

A HIGH PERFORMANCE ARITHMETIC LIBRARY TO
IMPLEMENT VARIOUS CRYPTOGRAPHIC ALGORITHMS

by

Bayram KULIYEV

June 2006

A HIGH PERFORMANCE ARITHMETIC LIBRARY TO
IMPLEMENT VARIOUS CRYPTOGRAPHIC ALGORITHMS

by

Bayram KULIYEV

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Fatih University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

June 2006
Istanbul, Turkey

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Kemal FİDANBOYLU

 Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Tuğrul YANIK

 Supervisor

Examining Committee Members

Assist. Prof. Dr. Tuğrul YANIK _____________________

Assist. Prof. Dr. Veli HAKKOYMAZ _____________________

Assist. Prof. Dr. Tahsin UĞURLU _____________________

It is approved that this thesis has been written in compliance with the formatting rules
laid down by the Graduate Institute of Sciences and Engineering.

 Assist. Prof. Dr. Nurullah ARSLAN

 Director

Date
June 2006

iii

A HIGH PERFORMANCE ARITHMETIC LIBRARY TO
IMPLEMENT VARIOUS CRYPTOGRAPHIC ALGORITHMS

Bayram KULIYEV

M. S. Thesis - Computer Engineering
June 2006

Supervisor: Assist. Prof. Tuğrul YANIK

ABSTRACT

A finite field is an algebraic structure that plays an important role in theoretical
foundation of cryptography. Almost all cryptographic algorithms are based on the
properties of finite fields. In particular, elliptic curves combined with finite fields form a
new type of cryptosystem called an elliptic curve cryptosystem. A cryptographic system
can be regarded as a set of facilities implemented at hardware or software level and satisfies
predefined requirements for information security. Security is the most obvious quality of
any cryptosystem. However, an efficient implementation of a cryptosystem is also
important in order to achieve a high performance.

A prime field GF(p) is a finite field with prime number of elements that are
represented as integers between 0 and the prime number p with respect to modular addition
and multiplication operations. This fact makes it possible to implement prime field
arithmetic operations efficiently on a general-purpose computer since elements of a prime
field can be represented on a general-purpose computer as an array of integers. In this
thesis, we concentrate on prime fields. We implemented multiprecision algorithms
performing prime field arithmetic suitable for a general-purpose computer. For some
operations multiple algorithms were considered and implemented. Their performance was
measured and compared. In addition, we implemented arithmetic operations defined on
points of elliptic curves over finite fields and the elliptic curve digital signature algorithm.

Keywords: Finite Field Arithmetic, Elliptic Curve Cryptography, Multiprecision

Arithmetic, Public Key Cryptography, Digital Signature.

iv

YÜKSEK PERFORMANSLI BİR ARİTMETİK İŞLEM
KÜTÜPHANESİNİN GELİŞTİRİLMESİ VE BU KÜTÜPHANENİN

ÇEŞİTLİ KRİPTOGRAFİK ALGORİTMALARIN YAZILMASINDA
KULLANILMASI

Bayram KULIYEV

Yüksek Lisans Tezi – Bilgisayar Mühendisliği
Haziran 2006

Tez Yöneticisi: Yrd. Doç. Dr. Tuğrul YANIK

ÖZ

 Sonlu cisimler kriptolojinin temeleni oluşturan önemli cebirsel yapılardır. Tüm
kriptografik algoritmalar sonlu cisimlerin cebirsel özellikleri üzerine kuruludur. Özellikle,
bu cebirsel yapılar üzerinde tanımlı eliptik eğriler, eliptik eğriler kriptosistemi adlı çok
yaygın bir kriptosistem türü oluşturmaktadır. Kısaca kriptografik sistem yzılım veya
donanım düzeyinde gerçekleştirilen ve belli bir öntanımlanmış güvenlik koşuluna uygun bir
servis türüdür. Güvenlik herhangi bir kriptogrfik sistemin en önemli kriteridir. Fakat, bu
sistemin yüksek performans sergileyebilmesi ve kullanışlı hale gelebilmesi için sistemin
yazılım veya donanım düzeyinde etkin bir şekilde gerçekleştirilmesi gerekmektedir.

Bir p asal sayı için, üzerinde modüler toplama ve çarpma işlemleri tanımlanmış olan
0 ve p − 1 arasındaki sayılar kümesi asal cisim oluşturmaktadır. Bu sayılar genel amaçlı
bilgisayrda kolayaca ifade edilebileceği gibi de cisim üzerinde tanımlanmış aritmetik
işlemler için de hızlı kod geliştirilebilir. Bu tezde biz asal cisimler üzerinde yogunlaşıyoruz.
Asal cisimler aritmetiğini gerçekleştiren çok-duyarlıklı genel-amaçlı bilgisayar için kod
geliştirilmiştir. Bazı işlemler için birden fazla algoritmalar için kod gelişririlmiştir ve
bunların zamanlaması kıyaslanmıştır. Ayrıca, asal cisimler üzerinde tanımlı eliptik eğriler
aritmetiği için kod geliştirilmiştir. Son olarak bu kodlar kullanarak eliptik eğri dijital imza
algoritması için kod geliştirilmiştir.

Anahtar Kelimeler: Sonlu Cisim Aritmetiği, Eliptik Eğrilere Dayalı Kriptografi, Büyük

Sayı Aritmetiği, Açık Anahtar Kriptografi, Dijital İmza.

v

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Assist. Prof. Dr. Tuğrul

YANIK for his immense help in planning and executing the works and insight throughout

the research.

I also give special thanks to Prof. Dr. Bariş KENDİRLİ and Assist. Prof. Dr. Tevfik

BİLGİN for their valuable suggestions and comments during my research.

I express my thanks and appreciation to my family for their understanding,

motivation and patience. Lastly, but in no sense the least, I am thankful to all colleagues

and friends who made my stay at the university a memorable and valuable experience.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ ..iv

ACKNOWLEDGEMENTS..v

TABLE OF CONTENTS ..vi

LIST OF FIGURES .. viii

LIST OF TABLES...ix

INTRODUCTION ..1

FINITE FIELDS ...4

2.1 INTRODUCTION...4

2.2 CYCLIC GROUPS..5

2.3 PRIME FIELDS ..6

ELLIPTIC CURVES ..8

3.1 DEFINITION...8

3.2 GROUP STRUCTURE OF ELLIPTIC CURVES ..8

3.3 CURVE ADDITION AND DOUBLING FORMULAS...10

CRYPTOGRAPHIC SYSTEMS ..12

4.1 INTRODUCTION...12

4.2 COMPUTATIONAL PROBLEMS FOR CRYPTOSYSTEMS13

4.3 SYMMETRIC-KEY CRYPTOSYSTEMS ...14

4.4 PUBLIC-KEY CRYPTOSYSTEMS...14

4.4.1 The RSA Cryptosystem ...15

4.4.2 The ElGamal Cryptosystem...16

4.4.3 The Diffie-Hellman Key Exchange System ..17

4.4.4 Digital Signatures ..18

4.4.5 Elliptic Curve Cryptosystem..19

vii

PRIME FIELD ARITHMETIC ..20

5.1 INTRODUCTION...20

5.2 REPRESENTATION OF PRIME FIELDS ..20

5.3 MODULAR ADDITION AND SUBTRACTION..21

5.4 MODULAR REDUCTION...23

5.4.2 The Classical Reduction Algorithm...23

5.4.3 Barrett’s Reduction Algorithm ..24

5.4.4 Montgomery’s Reduction Algorithm...25

5.4.5 Implementation Results ...26

5.5 MODULAR MULTIPLICATION ..27

5.6 MODULAR EXPONENTIATION ...30

5.6.2 The Binary Method..31

5.6.3 The m-ary Method ...32

5.6.4 The m-ary Recoding Method ...33

5.6.5 Implementation Results ...34

5.7 INVERSION..36

5.7.2 The Extended Euclidean Algorithm ..37

5.7.2 The Montgomery Inversion ...38

THE ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM....................................42

CONCLUSION...45

APPENDIX...47

REFERENCES ...53

viii

LIST OF FIGURES

Figure 3.1 Geometric addition of two distinct points on an elliptic curve.

Figure 3.2 Geometric doubling of a point on an elliptic curve.

Figure 3.3 Elliptic curve points in E(F13), a=2 and b = 4.

Figure 5.1 Representation of a in GF(p) as an array of w-bit unsigned integers.

ix

LIST OF TABLES

Table 5.1 Execution times in microseconds for reduction algorithms.

Table 5.2 Precomputation times in microseconds for the m-ary method.

Table 5.3 Execution times in microseconds for the straightforward m-ary algorithm for

different values of m.

Table 5.4 Execution times in microseconds for the straightforward m-ary and the recoding

m-ary algorithms.

Table 5.5 Execution times in microseconds for the straightforward binary and the recoding

binary algorithms.

Table 5.6 Running times in microseconds for the Montgomery multiplication algorithm and

the classical inverse algorithm.

Table 6.1 ECDSA key generation, signature generation and signature verification timings

in microseconds.

1

CHAPTER 1

INTRODUCTION

A vast deal of digital information such as business transactions, private medical

records, military and diplomatic actions are transmitted everyday over various public

communication channels and stored on computers. With increased computerization of

human life, information security has become of great importance to governmental and

private organizations.

Cryptography is a branch of computer science that deals with design of cryptographic

systems, which addresses issues concerning information security. The basic principle of

any cryptosystems is to transform the original text to a sequence of unintelligible symbols

thereby hiding the contents of the original text. This transformation process is carried out

by means of an additional parameter called a key. Depending on the type of key used for

transformation of text there are two types of widely used cryptographic systems: symmetric

key cryptosystems and public key cryptosystems.

All cryptographic systems until 1970s were based on the concept of symmetric key.

The practical application of the public-key cryptography started in 1976 when Whitfield

Diffie and Martin Hellman introduced the idea of public-key cryptography and described

key exchange algorithm. The idea of the public key cryptography is based on difficulty of

solving a computational problem.

Since then a great deal of research has been conducted concerning its security level

and efficient implementation and many public-key cryptosystems were described. For

2

example, Neal Koblitz and Victor Miller proposed a different type of public key

cryptosystem, which exploits elliptic curves. However many of the proposed cryptosystems

were shown to be insecure. There are three types of widely used public-key cryptosystems,

which were proven to be conditionally secure: those that based on the difficulty of solving

integer factorization problem, those that based on the difficulty of solving discrete

logarithm problem and those that based on the difficulty of solving the elliptic curve

discrete logarithm problem.

In this thesis we develop a high performance arithmetic library that is used to

implement various public-key cryptographic algorithms. Since the mathematical foundation

of cryptography is using the algebraic structures called finite fields, we concentrate

specifically on the implementation of operations on prime fields, i.e., fields with a prime

number of elements. These basic operations are addition, subtraction, multiplication and

inversion.

Furthermore, elliptic curves over finite fields form another algebraic structure called

group, which is used to design elliptic curve cryptosystems. We implement basic operations

on these groups, i.e. addition and using them implement the elliptic curve digital signature

algorithm.

Chapter 2 introduces basic algebraic structures, i.e., groups and fields. Definition of a

cyclic group and a prime field are given. Chapter 3 provides a short background of elliptic

curves. We give the definition of an elliptic curve over a finite field and outline its group

structure together with algebraic operations on the elements of the group.

In Chapter 4 we give basic facts about cryptographic systems. We start with

statement of basic computational problems used to design cryptosystems. We give

definitions of symmetric key cryptosystems and public key cryptosystems together with

their properties. Finally, a brief description of well-known public key cryptosystems is

given.

3

Chapter 5 explains representation of prime fields followed by various multiprecision

algorithms for implementing prime field arithmetic operations. We describe addition and

subtraction operations. Three modular reduction algorithms, classical algorithm, Barrett’s

reduction algorithm and Montgomery algorithm are introduced. Modular multiplication is

implemented using Montgomery’s multiplication algorithm. We also describe different

exponentiation algorithms: binary method, m-ary method, and m-ary recoding method. The

classical inversion operation is implemented according to the Montgomery’s inversion

method. The elliptic curve digital signature algorithm is described in Chapter 6.

4

CHAPTER 2

FINITE FIELDS

2.1 INTRODUCTION

Groups, rings and fields are fundamental algebraic structures of abstract mathematics.

These structures play an important role in theory of cryptography and cryptanalysis. Almost

all cryptographic algorithms are based on the computational properties of groups, rings and

fields. For example, the set of integer numbers forms a ring whose elements can be

factorized uniquely into prime numbers. This property lays a foundation for the RSA

cryptosystem.

 In abstract algebra we are concerned with a set of abstract elements together with a

well-defined binary operation on the elements of the set. Using this operation we combine

any two elements to obtain a third element of the set. For example, let Z be a set of all

integer numbers. Then an ordinary addition operation (+) is well defined on Z, that is, we

can take two elements from the set and add them up to obtain a third element of the set. We

should note that for any element a and b of Z, a + b is always in Z. This means that the

addition operation is closed over the set of all integer numbers.

 Formally, a group (G, ∗) is a set of elements with a binary operation ∗ such that the

elements of G closed over the operation ∗, and the following rules hold:

1. For any a, b, c in G, (a ∗ b) ∗ c = a ∗ (b ∗ c), the associative law;

2. There exists a distinguishing element e, called the identity element, in G

such that for any a in G, a ∗ e = e ∗ a;

5

3. For any a in G, there exists a unique element a−1 in G, called the inverse

of a, such that a−1 ∗ a = a ∗ a−1 = e.

Traditionally for any group (G, ∗) the binary operation ∗ is called a multiplication

operation. The exponentiation operation an for an arbitrary element a in G and an integer n

is defined as a ∗ …∗ a, multiplication of a n times. Further, we define a0 = e and a−n as

(a−1)n.

 A group is called an abelian or commutative group if for any two elements of group

G, we have a ∗ b = b ∗ a. A group with a finite number of elements is called a finite group.

The number of elements in a group is said to be the order of the group and denoted by

G. Finite groups have finite orders, while groups with infinite number of elements have

an infinite order. Any subset G′ of a group ,*)(G is said to be a subgroup of ,*)(G if

,*)(G′ is a group. This fact is denoted by G′ ≤ G.

For example, the set Z, of all integer numbers, is an abelian group with respect to the

ordinary addition operation (+). The identity element of the Z is 0 (zero) since for any

element a in Z, a + 0 = 0 + a = a. Also, −a is the inverse of a as a + (−a) = (−a) + a = 0.

Furthermore, the order of Z is infinite. The set of all even integers, denoted by 2Z, is a

subgroup of Z, i.e., 2Z ≤ Z.

2.2 CYCLIC GROUPS

Let (G, ∗) be a group and g be a distinguished element of G where for any element a

in G there exists an integer power n such that a = gn. The element g is said to generate the

group G and is called a generator of G. This is denoted by 〈g〉 = G.

A group (G, ∗) that can be generated by a single element g in G is said to be a cyclic

group generated by g. All cyclic groups are abelian and may have finite or infinite order.

6

For example, let us consider a set of positive integers *
pZ = {1, 2, …, p −1} where p is

a prime integer. Let us define a binary operation ⊗ on the set *
pZ as follows. For any a and

b in *
pZ define a ⊗ b as (ab) mod p. Then (*

pZ , ⊗) is a cyclic group. In particular,

*
73 Z=〉〈 .

2.3 PRIME FIELDS

A field is a set F with two binary operations + and ∗, traditionally called addition and

multiplication operations such that both (F, +) and (F*, ∗) are abelian groups. F* denotes a

subset of nonzero elements of F, i.e. all elements of F except the identity element of the

group (F, +), where the operations + and ∗ are associated with each other by means of the

distributive law defined as follows:

1. For any a, b, c in F, (b + c) ∗ a = (b ∗ a) + (c ∗ a);

2. For any a, b, c in F, a ∗ (b + c) = (a ∗ b) + (a ∗ c).

For example, sets of rational and real numbers are fields with infinite number of

elements.

A field containing a finite number of elements is said to be a finite field. The number

of element in a finite field is always a power of a prime p. A finite field of order pn is

denoted by Fp or GF(pn). GF means Galois field in honor of the mathematician who first

studied finite fields. For any finite field GF(pn), the prime integer p is called the

characteristic of the finite field. The characteristic of fields with infinite number of

elements is zero. It should be noted that an important property of fields is that two fields

with equal number of elements have the same structure, i.e. they are isomorphic.

Let GP(pn) be a finite field such that n = 1. Then we have GF(p) that is said to be a

prime field. In other words, a finite field whose order is a prime integer is called a prime

field. Because of the isomorphism property of fields any prime field of order p can be

7

represented using a set of positive integers {0, 1, …, p − 1} together with binary operations

⊗ and ⊕ defined for any elements a and b as follows: a ⊕ b is (a + b) mod p, and a ⊗ b is

(ab) mod p. These operations are modular operations over the set {0, 1, …, p − 1} where

the modulus is p.

Any prime field GF(p) is a cyclic group with respect to the operation ⊕ , i.e. 〈1〉 =

GF(p) for any prime p. Similarly, nonzero elements of GF(p) forms a cyclic group with

respect to the operation ⊗. A generator of the last group is called a multiplicative generator

of the field GF(p). For example, 3 is a multiplicative generator of GF(7).

8

CHAPTER 3

ELLIPTIC CURVES

3.1 DEFINITION

An elliptic curve (Koblitz N., 1994) over some field F is a set of points in a two

dimensional plane which satisfies a cubic equation of the general form

edxcxxbyaxyy +++=++ 232 where dcba ,,, and e belong to F. For cryptographic

purpose it is sufficient to consider elliptic curves over finite fields with characteristic other

than 2 and 3. Then the cubic equation is of the form baxxy ++= 32 .

An elliptic curve E(Fp) over a finite field Fp of characteristic neither 2 or 3 is a set of

points),(yx on a two dimensional plane with x, y in Fp satisfying the

equation baxxy ++= 32 , where a, b in Fp and 0)274(16 23 ≠+−=∆ ba , together with a

distinguished element O. O is called the “point at infinity”. ∆ is said to be the discriminant,

where 0=∆ means that baxx ++3 has no multiple roots.

3.2 GROUP STRUCTURE OF ELLIPTIC CURVES

There are two basic mathematical operations on an elliptic curve over a finite field

Fp: negation and addition. Combining points on an elliptic curve by means of these

operations we can obtain new points on the elliptic curve. Geometrically, negation and

addition are defined as follows:

9

1. Negation rule: for P = (x, y) in E(Fp), −P = (x, −y), i.e. the negative of the point

P is the point with the same x coordinate but the negative y coordinate;

2. For P = (x, y) in E(Fp), P + O = O + P = P, P + (−P) = (−P) + P = O;

3. O + O = O, −O = O;

4. For P = (11 , yx) and Q = (22 , yx) such that P ≠ ± Q, P + Q is obtained as

follows. We draw a chord between points P and Q. Then we find the third point

of intersection of the line passing through the points P and Q with the curve.

The point S symmetric to this point relatively to the x-axis is the sum of P and

Q. The figure 1 depicts the addition operation.

5. For P = (11 , yx) and Q = (22 , yx) such that P = Q, P + Q = 2P is found similarly.

Instead of chord we draw the tangent line at the point P (figure 2). This

operation is called doubling.

Figure 3.1 Geometric addition of two
distinct points on an elliptic curve.

Figure 3.2 Geometric doubling of a
point on an elliptic curve.

Points of an elliptic curve together with the operation of addition, as we have defined,

forms an abelian group where the “point at infinity” serves as the identity element of the

group and the inverse of an elliptic curve point P is its negation −P. Scalar multiplication of

an elliptic curve point P by a positive integer k is defined as the sum of k copies of P and

denoted by kP. Similarly, −kP is defined as k(−P), i.e, the sum of k copies of −P.

10

For example, the figure 3 depicts points of the elliptic curve 4232 ++= xxy over

the field 13F .

Figure 3.3 Elliptic curve points in E(F13), a=2 and b = 4.

Points on E(F13)

 (0, 2)
 (0, 11)
 (2, 4)
 (2, 9)
 (5, 3)
 (5, 10)
 (7, 6)
 (7, 7)
 (8, 5)
 (8, 8)
 (9, 6)
 (9, 7)
 (10, 6)
 (10,7)
 (12, 1)
 (12, 12)
 O

There are several coordinated systems to represent elliptic curves (Cohen H. et al.,

1998). Three basic well-known coordinate systems are affine, projective and Jacobian

coordinate systems. We will give addition and doubling algebraic formulas in affine and

projective coordinate systems.

3.3 CURVE ADDITION AND DOUBLING FORMULAS

Let baxxy ++= 32 be the equation of an elliptic curve over pF , where pFba ∈,

and 0274 23 ≠+ ba . For any elliptic curve points P and Q we will define QP + in two

different ways: for affine and projective coordinate systems (Silverman J. H.).

Let),(11 yxP = ,),(22 yxQ = and),(33 yxQP =+ . In the affine coordinate system

addition and doubling formulas are defined as following.

11

• Addition formulas (P ≠ ± Q): 21
2

3 xxx −−= λ , 1313)(yxxy −−= λ , where

() ()1212 xxyy −−=λ ;

• Doubling formulas (P = Q): 1
2

3 2xx −= λ , 1313)(yxxy −−= λ , where

() 1
2 23 1 yax +=λ .

In the projective coordinate system we substitute variable x and y such that ZXx =

and ZYy = hence obtaining a new elliptic curve equation 3232 bZaXZXZY ++= . Let

),,(111 ZYXP = ,),,(322 ZYXQ = and),(33 yxQP =+ . Then addition and doubling

formulas take the following form:

• Addition formulas (P ≠ ± Q):

21
3

21
2

33)(, ZYvAZXvuYvAX −−== , 21
3

3 ZZvZ = , where 2112 ZYZYu −= ,

2112 ZXZXv −= , 21
23

21
2 2 ZXvvZZuA −−= .

• Doubling formulas (P = Q): hsX 23 = , 22
13 8)4(sYhBwY −−= , 3

3 8sZ = ,

where BwhsYXBZYsXaZw 8 , , ,3 2
1111

2
1

2
1 −===+= .

Unlike in affine coordinate systems in projective coordinates we do not perform

inversion operation to compute curve addition and doubling.

12

CHAPTER 4

CRYPTOGRAPHIC SYSTEMS

4.1 INTRODUCTION

Today we live in a highly networked society where the communication is an

important part of human activity. All kind of sensitive information such as business

transactions, diplomatic or military actions, and commercial information is transmitted over

various public or secret communication channels. Organizations that handle secret

information need to protect it in an efficient way. This is the reason for the need of a

reliable cryptographic system that detects and prevents from any action which compromises

the security of secret information owned by an organization.

Any system that provides secure information transmission and safeguarding of

information is referred as a cryptographic system. Basically, a cryptographic system

provides following four basic services (Menezes A. J. et al., 1997):

• confidentiality: this service prevents unauthorized disclosure of sensitive

information;

• authentication: service that provides proof of identity of the sender to the

recipient, so that the recipient can be assured that the sender is who he or she

claims to be;

• data integrity: service that ensures that an unauthorized person does not

modify the contents of message;

• non-repudiation: this service prevents the denial of a previous action.

13

One of the essential ingredients of a cryptographic system is a transformation of

original text, called a plaintext, to an illegible version of the plaintext called a ciphertext.

Modern cryptographic systems do not depend on the secrecy of an algorithm used to

encrypt or decrypt the plaintext. Encryption process uses a key to encrypt or decrypt

information.

Formally, encryption and decryption processes are defined as follows. Let P and C be

two sets of messages, i.e. sets of strings, defined over sets of symbols (alphabets) A and B

respectively. In other words P is a set of all plaintexts while C is a set of all ciphertexts.

Furthermore, let e and d belong to a set of keys K. Then the encryption process associated

with the key e is defined as a one-to-one onto function Ee: P → C. The decryption process

associated with the key d is defined similarly as a one-to-one onto function Dd: C → P.

4.2 COMPUTATIONAL PROBLEMS FOR CRYPTOSYSTEMS

Public key cryptographic systems rest on computational intractability of

mathematical problems (Koblitz N., 1998). Theoretically, a problem is intractable if there is

no algorithm that solves the problem in polynomial time as a function of input length.

There are many mathematical problems that are intractable, however, only three of them

are shown to be most efficient and secure. These are the integer factorization problem, the

discrete logarithm problem for GF(p) and the elliptic curve discrete logarithm problem.

The integer factorization problem is, given a positive integer n, to find all prime

factors of the integer n (Adleman L. M. et al., 1994). To define the discrete logarithm

problem let GF(p) be a prime field with a multiplicative generator g. Then the discrete

logarithm problem is determining for an arbitrary non-identity element a of GF(p) an

exponent x so that a = gx. Similarly, let E(Fp) be an elliptic curve over a finite field Fp.

Suppose Q and P are points on the elliptic curve such that Q = xP for some integer x. Then,

given the points Q and P, the elliptic curve discrete logarithm problem is to find the integer

x.

14

These problems are currently considered intractable, i.e. they are widely believed to

be intractable. There is no known proof that claims whether or not there is a polynomial

time algorithm that solves any of these problems.

4.3 SYMMETRIC-KEY CRYPTOSYSTEMS

Let (e, d) be encryption and decryption keys, respectively. A cryptosystem system is

said to be a symmetric-key cryptosystem if from knowing d it is computationally easy to

determine e and vise versa (Menezes A. J. et al., 1997). A symmetric-key cryptosystem is

sometimes referred as a private key cryptosystem since in practice we take e = d, i.e. the

same key is used to encrypt and decrypt information. The private key is kept secret.

Schematically, symmetric-key encryption/decryption process can be described as

follows. Let P and C be respectively sets of all possible plain and cipher texts, K be a set of

all possible keys and M be the set of all messages. Then a symmetric-key cryptosystem is

defined as a pair of functions Ee: P → C and Dd: C → P such that e and d belong to K.

Since the correspondence between plain and cipher text is one-to-one onto, we have also

Dd(Ee(m)) = m, for some m in M.

Two main reasons for symmetric-key cryptosystems to be the method of choice are

that key sizes are relatively short and fast hardware and software implementations exist.

However, in a large network the key management becomes inefficient since each group in a

network must have their individual pair of keys (e, d). Examples of common symmetric-

key cryptosystems are The One-Time Pad, DES, AES, RC5.

4.4 PUBLIC-KEY CRYPTOSYSTEMS

A notion for the public key cryptosystems was proposed in 1976 by Whitfield Diffie

and Martin Hellman. Unlike in a symmetric-key cryptosystem, there is no need to keep an

encryption key secret for a sender to make any secret arrangement with the recipient.

15

Let M be the set of all possible messages and (e, d) be respectively encryption and

decryption keys together with encryption and decryption functions Ee and Dd. If for a pair

of plain and cipher text (m, c), we encrypt as Ee(m) = c, it is computationally infeasible to

determine d from e and e from d, then the functions Ee and Dd form a public key

cryptosystem, and e and d are called respectively a public key and a secret key.

4.4.1 The RSA Cryptosystem

RSA cryptosystem was first proposed in 1977 by Rivest, Shamir and Adlemann. RSA

encryption algorithm is based on the difficulty of factoring integer numbers. RSA public

key encryption scheme works as follows:

1. Select randomly two large prime numbers p and q, where p ≠ q;

2. Compute n = pq;

3. Select an odd integer e relatively prime to (p − 1)(q − 1);

4. Compute d as a the multiplicative inverse of e modulo (p − 1)(q − 1);

5. Publish the pair (e, n) as an RSA public key, also called encryption key;

6. Keep secret the pair of integers (d, n) as an RSA secret key, also called

decryption key.

Assume that a message is partitioned into smaller blocks and each message block is

identified with integer m such that nm <≤0 . The transformation Ee of a plaintext m to a

ciphertext c using an RSA public key),(ne is performed as

 Ee(m) = me mod n.

The transformation Dd of a ciphertext c to a plaintext m using an RSA secret key

),(nd is performed as

Dd(c) = cd mod n.

We justify the correctness of the RSA algorithm by considering n as a product of an

arbitrary number of prime numbers instead of two. Let n be a product of k prime integers

16

kppp ,,, 21 K , and m is a positive integer. Further, suppose that e and d are positive

integers such that))((mod1 ned ϕ ≡ . Since)1()1()(1 −−= kppn Lϕ , it follows that

))1(mod(1 −≡ iped for ki ,,1K= . If m is divisible by ip then it is trivially true that

)(mod i
ed pmm ≡ , otherwise 1),gcd(=mpi and hence by Fermat’s little theorem

)(mod11
i

p pm i ≡− . On the other hand, we have))1(mod(1 −≡ iped meaning that

)1(1 −+= ipted for some integer t and hence we have)(mod)1(
i

tped pmmmm i ≡≡ − .

Thus we obtain)(mod i
ed pmm ≡ for ki ,,1K= . Since 1),gcd(=ji pp for kji ,,1, K=

and ji ≠ , it directly follows that)(mod 21 k
ed pppmm L ≡ , where kpppn L21= . Now,

suppose that)(mod nmmed ≡ and)(mod nmmed ′≡ . Then it follows)(modnmm ′≡

implying mm ′= since both m and m′ are less than n . Therefore, the function Dd does

recover the original message and for any plaintext m there is exactly one ciphertext

)(mEc e= .

Since the RSA cryptosystem rests on the difficulty of factoring integers, it would be

easy to break the RSA cryptosystem if factoring integers could be performed in polynomial

time.

4.4.2 The ElGamal Cryptosystem

The ElGamal cryptosystem takes advantage of intractability of the discrete logarithm

problem. Assume we have defined a large prime field GF(p) and an element g such that g is

a generator of the field GF(p). We partition the original message into smaller blocks and

identify each message block with integer m such that 10 −<≤ pm . The ElGamal

cryptosystem works as following:

1. We choose an integer a in the range (0, p − 1) and keep it secret;

2. We publish the integer ga as the public key;

3. To encrypt a message m associated with the public key ga we choose an

integer k at random and send the pair (gk, mgak) to a recipient;

4. To recover the message m the recipient multiplies mgak by (gak)-1.

17

To justify the correctness of the scheme it is enough to note that both integers m and

gak are elements of GF(p) and hence their product mgak is also an unique element of GF(p).

Multiplying mgak by (gak)-1 we obtain the original message m since mgmg akak =−1)(. The

uniqueness of the encryption and decryption operations follows from the fact that the

multiplication operation in finite fields is defined uniquely, i.e., for any elements

)(, pGFyx ∈ if zxy = and zxy ′= then zz ′= .

Breaking the ElGamal cryptosystem is equivalent to solving the discrete logarithm

problem for GF(p). Hence anyone who can solve the discrete logarithm in GF(p) can break

the ElGamal cryptosystem. Theoretically, if there were a way to compute gab knowing only

ga and gb the cryptosystem also might be broken without solving the discrete logarithm

problem.

4.4.3 The Diffie-Hellman Key Exchange System

Whitfield Diffie and Martin Hellman in 1976 introduced the idea of public key

cryptography that addressed the key management problem known as the key exchange

protocol. The protocol provides a way to securely accomplish securely a key establishment

process whereby a shared key becomes available for two parties for subsequent

cryptographic use.

Let GF(p) be a prime field and g a generator of GF(p), which is public. Suppose

users A and B want to agree upon a key. The protocol works as follows:

1. A chooses a random positive integer a and keeps it secret;

2. A computes ga and publishes it as his or her public key;

3. B chooses a random positive integer b and keeps it secret;

4. B computes gb and publishes it as his or her public key;

18

5. The secrete key, therefore, is gab that can be computed easily by both users for

later usage.

The Diffie-Hellman key exchange system is based on the intractability of the discrete

logarithm problem meaning that by solving the discrete logarithm problem we can break

the Diffie-Hellman key exchange system.

4.4.4 Digital Signatures

A digital signature serves the same purpose as a handwritten signature, which is used

to provide authentication, data integrity and non-repudiation. The Digital Signature

Standard (DSS) was proposed in 1991 by the U.S. government’s National Institute of

Standard and Technology (NIST). The standard is based on the Digital Signature Algorithm

(DSA) and provides a standard signature method. The DSA consists of three parts: setup

scheme, signing scheme and a verification scheme. It works as follows:

• Setup scheme

1. Choose two prime integers p and q of size 512 and 160 bits respectively,

where p ≡ 1 mod q;

2. For a random element g0 in GF(p) different from zero compute a

generator g = (g0)(p − 1)/q of nontrivial subgroup of GF(p)* − a set of

nonzero elements of the prime field GF(p) ;

3. Take a random integer d such that 1 < d < q and make it a secrete key;

4. Publish e = gd as the public key.

• Signing scheme

1. Apply a hash function H to a message m: 0 < H(m) < q;

2. Take a random integer k and compute gk that is also in GF(p)*;

3. Set r = gk mod q;

4. Find an integer s such that s ≡ qdrmHk mod)))(((1 +− ;

5. Set a signature as a pair (r, s).

19

• Verification scheme

1. Compute x = s-1H(m) mod q;

2. Compute y = s-1r mod q;

3. Compute t = gxey in GF(p);

4. If r ≡ t mod q then the verification is certifiable.

The DSA algorithm is originally based on ElGamal and Schnorr’s work and rests on

the intractability of the discrete logarithm problem. To break the system one needs to solve

the discrete logarithm problem.

4.4.5 Elliptic Curve Cryptosystem

In recent years elliptic curve cryptosystems have been used more and more in public-

key cryptography. A vast amount of work has been done on applications of elliptic curve

cryptography. The idea of using an elliptic curve over a finite field GF(p) in public key

cryptosystems was independently proposed in 1985 by N. Koblitz and V. Miller. Elliptic

curve cryptosystems provide a high level of security with small key sizes that makes them

more appropriate for many cryptographic applications such as mobile communication and

smart cards. Also, recently an extensive and careful study of the software implementation

on workstations of the NIST-recommended elliptic curves over prime fields has been made.

A typical and popular application of elliptic curves is an analogue of DSA – the Elliptic

Curve Digital Signature Algorithm, which was accepted in 2000 as NIST and IEEE

standards.

The security of elliptic curve cryptosystems is based on the intractability of the

discrete logarithm problem for points of an elliptic curve (Menezes A. J., 1993). Unlike the

discrete logarithm and integer factorization problems no algorithm with sub-exponential

running time solves the elliptic curve discrete logarithm problem.

20

CHAPTER 5

PRIME FIELD ARITHMETIC

5.1 INTRODUCTION

An efficient software implementation of prime field arithmetic is a crucial factor in

cryptographic applications such as RSA, (elliptic curve) digital signature algorithms and

Diffie-Hellman key exchange system. The basic arithmetic operations in the prime field

GF(p) are addition, subtraction, multiplication and inversion. In order to obtain

cryptographic high-speed software implementation for embedded systems or general-

purpose computers, theses operations should be implemented thoroughly in a manner

suitable for systems having 32-bit architecture. The algorithms proposed in this chapter

perform word-level (32-bit) multiprecision prime field arithmetic that is much faster with

comparison to bit-level implementation. For some arithmetic operations we consider

several algorithms. Their timing results of our implementations are provided as well.

5.2 REPRESENTATION OF PRIME FIELDS

We perform modular arithmetic operations in GF(p) where the elements can

represented as the set of integers {0, 1, …, p − 1}. To represent any one of these elements

in a general-purpose computer, depending on the length of the modulus p, we need multiple

32-bit words. This is actually an array of words. This representation is also known as

multiprecision representation. Arithmetic done with these elements is called multiprecision

arithmetic. To create a scalable general-purpose cryptographic application we must not

21

place any restrictions on the modulus p and its length, i.e. the length of the modulus may be

160 or 2048 bits, while requiring that word size be 32-bit length.

Let k be the bit length of the modulus p, i.e., pk 2log= , w be the word size

(usually w = 8, 16 or 32), wks = − the exact number of words to represent the prime

modulus p and m = sw the total number of bits of s. Thus an element of GF(p) is

represented as a s word array of unsigned integers. We will denote an element in GF(p) as

A = (A[s − 1] A[s − 2] … A[1] A[0]), where A[i] is a one word unsigned integer. A[s − 1] is

the most significant word (MSW) and A[0] is the least significant word (LSW). Similarly,

we represent A using bit-level representation as])0[]1[]2[]1[(aakakaA K−−= , where

a[k − 1] is the most significant bit and a[0] is the least significant bit. If k is not a multiple

of w then we will represent A as wks = words of unsigned integers such that exactly

wk mod least significant bits of]1[−sA are occupied, and)mod(wkw − most significant

bits of]1[−sA are all zero.

A[s − 1] A[s − 2] … A[1] A [0]

Figure 5.1 Representation of a in GF(p) as an array of w-bit unsigned integers.

Alternatively, w-bit representation of an integer can be interpreted as a representation

of the integer to the base 2w, where w is usually 8, 16, or 32. Thus, if wb 2= then the

decimal representation of an element])0[]1[]2[]1[(AAsAsAA K−−= from GF(p) is

equal to]0[]1[]2[]1[21 AbAbsAbsA ss +++−+− −− L .

5.3 MODULAR ADDITION AND SUBTRACTION

Let A and B be elements of GF(p). To compute C = A + B we first perform an

ordinary multiprecision addition operation (McEliece R. J.). Since the result must be in

GF(p) we check whether or not C = A + B is greater than or equal to p. If C > p we set C =

p − C. We will use the assignment operation (C[i], ε) = A[i] + B[i] + ε, which means that

22

we add up A[i], B[i] and the previous 1-bit carry ε (that is equal to 0 or 1). The result is in

C[i], where ε is set to 1 if a carry occurred, 0 otherwise. We will denote the multiprecision

subtraction operation BA− by Sub(A, B). The addition algorithm is given bellow:

Modular Addition Algorithm

INPUT: p, A = (A[s −1]…A[1] A[0]), B = (B [s −1]…B [1] B[0]) and A, B in GF(p).

OUTPUT: C = (C[s −1]…C[1] C[0]) = A + B in GF(p).

Step 1. (C[0], ε) = A[0]+ B[0]

Step 2. for i = 1 to s – 1

Step 3. (C[i], ε) = A[i] + B[i] + ε

Step 4. if C ≥ p then C = Sub(p, C)

Step 5. return (C[s −1]…C[1] C[0])

Similarly, we compute C = A − B (McEliece R. J., 1987). If the difference is less than

zero we perform the extra step C = p + C. We define a notation for subtraction operation as

(C[i], ε) = A[i] − B[i] − ε, which means we subtract B[i] and the previous 1-bit borrow ε

from A[i] such that the difference is in C[i]. ε is set to 1 if a 1-bit borrow occurrs, 0

otherwise. Let us denote the multiprecision addition operation BA + by Add(A, B). The

subtraction algorithm is outlined bellow:

Modular Subtraction Algorithm

INPUT: p, A = (A[s −1]…A[1] A[0]), B = (B [s −1]…B [1] B[0]) and A, B in GF(p).

OUTPUT: C = (C[s −1]…C[1] C[0]) = A – B in GF(p).

Step 1. (C[0], ε) = A[0] – B[0]

Step 2. for i = 1 to s – 1

Step 3. (C[i], ε) = A[i] – B[i] – ε

Step 4. if C < 0 then C = Add(p, C)

Step 5. return (C[s −1]…C[1] C[0])

23

5.4 MODULAR REDUCTION

One of the basic frequently used arithmetic operations in public key cryptography is

the modular reduction. The modular reduction operation is a time critical step in the

implementation of the modular multiplication and exponentiation operations. The

efficiency of the algorithms mainly depends on a good implementation of the modular

reduction.

There are three basic well-known algorithms for the modular reduction operation,

which may be implemented to run on general-purpose computers: the classical algorithm,

Barrett’s algorithm and Montgomery’s algorithm (Bosselaers A. et al., 1994). Unlike in the

classical algorithm in Barrett’s and Montgomery’s algorithms expensive divisions are

replaced with less-expensive operations. We will describe the all three algorithms, but we

implemented only the classical algorithm and Montgomery’s algorithm and measured their

running time.

We will assume that wb 2= , where 16 ,8=w or 32. Further, X and M are two integers

such that X ≥ M. We will express these integers in radix b notation as follows:

 ∑
−

=

=
1

0
][

l

i

ibiXX , where blX <−<]1[0 and biX <≤][0 for 2,,1,0 −= li K ,

 ∑
−

=

=
1

0
][

k

i

ibiMM , where bkM <−<]1[0 and biM <≤][0 for 2,,1,0 −= ki K .

Thus our problem is to compute X mod M.

5.4.2 The Classical Reduction Algorithm

 The classical algorithm (Knuth D. E.) imitates the well-known ordinary pencil-and-

paper method. At each step we divide (k+1)-digit number Z by k-digit modulus M obtaining

the one-digit quotient Q and k-digit remainder R. Since MR < , we set

) ofdigit next (XRbZ += as the next step of the algorithm. We repeat these operations

kl − times. To estimate Q as accurately as possible we normalize M by shifting as many

bits to the left as necessary to make the most significant bit of M equal to 1, which ensures

24

that 2]1[bkM ≥− . Hence by dividing the most significant digits of Z by]1[−kM we

obtain the quotient Q that may be smaller than its correct value at most two. At the end we

obtain the correct value of the remainder by shifting it to the right the same number of bits

as M was shifted to the left during normalization. The algorithm is given below:

Classical Reduction Algorithm

INPUT: b, X = (X[l −1]…X[1] X[0]), M = (M [k −1]…M [1] B[0]).

OUTPUT: X mod M.

Step 1. R = X

Step 2. If klMbR −> then klMbRR −−=

Step 3. for i = l – 1 to k by –1

Step 4. if R[i] = M[k – 1] then Q = b – 1 else]1[])1[][(−−+= kMiRbiRQ

Step 5. while]2[]1[][])2[]1[(2 −+−+>−+− iRbiRbiRkMbkMQ

Step 6. Q = Q – 1

Step 7. kiQMbRR −−=
Step 8. if 0<R then kiQMbRR −+=
Step 9. return R

5.4.3 Barrett’s Reduction Algorithm

In the Barrett’s algorithm (Bosselaers A. et al., 1994) the quotient MX is estimated

using the less-expensive multiplication operation and division by tb for some t that

depends only on the modulus M. When b is a power of 2 the division by tb is performed

efficiently in general-purpose computers by shifting t bits to the right. The Barrett’s

algorithm requires an expensive modulus dependent precalculation Mb k2=µ and hence

is applicable if we perform many reductions using a single modulus for a fixed base.

However, for a fixed modulus M and base b there is a restriction on X, i.e., X must be less

that kb2 . The algorithm is outlined bellow:

25

Barrett’s Reduction Algorithm

INPUT: b, X = (X[l −1]…X[1] X[0]), M = (M [k −1]…M [1] M[0]).

PRECOMPUTATION: Mb k2=µ

OUTPUT: X mod M.

Step 1. R = X

Step 2. ()() 11 +−= kk bbRQ µ

Step 3. () 11 modmod ++ −= kk bQMbRR

Step 4. if 0<R then 1++= kbRR

Step 5. while MR ≥

Step 6. MRR −=

Step 7. return R

5.4.4 Montgomery’s Reduction Algorithm

Montgomery’s reduction algorithm reduces X modulo M by replacing expensive

division by M with a multiplication operation followed by division by a power of b

(Bosselaers A. et al., 1994). This is performed using the Montgomery’s reduction method

(Montgomery P. L).

Let kbR = be an integer greater than M such that 1),gcd(=MR meaning that M

must be an odd integer. The M-residue of an integer MY < with respect to R is defined as

MYR mod)(. We will denote the M-residue of an integer MY < by Ŷ . The Montgomery

reduction of an integer Y is defined as MYR mod)(1− , where 1−R is the inverse of B

modulo M, which is the inverse operation of the M-residue transformation.

The basic idea of Montgomery’s reduction is to make X divisible by R by adding

multiples of M. Let RMM mod1−−=′ . Then for any integer Y, RTMY)(+ is an integer

congruent to 1−YR modulo M, where RXMT mod)(′= . This property allows us to perform

a Montgomery reduction MYR mod1− for integers RMY <≤0 in the same time as

26

multiplication. The reduction process proceeds word by word hence we perform this

operation by computing one word Ti at a time to and adding i
i MbT to X that repeats k

times. This allows us to compute bMM mod]0[]0[1−=′ instead of M ′ . The algorithm is

given below:

Montgomery’s Reduction Algorithm

INPUT: b,]0[]1[]1[XXlXX K−= , M = (M [k −1]…M [1] M[0]).

OUTPUT: MX mod .

PRECOMPUTATION: bMM mod]0[]0[1−=′ , MXRX modˆ = .

Step 1. Xr ˆˆ =

Step 2. for i = 0 to k – 2

Step 3. bMiriT mod])0[][ˆ(][′=

Step 4. iMbiTXr][ˆˆ +=

Step 5. kbXr ˆˆ =

Step 6. if Mr ≥ˆ then Mrr −= ˆˆ

POSTCOMPUTATION: MRrr modˆ 1−=
return r

5.4.5 Implementation Results

 The classical reduction algorithm and Montgomery’s reduction algorithm was

implemented in C and on 700 MHz Pentium II computer running Windows 2000 operating

system with 128 megabytes of memory. To measure execution times we fixed a 5-word

prime modulus and generated random numbers of length between 5 and 9 words. For each

word length we run codes 1000 times. The execution times of the routines of the classical

reduction and Montgomery’s reduction algorithms are tabulated in Table 5.1 in

microseconds.

27

Table 5.1 Execution times in microseconds for reduction algorithms.

Length of X
(in words)

The Classical
Algorithm

Montgomery’s
Algorithm s'Montgomery

Classical %

5 0.31 0.92 33.7
6 1 0.81 123.4
7 1.21 0.94 128.7
8 1.64 1 164
9 2.1 1.14 184.2

For each word length the relative ratio between the classical reduction algorithm and

Montgomery’s reduction algorithm was obtained. As can be seen from Table 5.1, for 5-

word integers Montgomery’s reduction algorithm demonstrates poor performance

comparing to the classical, however. When the length of X is equal to the length of the

modulus the classical algorithm demonstrates better performance since for loop in Step 3 of

the classical reduction algorithm is skipped. As the length of X’s increases the

Montgomery’s algorithm runs at least 1.2 times faster than the classical reduction

algorithm.

5.5 MODULAR MULTIPLICATION

Modular multiplication as well as the modular reduction operation has significant

impact on performance of implementation of cryptographic algorithms. There are several

algorithms to perform modular multiplication operation. The simplest way to implement

modular multiplication for any elements A and B of GF(p) is to compute the product AB

and reduce the product modulo p. The Montgomery multiplication algorithm is more

suitable when one performs several modular multiplication operations with respect to the

same modulus. For example, the RSA algorithm and the Diffie-Hellman Key Exchange

scheme require modular exponentiation operation. The modular exponentiation algorithms

perform modular reduction and squaring operations at each step of exponentiation. In

particular, Montgomery’s multiplication algorithm is suitable for implementation on

general-purpose computers. We will consider two algorithms: standard modular

multiplication algorithm and the Montgomery’s multiplication algorithm.

28

The following algorithm (Knuth D. E.), based on the separated operand scanning

method, performs integer multiplication of A and B followed by reduction modulo M

operation.

Standard Modular Multiplication Algorithm

INPUT: A = (A[s −1]…A[1] A[0]), B = (B [s −1]…B [1] B[0]), M.

OUTPUT: AB mod M.

Step 1. for i = 0 to s −1

Step 2. ε = 0;

Step 3. εε +++=][][][),(iBjAjiCS

Step 4. SjiC =+][

Step 5. ε=+][siC

Step 6. return C mod M

Montgomery’s multiplication algorithm is based on the Montgomery product. The

Montgomery product of integers X and Y less that M is MXYR mod)(1− , where R is an

integer relatively prime to M. Since Montgomery’s multiplication algorithm performs

division by powers of 2, in practice R is chosen to be a power of 2. The division by powers

of 2 can be implemented efficiently on general-purpose computers by shifting to the right

necessary number of bits of a dividend.

Formally, let M be a prime modulus and k is the minimum number of words needed

to represent M in radix wb 2= notation, where 16 ,8=w or 32. Further, assume that kbR =

and X and Y are integers less that M. The Montgomery product of M-residues is defined as

MRYXZ mod)ˆˆ(ˆ 1−= , where 1−R is the inverse of B modulo M. In its general form the

Montgomery multiplication algorithm takes two M-residues X̂ and Ŷ , computes the

product YX ˆˆ and performs the Montgomery reduction MRYX mod)ˆˆ(1− . The result Ẑ is the

M-residue of the product XY .

29

There are many ways to implement the Montgomery multiplication algorithm (Koç

Ç. K. et al., 1996). The coarsely integrated operand scanning method comparing to other

methods demonstrates better performance in terms of time and space requirements. In this

method the multiplication YX ˆˆ and reduction MRYX mod)ˆˆ(1− are performed

simultaneously that results in the better performance. The reduction operation is performed

in the same manner as in the Montgomery’s reduction algorithm, i.e., we precompute

]0[M ′ instead of M ′ and process one word at a time. The Montgomery multiplication

algorithm is outlined below.

The Montgomery Multiplication Algorithm

(coarsely integrated operand scanning method)
INPUT:]0[ˆ]1[ˆ]1[ˆˆ XXsXX K−= ,]0[ˆ]1[ˆ]1[ˆˆ YYsYY K−= , M, b.

OUTPUT: MRYX mod)ˆˆ(1− .

Step 1. for i = 0 to s −1
Step 2. ε = 0
Step 3. for j = 0 to s −1
Step 4. εε +++=][ˆ][ˆ][),(iYjXjiTS
Step 5. SiT =][
Step 6. εε +=][),(sTS
Step 7. SsT =][
Step 8. ε=+]1[sT
Step 9. ε = 0
Step 10. bMTm mod]0[]0[′=
Step 11.]0[]0[),(mMTS +=ε
Step 12. for j = 0 to s −1
Step 13. εε ++=][][),(jmMjTS
Step 14. SjT =−]1[
Step 15. εε +=][),(sTS
Step 16. SsT =−]1[
Step 17. ε++=]1[][sTsT
Step 19. return T

30

The Montgomery multiplication algorithm is used to compute a modular

multiplication of two integers X and Y with respect to a prime modulus as follows. We first

perform M-residues transformations X̂ and Ŷ by multiplying with R, i.e., MXRX modˆ =

and MRYY modˆˆ = . Then we compute MRYXZ mod)ˆˆ(ˆ 1−= using the Montgomery

multiplication algorithm. Finally, to change the residue domain we compute

MRZZ modˆ 1−= . However, for a single modular multiplication the Montgomery

multiplication algorithm should not be used because of relatively expensive M-residue

transformations. To measure efficiency of both standard modular multiplication and the

Montgomery multiplication algorithm we implemented the exponentiation algorithms

based on these algorithms and run 5 times on 700 MHz Pentium II each time generating

1000 numbers. As a result we determined average-running times as 55.81 microseconds for

Montgomery’s multiplication and 122.83 microseconds for the classical algorithm, i.e.,

Montgomery’s multiplication algorithm is at least two times faster than the classical

algorithm.

5.6 MODULAR EXPONENTIATION

The simplest way to compute the modular exponentiation MAe mod is to multiply A

by itself e times (Knuth D. E.). At each step of multiplication we reduce the product

modulo M and so the whole process requires 1−e multiplications and 1−e reductions

modulo M. For example, to compute MA mod7 we proceed as following:

Step 1. MAC mod2=

Step 2. MAMCAC modmod)(3==

Step 3. MAMCAC modmod)(4==

Step 4. MAMCAC modmod)(5==

Step 5. MAMCAC modmod)(6==

Step 4. MAMCAC modmod)(7==

31

This method computes all powers of A less that e to find eA and hence is not

applicable for large exponents. The Montgomery multiplication algorithm performs the

modular multiplication without expensive division by the modulus and so is more suitable

whenever several multiplication operations are required. The exponentiation operation can

be performed faster by replacing the ordinary multiplication followed by reduction with the

Montgomery multiplication. There are several methods that improve the exponentiation

algorithm. The next section will focus on these algorithms. We will fix the multiplication

algorithm to the Montgomery multiplication algorithm and describe binary, m-ary and

recoding methods. We will denote the Montgomery product of A and B by MonProc(A, B).

5.6.2 The Binary Method

The binary method performs exponentiation by scanning bits of the exponent starting

from the most significant bit to the lowest significant bit (Knuth D. E.). Let),(eAf be a

function that computes eA . Then),(eAf is defined recursively as 1)0,(=Af ,

()22),(eAeAf = if e is even and ()() AAeAf e 221),(−= if A is odd, i.e., subsequent

multiplication by A is performed if the scanned bit is different form zero. Thus we obtain

the exponentiation algorithm based on the previous definition.

Exponentiation Algorithm (binary method)

INPUT: A, M, e = (e[k −1]…e[1] e[0]).

OUTPUT: MAe mod .

PRECOMPUATTION: MARA modˆ = (M-residue of A).

Step 1. if e[k −1] = 1 then AC ˆˆ = else 1̂ˆ =C

Step 2. for i = k −2 to 0

Step 3. Ĉ = MonProc(Ĉ , Ĉ).

Step 4. if e[i] = 1 then Ĉ = MonProc(Ĉ , Â)

POSTCOMPUTATION: MRCC modˆ 1−=

Step 6. return C

32

For example, let 210)110101(53 ==e . Then 6=k and so we start with AC ˆˆ = since

1]5[=e . We compute MA mod37 using the binary method as follows.

i ei Step 3 Step 4 Computed
value

4 1 Ĉ = MonProc(Ĉ , Ĉ) Ĉ = MonProc(Ĉ , Â) MA mod3
3 0 Ĉ = MonProc(Ĉ , Ĉ) skipped MA mod6
2 1 Ĉ = MonProc(Ĉ , Ĉ) Ĉ = MonProc(Ĉ , Â) MA mod13
1 0 Ĉ = MonProc(Ĉ , Ĉ) skipped MA mod26
0 1 Ĉ = MonProc(Ĉ , Ĉ) Ĉ = MonProc(Ĉ , Â) MA mod53

5.6.3 The m-ary Method

The m-ary method is regarded as a generalization of the binary method (Koç Ç. K.,

1994). Instead of scanning one bit of the exponent at a time in the m-ary method we scan

m2log bits at a time. Assume that m is a power of 2 and mr 2log= . The exponent e can

be written using base m notation as 1
110

−
−+++= n

n mdmdde K . This representation allows

us compute eA as a product 110 −nddd AAA L . As an example, let 210)11001100111(1231 ==e

and 16=m . Since 416log2 = we partition bits of the exponent into 4-bit groups obtaining

base-16 representation 1231)16(4)16(1215 2 =++ . Thus we have () ()25641612151231 AAAA = .

The exponentiation algorithm based on m-ary method is outlined below:

Exponentiation Algorithm (m-ary method)

INPUT: A, M, rm 2= , e.

OUTPUT: MAe mod .

PRECOMPUATTION: MARA modˆ = . Compute and store nÂ for ``1,,1 −= mn K .
Compute msddd])1[]1[]0[(− K , base-m representation of e.
Step 1.]1[ˆˆ −= sdAC

Step 2. for i = s −2 to 0

Step 3. Ĉ = mĈ

Step 4. if d[i] ≠ 0 then Ĉ = MonProc(Ĉ ,][ˆ idA)

33

POSTCOMPUTATION: MRCC modˆ 1−=

Step 6. return C

5.6.4 The m-ary Recoding Method

 The recoding method converts the exponent to a nonstandard representation using

signed digits 1, 0 and –1 (–1 will be denoted by 1). By converting binary representation of

exponent to the signed-digit representation this technique reduces the number of 1s in order

to obtain sparse representation of the exponent. The recoding technique exploits the

following identity
nmnnmnmn 22222 21 −=+++ +−+−+ L

to obtain a signed-digit representation of an exponent. For example, let

2)1011101(243 ==e . The signed-digit representation of this number is)01100110(, i.e.,

2431222)01100110(257 =+−−= . Hence 243A is equal to the product AAAA 432128 −− .

Once signed-digit representation of an exponent has been obtained, m-ary method can be

applied. Additionally, in this method we need to precompute and store values nA−ˆ for

1,,1 −= mn K . The m-ary recoding method is given below:

 Exponentiation Algorithm (m-ary recoding method)

INPUT: A, M, rm 2= , e.

OUTPUT: MAe mod .

PRECOMPUATTION: MARA modˆ = . Compute and store nÂ and nA−ˆ for
1,,1 −= mn K . Compute msddd])1[]1[]0[(− K , base-m signed-digit representation

of e.
Step 1.]1[ˆˆ −= sdAC

Step 2. for i = s −2 to 0

Step 3. Ĉ = mĈ

Step 4. if 1][=id then Ĉ = MonProc(Ĉ ,][ˆ idA)
 else if 1][−=id then Ĉ = MonProc(Ĉ ,][ˆ idA−)

POSTCOMPUTATION: MRCC modˆ 1−=

Step 6. return C

34

To convert an exponent e to a signed-digit representation we use the canonical

recoding algorithm. A signed-digit representation is said to be canonical if it contains no

adjacent non-zero bits. Let)(110 −= keeee K be an ordinary binary representation of the

exponent. The canonical recoding algorithm converts the exponent to a signed-digit

representation by scanning two bits at a time starting from the least significant bit. The

algorithm uses an auxiliary variable c. Initially 00 =c . The signed digits are computed

according to the following truth table:

ic ie 1+ie 1+ic if
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 1 0

For example, let 2)1011010(90 ==e . The signed-digit representation of e is

902222)01010110(357 =+−−= .

5.6.5 Implementation Results

We implemented the modular exponentiation algorithm based on the classical

modular exponentiation algorithm (by repeated multiplication and reduction operations)

and the Montgomery multiplication algorithm. For each algorithm we implemented the

straightforward m-ary method and recoding m-ary method. The performance of the C codes

was measured on a 700 MHz Pentium II computer running Windows 2000 operating

system with 128 megabytes of memory.

We fixed 5, 8, 16 and a 32-word moduli and randomly generated 5, 8, 16, and 32

word bases and exponents respectively. For each single modulus the codes run 1000 times

and execution times for m equal to 2, 4, 16 and 256 were measured. Precomputation

timings were measured separately and are displayed in Table 5.2.

35

Table 5.2 Precomputation times in microseconds for the m-ary method.

Straightforward m-ary Recoding m-ary Length of
modulus

(in words) m = 4 m = 16 m = 256 m = 4 m = 16 m = 256
5 1352.1 1349.6 1580.7 2962.8 2939.8 2906.7
8 1348.7 1976.7 1910.6 3032.4 3207.3 4161.6
16 1353.2 3243.4 3184 3581.6 3790.1 7296.3
32 1437.5 8556.1 8250.4 5661.4 6492.6 19349.4

 The execution times of exponentiation operation for different values of m are

tabulated in the following table:

Table 5.3 Execution times in microseconds for the straightforward
m-ary algorithm for different values of m.

Length of
modulus (in

words)
m = 2 m = 4 m = 16 m = 256

5 262.46 238.34 211.49 187.81
8 930 856.41 844.12 641.98
16 5603.38 5127.4 4589.71 4137.9
32 40659.22 37239 33352.96 30251.68

Table 5.3 shows that as the value of m increases, the straightforward m-ary algorithm

runs faster. To compare the m-ary recoding method with the straightforward m-ary

algorithm we fixed the value of m to 4, 16 and 256 and run the code for fixed moduli of

length 5, 8, 16 and 32 words. For each modulus we generated 1000 random bases and

exponents of length respectively 5, 8, 16 and 32 words. Execution times are given in Table

5.4.

Table 5.4 Execution times in microseconds for the straightforward m-ary
and the recoding m-ary algorithms.

Straightforward m-ary Recoding m-ary Length of
modulus

(in words) m = 4 m = 16 m = 256 m = 4 m = 16 m = 256
5 288.39 239.64 247.43 290.16 252.3 260.88
8 1024.3 774.84 732.04 906.81 777.2 728.78
16 58030.1 5155 4640.3 5629.3 5100.4 4647.9
32 40655 36675 33955 39308 36285 34087

36

From Table 5.4 we can see that the straightforward m-ary algorithm and the recoding

m-ary algorithm differ only slightly. Moreover, when the length of the modulus is 32 words

and m is equal to 256, the straightforward m-ary algorithm runs faster than the recoding m-

ary algorithm. The utmost time gained by the use of the m-ary recoding algorithm is

observed when m is equal to 2, i.e., for the binary recoding method. The execution times for

the straightforward binary algorithm and the recoding binary algorithm are given below in

Table 5.5.

Table 5.5 Execution times in microseconds for the straightforward binary and
the recoding binary algorithms.

Length of
modulus (in bits)

Straightforward
binary

Recoding
binary Recoding

rwardStraightfo

160 294.61 246.81 1.19
192 473.28 409.87 1.15
224 699.42 615.76 1.14
256 910.93 798.25 1.14
512 5918.19 5198.26 1.14
1024 42508.33 37613.74 1.13
2048 324835.51 288665.46 1.13

Since the both straightforward and recoding m-ary algorithms require relatively

expensive precomputation it is not a good idea to use them in cryptographic algorithms

such as RSA. The time needed to perform precomputation may exceed the time gained by

the use the straightforward or recoding m-ary algorithms.

5.7 INVERSION

The modular inversion operation is one of the basic operations on prime fields that are

quite expensive at least as multiplication operation so its implementation will have

considerable impact on the performance of cryptographic algorithms. In this section we will

describe several inversion algorithms all of which are based on the Extended Euclidean

algorithm and on the concept of the Montgomery modular inverse.

37

5.7.2 The Extended Euclidean Algorithm

 The Extended Euclidean Algorithm rests on the well-known Euclidean Algorithm

that was invented originally to compute the greatest common divisor of two integers A and

B (Knuth D. E.). We will denote the greatest common divisor of A and B by),gcd(BA .

This algorithm exploits the simple property of integers, i.e. for any integers A and B

),gcd(),gcd(RBBA = , where R is the least positive remainder of the division A by B, and

BBA =),gcd(if A is divisible by B. This algorithm can be modified to find two integers x

and y for any integers A and B so that yBxABA +=),gcd(. This property can be used

easily to compute 1−a for an element a of GF(p) since ypxapa +== 1),gcd(means that

pxa mod1≡ and hence x is the inverse of a. Given A and B the Extended Euclidean

Algorithm computes integers x and y such that yBxABA +=),gcd(:

The Extended Euclidean Algorithm

INPUT: A, B.

OUTPUT: d =),gcd(BA , x, y

Step 1. u = A, v = B, 1,0,0,1 2211 ==== yxyx

Step 2. while 0≠u

Step 3. uvq = , quvr −= , 12 qxxx −= , 12 qyyy −=

Step 4. uv = , ru = , 12 xx = , xx =1 , 12 yy = , yy −1

Step 6. vd = , 2xx = , 2yy =

Step 7. return (d, x, y)

The Extended Euclidean Algorithm requires computationally expensive division

operations at each step of the loop and hence is not practical in cryptographic applications.

To avoid this drawback the binary inversion algorithm exploits the following simple

property of integer numbers. For any integers A and B, if A is even then),gcd(BA is equal

to),2gcd(BA (Jebelean T., 1993). Division by two is intrinsically fast operation on

general-purpose computers, so the binary inversion algorithm is more applicable to

compute modular inversion.

38

The Binary Inversion Algorithm

INPUT: A, p such that pA <<0 .

OUTPUT: pA mod1−

Step 1. Au = , pv = , 11 =t , 02 =t

Step 2. while 1≠u and 1≠v

Step 3. while u is even

Step 4. 2uu =

Step 6. if 1t is even then 211 tt = else 2)(11 ptt +=

Step 7. while v is even

Step 8. 2vv =

Step 9. if 2t is even then 222 tt = else 2)(22 ptt +=

Step 10. if vu ≥ then { vuu −= , 211 ttt −= } else { uvv −= , 122 ttt −= }

Step 11. if 1=u then return pt mod1 else return pt mod2

5.7.2 The Montgomery Inversion

The Montgomery inversion, introduced by Kaliski in 1995, is a relatively new

approach to compute the modular inversion. Let p be a prime integer and A be an integer

such that 11 −≤≤ pA . The Montgomery inverse of the integer A is defined as

pA n mod21− , where pn 2log= . The following algorithm computes the Montgomery

inverse. This algorithm consists of two phases. The first phase given a prime integer p and

A such that 11 −≤≤ pA computes pAr k mod21−= , where nkn 2≤≤ . The second phase

then completes the computation by correcting the output from phase 1, i.e., computes

pA n mod21− . The Montgomery Inverse algorithm is given below:

39

The Montgomery Inverse Algorithm (phase 1)

INPUT: A, p such that pA <<0 .

OUTPUT: pA k mod21− and k, where nkn 2≤≤

Step 1. pu = , Av = , 0=r , 1=s , 0=k

Step 2. while 0>v

Step 3. if u is even then { 2uu = , ss 2= }

Step 4. else if v is even then { 2vv = , rr 2= }

Step 6. else if vu > then { 2)(vuu −= , srr += , ss 2= }

Step 7. else if uv ≥ then 2)(uvv −= , rss += , rr 2= }

Step 8. 1+= kk

Step 9. if pr ≥ then rpr −=

Step 10. rpr −=

Step 11. return (r, k)

The Montgomery Inverse Algorithm (phase 2)

INPUT: (r, k) from phase 1

OUTPUT: pA n mod21−

Step 1. for i = 1 to nk −

Step 2. if r is even then rr 2= else () 2prr +=

Step 3. return r

The above-described algorithm performs bit level operations and hence is not suitable

for software implementation on a general-purpose computer. Savaş E. and Koç Ç. K. made

an additional change so that the Montgomery inverse algorithm could be used. The basic

idea is to replace the bit level operations in phase 2 with word level operations by

introducing a new Montgomery radix mR 2= instead of n2 such that m is an integer

multiple of the wordsize. To achieve the best performance m is selected to be equal to iw

such that miwnwi =≤<−)1(for a positive integer i where w is the wordsize. The new

version of phase 2 is obtained by adding two Montgomery multiplication operations such

40

that for an integer A and a prime modulus p it computes pA m mod21− . As a result the new

version of phase 2 computes the inverse of A and converts it to p-residue with respect to R.

The modified version of the Montgomery Inverse algorithm is given below.

The Modified Montgomery Inverse Algorithm

INPUT: A, p, n, m such that 121 −≤≤ mA

OUTPUT: pA m mod21−

Step 1. Perform phase 1 and obtain (r, k), pAr k mod21−= and mnkn +≤≤

Step 2. if mkn ≤≤ then {r = MonProc(r, m22), mkk += }

Step 3. r = MonProc(r, km−22)

Step 4 return r

Another modification of the Montgomery Inverse algorithm introduced in performs

classical inverse operation, i.e., it computes pA mod1− for an integer 11 −≤≤ pA and

prime modulus p. Phase 2 are modified so that the output pAr k mod21−= from phase 2 is

transformed to pA mod1− with at most two Montgomery multiplication operations.

The Classical Inverse Algorithm (based on the Montgomery Inverse)

INPUT: A, p, n, m such that 121 −≤≤ mA

OUTPUT: pA mod1−

Step 1. Perform phase 1 and obtain (r, k), pAr k mod21−= and mnkn +≤≤

Step 2. if mk > then {r = MonProc(r, 1), mkk −= }

Step 3. r = MonProc(r, km−2)

Step 4 return r

We implemented the inverse algorithm in C on a 700 MHz Pentium II computer and

compared its running time with the running time of the Montgomery multiplication

algorithm. The result is tabulated in Table 5.6 below.

41

Table 5.6 Running times in microseconds for the
Montgomery multiplication algorithm and the classical

inverse algorithm.

Length of modulus
(in bits)

Montgomery
Multiplication

Montgomery
Inversion

160 1.47 114.87
192 1.65 128.70
224 2.00 158.02
256 2.67 190.99
512 7.92 534.30
1024 32.13 1923.31

From Table 5.6 it us seen that the Montgomery multiplication is several times faster

than the inversion operation based on the Montgomery inversion.

42

CHAPTER 6

THE ELLIPTIC CURVE DIGITAL
SIGNATURE ALGORITHM

The Elliptic Curve Digital Signature Algorithm is the elliptic curve based digital

signature algorithm proposed in 1992 by Scott Vanstone. Like the Digital Signature

Algorithm (DSA) ECDSA provides key generation, signature and signature verification

schemes. The ECDSA is the most popular digital signature algorithm. The International

Standard Organization accepted it in 1998 as an ISO standard. It was also accepted in 1999

as an ANSI standard and in 2000 as NIST and IEEE standards. The main advantage of the

ECDSA over DSA is that for the same key-length the security of an algorithm using the

ECDSA is considerably greater than that using DSA.

Assume that E(Fp) be an elliptic curve over a finite field Fp and P be point of prime

order N in E(Fp) such that the length of N is at least 192 bits. Usually, P is chosen as a

generator of the subgroup P and),),(,,(NPFEFp pp is referred as domain parameters.

• Setup scheme

1. Choose a random integer x in the interval [1, N − 1] and keep it secret;

2. Compute Q = xP. Q is the public key.

• Signing scheme

1. Apply a hash function H to a message m: 0 < H(m) < N;

43

2. Select a random integer k in the interval]1,1[−N and compute

), y (xkP 11= ;

3. Set Nxr mod1= ;

4. Find an integer s such that sk ≡ (H(m) + xr) mod N;

5. If s is zero then return to the step 2.

6. Set the signature as a pair (r, s).

• Verification scheme

1. Verify that r and s are in the interval]1,1[−N ;

2. Compute NmHsu mod)(1
1

−= and Nrsu mod1
2

−= ;

3. Compute QuPuyx 2100),(+= and set Nxv mod0= ;

4. The signature is acceptable if and only if r = v.

We have implemented three basic algebraic operations for groups formed by elliptic

curves over finite fields: point addition, point inversion and scalar multiplication (Cohen et

al, Brown et al., 1998). Later using theses functions the ECDSA algorithm was

implemented. The codes were written in C on 700 MHz Pentium II computer. We run and

tested the ECDSA algorithm for different elliptic curves. Coefficients of the elliptic curves

and related finite fields are given in the appendix. The integer numbers are represented in

the base 232 using decimal digits. For each elliptic curve we run codes 500 times. Timing

results are depicted in the following table.

44

Table 6.1 ECDSA key generation, signature generation and
signature verification timings in microseconds.

Elliptic
curve

Key
generation

Signature
generation

Signature
verification

C1_P160 26,786.3 20,219.6 51,422.2
C2_P160 25,660.8 20,185.3 51,690.2
C1_P192 38,770.0 31,229.2 78,591.9
C2_P192 40,151.7 31,520.7 79,807.0
NIST_P192 42,060.0 34,122.3 79,699.5
C1_P224 57,383.2 46,093.1 114,363.1
C2_P224 55,952.5 46,224.5 107,718.6
NIST_P224 60,283.6 50,011.2 114,821.2
C1_P256 78,250.9 64,737.4 156,184.6
C2_P256 79,502.6 67,353.6 157,508.1
NIST_P256 81,855.4 69,323.6 156,693.5
C1_P384 212,485.8 189,312.0 423,973.6
C2_P384 214,420.6 190,491.2 425,676.0
NIST_P384 218,328.8 194,239.3 424,140.8
C1_P512 440,689.3 402,314.0 882,829.3
C2_P512 439,276.1 422,765.0 875,224.7
NIST_P512 499,861.9 486,786.5 939,457.1

45

CHAPTER 7

CONCLUSION

Groups, rings and fields are fundamental mathematical structures that lay the

foundation for cryptography. Mathematical properties of these structures give rise to

computationally hard problems that allow us to design one-way functions exploited by

cryptographic algorithms. In this thesis we considered finite fields with prime number of

elements called as prime fields. A prime field can be represented as a finite set of integer

numbers together with modular addition operation and modular multiplication operation.

We also considered elliptic curves over prime fields. Elliptic curves are a rich source of

finite abelian groups on which elliptic curve cryptography is based.

We implemented multiprecision subtraction, addition, reduction, modular

multiplication and inversion algorithms for prime field arithmetic aimed to work on

general-purpose computers. For some prime field operations we considered and

implemented multiple algorithms. We measured the running times and compared them.

Montgomery’s theorem gives us a cheaper way to multiply two integers and reduce the

product by a modulus. Since the modular exponentiation is the most frequently used

arithmetic operation we considered several methods and implemented multiple algorithms

for modular exponentiation. We implemented two different modular exponentiation

algorithms: the classical algorithm and the algorithm based on the Montgomery product. As

a result we observed that the Montgomery’s algorithm runs two times faster than the

classical algorithm.

Finally, using the prime field arithmetic procedures we implemented elliptic curve

point arithmetic and elliptic curve digital signature algorithm for different elliptic curves.

46

The future research can be conducted in extending the library by developing

procedures that perform finite field operation for arbitrary finite field GF(pk).

47

APPENDIX

C1_P160
p 1542587393, 3879432752, 3310093403, 3575984732, 3144840534
a 3719205881, 2456924538, 3061096603, 614799683, 2461125420
b 105343449, 2450485153, 930660859, 2778888033, 744717828
Px 1498890981, 2436006830, 2633568011, 2311420911, 1353958562
Py 1022802176, 3454009759, 4166317347, 3977839083, 586077994
N 2663636817, 2297342991, 2313557241, 2351555231, 449262933

C2_P160
p 3954591183, 3812703439, 4159284655, 2189842651, 934206511
a 2486329882, 1289626620, 64597136, 1632893365, 222300710
b 2425844884, 1180614102, 106200426, 1897439989, 797418535
Px 1441215752, 473236524, 3447803080, 3566209518, 199039638
Py 2048565661, 2947385441, 1026415668, 3029059881, 75227164
N 498012111, 2725972077, 4159329146, 2189842651, 934206511

C1_P192
p 2175053513, 3332204610, 2106319598, 1393860827, 789161253, 2463096058
a 901808635, 3566305214, 1179265647, 179497202, 1170456174, 2460392958
b 2175053513, 3332204610, 2106319598, 1393860827, 789161253, 2463096058
Px 2858530508, 2465081945, 1490809915, 759538952, 2029996948, 140485898
Py 555206940, 185421212, 3205774888, 3150824198, 1777417706, 728489572
N 99459063, 1970596714, 4260314513, 1393860828, 789161253, 2463096058

C2_P192
p 1250306691, 396056278, 2601505881, 534154407, 1362483061, 1595199156
a 867616414, 2027359134, 2896682443, 849552357, 1498913883, 673749683
b 1496723405, 1206459768, 490775308, 2987648780, 2845854059, 61863010
Px 1157760553, 2161967765, 3036161656, 1729998116, 3999894102, 1043440918
Py 1461775492, 2161024665, 472558623, 4174651643, 3052845635, 1234129591
N 1755539509, 3037058654, 3112302546, 534154408, 1362483061, 1595199156

48

NIST_P192
p 4294967295, 4294967295, 4294967294, 4294967295, 4294967295, 4294967295
a 4294967292, 4294967295, 4294967294, 4294967295, 4294967295, 4294967295
b 3242637745, 4273528556, 1914974281, 262662571, 3852239079, 1679885593
Px 2197753874, 4110355197, 1134659584, 2092900587, 2955972854, 411936782
Py 511264785, 945728929, 1797574101, 1661997549, 4291353208, 119090069
N 3033671729, 342608305, 2581526582, 4294967295, 4294967295, 4294967295

C1_P224
p 725552005, 2845423983, 54069172, 2902997345, 4065895842, 99700918,

1083833297
a 3302838848, 1595115968, 3777041922, 3129691098, 1373563308, 3421245063,

758919852
b 950557985, 1758167159, 1579239137, 3012285341, 2522358170, 1237863700,

793386139
Px 3149598117, 893375299, 2240762443, 565899189, 553926940, 670842904,

698885573
Py 1062233727, 2395891116, 322779262, 974859008, 2061791796, 4273376244,

58197125
N 870003411, 3126672323, 2829466493, 2903035980, 4065895842, 99700918,

1083833297

C2_P224
p 702452983, 1214255019, 878986955, 953379981, 3986309538, 2887575373,

19280865
a 2652357196, 713983010, 1958166667, 3761818879, 1809361211, 1036160428,

1172912
b 461301861, 2535421854, 1850481789, 2447024150, 4284983361, 1444648577,

10320826
Px 1266926621, 606854806, 2830632472, 3160222785, 3096719789, 3424567889,

957145
Py 2370583092, 1031196835, 1524110759, 3390450571, 1571481350, 3866392616,

5796543
N 4116426827, 72296103, 101811847, 953388186, 3986309538, 2887575373,

19280865

NIST_P224
p 1, 0, 0, 4294967295, 4294967295, 4294967295, 4294967295
a 4294967294, 4294967295, 4294967295, 4294967294, 4294967295, 4294967295,

4294967295
b 592838580, 655046979, 3619674298, 1346678967, 4114690646, 201634731,

3020229253
Px 291249441, 875725014, 1455558946, 1241760211, 840143033, 1807007615,

49

3071151293
Py 2231402036, 1154843033, 1510426468, 3443750304, 1277353958, 3052872699,

3174523784
N 549543997, 333261125, 3770216510, 4294907554, 4294967295, 4294967295,

4294967295

C1_P256
p 2152041647, 1502198436, 2159380012, 3955240668, 758658574, 4061893134,

269290586, 3582153167
a 2729643541, 1576067140, 3838073187, 2791390472, 3502664604, 2026533070,

1584952649, 2270197294
b 4217995504, 1410746001, 3282962965, 2857765506, 278922748, 4149464640,

4036374731, 3556056163
Px 4234915459, 2172097435, 3318241100, 3499055396, 3818222353, 1668925924,

3936201909, 2400765551
Py 716011241, 1113159874, 2822839933, 4242178085, 3292471632, 3431550869,

2021862991, 1273769712
N 338982949, 3157267705, 2123805379, 1188268587, 758658576, 4061893134,

269290586, 3582153167

C2_P256
p 3461386131, 4242372005, 2053711051, 1408372137, 144184269, 2011048294,

3765518954, 1940372971
a 2733318916, 4128013279, 4235588355, 3679528661, 340097121, 1529638355,

1084502465, 1909983868
b 3592068870, 584748469, 3493513667, 2141770279, 3295224935, 4058628643,

3323203622, 1713217801
Px 2866596095, 3715780580, 4188731262, 3123373688, 3622859170, 643568062,

2792141271, 1401598310
Py 2015972219, 3663181186, 434385189, 2869461847, 3386271818, 1452570981,

900395116, 90953084
N 405434131, 2056464943, 2350549605, 250106429, 144184269, 2011048294,

3765518954, 1940372971

NIST_P256
p 4294967295, 4294967295, 4294967295, 0, 0, 0, 1, 4294967295
a 4294967292, 4294967295, 4294967295, 0 ,0, 0,1, 4294967295
b 668098635, 1003371582, 3428036854, 1696401072, 1989707452, 3018571093,

2855965671, 1522939352
Px 3633889942,4104206661, 770388896, 1996717441, 1671708914, 4173129445,

3777774151, 1796723186
Py 935285237, 3417718888, 1798397646, 734933847, 2081398294, 2397563722,

4263149467,1340293858

50

N 4234356049, 4089039554, 2803342980, 3169254061, 4294967295, 4294967295, 0,
4294967295

C1_P384
p 1260742493, 3392901779, 2193730719, 3723537569, 681067929, 93611493,

179985939, 2496333200, 168694669, 3977525223, 2250575228, 2474516928
a 238238490, 2872847588, 656779843, 4245783527, 3955437378, 3535159137,

413323322, 1285401686, 4161150900, 3098262617, 3664150091, 996677088
b 92047716, 1667411683, 853680317, 667984548, 2571462521, 1828594300,

3791142788, 3522989130, 2985862837, 2538765003, 426818096, 782451406
Px 262021186, 2754234735, 117230908, 1905469124, 1401772299, 3102284934,

109505224, 1591880724, 1195235673, 520956396, 3086160451, 956062078
Py 4107469467, 4105654924, 1233646793, 1082681042, 584143295, 3079929238,

4236614262, 2216251071, 3137564930, 2807923781, 121323002, 864129456
N 3583843023, 2374707721, 2002156273, 1539926627, 3713530899, 737823573,

179985940, 2496333200, 168694669, 3977525223, 2250575228, 2474516928

C2_P384
p 4275951097, 1692013271, 3158261515, 622347869, 2660549086, 3594360467,

3490844980, 3241518266, 2634326526, 1105183272, 3105075704, 1478868053
a 3139533582, 3461094475, 1568296839, 2573473223, 1239709353, 2498383425,

1971300227, 2107243370, 105233091, 2508790830, 1266526216, 560269212
b 1913816297, 3515765246, 3691390483, 206426652, 1803931059, 2232534887,

2473054830, 888194042, 41873928, 2941934736, 2384767085, 447447435
Px 609197895, 2340424177, 309128596, 79518755, 936407903, 873578323,

2269331456, 477788943, 1218695926, 3183280702, 3398523180, 522374672
Py 3926215189, 1888196087, 1017661911, 3066925227, 1924220483, 1956324652,

1967053315, 3498886157, 660318433, 3891340706, 1282520720, 1386147240
N 2438832221, 2798175040, 1507470051, 2109842584, 1088443724, 4241433067,

3490844980, 3241518266, 2634326526, 1105183272, 3105075704, 1478868053

NIST_P384
p 4294967295, 0, 0, 4294967295, 4294967294, 4294967295, 4294967295, 4294967295,

4294967295, 4294967295, 4294967295, 4294967295
a 4294967292, 0, 0, 4294967295, 4294967294, 4294967295, 4294967295, 4294967295,

4294967295,4294967295, 4294967295,4294967295
b 3555470063, 713410797, 2318324125, 3327539597, 1343457114, 51644559,

4269883666, 404593774, 3824692505, 2559444331, 3795773412, 3006345127
Px 1920338615, 978607672, 3210029420, 1426256477, 2186553912, 1509376480,

2343017368, 1847409506, 4079005044, 2394015518, 3196781879, 2861025826
Py 2431258207, 2051218812, 494829981, 174109134, 3052452032, 3923390739,

681186428, 4176747965, 2459098153, 1570674879, 2519084143, 907533898
N 3435473267, 3974895978, 1219536762, 1478102450, 4097256927, 3345173889,

51

4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295

C1_P512
p 3972435479, 1764204733, 2549849560, 1616345901, 1996426875, 3427881837,

2404842145, 787873698, 55755720, 2028808543, 642924886, 2329455697,
3045165639, 2225051090, 2006274842, 3866778103

a 1871084847, 20508022, 1841130766, 929619208, 2012571608, 3975931000,
907334725, 3712928878, 3917512500, 4225685886, 1394484908, 1058652400,
2154779461, 3042976492, 3713322755, 893599195

b 3852712955, 3653545592, 1693078807, 4027242815, 1454672309, 57870769,
2822052966, 1870607459, 591569559, 1942760050, 461529855, 2746052680,
389291775, 4007651061, 1193332821, 1966707121

Px 2846147534, 1549736485, 3323019829, 2973803838, 1892047013, 1738685115,
2684726614, 749073034, 331541902, 3186182302, 2612376961, 4215291505,
687158746, 2656281191, 1838046819, 1901502262

Py 1653738872, 1124298423, 1270032033, 2035553925, 4201583735, 1819247152,
1478028487, 3576879187, 377927312, 2353534385, 2365404466, 2403215142,
1935145422, 3808106977, 4004581202, 2947442425

N 1323963577, 965565694, 2954545699, 1561608984, 995136077, 732357913,
1131975229, 1369406340, 55755718, 2028808543, 642924886, 2329455697,
3045165639, 2225051090, 2006274842, 3866778103

C2_P512
p 3847319715, 2359733666, 2651644093, 2790329907, 1732839427, 1016907134,

355751544, 3712907603, 3393536743, 3535442213, 3007243002, 1070178,
1579032206, 826039325, 3822185121, 851731775

a 3646285476, 51780629, 3657926561, 1106095612, 2097135445, 1577454372,
1694630651, 2033044939, 67635647, 1903214236, 528316243, 3091027082,
4028742985, 1245786525, 635102426, 467237148

b 1090822743, 50553298, 2231495586, 3483325804, 2586926729, 4045609094,
1515004131, 2905866206, 3150553724, 3948097860, 2752107447, 4049648414,
2611983071, 2337174672, 793660679, 654932937

Px 3875295360, 2960081641, 3348231280, 1722665286, 2825220750, 3337889558,
482704092, 973606566, 1362402576, 664748766, 1989332989, 435082357,
2391128292, 1942891384, 1852575030, 239952643

Py 1873875067, 2883743132, 2468643188, 3441953944, 3931595445, 3567598761,
3776584087, 592261134, 3595502286, 1506793355, 1007070204, 1726836531,
1380963139, 216454803, 3055455908, 259935842

N

670262609, 4119725683, 2596439261, 3393442064, 1919846775, 1655063829,
2447858785, 1356874882, 3393536744, 3535442213, 3007243002, 1070178,
1579032206, 826039325, 3822185121, 851731775

52

NIST_P521
p 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295,

4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295,
4294967295, 4294967295, 4294967295, 4294967295, 511

a 4294967292, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295,
4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295,
4294967295, 4294967295, 4294967295, 4294967295, 511

b 1800421120, 4014284756, 1026307313, 896786312, 1001504519, 374522045,
3967718267, 1444493649, 2398161377, 3098839441, 2578650611, 2732225115,
3062186222, 2459574688, 2384239135, 2503915873, 81

Px 3269836134, 4185816625, 2238333595, 860402625, 2734663902, 4263362855,
4024916264, 2706071159, 1800224186, 4163415904, 88061217, 2623832377,
597013570, 2654915430, 67430861, 2240677559, 198

Py 2681300560, 2294191222, 2725429824, 893153414, 1068304225, 3310401793,
1593058880, 2548986521, 658400812, 397393175, 1469793384, 2566210633,
746396633, 1552572340, 2587607044, 959015544, 280

N 2436391945, 3144660766, 2308720558, 1001769400, 4144604624, 2144076104,
3207566955, 1367771011, 4294967290, 4294967295, 4294967295, 4294967295,
4294967295, 4294967295, 4294967295, 4294967295, 511

53

REFERENCES

• Adleman L. M., McCurley K. S. Open problems in number theoretic complexity, II.

Algorithmic Number Theory, (LNCS 877), 291–322, 1994.

• Anderson R. Practical RSA trapdoor. Electronics Letters, 29 (May 27, 1993), 995.

• Bosselaers A., Govaerts R. and Vandewalle J. Comparison of three modular
reduction functions. Advances in Cryptology-Crypto '93, LNCS 773, 1994, 175-
186.

• Brown M., Hankerson D., Lopez J., and Menezes A. Software Implementation of
the NIST Elliptic Curves Over Prime Fields. In D. Naccache, editor, Topics in
cryptology − CT-RSA 2001, volume LNCS 2020, pages 250-265, Berlin, April
2001. Springer-Verlag.

• Cohen H., Miyaji A. and Ono T. Efficient elliptic curve exponentiation using mixed
coordinates. Advances in Cryptology - Asiacrypt '98, LNCS 1514, 1998, 51-65.

• Crandall R. E. Method and apparatus for public key exchange in a cryptographic
system. U.S. Patent Number 5,463,690, October 1995.

• Diffie W. and Hellman M. New directions in cryptography. IEEE Trans. Inform.
Theory, 22 (1976), pp. 644–654.

• ElGamal T. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4): 469–472, July 1985.

• IEEE. P1363: Standard specifications for public-key cryptography. Draft Version
7, September 1998.

• IEEE. P1363: Standard specifications for public-key cryptography. Draft Version
13, November 12, 1999.

54

• Jebelean T. Comparing several gcd algorithms. Proceedings of the 11th Symposium
on Computer Arithmetic, 180–185, IEEE Press, 1993.

• Kaliski Jr. B. S. The Montgomery inverse and its applications. IEEE Transactions
on Computers, 44(8): 1064–1065, August 1995.

• Knuth D. E. The Art of Computer Programming, Volume 2, Seminumerical
Algorithms. Addision-Wesley, Reading, MA, 3d Edition.

• Koblitz N. A Course in Number Theory and Cryptography. 2nd ed., Springer-Verlag,
New York, 1994.

• Koblitz N. Algebraic Aspects of Cryptography. Springer-Verlag, Berlin, Heidelberg,
New York, 1998.

• Koç Ç. K. High-Speed RSA Implementation. Technical Report TR 201, RSA
Laboratories, 73 pages, November 1994.

• Koç Ç. K., Acar T., and Kaliski Jr. B. S. Analyzing and comparing Montgomery

multiplication algorithms. IEEE Micro, 16(3): 26–33, June 1996.

• Lidl R. and Niederreiter H. Introduction to Finite Fields and Their Applications.
Cambridge University Press, New York, NY, 1994.

• Menezes A. J. Elliptic Curve Public Key Cryptosystems. Kluwer Academic
Publishers, Boston, MA, 1993.

• Menezes A. J., P. Van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, FL, 1997.

• McEliece R. J. Finite Fields for Computer Scientists and Engineers. Kluwer
Academic Publishers, 1987.

• Montgomery P. L. Modular multiplication without trial division. Mathematics of
Computation, 44(170): 519–521, April 1985.

• National Institute for Standards and Technology. Digital Signature Standard. FIPS
publication 186-2. January 2000.

55

• Rivest R. L., Shamir A., and Adleman L. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2): 120–126,
February 1978.

• Savaş E. and Koç Ç. K. The Montgomery modular inverse – revisited. IEEE
Transactions on Computers, 49(7): 763–766, July 2000.

• Silverman J. H. The Arithmetic of Elliptic Curves. Springer, Berlin, Germany, 1986.

