic flux remains in the material even thoughrhagnetizing force is zero. This is
referred to as the point of retentivity on the ¢ramd indicates the remanence or level
of residual magnetism in the material. (Some ofrtiegnetic domains remain aligned

but some have lost their alignment.)

B Flux Densit
y Saturation

Retentivity

'S

Coercivity

N

H

Magnetizing Force

-H
Magnetizing Force
In Opposite Direction

Saturation

In Opposite Direction -B Flux Denst

In Opposite Direction

Figure 2.6 Sample hysteresis loop for a ferromagnet [1].
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As the magnetizing force is reversed, the curve eade point "c", where the
flux has been reduced to zero. This is called tatpf coercivity on the curve. (The
reversed magnetizing force has flipped enough ef dbmains so that the net flux
within the material is zero.) The force requiredeémove the residual magnetism from

the material, is called the coercive force or ciwéiscof the material.

As the magnetizing force is increased in the nggaltirection, the material will
again become magnetically saturated but in the sifgodirection (point "d"). Reducing
H to zero brings the curve to point "e". It will Feaa level of residual magnetism equal
to that achieved in the other direction. Increasthack in the positive direction will
returnB to zero. Notice that the curve did not return te ¢migin of the graph because
some force is required to remove the residual magneThe curve will take a different

path from point "f" back the saturation point whér&ith complete loop.

From the hysteresis loop, a number of primary magmpeoperties of a material

can be determined.

1. Retentivity- A measure of the residual flux density corregjog to the
saturation induction of a magnetic material. Ineotvords, it is a material's
ability to retain a certain amount of residual matgmfield when the
magnetizing force is removed after achieving saituma(The value oB at point
B on the hysteresis curve.)

2. Residual Magnetisrar Residual Flux the magnetic flux density that remains in
a material when the magnetizing force is zero. Nloge residual magnetism and
retentivity are the same when the material has besgnetized to the saturation
point. However, the level of residual magnetism roayower than the
retentivity value when the magnetizing force did re@mch the saturation level.

3. Coercive Force The amount of reverse magnetic field which nigsapplied to
a magnetic material to make the magnetic flux retarzero. (The value ¢ at

point "c" on the hysteresis curve.)
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2.7 CLASIFICATION OF MAGNETIC MATERIALS

Materials are classified by their response to aareally applied magnetic field.
Descriptions of orientations of the magnetic moraeint a material help to identify
different forms of magnetism observed in natureb(@a2.1). Five basic types of
magnetism can be described: diamagnetism, pararisgne ferromagnetism,
antiferromagnetism and ferrimagnetism.

In the presence of an externally applied magnétid the atomic current loops
created by the orbital motion of electrons respomdppose the applied field. All
materials display this type of weak repulsion tonsmgnetic field known as
diamagnetism However, diamagnetism is very weak and thereforg other form of
magnetic behavior that a material may possess lysogr-powers the effects of the
current loops. In terms of electronic configuraoof materials, diamagnetism is
observed in materials with filled electronic suleléhwhere the magnetic moments are
paired and overall cancel each other. Diamagnetaterals have a negative

susceptibility (¥ <0) and weakly repel an applied magnetic field. THeot of these

atomic current loops overcomes if the material ldigp a net magnetic moment or has

long-range ordering of magnetic moments [14].

All of the other types of magnetic behaviors obsdrin materials are at least
partially attributed to unpaired electrons in atorsinells, often in the 3d or 4f shells of
each atom. Materials whose atomic magnetic momemts uncoupled display
paramagnetism Therefore, paramagnetic materialss moments havelong-range
order. A generalized description of paramagnetsmnihancement of the magnetic flux
density as a result of each atom carries a magme&tioent, which partially aligns in an
applied magnetic field. The field acts independeati each atomic dipole. Hence, there

Is no long-range order and there is a small pasitagnetic susceptibilityy < 0)[15].

Materials that posse$srromagnetismhave aligned atomic magnetic moments of equal
magnitude and their crystalline structure allowsdwect coupling interactions between
the moments, which may strongly enhance the fluxsitye. Furthermore, the aligned
moments in ferromagnetic materials can confer antgp@eous magnetization in the

absence of an applied magnetic field.
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Table 2.1 Summary of different types of magnetic behavid][1

Type of Magnetism | Susceptibility | Atomic Behavior Magnetic Behavior
v i
Small & NegatlvemomS have no
Diamagnetism m?nneerﬂc
Au...... -2.74x16 —
Cu.......-0.77x18 ! '
Small & PositivelAtoms have b ne Y
randomly A Y i
Paramagnetism| B-Sn.... 0.19x18 |oriented wed e
Pt........21.04x18magnetic i kel H
Mn.....66.10x10 |moments !
Large & positive
function of I
S e Atoms have
applied field, .
= . : parallel aligned
erromagnetism|microstructure . R
dependent magnetic A
moments | H
Fe....... ~100,000

Atoms have i
Small & positive|mixed parallel I * I * I [

Antiferromagnetism and anti-parallel)r |
Cleee... 3.6x10 |aligned magnetit) | 4 | ¥
moments |
Large & positive,
function of . M
applied field, Atoms haye antl-} | ; ) $
Ferri . : parallel aligned
errimagnetism |microstructure . 1 byt
dependent magnetic
P moments bdood H
Ba ferrite....... ~3

Materials that retain permanent magnetization @ahsence of an applied field
are known as hard magnets. Materials having atamagnetic moments of equal
magnitude are arranged in an antiparallel fashimplay antiferromagnetism The

exchange interaction couples the moments suchibgtare antiparallel hence leaving
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a zero net magnetization [17]. Above the Néel teampee (), thermal energy is
sufficient to cause the equal and oppositely aliga¢omic moments to randomly
fluctuate leading to a disappearance of their lcargge order. In this state the material
exhibits paramagnetic behavidferrimagnetismis similar to antiferromagnetism in
that two different sub-lattices exist and antifene@ynetic exchange interactions occur.
However, the magnitudes of the two different typésnoments, arranged antiparallel,

are not equal in magnitude and hence a net magtietizs produced.

2.8 THEORY OF FERROMAGNETISM AND FERRIMAGNETISM

Weiss first developed the molecular theory of feragnetism in the early
1900s, which sufficed as a semi-quantitative dption. The theory is based on the
assumption that each atomic dipole is subjectltucal field that is proportional to the
magnetization summed over all the other dipolesenmaterial [14, 17, 18,19].

Later, the development of quantum mechanics letheoconcept of exchange
interactions between two atoms and spin-dependento@bic interactions. The spin
exchange interaction is derived from the Pauli @sion principles, where antiparallel
spin arrangements in an atomic shell are forbid@®h The exchange interaction is
essentially the difference in Coulombic energiesdifferent spin configurations in a
sample [19]. Above a certain temperature, knowrhasCurie temperatur€lc), the
alignment of the moments in ferromagnetic and feagnetic materials is lost due to

thermal energy and the material displays paramagbehavior.

Ferrimagnetism is similar to antiferromagnetisnteithe spin arrangements are
antiparallel; however the sub-lattice magnetic moiseare of unequal magnitude and
therefore produce a net magnetization in an applield. The net magnetization
observed in ferrimagnetic materials is typicallywéy than that of ferromagnetic
materials primarily because of the antiparallehspirangement in the former. Despite
the differences in moment alignments, the thedhas describe ferromagnetism can be
applied to ferrimagnetism with modifications to aont for the existence of the sub-

lattice interactions and antiparallel orientatiofspins.



18

The ferrimagnetic crystalline structure is compaisg two different magnetic
ions occupying two kinds of lattice sites, tetratadA) and octahedral (B) [18, 19, 21].
For spinel crystalline structures, such as magnesitirprisingly all of the exchange
interactions (AA, AB and BB) favor antiparallel giiment. The ferrimagnetic behavior
is due to the strong AB interaction. The favoraBlantiparallel B interaction induces
all of the A spins to parallel arrangements anafthe B spins parallel with each other
[18]. Some ferromagnetic and ferrimagnetic matsrigbossess spontaneous
magnetization and are referred to as permanent etsgdowever, most ferromagnetic
and ferrimagnetic materials are unmagnetized uamtil external magnetic field is
applied. In the early 1900s, Weiss developed therthof magnetic domains to explain
the lack of large demagnetization forces, whichulteg the entire ferromagnetic

material is uniformly magnetized throughout [22].



CHAPTER 3

MAGNETISM OF NANOPARTICLES

The aligned spin arrangements in ferromagnetic,ifemramagnetic and
ferrimagnetic materials are subdivided into regigdemains) throughout the bulk
material. The boundary between two neighboring dosmés a domain wall, which
consists of a rotation of the direction of the matgnmoment between discrete domains
(Figure 3.1) [18]. The formation of domains is agess driven by the balance between
the magnetostatic energy and the domain wall enefine magnetostatic energy
increases proportionally to the volume of the matewhile the domain wall energy
increases proportionally to the surface area.dfdhmple size is reduced, these points
intuitively to the existence of a critical volumeslow which the reduction of the
magnetostatic energy becomes less than the miniemamgy required to form a domain
wall. Consequently, below this size a ferromagnetaterial exists as singledomain

particle. This means that the patrticle is in aestdtiniform magnetization

Figure 3.Domain wall [18].

The constituent spins, at temperatures well belbes Curie temperature, rotate in

unison. The exchange energy is strong enough t dbkpins tightly parallel to each

19
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other and determines the value of the particle mégmoment, while its direction is

determined by the total anisotropy energy. Thecipsize of a single-domain particle
is in the order of a few tens of nanometers depwndn the material and contributions
from various anisotropy energy terms. Thereforeait be concluded that single domain
particles are in general not isotropic, but thely ave anisotropic contributions to their
total energy associated with their external shépe magnetocrystalline structure itself

and the imposed stress.

In principle, single-domain particles must rever$®ir magnetization by
coherent spin rotation. This is a comparativelyfiiclift process, if the particle has a
significant magnetic anisotropy. Consequently, lgirdpmain particles are expected
have a high coercivity, which is the basis of mosttheir applications. This (non
thermal) magnetization reversal mechanism was ditgtied by Stoner and Wohlfarth
in 1948 [23]. Neel predicted that at nonzero terapge the magnetization can
overcome the energy barrier as a result of theagaation [24]. Later, Brown derived
the Fokker-Planck equation for the probability dimition of spin orientations, starting
from the stochastic Landau-Lifshitz equation, amdcalated approximate expression
for the relaxation time of particles with uniaxiahisotropy [25]. Theoretically most
well studied systems are noninteracting classipaiss(representing the magnetization

of the nanoparticles) with axially symmetric magoe@hnisotropy.

L

~— Single-domain ——= «+— Multidomain ———-

H,

Super
paramagnetic

Y

Dsp D
Diameter

Figure 3.2 Coercivity as a function of particle size, wherg I3 the superparamagnetic

size and Qis the single domain patrticle size [17].

Frenkel and Dorfman first formulated theorizesareiing the single domain

nature of particles below a critical diameter ir8Q@926]. In this critical size range the
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nanoparticles are single domain materials (FiguB. 3n the presence of an applied
magnetic field, the spin’s orientation and subsetjueagnetic saturation is achieved
with lower field strengths than with the analogomslk materials. The magnetic
moment of each particle is ~105 times larger than tfansition metal ions and
saturation magnetization is reached at applied etagrields as low as 1 kOe [27].
When the field is decreased, demagnetization igm#gnt on coherent rotation of the
spins, which results in large coercive forces [ZB)e large coercive force in single
domain particles is due to magnetocrystalline amape anisotropies for nonspherical
particles. As the single domain particles’ sizerdase, the coercive force decrease
(Figure 3.2).

Moreover, the shape anisotropy increases as theciasptio of a particle
increases. Therefore, elongated single-domain gbestican display large coercive
forces [29, 30].

3.1 SUPERPARAMAGNETISM

The magnetic anisotropy, which keeps a particle mataiged in specific
direction, is generally proportional to the voluwiea particle [31]. As the size of the
particle decreases, the energy associated withrtiaeial anisotropy (K) decreases until
thermal energy is sufficient to overcome any pwgiéal orientation of the moment in

P &7
® \)
@@ @

a b C

Figure 3.3Domain structures observed in magnetic parti@gsuperparamagnetic;

b) single domain particle; ¢) multi-domain partig®].
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A single domain particle that reaches magnetizagiguilibrium at experimental
temperatures in short times relative to the measeiné time is commonly referred to as
superparamagnetic (Figure 3.3 a) [29]. The uniformly magnetized gé&n domain
structure and the multi domain particle can be sedigure 3.3 b and c.

3.2 MAGNETIC RELAXATION IN SUPERPARAMAGNETIC PARTIC LES

When placed in an external magnetic field the magn@moments of these
particles align in the direction of the field visoment and particle rotation. When the

field is removed the frequency of thermally actégiteversals is given by

f=fek (3.1)

wheref, is the “attempt frequency” which is approximatdf’ s*. Conceptually, the
frequency is the rate at which the particles apgrotnermal equilibrium [32]. For

relaxation times of ~100 seconds the critical epdarier is

AE,, =In(tf,)KT = 25kT (3.2)

for thermal equilibrations. The condition for sup@ramagnetism is observed when a

particle with uniaxial anisotropy displays zero e force as mathematically defined
by

KV = 25KT (3.3)

where K is the effective magnetic anisotropy eneogystant (a function of the
magnetocrystalline, shape and surface anisotrqgpiess) the volume of the particle and
KT is the thermal energy [17, 32]. Particles witlaxation times greater than 100
seconds or with diameters larger than the critredlies (Figure 3.2) are called blocked

[17, 18, 33]. Théblocking temperature (Tg) of a material is given by

KV

=—. 3.4
5 = Do (3.4)
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Below Tg the anisotropy of the particle blocks the free eraent of the moment
[17]. Above the F the moment is free to align in an applied magniid and appears
superparamagnetic.

In an applied field at temperature T, assuming pheicles’ moments have
achieved some level of thermal equilibrium, thei# be a Boltzmann distribution of
moments aligned in the direction of the appliettifid his relation is essentially the case
prescribed for classical paramagnetism, where #duyged of orientation is given by the

Langevin function
1
m,, =m(cotha - E) where a=—— (3.5)

where m, is the average magnetic moment, k is Boltzmanpisstant and T is the
absolute temperature [29]. The fundamental diffeeeis that the moment is a single
atom in the paramagnetic case, whereas the momemnsidered as a single domain
particle, which contains more than 105 atoms califgero- or ferrimagnetically in the
superparamagnetic case [34]. The term superparatisgn originates from this
relation. The magnetization of an individual supegmagnetic particle is given by

M =nm,,, where n is the number of particles per volume.

The defining factor between single domain and qugr@magnetic particles is
essentially the relaxation time relative to theexkpental time. The superparamagnetic
nature of the nanoparticles is derived from theloanization of aligned spins governed
by Brownian motion and Néel rotation when the geatifield is removed. Brownian
motion and Néel rotation are magnetic relaxatiorthlaisms due to particle and spin
rotation, respectively. Brownian relaxation is a&s@d via bulk rotational diffusion of
the particles in a fluid. The relaxation time faioB/nian motion is given by

r, =30 (3.6)
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whereV' is the hydrodynamic volume of the particlg,is the dynamic viscosity, k is

Boltzmann.s constant and T is the absolute temyeraiNéel relaxation (Eq. 3.7) is
attributed to the rotation of the magnetizationtee©or moment in the particle with a

relaxation time given by

Ty =T, exp{%) where AE=KV(@L-h* ) (3.7)

T, is typically estimated to be P0s, AEis the energy barrier assuming uniaxial on

interacting particlesh = H/H, is the reduced magnetic field amtl, is the internal

magnetic field due to anisotropy [33]. Experimerdahditions for superparamagnetism
are

1) relaxation times faster than the measurement t{c@amonly ~100 s),

2) the magnetization curve does not display hysteresis

3.3 HAMILTONIAN OF FERROMAGNETIC SYSTEM

The Hamiltonian of a single isolated nanopartidasists of the Zeeman energy
(which is the interaction energy between the magmabment and an external field)
and the magnetic anisotropy (which creates prefedirections of the magnetic
moment orientation). In the system, the nanopaxiare supposed to be well separated
by a nonmagnetic medium (i.e., a ferrofluid in whithe particle are coated with a
surfactant and particle dispersed in a diamagnetedium). The only relevant
interparticle interaction mechanism is therefore dhipole-dipole interaction. By using
the thermodynamic relations, magnetic field H, meignmoment, temperature T and
Helmholtz free energy F dependent Gibbs free endsgi,T) is introduced to
characterize the states of magnetic system. Thegerd intermediate states can be

characterized by Landau free energywith below equation:

G (& H,T)=F - yofiH . (3.8)
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The G means that the spin relaxation time over whichviddal elementary
volumes reach thermal equilibrium with respect bhe tgiven local value of the
magnetization that is shorter than the time oveckthe system as a whole approaches
equilibrium through time changes of magnetization.

For ferromagnetic systems there are four importantributions to the Landau
free energy of a ferromagnetic body: the exchangergy, the magnetocrystalline
anisotropy energy, the magnetostatic energy andeleenan energy in an external field
[35]. Another contribution, magnetoelastic enengizich arises from magnetostriction,
is omitted for two reasons. When a ferromagnetagmetized it shrinks (or expands) in
the direction of the magnetization. As a resulte tholume and the saturation
magnetization changes are defined as the magneiimemt in saturation per unit
volume. However, in micromagnetics it is a basisuagption, that the saturation
magnetization remains constant. Secondly, a largeopdhe internal magnetostriction
in a ferromagnetic crystal can be expressed in same mathematical form as
magnetocrystalline anisotropy. If the anisotropystants are taken from experiment as
in our case, the effect of magnetostriction isadseincluded, and therefore we do not

have to consider it in an additional energy term.

3.3.1 The exchange interaction energy

Electrons in neighboring orbitals in certain crystanove according to each
other’s spin states. In order to avoid sharingsdwme orbital with the same spin (hence
having the same quantum numbers - not allowed fRauli’'s exclusion principle),
electronic spins in such crystals act in a cootdithdashion. They will be either aligned
parallel or antiparallel according to the detaifstlie interaction. To understand the

origin of the exchange interaction, consider thenttanian for a 2-electron system

> p; (zé ze’ e’
H:&+&—£ J—[ J+[ ):H1+H2+V12 (3.9)

2m 2m | 1, r, F =1

wherep; and p, are momentums of first and the second electrontoria number, e
elementary charge; andr; are position vectors of first and the second ebectand

here
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2 2 2 2
H, :&_[Ze j and H, :&_(Ze ] (3.10-11)
2m | 1, 2m {1,
2
V, =2 (3.12)

The one-electron Hamiltonians; ldnd H can be solved directly, on the other
hand, the interaction term ;¥ expresses the Coulomb repulsion between the two
electrons and cannot be simply written in termsthed one-electron wavefunctions
which diagonalize iHand H. The Coulomb energy would be found approximatsly b
perturbation theory using for our unperturbed stdabte eigenfunctions of ;Hand H

which are written ag, (;) andy, (f, ). We thus write the so-called Coulomb energy

e2
|f1—F2|

E, = [u; (mw;(r;)[ ]wl (FW, (7,)d°r,dr, (3.13)

Table 3.1Allowed combinations of the exchange symmetries

of the spatial and spin wave functions of &etats.

[//spatial ¢spin

symmetric anti-symmetric (S = 0)

anti-symmetric | symmetric (S = 1)

This Coulomb energy term is for 2-electron systenictvhare identical and
indistinguishable. We are also required to satib®y Pauli Exclusion Principle which
states that the 2-electron wave function must Hallyo antisymmetric under the
interchange of the 2 electrons as in Table 3.5 {thequivalent to saying that we cannot
put two electrons in exactly the same state). litivg the wave function for an
electronic system, we normally write the total wduaction as a product of a spatial
wave function with a spin function. In this situatj we have two options in making an

antisymmetric state:
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Table 3.2Spin and spatial wave functions for a two-electitom where the (1) and (2)
refer tor, andr, for electrons 1 and 2 and the subscript¢prrefers to the quantum

numbers labeling the one-electron eigen-stateketihperturbed Hamiltonians, ldnd
Ho.

S:S-+SZ MS ¢spin (/Ispatial
i i %[a(l),b’(Z)-ﬁ(l)a(Z)] %[wl O ,2) + ¢, @, O]
1 a@a (2
1 1w ow.@-vew. @
) o | Flrws@+soae) fz[wl()wz() v, @, )]
1 | BOBQ

The above Coulomb energy term can be found by cangpulhe expectation

value of the Coulomb repulsion Hamiltonian:

'[ stpatlal (/Ispatlald r d r (3 14)

The spin wave functions do not appear here becaesdamiltonian does not affect the
spin directly, and so the spin wave functions jotggrate out to unity.

By inserting spatial from Table 3.2, we find:

Eo =2 [l 0w: @ 4 @i Ol 0w, @ 24, @p. O,
(3.15)

where the + sign applies for singlet states and-thign for triplets. This breaks into

four terms:

j [v; oy; (2)(| le Oy, (2d*
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[ [vi@ui0 v, @, Mdrd’r,

¥, Ay, Od’rnd’r, (3.16)

s [[vi0wi@

W, Oy, (d°rd’r,

S ACAS

The first two terms are identical, as are the thind fourth. We therefore obtain:
E,=Cp,£Jp, (3.17)

where the + sign is for singlets and the - sigforstriplets. G is the direct Coulomb

energy given by:

2

Ci, = Ilﬂi (778 (2){ }lﬂl Dy, (2d°r,d°r, (3.18)

e
I71_|72

and J; is the exchange Coulomb energy given by

2

3. = [w; O, (2){ }wl @, Od°rd, (3.19)

e
n-r
and J> = 1. If Jip > 0, the triplet state (with a symmetric spin fuastand an
antisymmetric spatial function) lies lower. Here #pins are lined up and S = 1. For the

singlet state we have S = 0. We then can write:

|

(3.20)

0]
1
N1
+

so that

s2=(§,+5,)ds +8,)=s? +s2 + 25,5, (3.21)
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Consider the eigenvalues of 2-electron systam ¢,= 1/2), for Eq. 3.21.

2S5 [5, =s(s+1) -s/(s, +1) —s,(s, +1) =5s(s+1) —g—% (3.22)
For the triplet statesE1), Eq. 3.22 yields
2S5 [S,=2-(3/4) - @3/4=@1/2 (3.23)
and for the singlets=0), Eq. 3.22 yields
2S,[S,=0-(3/4) - (3/4)=(-3/2). (3.24)
Therefore we can write
1 _
> +2S [5, =1 (3.25)
for the spin symmetric (triplet) state, and
1 _
5 +2S (5, =-1 (3.26)

for the spin antisymmetric (singlet) state, whidbwas us to write the expectation value

for the Coulomb potential ¥ in a spin dependent form as

AE,=C,+J,=C,-@1/2)J,-2S 1S,J,, (3.27)

The term-2S, [S,J,, is called the Heisenberg Hamiltonian. This exchaagergy’s

hamiltonian generally written in the form of
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N — —
Hexch :_Z‘]ijs [Sj (328)

=
where J; is the exchange integral [36]. If replace the spperators by classical vectors

and rewrite the dot product, above equation chamge

Eeon=—JS* D _cosg, (3.29)

ijliz]

where ¢;is the angle between spin vectors. For small anghes cosine can be

developed by Taylor series expansion. By removirgdbnstant term and after some

basic calculations, it can written in final form
Eoen=JSD> & (3.30)
NN

If angle interpreted bym=M /Mg and the position vectors for small angles and

finally change the summation to integral over feregnetic body

Eexch=IA[(Dmx)2 +(0Om,)? +(sz)2]d3r, (3.31)
\%
where A is the exchange constant [37 ].

3.3.2 Magnetocrystalline (crystal) anisotropy energ

The most common type of anisotropy is the magngsballine anisotropy,
which is caused by the spin-orbit interaction of #lectrons. The electron orbits are
linked to the crystallographic structure, and begithinteraction with the spins they
make the latter prefer to align along well-defiregstallographic axes. Therefore, there
are directions in space, in which a magnetic maltesi easier to magnetize than in
others. In other words, the energy of moments etfigalong different directions in
magnetite and they are in directions that havehighest energy (ie.. [001, 010, 100]
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are hard directions, Fig. 3.4. The lowest energlaag the body diagonal ([111] is easy
direction). This crystal axis dependent energy adled as the magnetocrystalline
anisotropy energy, £ The Russian physicist Akulov showed in 1929 tBatan be
expressed in terms of a series expansion of directdsines of Mrelative to the crystal
axes. In a cubic crystal #make an angles with the crystallographic axes [10®,

001] and leta,,a, and a, be the cosines of these angles [1]. Then

E, =Ky(aia; +aza; +ajar) + K, (ajaza5) + .. (3.32)

where K and K are empirically determined magnetocrystalline atntggoy constants
and in above equation angle independent constamtg@ored. The magnetocrystalline
energy is usually small compared to the exchanggggn But the direction of the
magnetization is determined only by the anisotrdmgause the exchange interaction

just tries to align the magnetic moments paratielmatter in which direction.

1.0 " d) /
[Q01]
ash [111]
g
= on
0.5
1.0k I..il | |

-0.20 040 030 &.10 0.20
Applied Field (B/ugMs)
Figure 3.4 Numerical simulation of the magnetization of aewb magnetite as

the applied field is brought down from saturatiorzéro [38]

In hexagonal crystals the anisotropy energy isretion of only one parameter,
that is the angle between the magnetization and-trds. Experiments show, that it is

symmetric with respect to the base plane, and dgoogvers of co$ can be omitted in
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a power series expansion for the anisotropy endegsity En. The first two angle

dependent terms are thus

E,; =-K,cos 8+K,cos §=-K,m> +K,m} (3.33)

where z is parallel to the c-axis. It is known frexperiment, that terms of higher order,
and in most cases even ldre negligible. If K > 0, then the c-axis is an easy axis,
which means it is a direction of minimal energyr Kd < O it is a hard axis with an

easy plane perpendicular to it [37].

3.3.3 Magnetostatic (shape anisotropy) energy

The origin of domains still cannot be explainedthg two energy terms above.
Another contribution comes from the magnetostatit-energy, which originates from
the classical interactions between magnetic dipoléese dipoles constitute a field
inside the specimen and when the external fileapied to it, this internal field tends
to demagnetize. The demagnetizing filedy Bf a body is proportional to the

magnetization which creates it,

H, =N,M (3.3)

where N, is the demagnetizing factor and depends mainlyhenshape of the body ,

and can be calculated exactly only for ellipsoidr & arbitrary shaped ferromagnet the

magnetic fielddd andB are separated two components:

H=H_ +H (3.35)
ext d
B=B,, +B (3.36)
ext d

where external filed i, = B,/ 1/, and demagnetizing field isl ; and B, is written

ext
as a sum of flux density due to the magnetizingdfig,H, and y,M inside the
material, B, = 4, (H, +M ). The demagnetizing filed is arises from the diposs

mentioned above which are produced on the surfadeeomagnetic body wherever
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OIM #£0. Since OxH, = 0 and demagnetizing field can be written in terms of

gradient of scalar function the below requiremsrabtained [39].

[ByH d°r =0. (3.37)

If the external field is not present, then therggeE of the demagnetizing field is
simply the integral over the energy den%tyoHﬁ. This can be converted to integral

inside the volume V of the body, so that the en@ayy be expressed as

_H, 243 __1 _ 3 __,uo 3
Ems_7JHdd r= EJ(Bd H,M) H d°r = 7JM H,d°r

Emsz-“_;jm [H,d (3.38)
\%

where outside the body magnetization is equal to.ze

3.3.4 Zeeman energy

If there is an external field, then the energyhsd specimen may be written as

the difference between the energy density in thal titeld and in the external field.
Using the boundary O%/JOH 2and the energy density in the external fie]ék;uoH 2

ext*

This removes the infinite energy contribution froa uniform external field and

integrated over all space. Thus, the energy camritien as
Evo =20 [(H2 =H2)d%r (3.39)
ext — 2 ext .
\%

Using the fact thatixH_, = Owe have
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[H.Bd°r=0 (3.40)

Hence, by also using the fallowing equations:

H®=HZ2 +2H,H_, +HZ (3.41)
B,

H,H,=H, ,0—-M (3.42)
Ho

from the H , [H, the energy of a magnetic body in the externatifislobtained as:

Eext = _ﬂOI M D-Ie)(tdSr (343)
\%

All these abovementioned energy term can be addedia the Maxwell’'s equations’
linearity.

3.4 ENERGY MINIMIZATION

The Landau free energy. @& can be written the summation of exchange energy,
the magnetocrystalline anisotropy energy, the magtatic energy and the Zeeman

energy in an external field as:

GL = Eexc + Eani + Ems + Eext (344)
:J.{A[(Dmx)z +(Dmy)2 +(sz)2] - Klmf + Kng _%M |:Hd _lqu |:Hext}dsr
\%

From this equation Landau free energy can be ke if the magnetization of
the specimen is known. Brown [40] proposed a vianal method to minimize the
Landau free energy which is required for deternmamabf magnetization distribution in
specimen. He considered a small variation of tihection of the magnetization vector,
rather a small variation of the magnetization @sttion function by arbitrary functions.
At an energy minimum the coefficients of the linéaim for any choice of the variation

should vanish. Proper application of this variagioprinciple [36] finally leads to
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Brown's equations. They have to be solved togetligr Maxwell's equations for the
magnetostatic field and the proper boundary comnti And it is necessary to check, if
the solution is a minimum or a maximum, for whitke tvariation vanishes, too. Static
energy minimization using the finite element methsdvery efficient in calculating
equilibrium magnetization distributions and nudleat fields of poly-crystalline
permanent magnets [37]. The solutions of Brown’satign will be examined in the

next section.

3.5 PHONOMENOLOGICAL EQUATIONS FOR RELAXATION PROCE SS

The solution of Brown's equations gives the maga&tin distribution in
equilibrium [41]. However the important thing isrdhmic properties and time evolution

of the magnetization. Magnetic moment of circulgtelectron with charge, velocity

J has a magnetic moment= 1A in Eq.2.14 can written 431 :e_129r wherer is radius

of circular pathAis area of that closed path and period of it motion. When we write

magnetic moment in terms of resultant angular maoren

|,U| :% or (3.45)
=] (3.46)

Total magnetic moment M is sum of the magnetic manoé electrons

M= u (3.47)

Then, the rate of change of resultant magnetic nmoicen be written as

dM _ dJ

dJ 3.48
a7t (3.48)
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By using the moment equations, one can derivethti®atime derivative of total angular

momentum is equal to torque

dJ _ d(F xnw) dw) _ .

= —Fxm—L =FxmA=FxF =7 (3.49)
dt dt dt
and so
_d_1dM (3.50)
dt y dt

Here torque on a finite current loop in magnetstdican be taken as

=M xB,, (3.51)

as a result, if one neglects the damping [41],rtidion of the magnetization vector

M is described by the magnetic torque equation

1dM_ M X By or M= y(M xB) (3.52)

y dt

Magnetization in static field& = BZIZ ) since B =B.

Pk
MxBy, =M, M, M, =M Bi-M,Bj (3.53)
0 B
dm
x = |BM 3.54
a - BMy (3.54)
dm
Y = —)BM, (3.55)
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dMm

2=0 3.56
ot (3.56)

Consider relaxation effect, if system subjecteddemdchange in the magnitude and

direction ofB, then M, M, and M,in general relaxation to their new equilibrium

values of different rates [42]. So there must beremion terms in the relaxation

. . o1
equations. Assum#!, and M relax with the same rate eql—and M, with T
2 1

X = )BM , ——* 3.57
dt BM, T, (3:57)
M, _ BM My (3.58)
dt T, '
dM, _ M7 -M, (3.59)
dt T,

The oscillating field with only oscillate in thedirection and s8, =0and B, # 0

First equation is reorganized with relaxation terraad called Bloch

equation[43]:

(3.60)

s o, =1]if i=z
T if %z

whereM =(M, M, M,) T=(, T, T,)andd,=(©0 O 1). The Eqg. 3.60 can

be rewritten as

M'=M xB, ———2—° (3.61)

<k

Here



>

So
1aM, _m,B,-m,B,)-Mx
y dt N,
dM M
i ’ :(MZBX_MXBZ)__y
y dt W,
idMZ :(MXBy—MyBX)—MZ_MO
y dt 2
- —iK| - _ .
Here M :_X B and B=Be™, so that
ik X
M, =(x-ik)Be™

+iwt

M, =(x+ik)Be

The first derivative oM, and M with respect td is

38

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)
(3.69)
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M =iaM and M. =i (3.70-3.71)

The volume susceptibility’s imaginary part is pragpmnal with the absorption spectra

(dynamic) in FMR. So it is related with magnetipatin y direction.

dp _dx"
dB~ dB
(3.72)

Absoption power and imaginary part of susceptip#ite proportional to each other

M 1
n - y
X B,
(3.73)
3.5.1 Bloch-Bloembergen Equation
Bloembergen adapted Bloch’s Equation to FMR, asvid:
M’ = M x B, _M%wo (3.74)

with M=(M, M, M,), T=(T, T, T)andJ,=(0 0 1) and T and T are
referrred to spin-lattice (irf direction) and spin-spin (ix and y direction) relaxation

time respectively [44].

| + OM, ¢ 3.75
at T at (3.75)

>

M,|=(M,B,-M,B)i -(M,B,~M,B)j +(M B, -M Bk

(3.76)
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i-3 - M, M,-M,
M0 Mo _Myp My 5 M.~ Moy (3.77)
2 V. W, Vi

Use the Eqgs. 3.75-3.77 in the Eq. 3.74, then

1dM, :(MyBZ-MZBy)—& (3.78)
y dt 7P

dM M
1 ! :(MZBX_MXBZ)__y (379)
y dt P
1dM; _m.B,-m,B)-M"Mo (3.80)
y dt i,

Substitude Egs. 3.70 and 3.71 in Egs. 3.78 andtBetd

. M
M, = (M,B, ~M,B)) =2 (3.81)
2
M
i“M,=(M,B,-M B,)-— (3.82)
/4 1,

Use the relationg\, =i, B, = _&
W, y

z-axis B, =B and in y-directionB, = B,so B, = 0,

, M, =M and; the magnetic field traveling along

(-iB, +Ag)M, —BM, = -MB, (3.83)

BM, +(<iB, +A)M, =0 (3.84)

here takea=-iB, +A,, b=B and c=-MB_then Egs. 3.83. and 3.84 take the forms

of
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aM, -bM_ =c (3.85)

bM, +aM, =0 (3.86)

From the above relatioM, = —%M yand use it at Eq. 3.85, then

a’® : -bc
(F_b)My =C gives M, :m (3.87)
Substitute the terms of a, b and ¢ again
MBE, (3.88)

YN, +B*-B2-i2A,B,

Multiply both numerator and denominator with corgtegy of denominator

N +B?-BZ +i2A,B, then

MBB, (A% + B? -B2) +i2MBB,B A,

= (3.89)
YT AL +B*+B* + 202 B% - 2B?B2 - 22 B? + 4A%B?
_ MBB, (A% +B*-BZ)+i2MBB,B, A,
AL +B* + B! +2/%B° -2B°B? + 2/ B?
If we add and subtract th2B*B’ term to the denominator
2 L R2 _R2)4+i
MBB, (A2 + B? - B?) +i2MBB,B_A, (3.90)

YA+ B+ B! +2/2 B? +2B?B? + 202 B — 4B2B?

The denominator can be thoughtxds- y* = (x—y)(x+V , then
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_ MBB, (4% + B2 -B?) +i2MBB,B.A,

M (3.91)
o w +BZ+BZJ - 4B?B?
MBB, (A% +B? - B?) +i2MBB B A,
v +BZ+Bz—ZBB]E|]A +BZ+BZ+ZBBJ
MBBD(AZ +B?-B)+i2MBB B A,
_ (3.92)
2 +(B-B,) J[ba +(B+B)J
From the Eq. 3.73, take the imaginary partvbf
My 2MBBA,
" 3.93
X = [A2 +(B- B)J[l]A +(B+B)J (3.93)
_ @ _-—2n _ _ _ _
TakeB, =——= =-2m\; andM =M =M (B) = x,B (for case )
y Ty
_ 2 2
470, B A (3.94)

)("(B):[A2 +(B-B,)%| ]2 +(B+B,)?]

Here x"is the function of B and to determine the constant, x"(B)function is

normalized to unity.

T)("(B)dB=1 (3.95)

2 2 . Rp2_ +R2 _ “
— mB/Yo log(AB ZBB ZBBO Bo) _ mBXo arCtanEA Bo ) +

(¢} B =1

2y log(A% + B? +2BB. + B? E+B
mB/Yo Og( BZB (] 0)_mB/YoarCtan A O)

(o] —00
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Here log terms cancel each other and we know thﬁm(arctam):g and

X — 00

lim (arctarx) = —g

-t -mon |- -mon - D-mon - =1

, then write it in the EqQ.

ives —27°A. x. =1 and from here tak = -
g BXO eYO 27T2A 5
3.94
_an-— 1 B
X ®)= LT (3.96)
8% +(B-B,)?|0p% +(B+B,)? '
As a result
2 A B?
B (3.97)

X'(B)=" - -
7|5 +(B-B,)? [, + (B+B,)*]
This is solution oBloch-Bloembergen’squation focase (M =M, =M (B) = x,B)

For the perfect soft ferromagnet which are chareed by stepwise dependence

B
M, (B) =M, sgnB) with constantM , (case 3. sgn@B) :% :% is used to simplify

the relation at Eqg. 3.93 .

My 2)o[BB,As . (3.98)
X =8, T+ -8, +(B+B,)7] |
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Here x"is the function of B and to determine the constant, y"(B)function is

normalized to unit){)("(B)del.

- - +
“Xo arctan@) - arctan@)
2 Ay Ag
- +
% (arctan%) - arctan%) +4 arctan%)j
B B B

0
—00

=1 (3.99)

(<]
0

By usinglim(arctanx):g and Iir[l (arctanx):—g,

2X, arctan(ABi) =1 or Xo = _t . (3.100)
B 2arctan%)
B
Substitute this result in Eq. 3.98
" BAs [ (3.101)

X " arctang, /18,82 + (B-B,)2]dr2 +(B+B,)?]

This is the solution of Bloch-Bloembergen’s equation for case?2
(M =M, = x,s9nB)).

3.5.2 Modified Bloch equation

The Bloch-Bloembergen equation in the precedinghfie unsatisfactory in it, at
least two aspects [45, 46]. First, it predicts thatabsorption occurs in the absence of
the magnetizing field while such zero-filed absmptcan be observed experimentally.
Second, it leads to the absurd conclusion thatrdaonance, negative absorption of
circularly polarized microwaves should be obser{#&d 48]. In order to avoid these

inconsistencies, the Bloch-Bloembergen equatisometimes modified in such a way
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that longitudinal relaxation takes places along direction of the effective filed and

lateral relaxation occurs at right angles to it.

_ M-M_B, /B

2 3.102
= ( )

with M =M, M, M,), T=(T, T, T)andJd,=(0 0 1 and hand T are
referred to spin-lattice (irg direction) and spin-spin (ix and y direction) relaxation
time respectively. By using thil' and M x B« from above part, the below equality is

derived.

M-MB./B - (M. MB -
o eff — Mx _Mon I+ y _ oy J m k (3 103)
T, T,B T, T,B T.B

Use Egs. 3.75, 3.76 and 3.103 in the Eq. 3.108, the

ldMX =(M,B,-M,B )__X M,B, (3.104)
y dt 1, VT2

1 dM M M,B,

~—2Y=M,B,-M B,)-— + (3.105)
y dt T, JT,B

1M: (5, -8, - M TMeB: @ 100
y dt JT,B

Substitude Egs. 3.70 and 3.71 in Egs. 3.104 ar@b3lien

7 M MB

i—M,=(M B,-M B )-——= 3.107
Iy X ( y-—z z y) yT2 yT2 ( )
i—M, =(M,B, -M, )—— (3.108)
y ah W, Wz '
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_
i, ° oy

z-axis B, =B and in y-directionB, = B;so B, = 0,

Use the relationg\, =i, B, = , M, =M and; the magnetic field traveling along

(-iB, +Ag)M, —BM, = -MB,
(3.109)

BM, +(i8, +8,)M, = oot (3.110)

here takea=-iB,+A,;, b=B, c=-MB,andd =% then the Egs. 3.109 and

3.110 take the forms of

aM, -bM_ =c (3.111)
bM, +aM, =d (3.112)
_ c+bM ,
From the above relatioM, = Y and use it at Eq. 3.112.
a
bc  b*+a’ : ad-bc
iy M. =d es M, =—— 3.113
a a Y v Y a?+b? ( )

Substitute the terms of a, b, c and d again

(i, +AB)('V'°ABBBDJ+ MBB.

M, = 3.114
Y N +B% - B2 -i2A,B, (3.114)

Multiply both numerator and denominator with corgteg of denominator

N, +B*-B2 +i2A,B, then
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(MB® + M,A%)(A% +B® —BY) +2M,B A
A% +B*+ B! +2A%B* -2B*BZ + 2A%,B?

M':&
B

y

(3.115)

(M, B,A, ) (2% +B? - B2) + 2MB?B A, +2M B,A
AL +B*+B* + 22 B? - 2B?B2 + 2/, B?

|\/|" :&
B

y

If we add and subtract th2B°B’ term to the denominator and rearrange the numerator

. _B. B,A,(-M_B? + MB? + 2MB? + M _A%)
M, =—2 o : o : (3.116)
Y7 B A% +B*+B! +242B? + 2B?B? + 22 BZ - 4B2B?
The denominator can be thoughtxs- y? = (x-y)(x+y , then
) 2 _Rp2)4 2,2
v =B B,As|M, (42 -B )M (28 B?)] 3.117)
B [a+B2+B2[ -4B%B?
From the Eq. 3.73, the imaginary part of suscelitibs
M" 2 _R2)4 2, Rp2
" _ y - BOAB [MO(AB B ) I\ZI(ZB Bo)] (3118)
B, B [a+B?+B2[ -4B%B;
TakeM =M, =M (B) = x,B (for thecase 1)
B.A.x. (A% +B* +B?
X"(B) o] B/YO( B O) (3.119)

23+ (B-8,)d2 +(B+8,)7]

Here x"is the function of B and to determine the constant, x"(B)function is

normalized to unitj)("(B)del.
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-B +B, |
% B, X, arctan%) + % B, X, arctan%) =1
B B -0

X - 00

o 71
Here the arctan terms goes to constant at limits lias(arctan :E and

: n
lim (arctarx) = o SO

X > —00

gives 78, x, = 1and from here takg - 1 | then write it in the Eq. 3.119,
° B

(o]

1
B.Ag 7_Bj(AZB +B? +BY)

X"(B) = [AZB +(B—B:)2]deZB +(B+BO)2] (3.120)

As a result

1 AB(AZB"'BZ"'BS)

VB 7lod +(B-B,)%|da% +(B+B,)?]

(3.121)

This is solution omodified Bloch’sequation focase (M =M_ =M (B) = x,B)

For the perfect soft ferromagnet which are chareadd by stepwise dependence

B

B_BH
B

B

M, (B) =M, sgnB) with constantM , (case 3. sgn@) =— = is used to simplify

the relation at Eq. 3.118.

" _ M;’I - - MOBOAB(BZ_-I:Bg +AZB) o
X B, |[B|A% +(B-B,)?|0A +(B+B,)?

(3.122)
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3.5.3 Gilbert equation

Gilbert suggested that equation of motion witrekaxation rate proportional to
the total M’[49]:

M':Mxéeff"'

©

M XM’ (3.123)

<

with G>0. Then the linewidth parameter can be defiras A, =GB,and with
M =(M, M, M,), T =(T, T, T)) and T, and T, are referred to spin-lattice (in
Z direction) and spin-spin (ix and y direction) relaxation time respectively as before.

From above part$1’ and M x B Will be used in Eq. 3.123 from above parts and

A A

]k
MxM'=M, M, M,
M, M, B,

M XM= (MM, =M M) = (MM =M M) T+ (M, M), =M MR

(3.124)
will be used with Egs. 3.75, 3.76 in Eqg. 3.123nthe

1dM G
—*=MB,-MB)-———M M. -M M! 3.125
y dt ( y -~z z y) }/1M|( y z z y) ( )
1 dMy — G ] I
- _(MZBX _Msz)_—(MzMx _MxMz) (3126)
y dt VM|
1dM, G ' '
= =(MB,-MB)-—— (MM, -M M 3.127
y dt ( Xy y x) y1M|( X y y x) ( )

SubstitudeM, =iaM,, M| =iaM  andM, = 0 in Egs. 3.125 and 3.126 and then



50

s G .

i“M_=(M.B,-M B )-—(-icM M 3.128
oM, = (M8, -M.B,) = (M) (3129
i “M.=(M B, -M.B)——2 (iaM M) (3.129)
y y z X X z ”M| z X

Use the relation®\, =GB, B, = _& ,M, =M and; the magnetic field traveling along
4

z-axis B, =B and in y-directionB, = B,so B, = 0,
(-iB,)M, = (iB,G+B)M  =-MB, (3.130)
(-iB,G+B)M, +(-iB,))M =0 (3.131)

here takea=-iB,, b=iB,G+B=iA; + B, and c=-MB_then the Egns 3.130 and
3.131 take the forms of

aM, -bM, =c (3.132)

bM, +aM, =0 (3.133)

From the above relatioM, = —EM , and use it at Egn 3.132.
a

-a® -b? : -bc
TMy =C gives M, :m (3.134)
Substitute the terms of a, b, ¢ and d again
—_ _(IAB + B)(_MBD) (3135)

Y (HiB,)? +(ilg + B)?
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MBB, +iIMA_B
M, = 57 - BZD— Ny iBZETA (3.136)
o B B

Multiply both numerator and denominator with corgteg of denominator

B2 - B2 -A% —i2BA, then

- (B2 =B ~AL)(MBB,) + 2MBAL B, 3137
y (BZ_BZ_AZ )2 +4BzA2 )
s B B

v - MAGB,(B? - B} —A%) - 2MB*BA,

3.138
’ (B? - BZ - A%)* +4B%A; (3.138)

Use the latter one that gives the imaginary parthef susceptibility. If we add and

subtract the2B*B? term to the denominator and rearrange the numeddtionaginary

part:
. MA, B, (B” - BZ - A% - 2B?) (3.139)
s +B“+B“+2A2 BZ+ZB B2 +24%B? - 4B°B; '
Mn - I\/IABBD(_B2 - Bc? _AZB)
y (BZ_BZ_AZ )2_4BZA2
o] B B
The denominator can be thoughtxds- y* = (x—y)(x+V , then
-MA, B, (B?* +BZ + A%
o o) (3.141)

[A2 +B?+B2-2B BZJEI]A +B? +BZ + 2B7BZ]

~MA,B, (B? +B? + %)
[AZ +(B-B,) JEhA +(B+B,) J

The imaginary part of susceptibility is
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M/ - MA,(B® + B] +A%)

3 3.141
X = [A2+(B B)JEI]A +(B+B)J ( )
TakeM =M, =M (B) = x,B (for thecase 1)
_ 2 2 2
X,BAg(B” + B, +A%) (3.142)

X )_[AZ +(B- B)j[hA +(B+B)J

Here x"is the function of B and to determine the constant, x"(B) function is not

normalized to unity. Becaus.{a)("(B)dB =1 are divergent.

—00

 XDg(B®+B+AY)B
8% +(B-B,)?|0A% +(B+B,)?)

x'(B)O (3.143)

This is solution ofGilbert’s equation forcase (M =M _ =M (B) = x,B)

For the perfect soft ferromagnet which are chareadd by stepwise dependence

B

B_BH
B

is used to simplify
B

M, (B) =M, sgnB) with constantM , (case 3. sgn@) =

the imaginary part of the susceptibility as

MII _ 2 2 2
X" > M A (B +B +AB) (3144)
[A +(B- B)J[hA +(B+B)J
From j)("(B)dB:L M, :_—1. And so
2 71
2 2 2
xX'(B)= L Bo(B 18, + 1) (3.145)

7|82 +(B-B,) J[I]A +(B+B,)’|

this show thaGilbert’s case 2is same with the modified Bloch casel.
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3.5.4 Landau-Lifshitz equation

Landau and Lifshitz suggested a damping term veltaxation rate proportional

to the precessional component of M’'[50]:

A (3.146)

M

M':N xéeff-l_

~M x (M xB,,)

where A>0. If one renormalizes the gyromagnetic ratio ilb&t's equation as
Yy =y(l+G?), above equation and Gilbert's are become equitalEor small
damping, the Gilbert and Landau-Lifshitz approadhesome equivalent from physical
viewpoint. In a same way, by using’' and M xB_, with C_ =(M,B,-M,B,),

C,=(M,B,-M,B,) and C,=(M,B,-M B,), one reachs

M x By, =C,i +C,j+C,k. Then
]

i
Mx(MxBy)=M, M,
c, C

k
M,|=(M,C, -M,C))i -(M,C, -M,C,)j +(M,C, —M C,)k
C

X y z

(3.147)

After using Eqgs. 3.75 and 3.76, then Eq. 3.146 itearin its components as;

1 dM A

— xX=(M B, -M_B,)- M.C -MC 3.148
y dt ( y -~z z y) y1M|2( y>~z z y) ( )
1dMy _ A

= =(M,B,-M,B,)-—"-5(M,C,-M,C,) (3.149)

dt zZ—X X yIM
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LdM; _m,B,-M,B,)-—2

y dt Y yI|\/||2

M x(M,B, -M B)) (3.150)

In Eq. 3.149, usindM , = €ondition:

0=(M,B,-M,B)-—_Mx(M,B, -M,B,)

VM

it is obvious tha€, =M ,B, -M B, =0.

1dM, :(MyBZ—MZBy)+L2MZ(MZBX—MXBZ) (3.151)
y dt VM|

1dMy A

= =(M,B,-M,B,)-————M,(M,B,-M,B) (3.152)
y dt Z—X X—z J/1M|2 z y—z z-y

SubstitudeM, =iaM, andM| =iaM in the Egs. 3.151 and 3.152 then

(iﬁ%LZMZBZ]MX—BZMy:—MZBy— A mzs, (3.153)

iy yM|

MXBZ+(iﬁ)+ "ZMZBZJMy=BXMZ+ A mzB, (3.154)
i yM|

Because the magnetic field is traveling along z&j = B, filed perpendicular in y-

direction B, =B,and soB, = 0 Using the relations ant, =M, B, :—E, and the
y

linewidth parameter aA, :ﬁ( for case 1),

[o]

_ig, +2eXo gl —BM. =-MB (3.155)
o] M X y O
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BM +(—ch, +% levl L =Dy X,B, (3.156)

substitute the value d#i =M, = M (B) = x,B for case 1, simplifies the relations as
(-iB, +28)M, -BM, =-x,BB, (3.157)
BM, +(=iB, +A; )M, = Ay x,B, (3.158)

here takea=-iB, +A;,b=B, c=-x BB, andd =A; x,B; then the Egs. 3.157 and

3.158 take the forms of

aM, -bM_ =c (3.159)
bM, +aM =d (3.160)
) c+bM, _
From the above relatioM , = and use it at Eq. 3.160.
a

:ad—bc

(@’ +b*)M, =ad-bc gives M, pranres (3.161)
Substitute the terms of a, b, ¢ and d again

— (_iBo +AB)(AB/YOBD)+ B(/YOBBD)
M, = (—iBO +AB)2 B (3.162)
M = (AZB/YOBD + BZ/YOBD)_iBoABXoBD

Y B*-BZ +A% -i2B,A,
2 L R2)—j

M =)(OBD(AB B ) IBOABXOBD (3163)

Y B> -BZ+A% -i2B,A,



56

Multiply both numerator and denominator with corgtey of denominator

B? - B? + A} +i2B A, then complex part oM, is obtained as;

"= ZBOABXOBD (AZB + BZ)_ BOAB/YOBD(B2 B Bg +AZB)

M (3.164)
y (B7-B: +25,) +(2B,8,)
M" - BOABXOBD(AZB+BZ+BOZ)
" (B2 -B2)f +n% + 212 (B2 - B2 )+ 4B,
B.A.x, B, \A% +B* +B?
M7 = Lo (5 ) (3.165)
(B2-B2) +% +20%B2 + 2821,
If we add and subtract th2B°B’ term to the denominator
M" - BOABXOBD(AZB +BZ+BOZ)
(B2 +B2) +n% +20% (B% + B ) - 4B28B?
M " _ BOAB/YOBD (AZB + 82 + Bs) (3166)
" (B2 +82)+ 2] - 2878
The denominator can be thoughtxds- y* = (x—y)(x+V , then
Mn =L BOABXOBD(A__ZB+BZ+B§) -
¥ |(B? +BZ)+1% -2BB, |(B? + B2 )+ 4% +2BB, |
2 2 2
M = BOAB)(OBD(A..B +B°+ Bo) X (3.167)

" lB-B) a5 (BB ) 4 A}

From the Eqg. 3.73, the imaginary part M gives the imaginary part of susceptibility

n

X
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oMU B8+ B7 4 BY)

B, B8+t B+ B, +4%] (3.168)

Here x"is the function of B and to determine thye constant, y"(B)function is

normalized to unitj)("(B)del, and it givesy, =m%

(o]

MY _1 AM BB
B, ﬂl_(B - B, )2 +AZBJ|,(B +B, )2 +AZBJ

(3.169)

this is solution ofLandau-Lifshitz case land it is same as thmodified Bloch case 1
(Eg. 3.121) andbilbert’s case AEq. 3.146).

T N 1B
In Landau-Lifshitz case Z2linewidth parameterA, =——, and others are

(o]

B,=B, B,=B,, B,=0, M,=Man andB, = ~% substituted in Egs. 3.153 and

y
3.154;
A,
-iB, + =% B M, ~BM, =-MB; (3.170)
A A
BMX+(—|BO+M—B BJMY == MB (3.171)

. A A
here tak&ﬂ:(—lB0 +M—B BJ, b=B, c=-MB, andd =B—BMBD then the Egs. 3.170

(o] (0]

and 3.171 take the forms of

aM, -bM, =c (3.172)
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bM, +aM, =d (3.173)
) c+bM ,
From the above relatioM , = Y and use it at Eq. 3.173
a
(@® +b*)M,=ad-bc gives M, :% (3.174)
a“+b

Substitute the terms of a, b, ¢ and d again

A A
-iB,+—2B | —®MB, |+MBB;

_ Bo Bo

, = PR (3.175)
(—iBO+BBJ +B?
BO
A 2

{MBBD+(BB] MBBD}—iABMBD

2
B? - B? +(§B] B? -i2A,B

(o]

Multiply both numerator and denominator with corgtey of denominator

2
A . : .
B* -B? +[B—BJ B? +i2A ;B then complex part of , is obtained as;

(0]

2 2
A A
—ABMBD!BZ—B§+[BJ 82]+2ABB[MBBD+(BJ MBBD}
BO BO

2 2
(B2-B2) +2(B2 - Bj{ABB Bj +(§B BJ +(2a,B)’

(o]

"o_
M, =

2
A
ABBZMBD+ABBZMBD(BB] +0,MB_B?
M" = ° (3.177)

2 4
(B2-82) +2E32ﬁ3B Bj +2(,B)? +@B BJ

(o] (o]
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If we add and subtract th2B°B’ term to the denominator

2
ABMBD[BZ +B2 + BZ(ABBJ

y

4
(B2 +B2) +2(B + Bj{ABB B}L(ABB B| -4B°B?

(0] (o]

[ ! ]ABMBD[BfBZ +B? +02B?]

B?

M =20 (3.178)

2

2
[BZ +B? +(ABB BJ ] -4B°B?

The denominator can be thoughtxs- y? = (x-y)(x+y , then

(;}ABMBD (B2 +2 )B2 +B?]

2 2
[BZ +B? +[ABB B] —2830][82 +B? +(gB BJ +ZBBO}

[BIZJABMBD (B2 +22 )82 + B¢
M" = °

el

(BlzJABMBD (B2 +2 )B2 +B?]

(o]

[e-eraessloara as



60

B2A,MB,|(B2 +42% )BZ+B4]

M! = 3.179
' ~|(B-8,)?B2 +22B?|(B+B, ) B + 2 B?] G479
The imaginary part oM  gives the imaginary part of susceptibiligy/ ;
|\/| " 2 2 2 4
- B2a,M[(BZ +42 )8 +B] (3.180)
BD “[B-B.)7B2 +a2B?(B+ B, B2 + 22, B7]
TakeM =M =M (B) = x, sgn@B )for case 2
BA M, |(B2 + 2 )B2 + B (3.181)

X,(B):[(B B)BZ+A282][B+B ’B? + 12.7]

Here x"is the function of B and to determine tlM_ constant, x"(B) function is

normalized to unit){)(”(B)del and it gives

% arctarE (B3 + 85 Jp 482 j + % arcta,E (B2 +42 )5- B2 Hm =1

BoA, BIA,

using the arctan at + or — infinity dsn(arctarx) =7 and lim (arctanx) :—ﬁ, we
X - 00 2 X - =00 2

obtain

R R ]

and soM = lor M, :i. Substitute it in Eq. 3.181.

N|

B2A,|(BZ +242 )B? + B!
[(B B,)’BZ +A%B2|(B+B, ) B + A% B7]

X"(B) = (3.182)
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As a result Eqg. 3.182 is the form ofllandau-Lifshitz case 2

3.5.5 Callen equation

The Callen dynamical equation with damping has bebmined using a
guantum mechanical approach by quantizing thewpires into magnons [51]:

A
M|

M'= M xB +——M x(M xB_)-aM (3.183)
Note that the first damping term in the equatiomcioles with the Landau-Lifshitz one,
Eq. 3.146, while the second one has the same fertheaBloch-Bloembergen one, Eq.

3.74., in the case of the lateral relaxation, & @utsa =1/T, .

and J, :ﬂ. By using the relations from past

A
Xo i

sectionM xB,,,C, =(M,B, ~M,B,),C, =(M,B, -M,B,), C, =(M,B, -M B,),

In case 1, noting thaf\; =

M x By, =C, +C,j+C,k andM' , then Eq. 3.183 becomes:

1dM, =(M,B,-M,B)-—2_M,C,-M,C,)-IM, (3.184)
y dt | y

dM
13 —m,B,-M,B)-—2_M.C,-M,C)-Tm, (3.185)
y dt yM| y
1dM, _ y

(MxBy -M yBx) -

2

a
Mx(M,B,-M B)-—M 3.186
_— (M.B,~M,B)-TM,  (3.186)

As abovementioned conditioM, = dlves(M,B, -M B,)=0 or C, = 0.So

1dm, _
y dt

A a

: MZ(MZBX—MXBZ)—;MX (3.187)

(M,B, -M.,B,)+
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1 dM

y dt

A a
Y :(MZBX‘MXBZ)‘—ZMZ(MyBZ—Msz)‘yMy (3.188)

linewidth parameterA, :ﬁ and others ared, :ﬁ B,=B, B,=B,, B, =0,
Xo
M, =M an andB, = ~% substituted in Egs. 3.187 and 3.188;
4
(-iB, +J +Ag)M, —BM, =—x, BB, (3.189)
BM, +(=iB, +J; + A5 )M, = x,A,B, (3.190)

here take=(-iB, +J; +A;), b=B, c=-x,BB, and d=x,A,B, then the Egs
3.189 and 3.190 take the forms of

aM, -bM, =c (3.191)
bM, +aM =d (3.192)
) c+bM ,
From the above relatioM , = Y and use it at Eq. 3.192.
a

(@ +b)M,=ad-bc  gives M, =202 (3.193)
a“+b
Substitute the terms of a, b, ¢ and d again
M :/YOABBD(_iBO+JB+AB)+XOBZBD (3.194)
’ (_iBo+JB+AB)2+BZ
M = (58 +AB)/Y0ABBD +XOBZBD _iXoBoABBD (3.195)

’ BZ_BOZ-'-(JB+AB)2_iBo(5B+AB)
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Multiply both numerator and denominator with corgtey of denominator

B® -BZ +(J, +4;)° +iB,(J; +4;) then complex part o, is obtained as;

M " _ /\/oABBDBol,Z(JB +AB)2 + Bg _(58 +AB)2J+/\/OBDBOBZ[258 +AB]
© (BB 280, + A, ) +(0, +0,)" +2B2(5, +4,)

M = XOABBDBo[Zéé +4JBAB +2AZB +B§ _5§ _25BAB _AZB]+/YOBDBOBZ[258 +AB]
' (B2-B2) +2B%(5, +4,)* +(3, +4,)" +2B%(5, +A, )

M " _ /YOABBDBO[532 +258AB +AZB +B<)2]+XOBDBOBZ[258 +AB]

(3.196)
(B2-B2) +2B2(3, +A, ) +(3, +A,)" +2B%(5, +A, )’
If we add and subtract th2B°B’ term to the denominator
Mn — XOBDBO{ABl_(JB +AB)2+B§J+BZ[258 +AB]}
(B2 +B2) +2B2(5, +A,)° +(3, +A,)" +2B2(3, +A,)’ -4B?B;
M = XOBDBO{AB[(JB+AB)2+B§]+BZ[ZJB +AB]}
(B2 +8B2) +2(B2 +B2)3, +A, ) +(5, +0,)* -4B?B?
M" = XOBDBO{ABl_(JB +AB)2 + BOZJ+ 82[253 +AB]} (3_197)
’ (B2 +B2)+ (3, +, )] -4BB?
The denominator can be thoughtxs- y? = (x-y)(x+y , then
Mn - r XOBDBO{ABl(JB +AB)_2_+B§J+82[258 +AB]} -
" |(B7 +B2)+(5, +4,)? -2B7B2|(B? + B )+(J, +14,)? +2B°B?]
M" = _XOBDBO{ABl.(éB +AB)_2_+ B§J+ 82[253 +AB]}_ (3_198)
’ |,(B_Bo)2 +(JB +AB)2J|_(B+ Bo)2 +(5B +AB)2J
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Again take the imaginary part & , to find the imaginary part of susceptibility” ;

"_ M;/I —. XOBO{AB[(JB +AB)2:'_' Bj]"’ 82[253 +AB]} .
B, l(B_ Bo)2 +(55 +AB)2J|_(B+ Bo)2 +(58 +AB)2J

X (3.199)

Here x"is the function of B and to determine thye constant, y"(B)function is

normalized to unitj)("(B)dB=1, and it givesy, :nl%

(o]

Bo|(0, +o ) +B2|+ B7(25, +8,)
B- Bo)2 + (JB +AB)2J|:O(B+ Bo)2 + (53 +AB)2J J (3200)

X'(B) = [(

this is solution ofCallen’s equationcase 1.

In case 2 the linewidth parameter is taken as, =

AB a .
°— and o, = is same as
(o]

M i

before one. By using the relations in last secagain and the condition8, =B,

B,=B,, B,=0, M,=MandB, = ~% substituted in Egs. 3.187 and 3.188, then Eq.

14
3.183 becomes:
. Ay
—-iB, + Jg +B—B M, -BM, =-MB, (3.201)
. Ay A
BMX+ _IBO+JB +B_B My—B—MBD (3202)

here takelz(—iB0 + 0y +%BJ, b=B, c=-MB, andd :%MBD then the Egs.

3.201 and 3.202 take the forms of

(o]

aM, -bM, =c and bM, +aM, =d (3.203-3.204)
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) c+bM, _
From the above relatioM , = and use it at Eq. 3.204
a

:ad—bc

(@*+b)M, =ad-bc  gives M, =——3

(3.205)

Substitute the terms of a, b, c and d again

ABBMBD(—iBO + 0, +ABB Bj + MBB,

M, =—2 ° (3.206)
[—iB0 + g +gBBJ + B?

(o]

2
MBB, + MBBD[ABBJ + MBDd'B[ABBJ ~iA,MB,

(0] (o]

2
B? - B? +[JB +ABBB] —izs{dB +EBBJ

(o] (o]

y

[BIZJMBD[BBS +D4(3,B, +1,B)-in, B2

M, = 5 (3.207)
2 2 AB H AB
B°-B;+|0g+—B| —-i2B,| 0, +—B
B B

(o]

(o]

Multiply both numerator and denominator with corgtey of denominator

2
B? - B? +[JB +% B] + iZBO[JB +% Bj then complex part oM , is obtained as;

(o] (o]

(o]

2 4 2
(B2-82) +2(B? - Bf{o“a +ABBB] +(JB +ABBB] +4BO2[JB + EB BJ

() o

2
[;)MBD{B{JB + ABB BJ[BBf +0,(6,8B, +ABB)]—ABB§[B2 -B? +[5,3 + ABB Bj ]}

(o]



66

( ! JMBD{Z(BOJB +0,B)[BB2 + A, (5,B, +A,B)|- 2, [B2(B? - B2)+ (B,, +2,B)’]

BZ
2 2 4
A A A
(B2 -B2) +2132(5B +BBB] +2|3§{5B +BBBJ +[JB +BBBJ

y

(o]
(o] (o] (o]

If we add and subtract th2B*B’ term to the denominator

(;JMBD{(BOa—B +ABB)2(2AB _AB)+ZBB§58 +ZBZB§AB _BZBEAB +ABB;1}

; (3.208)
y ~ A 2 A 4
(B2 + Bj)2 +2(B2 +B§{5B +—8 Bj +[5B +—_B BJ -4B%B?
BD BD
1 2 2 2 2
(BZJMBD[AB(BOJB +0,B) +B2(2BB,3, + B?A, + 4,82
n - (o] - >
[(B2 + B§)+(JB +ABBBJ } - 4B2B?
1 2 52 2 2 3 2 2 2
(BZJMBD[AB(BOJB +2B,0,0,B + N B?)+ 2BB5, + B2A, (+ B2 + BY)|
My === e
[(B2 + B§)+(JB +2E‘BJ } - 4B?B?
1 2 52 2 2 2 3 2 2 2
(JMBD[AB(BOJB +02,B2)+ 2B, 5,08 B + 2BBI5, + BIA,(+ B? + B2
e LB (3.209)

y 2

2
{(Es2 + B§)+(JB +ABBBJ } — 4B2B2

(o]

The denominator can be thoughtxds- y? = (x—y)(x+V , then

o ooz ) 20 el + ) i o+ )

2 2
{(B2 + B§)+[5B +ABB BJ —ZBBO}[(B2 + BOZ)+[JB +ABBBJ + ZBBO}

y

o] (o]
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(BlszBD[ABBOZJ; +I%,B? +2B,5,B(0% + BZ)+ B?BZA, + BIA|

(o]

[(B— B, )’ +(JB + gj Bﬂ[(m B, )’ +(5B + é: Bﬂ

JMB |n,B2(62 + B2)+ 8, B%(a% + B2)+2B,5,B(a2 + B2

y =

|

OUZJ\H

o,}\p

J[(B B,)’B2 +(d,B, +A,B) ][B+B B2 + (6BBO+ABB)2]

e BB [, 8200+ B2) (0,5 + 28,0, 0)5 + )
" |(B-B,) B2 +(3,B, +A.B) [(B+B,) BZ +(5,B, + A, B’]

(3.210)

Again take the imaginary part & , to find the imaginary part of susceptibility” ;

oM BjM[A 82(52+B )+ (a (ZBBZ+ZB J B)(A2 w87 (3.211)
B, |(B-B,)?BZ+(4B, +4,B)*|(B+B,)*B +(5,B, +A,B)

Here M =M_sgnB)x"is the function of B and to determine théd_  constant,

X"(B) function is normalized to unitj/)("(B)del, and it givesM, =N

BZ[A BZ(5Z+BZ)+(A3 +2B,9, B)(A2 +B )] . (3.212)

Y@=
N |[(B-B,)BZ +(3,B, +2,B)|(B+B,)’ B2 +(5,B, +A,B)|

2 2_
where N =77- arctar{B—AJB}arctarE"—M]. This is solution of
B,(Ag — ) B,(Ag + )

Callen’s equation forcase 2.
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3.6 PROPERTIES OF MAGNETITE

3.6.1 Crystal structure of magnetite

Magnetite (FgO4) has an inverse spinel crystal structure with faeatered
cubic unit cell where oxygen ions are placed redyla cubic close packed positions
along the [111] axis [21]. Magnetite’s oxygen iamag contains holes partially filled
with ferric and ferrous ions [21, 52]. The unitlcisl comprised of 56 atoms: 32°0
anions, 16 F& cations and 8 Fé cations [16]. Magnetite’s chemical formula is:Bg
however more appropriately it is defined as Fe@EeThe inverse spinel structure is
arranged such that half of thesF@ns are tetrahedrally coordinated and the remgini
half of F€* and all of the F& are octahedrally coordinated (Figure 3.5).

A gites gites

fetrahedral actahedral
Fe304 (magnetite) Fed+ Fed*, Fe2+

Figure 3.5 a) A magnetite octahedroib) Internal crystal structure. Big
red dots are the oxygen anions’§OThe blue dots are iron cations in
octahedral coordination and the yellow dots are tetrahedral
coordination. F& sits on the A sites and ¥eand F&" sit on the B
sites[55].

3.6.2 Magnetic properties of magnetite

Magnetite’s electronic configuration consists ofpaimed 3d electrons, which

impart net magnetic moments. The spins of thahetrally (A) coordinated Beand



69

the spins of the octahedrally (B) coordinated'fad F&" are antiparallel and unequal

in magnitude (Figure 3.6.a) [18].

Fe
Tetrahedral i
sites A 8 ==
| | |
| |
Octahedral I‘ I|
sites B Y T
o 0
S=7 FE:!- Fe”'

(a)

(b)

Figure 3.6. (a)Spin arrangements in magnetite, Fe@dzeand(b) the double

exchange interaction with inter-ion electron tran$f9].

Table 3.3 Summarized properties of magnetite

Name

Magnetite

Formula

FQ>,O4

Magnetic response

Ferrimagnetic

Saturation Magnetization (Ms)(emu/cnt)

480-500 at 298 K

Curie Temperature (K) 858
Crystal system Cubic
Cell dimensions (nm) a=0.839
Density (g/cm3) 5.26
Color black

Magnetic susceptibility (emu/g)

90 [56] — 98 [20]

Estimated maximum single-domain size for
spherical particles [17, 28, 57] Ds (nm)

128

Below the Curie temperature (850K) these intergatiag sublattices aligned

antiparallel with unequal moments give rise to thserved ferrimagnetism [21]. The

spin arrangements of the two interpenetrating stités of the octahedrally coordinated
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Fe* and F& are coupled ferromagnetically via a double-excleamgechanism
associated with inter-ion electron transfer (Fig@r6.b) [19, 53]. The easy axis of
magnetite is the cube edge. The crystalline magreetisotropy constant (K) for
magnetite is 1.4 x fGerg/cni and the superparamagnetic maximum critical parite
estimated from KV ~25kT is ~25 nm, which is lowkan the single domain critical size

in Table 3.3 [54].



CHAPTER 4

EXPERIMENTAL

4.1 SYNTHESIS AND CHARACTERIZATION

4.1.1 Chemicals and materials

All chemicals were of reagent grade and used withather purification. Ferric
chloride hexahydrate (FefBH,O > 99%), ferrous chloride tetrahydrate (F&4H,0 >
99%), and starch (25-30KDa, d€100s), > 99%) were obtained from Aldrich.
Hydrogen peroxide (D, > 99%) and hydrochloric acid (HCI > 37%) were obéal
from KEBO. Milli-Q water was re-deionized (specifeconductance < 0.1 s/cm) and

deoxygenated by bubbling;)das for 1 hr prior to use.

4.1.2 Preparation of magnetic colloid

The chemical reaction of E®, precipitation is given by,

Fé' +2 F€" + 8 OH - Fe04+ 4 H0.
according to the results of thermodynamic modelofgthis system, a complete
precipitation of FgO, is expected in the pH range pH=7.5-14, while nzamihg a

molar ratio of F&" Fe" = 1:2 under a non-oxidizing environment. Under it

conditions, FgO, may be oxidized as given by the following reaci¢s8 - 60].

FgOs+ 0.25 Q + 4.5 HO — 3Fe(OH)

FesO,+ 0.25Q + - 1.5Fe0;
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Aqueous dispersion of magnetic nanoparticles wapgred by the addition of
an aqueous mixture of ferric and ferrous salts &irang alkaline solution (NaOH or
NH,OH) at room temperature. In the present study,latiea of NaOH was used as
alkali source instead of ammonia. Oxygen is elir@darom the solution by usingzN
gas flow through the reaction medium during syrnithegeration in a closed system.
SPION with average particles size of 6 nm were g@meg without any additional
stabilizer according to following procedure. Typiga5 mL of iron solution with
containing 0.1 M F& and 0.2 M F& is added drop-wise into 50 mL of alkali solution
(NaOH) under vigorous mechanical stirring (2000 Tirfor 30 min at room
temperature. Color of the suspension was turndaack almost immediately. SPION
with particle size of 12 nm was prepared by indreathe reaction temperature. All the
procedures and experimental conditions were sanpgcgedure for the synthesis of 6
nm SPION except alkaline solution was pre-heate80t8C before the co-precipitation

reaction.

The precipitated powders are collected and remdvedh the solution by
external magnetic field. The supernatant solutias vemoved from the precipitate after
decantation. Deoxygenated Milli-Q water was addedwash the powder and the
solution was decanted after centrifugation at 35@0". After washing the powder four
times, 1 x 10 M HCI solution was added to neutralize the aniafiarge on the surface
of particles. The positively charged colloidal paes were then separated by

centrifugation and peptized by adding deoxygenkéid Q water [58-60].

4.1.3 Structural Characterization

The structural properties of #& powders obtained were analyzed by X-ray
powder diffraction (XRD) with a Philips PW 1830 fl#ctometer using the
monochromatized X-ray beam from the nickel-filter€d K, radiation. The average
size of the crystalsD; nm ) was estimated using Scherer’'s formula (Tdblg [58 -
60].
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Table 4.1Samples synthesized under different conditionsthed average
particle sizesl); calculated from XRD data.

NaOH | Particle size
Sample pH (M) (nm)
S1 14 0.9 1.1
S2 14 1.0 1.7
S3 14 1.5 3.0
S4 12.5 1.5 5.5
S5 11.54 15 6.0
S6 11.2 1.5 11.0

4.2 SPR MEASUREMENT

The polycrystalline powders of superparamagneton ioxide nanoparticles
(SPION) placed in paraffin just above its meltimgnperature have been diluted and
oriented in the presence of a strong magnetic fi@d kG). The samples were
subsequently cooled down below the melting tempesabf paraffin in this field to
have magnetic orientation. A sample with dimensibsx2x2.5 mm was cut from this
ingot for SPR measurements. A conventional X-b&nd9q.5 GHz) Bruker EMX model
spectrometer employing an ac magnetic field (10@)kiHodulation technique was used

to record the first derivative absorption signag(f¥e 4.1).

spectrum

y-ais (intensity) _/\/_

x-adis (B

bridge |

cavity
and
sample

Figure 4.1Block diagram of an ESR spectrometer
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Operating conditions were 0.20 mW microwave powH), G modulation
amplitude, center field 3500 G, sweep width 700GiGe constant 20.48 s and sweep
time 20.97 s with multiple accumulations to enhatice signal-to-noise ratio. An
Oxford continuous helium gas flow cryostat has besed, allowing the X-band
microwave cavity to remain at ambient temperaturengg ESR measurements at low
temperatures. The temperature was stabilized bgoraventional Lakeshore 340
temperature controller within an accuracy of 1 degbetween 10 and 300 K. A
goniometer was used to rotate the sample with otspehe external magnetic field in
order to observe angular variations of the FMR speéor the frequency dependence

measurements hand made K- and Q-band spectronseigr u



CHAPTER 5

THEORETICAL ANALYSIS

5.1 MAGNETIC SUSCEPTIBILITY

A correlation between the resonance magnetic feld the peak to peak line
width is often observed in low temperature supenpeagnetic resonance (SPR) studies
of fine magnetic nanoparticles. In order to accdontthis correlation, we considered
the resonance line shapes resulting from Landashit# equation for the analysis of the

data [61, 62].

M x (M xB,,) (3.146)

Especially in numerical computer simulation of S§ectra and in theoretical
modeling, at different low temperature regions, iégonance line broadening should be
treated separately from the distribution of resaeamagnetic field. The resonance field
and line width of the SPR spectra were analyzethisistudy. At low temperature the

resonance of the individual magnetic particles ceeuth a considerable line width.
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The dynamic susceptibility is given by= x, —ix, where x, and X, are the real

and imaginary parts of the susceptibility, respetyi. The microwave absorption is

dP  dr,

proportional to the imaginary part of the dynamisceptibility. B e And, therefore

the following individual line shape is obtained tase 2 [61, 62].
1 BZA|(B2 + 22 )B? + B

=— 1 51
A n BS(B_BO)Z+AZBBZJ[|,]B§(B+BO)2+AZBBZJ &4

Here we definedB,=-«/y as the resonance magnetic field and the line width

Ay :/]BO/M|M0| '

5.2 RESONANCE FIELD

The analytical expression for the apparent resadield shift has been
obtained. Computer simulations using the derivativegnetic susceptibility provide
good fits of the resonance spectra at differenfptmatures for the same magnetic and
morphological parameters of the particles.

In contrast to Lorentzian (or Gaussian), the lihape of Eq. 3.182 is characterized by
an apparent resonance field (that at the maximumesnance absorption) depending

on the line width given by [61, 62].

1

— Bg 2, A2 ;_ 2 _ A2 2
B = g 2B e 52)
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5.3 SPR LINE WIDTH

In a recent investigation on the SPR of nanopaxict different temperatures
[61-63], it has been shown that the individual Mmelth for the SPR of nanopatrticles at

different temperatures can be well fitted by

A, =0 L(x) (5.3)

In this equation/; is a saturation line width at a temperature T, I5>Jothx-1/x is the

Langevin function with x = MVBet/kgT, V being the particle volume.

Table 5.1Fit parameters by using Hr equation derived fromdaau-Lifshitz

line shape function.

s1 S2 S3 sS4 S5 S6
Size (nm) 1.1 2.0 3.0 5.5 6.0 11.0
Vs (nm3) 800 | 3500 | 3800| 8600 1250p 10500
K (kJm-3) 25 13 10 8 7.5 5.5
Ms (KAm-1) | 495 500 505 520 525 540
V(nm3) 1.331 8 27 | 166.3§ 216| 1331
Ho (T) 0.338 | 0.338| 0.338] 0.33¢ 0.338 0.338
AHo (T) 3.200 | 0.580| 0.350| 0250 0.180 0.215

Besides, the thermal fluctuation-induced modulatdrthe magnetocrystalline
anisotropy energy has been taken into account soritbe the rapid increase of the
individual line width by decreasing the temperatufidis mechanism leads to a
temperature dependencelsf. The resulting volume and temperature dependefice o

the individual line width is then [61-63],
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Dy =D, L(X)G(Y) (5.4)

where A is the saturation line width at 0 K and G(y) is theperparamagnetic

averaging factor given asg(y)= L(ly) _1yc+ y23L?y) _1;)35 With y=KVJkT where K

is the first order magnetocrystalline anisotropystant and Vis the reference volume
(presumably the greatest volume in the statisecalemble). The magnetic parameters
of magnetite (F#€,) nanoparticles have been used in the simulatidhg. best-fit
values of the adjustable simulation parameters baea determined as shown in Table
5.1.

Note that one and the same set of these paranmetarsies the best fits to the

spectra recorded in the whole temperature rangf@ostudy.



CHAPTER 6

RESULTS AND DISCUSSION

6.1 SAMPLE 1: FgO4 (D =1.1nm)

In this section, the SPR spectra of smallegOF&ith diameter of 1.1 nm were
recorded as a function of temperature. The devieaif microwave power absorbed by
the sample with respect to the static magnetid fit?/dH is plotted as a function of

static field for some selected temperatures as shiowigure 6.1.

0 2000 4000 6000
Magnetic Field (Gauss)

Figure 6.1 SPR spectra of E®, with a diameter of 1.1 nm at some selected
temperatures; markers and solid lines show therarpatal and theoretical

fit values, respectively.
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It contains that markers and solid lines show tieeeamental and theoretical fit values,

respectively. The theoretical fit was done accaydmthe Eqn 5.1.

It is observed that the SPR signals are compld&thperature dependant. The
absorption power and the resonance field decreaghsthe decrease in temperature
while the line width increases. The values of ithe width and the resonance field are
590 G and 3355 G at room temperature, respectiVélg.absorption power is too weak
below 77 K compared with absorptions at higher terapres. All the changes are

plotted as a function of temperature and explainatétail in the following sections

6.1.1 Line width

Figure 6.2 shows the variation of the line widthues of the SPR spectra and
the theoretical fits according to the Eqn 5.4. Thest fit values of the adjustable
simulation parameters have been determined asvilIMs = 495 kArt, AHo = 3.200
T and Vs =800 nm (Table 5.1). As seen from theréguhe line width increases

smoothly as the temperature decreases down to 92 K.

4000
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50 100 150 200 250 300
Temperature (K)

Figure 6.2 Line width vs. temperature for &, with diameter of D = 1.1
nm; rectangular markers and circle markers showemx@ntal and

theoretical fit values, respectively.
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Then the increase rate rises up below this temyrerathen the temperature decreased
further to 60 K. The maximum in line width is reachat this temperature. Between 50
and 60 K line width decreases again. Below 50 Ksigeal is too weak and shifted to
the low fields and no measurements can be domekitown that in randomly oriented
dispersed ferromagnet the absorption line widtmduout to be a non-monotonic
function of temperature. At low temperatures tine Width is large due to the scatter in
direction of anisotropic field of particles (inhogeneous broadening). As the
temperature increases the tendency to make magnetitent isotropic causes the line

width to decrease.

6.1.2. Resonance Field

Figure 6.3 shows the variation of the resonandd fialues (measured from the
magnetic field at the centre of the SPR resonanpee with the temperature and their
theoretical simulations according to the Eqn. 512 figure implies that the resonance
field decreases smoothly when the temperature dsesedown to 92 K. Below this
temperature the resonance field decreases shamplyno measurement can be done
below 62 K, since the signal intensity goes to zé&blow temperature, 50 K, the
resonance field of the SPR spectra is 1915 gauss ivhas a value of 3355 G at room

temperature.

For the resonance field there arises two distiegions (1) for T > 92 K and (ii)
T < 92 K. The behavior for T > 92 K can be expldiras follows. It is known that the
dependence of uniaxial anisotropy energy on tenwperais similar to that of
magnetostatic (demagnetization) energy [64]. Thes resonance field will increase

with the temperature.

The decrease of resonance field for T < 92 K isgaing. This behavior can be
explained on the line similar to that suggestedKbgama et al. [65]Below 92 K the
surface spin freezes and they freeze in the dinreaif dc magnetic field. This yields an
exchange coupling between the surface and cores.spihis gives rise to a
‘unidirectional’ anisotropy with easy axis in th&ettion of the field [64, 66]. As a

result there is sudden decrease in the resonaidebilow 92 K.
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Figure 6.3 Resonance field vs. temperature fog@£with diameter of D =
1.1 nm; rectangular markers and circle markers sleaperimental and

theoretical fit values, respectively.

6.1.3. Intensity
Figure 6.4 represents the temperature variationSBR signal intensity

(corresponding to dc susceptibility derived fromgmetization) obtained from second
integral of the SPR signals. According to the feguthe signal intensity is decreased
slowly with increasing temperature above 120 K.oBethis temperature; it decreases
slowly between 92 and 120 K. From this figure, @a@ see that the magnetization
curve of this sample shows a maximum at around K20he intensity of the SPR

signals starts to decrease sharply between 58 2Kd Below 58 K, it decreases slowly
again. It seems almost constant between 85 andK12le changes in the line width,

resonance field and the signal intensity graphsansiderably important at around 92
K. The changes are not same with the general therall graphs. Below 92 K; it

decreases sharply by decreasing the temperaturee 8ie intensity curve is equivalent
to dc susceptibility, this kind of behavior of thignal intensity can be attributed to the
spin glass nature of the sample, originating frantiferromagnetic interactions between
the magnetic spins of the sample. When the temperaeaches the lowest value, the
ESR intensity goes to zero value. This shows tmatsample shows antiferromagnetic
behavior at low temperatures. That is the antifeagnetic interaction can over

dominate and cause a spin disorder at low tempesatlihus, since the spin alignments
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become wholly in disordered and in random direcjdhe macroscopic magnetization

approximately vanishes at lowest temperature [67]
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Figure 6.4Intensity vs. temperature for $&& with diameter of D = 1.1 nm

As a result, the general broadening of the linethviand the decrease in the
resonance filed by decreasing temperature can pkirgd by spin disorder ( spin
frustration ). It is possibly coming from mainlytdarromagnetic interactions between
the neighboring spins. At low temperatures the rdiso of dipolar fields is increasing
because the magnetization is not increasing wighsime ratio. Its crucial to note that
gyromagnetic (Larmour) precession frequency is ofegskin an effective field. The
shift in the resonance filed and the broadeninghm line width clearly indicate the

exchange anisotropy field ( induced ), they magdyse the frustration of spins.

6.2 SAMPLE 2: F&O4 (D =2 nm)

Figure 6.5 just like the sample above reveals 8RR spectra of &, with

diameter of 2 nm are strongly temperature dependiei#t also theoretically fitted by
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Egn. 5.1 and drawn as in same figure. Howeveffiteederivative of the absorption
signals at lower temperature turns out to be wedBerthe other hand, we observe that
they contains DPPH at approximately 3400 G. Belbe 50 K the intensity of the
spectra are so low that it makes difficult to idigntine width and resonance field of
them. At lower temperatures, the fitting the SPRcsfa became difficult. Because the

wings of the experimental spectra are broader tinainof the theoretical fits.

0 ' 1OIOO ' ZOIOO ' 30IOO ' 4OIOO ' SOIOO ' 6000
Magnetic Field (Gauss)
Figure 6.5 SPR spectra of E®, with diameter of 2 nm at some

selected temperatures; markers and solid lines shewxperimental

and theoretical fit values, respectively.

6.2.1 Line width

Generally, the line width of the spectra increasethe temperature decreases as
in the Figure 6.6. Line width is increasing smogthith decreasing temperatures down
to 125 K. It also contains the best fit value pagters: Ms = 500 kA, AHo = 0.580
T and Vs = 3500 nm which are listed in Table 5.he Ttheoretical fit was done
according to the Egn. 5.4. In the range of 50 — K2%he change rate of line width
respect to temperature rises. Below 50 K it slighitreases then it cannot be measured

because of low absorption signals.
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Figure 6.6 Line width vs. temperature for §&, with diameter of D = 2 nm ;
rectangular markers and circle markers show exparial and theoretical fit

values, respectively.

6.2.2. Resonance Field

The temperature dependency of the resonance faldoe seen in Figure 6.7.
Both experimental and the theoretical simulationsretated temperatures are done
according to the Eqn. 5.2. Both line width and thsonance field curves fitted with
same parameters as mentioned in Table 5.1. Theetatope is not effective as such
between 125 and 300 K. The sharp decrease congebdlow 125 K. The surface spin
freezes in the direction of dc filed below 125 Kdah causes the exchange coupling

between the surface and the core spin. As a rdbeltsharp decrease occurred in the
resonance filed below 125 K.
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Figure 6.7 Resonance field vs. temperature fog®gwith diameter of D = 2
nm; rectangular markers and circle markers showemxgntal and

theoretical fit values, respectively.

6.2.3. Intensity

Two distinct regions can be considered in the giigor intensity versus
temperature curve (Figure 6.8). In the first regioetween 130 and 300 K, the
absorption intensity kept on increasing smoothlg egached its maximum value at 130
K. And the second region, below 130 K reveals that absorption intensity sharply
decreases down to 25 K however below this valwariot be detected further due to

weak signals.

As a result, magnetic characteristics of@gewith diameter of 2 nm below 125
K are similar to those of Sample 1 in the tempeeahelow 92 K. Broadening of the
line width and the decrease in the resonance ifilddw temperature is caused by spin
frustration. Therefore, we can come to conclusibat tthese two samples at low
temperatures show the spin disorder system. Thgpleashows antiferromagnetic
behavior at low temperatures as the fist one. $pis disorder at low temperatures is

the effect of that the antiferromagnetic interactoan over dominate [67].
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Figure 6.8 Intensity vs. temperature for #&& with diameter of D = 2 nm

6.3 SAMPLE 3: FegO4(D =3 nm)

This section includes the derivative of microwawsvpr absorbed by the sample
with respect to the static magnetic field, the terapure dependent curves of line width,
resonance field and the intensity of the absorpgignals of the F©, with diameter of
3 nm. The experimental and the theoretical SPRtspeze shown in Figure 6.9. It
contains that markers and solid lines show the mexatal and theoretical fit values,

respectively. The theoretical fit was done accaydmthe Eqn. 5.1.

As in this figure, the signal is clearly temperatuwtependant. The absorption
power and the resonance field decreases with ttrease in temperature while the line
width increases. The values of the line width amel tesonance field are 385 G and
3300 G respectively at room temperature. The akisorpower is too weak below 15 K
compared with absorptions at higher temperaturdisth& changes are plotted as a

function of temperature and explained in detathia following sections.
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Figure 6.9 SPR spectra of @, with diameter of 3 nm at some
selected temperatures; markers and solid lines gshewexperimental

and theoretical fit values, respectively.

6.3.1 Line width

Figure 6.10 shows the variation of the line wid#diues of the SPR spectra and
the theoretical fits according to the Eqgn 5.4. Thest fit values of the adjustable
simulation parameters have been determined asvilIMs = 505 kArt, AHo = 0.350
T and Vs = 3800 nm ( Table 5.1). As seen from fgaré, the line width increases
smoothly as the temperature decreases. Whileghlk o peak line width has the value
of 3856 G at room temperatures, it reduces to 158526 K. The line width is larger at
low temperatures than it is at high temperaturescaBse the scatter in direction of
anisotropic field of particles (tendency to makegmetic moment isotropic), line width
to decreases at higher temperatures. The expeameities are quite different than the
theoretical fits below 60 K. These differences nimy caused by the change in the

magnetic behavior of the small particles at loveenperatures.
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Figure 6.10Line width vs. temperature for g, with diameter of D = 3
nm; rectangular markers and circle markers showemx@ntal and

theoretical fit values, respectively.

6.3.2. Resonance Field

Both experimental values and the theoretical sathuhs at related temperatures
can be seen in Figure 6.11. The theoretical sinamstare done with Eqn. 5.2 again. In
the figure below, the rectangular markers and €inghrkers show the experimental and
theoretical fit values, respectively. The thewatifit values are in accordance with the
experimental resonance values. It is clear that résonance field is temperature
dependant like ones before. The effect of the teatpee is increasing with decreasing
temperature. The theoretical fits of the resondild values are obtained with the
same parameters that of the line width values @&bl). The resonance field versus
temperature curve is concave type curve. Aroundrdloen temperature the resonance
field reaches 3300 G and it decreases 1600 G &.2Below this temperature the
resonance field of the SPR spectra can not be rdeted because the absorption

intensity will goes to zero below this temperature.
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Figure 6.11Resonance field vs. temperature fog@anith diameter of
D = 3 nm; rectangular markers and circle markemnsbxperimental

and theoretical fit values, respectively.

6.3.3. Intensity

Figure 6.12 represents the temperature variafi@P& signal intensity obtained
from second integral of the SPR signals. Accordm¢he figure, the signal intensity is
decreased slowly with increasing temperature alde\&eK. Below this temperature; it
decreases slowly between 65 and 146 K. From tlgard, one can see that the
magnetization curve of this sample shows a maxiratiaround 146 K. The intensity of
the SPR signals starts to decrease sharply beloW.6%ince the intensity curve is
equivalent to dc susceptibility, this kind of belwvof the signal intensity can be
attributed to the spin glass nature of the sampiigiinating from antiferromagnetic
interactions between the magnetic spins of the Eanwghen the temperature reaches
the lowest value, the SPR intensity goes to zehaeva his has a physical meaning that
the sample shows antiferromagnetic behavior at lemperatures. That is the
antiferromagnetic interaction can over dominate a@adse a spin disorder at low

temperatures. Thus, since the spin alignments beoeholly in disordered and in
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random directions, the macroscopic magnetizatioprapmately vanishes at lowest

temperature [67].
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Figure 6.12 Intensity vs. temperature for & with diameter of D = 3 nm

As a conclusion, the broadening in the line widtid gahe decrease in the
resonance filed at lower temperatures refer to gpstration. The possible sources of it
are antiferromagnetic interactions between the himigng spins. Because the
magnetization is not increasing with the same ratitow temperatures, the disorder of
dipolar fields increases. The shift in the resoeafiled and the broadening in the line
width clearly indicate the exchange anisotropydfi¢hey mainly cause the frustration of
spins. In other words, the antiferromagnetic betravis dominated at lower

temperatures.

6.4 SAMPLE 4: FeO4 (D =5.5nm)

Figure 6.13 reveals that a SPR spectrum of Fe3@4 diameter of 5.5 nm is
clearly temperature dependent. It is also theakyiditted and drawn by Eqn. 5.1 as in
same figure. The theoretical fit curves at lowemperatures differ from the
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experimental ones by their wings. The theoretica/es have quite narrower than the

experimental at such temperatures.

However the first derivative of the absorption silgnat lower temperature turns
out to be weaker. Below the 26 K the intensity e spectra are so low that it makes
difficult to identify line width and resonance fiebf them. The line width, resonance
field and the absorption intensity change with temafure are going to be explained in

following sections.

o 1000 z000 2000 4000 s000 §000
Magnetic field ()

Figure 6.13SPR spectra of F®, with diameter of 5.5 nm at some
selected temperatures; markers and solid lines shewxperimental

and theoretical fit values, respectively.

6.4.1 Line width

In the Figure 6.14, the line width generally in@es as the temperature
decreases. Line width’s increase is nearly lineiin decreasing temperatures down to
25 K. It is about 650 G at room temperature ancthes 1200 G at 25 K, then it

decreases 1150 G below this temperature. Thisdigiso contains the best fit values



93

with parameters: Ms = 5200 kAm AHo = 0.250 T and Vs = 8600 nm which are listed
in Table 5.1. The theoretical fit was done accaydio the Eqn. 5.4. Below 25 K it

sharply decreases with decreasing temperaturenitotebe measured because of low
absorption signals. It has
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Figure 6.14Line width vs. temperature for &, with diameter
of D = 5.5 nm; rectangular markers and circle merk&how

experimental and theoretical fit values, respebtive

6.4.2. Resonance Field

The temperature dependency of the resonancedaide seen in Figure 6.15.
Both experimental and the theoretical simulationsretated temperatures are done
according to the EThe resonance field curves fittéd same parameters as mentioned
above section (Table 5.1). The resonance fieldusrsely changing with temperature.
While the resonance field of the ESR spectra i029 at around room temperatures, it

reduces to 2100 G at 25 K. It is decreasing shasily decreasing temperature below
25 K.
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6.4.3. Intensity

The absorption intensity versus magnetic filed eussplotted in Figure 6.16. In
the region between 210 and 300 K, the absorptimmsgity kept on increasing smoothly
and reached its maximum value at 210 K by decrgagmperature. And then it
decreases sharply down to 170 K. In the range of 400 K, decrease is going on
slightly with decreasing temperature. The decrepsate rises between 20 and 40 K
and below this value it cannot be detected further to weak signaThe changes in the
line width, resonance field and the signal intgngitaphs are considerably important
below 40 K. Since the intensity curve is equivalémtdc susceptibility, this sharp
decrease in intensity signal implies the spin gressire of the iron oxides. Also we can
add that antiferromagnetic interactions betweenntlagnetic spins cause it. At lower

temperatures the signal intensity goes to zeroevatuantiferromagnets.
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Figure 6.16 Intensity vs. temperature for f&& with diameter of D = 5.5 nm

6.5 SAMPLE 5: FeO4 (D =6 nm)

The SPR spectra of k@, sample with diameter of 6 nm and its derivativeseve
analyzed in this section. The derivative of micreegpower absorbed by the sample
with respect to the static magnetic field is pldtes a function of static field for some
selected temperatures as shown in Figure 6.17.mfdr&ers and solid lines show the
experimental and theoretical fit values, respebtiv8he theoretical fit was done

according to the Egn. 5.1.

It is observed that the SPR signals are compld&thperature dependant. The
resonance field decreases with the decrease inetatupe while the line width
increases. These changes are same in all analgpgules, but the absorption intensity

Is increasing with decreasing temperature as aréift observation from ones before.
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So the absorption power does not go to the zenevdlhe values of the line width and
the resonance field are 573 G and 3084 G at roonpdeature, respectively. All the
changes are plotted as a function of temperatuteegplained in detail in the following

sections.

| | | |
2000 000 4000 5000 =Julu]s]

Magnetic Field (G)
Figure 6.17 SPR spectra of E®, with diameter of 6 nm at some

|
] 1000

selected temperatures; markers and solid lines shewxperimental

and theoretical fit values, recpectively.

6.5.1 Line width

Figure 6.18 shows the variation of the line widdlues of the SPR spectra and
the theoretical fits according to the Eqgn 5.4. Tiest fit values of the adjustable
simulation parameters have been determined asv&llMs = 525 kArt, AHo = 0.180
T and Vs = 12500 nm (Table 5.1). As seen from tberé, the line width increases
smoothly with the decrease in temperature down4tdK5and it has concave shape.
Then there is a stepwise increase and decreasé atedollowing each other between
14 and 54 K. The experimental setup can not prothidealecrease in temperature below

10 K. The Egn 5.4 supplies nearly linear curverashe figure below. However the
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experimental curve has a small concavity. The expartal values are fitted by the best

proper parameters as mentioned above.
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Figure 6.18Line width vs. temperature for §&, with diameter of D = 6
nm; rectangular markers and circle markers showemxental and

theoretical fit values, respectively.

6.5.2. Resonance Field

Figure 6.19 shows the variation of the resonanetd fivalues with the
temperature and their theoretical simulations atiogr to the Eqn. 5.2. The figure
implies that the resonance field decreases smoothign the temperature decreases
down to 20 K. Below this temperature the resondiald decreases sharply, and no
measurement can be done below 15 K, since the atxdeelow this temperature is
impossible. At lowest temperature, 20 K, the resgedield of the FMR spectra is 2622

G while it has a value of 3085 G at room tempegatur

The decrease of resonance field by decreasing tatupe can be explained on
the line similar to that suggested by Kodama e{Gil]. The surface spin freezes and
they freeze in the direction of dc magnetic fielthis yields an exchange coupling
between the surface and core spins. This givegaisgunidirectional’ anisotropy with
easy axis in the direction of the field [64,66]. Asesult there is linear decrease in the
resonance field.



98

3100 + ®  Experimental '
® SPRfit o™
« o
3000 o %
° on
—~~ n
e Lo
S 2900 o "
2 .
[ ]
3 o "
S 2800~ - %
5 ]
@ 4
] [ gl
@ 2700 J.
L]
[
2600 |
T T T T T T T T T T T T T
0 50 100 150 200 250 300

Temperature (K)

Figure 6.19Resonance field vs. temperature fog@avith diameter of D = 6 nm

6.5.3. Intensity

The Figure 6.20 shows the absorption intensitthef SPR spectra with respect
to temperature in a range of 15 - 300 K. Unlike #azamples analyzed before, the

absorption intensity of this sample surprisinglgraases with decreasing temperature.

'

Intensity (a.u.)x10
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Figure 6.20 Intensity vs. temperature for & with diameter of D = 6 nm
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6.6 SAMPLE 6: FeO4 (D =11 nm)

Figure 6.21 reveals that SPR spectra ofCgewith diameter of 11 nm are
strongly temperature dependent. It is also themallyi fitted by Eqn. 5.1 and drawn as
in same figure. However the first derivative ofe tlabsorption signals at lower
temperature turns out to be weaker. Below the BeKintensity of the spectra are so low
that it makes difficult to identify line width andesonance field of them. At lower
temperatures, the fitting the SPR spectra becaiffieult. Because the wings of the
experimental spectra at higher fields are narrdien that of the theoretical fits.

r T ’ T '
o zooo 4000 G000
Magnetic Field (G

Figure 6.21 SPR spectra of @&, with diameter of 11 nm at some
selected temperatures; markers and solid lines gshewexperimental

and theoretical fit values, recpectively.

6.6.1 Line width

Generally, the line width of the spectra increas®the temperature decreases as
in the Figure 6.22. Line width is increasing lingawrith decreasing temperatures down
to 15 K. It also contains the best fit value partare Ms = 540 kA, AHo =0.215 T
and Vs = 10500 nm which are listed in Table 5.1 Tieoretical fit was done according
to the Egn 5.4. The line width of the SPR spedta @y decreases below 15 K. While
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it has 799 G at around room temperature, it reatB&8 G at 15 K. It reduces to 1252
G at the lower temperature of 9 K.
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Figure 6.22Line width vs. temperature for @&, with diameter of
D = 11 nm; rectangular markers and circle markensws

experimental and theoretical fit values, respebtive

6.6.2. Resonance Field

The temperature dependency of the resonancedidlie largest sample can be
seen in Figure 6.23. Both experimental and the rdimal simulations of related
temperatures are done according to the Eqgn. 512. IBe width and the resonance field
curves fitted with same parameters as mentionedainle 5.1. The resonance field
decreases sharply between 45 and 252 K by decge@siperature. It has the values of
2975 G and 2488 G at 252 and 45 K, respectivelpther words it reduces almost 500
G. In the range of 15 — 45 K the rate of decredsessdown. However it again
decreases sharply below 15 K and it reduces to Z348 9 K. Therefore we can say
that the temperature has varying effect on resandietd. At low temperatures, the

surface spin freezing in the direction of dc filien it causes the exchange coupling
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between the surface and the core spin. As a rdbaltsharp decrease occurred at low

temperatures.
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Figure 6.23Line width vs. temperature for k@, with diameter of
D = 11 nm; rectangular markers and circle marken®ws

experimental and theoretical fit values, respebtive

6.6.3. Intensity

Two distinct regions can be considered in the giigor intensity versus
temperature curve (Figure 6.24). In the high terajge region between 95 and 300 K,
the absorption intensity kept on increasing quietlyl reached the maximum value at
around 95 K. The absorption intensity decreasegpbshdown to 70 K. And the other
region in the range of 15 — 70 K reveals no chdhgethe absorption intensity is nearly
constant. Below 15 K the absorption intensity slyadecreases again. However below
this temperature it cannot be detected furthertdweeak signals.

As a result, magnetic characteristics ogf@ewith diameter of 11 nm at low
temperature are similar to the smaller particlamaBening of the line width and the

decrease in the resonance filed in low temperaisireaused by spin frustration.
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Therefore, we can come to conclusion that this $araplow temperatures shows the
spin disorder system that means antiferromagnegbadior dominant at low
temperatures. In other words, this spin disorddéowttemperatures is the effect of that
the antiferromagnetic interactions can over domgimathe system [67].
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Figure 6.24 Intensity vs. temperature for & with diameter of D = 11 nm
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CHAPTER 7

CONCLUSIONS

The room temperature X-band SPR spectra taken frdril nm samples and
their simulations according to Egn. 5.1 are shawRigure 7.1. At room temperature an
intense resonance line is observed with slightlymasetric line shape for all samples.
The spectra seem to significantly be size dependenit is seen from the figure, at
room temperature, the peak to peak line width &edrésonance field is changing with
the particle size. While the line width is varyitgtween 385 G and 817 G, the
resonance field changes from 3426 G to 2999 (hepadrticle size changes (see Figure
7.2). While the resonance field is shifted to loViieids (decreasing) the linewidth is

increasing by the increase in the particle size.

Solid Lines : SPR Fit Curves
Markers: Experimental Data

Absorption (a.u)

2000 3000 4000 5000
Magnetic Field (Gauss)

Figure 7.1X-band SPR spectra 0§®, with 1.1-11 nm and their simulations.
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Figure 7.2 shows the particle size dependenceeofdbm temperature resonance field

and SPR line width. As seen from the figure, thangfes in the resonance line center

and SPR line width with the particle size also pout interesting aspects.

Resonanace Field (Gauss)
IS
o
<

Resonanace Field vs Particle Size at room temperature]
L)

\

2 4 6 8 10 12
Particle Size (nm)

Line Width (Gauss)

800

700

600

500

|Line Width vs Particle Size at room temperature

Particle Size (nm)

12

Figure 7.2Particle size dependence of the X-band SPR (apaese field and

(b) line width at room temperature.

When the particle size is increasing the resondiete of the SPR signal is

decreasing while the SPR line width is increasingpam temperature. As shown in the

Figure 7.2, the resonance field is inversely propoal with the particle diameter,

means Hrl/d because of the large surface to volume ratlus behavior can be

explained by the core-shell

morphology of the nambgles consisting of

ferrimagnetically aligned core spins and the spasg like surface. The magnetic

behavior of nanopatrticles has a marked dependertbetive decrease in particle size

and the surface effects start to dominate. In narigtes having large ratio of surface to

volume, the spin disorder (surface-spin-drivenrageanents) may modify the magnetic

properties. This spin disorder may be caused byelogoordination of the surface
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atoms, broken exchange bonds that produce a spas-glike state of spatially
disordered (canted) spins in the surface catiorth Wigh anisotropy surface layer
[32,68]. As the particle size increases the raficwface-to-volume decreases. Since
the magnetization at the surface is smaller thandbre, by increasing the size of
nanoparticles decrease the ratio, means, incréesentgnetization. Therefore, the
particles come to resonance easily causing theedserin the resonance field by

increasing the particle size.

Figure 7.3 shows the temperature variation of e Width of the SPR spectra
at X-band for all samples. As seen from the figunegrall behavior of the line width
values of all samples is similar at high tempeedgurThey increase slowly by
decreasing the temperature down to 130 K and thaye hlinear temperature
dependence. As the temperature decreased furiadinehwidth values for the samples
2.9 nm to 11 nm behaves like before and the valaainue to change linearly with the
temperature. For the samples 1.1 nm and 2 nm, b&#avK, the line width values
increase faster than before by decreasing the tatype. The line width values for the
sample 1.1 nm reaches its maximum value at aro@n#.6Below 60 K, it starts to
decrease. These line broadenings can be attriboitspin disorder (frustrations) at low
temperatures. The surface spin fluctuations slowrdas the temperature is decreased,
leading at low temperatures to a frozen disordehefsurface spins. The degree of spin
frustrations is expected to increase with decregisia particle size. From the viewpoint
of SPR, at some temperatures, the surface is émthsi‘condensed’ into a spin glass
state for times larger than a Larmor period. Thstribution of canting angles of
frustrated spins at the surface then results inde wpread of internal fields and thus in

the line broadening [69,70]. This frustration maye Ipartially attributed to
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antiferromagnetic interactions between the magneligsters. That is, the line
broadening might arise from the dipolar interactidretween the superparamagnetic

nanoparticles.
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Figure 7.3 Temperature dependence of the line width of theaKeb

SPR spectra for all samples.

Temperature dependence of the resonance field valmeasured from the
magnetic field at the center of the SPR resonameg bf all samples are shown in
Figure 7.4. The resonance field values of the sesn@.5 nm to 11 nm behave
approximately the same. The values increases sloyhjecreasing the temperature and
there is an almost linear temperature dependentteeatsonance field values for these
samples.

But, it is different for the samples of 1.1 nm tan. For 1.1 nm and 2 nm
samples, the resonance field values are approXynatmstant at high temperature
regime. There is a turning point at 120 K. Belows ttemperature, the resonance field

values of these samples decrease sharply. Theramwsay that, 120K is the blocking
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temperature of these samples (the blocking temeras the transition temperature
between the ferromagnetic and superparamagnetie).steor the 3 nm sample, the
resonance field values are decreasing slowly byedsmng temperature down to 160 K.
Below160 K, the decrease in the resonance fieldesmincreases. The amount of the
shift in the resonance field varies between 479n@ 2029 G at lowest temperatures.
The resonance shift increases by decreasing thelpasize. This behavior is also

consistent with the line width behavior. It shoddd remembered that, in any SPR
measurement, gyromagnetic (Larmour) precessiomuénmecy is observed in an effective
field. Therefore, the shift in the resonance fiellues is a clear indication to the
induced field (exchange anisotropy field, perhapsdividual particles), which is the

main cause of the disorder or frustration of anygnadic system [70]. The increase in
the anisotropy fields (microscopic fields) at logniperatures reveals itself as the line

broadening and a decrease in the signal intensiojmetemperatures.
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Figure 7.4 Temperature dependence of the resonance fieldlznd- Solid lines
are SPR fits for all samples.



108

The same behavior can be observed in Figure 7.8. figure shows the
temperature variations of the anisotropy fields nibuas the difference at room
temperature and the value at any temperature fosahples. As it is seen, the

anisotropy field values are increasing by decrepiie temperature and particle size.

—=—S]
——S2
—3+—S3

S4
—0— S5

Anisotropy field (G)

T T T : T :
0 50 100 150 200 250 300
Temperature (K)

Figure 7.5 Temperature dependence of the anisotropy fields (H{ (0)) at X-band
for all samples.

The anisotropy field values obtained by H(r) - H{@phere H(r) is the resonance
field at any temperature and H(0) is the resondiete at room temperature. As seen
from the figure, the anisotropy field is invers@goportional with the temperature. For
the samples S4-t0-S6, there is a linear dependendhe temperature. For S3, it is
inversely proportional with the temperature. Bot, $amples S1 and S2, it is increasing
slowly down to 100 K. Below this temperature thexe sharp increase by decreasing
the temperature.

These results show that, when the sizes of theclgmrtdecrease, the overall
behaviors of the samples are changed. The reasothi& at low temperatures, the
anisotropic energy KV is larger than the thermadrgy kT to render the nanoparticles

to be blocked readily. Also, the reduction of theagmetic domain size at low
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temperatures increases with the microwave powerorpben [61]. At high
temperatures, is greater than the energy barrier, only theremargy is required to
reorient the domains/particles and diminishing ésesis is observed as expected in the
superparamagnetic behavior. We remark the existefiveo behaviors, one at high and
the other at low temperature. In the high tempeeattegime we observed a
superparamagnetic behavior. That means the eféeatisotropy is small and thermal
fluctuations governs the physics of the systemloit temperature the SPR behavior
shows signs of a high anisotropy. Extrapolationldw-T of the high-T behavior
evidences the effects of a large anisotropy dewedpat low-T. This anisotropy cannot
be originated by the shape of the particle, saiit lbe expected to be originated on the
particle surface and this agrees with the magneirzaneasurements and Monte-Carlo
simulations performed on the nanoparticle systert].[450, the results can be
interpreted by a simple model, in which each sktgilenain nanoparticle is considered
as a core-shell system, with uniaxial anisotropytlmn core and surface anisotropy on
the shell. The surface contribution is more evidentthe absence of interparticle

interactions [62, 68, 71].

Ms( kAm™)

Anisotropy constant, K, (kJm‘G)

T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Diameter (nm) Diameter (nm)

Figure 7.6Variation of saturation magnetization, Ms (a) andatropy constant, K

(b) with the particle size
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Figure 7.6 shows the size dependence of saturatiagnetization and the
anisotropy constant. As seen from the figure, séitm magnetization, Ms is directly
proportional to the nanoparticle size. The satarathagnetization is increasing with the
size as expected. Magnetocrystalline anisotropytem, K is inversely proportional to
the particle size. One sees that the smaller ipahgcle size, the larger K that does not
at all fit the concept of a purely volumic origihtbe anisotropy. This anisotropy stems
from discontinuity of magnetic interactions betweaedividual spins which reside at the
particle surface. This fact is well known for maofithin film systems [69, 70].

Superparamagnetic resonance experiments rendemation on the internal
magnetic order of the nanoparticles. At high terapee, the SPR line shape is
governed by the core anisotropy and the thermattdhations. By decreasing
temperature, as the shell spins increase their eti@mgsusceptibility, they produce an
effective field on the core, leading to a decreaSeaesonance field from its high
temperature value. As the shell spins begin torotige effective anisotropy increases

following its surface value more closely.
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Figure 7.7 Frequency dependence of the resonance fieldslfsamples.
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The resonance field values for all of the samplés ahange with the
microwave frequency. The frequency dependence @frdsonance field values are
shown in Figure 7.7. As seen from the above figuhere is a linear frequency
dependence of the resonance fields. As the frequefnithe microwave is increased, the
resonance field values of all samples increasailipeWhen the experimental values
are fitted to the theoretical resonance equatior g3(B,+ B;) [72, 73], the effective g-

value is calculated from the slope of the curvé&.8846 for FgO,.

As a conclusionMagnetic properties of E®, nanoparticles have been studied
in terms of temperature, microwave frequency amdpidwticle size. Strong temperature
and particle size dependence of SPR propertigsectamples was observed. While the
resonance field is decreasing by decreasing temyerdhe peak to peak line width is
increasing. As the particle size decreases, whike saturation magnetization is
decreasing, the magnetocrystalline anisotropy eomss$ increasing. Linear microwave
frequency dependence of the resonance field hashalsn observed. As the frequency
increased the resonance field also increases.vwAtdmperatures, the anisotropy energy
KV is larger than the thermal energgTkto render the nanoparticles to be blocked
readily. At even lower temperatures, the anisotrepgrgy of magnetic nanoparticles
enhanced too much. The enhancement of the linéhwaidd the anisotropy is increased
by the reduction of the particle size at low tenaperes. Since the relation between the

blocking temperature and the particle volume a$ [74= KV

B

, when the volume of

the nanoparticles decreased, the blocking temper&also decreased as seen from the
line width, resonance field and the anisotropydfigiaphs. Where t is the experimental

measuring time, K is the anisotropy energy dersitystant and V is the volume of the
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particle. The particles with very small size distion showed the blocking

temperatures below the room temperature.
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