
i

A SERVICE ORIENTED REFLECTIVE WIRELESS MIDDLEWARE

A SERVICE ORIENTED REFLECTIVE WIRELESS MIDDLEWARE

by

Bora Yurday

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Fatih University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

June 2006
Istanbul, Turkey

ii

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Bekir Karlık

 Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Haluk Gümüşkaya

 Supervisor

Examining Committee Members

Prof. Dr. Kemal Fidanboylu _____________________

Assoc. Prof. Dr. Haluk Gümüşkaya _____________________

Assist. Prof. Dr. Tuğrul Yanık _____________________

It is approved that this thesis has been written in compliance with the formatting rules
laid down by the Graduate Institute of Sciences and Engineering.

Assist. Prof. Dr. Nurullah Arslan
Director

Date

June 2006

iii

SERVICE ORIENTED REFLECTIVE WIRELESS MIDDLEWARE

Bora Yurday

M. S. Thesis - Computer Engineering
June 2006

Supervisor: Assoc. Prof. Dr. Haluk Gümüşkaya

ABSTRACT

The role of middleware has become increasingly important in mobile computing,
where the integration of different applications and services from different wired and
wireless businesses and service providers exist. The requirements and functionalities of the
wireless middleware can be achieved by Service Oriented Computing which can be an ideal
paradigm for mobile services. Reflective middleware responses are optimized to changing
environments and requirements. In this thesis a Service Oriented Reflective Wireless
Middleware (SORWIM) is proposed. It provides a set of services for efficient and reliable
information discovery and dissemination in ad hoc mobile environments. One of the
primary goals of this research is to investigate how the construction of mobile services can
benefit from the Service-Oriented paradigm.

Keywords: Wireless Middleware, Service Oriented Architecture, Service Orchestration.

.

iv

SERVİS ODAKLI AKSETTİRİCİ KABLOSUZ ARAKATMAN

Bora Yurday

Yüksek Lisan Tezi – Bilgisayar Mühendisliği
Haziran 2006

Tez Yöneticisi: Doc. Dr. Haluk Gümüşkaya

ÖZ

Kablolu ve kablosuz servis sağlayıcıların ürettiği program ve servisleri entegre eden
mobil programlamadaki arakatmanın (middleware) rolü artan bir öneme sahiptir. Kablosuz
ara katmanın ihtiyaç ve fonksiyonları mobil servisler için ideal bir yaklaşım olan servis
odaklı mimariyle sağlanabilir. Değişen çevre ve ihtiyaçlar aksettirici (Reflective) arakatman
tarafından optimize edilir. Bu çalışmada servis odaklı aksettirici kablosuz arakatman
(SORWIM) sunulmaktadır. mobil ortamlardaki bilgiyi keşfetmek ve erişmek için etkin ve
güvenilir servisler sağlar. Bu çalışmanın öncelikli amaçlarından biri servis odaklı
yaklaşımdan yararlanarak mobil servislerin nasıl oluşturulacağının araştırılmasıdır.

Anahtar Kelimeler: Ağsız Arakatman, Servis Odaklı Mimari, Servis Orkestrasyonu

v

ACKNOWLEDGEMENT

I would like to express my gratitude to my supervisor Assoc. Prof. Dr Haluk

Gümüşkaya for his immense help in planning and executing the works and insight

throughout the research.

I am very grateful to my friend Ömer Dogan and research assistant Engin Tozal for

their valuable suggestions and comments.

vi

TABLE OF CONTENTS

ABSTRACT.. iii

ÖZ ..iv

ACKNOWLEDGEMENT..v

TABLE OF CONTENTS...vi

CHAPTER 1 INTRODUCTION..1

CHAPTER 2 BACKGROUND AND RELATED WORK...3

2.1 MIDDLEWARE ...3
2.2 WIRELESS MIDDLEWARE FOR MOBILE COMPUTING......................................6
2.3 RESEARCH AREAS..8
2.4 RELATED WORKS ...9
2.5 LAST WORDS ON RELATED WORKS...13
2.6 SERVICE ORIENTED ARCHITECTURE..14
2.7 WEB SERVICES ..16

CHAPTER 3 DESIGN AND IMPLEMANTATION OF BASIC SERVICES IN SORWIM

..22

3.1 COMPONENT ARCHITECTURE ..24
3.2 IMPLEMANTATION ARCHITECTURE ...26
3.3 PACKAGES..27

3.3.1 Event Service ...28
3.3.2 Messaging Service ...32
3.3.3 Location Service ..35
3.3.4 Redirection Service..38

CHAPTER 4 SERVICE ORCHESTRATION WITH COMPOSITE SERVICES40

4.1 SERVICE ORCHESTRATION..40
4.2 SERVICE ORCHESTRATION IN SORWIM..41
4.3 PERFORMANCE ...44

CHAPTER 5 CONCLUSION ...50

REFERENCES ...51

vii

LIST OF FIGURES

FIGURES

2.1 The Middleware layers ..………….5

2.2 Service oriented architecture ...………….8

2.3 Extending SOA..………….9

2.4 Web services ..………….10

2.5 Web services standards..………….11

2.6 SOAP schema ..………….11

2.7 WSDL structure ...………….12

2.8 WSDL Example: Messaging Service in SORWiM………….13

3.1 Architecture ...………….22

3.2 Component architecture in SORWiM..………….23

3.3 Implementation architecture ..………….29

3.4 The UML package diagrams of SORWiM basic mobile services...........………….27

3.5 Event service..………….29

3.6 Observer pattern...………….29

3.7 Flow chart event service ..………….31

3.8 Messaging service..………….33

3.9 The class diagram of the messaging service...………….34

3.10 Location service ...………….37

3.11 Redirection service ..………….38

4.1 Service orchestration..………….40

4.2 Service orchestration in SORWiM ..………….41

4.3 The messaging service interface ..………….44

4.4 The TCP stream of remote stub ..………….44

4.5 Graph Analysis Of RMI Connection ...………….45

1

CHAPTER 1

INTRODUCTION

Middleware is distributed software that sits above the operating system and below

the application layer and abstracts the heterogeneity of the underlying environment

(Schantz and Schmidt, 2001). It provides integration and interoperability of applications

and services running on heterogeneous computing and communications devices, and

simplifies distributed programming. Middleware can be decomposed into multiple layers

such as host infrastructure middleware (JVM, Adaptive Communication Environment

(ACE)), distribution middleware (RMI, CORBA, DCOM, SOAP), common middleware

services (J2EE, .NET), and domain-specific middleware services (developed for particular

domains, such as telecom, e-commerce, health care, process automation, or aero-space)

(Schmidt,2002). Conventional middleware technologies, such as CORBA and RMI have

been designed and used successfully with fixed networks. These middleware platforms are

not appropriate for mobile computing, because they are too big and inflexible for mobile

devices. There are significant challenges to design and optimize middleware for mobile

computing. It is therefore essential to devise new middleware solutions and capabilities to

fulfill the requirements of emerging mobile technologies.

Service-Oriented Computing (SOC) (Papazoglou and Georgakopoulos, 2003) is a

distributed computing paradigm based on the Service-Oriented Architecture (SOA)

(Papazoglou and Heuvel, 2005), which is an architectural style for building software

applications that use services. SOC and SOA are not completely new concepts; other

distributed computing technologies like CORBA and RMI have been based around similar

concepts.

2

 SOA and SOC are merely extensions of the existing concepts and new

technologies, like XML, and Web Services, are being used to realize platform independent

distributed systems. The SOA appears to be an ideal paradigm for mobile services.

However, it is currently focused only on enterprise and business services. In addition, most

of SOA research has been focused on architectures and implementations for wired

networks. There are many challenges that need to be addressed by wireless middleware

based on SOA. Wireless middleware will play an essential role in managing and

provisioning service-oriented applications. In this thesis a Service Oriented Reflective

Wireless Middleware (SORWiM) is proposed. It provides a set of services for efficient and

reliable information discovery and dissemination in ad hoc mobile environments. One of

the primary goals of this research is to investigate how the construction of mobile services

can benefit from the Service-Oriented paradigm by mapping of wireless middleware

functionalities as stateless services on SOA.

This thesis is structured as follows. In Chapter 2, the background of the middleware

and the problems in wireless middleware are introduced. Service Oriented Architecture and

its approach to wireless middleware are also explained here. In Chapter 3, the architecture

and the design issues of basic services and the implementation details of SORWiM are

given, In Chapter 4 how composite services are orchestrated using these basic services are

presented. Finally in Chapter 5, some of our findings are summarized.

3

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 MIDDLEWARE

It is almost certain that telecommunication networks will be based on the Internet

Protocol in the near future. As a network layer protocol the IP alone is not sufficient—not

even with suitable Internet transport protocols such as TCP, UDP and RTP. In the Internet

community a larger number of activities is going on to specify new protocols and

application programming interfaces in order to provide a complete networking solution.

The construction of distributed systems is a difficult task for programmers, which can be

simplified with the use of middleware. Middleware can be seen as a common development

and runtime environment that enables the connection of components written in different

languages and running on different operating systems (Nunn, 2005).

2.1.1 Requirements of the Middleware

The following requirements were proposed by (Emmerich, 2005): network

communication, coordination, reliability, scalability and heterogeneity.

Network Communication: The network communication of different hosts requires the

transformation of the complex data structures into a suitable format, which can be

transmitted using transport protocols. Providing uniform, standard, high-level interfaces to

the application developers and integrators, so that applications can be easily composed,

reused, ported and made to interoperate.

4

Coordination: Coordination is required to control multiple communication points,

which exist in distributed systems. Synchronization is useful during the communication of

the concurrent components on the same host. There are several ways to achieve

synchronization. If the component that asks some service from another component remains

unblocked and can continue to perform its operations, then this way is called deferred

synchronous (if service request was initiated by client) or asynchronous (if initiated by

server).

Reliability: Distributed system implementations need to include error detection and

correction mechanisms to liquidate the unreliability’s caused by errors.

Scalability: Scalability defines how well hardware or a software system can adapt to

increased demands. The main task is to provide the changes in distributed systems without

changing its architecture or design. In order to achieve this task, it is desired that

middleware respects different dimensions of transparency like Access, Location, Migration,

Replication transparencies handled by the middleware.

Heterogeneity: The different components of distributed systems have to be resolved

by the middleware.

2.1.2 Middleware Layers

According to Schmidt (Schantz and Schmidt, 2001), middleware can be decomposed

into multiple layers as shown in Fig.2.1. In the following these layers will be explained.

Host Infrastructure Middleware: Host infrastructure middlewares such as JVM (Java

Virtual Machine), Adaptive Communication Environment (ACE) encapsulate and enhance

native operating system communication and concurrency mechanisms to create portable

and reusable network programming components.

Distribution Middleware: Distribution middlewares like RMI, CORBA and SOAP

define higher-level distributed programming models whose reusable APIs and mechanisms

5

automate and extend the native operating system network programming capabilities

encapsulated by host infrastructure middleware.

Common Middleware Services: Common middleware services such as Sun’s J2EE,

Microsoft’s .NET define higher-level domain-independent components that allow

application developers to concentrate on programming application logic, without having to

write the code needed to develop distributed applications, instead using lower-level

middleware features directly.

Domain-specific Middleware Services: Developed for particular domains, such as telecom,

e-commerce, health care, process automation, or aerospace.

Fig. 2.1 Middleware layers.

6

2.2 WIRELESS MIDDLEWARE FOR MOBILE COMPUTING

Limited resources, heterogeneity, and a high degree of dynamism are the most

common properties that usually exist in mobile devices such as pocket PCs, PDAs, sen-

sors, phones, and appliances. Although limited resource availability varies from device to

device; mobile devices generally don’t have powerful CPUs, large amount of memory and

high-speed I/O and networking compared to desktop PCs. Different hardware and software

platforms, operating systems imply changes in some parameters such as byte ordering, byte

length of standard types, and communication protocols. The degree of dynamism present in

ubiquitous computing does not exist in traditional servers and workstations. A PDA, for

example, interacts with many devices and services in different locations, which implies

many changing parameters such as the type of communication network, protocols, and

security policies. Therefore, because we can’t predict all possible combinations, the

software running on a PDA device must be able to adapt to different scenarios to cope with

such dynamism.

All these properties affect the design of the wireless middleware infrastructure re-

quired for mobile computing. Conventional middleware platforms are not appropriate,

because, first of all, they are too big and inflexible for mobile devices (Mascolo et al,

2002), (Vaughanl, 2004). There are some studies for improving the performance of

conventional middleware platforms : CORBA (CORBA, 2005) and RMI (RMI, 2005) like

RAPP (RAPP, 1999), ALICE, Embedded ORBs, Wireless RMI, Mobile RMI (Mobile RMI

,2005). These studies aim to improve poor performance and problems of conventional

middleware platforms across wireless networks.

 A wireless middleware should be lightweight as it must run on hand-held, resource-

scarce devices. Conventional middleware platforms expect static connectivity, reliable

channels, and high bandwidth that are limited in resource-varying wireless networks.

Wireless middleware should support an asynchronous form of communication, as mobile

devices connect to the network opportunistically and for short periods of time. It should be

built with the principle of awareness in mind, to allow its applications to adapt its own and

the middleware behavior to changes in the context of execution, so as to achieve the best

7

quality of service and optimal use of resources. Hiding network topologies and other

deployment details from distributed applications becomes both harder and undesirable

since applications and middleware should adapt according to changes in location,

connectivity, bandwidth, and battery power.

New wireless network middleware is required to increase performance of

applications running across potentially mixed wireless networks (from 3G to WLANs),

supporting multiple wireless devices, providing continuous wireless access to content and

applications, as well as to overcome periods of disconnection and time-varying bandwidth

delivery. Wireless middleware could also ensure end-to-end security and dependability

from handheld devices to application servers.

We cannot customize existing middleware platforms manually for every particular

device. It is not flexible or suitable for coping with dynamic changes in the execution

environment. Reflective middleware presents a comprehensive solution to deal with

ubiquitous computing (Roman et al, 2001). The concept of ubiquitous computing was

introduced in the early 90’s (Weiser, 1991). Mark Weiser from Xerox PARC expressed the

goal as to achieve the most efficient kind of technology that is essentially invisible to the

user, to make computing as ordinary as electricity. In the beginning the focus was on small

special purpose devices, network protocols, interaction substrates, and new styles of

applications. Reflective middleware system responses are optimized to changing

environments or requirements, including mobile interconnections, power levels,

CPU/network bandwidth, latency/jitter, and dependability needs. Reflection is the ability of

a program to observe and possibly modify its structure and behavior. In the SORWiM

architecture, reflection was used in the service level. A fully reflective middleware was not

implemented initially; instead we worked on reflective services that take decisions

according to context information.

Principles and guideless for designing middleware for mobile computing have been

published in literature (Mascolo et al, 2002), (Vaughanl, 2004), (Roman et al, 2001),

(Mascolo et al, 2004), and some wireless middleware projects have been developed for

some specific areas, such as sensor networks (Heinzelman et al, 2004), (Yu et al, 2004). A

8

few researchers have also published service oriented computing imperatives for wireless

environments (Sen et al, 2005), (Thanh and Jørstad, 2005). To the best of our knowledge,

there are no or a few real implemented wireless middleware platforms based on SOA.

2.3 Research Areas

In this section we identify the key research areas for the future software systems

enabling seamless service provisioning in heterogeneous, dynamically varying computing

and communication environments. These areas are not orthogonal; same or similar research

items and issues appear in more than one research area. We have divided the research space

into three key research areas based on (K Raatikainen, 2001). The areas are reconfigurable

applications, environment monitoring and mobile distributed information base.

2.3.1 Reconfigurable Applications

Situations, in which a user moves with its end-device and uses information services,

are challenging. Moreover, there is not static binding between middleware and the

application; not even in the case of multi-mode access devices that can handle several

access technologies including wireless LAN, short-range radio, and packet radio. It must be

possible to move a service session (or one end-point of a service session) from one device

to another.

In these situations the partitioning of applications and the placement of different co-

operating parts is a research challenge. The support system of a nomadic user must

distribute, in an appropriate way, the parts among the end-user system, network elements

and application servers. In addition, when the execution environment changes in an

essential and persistent way, it may be beneficial to redistribute the co-operating parts. The

redistribution or relocation as such is technically quite straightforward but not trivial. On

the contrary, the set of rules that the detection of essential and persistent changes is based

on is a challenging research issue.

Another research issue of fundamental importance in distribution is fault-tolerance.

Replication, which is a commonly used method to achieve fault-tolerance in traditional

9

distributed systems, is not sufficient alone. The baseline applications must remain

operational, at least in a tolerable manner, even if some services of the underlying

execution environment cannot be utilized.

2.3.2 Environment Monitoring

Adaptability is one of the fundamental requirements in nomadic computing. The

basic principle of adaptability is simple. When the circumstances change, then the behavior

of an application changes according to the desires of user preferences. Environment

monitoring is one of the fundamental enablers of adaptive applications. The three primary

issues are discovery (which equipment are available), service location (which services are

available), and available capabilities (computing power, various storage capabilities,

available capacity on communication paths).

2.3.3 Mobile Distributed Information Base

File and information synchronization between different devices is already available

but in quite primitive forms. A single information base for a user—possibly different views

for her different roles—and for multiple user groups is a fundamental enabler for seamless

reconfiguration of the end-user system for a mobile user and for seamless user roaming

from one role to another one.

The mobile distributed information base should provide consistent, efficiently

accessible, reliable and highly available information base. This implies a distributed and

replicated world-wide “file system” that also supports intelligent synchronization of data

after disconnections. Shared access and support of transactional operations also belong to

the list of requirements.

2.4 Related Works

In this section we will review study on current research activities in various research

areas of software systems. Below we briefly summarize our major findings in the Web.

10

Endeavour Expedition: The Endeavour Expedition at the University of California in

Berkeley (Endeavour Expedicion, 2002) is a collection of projects that examines various

aspects of ubiquitous computing. The goal is to enhance human understanding through the

use of information technology, by making it dramatically more convenient for people to

interact with information, devices, and other people.

 Ninja: Enabling Internet-scale Services from Arbitrarily Small Devices that develops a

software infrastructure to support scalable, fault-tolerant and highly-available Internet-

based applications (S.D. Gribble et al., 2001).

 Iceberg: An Internet-core Network Architecture for Integrated Communications that is

seeking to meet the challenge for the converged network of diverse access technologies

with an open and composable service architecture founded on Internet-based standards for

flow routing and agent deployment (H.J. Wang et al., 2000).

 OceanStore: An Architecture for Global-Scale Persistent Storage that is designed to span

the globe and to provide continuous access to persistent information (J. Kubiatowicz et al.,

2000).

 Telegraph: An adaptive dataflow system that allows people and organizations to access,

combine, analyze, and otherwise exploit data wherever it resides (J. M. Hellerstein et al.,

2000).

Oxygen: In the MIT the corresponding project is called Oxygen (MIT Project Oxygen,

1999). The Oxygen project targets in the means of turning a dormant environment into an

empowered one that allows the users to shift much of the burden of their tasks to the

environment. The project is focusing on eight enabling technologies: new adaptive mobile

devices, new embedded distributed computing devices, networking technology needed to

support those devices, speech access technology, intelligent knowledge access technology,

collaboration software, automation technology for everyday tasks, and adaptation methods.

(M. Dertouzos, 1999).

11

FCE Group: The Future Computing Environments (FCE) Group at Georgia Tech has

addressed the problems in building intelligent and interactive human-centric systems that

support and augment our daily lives rely on the concepts of ubiquitous and aware

computing. The group is attempting to break away from the traditional desktop interaction

paradigm and move computational power into the environment that surrounds the user. The

research challenge not only involves distributing the computation and networking

capabilities, but also includes providing a natural interface to the user. It also aims at

providing knowledge about the user and the environment that surrounds the user.The

Future Computing Environments (FCE) Group at Georgia Tech is working to build

interactive environments to augment daily activity. The research method is application-

oriented, meaning that they identify the everyday activity to support before considering

how to augment the environment. The mission is to identify, investigate, and invent

technologies and environments that can be prototyped quickly and evaluated in real-life

situations. (A.K. Dey, 2001).

Portolano: The project in the University of Washington at Seattle is called Portolano . The

project has three main areas of interest: infrastructure, distributed services, and user

interfaces. An essential research area is data-centric routing that facilitates automatic data

migration among applications. Context aware computing, which attempts to coalesce

knowledge of the user’s task, emotions, location, and attention, has been identified as an

important aspect of user interfaces. Task-oriented applications encounter infrastructure

challenges including resource discovery, data-centric networking, distributed computing

and intermittent connectivity (M. Esler at al., 1999).

2K and Gaia: In the University of Illinois at Urbana-Champaign the research project in this

area is 2K: A Component-Based, Network-Centric Operating System for the next

Millennium (2K). The 2K is an open source, distributed adaptable operating system. The

project integrates results from research on adaptable, distributed software systems; mobile

agents and agile networks to produce open systems software architecture for

accommodating change. The architecture is realized in the 2K operating system. It manages

and allocates distributed resources in order to support a user in a distributed environment.

The basis for the architecture is a service model in which the distributed system customizes

12

itself. The objective is to achieve a better fulfillment of user and application requirements.

The architecture encompasses a framework for architectural-awareness so that the

architectural features and behavior of a technology are reified and encapsulated within

software. Adaptive system software, which is aware of the architectural and behavioral

aspects of a technology, specializes the use of these technologies to support applications

forming the basis for adaptable and dynamic QoS, security, optimization, and self-

configuration (M. Roman et al, 2000).

MosquitoNet: The Mobile Computing Group at Stanford University (MosquitoNet) has

developed the Mobile People Architecture (MPA) that addresses the challenge of finding

people and communicating with them personally, as opposed to communicating merely

with their possibly inaccessible machines. The main goal of the MPA is to put the person,

not the device that the person uses, at the endpoints of communication session. The

architecture introduces the concept of routing between people by using the Personal Proxy.

The proxy has a dual role: as a Tracking Agent, the proxy maintains the list of devices or

applications through which a person is currently accessible; as a Dispatcher, the proxy

directs communications and uses Application Drivers to massage communication bits into a

format that the recipient can see immediately. It does all this while protecting the location

privacy of the recipient from the message sender and allowing the easy integration of new

application protocols (P. Maniatis et al, 1999).

PIMA: The PIMA project (Pima Project) at the IBM T.J. Watson Research Center has

developed a new application model for pervasive computing. The model is based on the

following three principles. A device is a portal into a space of applications and data, not a

repository of custom software managed by the user. An application is a means to perform a

task, not a piece of software written to exploit capabilities of a device. The computing

environment is the information-enhanced physical surrounding of a user, not a virtual space

to store and run software. Based on those principles the following research challenges were

identified : development of a programming model that identifies abstract interaction

elements, specifying an abstract service description language, creating a task-based model

for program structure, and creating a navigation model; building a development

environment that supports the programming model above; developing specification

13

languages for applications in terms of requirements, and for devices in terms of

capabilities; developing mediating algorithms to negotiate a match between application

requirements and device capabilities; run-time detection of changes in available resources

and redistribution of computation; handling temporary disconnections; and enhancing

current techniques of failure detection and recovery.

2.5 The Last Words on Related Work

The benefits of middleware software are obvious. The most significant advantage

when compared to a pure IP-based socket programming approach is in the improved

programming model. The middleware solutions are usually based on object-oriented

programming and method invocations. The invocations are based on strongly typed

interfaces that provide both compile and run time error checking. They also hide many

implementation details. Therefore, middleware-based application development is much

faster than the Internet based one. The fundamental problem of the current middleware

specifications is that they only take advantage of a narrow subset of useful Internet

protocols. The current middleware specifications were born in a time when the Internet

protocols were a synonym of the TCP/IP transport. Later they have developed solutions of

their own for Quality-of-Service, directory, discovery, and so on, independently from each

other and from the IETF specifications. The fundamental research challenge is the question

of how the developments in Internet protocols and in different middleware solutions could

be harmonized. By harmonization we mean two things. Firstly, we need to solve the

problem of incorporating evolving Internet solutions of Quality-of-Service, mobility,

discovery, and security into the existing middleware specifications without breaking those

specifications. Secondly, we need to find solutions to how different middleware solutions

can become interoperable in the sense that components of an application can be executed

on different middleware platforms. Section 2.6 (Service Oriented Architecture) outlines

new framework for the middleware specification.

.

14

2.6 SERVICE ORIENTED ARCHITECTURE

Service-Oriented Computing (SOC) (Papazoglou and Georgeakopoulos, 2003) is a

distributed computing paradigm based on the Service-Oriented Architecture (SOA)

(Papazoglou and Heave, 2005), which is an architectural style for building software

applications that use services. SOA and SOC are merely extensions of the existing concepts

and new technologies, like XML, and Web Services, are being used to realize platform

independent distributed systems. Service can be described as self-contained, stateless

business function which accepts one or more requests and returns one or more responses

through a well-defined, standard interface.

Fig. 2.2 Service oriented architecture.

 As shown in Fig. 2.2 the service requester searches for the services in the service

registry, the place where available services are listed and that allows providers to advertise

their services and requesters to lookup and query for services. The service requesters bind

with the service provider through the interfaces.

Design Philosophy of SOA

Publish

Find

Bind

Service
Registry

Service
Description

Service
Requester

Service
Provider

Service
Description

Service
Interface

Service

15

• SOA requires that functions, or services, are defined by a description language

• SOA-based service is self-contained (the service maintains its own state).

• SOA-based services are platform-independent

• SOA-based services can be dynamically located, invoked and (re-)combined.

Extending SOA

Service oriented architecture implements concepts such as service management,

composition and Basic operations. as shown in Fig 2.3 (Papazoglou and Heuvel, 2005)

Fig. 2.3 Extending SOA.

Basic Operations: It defines an interaction between software agents as an exchange

of messages between service requesters (clients) and service providers. These interactions

involve the publishing, finding and binding of operations.

Basic Operations
Discovery
Selection
Binding
Publication

Composition Services
Coordination
Monitoring

Management
Security
Monitoring
Deployment

16

Composition Services: SOA creates a collection of services that can communicate

with each other using service interfaces to pass messages from one service to another,

coordinating and monitoring an activity between one or more services.

Management: Service management role is to manage operations in the service

platform, like the deployment of services or monitors the correctness and overall

functionality of orchestrated services.

2.7 WEB SERVICES

Web services are a programming technology for distributed systems whose goal is

to ensure interoperability between software applications running on a variety of platforms

and/or frameworks by utilizing the technologies of the World Wide Web.

Fig. 2.4 Web service architecture

Web services as shown in Fig 2.4 promote a service-oriented programming style

which is usually characterized in terms of publishing, finding and binding cycle.

Service
Registry

Service
Description

Service
Requester

Publish

Service
Provider
Service

Description

Service
Interface

Service

Bind

SOAP

UDDI

WSDL

Find

17

Fig. 2.5 Web service standards

Web service standards as shown in Fig. 2.5 consist of Simple Object Access

Protocol (SOAP) which is an XML-based messaging protocol defining standard

mechanism for remote procedure calls. The Web Service Description Language (WSDL)

(Thanh and Jørstad, 2005) defines the interface and details service interactions. The

Universal Description Discovery and Integration (UDDI) protocol supports publication and

discovery facilities (Box et all, 2000). Finally, the Business Process Execution Language

for Web Services (BPEL4WS) (Chinnici et al, 2002) is exploited to produce a service by

composing other services.

2.4.1 Simple Object Access Protocol (SOAP)

SOAP is a lightweight, XML-based protocol for the exchange of information in a

distributed environment. SOAP provides a standard packaging structure for transporting

XML documents over a variety of standard Internet technologies, including SMTP, HTTP,

and FTP. It also defines encoding and binding standards for encoding non-XML RPC

invocations in XML for transport. SOAP provides a simple structure for doing RPC. A

SOAP message consist of three parts, a SOAP envelope, an optional SOAP header and

SOAP body as shown in Fig 2.6.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" >
<soap:Header> <!-- header element(s) here --> </soap:Header>
<soap:Body> <!-- body element(s) here --> </soap:Body>
</soap:Envelope>

 Fig. 2.6 A SOAP schema.

XML

Behavior

XML Schema

-SOAP

WSDL

BPEL-DAM-L-WSCI

Interface

Message

Type

Data

18

SOAP Envelope: The envelope is the top element of the XML document.

SOAP Header: The header element is the optional element that can appear as a

direct sub-element of the envelope element. The header element may contain elements used

for transaction, authentication or other information.

Soap Body: The body contains the SOAP message request or response details. It

also contains one way message details or fault details.

2.4.2 Web Service Description Language (WSDL)

A WSDL document defines services as collections of network endpoints, or ports.

In WSDL, the abstract definition of endpoints and messages is separated from their

concrete network deployment or data format bindings. This allows the reuse of abstract

definitions: messages, which are abstract descriptions of the data being exchanged, and port

types which are abstract collections of operations. The concrete protocol and data format

specifications for a particular port type constitute a reusable binding.

 Fig. 2.7 WSDL Structure.

19

As shown in Fig. 2.7 WSDL document uses the following elements in the definition

of network services

Types: a container for data type definitions using some type system such as XSD

Message: an abstract, typed definition of the data being communicated.

Operation: an abstract description of an action supported by the service.

Port Type: an abstract set of operations supported by one or more endpoints.

Binding: a concrete protocol and data format specification for a particular port type.

Port: a single endpoint defined as a combination of a binding and a network address.

20

<?xml version="1.0" encoding="UTF-8"?>

 <wsdl:part name="from" type="xsd:string"/>

 </wsdl:message>

 <wsdl:message name="sendMessageResponse">

 <wsdl:part name="sendMessageReturn" type="xsd:string"/>

 </wsdl:message>

 <wsdl:message name="getMessageResponse">

 <wsdl:part name="getMessageReturn" type="xsd:string"/>

 </wsdl:message>

 <wsdl:message name="sendMessageRequest">

 <wsdl:part name="to" type="xsd:string"/>

 <wsdl:part name="from" type="xsd:string"/>

 <wsdl:part name="subject" type="xsd:string"/>

 <wsdl:part name="content" type="xsd:string"/>

 <wsdl:part name="type" type="xsd:string"/>

 </wsdl:message>

 <wsdl:portType name="MessagingService">

 <wsdl:operation name="getMessage" parameterOrder="from">

 <wsdl:input message="impl:getMessageRequest" name="getMessageRequest"/>

 <wsdl:output message="impl:getMessageResponse" name="getMessageResponse"/>

 </wsdl:operation>

 <wsdl:operation name="sendMessage" parameterOrder="to from subject content type">

 <wsdl:input message="impl:sendMessageRequest" name="sendMessageRequest"/>

 <wsdl:output message="impl:sendMessageResponse" name="sendMessageResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="MessagingServiceSoapBinding" type="impl:MessagingService">

 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="getMessage">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getMessageRequest">

 </wsdl:input>

 <wsdl:output name="getMessageResponse">

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="sendMessage">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="sendMessageRequest">

 </wsdl:input>

 <wsdl:output name="sendMessageResponse"></wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="MessagingServiceService">

 <wsdl:port binding="impl:MessagingServiceSoapBinding" name="MessagingService">

 <wsdlsoap:address location="http://localhost:8083/ServiceModule/services/MessagingService"/>

 </wsdl:port>

 </wsdl:service>
</wsdl:definitions>

Fig. 2.8 WSDL Example: Messaging Service In SORWiM

21

2.4.3 Universal Description, Discovery, and Integration (UDDI)

UDDI (Box et all, 2000) provides a worldwide registry of web services for

advertisement, discovery, and integration purposes. The service provider can register three

types of information in a UDDI registry. These three types of information are commonly

referred to as "white pages", "yellow pages" and "green pages" information in the literature:

• White pages provide basic contact information about a company, such as the

business name, address and contact information.

• Yellow pages describe a business service using different categorizations.

(such as being in the manufacturing or software development business).

• Green pages provide technical information on the behaviors and supported

functions of a business service hosted by a business. This may cover phone-based services

such as call centers, E-mail based services such as technical support for a product, fax-

based services such as a fax to E-mail service, etc.

22

CHAPTER 3

DESIGN AND IMPLEMANTATION OF BASIC SERVICES IN

SORWiM

The main requirements of SORWiM are to overcome heterogeneity of mobile

devices / platforms and to handle adaptation to mobile platforms with lightweight reusable

service containers provided by Service Oriented Platform. Flexible discovery mechanism

for the registered services of SORWiM is maintained by UDDI which provides a

worldwide registry of web services for advertisement, discovery, and integration purposes.

In mobile systems the mobile nodes need to be aware of changes happening in the

environment, such as user location, time of day, nearby people and devices, and user

activity. Generally, this kind of information is called context. Context-aware services can

be described as finding the relation between the context information collected by individual

mobile nodes and adapting the way they behave according to the current

context.(Papazoglou and Georgakopoulos, 2003). That is also known as reflection.

Reflection is the ability of a program to observe and possibly modify its structure and

behavior. In the SORWiM architecture, reflection was used in the service level. A fully

reflective middleware was not implemented initially; instead we worked on reflective

services that take decisions according to context information. In middleware the

functionality of the services are separated by layers. In SORWiM by the help of SOC

paradigm the functionalities can be separated by stateless services as shown in Fig 3.1.

These services are, Event (Notification), Messaging, Location, and Redirection.

23

Fig. 3.1 High level system architecture.

Event Service provides the inference schema for profiles, notification (Alert) and

Information queries.

Messaging Service has the role for creation of different types of messages such as

RPC, SMTP, and SMS. In the project RPC based communication is implemented.

Location Service refers to the problem of updating and searching the current

locations of multiple mobile nodes.

Redirection Service is responsible for client redirection and server reference

translation at certain points.

 These are some of the first important and basic services in a typical wireless

environment. We have also developed some example composite services using these basic

services in our implementation.

Transport

Middleware

ApplicationClient
API

Client
PDA

Client
Mobile Phone

Transport

Service Oriented
Platform

Service
API

Event
service

Location
service

Redirection
service

Messaging
service

Composite Services

24

 The mobile client application TestPad, which aims to test the basic services, was written

using the PocketBuilder, the Sybase’s the rapid application development tool for building

mobile and wireless applications running on Microsoft Pocket PC devices (Gamma et al,

1995). In the middleware implementation we used the Apache Axis which is a proven

service oriented platform to develop Java web services (Schmidt et al, 2000).

3.1 COMPONENT ARCHITECTURE

Component based architecture of SORWiM is divided into four logical layers, Sensor,

Client, Sever and Storage layers as shown in Fig.3.2.

Fig. 3.2 Component architecture.

Data Source Data Source

Data Layer Component

Location Redirection Info Messaging

Server
Communication

Bluetooth
Communication

Disconnected
Operation

J2ME .NetPoc.Builder

Sensor Interface

GPS

Location
Service

Blue ToothSensor
Layer

802.11
(RADAR)

Client
Layer

Application

Server
Layer

Redirection
Service

Event Messaging
Service

Composite Services

Web Services
WSDL-SOAP

Java Classes

Storage
Layer

Component

Wireless Sen.
(ZigBee)

25

Sensor Layer: Sensors can be integrated with mobile devices (gps in a pda), or external (a

Bluetooth enabled GPS unit), for determining the location indoor with the help of WLAN

access points, or zigbee enabled wireless sensors. A sensor in a sensor layer can through the

sensor interface make context information available to applications as shown in Fig. 3.3.

getName() returns the sensor name may be implemented in the class implementing the interface.

getDescription() returns the sensor description

getSensorData() If the sensor is able to produce sensor data on request this method should return a data object.

getData() methods may be implemented in the class implementing this interface.

getSensorHistory() If the sensor is able to produce a sensor history this method should return the history in a
vector.

addListener(SensorListenerInterface) / removeListener(SensorListenerInterface) The sensor must implement a
publish/subscribe system for SensorEvents. Subscription is handled through SensorListenerInterfaces.

Fig. 3.3 Sensor layer.

Event Object

Sensor Interface

<<Interface>>
Event

Listener

Interface
SensorListenerInterface

Sensor Event

Source object

+getSource();object

+senserHasData(int event,SensorEvent)

+getName() : string
+getDescription() : string
+getSensorData() : object
+getSensorHistory()
+addListener(in l :
SensorListenerInterface) :
+SensorListenerInterface
+removeListener(in l :
SensorListenerInterface)

26

The Client Layer: The component based design is used in the Client Layer for using

reusable components like disconnected operation and server communication. The

heterogeneous applications communicate with SOAP messages through the service

interfaces described by WSDL.

The Server Layer: The Server layer is divided into core components implementing

functionality for services-application. The framework includes number of components

implementing functionality for the location, redirection, information, messaging services.

The applications are implemented as Java Web services and provide their interfaces with

SOAP to the Terminal layer. One benefit of using Web services is that the service

interfaces can be described in the WSDL and the service interface descriptions can be

automatically generated from remote Java interfaces when services are deployed on the

server.

The Storage Layer: The data layer supports a basic set of methods for storing, retrieving,

querying, and deleting objects from the database.

3.2 IMPLEMANTATION ARCHITECTURE

The architecture of SORWiM is shown in Fig.3.3 where each service is depicted by

a WSDL document, which describes service accessing rules. Web services are registered to

the central UDDI database. The client searches the UDDI to find out the service it needs,

fetches the WSDL file, and generates the stub with the WSDL to stub code generator

provided by the web service toolkit, and starts calling remote methods.

Design patterns codify design expertise, thus providing time-proven solutions to

commonly occurring software problems in certain contexts, (Andrews et al, 2003). We

extensively used the GoF design patterns (W3C, 2002) in the implementation of the

SORWiM architecture and its subsystems.

27

Fig. 3.3 Implementation architecture.

3.3 PACKAGES

The package diagrams of SORWiM basic services are shown in Fig.3.4 package

describes a stateless service which can communicate with other services through service

interfaces. That is there is no dependency between services which is one of the primary

goals of SOA. By defining relations between services we create composite services that

form new application scenarios in our wireless framework.

Server
Services

Client

Genarate

UDDI
Registry

DıscoverWSDL2Java
Vendor Toolkit

Stub

Wsdl
Doc

Axis Service
Oriented Platform

Register

SOAP Messages

SOAP Layer

Mobile App

Wireless Transport

Composite Services

Event Service

Messagaging Service

Redirection Service

Location Service

Wireless Transport

28

Fig. 3.4The UML package diagrams of SORWiM basic mobile services.

We need an util package for database access, initializing parameters, logger, and

error cases. And we just need a single instance of these classes to exist in the system. For

ensuring each of these classes has one instance and provide a global point of access to it,

singleton pattern will be used in the implementation.

3.3.1 Event Service

The EventService as shown in Fig 3.5 is one the first basic services of SORWIM. It

provides an interface schema for four main functions, authentication, profiles and

preferences, notification (alert), and system and user information the methods are shown in

Fig 3.6.

29

Fig. 3.5 Event service.

MobileServices

implemented in the Axis 1.2

Framework

Authentication: register / unRegister mobile user

logs in /out the system

Profile Preferences: setProfile detailed user profile

and preferences is set here.

Notification: setDeviceProperty Device info such as

battery power, memory, and communication

bandwidth setLocationContext: Location info

setTimeEvent: Time based-notification event

System and User Information: getInformation/

listTopic get system and user information such as

profiles, preferences/list a topic

Fig. 3.6 Event service implementation.

In the event service, context based publication is used for notifications. Publisher

publish context event on time, location, situation based. Subscribers provide a filter based

on the context event.

Event Service
 Authentication
 Profiles and

Preferences
 Notification
 Information

Client
Node

 -Info-
Database

SOAP

30

Fig. 3.7 Observer pattern.

A behavioral pattern, the observer pattern as shown in Fig. 3.7, can be used in the

implementation of the notification engine. This pattern defines a one-to-many dependency

between a subject object and any number of observer objects so that when the subject

object changes state, all its observer objects are notified and updated automatically.

Observer Pattern based Event service as shown Fig. 3.8; the users (publishers)

publish events with LocationContext, SituationContext and TimeContext. The Subscribers

are notified by invoking notifyObserver. The users state is updated by the events set in

events Classes (ScheduleEvent, SituationEvent, LocationEvent)

31

 Fig. 3.8 Observer pattern based event service

32

Fig. 3.9 Flow chart event service.

As shown in Fig. 3.8 whenever user is registered, reference the User Object that

implements from Observer Interface. Each user act as an observer. Then the user sets the

context information by the help of the objects LocationContext, SituationContext,

TimeContext which extends ASubject. Context objects have the rules of notification of time,

location, and situation. ASubject collects the subject information and has the role of

invoking notifyObserver method which updates the state of each observer.

3.3.2 Messaging Service

The Messaging Service package as shown in Fig.3.9 has basic messaging services to

create, send, receive and read XML based messages for mobile applications running on

different platforms. This service can send messages using RPC, SMTP, SMS types.

33

.

Fig. 3.10 Messaging service.

The class diagram of the MessagingService is shown in Fig.3.11. We used the

Factory design pattern for creating message types. The Factory Pattern deals with the

problem of creating objects without specifying the exact class of object that will be created.

In addition to the factory pattern, by using the reflection API, the messaging service can

decide at runtime which class (message type) is to instantiate.

Messaging Service

Messaging Service Interface

Delivery Module
Send/Receive

Transport binding and mapping

RPC
SMTP
SMS
MMS

Error Handling

Queue Manager

34

Fig. 3.11 The class diagram of the MessagingService.

The asynchronous communication is provided by the message oriented middleware

approach of SORWiM using a messaging queue structure as shown in Fig. 3.11. The

MessagingService class is the proxy class for the messaging service package. In order to

test the services in SORWiM. TestPad is implemented with PocketBuilder. RPC based

messaging is tested as shown in Fig.3.12

35

Fig. 3.12 TestPad messaging service.

3.3.3 Location Service

The LocationService handles the problem of updating and searching the current

locations of mobile nodes in a wireless network. This service is also used by other services

for giving decisions and providing active context-awareness that autonomously changes the

application behavior according to the sensed location information.

36

Fig. 3.13 Location service.

This study can be integrated with another study, WiPoD (Wireless Position

Detector), which locates and tracks a user having an IEEE 802.11 supported device

across the coverage area of a WLAN (PocketBuilder, 2006).. The location

information for the SORWiM indoor applications will be provided by WiPoD.

Location
 setLocation methods for different

location types, indoor, outdoor
 getLocationName/setLocationName
 getLocationNameinTime: specify the

location of the user according the
time slices

getNearbyObjects: get nearby objects

Fig. 3.14 Location Service in Axis

Location Service
 SetIndoor Location
 SetOutdoorLocation
 GetNearbyObjects:vector
 GetLocation:String

Location Sensor
 Outdoor
 Indoor GPS

Client
Node

OUTDOOR

Location
Database

INDOOR

802.11 AP 802.11 AP

802.11 AP

37

Fig. 3.15 TestPad Location Service

With the help of TestPad we test the method of LocationService as shown in Fig.3.14. We

query the location of the user in time and near by objects of that user.

38

3.3.4 Redirection Service

The redirection service is responsible for client redirection to different servers and

server reference translation at certain points. There are two main problems dealt with in

redirection: address migration and data replication as shown Fig 3.15. Server translation

and redirection can be done transparently or none transparently. The redirection service

needs to be aware of the state of connectivity and the location of the client at any point in

time.

 Fig. 3.16 Redirection service.

RedirectionService
redirectionRequest(String username)
replicationRequest(String username,String
newEndPoint)

Fig. 3.17 Redirection Service in Axis.

Redirection Service

Server 2

Client
Node

Database

DatabaseServer 1

Replication Transparency

Migration
Transparency

39

 The steps of redirection:

 Request- sent from a client to a server to signal that the client wishes to carry out a

request on the server.

 Response sent from the server to a client in response to a request.

 Redirection – Sent from a server to a client signaling that the client should send its

request to another server whose reference will be embedded in redirection response.

Migration transparency allows components to change their location, which is not

seen by a client requesting these components. In an asynchronous replication one server

acts as the master, while one or more other servers act as slaves. The master server writes

updates to log files, and maintains an index of the files to keep track of log rotation. These

logs serve as records of updates to be sent to any slave servers. The slave receives any

updates that have taken place, and then blocks and waits for the master to notify it of new

updates. These replication functions are provided by the replication servers of different

vendors.

40

CHAPTER 4

SERVICE ORCHESTRATION WITH COMPOSITE SERVICES

4.1 Service Orchestration

Complex mobile services are created by aggregating the functionality provided by

each independent service. Typically, a composite web service specification is executed by a

single coordinator node as shown as Service Orchestration component in Fig 4.1 It receives

the client requests, makes the required data transformations and invokes the component

web services. Composite services provide standardized interfaces for state transfer between

basic services.

Fig. 4.1 Service orchestration.

Service Orchestration: This describes how Web services can interact at the message level,

including the business logic and execution order of the interactions.

Mobile Services

Service Orchestration
Service
State

State Variables

Service Logic

+Java Classes +Event Service

+Messaging Service

+Location Service

+Redirection Service1 .*

1

Contains

41

State Variables: The input and output parameters of the service.

Service State: Services are self-contained and required to maintain their own state.

Services should not be dependent on the state of other services.

Mobile services: The overall representation of the service, which consists of one or several

service logic components.

Service Logic: the executable code

4.2 Service Orchestration in SORWIM

Fig. 4.2 shows two example composite services. The Location Based Redirection

Composite Service (LBRCS) maintains transparent redirection between the indoor and

outdoor servers according to changes in the mobile location using basic Location and

Redirection services. The Context Aware Notification Delivery Composite Service

provides (CANDCS) notification messages that are created by the middleware based the

context information sensed by mobile devices using three basic services.

Fig. 4.2 Service composition in SORWIM.

42

LBRCS maintains transparent redirection according to changes in the mobile

location using basic Location and Redirection services. This service first obtains the device

location (Location Service) and redirects to the available addresses (Redirection Service).

We will give a scenario to explain how LBRCS can be used in a mobile application. In this

scenario, there are three locations. These are the user’s home and user’s office which both

are covered by a Wireless LAN, and the outdoor location between the home and office

where GPRS connection is available. In all these three locations the user can connect to

these networks using Pocket PCs or laptops. When the user has left his/her office and

moved out from the office WLAN coverage area, his mobile device keeps connected to

SORWIM through the GPRS connection. The WLAN-to-GPRS handover is generally

initiated by the mobile user. In our approach, the mobile user sets the location information

based on the local measurement of WLAN signal quality. When LBRCS decides that a

WLAN-to-GPRS handover is required, it sends a handover-required message and an

available endpoint (IP, port number, and service name) of the server to the mobile device.

The mobile user then performs a handover and switches from the WLAN connection to the

GPRS connection. When the user arrives in home, and discovers a wireless access point,

the mobile device sends the location information to LBRCS through the GPRS connection.

SORWIM then sends the response of the endpoint of the server that is accessible in

the office. The user performs a handover again and switches from GPRS to the WLAN

connection again. The TestPad screen for this last scenario is shown in Fig 5 (b). The user

sets the new location as Home and gets a response message from SORWIM. The response

is a new connection end point for the WLAN network. The old and new end points are also

shown in the lower part of the screen in Fig 5 (b). CANDCS which composes the services

of Messaging, Event and Location, notifies all registered users who are interested in a

specific event. Imagine the following scenario using this composite service: Haluk is

waiting for Bora’s arrival and types in his Pocket PC as “notify me as soon as Bora appears

on the campus”. This message is sent to SORWIM using the Pocket PC’s window shown in

the upper part of the screen in Fig 5 (c). When Bora arrives and enters the campus,

immediately a notification is sent to Haluk’s Pocket PC as a message or SMS as shown in

43

the lower part of the screen in Fig 5 (c)The Location Based Redirection Composite Service

maintains transparent redirection according to changes in the mobile location using basic

Location and Redirection services. The solution can be seen as two main steps –obtain

mobile device location (Location service) and - redirect to the available addresses

(Redirection Service).

In an other scenario, Context aware notification delivery service can be used as

emergency service. When a user is in a emergency position. He/She send emergency

message to the middleware .The users in the same region get this emergency mes-sage with

the user‘s positions in time as shown in Context Aware notification delivery services role is

the decision making for request similar to “I want to be registered for notification about

whether Person X is in Y location .The event service provide interface for registering the

notifications. The location service serve for locations and can query the near by objects as

as shown in Fig. 4.3. And the messaging service that has the ability of sending different

type of messages as shown in is responsible for delivering the notification messages.

Fig. 4.3 Basic services (a) and composite services (b) (c) TestPad screens

44

CANDCS makes a decision using three basic services for requests similar to “I want

to be registered for notifications about whether person X is in Y location”. The Event

Service provides an interface for registering the notifications. The Location Service gives

location information and can query the nearby objects as shown in Fig. 4.3 (a). The

Messaging Service that has the ability of sending different types of messages is responsible

for delivering the notification messages.

4.3 Performance

In this section we report on comparisons of Web Service and Java RMI solutions

for messaging service in SORWIM. Web Services differ from distributed object

technologies like RMI, CORBA by not accepting the concept of an object reference;

instead a service is defined simply by an end-point that supports various operations.(N.A.B.

Gray,2002) . Auto generated client-side stubs approach in Web Services that is very similar

to Java-RMI clients. Typically starts with an interface definition for the service. A client-

side stub is auto-generated from this interface.

There are a number of research studies for the performance evaluations of web ser-

vices and SOAP compared to middleware technologies, including Java RMI, CORBA. In

these studies, a comparison is made based on the performance of a web service

implementation that calls a simple method and an RMI, CORBA, or other implementation

that calls the same method (K. P. Birman, 2004) , (D.Davis et al, 2002) , (C.Damerey et al,

2005) , (J.Elfwing et al, 2004) , (M. B. Juric et al, 2004) .

We performed similar benchmarking tests to measure the performance of SOR-

WiM to see if its performance is acceptable for a wireless middleware. The technologies

used in this study were: Jakarta Tomcat 5.0.25, Axis 1.2, Java RMI from Java 1.4 SDK.

The server specification is Intel Pentium M Processor 1.6 GHz 591 Mhz. 504 MB RAM

,the latest Ethereal tool (WireShark) network traffic analysis program. The client is an HP

IPAQ h6340 Pocket PC. The Messaging Service in SORWiM is implemented using two

45

middleware technologies, RMI and Web Service. The remote interface for performance

tests is given in Fig. 4.4.

public interface MessagingService extends java.rmi.Remote {

 public java.lang.String getMessage(java.lang.String from) throws

java.rmi.RemoteException;

 public java.lang.String sendMessage(java.lang.String to, java.lang.String from,

java.lang.String subject, java.lang.String content, java.lang.String type) throws

java.rmi.RemoteException; }

Fig. 4.4 The messaging service interface

The data shown in Table 1 show relative performances for two implementations of

the “messaging service” with a request for a single call. For the first call the web service

performance is better than RMI .

Method Call
WS packet
number ans size

CPU Time Client
[ms] Web Services

RMI packet number
ans size

CPU Time Client
[ms] RMI

sendMessage
1 8 /1953 bytes 330 43 / 4268 bytes 5975

Table 1

The Java-RMI solution has the most complex mechanism ; establishment of a

connection to the rmiregistry and submission of lookup request ,establishment of a

connection to an HTTP server and posting of a request to download a class file which TCP

stream is shown in Figure 4.5, and finally exchanges with the actual server. The graph

analysis show that RMI registry cost 101 ms and connection the server costs 185 ms and

download stub cost 4396 ms. These costs are the reasons of the poor performance as

shown in Fig. 4.6

46

Fig. 4.5 The TCP stream of remote stub

Fig. 4. 6 Graph Analysis Of RMI Connection

47

The typical illustrative Web Service application has a client connect to a service,

submit a single request for data, and terminate as shown in Fig 4.7. In any case, for such

applications, Web Services technologies perform well in comparison with the distributed

object systems.

Fig. 4.7 Graph Analysis Of Web Service Connection.

Method Call
CPU Time Server
[ms] Web Services

CPU Time Client
[ms] Web Services

CPU Time Server
[ms] RMI

CPU TimeClient
[ms] RMI

getMessage 100 3216 44320
5238 9120

sendMessage
 100

4247 53540 6116 11170

Table 2

Our test results and other research studies showed in Table 2 that web services

implementations performed slower than a Java RMI implementation.

48

 The large amount of XML metadata contained in SOAP messages as shown in Fig

4.8 is the main reason that Web services will require more network bandwidth and CPU

times than RMI as shown in Fig. 4.9. We have concluded that although the web service

implementations are slower, the performance is acceptable for many real time operations of

a wireless middleware. The performance can be made better and improved if the following

issues are known and taken into consideration in middleware server designs.

All numeric and other data in web services are converted to text. Meta-data, defining

structure, are provided as XML mark-up tags. XML parsers allow client and server

implementations to construct their distinct but equivalent representations of any data

structures The use of HTTP, and XML text documents, supports increased interoperability

but also represents a significant increase in run-time cost for web service solutions as

compared with Java-RMI solutions. The XML formatted documents are inherently more

voluminous than the binary data traffic of the other approaches. More data have to be

exchanged across the network, and more control packets are required.

When considering performance alone, web services provide value when the over-

head of parsing XML and SOAP is outweighed by the business logic or computation

performed on the server. Although web services generally don’t provide value in

performance, but do provide a convenient way to provide user interface, automatic firewall

protection (because they use HTTP for transport and HTTP traffic can normally pass

through firewalls), mobility and heterogeneity of applications, transparent proxies, and thin

clients. The most natural designs for distributed objects are easy to use but scale poorly,

whereas web services have good scaling properties.

The performance studies in literature generally measure RPC-style communication

and do not consider the possibilities of document-oriented designs that demonstrate the

strengths of web services. Web services are not intended to be used RPC-style like other

distributed object technologies. Web services provide a literal encoding that can be used in

a document-centric paradigm rather than an RPC-centric one. If the document-centric

nature of web services is used in implementations, web services can outperform other

traditional implementations when compared with an RPC-centric approach. According to

.(N.A.B. Gray, 2002) the pure-object RMI or CORBA implementation is faster for small

batches of documents and low-latency networks, but performance degrades rapidly with

49

larger batches and higher latency. The web services have a high initial cost, but show little

or no change with larger batches. Higher latency creates a greater initial cost, but

performance is still independent of batch size. As latency increases, the performance

benefits of the document-oriented approach increase significantly. This is relevant when in

some real world wireless communication scenarios, latency may even be minutes, or hours,

as for disconnected or asynchronous operations.

Fig. 4.8 TCP Stream of RMI

50

Fig. 4.9 TCP Stream of web service.

50

CHAPTER 5

CONCLUSION

The increasing diversity of devices-terminals, network elements and the application

servers imply that different middleware solutions will be in use. In near future a single

dominant middleware platform which provides the interpretability between existing

middleware platforms and between parts of an application running on different middleware

platforms is needed. With SOC benefits, the requirements and the functionalities of the

wireless middleware solutions may be achieved. In this thesis the first designs and issues of

a SOA based reflective wireless middleware, SORWIM, were presented with the help of

location, messaging, event (notification) and redirection services .the key issue problems in

the wireless environment are tried to be solved.

We would like to work on the research and development problems of different

mobile applications such as location based services (LBS) based on service oriented

computing using the basic and composite services provided by the middleware. The

currently SORWIM has only four basic services and two composite services which can be

used as building blocks of such wireless applications. We need develop some more new

basic and composite services for more complex mobile applications and LBS. The

integration of SORWIM and WiPoD will be our next project. The WiPoD client application

currently has a decentralized architecture and does not need a server. It will be connected to

the SORWIM server to provide the indoor location information for the mobile user

The performance evaluation and runtime environments such as operating systems,

required programs and libraries, memory sizes, CPU powers and I/O requirements of

mobile devices to run SOA based typical mobile applications will be also analyzed and

presented in the future.

REFERENCES

Andrews R.,”Business Process Execution Language for Web Services (BPEL4WS)”, Version 1.1.

Technical Report 2003

Birman K. P., “Like it or not, web services are distributed objects,” Commun. ACM, vol. 47, no. 12,

pp. 60–62, 2004.

Box D. ,Ehnebuske D. , Kakivaya G. , Layman A., Mendelsohn M., Nielsen N., ,” Simple Object

Access Protocol (SOAP) 1.1.” WRC Note, available at http://www.w3.org/TR/2000/NOTE-SOAP-

2000058/ 2000

Chinnici R., Gudgina M., Moreau J.,Weerawarana S ., ,”Web Service Description Language

(WSDL)”, version 1.2. Technical Report 2002

Davis D. , Parashar M. , “Latency performance of SOAP implementations,” IEEE Cluster

Computing and the Grid, 2002.

Demarey C., Harbonnier H., Rouvoy R., and Merle P., “Benchmarking the round-trip latency of

various java-based middleware platforms,”Studia Informatica Universalis Regular Issue, vol. 4, no.

1, p. 724, May 2005, iSBN: 2912590310.

Dertouzos M., “The Oxygen Project,” Scientific American, Vol. 281 No. 2, August 1999, 52-63.

Dey A.K., “Understanding and Using Context,” Personal and Ubiquitous Computing, 2001.

Elfwing R., Paulsson U., Lundberg L., “Performance of SOAP in web service environment

compared to CORBA.” in APSEC. IEEE Computer Society, 2002, pp. 84–.

Emmerich W.,”Software Engineering and middleware:A roadmap.”, Communications of the ACM,

pages 117 -129 2000

Endeavour Expedicion: Charting the Fluid Information Utility, http://endeavour.cs.berkely.edu/.

Esler M., “Next Century Challenges: Data-Centric Networking for Invisible Computing,” in Proc.

MobiCom ’99, August 1999, 256-262.

FCE: Future Computing Environments, http://www.cc.gatech.edu/fce/

Gamma E. , Helm R., Johnson R., Vlissides J., , “Design Patterns, Elements of Reusable Object-

Oriented Software.” Addison-Wesley 1995

Gray N.A.B.,”Comparison of Web Services, Java-RMI, and CORBA service implementations”

2002, available at : http://mercury.it.swin.edu.au/ctg/AWSA04/Papers/gray.pdf

Gribble S.D. , “The Ninja Architecture for Robust Internet-Scale Systems and Services,” to appear

in a Special Issue of Computer Networks on Pervasive Computing.

Gümüşkaya H., Hakkoymaz H. ,” WiPoD Wireless Positioning System Based on 802.11 WLAN

Infrastructure.”, Proceedings of the Enformatika, Vol. 9 (2005) 126–130

Heinzelman W. B., Murphy A. L., Carvalho H. S. , Perillo M. ,”A. Middleware to Support Sensor

Network Applications.”, IEEE Network, January/February 6 – 14 2004

Hellerstein J. M. , Avnur R. , “Eddies: Continuously Adaptive Query Processing,” in Proc. ACM

SIGMOD 2000 Conference.,2000

Hellerstein. J. M., “Adaptive Query Processing: Technology in Evolution,” IEEE Data Engineering

Bulletin, 2000.

JAVA RMI , available at http://java.sun.com/products/jdk/rmi/

Juric M. B. , Kezmah B. , ” Java RMI, RMI tunneling and Web services comparison and

performance analysis”ACM ,2004

Kubiatowicz J., “OceanStore: An Architecture for Global-Scale Persistent Storage,” Proc. ASPLOS

2000, November 2000.

Maniatis P. , “he Mobile People Architecture,” ACM Mobile Computing and Communications

Review, July 1999.

Mascolo C. , Capra L. ,Emmerich W. ,”Mobile Computing Middleware. Lecture Notes In Computer

Science, Advanced Lectures on Networking”, Vol. 2497. Springer-Verlag 20–58 2002

Mascolo C., Capra L. , Emmerich W.,”Principles of Mobile Computing Middleware.”, In

Middleware for Communications Wiley 2004

Mindreef Coral ,available at: http://www.mindreef.com/

MIT Project Oxygen, http://www.oxygen.lcs.mit.edu/.

Mobile RMI , available at https://www.cs.tcd.ie/publications/tech-reports/reports.05/TCD-CS-

2005-13.pdf

MosquitoNet: The Mobile Computing Group at Stanford University,

http://mosquitonet.stanford.edu/index.html.

Nunn R. ,”Distributed.Software Architectures Using Middleware”, Available at:

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/3C05-02-03/aswe18-essay.pdf

Papazoglou M. , Georgakopoulos D. ,” Service-Oriented Computing.”, Communications of the

ACM. Vol. 46, No. 10 2003

Papazoglou M. P. , Heuvel W. J. ,“Service Oriented Architectures: Approaches, Technologies and

Research Issues.”, The VLDB Journal 2005 Available at: http://infolab.uvt.nl/pub/papazogloump-

2005-81.pdf

PocketBuilder: http://www.sybase.com/products/developmentintegration/pocketbuilder

Portolano: An Expedition into Invisible Computing, http://portolano.cs.washington.edu/.

Raatikainen K, ” Functionality Needed in Middleware for Future Mobile Computing

Platforms,”Citeseer,2001 available at : http://citeseer.ist.psu.edu/raatikainen01functionality.html

Roman M. , Campbell R.H., “Gaia: Enabling Active Spaces,” in Proc. ACM SIGOPS European

Workshop, Kolding, Denmark, September 2000.

Roman M., Kon F. , Campbell R. ,”Reflective Middleware: From your Desk to your Hand.”, IEEE

Communications Surveys, 2 (5) 2001

Schantz R., Schmidt D., “Middleware for Distributed Systems: Evolving the Common Structure for

Network-Centric Applications.”, In Encyclopedia of Software Engineering John Wiley & Sons, Inc.,

New York 2001

Schmidt D., ”Middleware for Real-Time and Embedded Systems.”, Communications of the ACM,

Vol. 45, No: 6 June 2002

Schmidt D., Stal M., Rohnert H., Buschmann F., ,“Pattern-Oriented. Software Architecture:

Patterns for Concurrent and Networked Objects.” John Wiley & Sons, Inc., New York 2000

Sen R., Handorean R. , Roman G., Gill C.,” Service Oriented Computing Imperatives in Ad Hoc

Wireless Settings. Service-Oriented Software System Engineering: Challenges And Practices”,,

Idea Group Publishing, Hershey, USA, April, 247 – 269 2005

Thanh D., Jørstad I. ,” A Service-Oriented Architecture Framework for Mobile Services”, IEEE

Proceedings of the Advanced Industrial Conference on Telecommunications/Service Assurance with

Partial and Intermittent Resources Conference/ELearning on Telecommunications Workshop,

September 2005

The PIMA Project: Platform-Independent Model for Applications,

http://www.research.ibm.com/PIMA/.

The Reactive Adaptive Proxy Placement Architecture (RAPP) , available at

http://www.comp.lancs.ac.uk/~adrian/Papers/seitz-proxyarch-im99.pdf

Vaughan-Nichols S.J. ,”Wireless Middleware: Glue for the Mobile Infrastructure.”, IEEE

Computer, Vol. 37, No. 5 18–20 2004

W3C. UDDI Technical White Paper. Technical Report 2000

 Wang H.J. , “An Internet-core Network Architecture for Integrated Communications,” IEEE

Personal Communications, August 2000.

Weiser M., “Some Computer Science Issues in Ubiquitous Computing,” Communications of the

ACM, July 1993, 74-84.

Weiser M., “The Computer for the Twenty-First Century,” Scientific American, September 1991,

94-104.

Yu Y., Krishnamachari B., PrasannaIssues V., ,”Designing Middleware for Wireless Sensor

Networks.”, IEEE Network, January/February 15 – 21 2004

