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ABSTRACT 
 
 
 

In this thesis, mainly primality tests are analyzed. Large integers have great importance 
especially in cryptography. Some deterministic and probabilistic primality tests will be 
examined in order to test primality of large integers. Recently, a lot of studies have been done 
on elliptic curves. One of the applications of  elliptic curves is elliptic curve primality tests. 
Goldwasser and Kilian  developed an algorithm which uses the group of rational points of 
elliptic curves over finite fields. Atkin and Morain extended the idea of Goldwasser and 
Kilian and used the elliptic curves with complex multiplication to obtain a more efficient 
algorithm. 
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ÖZ 
 
 

Bu tezde asıl konu asallık testlerinin analizidir. Çok büyük tam sayıların özellikle 
kriptografideki çok önemli yeri vardır. Çok büyük tam sayıları test etmek için bazı gerçekçi 
ve olasılıksal asallık testleri incelenecek. Son yıllarda eliptik eğriler  üzerine birçok çalışmalar 
yapılmaktadır. Eliptik eğrilerin uygulandığı alanlardan biri eliptik eğri asallık testleridir. 
Goldwasser ve Kilian sonlu cisimler üzerinde eliptik eğrilerin kullanıldığı asallık test 
algoritmaları geliştirmişlerdir. Atkin ve Morain bu testi geliştirerek kompleks sayılar 
üzerindeki eliptk eğrileri kullanarak daha güçlü bir algoritma  geliştirmişlerdir.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

Positive integers greater than 1 can be classified as either a prime number or a 

composite number. If a positive integer greater than 1 has no positive factors other than 

1 and itself is called a prime number.  Prime numbers have great importance in abstract 

algebra. Many mathematicians tried to find mysterious properties of prime numbers for 

centuries. Prime numbers and their properties were first studied extensively by the 

Greek mathematicians especially by Eratosthenes and Euclid. 

Primality tests are the tests to distinguish prime numbers from composite numbers. 

A technique known as the sieve of Eratosthenes represents a reasonable method for 

obtaining a complete list of primes less than or equal to n where n is a relatively small 

value. Nowadays, the importance of data security is increasing. We need big prime 

numbers to make codes to secure our data. These codes should not be easily broken. 

The time is very important while checking a large integer is prime or not. In the last 

decades, computer technology is developing very fast. Therefore data processing time is 

decreasing day by day. The Sieve of Eratosthenes is not good algorithm to find big 

primes. Fermat’s Little Theorem is the basis for methods of checking whether numbers 

are prime which are still in use on today's computers. Using the extended ideas of 

Fermat’s theorem, Sollovay and Strassen, and Miller and Rabin  developed probabilistic 

primality tests. 

An elliptic curve is a mathematical object which is defined over a field. Elliptic 

curves have become very popular subject in recent years. For example, Wiles used 

elliptic curves to prove Fermat’s Last Theorem. Moreover, elliptic curves are being 

used in cryptography.  In 1985, H. W. Lenstra introduced the usage of elliptic curves in 

factorization of integers. After that Goldwasser and Kilian developed an algorithm with 

the hope of finding a primality test with the help of groups of rational points of elliptic 

curves over finite fields. The major difficulty in the Elliptic curve primality proving  

1 
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algorithm of Goldwasser & Kilian is to find the size of the group of rational points of 

elliptic curves by means of the theoretical algorithms due to Schoof. Although, some 

progress has been made in the direction of making Schoof’s algorithm practical by 

Atkin,  Atkin and Morain have found a better idea. They used elliptic curves with 

complex multiplication instead of using randomly chosen elliptic curves. 

In this thesis, elementary number theory and some abstract algebra topic will be 

overviewed and then elliptic curves and some important primality tests will be 

explained. 



CHAPTER 2 
 
 

ELEMENTS OF NUMBER THEORY 

AND ABSTRACT ALGEBRA 
 
 
 

2.1 DIVISIBILITY PROPERTIES OF INTEGERS 

2.1.1 Prime and Composite Integers 

An integer p which is greater than 1 is prime if it has only two positive factors 1 

and itself. Otherwise, it is composite. Note that 1 is neither prime nor composite. 

 

Example 2.1   29 is a prime number. Because the only positive factors of 29 are 1 and 

29.  

 

Every integer n greater than 1 can be expressed as a product of primes. It can be 

uniquely expressed in the form 1 2
1 2

ke e e
kn p p p= L , where ip  are primes and ie  are 

positive integers. This is called the Fundamental Theorem of Arithmetic. 

 

Example 2.2   The positive integer 3500 can be factorized uniquely such that  

3500 = 22.53.7 

 

Theorem 2.1  There are infinitely many prime numbers. 

 

Proof:  Assume that there are finitely many prime numbers. Let these numbers be 

p1, p2, p3,…, pn and let pn be the largest prime. Consider the integer 

M = p1.p2.p3…pn + 1 

So M is not divisible by any of the pi. If M is not a prime number, it must have a prime 

factor. Hence, either M has prime factors which are greater than pn or M is a prime 

3



 4

number itself. This contradicts with our assumption. Therefore there are infinitely many 

prime numbers. 

 

Theorem 2.2. (Prime Number Theorem)  Let π(x) denote the number of prime 

numbers less than or equal to x, then 

 
Table 2.1 indicates the validity of the Prime Number Theorem. 

 

 

Table 2.1 Prime Number Theorem 

x π(x) x/lnx π(x).lnx/x 

100 25 22 1.151 

1000 168 145 1.159 

10000 1229 1086 1.132 

100000 9592 8686 1.104 

1000000 78498 72382 1.084 

10000000 664579 620421 1.071 

100000000 5761455 5428681 1.061 

 

 

2.1.2 The Greatest Common Divisor 

Let a, b be at least one of them nonzero  integers and k is a positive integer.  If k|a 

and k|b, then k is called a common divisor of a and b. The largest positive integer g that 

divides the absolute values of each of two integers a and b is called the greatest 

common divisor of a and b. The greatest common divisor of a and b is denoted by (a, b). 

1 2( , , , )na a aK  denotes the greatest common divisor of integers 1a , 2a , …, na , 

which are not all zero. 

 

Example 2.3  The greatest common divisor  of  18 and 45 is 9 

(18, 45)= 9 

 

Example 2.4  The greatest common divisor  of  12, 20, 28 and 36 is 4. 

x→
lim x

x/ lnx
 1
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(12, 20, 28, 36) = 4 

 

If ( , ) 1a b = , then a, b are relatively prime. 

If 1 2( , , , ) 1na a a =K , then 1a , 2a , …, na  are relatively prime. 

If ( , ) 1i ja a =  for all 1, 2, ,i n= K  and 1, 2, ,j n= K  with i j≠ , then 1a , 2a , …, na  are 

relatively prime in pairs. 

Here are some properties of the greatest common divisor: 

1. For integers a and b, there exist integers x and y such that ( , )ax by a b+ = . 

            For integers 1a , 2a , …, na , there exist integers ik  such that  

1 2 1 1 2 2( , , , )n n na a a k a k a k a= + + +K L . 

2. For any positive integer m,  ( , ) ( , )ma mb m a b= . 

3. If |d a , |d b  and 0d > , then 1, ( , )a b a b
d d d

⎛ ⎞ =⎜ ⎟
⎝ ⎠

. 

             If ( , )a b g= , then , 1a b
g g

⎛ ⎞
=⎜ ⎟

⎝ ⎠
. 

4. If ( , ) ( , ) 1a m b m= = , then ( , ) 1ab m = . 

5. For any x, a and b, we have ( , ) ( , ) ( , ) ( , )a b b a a b a b ax= = − = + . 

6. If |c ab  and ( , ) 1b c = , then |c a . 

 

Theorem 2.3.  If  p is a prime number and p|ab, then p|a or p|b. 

 

Proof:  If p|a, then the theorem is proved. If p∤a, then (p,a) = 1. By property 6, it 

follows that p|b. 

 

Theorem 2.4. If 1 2| np a a aL , then p divides at least one of the ia . 

 

2.1.3  Euclidean Algorithm 

To find the greatest common divisor of large numbers is not easy. In such cases, 

we may apply the Euclidean Algorithm. This algorithm makes use of the following fact  

If a, b are not both zero, then ( , ) ( , ) ( , )a b a bm b a b an= − = −  for any positive 

integers m, n. In particular, if 0a b> >  and a bm r= + , then ( , ) ( , )a b r b= . 
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Let a > b > 0 and 1 1

1 1 2 2 1

1 2 2 3 3 2

2 1 1 1

1

0
0
0

0n n n n n n

n n n

a bq r r b
b r q r r r
r r q r r r

r r q r r r
r r q
− − − −

−

= + ≤ <
= + ≤ <
= + ≤ <

= + ≤ <
=

M M

 

Then ( , ) na b r= . We can also write ( , )nr a b xa by= = +  by eliminating 1nr − , …, 2r , 1r  

from the above equations. 

 

Example 2.5   Let a = 91 and b = 35. Then  

91 = 2.35 + 21 

35 = 1.21 +14 

21 = 1.14 + 7 

14 = 2.7 

Thus (91, 35) = 7. Moreover,  

7 = 21 – 14  

7 = 21 – (35 – 21) = 2.21 – 35 

7 = 2(91 – 2.35) – 35 = 2.91 – 5.35 

7 = 2.91 – 5.35 

 

 

2.2 CONGRUENCES 

If an integer k ( 0k ≠ ) divides a b− , then a is congruent to b modulo m and we 

write  

a b≡  (mod m). 

If k does not divided a b− , then a is not congruent to b modulo m and we write  

a b≡/  (mod m). 

 

Example 2.6 

We say that 1913 ≡  (mod 3) because )1319(|3 − . 

However, 28 41≡/  (mod 3) because 3 | (41 28)−/ . 
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2.2.1 Basic Properties 

We have the following properties: 

1. a b≡  (mod m), b a≡  (mod m) and 0a b− ≡  (mod m) are equivalent. 

2. If a b≡  (mod m) and b c≡  (mod m), then a c≡  (mod m). 

3. If a b≡  (mod m) and c d≡  (mod m), then ax by cx dy+ ≡ +  (mod m). 

4. If a b≡  (mod m) and c d≡  (mod m), then ac bd≡  (mod m). 

5. If a b≡  (mod m) and |d m  ( 0d > ), then a b≡  (mod d). 

6. If f is a polynomial with integral coefficients and a b≡  (mod m), then 

( ) ( )f a f b≡  (mod m). 

7. ax ay≡  (mod m) if and only if  mod 
( , )

mx y
a m

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
. 

  In particular, if ( , ) 1a m = , then x y≡  (mod m). 

8. x y≡  (mod im ) for 1, 2, ,i k= K  if and only if  

x y≡  (mod 1 2[ , , , ]km m mK ). 

9. If x y≡  (mod m), then ( , ) ( , )x m y m= . 

 

If x y≡  (mod m), then y is called a residue of x modulo m. A set 1x , 2x , …, mx  is 

called a complete residue system modulo m if for every integer y there is one and only 

one ix  such that iy x≡  (mod m). 

A reduced residue system modulo m is a set of integers r, such that ( , ) 1ir m = , 

i jr r≡/  (mod m) if i j≠ , and such that every x prime to m, is congruent modulo m to 

some member ir  of the set. 

Let ( , ) 1a m = . Let 1r , 2r , …, nr  be a complete, or a reduced, residue system 

modulo m. then 1ar , 2ar , …, nar  is a complete, or a reduced, residue system, 

respectively, modulo m. 

 

Example 2.7   12, 37, 166, 999 form a complete residue system modulo 4. 
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2.2.2 Euler’s φ-function 

For a positive integer n, we define ( )nφ  to be the number of positive integers less than n 

that are relatively prime to n. 

 

Example 2.8   (10) 4φ =  since among the positive integers less than 10, there are 4 of 

them, namely, 1, 3, 7, 9, which are relatively prime to 10. 

 

 

Facts: 

1. If p is a prime number, then 1( )k k kp p pφ −= − , where k is a positive 

integer. 

2. If a and b are relatively prime, then ( ) ( ) ( )ab a bφ φ φ= . 

3. If 1p , 2p , …, rp  are all the prime factors of n, then  

1 2

1 1 1( ) 1 1 1
r

n n
p p p

φ
⎛ ⎞⎛ ⎞ ⎛ ⎞

= − − −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

L . 

 

Example 2.9 

 1. 3 3 2(11 ) 11 11 1210φ = − = . 

 2. Let 8a = , 9b = . Then a and b are relatively prime. Thus 
3 2 3 2 2 1(72) (8 9) (8) (9) (2 ) (3 ) (2 2 )(3 3 ) 24φ φ φ φ φ φ= × = = = − − = . 

 3. Let 60n = . Then the prime factors of n are 2, 3, 5. Thus 

1 1 1(60) 60 1 1 1 16
2 3 5

φ ⎛ ⎞⎛ ⎞⎛ ⎞= − − − =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

. 

 

2.5 Fermat’s Little Theorem 

 
Theorem 2.5  If p is a prime number and (a,p) = 1, then ap-1 ≡ 1 (mod p) 
 
 

Proof:  Claim that the integers 0a, 1a, 2a,……..,(p-1)a are complete residue system 

modulo p. If  ia = ja mod p then p| (j – i)a. Since a is not divisible by p, we would have 
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p| (j – i). Since i and j both less than p, the only way this can happen is if i = j. We 

conclude that 1a, 2a,……..,(p-1)a rearrangement of  

1, 2, …..,p-1 when considered modulo p. The product of 1a, 2a,……..,(p-1)a will be 

congruent to the product of the numbers in the second sequence. 

ap-1(p – 1)! ≡ (p – 1)! mod p 

Since p∤ (p -1)!, we have  p| ap-1 – 1. Therefore ap-1 ≡ 1 (mod p) 
 
 
Corollary 2.1  Let p is a prime number and a is any integer, then ap = a mod p 
 
 

Proof:  Case 1: p|a � both sides are zero. 

Case 2: p∤a �  ap-1≡1 (mod p) by Fermat's Little Theorem (since (a,p) = 1). If 

we multiply both sides by a, we get 

a.ap-1≡a.1 (mod p) � ap = a (mod p). 

 

Theorem 2.6 (Euler’s Theorem) For any positive integer n such that (a, n) = 1, then 
( ) 1naφ ≡  (mod n). 

 

Example 2.10 

Since 11 is prime and (8, 11) = 1, 108 1≡  (mod 11). 

Since 2 2 1(9) (3 ) 3 3 6φ φ= = − =  and (8, 9) = 1, 68 1≡  (mod 9). 

 

2.2.4 Chinese Remainder Theorem 

Theorem 2.7  The Chinese Remainder Theorem states that if 1m , 2m , …, nm  are 

pairwise relatively prime integers, the following system of congruences has solution and 

the solution is unique modulo 1 2 nm m mL . 

1 1

2 2

( mod )
( mod )

( mod )n n

x b m
x b m

x b m

≡
≡

≡
M

 

To find a solution, let 1 2 n
j

j

m m mM
m

=
L . One solution is given by 

1 2( ) ( ) ( )
1 1 2 2

nm m m
n nx M b M b M bφ φ φ= + + +L  
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Example 2.11 The following system of congruences has solution. 

1 (mod 2)
2 (mod3)
3 (mod5)

x
x
x

≡
≡
≡

 

The solution is given by 
(2) (3) (5)2 3 5 2 3 5 2 3 51 2 3 6803

2 3 5
x

φ φ φ× × × × × ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × + × + × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Since 6803 23 (mod 2 3 5)≡ × × , any number which is congruent to 23 modulo 30 is a 

solution to the system. 

 

 

2.3 GROUP THEORY 

In mathematics, a group is a set, together with a binary operation, such as 

multiplication or addition, satisfying certain axioms, detailed below. For example, the 

set of integers is a group under the operation of addition. The branch of mathematics 

which studies groups is called group theory. 

The historical origin of group theory goes back to the works of Evariste Galois 

(1830), concerning the problem of when an algebraic equation is soluble by radicals. 

Previous to this work, groups were mainly studied concretely, in the form of 

permutations; some aspects of abelian group theory were known in the theory of 

quadratic forms. 

 A great many of the objects investigated in mathematics turn out to be groups. 

These include familiar number systems, such as the integers, the rational numbers, the 

real numbers, and the complex numbers under addition, as well as the non-zero rationals, 

reals, and complex numbers, under multiplication. Another important example is given 

by non-singular matrices under multiplication, and more generally, invertible functions 

under composition. Group theory allows for the properties of these systems and many 

others to be investigated in a more general setting, and its results are widely applicable. 

Group theory is also a rich source of theorems in its own right. 

Groups underlie many other algebraic structures such as fields and vector spaces. 

They are also important tools for studying symmetry in all its forms; the principle that 

the symmetries of any object form a group is foundational for much mathematics. For 
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these reasons, group theory is an important area in modern mathematics, and also one 

with many applications to mathematical physics (for example, in particle physics).  

 

2.3.1 Basic Definitions 

A group (G, * ) is a nonempty set G together with a binary operation  

* : G × G → G, satisfying the group axioms. "a * b" represents the result of applying the 

operation * to the ordered pair (a, b) of elements of G. The group axioms are the 

following: 

1. Closure: For all a and b in G, a * b belongs to G.  

 2. Associativity: For all a, b and c in G, (a * b) * c = a * (b * c).  

 3. Identity element: There is an element e in G such that for all a in G,  

e * a = a * e = a.  

 4. Inverse element: For all a in G, there is an element b in G such that  

a * b = b * a = e, where e is the identity element from the previous axiom.  

The way that the definition above is phrased, this axiom is not necessary, since 

binary operations are already required to satisfy closure. When determining if * is a 

group operation, however, it is nonetheless necessary to verify that * satisfies closure; 

this is part of verifying that it is in fact a binary operation. 

 It should be noted that there is no requirement that the group operation be 

commutative, that is there may exist elements such that a * b ≠ b * a. A group G is said 

to be abelian (after the mathematician Niels Abel) (or commutative) if for every a, b in 

G, a * b = b * a. Groups lacking this property are called non-abelian. 

The order of a group G, denoted by |G| or o(G), is the number of elements of the 

set G. A group is called finite if it has finitely many elements, that is if the set G is a 

finite set. 

We often refer to the group (G, * ) as simply "G", leaving the operation * 

unmentioned. But to be perfectly precise, different operations on the same set define 

different groups. 

  

2.3.2 Notation for groups 

Usually the operation, whatever it really is, is thought of as an analogue of 

multiplication, and the group operations are therefore written multiplicatively. That is: 

• We write "a • b" or even "ab" for a * b and call it the product of a and b;  
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• We write "1" for the identity element and call it the unit element;  

• We write "a-1" for the inverse of a and call it the reciprocal of a.  

However, sometimes the group operation is thought of as analogous to addition and 

written additively: 

• We write "a + b" for a * b and call it the sum of a and b;  

• We write "0" for the identity element and call it the zero element;  

• We write "−a" for the inverse of a and call it the opposite of a.  

Usually, only abelian groups are written additively, although abelian groups may also 

be written multiplicatively. When being noncommittal, one can use the notation (with 

"*") and terminology that was introduced in the definition, using the notation a-1 for the 

inverse of a. 

If S is a subset of G and x an element of G, then, in multiplicative notation, xS is 

the set of all products {xs : s in S}; similarly the notation Sx = {sx : s in S}; and for two 

subsets S and T of G, we write ST for {st : s in S, t in T}. In additive notation, we write 

x + S, S + x, and S + T for the respective sets. 

 

Example 2.12  An abelian group is the integers under addition. 

For this example, let Z be the set of integers, {..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...}, and 

let the symbol "+" indicate the operation of addition. Then (Z,+) is a group (written 

additively). 

 

Proof: 

• If a and b are integers then a + b is an integer. (Closure; + really is a binary 

operation)  

• If a, b, and c are integers, then (a + b) + c = a + (b + c). (Associativity)  

• 0 is an integer and for any integer a, 0 + a = a + 0 = a. (Identity element)  

• If a is an integer, then there is an integer b := −a, such that a + b = b + a = 0. 

(Inverse element)  

This group is also abelian: a + b = b + a. 

The integers with both addition and multiplication together form the more complicated 

algebraic structure of a ring. In fact, the elements of any ring form an abelian group 

under addition, called the additive group of the ring. 
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Example 2.13 The integers under multiplication is  not a group. 

On the other hand, if we consider the operation of multiplication, denoted by "•", then 

(Z,•) is not a group. 

 

Proof: 

• If a and b are integers then a • b is an integer. (Closure)  

• If a, b, and c are integers, then (a • b) • c = a • (b • c). (Associativity)  

• 1 is an integer and for any integer a, 1 • a = a • 1 = a. (Identity element)  

• However, it is not true that whenever a is an integer, there is an integer b such 

that ab = ba = 1. For example, a = 2 is a integer, but the only solution to the equation  

ab = 1 in this case is b = 1/2. We cannot choose b = 1/2 because 1/2 is not an integer. 

(Inverse element fails)  

Since not every element of (Z,•) has an inverse, (Z,•) is not a group. The most we 

can say is that it is a commutative monoid. 

 

Example 2.14An abelian group: the nonzero rational numbers under multiplication 

Consider the set of rational numbers Q, that is the set of numbers a/b such that a and b 

are integers and b is nonzero, and the operation multiplication, denoted by "•". Since the 

rational number 0 does not have a multiplicative inverse, (Q,•), like (Z,•), is not a group. 

However, if we instead use the set Q \ {0} instead of Q, that is include every 

rational number except zero, then (Q \ {0},•) does form an abelian group (written 

multiplicatively). The inverse of a/b is b/a, and the other group axioms are simple to 

check. We don't lose closure by removing zero, because the product of two nonzero 

rationals is never zero. 

Just as the integers form a ring, so the rational numbers form the algebraic 

structure of a field. In fact, the nonzero elements of any given field form a group under 

multiplication, called the multiplicative group of the field. 

  

2.3.3 Theorems 

Theorem 2.8 A group has exactly one identity element.  

 

Theorem 2.9 Every element has exactly one inverse.  
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Theorem 2.10 The inverse of a product is the product of the inverses in the opposite 

order: (a * b)-1 = b-1* a-1  

. 

  

  

2.4 RING THEORY  

2.4.1 Ring Theory 

In mathematics, a ring is an algebraic structure in which addition and 

multiplication are defined and have similar (but not identical) properties to those 

familiar from the integers. The branch of abstract algebra which studies rings is called 

ring theory.  

 

Definition 2.1 A ring is a set R equipped with two binary operations + and •, called 

addition and multiplication, such that: 

1. (R, +) is an abelian group with identity element 0:  

  a. (a + b) + c = a + (b + c)  

  b. a + b = b + a  

c. 0 + a = a + 0 = a  

d. �a �(−a) such that a + −a = −a + a = 0  

2. (R, •) is a monoid with identity element 1:  

a. 1•a = a•1 = a  

b. (a•b)•c = a•(b•c)  

3. Multiplication distributes over addition:  

  a. a•(b + c) = (a•b) + (a•c)  

  b. (a + b)•c = (a•c) + (b•c)  

  

As with groups the symbol • is usually omitted. Also the standard order of 

operation rules are used, so that e.g. a+bc is an abbreviation for a+(b•c). 

Although ring addition is commutative (i.e. a+b = b+a), note that the 

commutativity for multiplication (a•b = b•a) is not among the ring axioms listed above. 

Rings that also satisfy commutativity for multiplication (such as the ring of integers) are 

called commutative rings. Not all rings are commutative. 
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Also note that an element of a ring need not have a multiplicative inverse. An 

element a in a ring is called a unit if it is invertible with respect to multiplication, i.e., if 

there is an element b in the ring such that a•b = b•a = 1. If that is the case, then b is 

uniquely determined by a and we write a-1 = b. The set of all units in R forms a group 

under ring multiplication; this group is denoted by U(R). 

  

Example 2.15 The ring of integers with the two operations of addition and 

multiplication. This is a commutative ring.  

 

Example 2.16 The rational, real and complex numbers form rings (in fact, they are even 

fields). These are likewise commutative rings.  

 

 More generally, every field is a commutative ring. If n is a positive integer, then 

the set Z/nZ of integers modulo n forms a ring with n elements.The set of all continuous 

real-valued functions defined on the interval [a, b] forms a ring (even an associative 

algebra). The operations are addition and multiplication of functions. The set of all 

polynomials over some common coefficient ring forms a ring.  For any ring R and 

any natural number n, the set of all square n-by-n matrices with entries from R, forms a 

ring with matrix addition and matrix multiplication as operations. For n=1, this matrix 

ring is just (isomorphic to) R itself. For n>2, this matrix ring is an example of a 

noncommutative ring (unless R is the trivial ring). The trivial ring {0} has only one 

element which serves both as additive and multiplicative identity.  

 

Theorem 2.11 From the axioms, one can immediately deduce that, for all elements a 

and b of a ring, we have 

• 0a = a0 = 0  

• (−1)a = −a  

• (−a)b = a(−b) = −(ab)  

• (ab)−1 = b−1 a−1 if both a and b are invertible  
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2.4.2 Constructing new rings from given ones 

 If a subset S of a ring R is itself a ring with the same operations (restricted to S), 

and the identity element 1 of R is contained in S, then S is called a subring of R.  

 The center of a ring R is the set of elements of R that commute with every 

element of R; that is, c lies in the center if cr=rc for every r in R. The center is a subring 

of R. We say that a subring S of R is central if it is a subring of the center of R.  

 The direct sum of two rings R and S is the cartesian product R×S together with 

the operations  

(r1, s1) + (r2, s2) = (r1+r2 , s1+s2) and  

(r1, s1) (r2, s2) = (r1r2 , s1s2) 

Given a ring R and an ideal I of R, the quotient ring (or factor ring) R/I is the set 

of cosets of I together with the operations  

(a+I) + (b+I) = (a+b) + I and  

(a+I)(b+I) = (ab) + I.  

Since any ring is both a left and right module over itself, it is possible to construct 

the tensor product of R over a ring S with another ring T to get another ring provided S 

is a central subring of R and T.  

 

 

2.5 INTEGRAL DOMAIN 

2.5.1 Integral Domain 

In abstract algebra, an integral domain is a commutative ring with 0 ≠ 1 in which 

the product of any two non-zero elements is always non-zero; that is, there are no zero 

divisors. Integral domains are generalizations of the integers and provide a natural 

setting for studying divisibility. 

Alternatively and equivalently, integral domains may be defined as commutative 

rings in which the zero ideal {0} is prime, or as the subrings of fields. Viewing the 

underlying commutative ring as a categorical construction, the previous criterion on 

zero divisors is equivalent to the condition that every nonzero morphism is a 

monomorphism (hence also an epimorphism). 

The condition 0 ≠ 1 only serves to exclude the trivial ring {0} with a single 

element. 

Example 2.17 The ring Z of all integers. 
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Example 2.18 Every field is an integral domain. Conversely, every Artinian integral 

domain is a field. In particular, the only finite integral domains are the finite fields. 

 

Example 2.19 Rings of polynomials are integral domains if the coefficients come from 

an integral domain. For instance, the ring Z[X] of all polynomials in one variable with 

integer coefficients is an integral domain; so is the ring R[X,Y] of all polynomials in 

two variables with real coefficients. 

 

Example 2.20 The set of all real numbers of the form a + b 2  with a and b integers is 

a subring of R and hence an integral domain. A similar example is given by the complex 

numbers of the form a + bi with a and b integers (the Gaussian integers). 

 

Example 2.21 The p-adic integers. 

 

Example 2.22 If U is a connected open subset of the complex number plane C, then the 

ring H(U) consisting of all holomorphic functions f : U → C is an integral domain. The 

same is true for rings of analytical functions on connected open subsets of analytical 

manifolds. 

 

Example 2.23 If R is a commutative ring and P is an ideal in R, then the factor ring R/P 

is an integral domain if and only if P is a prime ideal. 

  

2.5.2 Divisibility, prime and irreducible elements 

If a and b are elements of the integral domain R, we say that a divides b or a is a 

divisor of b or b is a multiple of a if and only if there exists an element x in R such that 

ax = b. 

If a divides b and b divides c, then a divides c. If a divides b, then a divides every 

multiple of b. If a divides two elements, then a also divides their sum and difference. 

The elements which divide 1 are called the units of R; these are precisely the 

invertible elements in R. Units divide all other elements. 

If a divides b and b divides a, then we say a and b are associated elements. a and b 

are associated if and only if there exists a unit u such that au = b. 
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If q is a non-unit, we say that q is an irreducible element if q cannot be written as a 

product of two non-units. 

If p is a non-zero non-unit, we say that p is a prime element if, whenever p divides 

a product ab, then p divides a or b. 

This generalizes the ordinary definition of prime number in the ring Z, except that 

it allows for negative prime elements. If p is a prime element, then the principal ideal 

(p) generated by p is a prime ideal. Every prime element is irreducible (here, for the first 

time, we need R to be an integral domain), but the converse is not true in all integral 

domains (it is true in unique factorization domains, however). 

 

2.5.3 Field of fractions 

If R is a given integral domain, the smallest field Quot(R) containing R as a 

subring is uniquely determined up to isomorphism and is called the field of fractions or 

quotient field of R. It consists of all fractions a/b with a and b in R and b ≠ 0, modulo an 

appropriate equivalence relation. The field of fractions of the integers is the field of 

rational numbers. The field of fractions of a field is isomorphic to the field itself. 

 

2.5.4 Characteristic and homomorphisms 

The characteristic of every integral domain is either zero or a prime number. 

If R is an integral domain with prime characteristic p, then f(x) = x p defines an 

injective ring homomorphism f : R → R, the Frobenius homomorphism. 

  

2.6 FIELDS 

In abstract algebra, a field is an algebraic structure in which the operations of 

addition, subtraction, multiplication and division (except division by zero) may be 

performed, and the same rules hold which are familiar from the arithmetic of ordinary 

numbers. 

2.6.1 Introduction to fields 

Fields are important objects of study in algebra since they provide a useful 

generalization of many number systems, such as the rational numbers, real numbers, 

and complex numbers. In particular, the usual rules of associativity, commutativity and 
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distributivity hold. Fields also appear in many other areas of mathematics; see the 

examples below. 

When abstract algebra was first being developed, the definition of a field usually 

did not include commutativity of multiplication, and what we today call a field would 

have been called either a commutative field or a rational domain. In contemporary 

usage, a field is always commutative. A structure which satisfies all the properties of a 

field except for commutativity, is today called a division ring or sometimes a skew field, 

but also non-commutative field is still widely used.  

The concept of a field is of use, for example, in defining vectors and matrices, two 

structures in linear algebra whose components can be elements of an arbitrary field. 

Galois Theory studies the symmetry of equations by investigating the ways in which 

fields can be contained in each other.  

 

Definition 2.2 A field is a commutative ring (F, +, *) such that 0 does not equal 1 and 

all elements of F except 0 have a multiplicative inverse. 

This means that the following hold: 

1. Closure of F under + and *   

2. For all a, b belonging to F, both a + b and a * b belong to F (or more  

         formally, + and * are binary operations on F).  

3. Both + and * are associative   

4. For all a, b, c in F, a + (b + c) = (a + b) + c and a * (b * c) = (a * b) * c.  

5. Both + and * are commutative   

6. For all a, b belonging to F, a + b = b + a and a * b = b * a.  

7. The operation * is distributive over the operation +   

8. For all a, b, c, belonging to F, a * (b + c) = (a * b) + (a * c).  

9. Existence of an additive identity   

10. There exists an element 0 in F, such that for all a belonging to F, 

 a + 0 = a.  

11. Existence of a multiplicative identity   

12. There exists an element 1 in F different from 0, such that for all a 

 belonging to F, a * 1 = a.  

13. Existence of additive inverses   

14. For every a belonging to F, there exists an element −a in F, such that  

a + (−a) = 0.  
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15. Existence of multiplicative inverses   

16. For every a ≠ 0 belonging to F, there exists an element a-1 in F, such that 

a * a-1 = 1.  

The requirement 0 ≠ 1 ensures that the set which only contains a single element is 

not a field. Directly from the axioms, one may show that (F, +) and (F − {0}, *) are 

commutative groups (abelian groups) and that therefore (see elementary group theory) 

the additive inverse −a and the multiplicative inverse a−1 are uniquely determined by a. 

Furthermore, the multiplicative inverse of a product is equal to the product of the 

inverses: 

(a*b)-1 = b-1 * a-1 = a-1* b-1 

provided both a and b are non-zero. Other useful rules include 

−a = (−1) * a 

and more generally 

−(a * b) = (−a) * b = a * (−b)  

as well as 

a * 0 = 0,  

If the requirement of commutativity of the operation * is dropped, one 

distinguishes the above commutative fields from non-commutative fields, usually called 

division rings or skew field. 

 

Example 2.24  The complex numbers C, under the usual operations of addition and 

multiplication. The field of complex numbers contains the following subfields (a 

subfield of a field F is a set containing 0 and 1, closed under the operations + and * of F 

and with its own operations defined by restriction):  

 

Example 2.25  The rational numbers Q = { a/b | a, b in Z, b ≠ 0 } where Z is the set of 

integers. The rational number field contains no proper subfields.  

 

Example 2.26 An algebraic number field is a finite field extension of the rational 

numbers Q, that is, a field containing Q which has finite dimension as a vector space 

over Q. Such fields are very important in number theory.  

 

Example 2.27  The field of algebraic numbers, the algebraic closure of Q.  
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Example 2.28 The real numbers R, under the usual operations of addition and 

multiplication. When the real numbers are given the usual ordering, they form a 

complete ordered field which is categorical — it is this structure that provides the 

foundation for most formal treatments of calculus.  

 

Example 2.29  The real numbers contain several interesting subfields: the real algebraic 

numbers, the computable numbers, and the definable numbers.  

 

2.6.2 Galois Field 

 If q > 1 is a power of a prime number, then there exists (up to isomorphism) 

exactly one finite field with q elements, usually denoted Fq, Z/qZ, or GF(q). Every other 

finite field is isomorphic to one of these fields. Such fields are often called a Galois 

field, whence the notation GF(q).  

 In particular, for a given prime number p, the set of integers modulo p is a finite 

field with p elements: Fp = {0, 1, ..., p − 1} where the operations are defined by 

performing the operation in Z, dividing by p and taking the remainder; see modular 

arithmetic.  

Taking p = 2, we obtain the smallest field, F2, which has only two elements: 0 and 

1. It can be defined by the two Cayley tables  

 
 
 

Table 2.2 Cayley Tables                               
 

 

 

 
 

 

This field has important uses in computer science, especially in cryptography and 

coding theory.  

The rational numbers can be extended to the fields of p-adic numbers for every 

prime number p. These fields are very important in both number theory and 

mathematical analysis.  

+ 0 1 

0 0 1 

1 1 0 

* 0 1 

0 0 0 

1 0 1 
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Let E and F be two fields with E a subfield of F. Let x be an element of F not in E. 

Then E(x) is defined to be the smallest subfield of F containing E and x. We call E(x) a 

simple extension of E. For instance, Q(i) is the number field of complex numbers C 

consisting of all numbers of the form a + bi where both a and b are rational numbers. In 

fact, it can be shown that every number field is a simple extension of Q.  

 For a given field F, the set F(X) of rational functions in the variable X with 

coefficients in F is a field; this is defined as the set of quotients of polynomials with 

coefficients in F. This is the simplest example of a transcendental extension.  

 If F is a field, and p(X) is an irreducible polynomial in the polynomial ring F[X], 

then the quotient F[X]/<p(X)> is a field with a subfield isomorphic to F. For instance, 

R[X]/<X2 + 1> is a field (in fact, it is isomorphic to the field of complex numbers). It 

can be shown that every simple algebraic extension of F is isomorphic to a field of this 

form.  

• When F is a field, the set F((X)) of formal Laurent series over F is a field.  

• If V is an algebraic variety over F, then the rational functions V → F form a 

field, the function field of V.  

• If S is a Riemann surface, then the meromorphic functions S → C form a field.  

• If I is an index set, U is an ultrafilter on I, and Fi is a field for every i in I, the 

ultraproduct of the Fi (using U) is a field.  

• Hyperreal numbers and superreal numbers extend the real numbers with the 

addition of infinitesimal and infinite numbers.  

There are also proper classes with field structure, which are some times called 

Fields. 

• The surreal numbers form a Field containing the reals, and would be a field 

except for the fact that they are a proper class, not a set. The set of all surreal numbers 

with birthday smaller than some inaccessible cardinal number form a field.  

 

Theorem 2.11   The set of non-zero elements of a field F (typically denoted by F*) is an 

abelian group under multiplication. Every finite subgroup of  F* is cyclic.  

 

Theorem 2.12  The characteristic of any field is zero or a prime number. (The 

characteristic is defined as follows: the smallest positive integer n such that n•1 = 0, or 

zero if no such n exists; here n•1 stands for n summands 1 + 1 + 1 + ... + 1.  
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Theorem 2.13   The number of elements of any finite field is a prime power.  

 

Theorem 2.14  As a ring, a field has no ideals except {0} and itself.  

 

Theorem 2.15  For every field F, there exists a unique field G (up to isomorphism) 

which contains F, is algebraic over F, and is algebraically closed. G is called the 

algebraic closure of F.  

 

2.7 FINITE FIELDS 

A field having finitely many elements is called finite field.   

 

Theorem 2.16   If F is a finite field then kF p=   for some prime p. 

 

Proof: Since F is finite we know that F has finite characteristic p.  Consider the set 

{ }1 , 2.1 ,..., .1 0F F FS p= = , it can be easily seen that ( ),S + is an additive cyclic group 

generated by 1F  and also ( ), ,.S + is a finite subfield of F .   Now, let : pZ Sφ →  be a 

homomorphism such that  (1) 1Fφ = .  This gives us an isomorphism between pZ  and S. 

Thus we can see F as a vector space over pZ . kF p= . 

 

2.7.1 Existence of Multiplicative Generators of a Finite Field 

A finite field qF contains q elements and *
qF contains q-1 non-zero elements 

( {0}F − ) .  By the definition of a field, they form an abelian group with respect to 

multiplication.  This means that the product of two non-zero elements is non-zero. Since 

the associative law and the commutative laws hold, there exists an identity element and 

every non-zero element has an inverse.  It is a general fact about finite groups that the 

order of any element must divide the number of elements in the group.  For the sake of 

completeness, we give a general proof of this in the case of our group *
qF . 

Theorem 2.17 The order of any *qa F∈ divides q-1. 
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Proof: Let d be the smallest power of a which equals 1.  Let 2 1{1, , ,..., }dS a a a −= denote the 

set of all powers of a, and for any *
qb F∈ let bS denote the coset consisting of all 

elements of the form jba .  It is easy to see that any two cosets are either identical or 

distinct.  Since each coset contains exactly d elements and the union of all the cosets 

exhausts *qF , means that *qF  is a disjoint union of d-element sets; hence | 1d q − . 

 

2.7.2 Generator of a finite field 

A generator g of a finite field qF is an element of order q-1. 

 

Theorem 2.18 Every finite field has a generator.  If g is a generator of *
qF then jg is 

also a generator if and only if ( ). . , 1 1g c d j q − = .  In particular, there are a total of 

( )1qφ − different generators of *
qF . 

 

Proof: Suppose *
qa F∈ has order d, i.e., 1da = and no lower power of a gives 1. By the 

above theorem d divides q-1.  Since da is the smallest power which equals 1, it follows 

that the elements 2, ,..., 1da a a = are distinct.  We claim that the elements of order d are 

precisely the ( )dφ values ja for which ( ). . , 1g c d j d = .  First since d distinct powers of a all 

satisfy the equation 1dx = , these are all the roots of the equation.  Any element of order 

d must thus be among the powers of a.  However, not all powers of a have order d, since 

if ( ). . , 1g c d j d d ′= > , then ja has lower order;  because | , |d d j d′ ′ are integers, we can 

write ( )( ) ( )( )/ /
1

d d j dj da a
′ ′
= = . 

Conversely, we now show that ja does have order d whenever . . ( , ) 1g c d j d = .  If j is 

prime to d, and if ja had a smaller order d ′′ , then da ′′ raised to either the j-th or the d-th 

power would give 1, and hence da ′′ raised to the power ( ). . , 1g c d j d = would give 1.  But 

this contradicts the fact that a is of order d and so 1.ma ≠ Thus, ja is of order d if and 

only if ( ). . , 1g c d j d = . 
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The above theorem says that the non-zero elements of any field form a cyclic 

group, i.e., they are all powers of a single element. This means that if there is any 

element a of order d, then there are exactly ( )dφ elements of order d.  So for every 

| 1d q − there are only two possibilities: no element has order d, or exactly ( )dφ elements 

have order d. 

 

Corollary 2. For every prime p, there exists an integer g such that the powers of g 

exhaust all non-zero residue classes modulo p. 

 

Example 2.30 For numbers 1 to 18 all residues mod 19 can be obtained by taking 

powers of 2.  Namely, the successive powers of 2 reduced mod 19 are: 2,4,,8,16, 

13,7,14,9,18,17,15,11,3,6,12,5,10,1. 

 

In many situations when working with finite fields, such as pF for some prime p, it 

is useful to find a generator.  What if a number *
pg F∈ is chosen at random?  What is the 

probability that it will be a generator?  In other words,  what proportion of all the non-

zero elements consist of generators? According to the above theorem, the proportion is 

( )1 / 1p pφ − − .  But by our formula for it is equal to the 11
l

⎛ ⎞−⎜ ⎟
⎝ ⎠

∏ , where the product is 

over all prime l dividing p-1.  Thus the odds of getting a generator by a random guess 

depend heavily on the factorization of p-1.   

 

2.7.2  Existence and Uniqueness of Finite Fields with Prime Power Number of 

Elements 

In this section we prove both existence and uniqueness by showing that a finite 

field of fq p= elements is the spitting field of the polynomial qX X− .  The following 

theorem says that for every prime power q there is one and only one finite field with q 

elements. 
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Theorem 2.19 If qF is a field of fq p= elements, then every element satisfies the 

equation 0qX X− = , and qF is precisely the set of roots of that equation.  Conversely, 

for every prime power fq p= the splitting field over pF  of the polynomial qX X− is a 

field of q elements. 

 
 

Theorem 2.20 If  qF  is a field of fq p= elements, then every element satisfies the 

equation 0qX X− = , and qF is precisely the set of roots of that equation.  Conversely, 

for every prime power fq p= the splitting field over pF  of the polynomial qX X− is a 

field of q elements. 

 

Proof:  First suppose that qF is a finite field.  Since the order of any nonzero element 

divides q-1, it follows that any nonzero element satisfies the equation 1
1qX

−
= , and 

hence if we multiply both sides by X, the equation qX X= .  Of course, the element 0 

satisfies the later equation.  Thus all q elements of  are roots of the degree –q 

polynomial qX X− .  Since this polynomial can not have more than q roots, its roots are 

precisely the elements of qF .  Notice that this means that qF is the splitting field of the 

polynomial qX X− , that is the smallest field extension of pF which contains all of its 

roots. 

Conversely, let fq p= be a prime power, and let F be the splitting field over pF of 

the polynomial qX X− .  Note that qX X− has derivative 1
1 1qqX

−
− = −  hence, the 

polynomial qX X− has no common roots with its derivative, and therefore no multiple 

roots.  Thus F must contain at least the q distinct roots of qX X− .  But the set of q roots 

is a field.  This is true because if a and b are 2 roots then ( )q q qab a b ab= = i.e., the 

product is also a root. By the fact that ( ) 1
1 ...p p p p p p

Ca b a p a b b a b−+ = + + + = +  (All other 

terms vanishes due to the presence of p as a fact). 

This implies ( )q q qa b a b a b+ = + = + .  So, a+b is a root. 

In this theorem we showed that raising to the p-th power preserves addition and    

multiplication.  
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Theorem 2.21 Let qF be the finite field of fq p= elements, and let σ be the map that 

sends every element to its p-th power: ( ) pa aσ = .  Then σ is an automorphism of the 

field qF  (a 1-to-1 map of the field to itself which preserves addition and multiplication).  

The elements of qF which are kept fixed by σ are precisely the elements of the prime 

field pF .  The f-th power( and no lower power) of the map σ is the identity map. 

 

Example 2.31 (Construction of a field with 9 elements) 

To construct 9F  (Field with 9 elements) we take any monic quadratic polynomial in 

[ ]3F X which has no roots in 3.F By trying all possible choices of coefficients and testing 

whether the elements 0, 1± 3F∈ are roots, we find that there are three monic irreducible 

quadratics: 2 21, 1X X X+ ± − .  If, for example we take α to a root of 2 1X + , then the 

elements of 9F are all combinations of a bi+ , where a and b are 0, 1 or -1. Hence 

9 3{ : , }F a bi a b F= + ∈ .  Addition and multiplication in 9F is defined as 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2 1 2 1 2 3 1 2 3; ,a ib a ib a a i b b a a F b b F+ + + = + + + + ∈ + ∈  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2 1 2 2 1 1 2 1 2 1 2 3 2 1 1 2 3. ; ,a ib a ib a a b b i a b a b a a b b F a b a b F+ + = − + + + ∈ + ∈  

which makes 9F as a field. 

One can verify that 1 i+ is the generator of the cyclic group *
9F . 

 

2.7.3 Euclidean Algorithm for polynomials 

Let us consider polynomials with real coefficients.  We define gcd(f, g) in 

essentially the same was as for integers, namely as a polynomial of greatest degree 

which divides both f and g.  The polynomial gcd(f, g) defined in this way is not unique, 

since we can get another polynomial of the same degree by multiplying by any nonzero 

constant.  However, we can make it unique by requiring that the gcd polynomial be 

monic.  The following example shows the procedure for finding gcd of polynomials- 

namely Euclidean algorithm for polynomials – which is completely analogous to the 

Euclidean algorithm to the integers. 
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Example 2.32 Let 4 3 2( ) 1f X X X X= + + + and 3
2( ) 1 [ ]g X X F X= + ∈ . 

 Find gcd (f,g) using Euclidean algorithm for polynomials. 

 

Solution: Polynomial division gives us the sequence of equalities on the left below, 

which lead to the conclusion that ( ). . , 1g c d f g X= + . We can express gcd as 

( ) ( ) ( ) ( )u X f X v X g X+ .  It is easy to see that 1X + can be expressed as a linear 

combination of f and g. So we have  

( ) ( )21f X g X X= + + +  

( )( ) ( )21 1g X X X X= + + + +  

( )( )21 1X g X X X+ = + + +   

= ( ) ( )( )1 1g X f X g+ + + +  

= ( ) ( )21X f X g+ +  

 
2.7.4 Quadratic Residue 
 

Suppose p  is an odd prime and x is an integer, 1 1x p≤ ≤ − .  x is defined to be a 

quadratic residue modulo p if the congruence ( )2 mody x p= has a solution py Z∈ . x is 

defined to be a quadratic non-residue modulo p if 0(mod )x p≡ and x is not a quadratic 

modulo p. 

 

Example 2.33   Let p = 13 in pZ , quadratic residues are 1, 3, 4, 9, 10 and 12 and 

quadratic non-residues are 2,5,6,7,8,11 

(since 2 2 21 1mod13,2 4mod13,3 9mod13,...)≡ ≡ ≡  

 

 

2.7.5 Legendre Symbol 

Legendre symbol a
p

⎛ ⎞
⎜ ⎟
⎝ ⎠

 for any integer 0a ≥ and p an odd prime is defined as  
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0 0 mod
1 mod

1 mod

if a p
a if a is quadratic residue ulo p
p

if a is a quadratic non residue ulo p

≡⎧
⎛ ⎞ ⎪= ⎨⎜ ⎟
⎝ ⎠ ⎪− −⎩

 

 

Theorem 2.22.  If  p  is odd prime then ( )1 / 2 modpa a p
p

−⎛ ⎞
=⎜ ⎟

⎝ ⎠
. 

Proof: Case (i) 0mod .a p≡  

By definition 0a
p

⎛ ⎞
≡⎜ ⎟

⎝ ⎠
and ( ) ( )1 / 2 1 / 2(0) modp pa p− −=  

                                                            0mod p≡ . 

                                              ( )1 / 2 mod .pa a p
p

−⎛ ⎞
∴ ≡⎜ ⎟
⎝ ⎠

 

Case (ii) If 0moda p≡ , if ‘a’ is quadratic residue of modulo p, then there exists a x 

such that 2 modx a p≡ . Then ( ) ( )( )1 / 21 / 2 2 1mod mod 1mod
pp pa x p x p p
−− −≡ = ≡  

                                     ( )1 / 2 modpa a p
p

−⎛ ⎞
∴ ≡⎜ ⎟
⎝ ⎠

. 

To see the converse, if ( )1 / 2 1modpa p− ≡ we show that 1.a
p

⎛ ⎞
=⎜ ⎟

⎝ ⎠
  Let b be any primitive 

element then there exists ‘i’ such that modib a p= .  For this b, we have 

( ) ( )1 / 2 1 / 2 modp i pa b p− −≡ ≡ 1mod .p since b is primitive ( )( )( 1) | 1 / 2 .p i p− −  This implies 

that 2 | .i  

This gives us ( )2/ 2 modia b p≡ i.e., ‘a’ is a quadratic residue modulo p and 1a
p

⎛ ⎞
=⎜ ⎟

⎝ ⎠
by 

definition. 

 

 

 

2.7. 6 Jacobi Symbol: 
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Suppose n is an odd positive integer and the prime factorization of n is 1
1 ... kee

kp p .  

Let 0a ≥ be an integer.  The Jacobi symbol a
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

is defined to be 
1

iek

i i

a a
n p=

⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏ . 

 

Example 2.23 

To compute Jacobi symbol 1979
13923
⎛ ⎞
⎜ ⎟
⎝ ⎠

look at prime factorization of 13923 as 

23 7 13 7× × × .  By definition of Jacobi symbol 

21979 1979 1979 1979 1979
13923 3 7 13 17
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 

                 
22 5 3 7

3 7 13 17
⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 

                ( ) ( )( )( )21 1 1 1 1= − − − =  

Observe that quadratic residues modulo p when 

3 {1}p are=  

7 {1,2,4}p are=  

13 {1,3,4,9,10,12}p are=  

17 {1,2,4,8,9,13,15,16}p are=  



CHAPTER 3 
 
 

PRIMALITY TESTS 
 

 

 

The process of proving whether a given integer is prime or not is called primality 

test. There are two different types of primality testing algorithms. 

1. Probabilistic primality tests: Probabilistic primality testing is a process that 

proves a number has a high probability of being prime. For example, Fermat primality 

tests, Solovay and Strassen Primaility test, Miller and Rabin primality test. 

2. Deterministic primality tests: Deterministic primality testing is a process that 

proves a number is definitely prime. For example, Sieve of Eratosthenes, N-1 primality 

tests, Elliptic Curve Primality tests. 

 

3.1 PROBABALISTIC PRIMALITY TESTS 

An integer that passes a probabilistic primality test, it may be prime. If it passes a 

lot of primality tests, it is very likely to be a prime. On the other hand, if it fails any 

single primality test, then it is definitely composite. It is generally recommended to use 

probabilistic primality testing, which is much quicker than actually proving a number is 

prime. One can use a probabilistic test that determines whether a number is prime with 

arbitrarily small probability of error, say, less than 2-100. 

 

3.1.1 Fermat Primality test 

Definition 3.1 (Pseudoprime) Let n be an odd composite positive integer. We say that 

it is pseudoprime to the base a if  

an-1 ≡1 (mod n)  and gcd(a,n)=1. 
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Example 3.1 

390≡1 (mod 91) 

91 is a pseudoprime to the base 3. 

290 ≠ 1 (mod 91). 91 is not a pseudoprime to the base 2. 

 

Definition 3.2 A composite integer n is a Carmichael number if and only if  

an ≡ a (mod n)  for every integer a such that gcd(a,n)=1. 

A Carmichael number is therefore a pseudoprime to any base. 

 

Example 3.2 The first few Carmichael numbers are 561, 1105, 1729, 2465, 2821, 6601, 

8911, 10585, 15841, 29341, …. 

 

Theorem 3.1 Carmichael must be product of at least three distinct primes. 

 

Theorem 3.2. There are infinitely many Carmichael Numbers. 

 

To test primality of n, we pick an a∈[1, n-1]. If an-1≡1 (mod n), n may be prime. 

Otherwise n is composite. This test fails if n is a Carmichael number. 

If the Fermat test says that a number n is composite, then the number n is 

definitely a composite number. If n is a prime number, the Fermat test will always say 

that n is prime.  

 

3.1.2 Solovay and Strassen Primality test 

Definition 3.3 A composite integer n is called an Euler pseudoprime to the base a if  

      

where is Jacobi symbol  

 

Example 3.3 1105 is an Euler Pseudoprime to the base 2 

2552 ≡1 (mod 1105) 

 

Let n be a positive integer. We select k integers a1,a2,….,ak less than n at random. 

We perform Euler pseudoprime test on n for each of these bases. If any these tests fails 

a
n

a
p−1

2 ≡ a
n (mod n)
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then n is composite. If n is composite, the probability that passes all k tests is less than 

1/2k 

 

 

3.1.3 Miller and Rabin Primality test 

Definition 3.3  A composite integer n is called a strong pseudoprime to the base a if as 

≡1 (mod n) or )n(mod1a
j2.s −≡  for  0≤j≤r-1  n -1=2r.s where s is an odd integer. 

 

Example 3.4 

n=15790321 

n-1=15790320=24.986885 

2986895 ≡ 128 (mod 15790321) 

22.986895 ≡ 16384 (mod 15790321) 

24.986885 ≡ -1 (mod 15790321)⇒15790321 is a strong pseudoprime to the base 2.  

 

Let n be a positive integer. We select k integers a1,a2,….,ak less than n at random. 

We perform strong pseudoprime test on n for each of these bases. If any of these tests 

fails then n is composite. If n is composite, the probability that passes all k tests is less 

than 1/4k. Therefore this test is stronger than Solovay and Strassen Primality test. 

 

3.2 DETERMINISTIC PRIMALITY TESTS 

3.2.1 Trial Division 

To check if a small integer is prime, we just divide that integer by all the primes 

less than or equal to its square root.   

 

Theorem 3.3  For any prime p ≤√n such that p∤n ⇒ n is prime.  

 

Example 3.5 

n=101 

Let’s find all primes p ≤√101≅10,05 

2∤101, 3∤101, 5∤101, 7∤101. 

Therefore 101 is prime. 
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3.2.2 Sieve of Eratosthenes 

Eratosthenes is a Greek mathematician who found an efficient method to 

determine small primes. We write down all integers from 1 to n. Calculate square root 

of n. Firstly, we cross out 1. Then we cross out all composite numbers which are 

multiples of primes less than square root of n. The remaining numbers are prime 

numbers.  

 

3.2.3 N-1 Primality tests  

N-1primality testing algorithms are based on the converse of Fermat’s Little 

Theorem. If we can find factors of N-1, we can test the primality of N. 

 

Example 3.6 (Lucas)  Let a and n be two positive    integers  and  gcd(a,n)=1, 

if an-1 ≡1 (mod n)  but 1a d
1n

≠
−

 (mod n) for each divisor of d > 1 of n-1,then n is prime 

number. 

 

Example 3.7 (Pocklington) Let n be a positive integer. Suppose that there is a prime q 

dividing n-1 which is greater than √n-1. If there exists an integer a such that 

i) an-1≡1 (mod n) 

ii) gcd(a(n-1)/q-1,n)=1 

then n is prime. 

 

3.2.4 Elliptic Curve Primality tests 

The elliptic curve primality test is an analog of Pocklington based on the group 

(Z/nZ)* . In Chapter 5, it will be presented in details. 

 

 

 

 



 
 
 
 
 

CHAPTER 4 
 
 

ELLIPTIC CURVES 
 
 

 
Elliptic curves have many applications such as cryptography, factorization of 

integers and  primality testing. In this chapter basic definitions and facts about elliptic 

curves over different fields  will be presented.  

 

Definition 4.1 Let K be a field of characteristic is not 2 or 3. An elliptic curve is the set 

of solutions (x, y)∈K of an equation of the form 

y2 = x3 + ax + b 

where 4a3 + 27b2 ≠ 0, together with a point at infinity denoted by O. 

If K is a field of  characteristic 2, then an elliptic curve is the set of solutions  

(x, y)∈K of an equation of the form 

y2 + cy = x3 + ax + b 

or else 

y2 + xy = x3 + ax + b 

where 4a3 + 27b2 ≠ 0, together with a point at infinity O. 

If K is a field of  characteristic 3, then an elliptic curve is the set of solutions 

(x, y)∈K of an equation of the form 

y2 = x3 + ax2  + bx +c 

(where the cubic on the right has no multiple roots), together with a point at infinity O. 

35 
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There is a natural addition operation under which the points of an elliptic curve 

form an Abelian group. The point at the infinity is the identity element of this group. 

 

 

4.1 ELLIPTIC CURVES OVER R 

Definition 4.2 Let E be an elliptic curve over the real numbers, and let P and Q be two 

points on E. We define, 

1. The negative of a point P = (x,y) is its reflection in the x-axis: the point -P is 

(x,-y). Notice that for each point P on an elliptic curve, the point -P is also on the curve. 

2. Let P ≠ -Q. To add the points P and Q, a line is drawn through the two points. 

This line will intersect the elliptic curve in exactly one more point, call -R. The point -R 

is reflected in the x-axis to the point R. The law for addition in an elliptic curve group is 

P + Q = R. (Figure 4.1) 

3. Let Q = -P. The line through P and -P is a vertical line which does not intersect 

the elliptic curve at a third point; thus the points P and -P cannot be added as previously. 

It is for this reason that the elliptic curve group includes the point at infinity O. By 

definition, P + (-P) = O. As a result of this equation, P + O = P in the elliptic curve 

group . O is called the additive identity of the elliptic curve group; all elliptic curves 

have an additive identity. 

4. To add a point P to itself, a tangent line to the curve is drawn at the point P. If 

y-coordinate of P is not 0, then the tangent line intersects the elliptic curve at exactly 

one other point, -R. -R is reflected in the x-axis to R. This operation is called doubling 

the point P; the law for doubling a point on an elliptic curve group is defined by  

P + P = 2P = R. 

If a point P is such that y-coordinate of P is 0, then the tangent line to the elliptic curve 

at P is vertical and does not intersect the elliptic curve at any other point. 

By definition, 2P = O for such a point P. If one wanted to find 3P in this situation, one  

can add 2P + P. This becomes P + O = P Thus 3P = P. 4P = O, 5P = P, 6P = O, 7P = P, 

etc. 

Let P = (x1,y1), Q = (x2,y2) and R =(x3,y3), where P + Q = R and Q ≠ P , then 
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If Q = P, then 
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Figure 4.1: An elliptic Curve over R 

 

 

Example 4.1 Let y2 = x3 + 3x and P = (1,2), Q = (3,6), then 
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4.2 ELLIPTIC CURVES OVER  FINITE FIELDS 

Let F  be a finite field and let E  be an elliptic curve defined over F . Since there are 

only finitely many pairs ),( yx  with Fyx ∈, , the group )(FE  is cyclic. 
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Theorem 4.1 Let E  be an elliptic curve over a field K  and let n  be a positive integer. 

If the characteristic of K  does not divide n , or is 0, then  

][nE ≃ nn Ζ⊕Ζ  

If the characteristic of  K  is 0>p  and  p│n , write npn r ′=  with p∤n′ . Then 

][nE ≃ nn ′′ Ζ⊕Ζ    or    nn ′Ζ⊕Ζ  

Theorem 4.2 Let E  be an elliptic curve over the finite field qF . Then 

)( qFE ≃ nΖ       or       
21 nn Ζ⊕Ζ  

for some integer 1≥n  , for some integers 1, 21 ≥nn   with 1n  dividing 2n . 

Proof. A basic result in number theory says that a finite Abelian group is isomorphic to 

a direct sum of cyclic groups 

rnnn Ζ⊕⊕Ζ⊕Ζ ........
21

, 

With in │ 1+in   for 1≥i . Since, for each i, the group 
inΖ  has 1n  elements of order 

dividing 1n , we find that )( qFE  has rn1  elements of order dividing 1n . By Theorem, 

there are at most 2
1n  such points (even if we allow coordinates in the algebraic closure 

of qF ). Therefore 2≤r . This is the desired result. 

 

4.2.1 Group Law of Elliptic Curves Over Finite Fields 

Consider the set  )( pFE  over addition. We can see that; 

)i )(,)(, pp FERifFEQP ∈∈∀  (Closure Property) 

)ii )(,, pFERQP ∈∀   then RQPRQP ++=++ )()(  (Associative Property) 

)iii PPP,)F(EPthatsuch)F(E pp =+∞=∞+∈∀∈∃∞  (Identity element) 

)iv ∞=−=−+∈−∃∈∀ )()(.)()(,)( PPPtsFEPFEP pp  (Inverse element) 

)v PQQPFEQP p +=+∈∀ ,)(,  (Commutative Property) 

Thus we see that )( pFE  forms an Abelian group under addition. 

 

Theorem 4.3(Hasse) Let E  be an elliptic curve over the finite field qF . Then the order 

of )( qFE  satisfies 
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│ −+1q # )( qFE │ q2≤  

Example 4.2    y²=x³+5x+7 over Z5 

    4a³+27b²=4.5³+27.7²= 1823 ≡ 3 ≠ 0 (mod5) 

    By Hasse Theorem 

    |5+1-E(Z5)|≤2√5= 4. 4721 

    -4≤6-E(Z5)≤4 

    -10≤-E(Z5)≤-2 

    2≤E(Z5)≤10 

     

    Let x = 0 

    y²≡0³+5.0+7 ≡ 2(mod5) But (
5
2  )= -1 

    Let x=1 

    y²≡1³+5.1+7≡ 3(mod5) But (
5
3 ) = -1 

    Let x = 2 

    y² ≡ 2³+5.2+7 ≡ 0(mod5)  y = 0 

    (2,0)∈E(Z5) 

    We use Maple to calculate multiples of (2,0). We know that the number of 

elements can not exceed 10 by Hasse theorem. 

multsell([2,0],10,5,7,5); 

[[1, [2, 0]], [2, ["infinity", "infinity"]], [3, [2, 0]], [4, ["infinity", "infinity"]], [5, [2, 0]], 

[6, ["infinity", "infinity"]], [7, [2, 0]], [8, ["infinity", "infinity"]], [9, [2, 0]], [10, 

["infinity", "infinity"]]] 

The order of (2,0) is 2. 

     

    Let x = 3 

    y² ≡ 3³+5.3+7 ≡ 4(mod5)  y = 2 

We use Maple to calculate multiples of (3,2). We know that the number of 

elements can not exceed 10 by Hasse theorem. 

multsell([3,2],10,5,7,5) 

[[1, [3, 2]], [2, [3, 3]], [3, ["infinity", "infinity"]], [4, [3, 2]],     [5, [3, 3]], [6, ["infinity", 

"infinity"]], [7, [3, 2]], [8, [3, 3]], [9, ["infinity", "infinity"]], [10, [3, 2]]] 
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The order of (3,2) is 3. 

We know that the order of an element must divide the order of the group. The 

lcm(2,3)=6. So the order of group can be 6 or multiples of 6. We know that the number 

of elements can not exceed 10 by Hasse theorem. Hence the order of this group must be 

6. 

E(Z5) ≅ Z2× Z3 = Z6 

 

4.3 ELLIPTIC CURVES OVER  C 

4.3.1 Lattices and Elliptic Curves 

If we take K=C, we see that there are relationships between  Elliptic curves over C and 

lattices. 

    Let ω₁,ω₂ be complex numbers that are linearly independent over R. Then 

L=Zω₁+Zω₂={n₁ω₁+n₂ω₂∣n₁,n₂∈Z} 

is called lattice. The main reason we are interested in lattices is that C╱L is a torus, and 

we want to show that a torus gives us an elliptic curve. The set 

F={a₁ω₁+a₂ω₂∣0≤ai<1,   i=1,2} 

is called a fundamental parallelogram for L. A different choice of basis ω₁,ω₂ for L will 

of course give a different fundamental parallelogram. Since it will occur several times, 

we get  

ω₃=ω₁+ω₂ 

A function on C╱L can be regarded as a function f on C such that f(z+ω)=f(z) for 

all z∈Z and all ω∈L. We are only interested in meromorphic functions, so we define a 

doubly periodic function to be a meromorphic function f:C→C∪O  such that 

f(z+ω)=f(z)   for all  z∈C and all ω∈L. Equivalently, 

f(z+ωi)=f(z)   i=1,2 

The numbers ω∈L are called the periods of f.   If f is a meromorphic function and  

ω∈C, then we can write 

f(z)=ar(z-w)r +ar+1(z-w)r+1+..... 

with ar ≠0. The integer r can be either positive, negative, or zero. Define the order and 

the residue of f at ω to be 

r = ordwf 

a-1=Reswf 
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4.3.2 Weierstrass Function 

The series defined by 

 
is normally convergent on every compact included in C\L The sum of this series is 

called the Weierstrass function associated with the lattice L. It is denoted by ℘L(z) 

 

Properties 4.1 

    1.The sum defining ℘(z) converges absolutely and uniformly on compact sets not 

containing elements of L. 

    2.℘(z) is meromorphic in C and has a double pole at each ω∈L. 

    3.℘(-z)=℘(z) for all z∈C 

    4.℘(z+ω)=℘(z) for all ω∈L 

    5.The set of doubly periodic functions for L is C(℘,℘′). In other words every doubly 

periodic function is a rational function of ℘ and its derivative ℘.If we differentiate ℘(z) 

term by term we get 

 
    

4.3.3 Elliptic Curves in Weierstrass Form 

The Laurent series for ℘(z) about z=0 is given by 

℘z  z−2 
k1



∑ 2k  1G2k2 z2k

 
For each nonzero ω∈L , we expand the term corresponding to l in the definition (1) of 

℘(z). 

We do this by differentiating the geometric series ....xxx1
x1

1 32 +++=
−

 then 

substituting z/w for x we get 

1
1−z╱2  1  2 z

  3 z2

2  4 z3

3 . . .
 

If we subtract 1 from both sides, divide both sides by ω²,and then substitute in (1), we 

obtain 

(1) 
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℘z  1
z2 

l≠0
l∈L
∑ 2 z

l3  3 z2

l4  4 z3

l5 . . .k − 1 zk−2

lk . . .

 

         
℘z  1

z2  3G4z2  5G6z4  7G8z6 . . . ..(2)
 

We now use (2) to compute the first few terms in the expansions of ℘(z),℘(z)²,℘(z)³,℘’(z) 

and  ℘’(z)2 

℘′z  − 2
z3  6G4z  20G6z3  42G8z5 . . . (3)

℘′z2  4
z6 − 24G4

1
z2 − 80G6  36G4

2 − 168G8z2 . . . (4)

℘z2  1
z4  6G4  10G6z2 . . . (5)

℘z3  1
z6  9G4

1
z2  15G6  21G8  27G4

2z2 . . . (6)
 

 

Recall that we are interested in finding coefficients a,b,c,d of a cubic  

f(x)=ax³+bx²+cx+d such that 

 

 

and we saw that it suffices to show that both sides agree in their expansion through the 

constant term. If we multiply equation (6) by a, equation (5) by b, equation (2) by c, and 

then add them all to the constant d and finally equate the coefficients of z⁻⁶,z⁻⁴,z⁻² and 

the constant term to the corresponding coefficients in (4),we obtain successively 

a=4 ;   b=0 ;   -24G₄=4(9G₄)+c ;   -80G₆=4(15G₆)+d 

Thus, c=-60G₄,   d=-140G₆. It is traditional to denote 

g2  g2L  60G4  60
≠0
∈L
∑ −4

g3  g3L  140G6  140
≠0
∈L
∑ −6

 
We have thereby derived a second form for the differential equation 

℘′z2  f℘z, where fx  4x 3 − g2x − g3  
 

 

℘′z2  a℘z3  b℘z2  c℘z  d
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Theorem 4.4.Let L be a lattice and let E be the elliptic curve y²=4x³-g2x-g3.The map 

Φ:C╱L→E(C) 

z →(℘(z),℘’(z)) 

0→∞ 

is an isomorphism of groups.     

 

4.3.4 Complex Multiplication 

Suppose that E1 and E2 are elliptic curves defined over F. An F-rational homomorphism  

Φ: E1→ E2 is a homomorphism of group such that the coordinates of Φ (x; y) are 

rational functions (with coefficients in F) of x and y. Let HomF(E1;E2) be all the F-

rational homomorphism from E1 to E2 Then HomF(E1 ; E2 ) has a natural structure of 

abelian group (through the group structure of E2). Suppose that E is an elliptic curve 

defined over F. Then  

EndF(E) = HomF(E;E) 

has a natural ring structure. Here the ring multiplication is the composition of maps. We 

always have 

Z→EndF(E): 

E is said to have complex multiplication if 

Z ⊂EndF(E). 

Suppose that Φ ∈ EndF(E), then there exists a unique dual endomorphism  

Φ ∈ EndF(E) such that 

 
and  dΦ = ΦoΦ is the degree of the corresponding extension of the function fields 

 
Here (x’, y’) = Φ (x; y) 

We say that  is separable (reps. inseparable, purely inseparable) if the field extension  

F(x, y)/F(x’, y’) is separable (reps. inseparable, purely inseparable). If  Φ is separable, 

then |ker(Φ)| = dΦ If Φ is purely inseparable, then |ker(Φ)|=1 

 



 

 

 

CHAPTER 5 

 

ELLIPTIC CURVE PRIMALITY TESTS 

 

In Chapter 3, we have seen that most of the primality tests are based on Fermat’s 

Little Theorem. Elliptic Curve primality tests use the same idea, too. Goldwasser and 

Kilian developed the test which is based on a new methodology for applying group 

theory to the problem of prime certification, and the application of this methodology 

using groups generated by elliptic curves over finite fields. 

 

 

5.1 GOLDWASSER-KILIAN ALGORITHM 

    The idea is to build a decreasing sequence of probable primes N0>N1>…>Nk 

such that the primality of Ni+1 implies that of Ni, and where Nk is so small that we can 

check easily if it is a prime or not. Then, each algorithm consists of two parts, in the 

first one we generate such a sequence and in the second we verify if each Ni is a prime 

or not. 

    Our description of the algorithms will be mainly concerned on the exposition of 

ideas of the two parts of the DOWNRUN rather than in the technical definitions. 

The Goldwasser-Killian algorithm mentioned in the introduction follows from theorem 

4 and the so called Schoof’s algorithm which is used to compute the cardinality of 

E(Z/NZ) . The description of the algorithm is the following: 

 

GK(N) boolean; 

i) Generate an elliptic curve E(a,b) over Z/NZ, until gcd(4a3+27b2,N)=1. 
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ii) Compute its number of points with Schoof’s algorithm, call this number 

m. If m is odd go back to step i, otherwise set q=m/2. If q is a probable 

prime go to step iii, otherwise go back to step i. 

iii) Select a point P∈ E(a,b). If qP=O go to step iv, otherwise choose another 

P. 

iv) If q>N1/2+2N1/4+1 then return GK(q). 

v) End. 

  

    This algorithm has an abort instruction that stops the procedure if it has been running 

for a long time. This algorithm was presented in [G-K] in 1986, however an update has 

been published in [G-K2] in 1999. The problem here is that Schoof’s algorithm seems 

almost impossible to implement. Atkin and Morain use elliptic curves over finite fields 

but based on complex multiplication. Such implementation turned out to be more 

efficient. 

 

 

5.2 ATKIN’S ECPP ALGORITHM 

Before describing the algorithm we’ll recall that a fundamental discriminant D is 

a positive integer which is not divisible by any square of an odd prime and which 

satisfies D≡3 mod 4 or D≡4,6 mod 16, and let K=Q (√-D) denote the quadratic field 

corresponding to D, The description of the algorithm created by Atkin and Morain is the 

following. 

 

ECPP(N) boolean; 

i) If N<1000 check the primality of N directly and return the answer. 

ii) Find an imaginary quadratic field K=Q (√-D) with D a fundamental 

discriminant for which the equation 

4N=x2+Dy2 

 has solutions in rational integers x and y. 

iii) For each pair (U,V) of solutions of the above equation try to factor  

m=((U-2) 2+DV2)/4=N+1-U, 

if one of these can be written as Fw where F is completely factored and 

w is a probable prime then go to step iv else go to step ii. 
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iv) Find the equation of the curve E having m points modulo N and a point P 

on it. If wP=O and w>N1/2+2N1/4+1 then return ECPP(w). 

v) End. 

 

   In step iv we need algorithms to generate elliptic curves of arbitrary cardinality, 

this can be achieved via several results which depend on D  

    This algorithm works due to the following analysis. Let’s say that N is prime, 

then it splits as a product of principal ideals in K and this is ensured by step ii, therefore 

N is the norm of the algebraic integer π= (x+y√ -D)/2. 
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CHAPTER 6 

 

CONCLUSION 
 

 

 

We have seen primality testing algorithms, elliptic curves and elliptic curve 

primality testing. The time is very important while testing the given integer is prime or 

not. For example, Miller and Rabin probabilistic primality test is polynomial and 

probability of getting desired result is very high. Recently, a lot of studies have been 

done on elliptic curves to get algorithms with polynomial time. For example, Atkin used 

complex multiplication of elliptic curves in order to get better algorithms.   
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