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ABSTRACT

A finite field is an algebraic structure that plays an important role in theoretical
foundation of cryptography. Almost all cryptographic algorithms are based on the
properties of finite fields. In particular, elliptic curves combined with finite fields form a
new type of cryptosystem called an elliptic curve cryptosystem. A cryptographic system
can be regarded as a set of facilities implemented at hardware or software level and satisfies
predefined requirements for information security. Security is the most obvious quality of
any cryptosystem. However, an efficient implementation of a cryptosystem is also
important in order to achieve a high performance.

A prime field GF(p) is a finite field with prime number of elements that are
represented as integers between 0 and the prime number p with respect to modular addition
and multiplication operations. This fact makes it possible to implement prime field
arithmetic operations efficiently on a general-purpose computer since elements of a prime
field can be represented on a general-purpose computer as an array of integers. In this
thesis, we concentrate on prime fields. We implemented multiprecision algorithms
performing prime field arithmetic suitable for a general-purpose computer. For some
operations multiple algorithms were considered and implemented. Their performance was
measured and compared. In addition, we implemented arithmetic operations defined on
points of elliptic curves over finite fields and the elliptic curve digital signature algorithm.

Keywords: Finite Field Arithmetic, Elliptic Curve Cryptography, Multiprecision
Arithmetic, Public Key Cryptography, Digital Signature.
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YUKSEK PERFORMANSLI BIR ARITMETIK ISLEM
KUTUPHANESININ GELISTIRILMESI VE BU KUTUPHANENIN
CESITLI KRIPTOGRAFIK ALGORITMALARIN YAZILMASINDA
KULLANILMASI

Bayram KULIYEV

Yiiksek Lisans Tezi — Bilgisayar Miihendisligi
Haziran 2006

Tez Yoneticisi: Yrd. Dog. Dr. Tugrul YANIK

(0Y4

Sonlu cisimler kriptolojinin temeleni olusturan 6nemli cebirsel yapilardir. Tim
kriptografik algoritmalar sonlu cisimlerin cebirsel dzellikleri iizerine kuruludur. Ozellikle,
bu cebirsel yapilar ilizerinde tanimli eliptik egriler, eliptik egriler kriptosistemi adli ¢ok
yaygin bir kriptosistem tiirii olusturmaktadir. Kisaca kriptografik sistem yzilim veya
donanim diizeyinde gergeklestirilen ve belli bir ntanimlanmis giivenlik kosuluna uygun bir
servis tiirtidiir. Giivenlik herhangi bir kriptogrfik sistemin en 6nemli kriteridir. Fakat, bu
sistemin yliksek performans sergileyebilmesi ve kullanish hale gelebilmesi i¢in sistemin
yazilim veya donanim diizeyinde etkin bir sekilde gergeklestirilmesi gerekmektedir.

Bir p asal say1 i¢in, lizerinde modiiler toplama ve carpma islemleri tanimlanmis olan
0 ve p — 1 arasindaki sayilar kiimesi asal cisim olusturmaktadir. Bu sayilar genel amagl
bilgisayrda kolayaca ifade edilebilecegi gibi de cisim iizerinde tanimlanmis aritmetik
islemler icin de hizli kod gelistirilebilir. Bu tezde biz asal cisimler lizerinde yogunlasiyoruz.
Asal cisimler aritmetigini gerceklestiren ¢ok-duyarlikli genel-amagh bilgisayar i¢in kod
gelistirilmistir. Bazi islemler i¢in birden fazla algoritmalar i¢in kod gelisririlmistir ve
bunlarin zamanlamas1 kiyaslanmistir. Ayrica, asal cisimler iizerinde tanimh eliptik egriler
aritmetigi icin kod gelistirilmistir. Son olarak bu kodlar kullanarak eliptik egri dijital imza
algoritmasi i¢in kod gelistirilmistir.

Anahtar Kelimeler: Sonlu Cisim Aritmetigi, Eliptik Egrilere Dayali Kriptografi, Biiylik
Say1 Aritmetigi, A¢gik Anahtar Kriptografi, Dijital Imza.
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CHAPTER 1

INTRODUCTION

A vast deal of digital information such as business transactions, private medical
records, military and diplomatic actions are transmitted everyday over various public
communication channels and stored on computers. With increased computerization of
human life, information security has become of great importance to governmental and

private organizations.

Cryptography is a branch of computer science that deals with design of cryptographic
systems, which addresses issues concerning information security. The basic principle of
any cryptosystems is to transform the original text to a sequence of unintelligible symbols
thereby hiding the contents of the original text. This transformation process is carried out
by means of an additional parameter called a key. Depending on the type of key used for
transformation of text there are two types of widely used cryptographic systems: symmetric

key cryptosystems and public key cryptosystems.

All cryptographic systems until 1970s were based on the concept of symmetric key.
The practical application of the public-key cryptography started in 1976 when Whitfield
Diffie and Martin Hellman introduced the idea of public-key cryptography and described
key exchange algorithm. The idea of the public key cryptography is based on difficulty of

solving a computational problem.

Since then a great deal of research has been conducted concerning its security level

and efficient implementation and many public-key cryptosystems were described. For



example, Neal Koblitz and Victor Miller proposed a different type of public key
cryptosystem, which exploits elliptic curves. However many of the proposed cryptosystems
were shown to be insecure. There are three types of widely used public-key cryptosystems,
which were proven to be conditionally secure: those that based on the difficulty of solving
integer factorization problem, those that based on the difficulty of solving discrete
logarithm problem and those that based on the difficulty of solving the elliptic curve

discrete logarithm problem.

In this thesis we develop a high performance arithmetic library that is used to
implement various public-key cryptographic algorithms. Since the mathematical foundation
of cryptography is using the algebraic structures called finite fields, we concentrate
specifically on the implementation of operations on prime fields, i.e., fields with a prime
number of elements. These basic operations are addition, subtraction, multiplication and

inversion.

Furthermore, elliptic curves over finite fields form another algebraic structure called
group, which is used to design elliptic curve cryptosystems. We implement basic operations
on these groups, i.e. addition and using them implement the elliptic curve digital signature

algorithm.

Chapter 2 introduces basic algebraic structures, i.e., groups and fields. Definition of a
cyclic group and a prime field are given. Chapter 3 provides a short background of elliptic
curves. We give the definition of an elliptic curve over a finite field and outline its group

structure together with algebraic operations on the elements of the group.

In Chapter 4 we give basic facts about cryptographic systems. We start with
statement of basic computational problems used to design cryptosystems. We give
definitions of symmetric key cryptosystems and public key cryptosystems together with
their properties. Finally, a brief description of well-known public key cryptosystems is

given.



Chapter 5 explains representation of prime fields followed by various multiprecision
algorithms for implementing prime field arithmetic operations. We describe addition and
subtraction operations. Three modular reduction algorithms, classical algorithm, Barrett’s
reduction algorithm and Montgomery algorithm are introduced. Modular multiplication is
implemented using Montgomery’s multiplication algorithm. We also describe different
exponentiation algorithms: binary method, m-ary method, and m-ary recoding method. The
classical inversion operation is implemented according to the Montgomery’s inversion

method. The elliptic curve digital signature algorithm is described in Chapter 6.



CHAPTER 2

FINITE FIELDS

2.1 INTRODUCTION

Groups, rings and fields are fundamental algebraic structures of abstract mathematics.
These structures play an important role in theory of cryptography and cryptanalysis. Almost
all cryptographic algorithms are based on the computational properties of groups, rings and
fields. For example, the set of integer numbers forms a ring whose elements can be
factorized uniquely into prime numbers. This property lays a foundation for the RSA

cryptosystem.

In abstract algebra we are concerned with a set of abstract elements together with a
well-defined binary operation on the elements of the set. Using this operation we combine
any two elements to obtain a third element of the set. For example, let Z be a set of all
integer numbers. Then an ordinary addition operation (+) is well defined on Z, that is, we
can take two elements from the set and add them up to obtain a third element of the set. We
should note that for any element a and b of Z, a + b is always in Z. This means that the

addition operation is closed over the set of all integer numbers.

Formally, a group (G, *) is a set of elements with a binary operation * such that the
elements of G closed over the operation *, and the following rules hold:
1. Foranya, b, cin G, (a * b) * c= a * (b * c), the associative law;
2. There exists a distinguishing element e, called the identity element, in G

such that forany ¢ in G, a * e=¢ * qa;



3. For any a in G, there exists a unique element ¢ in G, called the inverse

1 1

ofa,suchthata *a=a*a =e.
Traditionally for any group (G, *) the binary operation * is called a multiplication
operation. The exponentiation operation a” for an arbitrary element ¢ in G and an integer n

is defined as a * ...* a, multiplication of a n times. Further, we define a’=cand a" as

@

A group is called an abelian or commutative group if for any two elements of group
G, we have a * b = b * a. A group with a finite number of elements is called a finite group.
The number of elements in a group is said to be the order of the group and denoted by
| G|. Finite groups have finite orders, while groups with infinite number of elements have

an infinite order. Any subset G'of a group (G,*) is said to be a subgroup of (G,*¥) if

(G',*) is a group. This fact is denoted by G < G.

For example, the set Z, of all integer numbers, is an abelian group with respect to the
ordinary addition operation (+). The identity element of the Z is 0 (zero) since for any
element g in Z, a + 0 = 0+ a = a. Also, —a is the inverse of a as a + (—a) = (—a) + a = 0.
Furthermore, the order of Z is infinite. The set of all even integers, denoted by 2Z, is a

subgroup of Z, i.e., 2Z < Z.

2.2 CYCLIC GROUPS

Let (G, *) be a group and g be a distinguished element of G where for any element a
in G there exists an integer power #n such that a = g”. The element g is said to generate the

group G and is called a generator of G. This is denoted by (g) = G.

A group (G, *) that can be generated by a single element g in G is said to be a cyclic

group generated by g. All cyclic groups are abelian and may have finite or infinite order.



For example, let us consider a set of positive integers Z; ={1,2,...,p—1} where p is
a prime integer. Let us define a binary operation ® on the set Z; as follows. For any a and
b in Z, define a ® b as (ab) mod p. Then (Z,, ®) is a cyclic group. In particular,

3y=2,.

2.3 PRIME FIELDS

A field is a set F with two binary operations + and *, traditionally called addition and
multiplication operations such that both (F, +) and (F, *) are abelian groups. F denotes a
subset of nonzero elements of F, i.e. all elements of F except the identity element of the
group (F, +), where the operations + and * are associated with each other by means of the

distributive law defined as follows:

1. Foranya,b,cinF,(b+c)*a=(b*a)+ (c*a),

2. Foranya,b,cinF,a*(b+c)=(a=*b)+ (a*c).

For example, sets of rational and real numbers are fields with infinite number of

elements.

A field containing a finite number of elements is said to be a finite field. The number
of element in a finite field is always a power of a prime p. A finite field of order p" is
denoted by F, or GF(p"). GF means Galois field in honor of the mathematician who first
studied finite fields. For any finite field GF(p"), the prime integer p is called the
characteristic of the finite field. The characteristic of fields with infinite number of
elements is zero. It should be noted that an important property of fields is that two fields

with equal number of elements have the same structure, i.e. they are isomorphic.

Let GP(p") be a finite field such that n = 1. Then we have GF(p) that is said to be a
prime field. In other words, a finite field whose order is a prime integer is called a prime

field. Because of the isomorphism property of fields any prime field of order p can be



represented using a set of positive integers {0, 1, ..., p — 1} together with binary operations
® and @ defined for any elements @ and b as follows: a @ b is (a + b)) mod p, and a ® b is
(ab) mod p. These operations are modular operations over the set {0, 1, ..., p — 1} where

the modulus is p.

Any prime field GF(p) is a cyclic group with respect to the operation @ , i.e. (1) =
GF(p) for any prime p. Similarly, nonzero elements of GF(p) forms a cyclic group with
respect to the operation ®. A generator of the last group is called a multiplicative generator

of the field GF(p). For example, 3 is a multiplicative generator of GF(7).



CHAPTER 3

ELLIPTIC CURVES

3.1 DEFINITION

An elliptic curve (Koblitz N., 1994) over some field F' is a set of points in a two

dimensional plane which satisfies a cubic equation of the general form
y* +axy+by=x"+cx’ +dx+e where a,b,c,d and e belong to F. For cryptographic
purpose it is sufficient to consider elliptic curves over finite fields with characteristic other

than 2 and 3. Then the cubic equation is of the form y*> =x’ +ax+b.

An elliptic curve E(F),) over a finite field F), of characteristic neither 2 or 3 is a set of
points (x,y) on a two dimensional plane with x, y in F, satisfying the
equation y* = x> +ax+b, where a, b in F, and A=-16(4a’ +27b*) # 0, together with a
distinguished element O. O is called the “point at infinity”. A is said to be the discriminant,

where A =0 means that x* + ax + b has no multiple roots.

3.2 GROUP STRUCTURE OF ELLIPTIC CURVES

There are two basic mathematical operations on an elliptic curve over a finite field
F,: negation and addition. Combining points on an elliptic curve by means of these
operations we can obtain new points on the elliptic curve. Geometrically, negation and

addition are defined as follows:



1. Negation rule: for P = (x, y) in E(F},), =P = (x, —»), 1.e. the negative of the point
P is the point with the same x coordinate but the negative y coordinate;

2. For P=(x,y)in E(F,),P+0=0+P=P,P+(-P)= (-P)+ P=0;

3. 0+0=0,-0=0;

4. For P=(x,,y,) and Q = (x,,y,) such that P # + O, P + Q is obtained as
follows. We draw a chord between points P and Q. Then we find the third point
of intersection of the line passing through the points P and Q with the curve.
The point S symmetric to this point relatively to the x-axis is the sum of P and
Q. The figure 1 depicts the addition operation.

5. ForP=(x,,y,)and Q=(x,,y,)suchthat P=Q, P+ Q= 2P is found similarly.
Instead of chord we draw the tangent line at the point P (figure 2). This

operation is called doubling.

29 27
1 P 11
¢
P Pﬁ Y
IIIIIIIIDIIIIIIIII IIIIIIIIDIIIIIIIII
? U 2 - U ’
1 5 1 5
Figure 3.1 Geometric addition of two Figure 3.2 Geometric doubling of a
distinct points on an elliptic curve. point on an elliptic curve.

Points of an elliptic curve together with the operation of addition, as we have defined,
forms an abelian group where the “point at infinity” serves as the identity element of the
group and the inverse of an elliptic curve point P is its negation —P. Scalar multiplication of
an elliptic curve point P by a positive integer & is defined as the sum of k copies of P and

denoted by kP. Similarly, —kP is defined as k(—P), i.e, the sum of k copies of —P.
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For example, the figure 3 depicts points of the elliptic curve y*> =x’ +2x+4 over
the field F},.

12 ¢ Points on E(F3)

B (0,2)
1 0, 11)
2,4
2,9
5,3)
(5, 10)
(7, 6)
7,7
3,5
38,8
9, 6)
9,7
(10, 6)
1 > (10,7)
0 . (12,1
o1 2 3 4 & 6 T 8 9 10 11 12 (12, 12)
¥ o

Figure 3.3 Elliptic curve points in E(F3), a=2 and b = 4.

| A . I = = R B = o B = B o |

There are several coordinated systems to represent elliptic curves (Cohen H. et al.,
1998). Three basic well-known coordinate systems are affine, projective and Jacobian
coordinate systems. We will give addition and doubling algebraic formulas in affine and

projective coordinate systems.

3.3 CURVE ADDITION AND DOUBLING FORMULAS

Let y* =x’+ax+b be the equation of an elliptic curve over F,, where a,be F,

and 4a’ +27b*> # 0. For any elliptic curve points P and Q we will define P+ Q in two

different ways: for affine and projective coordinate systems (Silverman J. H.).

Let P=(x,,y,), O=(x,,y,) and P+Q =(x;,»,). In the affine coordinate system

addition and doubling formulas are defined as following.
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e Addition formulas (P#+ Q): x, =4 —x, —x,, y; = A(x, —x;) — y,, where
A :(yz _yl)/(xz _xl);
e Doubling formulas (P = Q): x, =A* —2x,, y, =A(x, —x;)—y,, where

A= (3x12 Jra)/Zy1 .

In the projective coordinate system we substitute variable x and y such that x = X/Z
and y =Y/Z hence obtaining a new elliptic curve equation Y°Z = X° +aXZ”> +bZ>. Let
P=(X,.Y,Z), O0=(X,.Y,,Z;) and P+Q=(x;,y,). Then addition and doubling

formulas take the following form:

e Addition formulas (P # *+ Q):
X, =vA,Y, =u(vV’X,Z, - A) VY, Z,, Z, =v’Z,Z,, where u=Y,Z, - Y, Z,,
v=X,Z,-X\Z,, A=u’Z,Z, -V -2’ X,Z,.

e Doubling formulas (P = Q): X, =2hs, Y, =w(4B—h)-8Y’s’, Z, =8s",

where w=aZ} +3X}, s=Y,Z,, B=X,Y;s, h=w" —8B.

Unlike in affine coordinate systems in projective coordinates we do not perform

inversion operation to compute curve addition and doubling.



CHAPTER 4

CRYPTOGRAPHIC SYSTEMS

4.1 INTRODUCTION

Today we live in a highly networked society where the communication is an
important part of human activity. All kind of sensitive information such as business
transactions, diplomatic or military actions, and commercial information is transmitted over
various public or secret communication channels. Organizations that handle secret
information need to protect it in an efficient way. This is the reason for the need of a
reliable cryptographic system that detects and prevents from any action which compromises

the security of secret information owned by an organization.

Any system that provides secure information transmission and safeguarding of
information is referred as a cryptographic system. Basically, a cryptographic system

provides following four basic services (Menezes A. J. et al., 1997):

o confidentiality: this service prevents unauthorized disclosure of sensitive
information;

e authentication: service that provides proof of identity of the sender to the
recipient, so that the recipient can be assured that the sender is who he or she
claims to be;

e data integrity: service that ensures that an unauthorized person does not
modify the contents of message;

¢ non-repudiation: this service prevents the denial of a previous action.

12
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One of the essential ingredients of a cryptographic system is a transformation of
original text, called a plaintext, to an illegible version of the plaintext called a ciphertext.
Modern cryptographic systems do not depend on the secrecy of an algorithm used to
encrypt or decrypt the plaintext. Encryption process uses a key to encrypt or decrypt

information.

Formally, encryption and decryption processes are defined as follows. Let P and C be
two sets of messages, i.e. sets of strings, defined over sets of symbols (alphabets) 4 and B
respectively. In other words P is a set of all plaintexts while C is a set of all ciphertexts.
Furthermore, let e and d belong to a set of keys K. Then the encryption process associated
with the key e is defined as a one-to-one onto function E.: P — C. The decryption process

associated with the key d is defined similarly as a one-to-one onto function D;: C — P.

4.2 COMPUTATIONAL PROBLEMS FOR CRYPTOSYSTEMS

Public key cryptographic systems rest on computational intractability of
mathematical problems (Koblitz N., 1998). Theoretically, a problem is intractable if there is
no algorithm that solves the problem in polynomial time as a function of input length.
There are many mathematical problems that are intractable, however, only three of them
are shown to be most efficient and secure. These are the integer factorization problem, the

discrete logarithm problem for GF(p) and the elliptic curve discrete logarithm problem.

The integer factorization problem is, given a positive integer n, to find all prime
factors of the integer n (Adleman L. M. et al., 1994). To define the discrete logarithm
problem let GF(p) be a prime field with a multiplicative generator g. Then the discrete
logarithm problem is determining for an arbitrary non-identity element a of GF(p) an
exponent x so that ¢ = g". Similarly, let E(F,) be an elliptic curve over a finite field F),.
Suppose Q and P are points on the elliptic curve such that O = xP for some integer x. Then,
given the points QO and P, the elliptic curve discrete logarithm problem is to find the integer

X.
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These problems are currently considered intractable, i.e. they are widely believed to
be intractable. There is no known proof that claims whether or not there is a polynomial

time algorithm that solves any of these problems.

4.3 SYMMETRIC-KEY CRYPTOSYSTEMS

Let (e, d) be encryption and decryption keys, respectively. A cryptosystem system is
said to be a symmetric-key cryptosystem if from knowing d it is computationally easy to
determine e and vise versa (Menezes A. J. et al., 1997). A symmetric-key cryptosystem is
sometimes referred as a private key cryptosystem since in practice we take e = d, 1.e. the

same key is used to encrypt and decrypt information. The private key is kept secret.

Schematically, symmetric-key encryption/decryption process can be described as
follows. Let P and C be respectively sets of all possible plain and cipher texts, K be a set of
all possible keys and M be the set of all messages. Then a symmetric-key cryptosystem is
defined as a pair of functions £,: P — C and D;: C — P such that e and d belong to K.
Since the correspondence between plain and cipher text is one-to-one onto, we have also

D E.(m)) =m, for some m in M.

Two main reasons for symmetric-key cryptosystems to be the method of choice are
that key sizes are relatively short and fast hardware and software implementations exist.
However, in a large network the key management becomes inefficient since each group in a
network must have their individual pair of keys (e, d). Examples of common symmetric-

key cryptosystems are The One-Time Pad, DES, AES, RCS.

4.4 PUBLIC-KEY CRYPTOSYSTEMS

A notion for the public key cryptosystems was proposed in 1976 by Whitfield Diffie
and Martin Hellman. Unlike in a symmetric-key cryptosystem, there is no need to keep an

encryption key secret for a sender to make any secret arrangement with the recipient.
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Let M be the set of all possible messages and (e, d) be respectively encryption and
decryption keys together with encryption and decryption functions E, and D,. If for a pair
of plain and cipher text (m, c), we encrypt as E.(m) = c, it is computationally infeasible to
determine d from e and e from d, then the functions E, and D,; form a public key

cryptosystem, and e and d are called respectively a public key and a secret key.

4.4.1 The RSA Cryptosystem
RSA cryptosystem was first proposed in 1977 by Rivest, Shamir and Adlemann. RSA
encryption algorithm is based on the difficulty of factoring integer numbers. RSA public

key encryption scheme works as follows:

1. Select randomly two large prime numbers p and g, where p # g;
Compute n = pgq;

Select an odd integer e relatively prime to (p — 1)(g — 1);

Compute d as a the multiplicative inverse of e modulo (p — 1)(¢ — 1);

Publish the pair (e, n) as an RSA public key, also called encryption key;

A O

Keep secret the pair of integers (d, n) as an RSA secret key, also called
decryption key.

Assume that a message is partitioned into smaller blocks and each message block is
identified with integer m such that 0 <m < n. The transformation E, of a plaintext m to a

ciphertext ¢ using an RSA public key (e,n) is performed as

E.(m)=m" mod n.

The transformation D, of a ciphertext ¢ to a plaintext m using an RSA secret key
(d,n) is performed as

Dy(c) = ¢ mod n.

We justify the correctness of the RSA algorithm by considering » as a product of an

arbitrary number of prime numbers instead of two. Let n be a product of k prime integers
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DisPss---» P, and m 1is a positive integer. Further, suppose that e and d are positive
integers such that ed =1(modg(n)). Since ¢@(n)=(p, —1)---(p, —1), it follows that
ed =1(mod(p, —1)) for i=1,....k. If m is divisible by p, then it is trivially true that
m* =m(mod p,), otherwise ged(p,,m)=1 and hence by Fermat’s little theorem
m” =1(mod p,). On the other hand, we have ed =1(mod(p, —1)) meaning that
ed =1+1t(p,—1) for some integer ¢ and hence we have m* =m"”"'m=m(modp,).
Thus we obtain m* =m (mod p,) for i=1,...,k. Since ged(p,,p;)=1 for i,j=1,....k
and i # j, it directly follows that m* =m (mod p,p,---p,), where n=p,p,---p,. Now,

suppose that m* =m (modn) and m* =m'(modn). Then it follows m=m'(modn)
implying m =m' since both m and m' are less than n. Therefore, the function D, does

recover the original message and for any plaintext m there is exactly one ciphertext

c=FE, (m).

Since the RSA cryptosystem rests on the difficulty of factoring integers, it would be
easy to break the RSA cryptosystem if factoring integers could be performed in polynomial

time.

4.4.2 The ElGamal Cryptosystem

The ElGamal cryptosystem takes advantage of intractability of the discrete logarithm
problem. Assume we have defined a large prime field GF(p) and an element g such that g is
a generator of the field GF(p). We partition the original message into smaller blocks and
identify each message block with integer m such that 0 <m < p—1. The ElGamal

cryptosystem works as following:

1. We choose an integer a in the range (0, p — 1) and keep it secret;

2. We publish the integer g” as the public key;

3. To encrypt a message m associated with the public key g“ we choose an
integer k at random and send the pair (gk, mg™) to a recipient;

4. To recover the message m the recipient multiplies mg™ by (g*).
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To justify the correctness of the scheme it is enough to note that both integers m and
g“* are elements of GF(p) and hence their product mg™ is also an unique element of GF(p).
Multiplying mg™ by (¢*)! we obtain the original message m since mg™ (g*)™ =m . The
uniqueness of the encryption and decryption operations follows from the fact that the
multiplication operation in finite fields is defined uniquely, i.e., for any elements

x,y€GF(p) if xy=z and xy==z' then z=2".

Breaking the ElGamal cryptosystem is equivalent to solving the discrete logarithm
problem for GF(p). Hence anyone who can solve the discrete logarithm in GF(p) can break
the ElGamal cryptosystem. Theoretically, if there were a way to compute g*° knowing only
g“ and g’ the cryptosystem also might be broken without solving the discrete logarithm

problem.

4.4.3 The Diffie-Hellman Key Exchange System

Whitfield Diffie and Martin Hellman in 1976 introduced the idea of public key
cryptography that addressed the key management problem known as the key exchange
protocol. The protocol provides a way to securely accomplish securely a key establishment
process whereby a shared key becomes available for two parties for subsequent

cryptographic use.

Let GF(p) be a prime field and g a generator of GF(p), which is public. Suppose

users A and B want to agree upon a key. The protocol works as follows:

A chooses a random positive integer a and keeps it secret;
A computes g“ and publishes it as his or her public key;

B chooses a random positive integer b and keeps it secret;

L bhb o=

B computes g” and publishes it as his or her public key;
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5. The secrete key, therefore, is g* that can be computed easily by both users for

later usage.

The Diffie-Hellman key exchange system is based on the intractability of the discrete
logarithm problem meaning that by solving the discrete logarithm problem we can break

the Diffie-Hellman key exchange system.

4.4.4 Digital Signatures

A digital signature serves the same purpose as a handwritten signature, which is used
to provide authentication, data integrity and non-repudiation. The Digital Signature
Standard (DSS) was proposed in 1991 by the U.S. government’s National Institute of
Standard and Technology (NIST). The standard is based on the Digital Signature Algorithm
(DSA) and provides a standard signature method. The DSA consists of three parts: setup

scheme, signing scheme and a verification scheme. It works as follows:

e Setup scheme

1. Choose two prime integers p and g of size 512 and 160 bits respectively,
where p = 1 mod g;

2. For a random element gy in GF(p) different from zero compute a
generator g = (g9)? ~ V4 of nontrivial subgroup of GF(p)* — a set of
nonzero elements of the prime field GF(p) ;

3. Take a random integer d such that 1 < d < g and make it a secrete key;

4. Publish e = g as the public key.
e Signing scheme

1. Apply a hash function H to a message m: 0 < H(m) < gq;
Take a random integer & and compute g that is also in GF(p)";
Set = g" mod ¢;

el A

Find an integer s such that s = (k' (H (m) + dr))mod g ;

5. Set a signature as a pair (7, s).



19

e Verification scheme
1. Compute x = s H(m) mod g;
2. Compute y=s"rmod g;
3. Compute t=g'¢" in GF(p);
4

. If r =t mod g then the verification is certifiable.

The DSA algorithm is originally based on ElGamal and Schnorr’s work and rests on
the intractability of the discrete logarithm problem. To break the system one needs to solve

the discrete logarithm problem.

4.4.5 Elliptic Curve Cryptosystem

In recent years elliptic curve cryptosystems have been used more and more in public-
key cryptography. A vast amount of work has been done on applications of elliptic curve
cryptography. The idea of using an elliptic curve over a finite field GF(p) in public key
cryptosystems was independently proposed in 1985 by N. Koblitz and V. Miller. Elliptic
curve cryptosystems provide a high level of security with small key sizes that makes them
more appropriate for many cryptographic applications such as mobile communication and
smart cards. Also, recently an extensive and careful study of the software implementation
on workstations of the NIST-recommended elliptic curves over prime fields has been made.
A typical and popular application of elliptic curves is an analogue of DSA — the Elliptic
Curve Digital Signature Algorithm, which was accepted in 2000 as NIST and IEEE

standards.

The security of elliptic curve cryptosystems is based on the intractability of the
discrete logarithm problem for points of an elliptic curve (Menezes A. J., 1993). Unlike the
discrete logarithm and integer factorization problems no algorithm with sub-exponential

running time solves the elliptic curve discrete logarithm problem.



CHAPTER S

PRIME FIELD ARITHMETIC

5.1 INTRODUCTION

An efficient software implementation of prime field arithmetic is a crucial factor in
cryptographic applications such as RSA, (elliptic curve) digital signature algorithms and
Diffie-Hellman key exchange system. The basic arithmetic operations in the prime field
GF(p) are addition, subtraction, multiplication and inversion. In order to obtain
cryptographic high-speed software implementation for embedded systems or general-
purpose computers, theses operations should be implemented thoroughly in a manner
suitable for systems having 32-bit architecture. The algorithms proposed in this chapter
perform word-level (32-bit) multiprecision prime field arithmetic that is much faster with
comparison to bit-level implementation. For some arithmetic operations we consider

several algorithms. Their timing results of our implementations are provided as well.

5.2 REPRESENTATION OF PRIME FIELDS

We perform modular arithmetic operations in GF(p) where the elements can
represented as the set of integers {0, 1, ..., p — 1}. To represent any one of these elements
in a general-purpose computer, depending on the length of the modulus p, we need multiple
32-bit words. This is actually an array of words. This representation is also known as
multiprecision representation. Arithmetic done with these elements is called multiprecision

arithmetic. To create a scalable general-purpose cryptographic application we must not

20
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place any restrictions on the modulus p and its length, i.e. the length of the modulus may be

160 or 2048 bits, while requiring that word size be 32-bit length.

Let k& be the bit length of the modulus p, ie., & =|_10g2 p_|, w be the word size
(usually w = 8, 16 or 32), s =[k/w]| — the exact number of words to represent the prime

modulus p and m = sw the total number of bits of s. Thus an element of GF(p) is
represented as a s word array of unsigned integers. We will denote an element in GF(p) as
A=(A[s—1]A[s —2] ... A[1] 4[0]), where A[i] is a one word unsigned integer. A[s — 1] is
the most significant word (MSW) and A[0] is the least significant word (LSW). Similarly,
we represent 4 using bit-level representation as A = (a[k —1]a[k —2]...a[l]a[0]), where
alk — 1] 1s the most significant bit and a[0] is the least significant bit. If £ is not a multiple
of w then we will represent 4 as s = !_k/ w—‘ words of unsigned integers such that exactly
kmodw least significant bits of A4[s —1] are occupied, and w— (k mod w) most significant

bits of A[s —1] are all zero.

| Als-11 | As-21 ]| A[1] | A1[0] |

Figure 5.1 Representation of a in GF(p) as an array of w-bit unsigned integers.

Alternatively, w-bit representation of an integer can be interpreted as a representation
of the integer to the base 2", where w is usually 8, 16, or 32. Thus, if »=2" then the
decimal representation of an element A = (A[s—1]A[s—2]...A[1] A[0]) from GF(p) is

equal to A[s —11p°" + A[s —2]p* > +-+-+ A[1]b + A[0].

5.3 MODULAR ADDITION AND SUBTRACTION

Let A and B be elements of GF(p). To compute C = 4 + B we first perform an
ordinary multiprecision addition operation (McEliece R. J.). Since the result must be in
GF(p) we check whether or not C = 4 + B is greater than or equal to p. If C > p we set C =

p — C. We will use the assignment operation (C[i], &) = A[i] + B[i] + & which means that
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we add up A[i], B[i] and the previous 1-bit carry ¢ (that is equal to 0 or 1). The result is in
C[i], where ¢is set to 1 if a carry occurred, 0 otherwise. We will denote the multiprecision

subtraction operation 4 — B by Sub(4, B). The addition algorithm is given bellow:

Modular Addition Algorithm
INPUT: p, A = (A[s —1]...A[1] 4[0]), B= (B [s —1]...B[1] B[0]) and 4, B in GF(p).
OUTPUT: C=(C[s —1]...C[1] C[0]) = 4 + B in GF(p).
Step 1. (C[0], &) = A[0]+ B[0]
Step2. fori=1tos—1
Step 3. (Cli], & =4A[1] + B[i] + ¢
Step 4. if C> p then C = Sub(p, C)
Step 5. return (C[s —1]...C[1] C[0])

Similarly, we compute C = 4 — B (McEliece R. J., 1987). If the difference is less than
zero we perform the extra step C = p + C. We define a notation for subtraction operation as
(Cli], &) = A[i] — B[i] — & which means we subtract B[i] and the previous 1-bit borrow &
from A[i] such that the difference is in C[i]. ¢ is set to 1 if a 1-bit borrow occurrs, 0

otherwise. Let us denote the multiprecision addition operation 4+ B by Add(A, B). The

subtraction algorithm is outlined bellow:

Modular Subtraction Algorithm
INPUT: p, A = (A[s —1]...A[1] 4[0]), B= (B [s —1]...B[1] B[0]) and 4, B in GF(p).
OUTPUT: C=(C[s —1]...C[1] C[0]) = 4 — B in GF(p).
Step 1. (C[0], &) = A[0] — B[0]
Step2. fori=1tos—1
Step 3. (Clil, &y = A[i] — Bli] — ¢
Step 4. if C <0 then C = Add(p, C)
Step 5. return (C[s —1]...C[1] C[0])



23

5.4 MODULAR REDUCTION

One of the basic frequently used arithmetic operations in public key cryptography is
the modular reduction. The modular reduction operation is a time critical step in the
implementation of the modular multiplication and exponentiation operations. The
efficiency of the algorithms mainly depends on a good implementation of the modular

reduction.

There are three basic well-known algorithms for the modular reduction operation,
which may be implemented to run on general-purpose computers: the classical algorithm,
Barrett’s algorithm and Montgomery’s algorithm (Bosselaers A. et al., 1994). Unlike in the
classical algorithm in Barrett’s and Montgomery’s algorithms expensive divisions are
replaced with less-expensive operations. We will describe the all three algorithms, but we
implemented only the classical algorithm and Montgomery’s algorithm and measured their

running time.

We will assume that b =2", where w=8,160r 32. Further, X and M are two integers

such that X > M. We will express these integers in radix b notation as follows:

[-1
X =3 X[ip', where 0 < X[/ ~1]<b and 0< X[{]<b for i =0,l,...,[ -2,
i=0

k-1
M :ZM[i]bi,where O0<M[k—-1]<b and 0 < M[i]<b for i=0,1,...,k—2.

i=0

Thus our problem is to compute X mod M.

5.4.2 The Classical Reduction Algorithm

The classical algorithm (Knuth D. E.) imitates the well-known ordinary pencil-and-
paper method. At each step we divide (k+1)-digit number Z by k-digit modulus M obtaining
the one-digit quotient @ and k-digit remainder R. Since R<M, we set
Z = Rb + (next digit of X') as the next step of the algorithm. We repeat these operations

[ —k times. To estimate Q as accurately as possible we normalize M by shifting as many

bits to the left as necessary to make the most significant bit of M equal to 1, which ensures
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that M[k —1]> \_b/ 2J. Hence by dividing the most significant digits of Z by M[k—1] we
obtain the quotient Q that may be smaller than its correct value at most two. At the end we

obtain the correct value of the remainder by shifting it to the right the same number of bits

as M was shifted to the left during normalization. The algorithm is given below:

Classical Reduction Algorithm
INPUT: b, X = (X[/ —1]...X[1] X[0]), M= (M [k—-1]...M[1] B[0]).
OUTPUT: X mod M.
Stepl. R=X
Step2. If R> Mb"™* then R=R - Mb"™*
Step3. fori=/—-1tok by—-I
Step 4. if R[i{]=M[k—1]then Q=b— 1 else Q = (R[i]b + R[i —1])/M[k —1]
Step 5. while Q(M[k —1]b+ M[k —2]) > R[i]b” + R[i —1]b + R[i — 2]
Step 6. 0=0-1
Step7.  R=R-QMb"™
Step 8. if R<0 then R=R+QMb"™*
Step 9. return R

5.4.3 Barrett’s Reduction Algorithm
In the Barrett’s algorithm (Bosselaers A. et al., 1994) the quotient X/M is estimated

using the less-expensive multiplication operation and division by b’ for some ¢ that
depends only on the modulus M. When b is a power of 2 the division by b is performed
efficiently in general-purpose computers by shifting ¢ bits to the right. The Barrett’s
algorithm requires an expensive modulus dependent precalculation u = |_b2k / M J and hence
is applicable if we perform many reductions using a single modulus for a fixed base.
However, for a fixed modulus M and base b there is a restriction on X, i.e., X must be less

that 5. The algorithm is outlined bellow:
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Barrett’s Reduction Algorithm
INPUT: b, X = (X[I -1]...X[1] X[0]), M= (M [k—1]...M [1] M[0]).
PRECOMPUTATION: 1 =|b% /M |

OUTPUT: X mod M.

Stepl. R=X

Step2. Q= ((R/b"‘1 ),u)/bk+l

Step3. R = Rmodb*"' —(OM )modh**'

Step4. if R <0 then R=R+b""
Step 5. while R>M
Step 6. R=R-M

Step 7. return R

5.4.4 Montgomery’s Reduction Algorithm

Montgomery’s reduction algorithm reduces X modulo M by replacing expensive
division by M with a multiplication operation followed by division by a power of b
(Bosselaers A. et al., 1994). This is performed using the Montgomery’s reduction method
(Montgomery P. L).

Let R=h" be an integer greater than M such that gcd(R,M) =1 meaning that M
must be an odd integer. The M-residue of an integer ¥ < M with respect to R is defined as

(YR)ymod M . We will denote the M-residue of an integer ¥ < M by Y. The Montgomery

reduction of an integer Y is defined as (YR™')modM , where R~ is the inverse of B

modulo M, which is the inverse operation of the M-residue transformation.

The basic idea of Montgomery’s reduction is to make X divisible by R by adding
multiples of M. Let M’ =—M " modR . Then for any integer ¥, (Y +TM)/R is an integer

congruent to YR™' modulo M, where T = (M X)mod R . This property allows us to perform

a Montgomery reduction YR'modM for integers 0<Y < RM in the same time as
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multiplication. The reduction process proceeds word by word hence we perform this

operation by computing one word 7; at a time to and adding 7,Mb' to X that repeats k

times. This allows us to compute M [0]= M[0]"' modb instead of M'. The algorithm is

given below:

Montgomery’s Reduction Algorithm
INPUT: b, X = X[/ -1]... X[1]1X[0], M =M [k-1]...M [1] M[O]).
OUTPUT: X mod M .
PRECOMPUTATION: M'[0]=M[0]" modb, X = XRmod M .

A

Stepl. p=Xx
Step2. fori=0tok—-2

Step 3. T[i] = (F[i]IM'[0]) mod b

Step 4. F=X+T[i]Mb'

Step5. 7= X/p*

Step6. if #>M then F=7r-M
POSTCOMPUTATION: r = 7R~ mod M

return »

5.4.5 Implementation Results

The classical reduction algorithm and Montgomery’s reduction algorithm was
implemented in C and on 700 MHz Pentium II computer running Windows 2000 operating
system with 128 megabytes of memory. To measure execution times we fixed a 5-word
prime modulus and generated random numbers of length between 5 and 9 words. For each
word length we run codes 1000 times. The execution times of the routines of the classical
reduction and Montgomery’s reduction algorithms are tabulated in Table 5.1 in

microseconds.



27

Table 5.1 Execution times in microseconds for reduction algorithms.

Length of X The Classical Montgomery’s Classical o
(in words) Algorithm Algorithm Montgomery's
5 0.31 0.92 33.7
6 1 0.81 123.4
7 1.21 0.94 128.7
8 1.64 1 164
9 2.1 1.14 184.2

For each word length the relative ratio between the classical reduction algorithm and
Montgomery’s reduction algorithm was obtained. As can be seen from Table 5.1, for 5-
word integers Montgomery’s reduction algorithm demonstrates poor performance
comparing to the classical, however. When the length of X is equal to the length of the
modulus the classical algorithm demonstrates better performance since for loop in Step 3 of
the classical reduction algorithm is skipped. As the length of X’s increases the
Montgomery’s algorithm runs at least 1.2 times faster than the classical reduction

algorithm.

5.5 MODULAR MULTIPLICATION

Modular multiplication as well as the modular reduction operation has significant
impact on performance of implementation of cryptographic algorithms. There are several
algorithms to perform modular multiplication operation. The simplest way to implement
modular multiplication for any elements 4 and B of GF(p) is to compute the product 4B
and reduce the product modulo p. The Montgomery multiplication algorithm is more
suitable when one performs several modular multiplication operations with respect to the
same modulus. For example, the RSA algorithm and the Diffie-Hellman Key Exchange
scheme require modular exponentiation operation. The modular exponentiation algorithms
perform modular reduction and squaring operations at each step of exponentiation. In
particular, Montgomery’s multiplication algorithm is suitable for implementation on
general-purpose computers. We will consider two algorithms: standard modular

multiplication algorithm and the Montgomery’s multiplication algorithm.
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The following algorithm (Knuth D. E.), based on the separated operand scanning
method, performs integer multiplication of 4 and B followed by reduction modulo M

operation.

Standard Modular Multiplication Algorithm
INPUT: 4 = (A[s —1]...4[1] 4A[0]), B=(B [s —1]...B [1] B[0]), M.
OUTPUT: 4B mod M.
Step 1. fori=0tos—1
Step 2. e=0;
Step 3. (&,S)=Cli+ jl+ A j1Bli]+ ¢
Step 4. Cli+j]=S8
Step5. C(li+s]=¢
Step 6. return C mod M

Montgomery’s multiplication algorithm is based on the Montgomery product. The
Montgomery product of integers X and Y less that M is (XYR')mod M , where R is an

integer relatively prime to M. Since Montgomery’s multiplication algorithm performs
division by powers of 2, in practice R is chosen to be a power of 2. The division by powers
of 2 can be implemented efficiently on general-purpose computers by shifting to the right

necessary number of bits of a dividend.

Formally, let M be a prime modulus and & is the minimum number of words needed
to represent M in radix b = 2" notation, where w = 8,160r 32. Further, assume that R = b*
and X and Y are integers less that M. The Montgomery product of M-residues is defined as
7= ()A(}?R"l)modM , where R™' is the inverse of B modulo M. In its general form the
Montgomery multiplication algorithm takes two AM-residues X and Y, computes the

product XY and performs the Montgomery reduction ()A(}?R"l)modM . The result Z is the
M-residue of the product XY .
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There are many ways to implement the Montgomery multiplication algorithm (Kog
C. K. et al., 1996). The coarsely integrated operand scanning method comparing to other

methods demonstrates better performance in terms of time and space requirements. In this
method the multiplication XY and reduction (X'?R*I)modM are performed

simultaneously that results in the better performance. The reduction operation is performed
in the same manner as in the Montgomery’s reduction algorithm, i.e., we precompute

M'[0] instead of M' and process one word at a time. The Montgomery multiplication

algorithm is outlined below.

The Montgomery Multiplication Algorithm
(coarsely integrated operand scanning method)

INPUT: X = X[s—1]... X[1]1X[0], ¥ =Y[s—1]...Y[1]Y[0], M, b.
OUTPUT: (XYR )mod M .

Step 1. fori=0tos—1

Step 2. =0

Step 3. forj=0tos—1

Step 4. (6,8)=Tli+ j1+ X[jIV[i] + ¢
Step 5. T[i]=S

Step 6. (,8)=T[s]+¢

Step 7. T[s]=S

Step 8. T[s+1]=¢

Step 9. =0

Step 10. m =T[0]M T0]mod b
Step 11. (¢,8)=T[0]+mM][0]

Step 12. forj=0tos -1
Step 13. (£,8)=T[j]+mM[j]+e&
Step 14. j-1]1=8

Step 15. (6,8)=T[s]+¢
Step 16. T[s—1]=S

Step 17.  T[s]=T[s+1]+¢
Step 19. return T
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The Montgomery multiplication algorithm is used to compute a modular
multiplication of two integers X and Y with respect to a prime modulus as follows. We first
perform M-residues transformations X and Y by multiplying with R, i.e., X = XRmod M
and Y =YRmodM . Then we compute Z= ()A(I?R"l)modM using the Montgomery
multiplication algorithm. Finally, to change the residue domain we compute
Z=ZR"'modM . However, for a single modular multiplication the Montgomery
multiplication algorithm should not be used because of relatively expensive M-residue
transformations. To measure efficiency of both standard modular multiplication and the
Montgomery multiplication algorithm we implemented the exponentiation algorithms
based on these algorithms and run 5 times on 700 MHz Pentium II each time generating
1000 numbers. As a result we determined average-running times as 55.81 microseconds for
Montgomery’s multiplication and 122.83 microseconds for the classical algorithm, i.e.,

Montgomery’s multiplication algorithm is at least two times faster than the classical

algorithm.

5.6 MODULAR EXPONENTIATION

The simplest way to compute the modular exponentiation 4° mod M is to multiply 4
by itself e times (Knuth D. E.). At each step of multiplication we reduce the product

modulo M and so the whole process requires e—1 multiplications and e—1 reductions

modulo M. For example, to compute 4’ mod M we proceed as following:

Step 1. C = A> mod M

Step 2. C = (CA)mod M = A mod M
Step 3. C =(C4A)mod M = A* mod M
Step 4. C = (CA)modM = 4> mod M
Step 5. C = (CA)mod M = A° mod M

Step 4. C = (CA)mod M = A" mod M
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This method computes all powers of 4 less that e to find 4° and hence is not
applicable for large exponents. The Montgomery multiplication algorithm performs the
modular multiplication without expensive division by the modulus and so is more suitable
whenever several multiplication operations are required. The exponentiation operation can
be performed faster by replacing the ordinary multiplication followed by reduction with the
Montgomery multiplication. There are several methods that improve the exponentiation
algorithm. The next section will focus on these algorithms. We will fix the multiplication
algorithm to the Montgomery multiplication algorithm and describe binary, m-ary and

recoding methods. We will denote the Montgomery product of 4 and B by MonProc(A, B).

5.6.2 The Binary Method

The binary method performs exponentiation by scanning bits of the exponent starting

from the most significant bit to the lowest significant bit (Knuth D. E.). Let f(4,e) be a
function that computes A°. Then f(A4,e) is defined recursively as f(4,0)=1,
f(A,e)=(4") if e is even and f(4,e)=(4“">f 4 if 4 is odd, ie., subsequent

multiplication by A4 is performed if the scanned bit is different form zero. Thus we obtain

the exponentiation algorithm based on the previous definition.

Exponentiation Algorithm (binary method)
INPUT: 4, M, e = (e[k —1]...e[1] e[0]).
OUTPUT: 4° mod M .
PRECOMPUATTION: 4 = ARmod M (M-residue of A).
Step 1. ife[k—1]=1then C =4 else C =1
Step2. fori=k-2to0
Step 3. C = MonProc(é , é)
Step 4. if e[i] = 1 then C=MonProc(C, A)
POSTCOMPUTATION: C = CR ' mod M
Step 6. return C
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A

For example, let e=53,, =(110101),. Then k£ =6 and so we start with C = 4 since

e[5]=1. We compute 4>’ mod M using the binary method as follows.

i e Step 3 Step 4 C"V“;ll’;‘;ed
4 1 C= MonProc( C, é) C= MonProc(é , A ) A* mod M

3 0 C =MonProc(C, C) skipped A° mod M

2 1 C=MonProc(C,C) C=MonProc(C, 4) A”modM

1 0 C =MonProc(C, C) skipped A mod M
0 1 C=MonProc(C,C) C=MonProc(C, A) A” mod M

5.6.3 The m-ary Method

The m-ary method is regarded as a generalization of the binary method (Ko¢ C. K.,

1994). Instead of scanning one bit of the exponent at a time in the m-ary method we scan

log, m bits at a time. Assume that m is a power of 2 and » =log, m . The exponent e can
be written using base m notation as e=d, +d m+...+d, m"" . This representation allows
us compute A°as a product A A% --- 4%~ . As an example, let e =1231,, = (10011001111),

and m =16. Since log, 16 =4 we partition bits of the exponent into 4-bit groups obtaining

base-16 representation 15+12(16)+4(16>) =1231. Thus we have 4" = 4'5(4)*(4* ™.

The exponentiation algorithm based on m-ary method is outlined below:

Exponentiation Algorithm (m-ary method)
INPUT: 4, M, m=2", e.
OUTPUT: 4°mod M .

PRECOMPUATTION: 4= ARmod M . Compute and store A" for n= L...m-1".
Compute (d[0]d[1]...d[s —1]),, , base-m representation of e.
Step 1. (¢ = 441

Step2. fori=s-2t00
Step 3. C=¢C"
Step 4. if d[i] # 0 then C= MonProc(C, A"™)
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POSTCOMPUTATION: C = CR ™' mod M
Step 6. return C

5.6.4 The m-ary Recoding Method
The recoding method converts the exponent to a nonstandard representation using

signed digits 1, 0 and —1 (—1 will be denoted by 1). By converting binary representation of
exponent to the signed-digit representation this technique reduces the number of 1s in order
to obtain sparse representation of the exponent. The recoding technique exploits the
following identity
Ml M g 2 = )

to obtain a signed-digit representation of an exponent. For example, let
e=243=(1011101), . The signed-digit representation of this number is (10100101), i.e.,
(10100101)=27 —=2° =27 +1=243. Hence A’ is equal to the product 4"*4474.
Once signed-digit representation of an exponent has been obtained, m-ary method can be

applied. Additionally, in this method we need to precompute and store values A" for

n=1,...,m—1. The m-ary recoding method is given below:

Exponentiation Algorithm (m-ary recoding method)
INPUT: 4, M, m=2",e.
OUTPUT: 4°mod M .

PRECOMPUATTION: A4 = ARmodM . Compute and store A" and A" for
n=1,...,m—1. Compute(d[0]d[l]...d[s—1]), , base-m signed-digit representation
of e.

Step 1. (&= gdls1]

Step2. fori=s-2t00
Step 3. C= ¢
Step 4. if d[i]=1 then C= MonProc(C,A™)
else if d[i]=—1 then C=MonProc(C, A"
POSTCOMPUTATION: C =CR ' mod M
Step 6. return C
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To convert an exponent e to a signed-digit representation we use the canonical
recoding algorithm. A signed-digit representation is said to be canonical if it contains no
adjacent non-zero bits. Let e =(e,e,...e,_;) be an ordinary binary representation of the
exponent. The canonical recoding algorithm converts the exponent to a signed-digit
representation by scanning two bits at a time starting from the least significant bit. The

algorithm uses an auxiliary variable c. Initially ¢, =0. The signed digits are computed

according to the following truth table:

o
o
o
o

E
E

N I ===
N == ==
—|ol—lo|—|lo|—|o
N ===
oo~ |=llol—|o|>>

For example, let e=90=(1011010),. The signed-digit representation of e is

(10101010)=2" —2° -2 +2=90.

5.6.5 Implementation Results

We implemented the modular exponentiation algorithm based on the classical
modular exponentiation algorithm (by repeated multiplication and reduction operations)
and the Montgomery multiplication algorithm. For each algorithm we implemented the
straightforward m-ary method and recoding m-ary method. The performance of the C codes
was measured on a 700 MHz Pentium II computer running Windows 2000 operating

system with 128 megabytes of memory.

We fixed 5, 8, 16 and a 32-word moduli and randomly generated 5, 8, 16, and 32
word bases and exponents respectively. For each single modulus the codes run 1000 times
and execution times for m equal to 2, 4, 16 and 256 were measured. Precomputation

timings were measured separately and are displayed in Table 5.2.
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Table 5.2 Precomputation times in microseconds for the m-ary method.

Length of | Straightforward m-ary Recoding m-ary
modulus
(inwords) | m=4 | m=16 | m=256 | m=4 | m=16 | m =256
5 1352.1 | 1349.6 1580.7 2962.8 | 2939.8 | 2906.7
8 1348.7 | 1976.7 1910.6 3032.4 | 3207.3 4161.6
16 1353.2 | 3243.4 3184 3581.6 | 3790.1 7296.3
32 1437.5 | 8556.1 8250.4 5661.4 | 6492.6 | 19349.4

The execution times of exponentiation operation for different values of m are

tabulated in the following table:

Table 5.3 Execution times in microseconds for the straightforward
m-ary algorithm for different values of m.

Length of
modulus (in m=2 m=4 m=16 m =256
words)
5 262.46 238.34 211.49 187.81
8 930 856.41 844.12 641.98
16 5603.38 5127.4 4589.71 4137.9
32 40659.22 37239 | 33352.96 | 30251.68

Table 5.3 shows that as the value of m increases, the straightforward m-ary algorithm
runs faster. To compare the m-ary recoding method with the straightforward m-ary
algorithm we fixed the value of m to 4, 16 and 256 and run the code for fixed moduli of
length 5, 8, 16 and 32 words. For each modulus we generated 1000 random bases and

exponents of length respectively 5, 8, 16 and 32 words. Execution times are given in Table

5.4.

Table 5.4 Execution times in microseconds for the straightforward m-ary
and the recoding m-ary algorithms.

Length of Straightforward m-ary Recoding m-ary
modulus
(inwords) | m=4 m=16 | m=256 | m=4 | m=16 | m=256
5 288.39 239.64 247.43 290.16 | 252.3 260.88
8 1024.3 774.84 732.04 906.81 777.2 728.78
16 58030.1 5155 4640.3 5629.3 | 51004 | 4647.9
32 40655 36675 33955 39308 | 36285 34087
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From Table 5.4 we can see that the straightforward m-ary algorithm and the recoding
m-ary algorithm differ only slightly. Moreover, when the length of the modulus is 32 words
and m is equal to 256, the straightforward m-ary algorithm runs faster than the recoding m-
ary algorithm. The utmost time gained by the use of the m-ary recoding algorithm is
observed when m is equal to 2, i.e., for the binary recoding method. The execution times for
the straightforward binary algorithm and the recoding binary algorithm are given below in

Table 5.5.

Table 5.5 Execution times in microseconds for the straightforward binary and
the recoding binary algorithms.

Length of Straightforward Recoding Straightfarward
modulus (in bits) binary binary Recoding
160 294.61 246.81 1.19
192 473.28 409.87 1.15
224 699.42 615.76 1.14
256 910.93 798.25 1.14
512 5918.19 5198.26 1.14
1024 42508.33 37613.74 1.13
2048 324835.51 288665.46 1.13

Since the both straightforward and recoding m-ary algorithms require relatively
expensive precomputation it is not a good idea to use them in cryptographic algorithms
such as RSA. The time needed to perform precomputation may exceed the time gained by

the use the straightforward or recoding m-ary algorithms.

5.7 INVERSION

The modular inversion operation is one of the basic operations on prime fields that are
quite expensive at least as multiplication operation so its implementation will have
considerable impact on the performance of cryptographic algorithms. In this section we will
describe several inversion algorithms all of which are based on the Extended Euclidean

algorithm and on the concept of the Montgomery modular inverse.
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5.7.2 The Extended Euclidean Algorithm

The Extended Euclidean Algorithm rests on the well-known Euclidean Algorithm
that was invented originally to compute the greatest common divisor of two integers 4 and

B (Knuth D. E.). We will denote the greatest common divisor of 4 and B by gcd(4,B).

This algorithm exploits the simple property of integers, i.e. for any integers 4 and B
gcd(4, B) = ged(B, R), where R is the least positive remainder of the division 4 by B, and

gcd(A4, B) = B if A4 is divisible by B. This algorithm can be modified to find two integers x
and y for any integers A and B so that gcd(A4,B) = xA+ yB. This property can be used
easily to compute @' for an element a of GF(p) since ged(a, p) =1= xa+ yp means that
xa=1mod p and hence x is the inverse of a. Given 4 and B the Extended Euclidean

Algorithm computes integers x and y such that ged(4, B) = xA+ yB:

The Extended Euclidean Algorithm
INPUT: 4, B.
OUTPUT: d =gcd(4,B), x,y
Stepl. u=4,v=B, x,=1,y,=0,x,=0,y, =1
Step 2. while u #0
Step 3. g=|vjul, r=v—qu, x=x,-qx,, y=y, - qy,
Step 4. VU, UST, X, =X, X, =X, Yy =V, V=V
Step6. d=v,x=x,, y=y,
Step 7. return (d, x, y)

The Extended Euclidean Algorithm requires computationally expensive division
operations at each step of the loop and hence is not practical in cryptographic applications.
To avoid this drawback the binary inversion algorithm exploits the following simple

property of integer numbers. For any integers 4 and B, if 4 is even then gcd(4, B) is equal
to ged(4/2,B) (Jebelean T., 1993). Division by two is intrinsically fast operation on

general-purpose computers, so the binary inversion algorithm is more applicable to

compute modular inversion.



The Binary Inversion Algorithm

INPUT: 4, psuchthat 0< A< p.

OUTPUT: 4" mod p

Step 1.

Step 2.
Step 3.
Step 4.

Step 6.

Step 7.
Step 8.

Step 9.
Step 10.

Step 11.

u=A4A,v=p,t,=1,¢=0
while v #1 and v #1
while u is even
u=u/2
if ¢, is even then ¢, =1¢,/2 else ¢, = (¢, + p)/2
while v is even
v=v/2
if ¢, iseven then ¢, =1, /2 else t, = (¢, + p)/2
ifuzvthen{u=u-v,t =t -t,}else{v=v—-u,t,=t, -t}

if u =1 then return ¢, mod p else return ¢, mod p

5.7.2 The Montgomery Inversion

38

The Montgomery inversion, introduced by Kaliski in 1995, is a relatively new

approach to compute the modular inversion. Let p be a prime integer and 4 be an integer

such that 1< A< p-1. The Montgomery inverse of the integer 4 is defined as

A7'2"mod p, where n= !_log2 p—‘. The following algorithm computes the Montgomery

inverse. This algorithm consists of two phases. The first phase given a prime integer p and

A suchthat 1< A< p—1 computes » = 42" mod p, where n < k < 2n . The second phase

then completes the computation by correcting the output from phase 1, i.e., computes

A7'2" mod p . The Montgomery Inverse algorithm is given below:
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The Montgomery Inverse Algorithm (phase 1)
INPUT: 4, psuchthat 0< A< p.

OUTPUT: 47'2" mod p and k, where n <k <2n
Step 1. u=p,v=A4,r=0,s=1,k=0
Step2.  while v>0

Step 3. ifuis eventhen {u=u/2, s=2s}

Step 4. else if vis even then {v=v/2, r =2r}

Step 6. elseif u>v then {fu=@w—-v)/2, r=r+s, s=2s}
Step 7. elseif v>u then v=(v—-u)/2, s=s+r, r=2r}
Step 8. k=k+1

Step 9. ifr>pthenr=p-r
Step 10. 7r=p-—r
Step 11.  return (7, k)

The Montgomery Inverse Algorithm (phase 2)
INPUT: (7, k) from phase 1

OUTPUT: 47'2" mod p
Stepl. fori=1tok—n
Step 2. if 7 is even then » = 2r else r = (r+ p)/2

Step 3.  returnr

The above-described algorithm performs bit level operations and hence is not suitable
for software implementation on a general-purpose computer. Savas E. and Ko¢ C. K. made
an additional change so that the Montgomery inverse algorithm could be used. The basic
idea is to replace the bit level operations in phase 2 with word level operations by
introducing a new Montgomery radix R =2" instead of 2" such that m is an integer
multiple of the wordsize. To achieve the best performance m is selected to be equal to iw

such that (i —I)w<n <iw=m for a positive integer i where w is the wordsize. The new

version of phase 2 is obtained by adding two Montgomery multiplication operations such
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that for an integer 4 and a prime modulus p it computes 4~'2” mod p. As a result the new

version of phase 2 computes the inverse of 4 and converts it to p-residue with respect to R.

The modified version of the Montgomery Inverse algorithm is given below.

The Modified Montgomery Inverse Algorithm

INPUT: 4, p, n, m such that 1< 4 <2" —1

OUTPUT: 47'2" mod p

Step 1.

Step 2.
Step 3.

Step 4

Perform phase 1 and obtain (7, k), r = A" 2" mod pand n <k <n+m
if n <k <m then {r=MonProc(r, 2°"), k=k+m}

r = MonProc(r, 2°" ")

return r

Another modification of the Montgomery Inverse algorithm introduced in performs

classical inverse operation, i.e., it computes 4~ mod p for an integer 1< A< p—1 and

prime modulus p. Phase 2 are modified so that the output » = A™' 2" mod p from phase 2 is

transformed to 4~ mod p with at most two Montgomery multiplication operations.

The Classical Inverse Algorithm (based on the Montgomery Inverse)

INPUT: 4, p, n, m such that 1< 4 <2" —1

OUTPUT: 4" mod p

Step 1.

Step 2.
Step 3.

Step 4

Perform phase 1 and obtain (7, k), 7 = 4™ 2* mod pand n<k <n+m
if kK >m then {r = MonProc(r, 1), k =k —m}
r = MonProc(r, 2" ")

return r

We implemented the inverse algorithm in C on a 700 MHz Pentium II computer and

compared its running time with the running time of the Montgomery multiplication

algorithm. The result is tabulated in Table 5.6 below.



41

Table 5.6 Running times in microseconds for the
Montgomery multiplication algorithm and the classical
inverse algorithm.

Length of modulus Montgomery Montgomery
(in bits) Multiplication Inversion
160 1.47 114.87
192 1.65 128.70
224 2.00 158.02
256 2.67 190.99
512 7.92 534.30
1024 32.13 1923.31

From Table 5.6 it us seen that the Montgomery multiplication is several times faster

than the inversion operation based on the Montgomery inversion.



CHAPTER 6

THE ELLIPTIC CURVE DIGITAL
SIGNATURE ALGORITHM

The Elliptic Curve Digital Signature Algorithm is the elliptic curve based digital
signature algorithm proposed in 1992 by Scott Vanstone. Like the Digital Signature
Algorithm (DSA) ECDSA provides key generation, signature and signature verification
schemes. The ECDSA is the most popular digital signature algorithm. The International
Standard Organization accepted it in 1998 as an ISO standard. It was also accepted in 1999
as an ANSI standard and in 2000 as NIST and IEEE standards. The main advantage of the
ECDSA over DSA is that for the same key-length the security of an algorithm using the
ECDSA is considerably greater than that using DSA.

Assume that E(F),) be an elliptic curve over a finite field /), and P be point of prime

order N in E(F},) such that the length of N is at least 192 bits. Usually, P is chosen as a

generator of the subgroup <P> and (p,F,,E(F,),P,N) is referred as domain parameters.

e Setup scheme

1. Choose a random integer x in the interval [1, N — 1] and keep it secret;

2. Compute Q = xP. Q is the public key.
e Signing scheme

1. Apply a hash function H to a message m: 0 < H(m) <N;

42
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2. Select a random integer k£ in the interval [I,N —1] and compute

kP = (x, )3
3. Set r =x, modN ;

4. Find an integer s such that sk = (H(m) + xr) mod N;
5. Ifs is zero then return to the step 2.
6. Set the signature as a pair (7, s).

e Verification scheme

1. Verify that » and s are in the interval [, N —1];
2. Compute u, =5 'H(m)modN and u, =s 'rmodN ;
3. Compute (x,,y,)=u,P+u,Q and set v=x, mod N ;

4. The signature is acceptable if and only if » = v.

We have implemented three basic algebraic operations for groups formed by elliptic
curves over finite fields: point addition, point inversion and scalar multiplication (Cohen et
al, Brown et al., 1998). Later using theses functions the ECDSA algorithm was
implemented. The codes were written in C on 700 MHz Pentium II computer. We run and
tested the ECDSA algorithm for different elliptic curves. Coefficients of the elliptic curves
and related finite fields are given in the appendix. The integer numbers are represented in
the base 2°% using decimal digits. For each elliptic curve we run codes 500 times. Timing

results are depicted in the following table.



Table 6.1 ECDSA key generation, signature generation and
signature verification timings in microseconds.

Elliptic Key Signature Signature

curve generation generation verification
C1 P160 26,786.3 20,219.6 51,422.2
C2 P160 25,660.8 20,185.3 51,690.2
Cl P192 38,770.0 31,229.2 78,591.9
C2 P192 40,151.7 31,520.7 79,807.0
NIST P192 42,060.0 34,122.3 79,699.5
C1 P224 57,383.2 46,093.1 114,363.1
C2 P224 55,952.5 46,224.5 107,718.6
NIST P224 60,283.6 50,011.2 114,821.2
C1 P256 78,250.9 64,737.4 156,184.6
C2 P256 79,502.6 67,353.6 157,508.1
NIST P256 81,8554 69,323.6 156,693.5
Cl P384 212,485.8 189,312.0 423,973.6
C2 P384 214,420.6 190,491.2 425,676.0
NIST P384 218,328.8 194,239.3 424,140.8
C1 P512 440,689.3 402,314.0 882,829.3
C2 P512 439,276.1 422,765.0 875,224.7
NIST P512 499.861.9 486,786.5 939,457.1
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CHAPTER 7

CONCLUSION

Groups, rings and fields are fundamental mathematical structures that lay the
foundation for cryptography. Mathematical properties of these structures give rise to
computationally hard problems that allow us to design one-way functions exploited by
cryptographic algorithms. In this thesis we considered finite fields with prime number of
elements called as prime fields. A prime field can be represented as a finite set of integer
numbers together with modular addition operation and modular multiplication operation.
We also considered elliptic curves over prime fields. Elliptic curves are a rich source of

finite abelian groups on which elliptic curve cryptography is based.

We implemented multiprecision subtraction, addition, reduction, modular
multiplication and inversion algorithms for prime field arithmetic aimed to work on
general-purpose computers. For some prime field operations we considered and
implemented multiple algorithms. We measured the running times and compared them.
Montgomery’s theorem gives us a cheaper way to multiply two integers and reduce the
product by a modulus. Since the modular exponentiation is the most frequently used
arithmetic operation we considered several methods and implemented multiple algorithms
for modular exponentiation. We implemented two different modular exponentiation
algorithms: the classical algorithm and the algorithm based on the Montgomery product. As
a result we observed that the Montgomery’s algorithm runs two times faster than the

classical algorithm.

Finally, using the prime field arithmetic procedures we implemented elliptic curve

point arithmetic and elliptic curve digital signature algorithm for different elliptic curves.
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The future research can be conducted in extending the library by developing

procedures that perform finite field operation for arbitrary finite field GF(p").



APPENDIX

C1_P160

1542587393, 3879432752, 3310093403, 3575984732, 3144840534

3719205881, 2456924538, 3061096603, 614799683, 2461125420

105343449, 2450485153, 930660859, 2778888033, 744717828

1498890981, 2436006830, 2633568011, 2311420911, 1353958562

1022802176, 3454009759, 4166317347, 3977839083, 586077994

;::g;u SR

2663636817, 2297342991, 2313557241, 2351555231, 449262933

C2_P160

3954591183, 3812703439, 4159284655, 2189842651, 934206511

2486329882, 1289626620, 64597136, 1632893365, 222300710

2425844884, 1180614102, 106200426, 1897439989, 797418535

1441215752, 473236524, 3447803080, 3566209518, 199039638

2048565661, 2947385441, 1026415668, 3029059881, 75227164

;::g;u S NE s

498012111, 2725972077, 4159329146, 2189842651, 934206511

C1_P192

2175053513, 3332204610, 2106319598, 1393860827, 789161253, 2463096058

901808635, 3566305214, 1179265647, 179497202, 1170456174, 2460392958

2175053513, 3332204610, 2106319598, 1393860827, 789161253, 2463096058

2858530508, 2465081945, 1490809915, 759538952, 2029996948, 140485898

555206940, 185421212, 3205774888, 3150824198, 1777417706, 728489572

;::g;u SIS

99459063, 1970596714, 4260314513, 1393860828, 789161253, 2463096058

C2_P192

1250306691, 396056278, 2601505881, 534154407, 1362483061, 1595199156

867616414, 2027359134, 2896682443, 849552357, 1498913883, 673749683

1496723405, 1206459768, 490775308, 2987648780, 2845854059, 61863010

1157760553, 2161967765, 3036161656, 1729998116, 3999894102, 1043440918

1461775492, 2161024665, 472558623, 4174651643, 3052845635, 1234129591

:::g;u SR

1755539509, 3037058654, 3112302546, 534154408, 1362483061, 1595199156
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NIST_P192

p 14294967295, 4294967295, 4294967294, 4294967295, 4294967295, 4294967295

a | 4294967292, 4294967295, 4294967294, 4294967295, 4294967295, 4294967295

b | 3242637745, 4273528556, 1914974281, 262662571, 3852239079, 1679885593

P, | 2197753874, 4110355197, 1134659584, 2092900587, 2955972854, 411936782

P, | 511264785, 945728929, 1797574101, 1661997549, 4291353208, 119090069

N 13033671729, 342608305, 2581526582, 4294967295, 4294967295, 4294967295

C1_P224

p | 725552005, 2845423983, 54069172, 2902997345, 4065895842, 99700918,
1083833297

a | 3302838848, 1595115968, 3777041922, 3129691098, 1373563308, 3421245063,
758919852

b | 950557985, 1758167159, 1579239137, 3012285341, 2522358170, 1237863700,
793386139

P, | 3149598117, 893375299, 2240762443, 565899189, 553926940, 670842904,
698885573

P, | 1062233727, 2395891116, 322779262, 974859008, 2061791796, 4273376244,
58197125

N | 870003411, 3126672323, 2829466493, 2903035980, 4065895842, 99700918,
1083833297

C2_P224
p | 702452983, 1214255019, 878986955, 953379981, 3986309538, 2887575373,

19280865

2652357196, 713983010, 1958166667, 3761818879, 1809361211, 1036160428,
1172912

b | 461301861, 2535421854, 1850481789, 2447024150, 4284983361, 1444648577,
10320826

P, | 1266926621, 606854806, 2830632472, 3160222785, 3096719789, 3424567889,
957145

P, | 2370583092, 1031196835, 1524110759, 3390450571, 1571481350, 3866392616,
5796543

N | 4116426827, 72296103, 101811847, 953388186, 3986309538, 2887575373,
19280865

NIST P224

p 11,0,0,4294967295, 4294967295, 4294967295, 4294967295

a | 4294967294, 4294967295, 4294967295, 4294967294, 4294967295, 4294967295,
4294967295

b | 592838580, 655046979, 3619674298, 1346678967, 4114690646, 201634731,

3020229253

291249441, 875725014, 1455558946, 1241760211, 840143033, 1807007615,
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3071151293
| 2231402036, 1154843033, 1510426468, 3443750304, 1277353958, 3052872699,

3174523784

N | 549543997, 333261125, 3770216510, 4294907554, 4294967295, 4294967295,
4294967295

C1_P256

P | 2152041647, 1502198436, 2159380012, 3955240668, 758658574, 4061893134,
269290586, 3582153167

a | 2729643541, 1576067140, 3838073187, 2791390472, 3502664604, 2026533070,
1584952649, 2270197294

b | 4217995504, 1410746001, 3282962965, 2857765506, 278922748, 4149464640,
4036374731, 3556056163

P, | 4234915459, 2172097435, 3318241100, 3499055396, 3818222353, 1668925924,
3936201909, 2400765551

P, | 716011241, 1113159874, 2822839933, 4242178085, 3292471632, 3431550869,
2021862991, 1273769712

N | 338982949, 3157267705, 2123805379, 1188268587, 758658576, 4061893134,
269290586, 3582153167

C2_P256

p | 3461386131, 4242372005, 2053711051, 1408372137, 144184269, 2011048294,
3765518954, 1940372971

a | 2733318916, 4128013279, 4235588355, 3679528661, 340097121, 1529638355,
1084502465, 1909983868

b | 3592068870, 584748469, 3493513667, 2141770279, 3295224935, 4058628643,
3323203622, 1713217801

P, | 2866596095, 3715780580, 4188731262, 3123373688, 3622859170, 643568062,
2792141271, 1401598310

P, | 2015972219, 3663181186, 434385189, 2869461847, 3386271818, 1452570981,
900395116, 90953084

N | 405434131, 2056464943, 2350549605, 250106429, 144184269, 2011048294,
3765518954, 1940372971

NIST_P256

p 14294967295, 4294967295, 4294967295, 0, 0, 0, 1, 4294967295

a | 4294967292, 4294967295, 4294967295, 0,0, 0,1, 4294967295

b | 668098635, 1003371582, 3428036854, 1696401072, 1989707452, 3018571093,
2855965671, 1522939352

P, | 3633889942,4104206661, 770388896, 1996717441, 1671708914, 4173129445,
3777774151, 1796723186

P, | 935285237, 3417718888, 1798397646, 734933847, 2081398294, 2397563722,

4263149467,1340293858
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4234356049, 4089039554, 2803342980, 3169254061, 4294967295, 4294967295, 0,
4294967295

C1_P384

1260742493, 3392901779, 2193730719, 3723537569, 681067929, 93611493,
179985939, 2496333200, 168694669, 3977525223, 2250575228, 2474516928

238238490, 2872847588, 656779843, 4245783527, 3955437378, 3535159137,
413323322, 1285401686, 4161150900, 3098262617, 3664150091, 996677088

92047716, 1667411683, 853680317, 667984548, 2571462521, 1828594300,
3791142788, 3522989130, 2985862837, 2538765003, 426818096, 782451406

262021186, 2754234735, 117230908, 1905469124, 1401772299, 3102284934,
109505224, 1591880724, 1195235673, 520956396, 3086160451, 956062078

4107469467, 4105654924, 1233646793, 1082681042, 584143295, 3079929238,
4236614262, 2216251071, 3137564930, 2807923781, 121323002, 864129456

3583843023, 2374707721, 2002156273, 1539926627, 3713530899, 737823573,
179985940, 2496333200, 168694669, 3977525223, 2250575228, 2474516928

C2_P384

4275951097, 1692013271, 3158261515, 622347869, 2660549086, 3594360467,
3490844980, 3241518266, 2634326526, 1105183272, 3105075704, 1478868053

3139533582, 3461094475, 1568296839, 2573473223, 1239709353, 2498383425,
1971300227, 2107243370, 105233091, 2508790830, 1266526216, 560269212

1913816297, 3515765246, 3691390483, 206426652, 1803931059, 2232534887,
2473054830, 888194042, 41873928, 2941934736, 2384767085, 447447435

609197895, 2340424177, 309128596, 79518755, 936407903, 873578323,
2269331456, 477788943, 1218695926, 3183280702, 3398523180, 522374672

3926215189, 1888196087, 1017661911, 3066925227, 1924220483, 1956324652,
1967053315, 3498886157, 660318433, 3891340706, 1282520720, 1386147240

2438832221, 2798175040, 1507470051, 2109842584, 1088443724, 4241433067,
3490844980, 3241518266, 2634326526, 1105183272, 3105075704, 1478868053

NIST_P384

4294967295, 0, 0, 4294967295, 4294967294, 4294967295, 4294967295, 4294967295,
4294967295, 4294967295, 4294967295, 4294967295

4294967292, 0, 0, 4294967295, 4294967294, 4294967295, 4294967295, 4294967295,
4294967295,4294967295, 4294967295,4294967295

3555470063, 713410797, 2318324125, 3327539597, 1343457114, 51644559,
4269883666, 404593774, 3824692505, 2559444331, 3795773412, 3006345127

1920338615, 978607672, 3210029420, 1426256477, 2186553912, 1509376480,
2343017368, 1847409506, 4079005044, 2394015518, 3196781879, 2861025826

2431258207, 2051218812, 494829981, 174109134, 3052452032, 3923390739,
681186428, 4176747965, 2459098153, 1570674879, 2519084143, 907533898

3435473267, 3974895978, 1219536762, 1478102450, 4097256927, 3345173889,
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| 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295

C1 _P512

3972435479, 1764204733, 2549849560, 1616345901, 1996426875,
2404842145, 787873698, 55755720, 2028808543, 642924886,
3045165639, 2225051090, 2006274842, 3866778103

3427881837,
2329455697,

1871084847, 20508022, 1841130766, 929619208,
907334725, 3712928878, 3917512500, 4225685886,
2154779461, 3042976492, 3713322755, 893599195

2012571608,
1394484908,

3975931000,
1058652400,

3852712955, 3653545592, 1693078807, 4027242815,
2822052966, 1870607459, 591569559, 1942760050, 461529855,
389291775, 4007651061, 1193332821, 1966707121

1454672309, 57870769,

2746052680,

2846147534, 1549736485, 3323019829, 2973803838, 1892047013,
2684726614, 749073034, 331541902, 3186182302, 2612376961,
687158746, 2656281191, 1838046819, 1901502262

1738685115,
4215291505,

1653738872, 1124298423, 1270032033, 2035553925, 4201583735,
1478028487, 3576879187, 377927312, 2353534385, 2365404466,
1935145422, 3808106977, 4004581202, 2947442425

1819247152,
2403215142,

1323963577, 965565694, 2954545699,
1131975229, 1369406340, 55755718, 2028808543,
3045165639, 2225051090, 2006274842, 3866778103

642924880,

1561608984, 995136077,

732357913,
2329455697,

C2_P512

3847319715, 2359733666, 2651644093, 2790329907, 1732839427,
355751544, 3712907603, 3393536743, 3535442213,
1579032206, 826039325, 3822185121, 851731775

3007243002,

1016907134,
1070178,

3646285476, 51780629, 3657926561, 1106095612, 2097135445,
1694630651, 2033044939, 67635647, 1903214236, 528316243,
4028742985, 1245786525, 635102426, 467237148

1577454372,
3091027082,

1090822743, 50553298, 2231495586, 3483325804,
1515004131, 2905866206, 3150553724, 3948097860,
2611983071, 2337174672, 793660679, 654932937

2586926729,
2752107447,

4045609094,
4049648414,

3875295360, 2960081641, 3348231280, 1722665286,
482704092, 973606566, 1362402576, 664748766,
2391128292, 1942891384, 1852575030, 239952643

2825220750,
1989332989,

3337889558,
435082357,

1873875067, 2883743132, 2468643188, 3441953944,
3776584087, 592261134, 3595502286, 1506793355,
1380963139, 216454803, 3055455908, 259935842

3931595445,
1007070204,

3567598761,
1726836531,

670262609, 4119725683, 2596439261, 3393442064, 1919846775,
2447858785, 1356874882, 3393536744, 3535442213,
1579032206, 826039325, 3822185121, 851731775

3007243002,

1655063829,
1070178,
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NIST P521

4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295,
4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295,
4294967295, 4294967295, 4294967295, 4294967295, 511

4294967292, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295,
4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295,
4294967295, 4294967295, 4294967295, 4294967295, 511

1800421120, 4014284756, 1026307313, 896786312, 1001504519, 374522045,
3967718267, 1444493649, 2398161377, 3098839441, 2578650611, 2732225115,
3062186222, 2459574688, 2384239135, 2503915873, 81

3269836134, 4185816625, 2238333595, 860402625, 2734663902, 4263362855,
4024916264, 2706071159, 1800224186, 4163415904, 88061217, 2623832377,
597013570, 2654915430, 67430861, 2240677559, 198

2681300560, 2294191222, 2725429824, 893153414, 1068304225, 3310401793,
1593058880, 2548986521, 658400812, 397393175, 1469793384, 2566210633,
746396633, 1552572340, 2587607044, 959015544, 280

2436391945, 3144660766, 2308720558, 1001769400, 4144604624, 2144076104,
3207566955, 1367771011, 4294967290, 4294967295, 4294967295, 4294967295,
4294967295, 4294967295, 4294967295, 4294967295, 511




REFERENCES

Adleman L. M., McCurley K. S. Open problems in number theoretic complexity, II.
Algorithmic Number Theory, (LNCS 877), 291-322, 1994.

Anderson R. Practical RSA trapdoor. Electronics Letters, 29 (May 27, 1993), 995.

Bosselaers A., Govaerts R. and Vandewalle J. Comparison of three modular
reduction functions. Advances in Cryptology-Crypto '93, LNCS 773, 1994, 175-
186.

Brown M., Hankerson D., Lopez J., and Menezes A. Software Implementation of
the NIST Elliptic Curves Over Prime Fields. In D. Naccache, editor, Topics in
cryptology — CT-RSA 2001, volume LNCS 2020, pages 250-265, Berlin, April
2001. Springer-Verlag.

Cohen H., Miyaji A. and Ono T. Efficient elliptic curve exponentiation using mixed
coordinates. Advances in Cryptology - Asiacrypt '98, LNCS 1514, 1998, 51-65.

Crandall R. E. Method and apparatus for public key exchange in a cryptographic
system. U.S. Patent Number 5,463,690, October 1995.

Diffie W. and Hellman M. New directions in cryptography. IEEE Trans. Inform.
Theory, 22 (1976), pp. 644—654.

ElGamal T. 4 public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4): 469472, July 1985.

IEEE. P1363: Standard specifications for public-key cryptography. Draft Version
7, September 1998.

IEEE. P1363: Standard specifications for public-key cryptography. Draft Version
13, November 12, 1999.

53



54

Jebelean T. Comparing several gcd algorithms. Proceedings of the 11th Symposium
on Computer Arithmetic, 180—185, IEEE Press, 1993.

Kaliski Jr. B. S. The Montgomery inverse and its applications. IEEE Transactions
on Computers, 44(8): 1064—1065, August 1995.

Knuth D. E. The Art of Computer Programming, Volume 2, Seminumerical
Algorithms. Addision-Wesley, Reading, MA, 3 Edition.

Koblitz N. 4 Course in Number Theory and Cryptography. 2™ ed., Springer-Verlag,
New York, 1994.

Koblitz N. Algebraic Aspects of Cryptography. Springer-Verlag, Berlin, Heidelberg,
New York, 1998.

Ko¢ C. K. High-Speed RSA Implementation. Technical Report TR 201, RSA
Laboratories, 73 pages, November 1994.

Ko¢ C. K., Acar T., and Kaliski Jr. B. S. Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro, 16(3): 26-33, June 1996.

Lidl R. and Niederreiter H. Introduction to Finite Fields and Their Applications.
Cambridge University Press, New York, NY, 1994.

Menezes A. J. Elliptic Curve Public Key Cryptosystems. Kluwer Academic
Publishers, Boston, MA, 1993.

Menezes A. J., P. Van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, FL, 1997.

McEliece R. J. Finite Fields for Computer Scientists and Engineers. Kluwer
Academic Publishers, 1987.

Montgomery P. L. Modular multiplication without trial division. Mathematics of
Computation, 44(170): 519-521, April 1985.

National Institute for Standards and Technology. Digital Signature Standard. FIPS
publication 186-2. January 2000.



55

Rivest R. L., Shamir A., and Adleman L. 4 method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2): 120-126,
February 1978.

Savas E. and Ko¢ C. K. The Montgomery modular inverse — revisited. IEEE
Transactions on Computers, 49(7): 763—766, July 2000.

Silverman J. H. The Arithmetic of Elliptic Curves. Springer, Berlin, Germany, 1986.



