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FACTORIZATION METHOD FOR CRYPTOGRAPHY

Bikem PAMUKÇU

M. S. Thesis - Mathematics
August 2006

Supervisor: Prof. Dr. Barış KENDİRLİ

ABSTRACT

First, I have included and explained some number theoretical facts in the beginning.
Then RSA has been covered with examples in details. I explained factorization
methods. I gave the maple algorithms which are useful for computing.

Keywords: RSA, factorization methods, public key cryptography and maple

algorithms.
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KRİPTOGRAFİ İÇİN FAKTORİZASYON METODLARI
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Tez Yöneticisi: Prof. Dr. Barış KENDİRLİ

ÖZ

Başlangıçta, sayılar teorisini ana hatlarıyla açıkladım.  Sonra, RSA detaylı olarak
örneklerle gösterilmiştir. Devamında, faktorizasyon metodlarını açıkladım.
Hesaplamaları yaparken kolaylık sağlaması için maple algoritmaları yazılmıştır.

Anahtar Kelimeler: RSA, faktorizasyon ve maple algoritmaları.
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CHAPTER 1

INTRODUCTION

The Greek words “Kryptos”, hidden, and “Graphen”, written, form the word

“Cryptography”. Symmetric key cryptosystems have been used by Egyptian since early ages.

There are two kinds of classical cryptosystems; transposition and substitution ciphers. In

transposition ciphers elements in plaintext are rearrenged. In substitution ciphers elements in

plaintext are mapped into another. Encryption and decrypiton keys are the same in symmetric

key cryptosystems. They are faster, but not secure. Public key cryptography has been used

since early 1970s. Asymmetric key cryptography depends on discrete logarithm and

factorization large integers. Encryption and decryption keys are different each other. This

makes this system secure and important for 21th century. Diffie-Hellman, ElGamal, Massey-

Omura, Elliptic curve and Hyperelliptic curve cryptosystems are based on discrete logarithm.

RSA depends on factorization. Elliptic curve cryptography challenges to RSA. Moreover,

public key cryptosystems are slower than symmetric key cryptosystems. Hence, nowadays

especially data is encrypted in modern symmetric keys by using DES, AES etc. Keys of

classical cryptosystems are encrypted by performing public key cryptosystems.

I explained number theory in chapter 2. I give the definition of divisor, Euclidean

algorithm, Chinese Remainder Theorem etc. In chapter 3 I described factoring algorithm wıth

examples. In chapter 4 I exposed RSA cryptosystem in detail. In chapter 5 primality testing is

defined.

In the future, I will continue to work on Elliptic Curve and Hyperelliptic Curve

Cryptosystems.
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CHAPTER 2

NUMBER THEORY

2.1. DIVISIBILITY

2.1.1. Divisors and divisibility

A factor of an integer m is an integer k which divides m, denoted by k½m. Otherwise it

is denoted by k I/ m. Divisors can be negative or positive. 1 and -1 are factors of every integer.

Moreover, every integer is a divisior of zero and itself.

2.1.2. Properties of divisibility

Let a,b,c,d be any integers.

1) a½b and a½c imply a½ (b+c)

2) a½b and b½c imply a½c

3) a½b and b½a imply a=b or a= -b

4) a½b implies a½bd

5) a½b implies a½-b, -a½b, -a½-b

6) a½b implies da½db for all dÎz

7) a½b and d½a imply d½b

8) a½bc and gcd (a,b) = 1 imply a½c

The command in mapple is divisors (n).

For example;

> divisors (20); {1,2,4,5,10,20}
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Assume that m>1 if the only proper divisor of m is 1, then it is called to a prime

number.

For example; 2,3,5,7,11,................................ are prime numbers.

The command in maple is prime (n) which demonstrates whether n is prime or

not.

For example;

> is prime (19);

true

> is prime (20);

false

The maple command next prime (n) returns the smallest prime which is larger

than n. Furthermore, the maple command pseduoprime (n) returns the largest prime

which is less than n.

For example;

> next prime (22);

23

> next prime (29);

31

> next prime (37);

41

A positive integer m is said to be composite number if and only if m has a positive

divisor other than 1 or itself.

2.2. THE GREATEST COMMON DIVISOR

A positive integer d is called common divisor of a and b if d½a and d½b. If the

largest divisor of a and b is d, then d is said to be the greatest common divisor.

The maple command igcd (x1,  x2,  x3,.............) calculates the greatest common

divisor of integers.
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For example;

> igcd (10,6,8);

2

If the greatest common divisor of a and b equals to 1, then a and b are called

relatively prime integers. We calculate GCD by Euclidean algorithm.

Example 2.1: This example uses the Euclidean algorithm to find the greatest common

factor between 36 and 123.

3 is the last nonzero remainder.

             3 = 5 (123) – 17 (36)

123 = 3 (36) + 15

36 = 2 (15) + 6

6 = 2 (3) + 0

2.3. PROCEDURE OF EUCLIDEAN ALGORITHM

Assume that a and b are positive integers b I/ 0 and a>b. Let a=r0, b=r1, q1 be

quotient and r2 be remainder

r0 = r1 . q1 + r2 0 £ r2 < r1

r1 = r2 . q2 + r3 0 £ r3 < r2

r2 = r3 . q3 + r4 0 £ r4 < r3

r3 = r4 . q4 + r5 0 £ r5 < r4
∙
∙
∙
rk-2 = rk-1 . qk-1 + rk 0 £ rk < rk-1
rk-1 = rk . qk

The greatest common divisor of a and b equals to rk.

The maple command igcdex (a, b, ¢s¢, ¢t¢) gives the greatest common divisor of a

and b. The commands s; and t; give values of s and t.
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For example;

> igcdex (15,7, ¢s¢,¢t¢);

1

> s; t;

 1

-2

Example2.2. Find the gcd of 81 and 57 by Euclidean algorithm.

81 = 1 (57) + 24

57 = 2 (24) + 9

24 = 2 (9) + 6

9 = 1 (6) + 3

6= 2 (3) + 0

Then

3 = 9 – 1 (6)

24-2 (9) s0;

3 = 9-1 ( 24-2(9) ) = 3 (9) – 1 (24)

57-2 (24) s0;

3 = 3 ( 57-2(24) ) – 1 (24) = 3 (57) – 7(24)

81-1 (57) giving us;

3 = 3 (57) – 7 ( 81-1 (57) ) = 10 (57) – 7 (81)

p = -7 and s = 10
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2.4. EULER’S THEOREM

2.4.1. Theorem (Euler’s Theorem): Let n be a positive integer. The Euler phi-function

f (n) is defined to be the number of integers in the range 0 < f (n) < n where f (n) is

coprime to n. f (n) gives the size of multiplicative group of integers modulo n.

Euler product formula is written as;

f (n) = p nnp 11
p

æ ö
-ç ÷

è ø
                                  with distinct primes p.

Let n = k1p . k2
2p . k3

3p  ............ ki
ip  with distinct primes pr

f (n) = (p1
-1) kı 1

1p -  (p2
-1) k2 1

2p -  ............... (pi-1) ki 1
ip -

Theorem:

nf
å f(d) = n                                              where d½n and nÎZ+

2.5. CONGRUENCES

a is called congruent to be modulo m if m divides a-b, " a, b ÎZ and mÎZ+

It is denoted by aºb (mod m). On the other hand, a is incongruent to b modulo m,

denoted by aºb (mod m)

The command in maple is a mod m

For example;

> 2625 mod 13;

12

2.5.1. Properties of Congruences:

1) a º a (mod m)

2) If a º b (mod m), then bºa (mod m)

3) If a º b (mod m) and bºc (mod m) imply a ºc (mod m)

4) al ≡ bl (mod m), where l>0, for aºb (mod m)

5) If ac º bc (mod m) and gcd (c,m) = d, then aºb (mod m/d)
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6) aºb(mod m) c 1-  is a arithmetic inverse of c modulo m

if and only if gcd(c,m)=1 and a.c 1- ºb.c 1- (mod m)

2.6. CHINESE REMAINDER THEOREM

Suppose that N=n1,  n2,  n3, ........... nk where n1,  n2,  n3............. nk are pairwise

relatively prime positive integers that is if i¹j, then gcd (ni, nj) = 1

Let a1, a2, a3 ................... ak be integers. There exists an integer x such that

x º a1 (mod n1)

x º a2 (mod n2)

x º a3 (mod n3)

∙

∙

∙

x º ar (mod nr)

has a unique solution modulo N.

Proof: Define Ni =
i

N
n

 for 1 £ i £ k as follows:

N1 = N/n1. There exists M1 such that N1 M1 º 1 (mod n1)

N2 = N/n2. There exists M2 such that N2 M2 º 1 (mod n1)

N3 = N/n3. There exists M3 such that N3 M3 º 1 (mod n1)

∙

∙

∙

NK = N/nK. There exists MK such that NK MK º 1 (mod nK)

Next, compute

x =
k

i 1=
å ai Ni Mi mod N



8

Therefore,

          x º a1 N1 M1 º a1 mod n1

x º a2 N2 M2 º a2 mod n2

x º a3 N3 M3 º a3 mod n3

∙

∙

∙

x º ak Nk Mk º ak mod nk

The maple command of chinese remainder theorem is chrem (U, m).

The list of modulo m are pairwise coprime positive integers. The list of U and M is the

some size n such that.

U – list [U1, U2, U3.... Un] and M – list [m1, m2, m3,… mn]

For example;

> chrem ( [1,2], [5,7]);

16

Example 2.3. Suppose r=2, m1 = 5 and m2 = 3, so M = 17. Then the function x has the

function following values:

x (0)  = (0,0) x (1)  = (1,1) x (2)  = (2,2)

x (3)  = (3,0) x (4)  = (4,1) x (5)  = (0,2)

x (6)  = (1,0) x (7)  = (2,1) x (8)  = (3,2)

x (9)  = (4,0) x (10)  = (0,1) x (11)  = (1,2)

x (12)  = (2,0) x (13)  = (3,1) x (14)  = (4,2)

             x (15) = (0,0)              x (16) = (1,1)

Example 2.4. Find the smallest multiple of 10 which has remainder 2 when divided by

3, and remainder 3 when divided by 7.
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We are looking for a number which satisfies the congruences, x=2 (mod3), x=3

(mod 7), x=0 (mod 2) and x=0 (mod 5). Since 2,3,5,7 are all relatively prime pairs, the

Chinese Remainder Theorem that there is a unique solution modulo:

2.3.5.7 = 210

Now we will calculate Mi’s and Yi’s as follows:

      M2 = 210 / 2 = 105; Y2 = (105)-1 (mod 2) = 1

 M3 = 210 / 3 = 70; Y3 = (70)-1 (mod 3) = 1

                               M5 = 210 / 5 = 42; Y5 = (42)-1 (mod 5) = 3

                               M7 = 210 / 7 = 30; Y7 = (30)-1 (mod 7) = 4

X = 0 . (M2 Y2) + 2 (M3 Y3) + 0 (M5 Y5) + 3 (M7 Y7)

0 + 2 (70) .(1) + 0 + 3 (30) .(4)

0 + 140 + 0 + 360

140 + 360 = 500

500 º 80 (mod 210)

2.6.1. Theorem: Assume that g is a multiplicative group element of order n. The order of g

divides n.

2.6.2. Theorem:İf gcd (a,n) = 1,  then af(n) º 1 (mod n)

2.7. FERMAT’S LITTLE THEOREM

Suppose p is prime and p I/ a. Then,

ap-1 º 1 (mod p)

2.7.1 Theorem: Zp
* is a cyclic group if p is prime.

b whose order is p-1 modulo p is said to be a primitive element modulo p.

Zp
* =  {“b” : 0£ i £ p-2}

p is prime and b is a primitive element modulo p.

gcd (p-1, i) = 1 f (p-1) gives the number of primitive elements modulo p.

a is itself a primitive element if and only if a = bi in the range 0 £ i £ p-2
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Example 2.5.  : Suppose p=14. The results proven establish that there are exactly four

primitive elements modulo 14. First, by computing succesive powers of 2, we can

verify that 2 is a primitive element modulo 14.

20  mod 14 = 1

21  mod 14 = 2

22  mod 14 = 4

23  mod 14 = 8

24  mod 14 = 2

25  mod 14 = 4

26  mod 14 = 8

27  mod 14 = 2

28  mod 14 = 4

29  mod 14 = 8

210  mod 14 = 2

211  mod 14 = 4

212  mod 14 = 8

213  mod 14 = 2

The element 2i is primitive if and only if gcd (i, 13) = 1, i.e. if and only if

i = 1,5,7,11.

2.7.2 Theorem: Assume that p is prime and bÎZp*. If b (p-1)½q ¹ 1 (mod p), then b is a

primitive element modulo p. (q is prime such that q½(p-1) )
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CHAPTER 3

FACTORING ALGORITHMS

3.1. THE POLLARD p-1 ALGORITHM

This algorithm is proposed by John M. Pollard in 1974. Fermat’s little theorem is the

main idea for this method.

That is for any prime number p; that you select and another number a

a (p-1) º 1 (mod p)

This equal to;  2x º c (mod n)

2x º c + kn (k integer)

3.1.1. Methods of (p-1) algorithm

1) We pick a number m

2) pick a number 1 < a < m. For example a = 2

3) pick a number 2. for example s = 2

4) if gcd (a,m) ¹ 1 then the factor is found.

5) When s = al (mod m)

6) When d=GCD (s-1, m)

7) We apply the division algorithm to find if d is an element of m. There are two

options. If the answer is yes, then the factor is found. If the answer is no, then we swich a and

or 1 and go back to step 4.
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Example 3.1.2 :

Suppose n = 15770708441. If we select B = 180 we find that a= 11620221425 and d is

computed to be 135979. In fact, the complete factorization of n into primes is;

15770708441 = 135979 . 115979

In this example, the factorization succeeds because 135978 has only “small” prime

factors:

135978 = 2.3.131.173

B ³ 173 then 135979 ½b!

3.2. THE POLLARD RHO ALGORITHM

John M. Pollard proposed another factorization algorithm that improves over trial

division in 1975.

An iteration of the form

xj = f (xj – 1) (mod n)

we are looking for two distinct values xi, xj Î x, then gcd (xj – xi, n) > 1 for all i<j

if xi º xj (mod p)

       f (xi) º f (xj) (mod p)       and  xj+1= f(xi)

xj+1 = f(xj)

Therefore similarly xj+1 mod p = f (xj) mod p

i < j                         xi º xj (mod p)

3.2.1. Methods of Rho Algorithm

1) Select a number m, you wish to factor.

2) Choose any two numbers (mod m) xi and xj
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3) If the differences xi-xj is equal to 0 in modulo m, then gcd (x-y,m) then we have a

factor.

4) If the differences isn’t 0 then we go back to step two.

3.2.2 Example :

Let n = 1387 x1 =2 and f(x) =x2-1. We obtain x1=2 x2=3 x3=8, x4=63, x5=1194, x6=1186

gcd (x2 - x1, 1387) = gcd (1,1387) = 1

gcd (x4 – x2, 1387) = gcd (60,1387) = 1

gcd (x6 – x3, 1387) = gcd (1178,1387) = 19

19 is the factor of 1387. Sequence is 3 and a non-trivial factor is obtained after 3 comparisons

and GCD calculations.

3.2.3 Definition= Let n be an odd composıte ınteger and let p be a prıme ınteger s.t p│n.

Take a polynomıal f(x) of degree 2(at least) with integer coefficients. Then let x0 be a random
integer.

Calculate     x1=f(x0)
Calculate x2=f(x1)
Calculate     x3=f(x2)

Stop at k th place xk=f(xk-1) where xk≢xi (mod n) for 0≤i<k-1

3.2.4 Example :

                   n=1041

                   x0=2   f(x)=x2+1

                   x1=f(x0)=f(2)=22+1=5

                   x1-x0=5-2=3

   of course  x1 ºx0(mod3)

    Since  5 2º (mod3)

    g.c.d(x1-x0,1041)
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g.c.d(3,1041)=3

347.31041=Þ

            x1=x1
1+k1.n Üx1 º f(x0) (mod n)

             x2=x2
1+k2.n Üx2

1 º f(x1) (mod n)
               .
               .
               .
               .
               .
               .
               .
              xp=xp1+k.n Üxp≢ xi(mod n)Û xp ≢ xi(mod n)

Üxp
1 ºxi(mod m)Û xp ºxi(mod m)

3.2.5 Example :

    N=36287   x0=2     f(x)=x2+1

X1=22
+1=5 Þ 5≢ 2(mod 36287)  and gcd (5-2,36287)=1

X2=52+1=26 Þ 26≢2(mod 36287) and gcd (26-2,36287)=1

Þ 26≢5(mod 36287) and gcd (26-5,36287)=1

X3=262+1=677 Þ 677≢2(mod 36287) and gcd (677-2,36287)=1

Þ 677≢5(mod 36287) and gcd (677-5,36287)=1

Þ 677≢26(mod 36287) and gcd (677-26,36287)=1
.
.
.
.
.
.
X7=24380 Þ 24380≢2 (mod 36287) and gcd(24380-2,36287)=1

Þ 24380≢5(mod 36287)
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Þ 24380≢26(mod 36287)

Þ 24380≢677(mod 36287)

Þ 24380≢22886(mod 36287)

Þ 24380≢2439(mod 36287)

Þ 24380≢33941(mod 36287)

3.3. DIXON’S RANDOM SQUARES ALGORITHM

Congruence  of  square  is  the  base  of  this  method.  It  works  very  well  on  parallel

processors for each processor can be managed on it’s own random rk.

If x doesn’t equal y in modulo n, then square of x doesn’t equal square of y. Therefore

n doesn’t divide x’s difference from y and it’s sum.

x ¹ m y (mod n) such that x2 º y2 (mod n). Then

n½(x-y) . (x+y)

We choose any number r, square it (mod m), factor it to find out if the number is

square. If it is square then the root be different from r as a result we have two numbers which

are congruent mod (m).

3.3.1 Example :

The three vectors a1, a2, a3 are follows:

a1 = (1, 0, 0, 1, 0, 1)

a2 = (0, 1, 1, 0, 0, 0)

a3 = (1, 1, 1, 1, 0, 1)

a1+a2+a3 = (0, 0, 0, 0, 0, 0) (mod 2)

3.4. ELLIPTIC CURVE FACTORIZATION
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In the 80’s Victor Miller and Neal Koblitz produced (ECC). Elliptic curve

cryptography is an approach to public key cryptography based on the algebraic structure of

elliptic curves over finite fields. In the elliptic curve (x,y) are the answers to the form

y2 = x3 + AX + B  together with the point at infinity (0)

For applications to cryptography we consider finite fields of q elements. For the

equation y2 = x3 + AX + B we write E, and for the set of points (x,y) with the point 0, with

coordination in the field F-q

The set of points on an elliptic curve forms a group under a certain addition rule. The

point 0 is the identity element of the group.

Given a point P = (x,y) and a positive integer n we define;

n.P = P + P + P + ......... + P (n times)

The order of a point P = (x,y) is the smallest positive integer n such that n.P = 0

Elliptic curves are also used in several integer factorization algorithms that have

applications in cryptography, such as, Lenstra elliptic curve factorization, but this use of

elliptic curves is not usually referred to as “elliptic curve cryptography”.

3.5 FACTOR BASE METHOD

Let n be an integer. We calculate

x 2 − n

for several values of x, i.e.,for a0, a1 , . . . , am . Suppose that we find

a
1i
, a

2i
, …… , a

ki

among them, such that

(a 2
1i
n)(a 2

2i
n),……,(a 2

ki
n)ºb 2 (mod n).

for some integer b. Then, we can obtain the factors of n since

a 2
1i
a 2

2i
……..a 2

ki
ºb 2 (mod n).

We select the values of x such that x 2 − n is a small integer. Thus, it has small prime factors.
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Therefore, we may select x in the interval

n M < x < n +M

for some integer M .Then ,we try to factorize x 2 − n for which x is in the interval. We

select a set of primes

Ã={ -1 , p1 , p 2 ,………….,p k },

called a factor base satisfying p < B. B is an integer depending on the size of n. −1

is also included in Ã

Construct the following table

Ã n M < x < n +M x 2 − n

p 1                                             x1                                                 x 2
1 n= p 11

1
a p 21

2
a ……p 1ka

k

p 2                                             x 2                                                x 2
2 n= p 12

1
a p 22

2
a ……p 2ka

k

.      . .

.                                               . .

pu                                             x u                                               x 2
u n= p ua1

1 p ua2
2 ……..p kua

k

Select those x whose prime factors are contained in Ã. Now, we have to find integer

h 1 , h 2 ,……..h u

which are 0 or 1 such that

( p 11
1
a p 21

2
a ……….p 1ka

k ) 1h (p 12
1
a p 22

2
a ………p 2ka

k ) 2h ………….(p ua1
1 p ua2

2 ……..p kua
k ) uh

is a perfect square. Obviously, it holds if and only if

a11 h1 + a12 h2 + · · · + a1u hu ≡ 0(mod2)

a21 h1 + a22 h2 + · · · + a2u hu ≡ 0(mod2)
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.

ak 1h1 + ak 2h2 + · · · + aku hu ≡ 0(mod2)

if and only if

÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç

è

æ

kukk

u

u

aaa

aaa
aaa

.........
........................
........................
........................

........
........

21

22221

11211

÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç

è

æ

uh

h
h

.

.

.
2

1

=

÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç

è

æ

0
.
.
.
0
0

So, the vector (h1, h2, . . . , hu) can be found from row-reduced echelon matrix by applying the

elementary row operations to the matrix

÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç

è

æ

2mod2mod2mod
..........................................................
..........................................................
..........................................................

2mod2mod2mod
2mod2mod2mod

21

22221

11211

kukk

u

u

aaa

aaa
aaa

Example 3.6 n = 4633.Let Ã={2, 3, 5}

4633 = 68.07………………..Let 38 ££ x 98. By Maple define

H(x) = x 2  4633

38 -3189         -3 ×1063
39 -3112                -23389
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40 -3033                -32337
41 -2952                -233241

                       42 -2869                -19 ×151

                       43 -2784                -253 ×29
                       44 -2697                -3 ×29 ×31
                     45 -2608                -24163
                     46 -2517                -3 × 839
                     47 -2424                -233 × 101
                     48 -2329                -17 × 137
                     49 -2232                -233231
                     50 -2133                -3379

                       51 -2032                -24127
                       52 -1929                -3 ×643
                       53 -1824                -253 ×19
                       54 -1717                -17 × 101
  H =               55 =  -1608 =      -233 ×67 =
                       56 -1497               -3 ×499
                       57 -1384               -23173
                       58 -1269               -3347
                       59 -1152               -2732

                       60 -1033               -1033
                       61 -912                 -243×19
                       62 -789                 -3 ×263
                       63 -664                 -2383
                       64 -537                 -3 ×179
                       65 -408                 -233 ×17
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                       66 -277                         -277
                       67 -144                         -2432

68   -9                           -32

69  128                           27

70  267                       3 ×89
                       71  408                      233 ×17
                       72  551                       19 ×29
                       73  696                      233 ×29
                     74  843                       3 ×281
                     75  992                          2531
                     76  1143                       32127
                     77  1296                        2434

                     78  1451                       1451
                     79  1608                     233 ×67

                       80  1767                   3 ×69 ×31
                       81  1928                       23241
                       82  2091                   3 ×17 ×41
                       83  2256                     243 ×47
  H =               84 =    2423  =              2423  =
                       85  2592                        2534

                       86  2763                       32307
                       87  2936                       23367
                       88  3111                   3×17 ×61
                       89  3288                     233×137
                       90  3467                         3467
                       91  3648                      263×19
                       92  3831                     3 ×1277
                       93  4016                        24251
                       94  4203                        32467
                       95  4392                       233261
                       96  4583                        4583
                       97                     4776                    233 ×199

We select those which are factorizable only by means of {2, 3, 5}:

 x 2
1 = 59≡ −1152 = −2 .3 .5 (mod 4633)
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x 2
2  = 67≡ −144 = −2 3 5 (mod 4633)

                                              x 2
3 = 68≡ −9 = −2 3 5 (mod 4633)

                                         x 2
4 = 69≡ 128 = 2 3 5 (mod 4633)

                                         x 2
5 = 85≡ 2592 = 2 3 5 (mod 4633)

                                         x 2
6 = 96≡ −50 = −2 3 5 (mod 4633)

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

200000
040222
157047
100111

 (mod 2) =

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

000000
000000
111001
100111

 .

It is row equivalent to

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ
--

000000
000000
011110
111001

The corresponding solutions are
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÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç

è

æ
++=
++=

0
0
0
0

)(
)(

5432

6541

hhhh
hhhh

for free h3 , h4 , h5 , h6. In particular ,

÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç

è

æ

6

5

4

3

2

1

h
h
h
h
h
h

=

÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç

è

æ

1
0
1
1
0
0

is a solution, i.e.,

682692962 = (-203250 ) (273050) (-213052) = (-1)2283252

gcd ( 68.69.96  2435,4633) = 113

Thus

4633 = 41.113
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CHAPTER 4

PUBLIC KEY CRYPTOGRAPHIC SYSTEM DEPENDS ON
FACTORIZATION

4.1. RSA

Nowadays, RSA is the most popular public key cryptosystem depended on large

integers RSA was found in 1977 by Ron Rivest, Adi Shamir and Leonard Adleman. Let

plaintext message units be blocks of k letters and ciphertext message units be block of l letters

(k<l). First Alice and Bob agree upon a N- letter alphabet. Bob generates to distinct large

prime integers p and q. Then Bob calculates n=p.q. n is in the interval (Nk, Nl).

p, pÎZ/Nz. We obtain k and l by computing

k £ [log Nn] < l

The command in maple to compute k and l is as follows;

> k: = round (evalf (log [N] (n) ))

> l : k + 1;

Next, Bob calculates (p-1). (q-1) which equals to f (n)

The command in maple to compute f (n) is phi (n);

Then Bob chooses a secret integer e, which is coprime to f(n). e is between 1 and f(n).

Also e is said to be public. The pair (n,e) is enciphering key. Bob makes (n,e) public and p,q

secret. Alice converts her message into numerical equivalence P. The encryption

transformation is;

C º Pe (mod n)                                              where 0 £ P £ Nk -1
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The maple command to compute ciphertext is;

> c: p ೪Ù l (mod n);

Then Alice send ciphertext to Bob. Bob computes the decryption exponent d by using the

equation below.

d º e-1 (mod f (n) )

The maple commond to calculate d is

> d: (1/e) mod f (n)

Bob decipheries the ciphertext c by solving the equation

P º Cd º (Pe)d º Ped (mod n)

This works as ed-1 is a multiple of f(n), ed-1 = k.f(n)

Cd º Ped º P1+kf(n) º P’.Pkf(n) º P(1)k º P(mod n)

Encryption and decryption transformations are

Z/Nz to Z/Nz
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RSA

Bob generates primes p and q which are distinct to form n.

 Bob also choose public exponent e. Bob makes n,e public and keeps q,p secret

  Alice converts her message  to its numerical equivalent P.

  Alice enciphers her message C ≡ Pe mod n

                                                 Alice sends her ciphertext C to Bob.

Bob computes decryption exponent d ≡ e-1 mod (p-1)(q-1).

             Bob computes plaintext  P ≡ Cd mod n

4.2 Figure of RSA
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3.4.1 Example :

Plaintext and ciphertext letters are writen in Turkish letter alphabet written in 29 –

letter. Plaintext message block is 2. And ciphertext message block l is 3. My plaintext is

“danger”

e = 1009

p = 23

q = 101

n = p.q = 23.101 = 2323

f (n) = (p-1). (q-1) = 22.100 = 2200

d = 689

“danger”

Table 4.3 Turkish Letter Alphabet

a b c ç d e f g ğ h ı I J k l m  n o ö p r s ş t u ü v y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

“da” = 0+4.29 = 116

C1 = 116 1009 (mod 2323) = 1772

“ng” = 7 + 16 . 29 = 471

C2 = 471 1009 (mod 2323) = 1372

“er” = 20 + 5 .29 = 165

C3 = 165 1009 (mod 2323) = 1297

Then we will find it ciphertext;

C1 = 1772 = 2 . 292 + 3 . 29 + 3  = “cçç”

C2 = 1372 = 1 . 292 + 18 . 29 + 9  = “böh”

C3 = 1297 = 1 . 292 + 15 . 29 + 21  = “bms”

The ciphertext is “CÇÇBÖHBMS”
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3.4.2 Example : Plaintext  message  units  are  digraphs  and  ciphertext  message  units  are

trigraphs. In both plaintext and ciphertext, 26-letter alphabet is used. My ciphertext is;

“ADSCIOASTBFDBZZ”

Enciphering key (n,e) is (2257,133)

First convert ciphertext blocks to their numerical equivalence.

C1 = “ADS” = 18 + 3 . 26 + 0 . 262  = 96

C2 = “CIO” = 14 + 8 . 26 + 2 . 262  = 1574

C3 = “AST” = 19 + 18 . 26 + 0 . 262  = 487

C4 = “BFD” = 3 + 5 . 26 + 1 . 262  = 809

C5 = “BZZ” = 25 + 25 . 26 + 1 . 262  = 1351

First we compute d º e-1 (mod f (n) )

n = p . q

p = 61 and q = 37

n = p.q = 61.37 = 2257

f(n) = (p-1) . (q-1)

f(n) = (61-1) . (37-1)

60.36 = 2160

d = 877 (mod 2160)

P1 = 96 877 (mod 2257) = 17 = 17 + 0 . 26 = “ar”

P2 = 1574 877 (mod 2257) = 446 = 4 + 17 . 26 =  re”

P3 = 487 877 (mod 2257) = 487 = 19+ 18 . 26 = “st”

P4 = 809 877 (mod 2257) = 320 = 8 + 12 . 26 = “.mi”

P5 = 1351 877 (mod 2257) = 264 = 4 + 10 . 26   “ke”

The plaintexts is “arrestmike”
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CHAPTER  5

 PRIMALITY  TESTING

5.1 PRIMALITY TESTING

In settings up the RSA Cryptosystem,it is necessary to generate large’’random prımes .

5.1.1 Definition: Suppose p is an odd prime and a is an integer. a is defined to be a quadratic

residue modulo p if a≢0 (mod p) and the congruence y2 º a (mod p) has a solution y € ZP. a is

defined to be a quadratic non-residue modulo p if a≢0 (mod p) and a is not a quadratıc residue

modulo p.

Example 5.1: In Z11, we have that 12=1, 22=4, 32=9, 42=5, 52=3, 62=3, 72=5, 82=9, 92=4, and

(10)2=1.

Therefore the quadratic residues modulo 11 are 1,3,4,5 and 9, and the quadratic non-residues

modulo 11 are 2,6,7,8 and 10.

5.1.1 Theorem: Suppose that p is  an  odd  prime and a is quadratic residue modulo p. Then

there exists y € ZP
* such that y2 ºa (mod p). Clearly, (-y)2 aº  (mod p),  and y ≢ y (mod p)

because p is odd. Now consider the quadratic congruence x2-aº0 (mod p). This congruence

can be factored as

(x-y).(x+y) º0 (mod p),

which is the same thing as saying that p│(x-y).(x+y). Now, because p is prime, it follows that

p│(x-y) or p│(x+y). In other words, xº y±  (mod p), and we conculude that there are exactly

two solutions (modulo p) to the congruence x2-aº0 (mod p). Moreover, these two solutions

are negatives of each other modulo p.
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5.1.2 Definition : Let m be a large integer. A primality test determines whether m is prime or

not.

5.1.3 Definition : A number n passes the pseduoprime test to base a if

an ≡ a (mod n).

Of course, it doesn’t imply that n is prime.

5.1.4 Definition : Let a be a positive integer. If n is a composite (not prime) positive

integer and

an  ≡ a (mod n),

then n is called a pseudoprime to the base

Lemma : If gcd (a,n)= 1, then

a ºn a (mod n ) ºÛ -1na 1 (mod n )

Proof :  gcd(a, n)= 1 implies that a⋆ mod n exists. Thus we multiply both sides

of

an ≡ a (mod n)

by a⋆ .

We multiply both sides of

an-1≡ 1(mod n)

by a.

Example 5.2. For instance

2340 ≡ 1 (mod 341)

with 341= 11.31. Hence, 341 is a pseduoprime with base 2.

Example 5.3:

390≡ 1 (mod 91)= 7.13

Þ 91 is a pseduoprime with base 3.

5.1.5 Definition : A composite integer n is said to be a Carmichael integer if

an-1≡ 1(mod n)

for all positive integer a such that
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gcd(a, n)= 1,

.i.e., it is pseduoprime to any base a, where gcd(a, n)= 1.

Example 5.4:

a560≡ 1(mod 561)

for any integer a such that gcd(a, 561)= 1

a2 ≡ 1(mod 3)Þ (a2)280 =a560 ≡1(mod 3) for all integer a

a10 ≡ 1(mod 11)Þ (a10)56 =a560 ≡1(mod 11) for all integer a

a16 ≡ 1(mod 17)Þ (a16)35 =a560 ≡1(mod 17) for all integer a

Þ a560 ≡1(mod.11.13.17 =561)

A simple characterization of Carmichael integer is given by the following lemma:

Lemma : A positive integer n is a Carmichael integer⇔ It is a product of distinct

odd primes

n = p1 p2 · · · pm

such that pi − 1 | n − 1 for 1£ i £ m.

Proof: n > 2 since it is composite.

bn-1 ≡1(mod n)

for all positive integers b.∃ an integer a such that

ordna =l(n).

Since an-1 ≡ 1(mod n), it follows that

l(n) | n − 1.

n > 2 Þ l(n) is even Þ n is odd.

Now, suppose that there exist an odd prime p such that

pk | n

for k ³ 2. Then

l(pk) = f (pk) = pk-1 (p − 1) | l(n)

Þ pk-1(p − 1) | (n − 1) =) p | n − 1

contradiction. Thus,

n = p1 p2 · · · pm,
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where p1,p2, · · · , pm are distinct odd primes. Since

l(n) = lcm {f (p1) = p1 − 1, f(p2) = p2 − 1,…….., f(pm) = pm − 1} ,

obviously, pi − 1 | l(n) thus,

pi − 1 | n − 1

for 1 £ i £ m.

Let n be a product of distinct prime integers, i.e.,

n = p1 p2 · · · pm

Let a be a positive integer which is relatively prime to n. Then

gcd(a, pi) = 1 for 1 £ i £ m Þ

ap
i

- 1 ≡ 1( mod pi ) for 1£ i £ m.

Since pi − 1 | n − 1 for 1 £ i £ m ,

There exist integers ri for 1 £ i £ m

such that

n − 1 = ri(pi − 1) for 1 ≤ i ≤ m. Þ

an−1 = (api−1)ri ≡ 1(mod pi) for 1 ≤ i ≤ m Þ

an−1 ≡ 1(mod n).

But this means that n is a Carmichael integer.

Example 5.5 :1729 = 7.13.19 is Carmichael integer since

6 | 1728, 12 | 1728, 18 | 172

Example 5.6: 41041 = 7.11.13.41 is Carmichael integer since

6 | 41040, 10 | 41040, 12 | 41040, 40 | 41040

a)825265 = 5.7.17.19.73
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 b)321197185 = 5.19.23.29.37.137

                                                        c)5394826801 = 7.13.17.23.31.67.73

d)232250619601 = 7.11.13.17.31.37.73

e)9746347772161 = 7.11.13.17.19.31.37.41.641

           f)1436697831295441 = 11.13.19.31.37.41.43.71.127

                           g)60977817398996785 = 5.7.17.19.23.37.53.73.79.89.233

                                         h)7156857700403137441 = 11.13.17.19.29.37.41.43.61.97.109.127.

Corollary :A Carmichael integer is a product of at least three distinct primes.

Proof: Suppose n = p.q, where p and q are distinct primes. Assume that p < q. By previous lemma

n − 1 ≡ 0 (mod(q − 1))

But

n − 1 = pq − 1 = p(q − 1 + 1) − 1 = p(q − 1) + p − 1

which implies that q − 1 | p − 1. But it contradicts p < q.

5.1.6 Definition: Let n be an odd composite integer and a an integer such that

gcd(a, n) = 1. If

a 2
1-n

º ÷
ø
ö

ç
è
æ

n
a  (mod n ),

where
÷÷
ø

ö
çç
è

æ
p
a is the is the Jacobi symbol, then n is called an Euler pseduoprime to the base.

We know that if p is an odd prime and a is an integer

not divisible by p, then

a 2
1-p

º ÷÷
ø

ö
çç
è

æ
p
a  (mod n ),

where
÷÷
ø

ö
çç
è

æ
p
a  is the Legendre symbol.

Proposition : If n is an Euler pseduoprime to the base a, then it is also a pseduoprime to the base a.
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Proof :

a 2
1-n

º ÷
ø
ö

ç
è
æ

n
a  (mod n ) Þ (a 2

1-n

)2 º ÷
ø
ö

ç
è
æ

n
a 2  (mod n )

which obviously implies that

an−1 ≡ 1(mod n).

5.1.7 Definition: Let n be an integer with

n − 1 = 2r ,

where r is a nonnegative integer and s is an odd integer. If

as≡ 1(mod n) or as2
j

≡ −1(mod n)

for some 0 ≤ j ≤ r − 1 for an integer a, then we say that n passes strong pseduoprime test to

base a.

5.1.8 Definition: A composite integer n which passes the strong pseduoprime test for the base

a is called a strong pseduoprime to the base a

Example 5 .7 : n = 15790321 Þ

n − 1 = 15790320 = 24 986895

2986895 ≡ 128(mod 15790321)

but

22s = 22.986895 ≡ 16384(mod 15790321)

                                                  24s = 24.986895 ≡ −1(mod 15790321)

which means that n = 15790321 passes strong pseduoprime test to base 2.

5.1.9 Theorem : If p is a prime and p - a, then p passes strong pseduoprime test to base a.
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Proof: p − 1 = 2r s. Let

bk = a k
p
2

1-

 = a
krs -2  for 0 £  k £  r

= ap-1 º  1 ( mod p )

b 2
1 = b0 º  1 ( mod p ).

So ,

b1 º  1 (mod p ) or b1 º  -1 (mod p )

If b1 º  1 (mod p) then

b 2
2 º b1 º  1 ( mod p ).

Thus , b2 º  1 (mod p ) or b2 º  -1 (mod p). So if ..

bo ºb1 º b2 º b3 º………..º bk º  1 ( mod p )

with k < r , then since b 2
1+k º bk º  -1 ( mod p ).

b º+1k  1 ( mod p ) or b º+1k  -1 ( mod p )

Consequently, either

br º  1 ( mod p )

or ∃ k such that 0 ≤ k ≤ r and

bk º  -1 ( mod p ).

It means that p passes strong pseduoprime test to base a. The strong pseduoprime test to base a is

stronger than Euler pseduoprime test to base a, as it can be seen in following proposition.

Proposition: If n is a strong pseduoprime to base a, then it is an Euler pseduoprime to the base

a
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Proof : Let

n = p 1
1
k p 2

2
k p 3

3
k ……………p mk

m ,

n − 1 = 2r s, where s is odd integer and

as ≡ 1(mod n) or as2j
≡ −1

for some 0 ≤ j ≤ r − 1.

case1:as≡1(mod n): Let a prime p divides n. Then

ord p a \ s

since as ≡ 1(mod p) which implies that

ord p a

is odd. But ord p a also divides p − 1. Thus, it divides p – 1. Thus, it divides
2

1-p  too.

Therefore,

a 2
1-p

º1 ( mod n )Þ ÷÷
ø

ö
çç
è

æ
p
a = 1

by Euler’s criterion. The Jacobi symbol is

÷÷
ø

ö
çç
è

æ
p
a  =

÷÷
ø

ö
çç
è

æ
kk

m
kkk pppp

a
.....321

321

 = P
=

m

i 1
÷÷
ø

ö
çç
è

æ

ip
a

ik = 1

a 2
1-n

 = ( ) 128
-r

a 1º  ( mod n ). Thus,

a 2
1-n

   = ÷
ø
ö

ç
è
æ

n
a  =1

case2: as2j
≡ −1(mod n) for some 0 ≤ j ≤ r − 1: Again let a prime p divides n. Then

as2j
≡ −1(mod p) Þ (as2j

)2 ≡ 1(mod p) Þ

as2j+1
≡ 1(mod p) Þ ord pa | s2j+1 and ord pa \ s2jÞ ord p a = w2j+1,

,where w is an odd integer.Since

ordp a | p − 1, 2
j+1

| p − 1,
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we have p = u2j+1 + 1 for some integer u.

a 2
aord p

º  -1 ( mod p ) Þ ÷÷
ø

ö
çç
è

æ
p
a º a

÷
ø
ö

ç
è
æ -

2
1p

= a ÷
÷
ø

ö
ç
ç
è

æ -
aord

p

p

aord p 12

º  ( -1 )
÷
÷
ø

ö
ç
ç
è

æ -
aord

p

p

1

 = (-1 ) 12
1
+

-
jw

p

 = ( -1 ) w
u

 = ( -1 ) u

which implies that

÷
ø
ö

ç
è
æ

n
a  = P

=

m

i 1

ik

ip
a
÷÷
ø

ö
çç
è

æ
= P

=

m

i 1
(( -1 ) iu ) ik =

P
=

m

i 1
( -1 ) ii ku  = ( -1 ) mmukukuk +++ .........2211

Now

n = p 1
1
k p 2

2
k · · · p mk

m = (u1 2j+1 + 1) 1k (u2 2j+1 + 1) 2k · · · (um 2j+1 + 1) mk

º (1 + 2j+1 k1u1) (1 + 2j+1k2 u2) · · · (1 + 2j+1kmum)(mod 22j+2)

≡ 1 + 2j+1(k1 u1+ k2 u2+ · · · + kmum )(mod 22j+2) Þ

s.2
1-r
= 2

1-n º2j (k1 u1 + k2 u2 + · · · + km um ) )(mod 22j+2) Þ

s2r−1−j ≡ k1 u1 + k2 u2 + · · · + kmum (mod 2j+1 )

and

a 2
1-n

= ( )jsa 2 jr --12 º ( ( -1 ) s  )
jr --12 = ( ( -1 ) s  )

jr --12 = ( -1 ) mm2211 uk···ukuk +++

since (a 2
1-n

) 2 º 1 ( mod n ) and a ÷
ø
ö

ç
è
æº

n
ajs2  ( mod n ). Thus

a 2
1-n

º ÷
ø
ö

ç
è
æ

n
a

(mod n)

which means that n is an Euler pseduoprime to the base a.

Remark : The converse is not true. We have seen that 1105 is an Euler pseduoprime

to the base 2, but it is not strong pseduoprime to the base 2.

Theorem 5.1.10: The Solovay-Strassen Probabilistic Primality Test: Let n be a positive integer.
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Select, at random, k integers less than n, and perform Euler pseduoprıme test on

n for each of these bases. If any of these test fails, then n is composite. If n is composite, the

probability that n passes all k tests is less than

k

÷
ø
ö

ç
è
æ

2
1

Theorem 5.1.11: Rabin-Miller Probabilistic Primality Test: Let n be an integer. Select, at

random, k different positive integers less than n, and perform strong pseduoprime test on

n for each of these bases. If any of these test fails, then n is composite. If n is composite, the

probability that n passes all k tests is less than

k

÷
ø
ö

ç
è
æ

4
1

Of course, Rabin-Miller test is better than the Solovay-Strassen test

5.2. FACTORIZATION BY CONTINUED FRACTION

Let’s see the generalization of Fermat factorization. In the following lemma;

Lemma : It is possible to factor n if there exist positive integers x and y such that

x º2 y 2 ( mod n )

0 < y < x < n, and x + y ¹ n

Proof: The inequalities imply that n doesn’t divide (x − y) and doesn’t divide (x + y).

Consequently

gcd(n, x − y) ¹ n, gcd(n, x + y) ¹ n

n | (x − y)(x + y) Þ gcd(n, x − y) ¹ 1

for otherwise, n | x + y which is contradiction. By the same way
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Hence

gcd(n, x + y) ¹ 1.

are proper divisors of n.

Example 5.1: 512 − 392 = 1080 ≡ 0(mod 216).

gcd(216, 51 − 39) = 12, gcd(216, 51 + 39) = 18

So 12 and 18 are factors of 1080.

Now, we can express the theorem on the factorization by means of continued fractions.

P 2
k ≡(-1)k+1Vk+1(mod n)

where pk and Vk+1 are defined. Suppose that k + 1 is even, and  Vk+1

is a square, i.e.,

Vk+1 = r2

for some integer r. Then

P 2
k º r2(mod n)

which we can use it for obtaining the factors of n. Therefore, it is enough to look at the terms with

even indices in

{Vk }

which are squares.

Example 5.2: Let’s factor 649 by continued fraction algorithm. Let

0a  = 649  = .
1

6490 +

Then

U 0  = 0 , V 0  = 1 , a 0  = [ ]649  = 25 Þ p 0  = 25 , q 0  = 1.
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So

p 0  = 25 , q 0  = 1

U 1 = a 0 V 0   U 0  = a 0  = 25 , V 1  =
0

2
1649

V
U-  = 649  25 2 = 24

1a =
1

1 649
V

U +  =
24

64925+ = 2.103….

It implies that

1a = 2Þ 1p = 25.2 + 1 = 51, 1q = 2

2U = 1a 1V   1U = 2.24  25 = 23 , 2V =
24

23649 2-  = 5

But 5 is not a square.

2a =
5

64923+
= 9.695….Þ 2a =9 Þ

2p = 9.51 + 25 = 484 = 535, 2q =9.2 +1 = 19

3U  = 9.5  23= 22, 3V =
5

22649 2- = 33

3a =
33

64922 + = 1.438….Þ 3a =1

3p = 1.484 + 51, 3q = 1.19 + 2 = 21

4U = 1.33  22 = 11, 4V =
33

11649 2- = 16 = 4 2

since

p0 = a0, q0 = 1, p1 = a0 a1 + 1, q1 = a1,

       pk = ak pk−1 + pk−2, qk = ak qk−1 + qk−2

for k ≥ 2. Consequently,

5352 ≡ 42(mod 649)

But

535 − 4 = 529 = 32 .59 and 535 + 4 = 539 = 7211
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gcd(649, 32.59) = 59, gcd(649, 7211) = 11

Þ 59.11 | 649.

In fact

649 = 59.11.

5.3 AGRAWAL-KAYAL-SAXENA PRIMALITY TESTING

Now I want to explain this primality test. It is also a nice applications of what we have

learned until now. First we need some lemmas:

Lemma : Let a be an integer and p be a positive integer. Suppose that a is relatively prime to

p. Then p is prime if and only if

                                                 (x + a) p   ≡ (x p  + a)(mod p)

       Proof: For 0 < i < p, the coefficient of x i   in

                                                  (x + a) p  - (x p  + a)(mod p)

is ÷÷
ø

ö
çç
è

æ
i
p

a p −i  and p | ÷÷
ø

ö
çç
è

æ
i
p

 Therefore

                                (x + a) p  − (x p  + a) ≡ 0(mod p).

Conversely, let q be a prime which divides p and let q k ││p, then q k  does not divide

÷÷
ø

ö
çç
è

æ
q
p

Obviously, a qp-   is relatively prime to q k   since a is relatively prime

to p. Thus,

p doesn’t divide ÷÷
ø

ö
çç
è

æ
q
p

a qp-

Lemma :1. Let p and r be prime integers, p ¹ r. Let h(x) be any factor of the

polynomial

x r  − 1∈ Fp [x].

 If m ≡ k(mod r), then

x m  ≡ x k  (mod h(x))

        2.The order of [x] in
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Fp [x]/ < h(x) >

is r and

1
1

-
-

x
xr

is product of irreducible polynomials of degree ord r p.

Proof:        1.Let m = n.r + k. Then

                   x knr+  − x k   = x k (x nr  −1) = x k  (x − 1)(x )1( -nr + · · · + 1).
Thus,

h(x) | x knr+  − x k

                    2.Let d = ord r p and h(x) be an irreducible factor of

1
1

-
-

x
xr

,

with deg(h) = k. Then,
                                        Fp [x]/ < h(x) >

is a field of pk elements. Let g(x) be a generator of

                                    Fp [x]/ < h(x) > \ {0}

Then, g(x) p  ≡ g(x p  )(mod p)

⇒ g(x)
dp ≡ g(x

dp )(mod p).
Since p d  ≡ 1(mod r), by the first part of the lemma we have

                                     x
dp ºx(mod h(x)).

Thus,

g(x
dp ) ≡ g(x)(mod h(x))

which implies that

g(x)
dp  ≡ g(x)(mod h(x)).

So,

g(x)p d  −1 ≡ 1(mod h(x)),

thus,

p k  − 1 | p d  − 1.

If, k | d,
On the other hand,
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                                      x r  = 1 in Fp [x]/ < h(x) >

since h(x) | x r  − 1.Thus, order of x in

                                     Fp [x]/ < h(x) >

is r since r is prime and x − 1 Ï< h(x) >. So, r | p k  − 1, i.e,

p k  ≡ 1(mod r).

It implies that d | k. Consequently

k = d.

5.3.1 Definition: Let f be a polynomial in Fp [x], where p is a prime integer. Let r be

a fixed prime integer different from p. A positive integer m is called introspective for

f (x) if

                                      (x) m  = f (x m  ) in Fp [x]/(x r   − 1)

Now we want to prove some properties of introspective integers for f .

Lemma: If m, 'm  are introspective integers for f∈ Fp [x], then so is m 'm

     Proof:Since m, 'm  are introspective integers,

f (x) m  = f (x m  ) in Fp [x]/(x r  − 1)

      and

f (x) 'm    = f (x 'm  ) in F [x]/(x r  − 1).

       Substitute x m  in place of x in the second congruence

f (x m  )m '  = f ((x m  )m ' ) in F [x]/(x mr  − 1)

Þ  f (x m  )m '  = f (x
'mm  ) in F [x]/(x mr  − 1)

Þ  f (x m  )m '   = f (x
'mm  ) in F [x]/(x r  − 1)

       since (x r  − 1) | (x mr  − 1).

By applying the first congruence we get

                          f (x
'mm  ) = f (x m  )

'm  = (f (x) m )
'm  = f (x)

'mm  in F [x]/(x r  − 1).

learned until now. First we need some lemmas:

Lemma: If m is introspective for f(x) and g(x) then it is also introspective for

f(x)g(x).
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 Proof: Obviously,

                          (f(x) g(x)) m  = f(x) m  g(x) m  = f(x m ) g(x m ) in Fp [x]/(x r  − 1).

Corollary : Let n, l, and r be positive integers. Let p be a prime divisor of n. Suppose that

                                    (x + a) n   ≡ x n   + a(mod(x r   − 1), n)

for every a, 0 ≤ a ≤ l. Then any number in the set

                                     I={ 0,: ³÷
ø
ö

ç
è
æ jip

r
n j

i

}

is introspective for any polynomial of the form

Õ
=

³+
l

a

ea eaax
0

0,)(

 Proof: (x + a) n  ≡ x n  + a(mod(x r  − 1), n)

⇒            (x + a) n   ≡ x n  + a in Fp [x]/(x r  − 1)

     since p | n.

                  (x + a) p  ≡ x p +a in Fp[x]/(x r  −1).

Now by equation, we have

( )( )ppnax /+ ( )ppn ax +º /  in F [ ] )1/( -r
p xx

 Since

LH S = (x + a) n , RH S ≡ (x pn / ) p  + a in Fp [x]/(x r  − 1).

Let ord r p = u > 1. We have

((xp + a) pn / )≡ (x p ) pn /  + a) İn Fp [x]/(x r − 1),

which implies that

(( ))(()) // axax pnppnp uu

+º+  in F [x]/(x r − 1)

since r | p u  − 1. Therefore,

(x + a) pn / ≡(x) pn /  + a in Fp [x]/(x r  − 1).

By previous lemmas it follows that any integer in I is introspective for any polynomial of the

form
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Õ
=

³+
l

a

ea eaax
0

0,)(

Now we need to define two groups:

5.3.2 Definition: Assume that gcd(n, r) = 1 and p a prime divisor of n. Then

                                     G={ }0,:mod ³÷÷
ø

ö
çç
è

æ jirp
p
n j

i

is a subgroup of Zp
*

 Obviously, G is generated by n mod r and p mod r, so |G| = t ≥ ord r (n).

5.3.3 Definition: Let p, r, n be as in the previous definition. Assume that r is prime. Let

l be a fixed positive integer. Assume that  ord r (p) > 1. Let h(x) be irreducible polynomial of

degree ord r (p) in Fp [x] which is a divisor of

1
1

-
-

x
xr

Let

Ǥ={ Õ
££ lao

((x + a) ta  + < h(x) > ): ta ≥ 0,∀1 ≤ a ≤ l }

 i.e., the subgroup of

                                               Fp [x]/ < h(x) > \ {0}

generated by the cosets of

                                               x, x + 1, x + 2, . . . ,x+l

Lemma:Let l< p. Then G  is a cyclic group such that

|G| ≥ ÷÷
ø

ö
çç
è

æ
+
+

1l

lt
= ÷÷

ø

ö
çç
è

æ
-
+

1t
t l

Proof:G is a cyclic group since it is a subgroup of cyclic group

Fp [x]/ < h(x) > \ {0}

.

Now x is a primitive r − th root of unity by Lemma. Let f and g be two distinct polynomials of

degree less than t and f = g in G. Let m∈ I, so

(f (x)) m  = (f (x m )) in Fp [x]/(x r  − 1),
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and

(g(x)) m  = (g(x m  )) in Fp [x]/(x r  − 1).

The equalities are also true in Fp [x]/ < h(x) > since h(x) | x r  − 1. Obviously,

(f (x)) m  = (g(x)) m

in Fp [x]/ < h(x) > too. Consequently, we get

f (x m  ) = g(x m ) in Fp [x]/ < h(x) > .

So x m  is a root of the polynomial

s(y) = f (y) − g(y)∀m∈ G.

Since gcd(m, r) = 1, x m  is also a primitive r − th root of unity∀ m∈ G. Therefore,

∃ |G| = t

distinct roots of s(y) in Fp [x]/ < h(x) >. But it contradicts the fact that deg(s) <t.

Thus,

f ¹ g in Fp [x]/ < h(x) >

Since l < p, i¹ j in Fp for 1 ≤ i ¹ j ≤ l . So the elements

x, x + 1, x + 2, . . . , x + l

are all distinct in Fp [x]/ < h(x) >. The number of elements in

{ Õ
££ lao

((x+a) ta :ta≥0,∀1≤a≤ l , å
££ la0

ta£ t-1 }

 is

÷÷
ø

ö
çç
è

æ
+

++-
1

11
l

lt
= ÷÷

ø

ö
çç
è

æ
-
+

=÷÷
ø

ö
çç
è

æ
+
+

11 t
tt l

l

l

Now let’s find an upper bound for │G│:

Lemma:Assume that t < l . If n is not a power of p then

│G│£ n t

Proof:Look at the following subset of I :

J={ [ ]},0: tjip
p
n j

i

££÷÷
ø

ö
çç
è

æ

It has obviously

                                       (1+[ ]t ) 2

distinct numbers since n is not a power of p. Since
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xr −

                                |G| = t <(1+ [ ]t ) 2 ,

∃ m1 > m2 in J such that

m1≡ m2(mod r).

Thus,

                              x 1m    = x 2m   in Fp [x]/ < x r  − 1 > .

Let

                               f(x) = Õ
££ lao

((x + a) ta : ta ≥ 0

Then,

                           (f (x))m 1   = f (x
'm  ) in Fp [x]/ < x r  − 1 >

                                            = f (x
2m ) in Fp [x]/ < x r  − 1 >

                                            = (f (x))
2m  in Fp [x]/ < x r  − 1 > .

It implies that

(f (x))m 2   = (f (x))m 2  in Fp [x]/ < h(x) >,

where h(x) is an irreducible polynomial of degree ord r (p) in Fp [x] which is a divisor of

1
1

-
-

x
xr

Thus, f(x)∈ G is a root of the polynomial

q y  = y
1m  − y

2m

in the field Fp [x]/ < h(x) >. Since f is arbitrary in G, it follows that q ' (y) has at least

|G| distinct roots in Fp [x]/ < h(x) >. But the degree of q ' (y) is

m 1 £
[ ]

[ ] nnp
p
n t

t

££÷÷
ø

ö
çç
è

æ . t

Therefore,

                                                  |G| ≤ n t
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Lemma: Assume that log 2 n < t and l  = ( )rf  log n. Then

                                                   |G| > n t

                                   │G│ .
1

11
1 ÷÷

ø

ö
çç
è

æ
-

-++
=÷÷

ø

ö
çç
è

æ
-
+

³
t

t
t
t ll

[ ]
[ ] ÷

÷
ø

ö
ç
ç
è

æ +
³

nt

nt

log

log1l

since log 2 n<t tÞ >log n which implies that

                                          t-1 [ ]nt log³ .

Than it becomes

[ ]
[ ] ÷

÷
ø

ö
ç
ç
è

æ +
³

nt

nt

log

1log2

since g is a subgroup of Z *
r  we have ( )rf .t³  İt is greater than

                     >2 [ ]³+ nt log1 2 nt log =2
tnlog =n t .

Lemma: lcm(1, 2, . . . , m) ≥ 2 m

for m ≥ 7

Now for the main theorem, we need some lemmas for the existence of a proper

integer r for a given integer n.

Lemma: There exist an

r ≤ max { 3, [log n n]}

such that ord r  (n) > log 2 n.

Proof: It is obvious if n = 2 and r = 3 since ord 3 (2) = 2 > log 2 2 =1. Now assume that n> 2.

Let r be the smallest integer greater than 1 which doesn’t divide the product

n [ ]
[ ]
Õ
=

-
n

i

iB n
2log

1

log )1( ,

where B = [log 5 n] . Let d = gcd(r, n). Let p be a prime such that p | d and p k ││ r for some

positive integer k.
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                                 r ≤ B⇒ p  ≤ B =⇒ k ≤ B
p
B log

log
log

£÷÷
ø

ö
çç
è

æ

which implies that

p k  | n [ ]Blog

If this is true for all prime divisors of r, then

r | n [ ]Blog

which is contradiction. Thus, d < r. But d also doesn’t divide

  n [ ]
[ ]
Õ
=

-
n

i

iB n
2log

1

log )1(

Since r was the smallest integer greater than 1 which doesn’t divide

n [ ]
[ ]
Õ
=

-
n

i

iB n
2log

1

log )1( ,

it follows that d = 1.So we can talk about ord r n since gcd(r, n) = 1. Now

ord r n > log 2 n

since r doesn’t divide any of n i  − 1 for 1 ≤ i ≤ log 2 n.In order to see r ≤ B,

n [ ]
[ ]
Õ
=

-
n

i

iB n
2log

1

log )1( <n [ ]Blog
[ ]
Õ
=

n

i

2log

1

n =i

n [ ]Blog n £+ 2/)1(loglog 22 nn n £n4log 2 £n5log 2 B

Lemma:Implies that the least common multiple of first B integers is at least 2 B .

Consequently

r ≤ B.

Remark:The existence of a suitable small integer r is a consequence of results from analytic

number theory which states that

                            │{p : p is prime , p ≤ x and P (p − 1)>x 3/2 }│≥ c
x

x
log

  ,

where P (n) denote the greatest prime divisor of n.

Now we can give the main theorem
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5.3.1 AGRAWAL, KAYAL, SAXENA

5.3.1 Theorem:(Agrawal, Kayal, Saxena):The following algorithm returns prime if and only

if n is prime.

Algorithm:Input: integer n > 1.

· If (n = a b for a positive integer a and b > 1), output composite.

· Find the smallest r such that ord r (n) > log 2 n

· İf 1<gcd(a,n)<n for some a£ r output composite

· For a=1 to [ ( ) nr logf ] do if ((x+a) n ¹ x n +a in Z [ ]xn /<x 1-r >), output composite

· Output prime

Proof⇒:Case1:The algorithm returns prime in step 4: If n was not prime then There exist

would be a prime integer a such that a | n. Then

1 < gcd(a, n) = a < n

which implies that the algorithm would return composite in step 3. But it is contradiction.

⇒:Case 2:The algorithm returns prime in step 6: r was found in step 2 such

                                          ord r (n)>log 2 n£ 1

Therefore, there exists a prime divisor p of n such that

                                              ord r (p) > 1

If p < n, we should have composite by step 3. If p = n, then we should have prime by step 4.

Therefore,

p > r.

Now

gcd (r, n) = 1 thus, gcd (r, p) = 1

since for otherwise, we should have composite in step 3. Therefore,

n, r∈ Z *
r

We have the group G and

|G| = t ≥ ord r  (n) > log 2 n

Let

( )[ ]nn logf=l
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Consider the group G  defined. We have

φ(r) ≥ ord r  (n) > log 2 n ≥ 1

Thus ,

log n < ( ) lÞrf =[ ( )rf  log n] < φ(r) < r< p

So |G| ≥ ÷÷
ø

ö
çç
è

æ
-
+

1t
t l

Now,

|G|>n t

On the other hand, since G is a subgroup of Z *
r

t = |G| ≤ φ(r).

It implies that

( )rt f£

so t ≤ l . We conclude that n should be a power of p. But we

should have composite in step 1.

Ü :Step 1 and Step 3 can not return composite. Assume that step 4 doesn’t return

prime. Then step 5 doesn’t return composite. The proof of the following theorem can be

found.

5.3.2 Theorem:The runtime of the ALGORITHM is polynomial in the number of digits
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CHAPTER 6

CONCLUSION

In Chapter 1, I explained history and development of cryptography.

            In Chapter 2, I exposed number theory, I have included and explained divisors and

divisibility and the greatest common divisor in details. Extensive exercises are included for

number theory.

            In Chapter 3, factoring algorithm defined on number theory has been covered with

examples. I exposed the pollard p-1 algorithm, the pollard rho algorithm, dixon’s random

squares algorithm, elliptic curve factorization, factor base method.

            InChapter 4, I exposed public key cryptographic system which depends on

factorization and RSA.

             In Chapter 5, I explained primality testing and, I have included and explained

manindra agrawal’s theorem.
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