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ABSTRACT

First, I have included and explained some number theoretical facts in the beginning.
Then RSA has been covered with examples in details. I explained factorization
methods. I gave the maple algorithms which are useful for computing.

Keywords:

algorithms.

RSA, factorization methods, public key cryptography and maple



v

KRIPTOGRAFI ICIN FAKTORIZASYON METODLARI
Bikem PAMUKCU

Yiiksek Lisans Tezi — Matematik
Agustos 2006

Tez Yoneticisi: Prof. Dr. Baris KENDIRLI

0z

Baslangicta, sayilar teorisini ana hatlariyla agikladim. Sonra, RSA detayli olarak
orneklerle  gosterilmistir. Devaminda, faktorizasyon metodlarin1  agikladim.
Hesaplamalar1 yaparken kolaylik saglamasi i¢in maple algoritmalar1 yazilmigtir.

Anahtar Kelimeler: RSA, faktorizasyon ve maple algoritmalar.
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CHAPTER 1

INTRODUCTION

The Greek words “Kryptos”, hidden, and “Graphen”, written, form the word
“Cryptography”. Symmetric key cryptosystems have been used by Egyptian since early ages.
There are two kinds of classical cryptosystems; transposition and substitution ciphers. In
transposition ciphers elements in plaintext are rearrenged. In substitution ciphers elements in
plaintext are mapped into another. Encryption and decrypiton keys are the same in symmetric
key cryptosystems. They are faster, but not secure. Public key cryptography has been used
since early 1970s. Asymmetric key cryptography depends on discrete logarithm and
factorization large integers. Encryption and decryption keys are different each other. This
makes this system secure and important for 21th century. Diffie-Hellman, ElGamal, Massey-
Omura, Elliptic curve and Hyperelliptic curve cryptosystems are based on discrete logarithm.
RSA depends on factorization. Elliptic curve cryptography challenges to RSA. Moreover,
public key cryptosystems are slower than symmetric key cryptosystems. Hence, nowadays
especially data is encrypted in modern symmetric keys by using DES, AES etc. Keys of

classical cryptosystems are encrypted by performing public key cryptosystems.

I explained number theory in chapter 2. I give the definition of divisor, Euclidean
algorithm, Chinese Remainder Theorem etc. In chapter 3 I described factoring algorithm with
examples. In chapter 4 I exposed RSA cryptosystem in detail. In chapter 5 primality testing is
defined.

In the future, I will continue to work on Elliptic Curve and Hyperelliptic Curve

Cryptosystems.



CHAPTER 2

NUMBER THEORY

2.1. DIVISIBILITY
2.1.1. Divisors and divisibility

A factor of an integer m is an integer k which divides m, denoted by & | m. Otherwise it

is denoted by k ¥ m. Divisors can be negative or positive. 1 and -1 are factors of every integer.

Moreover, every integer is a divisior of zero and itself.
2.1.2. Properties of divisibility
Let a,b,c,d be any integers.

l)a‘banda‘cimplya‘ (b+c)
2)a‘bandb‘cimplya‘c

3)a|b and b|a imply a=b or a= -b
4)a‘bimpliesa‘bd

5)a|b implies a|-b, -a| b, -a|-b

6) a| b implies da | db for all dez
7)a|band d|a imply d|b

8) a| bc and ged (a,b) = 1 imply a|

The command in mapple is divisors (7).

For example;

> divisors (20); {1,2,4,5,10,20




Assume that m>1 if the only proper divisor of m is 1, then it is called to a prime

number.

For example; 2,3,5,7,11,.cccccviieiiiiiaiiene, are prime numbers.

The command in maple is prime (n) which demonstrates whether » is prime or

not.

For example;

> is prime (19);
true
> is prime (20);

false

The maple command next prime (n) returns the smallest prime which is larger
than n. Furthermore, the maple command pseduoprime (7) returns the largest prime

which is less than #.

For example;

> next prime (22);
23
> next prime (29);
31
> next prime (37);

41

A positive integer m is said to be composite number if and only if m has a positive

divisor other than 1 or itself.

2.2. THE GREATEST COMMON DIVISOR

A positive integer d is called common divisor of a and b if d |a and d| b. If the
largest divisor of @ and b is d, then d is said to be the greatest common divisor.
The maple command iged (X1, X2, X3,eeeeeeneenne ) calculates the greatest common

divisor of integers.



For example;

> iged (10,6,8);
2

If the greatest common divisor of @ and b equals to 1, then a and b are called

relatively prime integers. We calculate GCD by Euclidean algorithm.

Example 2.1: This example uses the Euclidean algorithm to find the greatest common

factor between 36 and 123.
3 is the last nonzero remainder.
3=5(123)-17 (36)
123=3 (36) + 15
36=2(15+6
6=23)+0

2.3. PROCEDURE OF EUCLIDEAN ALGORITHM

Assume that @ and b are positive integers b X 0 and a>b. Let a=ry, b=r,, q; be

quotient and r; be remainder

ro=ri.q;tr 0<m<mn
rr=ry.qxtr; 0<r<mr
r=r3.q3try 0<r;<r;
r3=ry.qq4trs 0<rs<ry
T2 = Vil - Q-1 T Tk 0 <t <7y

Pkl = Tk Gk

The greatest common divisor of @ and b equals to 7.
The maple command igcdex (a, b, s’, ") gives the greatest common divisor of a

and b. The commands s; and ¢; give values of s and .



For example;

> igcdex (15,7, s 1);
1

> 8t

Example2.2. Find the gcd of 81 and 57 by Euclidean algorithm.

81=1(57) + 24

57=224)+9
24=2(9)+6
9=1(6)+3
6=2(3)+0
Then
3=9-1(6)
24-2 (9) so;
3=9-1(24-29)=3(9)-1(24)
57-2 (24) so;

3=3(57-224) )= 1 (24) =3 (57) - 7(24)

|_’ 81-1 (57) giving us;
3=3(57)=7(81-1(57))=10(57)— 7 (81)
p=-7and s=10



2.4. EULER’S THEOREM

2.4.1. Theorem (Euler’s Theorem): Let n be a positive integer. The Euler phi-function
¢ (n) is defined to be the number of integers in the range 0 < ¢ (n) < n where ¢ (n) is

coprime to n. ¢ (n) gives the size of multiplicative group of integers modulo 7.

Euler product formula is written as;

o (n)= ng|n [l—lj with distinct primes p.
p
Letn = pkl. p2k2 . p3k3 ............ piki with distinct primes pr
ay kel 1y k2-1 . kil
O =) P P2) P2 s (pi-1) p;
Theorem:
z O(d)=n where d|n and neZ’
dn

2.5. CONGRUENCES

a is called congruent to be modulo m if m divides a-b, V a, b €Z and meZ"
It is denoted by a=b (mod m). On the other hand, a is incongruent to b modulo m,
denoted by a=b (mod m)

The command in maple is a mod m

For example;

> 2625 mod 13;
12

2.5.1. Properties of Congruences:
1) a = a (mod m)
2) If a = b (mod m), then b=a (mod m)
3) If a = b (mod m) and b=c (mod m) imply a =c (mod m)
4) a' = b’ (mod m), where >0, for a=b (mod m)
5) If ac = bc (mod m) and ged (¢,m) = d, then a=b (mod m/d)



6) a=b(mod m) ¢ is a arithmetic inverse of ¢ modulo m

if and only if gcd(c,m)=1 and a.c ' =b.c ™' (mod m)

2.6. CHINESE REMAINDER THEOREM

Suppose that N=n;, ns, n; ........... ny where nj, ns, nz........... ng are pairwise
relatively prime positive integers that is if i=j, then ged (ni, nj) =1
Leta;, az az.ccccoveeeennnne. a be integers. There exists an integer x such that
X = a; (mod n;)
X = a, (mod n;)

X=da;3 (mod l’l3)

X = a, (mod n,)

has a unique solution modulo N.

Proof: Define N, = E for 1 <i <k as follows:
n.

1
N; = N/n;. There exists M; such that N; M; =1 (mod n;)
N> = N/n,. There exists M, such that N> M> =1 (mod n;)

N3 = N/ns. There exists M; such that N; M; =1 (mod n;)

Nk = N/ng. There exists My such that Ny Mx =1 (mod ng)

Next, compute

k
x=Y aNM,  modN
i=1



Therefore,
XEa1N1M1 =daj modn;
XEagNgMZEaz n’lOdl’lz

XEa3N3M3Ea3mOdl’l3

xzakaMkEak mod 147
The maple command of chinese remainder theorem is chrem (U, m).
The list of modulo m are pairwise coprime positive integers. The list of U and M is the

some size n such that.

U — list [U], Ug, U3.... Un] and M — list [l’l’l], my, ms,... I’l’ln]

For example;

> chrem ( [1,2], [5,7]);
16

Example 2.3. Suppose =2, m; =5 and m; = 3, so M = 17. Then the function x has the

function following values:

x (0) =(0,0) x(1) =(L,1) x(2) =(2.2)
x(3) =G0 x4 =@&D x(5) =(0.2)
x(6) =(1,0) x(7) =20 x(8) =62
x(9) =(4,0) x (10) =(0,1) x (11) =(1,2)
x (12) =(2,0) x (13) =(3,1) x (14) =(4,2)
x (15) = (0,0) x (16) =(1,1)

Example 2.4. Find the smallest multiple of 10 which has remainder 2 when divided by
3, and remainder 3 when divided by 7.



We are looking for a number which satisfies the congruences, x=2 (mod3), x=3
(mod 7), x=0 (mod 2) and x=0 (mod 5). Since 2,3,5,7 are all relatively prime pairs, the

Chinese Remainder Theorem that there is a unique solution modulo:

2.3.5.7=210
Now we will calculate M,’s and Y;’s as follows:

M>,=210/2=105; ¥>=(105)" (mod 2) =1
M;=210/3=70; ¥;=(70)" (mod 3) =1
M;=210/5=42; Ys=(42)" (mod 5) =3
M;=210/7=30; Y,=(30)" (mod 7) =4
X=0.(M;Y)+2(M;Ys)+0 (M Ys)+ 3 (M;Yy)
0 +2(70) .(1) + 0 + 3 (30) .(4)
0+ 140 +0 + 360
140 + 360 = 500
500 = 80 (mod 210)

2.6.1. Theorem: Assume that g is a multiplicative group element of order n. The order of g

divides n.

2.6.2. Theorem:if gcd (a,n) =1,  then a*” =1 (mod n)

2.7. FERMAT’S LITTLE THEOREM

Suppose p is prime and p X a. Then,
d' =1 (mod p)

2.7.1 Theorem: Zp* is a cyclic group if p is prime.
S whose order is p-1 modulo p is said to be a primitive element modulo p.

Z, = {“p”:0<i<p-2}

p is prime and f is a primitive element modulo p.
ged (p-1,0) =1 ¢ (p-1) gives the number of primitive elements modulo p.

a is itself a primitive element if and only if o = f; in the range 0 < i < p-2
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Example 2.5. : Suppose p=14. The results proven establish that there are exactly four
primitive elements modulo 14. First, by computing succesive powers of 2, we can

verify that 2 is a primitive element modulo 14.

2° modl14=1
2' mod14=2
2> mod14=4
2> mod14=38
2* mod14=2
2° mod14=4
2° mod14=38
2" mod14=2
2° mod14=4
2’ mod14=38
2" mod 14=2
2'" mod 14=4
2% mod 14=38
2" mod 14=2

The element 2’ is primitive if and only if gcd (i, 13) = 1, i.e. if and only if
i=15,711.

2.7.2 Theorem: Assume that p is prime and feZp*. If @-Dle (mod p), then B is a

primitive element modulo p. (g is prime such that g / (r-1))



CHAPTER 3

FACTORING ALGORITHMS

3.1. THE POLLARD p-1 ALGORITHM

This algorithm is proposed by John M. Pollard in 1974. Fermat’s little theorem is the

main idea for this method.
That is for any prime number p; that you select and another number a
a?Y=1(mod P)
This equal to; 2% = ¢ (mod n)
2% = ¢ + kn (k integer)
3.1.1. Methods of (p-1) algorithm

1) We pick a number m

2) pick a number 1 < a < m. For example a = 2

3) pick a number 2. for example s = 2

4) if gcd (a,m) # 1 then the factor is found.

5) When s = a/(mod m)

6) When d=GCD (s-1, m)

7) We apply the division algorithm to find if d is an element of m. There are two
options. If the answer is yes, then the factor is found. If the answer is no, then we swich a and

or 1 and go back to step 4.

11
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Example 3.1.2 :

Suppose n = 15770708441. If we select B = 180 we find that o= 11620221425 and d is

computed to be 135979. In fact, the complete factorization of » into primes is;
15770708441 = 135979 . 115979

In this example, the factorization succeeds because 135978 has only “small” prime

factors:
135978 = 2.3.131.173
B > 173 then 135979 | B!
3.2. THE POLLARD RHO ALGORITHM

John M. Pollard proposed another factorization algorithm that improves over trial

division in 1975.
An iteration of the form
xj = f(xj-1) (mod n)
we are looking for two distinct values x;, xj € x, then ged (x; — x, n) > 1 for all i<j
if x; =x;(mod p)
f(xi) = (xj) (mod p) and  xj,= f(x)
xj+1 = (%))
Therefore similarly x;+; mod p = f (x;) mod p
i<j Xi =X (mod p)
3.2.1. Methods of Rho Algorithm
1) Select a number m, you wish to factor.

2) Choose any two numbers (mod m) x; and x;
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3) If the differences xi-x; is equal to 0 in modulo m, then ged (x-y,m) then we have a

factor.
4) If the differences isn’t 0 then we go back to step two.

3.2.2 Example :

Let n = 1387 x; =2 and f(x) =x*-1. We obtain x;=2 x,=3 x3=8, x4=63, x5=1194, x¢=1186
ged (x2 - xi, 1387) = ged (1,1387) =1
ged (x4 — X2, 1387) = ged (60,1387) = 1

ged (6 — x3, 1387) = ged (1178,1387) = 19

19 is the factor of 1387. Sequence is 3 and a non-trivial factor is obtained after 3 comparisons

and GCD calculations.

3.2.3 Definition= Let n be an odd composite integer and let p be a prime integer s.t p | n.

Take a polynomial f(x) of degree 2(at least) with integer coefficients. Then let X, be a random
integer.

Calculate  x;-f(x0)
Calculate  x,-f(x1)
Calculate  x3-f(x2)

Stop at & th place x,=f(xx.1) where x,*x; (mod n) for 0<i<k-1

3.2.4 Example :
n=1041
xe=2 f(x)=x*+1
x=f(x0)=f(2)=2*+1=5
X1-X0=5-2=3
of course X; =Xo(mod3)
Since 5=2(mod3)

g.c.d(x;-x9,1041)



g.c.d(3,1041)=3

=1041=3.347
X=X +ky.n —x'~f(x0) (mod n)
X2:X21+k2.l’l Cle Ef(X]) (mod I’l)
Xp=Xp1tk.n

<Xp* xi(mod n) < x, * xi(mod n)

CXpl =X;(mod m) = Xp =X;(mod m)

3.2.5 Example :

N=36287 xo=2 f(x)=x"+1

X=2%,1=5 5% 2(mod 36287) and ged (5-2,36287)=1

X,=5"+1=26 = 26*2(mod 36287) and ged (26-2,36287)=1
= 26%5(mod 36287) and ged (26-5,36287)=1
X5=26"+1=677 = 677#2(mod 36287) and gcd (677-2,36287)=1
= 677#5(mod 36287) and gcd (677-5,36287)=1

= 677#26(mod 36287) and gcd (677-26,36287)=1

X7=24380 = 24380%2 (mod 36287) and gcd(24380-2,36287)=1

= 24380+5(mod 36287)

14
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= 24380+26(mod 36287)

= 24380+677(mod 36287)

= 24380+22886(mod 36287)
= 24380+2439(mod 36287)

= 24380+33941(mod 36287)

3.3. DIXON’S RANDOM SQUARES ALGORITHM

Congruence of square is the base of this method. It works very well on parallel

processors for each processor can be managed on it’s own random 7.

If x doesn’t equal y in modulo 7, then square of x doesn’t equal square of'y. Therefore

n doesn’t divide x’s difference from y and it’s sum.
x # Fy (mod n) such that x* = y* (mod 7). Then
n| (x-y) . (xty)

We choose any number r, square it (mod m), factor it to find out if the number is
square. If it is square then the root be different from r as a result we have two numbers which

are congruent mod (m).
3.3.1 Example :
The three vectors a;, a,, az are follows:

a;=(1,0,0,1,0, 1)
a2:(09 17 1509 07 0)
az=(1,1,1,1,0,1)

a;+as+a; = (0,0, 0,0, 0, 0) (mod 2)

3.4. ELLIPTIC CURVE FACTORIZATION
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In the 80’s Victor Miller and Neal Koblitz produced (ECC). Elliptic curve
cryptography is an approach to public key cryptography based on the algebraic structure of

elliptic curves over finite fields. In the elliptic curve (x,y) are the answers to the form
yv=x+AX+B together with the point at infinity (0)

For applications to cryptography we consider finite fields of g elements. For the
equation y* = x’ + AX + B we write E, and for the set of points (x,y) with the point 0, with

coordination in the field F-¢

The set of points on an elliptic curve forms a group under a certain addition rule. The

point 0 is the identity element of the group.
Given a point P = (x,y) and a positive integer n we define;
nP=P+P+P+ ... + P (n times)
The order of a point P = (x,y) is the smallest positive integer n such that n.P =0

Elliptic curves are also used in several integer factorization algorithms that have
applications in cryptography, such as, Lenstra elliptic curve factorization, but this use of

9

elliptic curves is not usually referred to as “elliptic curve cryptography”.

3.5 FACTOR BASE METHOD

Let n be an integer. We calculate

2

X" —n
for several values of x, i.e.,for a) a,,...,a, . Suppose that we find
Ay @y e a,
among them, such that
(a;—n)a;—n)....... (a; —n)=b’ (mod n).

for some integer b. Then, we can obtain the factors of n since
a;a; ....a; =b*(modn).

h

We select the values of x such that x> — n is a small integer. Thus, it has small prime factors.
g p



Therefore, we may select x in the interval

Jn=M < x< n+M

for some integer M .Then ,we try to factorize x> — n for which x is in the interval. We
g y

select a set of primes

P={-1,D,Pyseeeeeeencnnn Dy ts

called a factor base satisfying p < B. B is an integer depending on the size of n. —1

is also included in @

Construct the following table

2
9] Vn—-M<x<+n+M X" —n
2 __.a a ay
)2 X, X|=n=p"py... D
2 — U2 4y 922 A2
P, X, X5—=n=p."p," ...... D
2 — 1 Yu 3y %2u Ay
Pu X, X —N=p"py ... D

Select those x whose prime factors are contained in . Now, we have to find integer

which are 0 or1 such that

ap 4y A2 e\ Ay 4 422 a2\ Ay 4y D20 A\ Py
(PP pi') 1 P2 eeeeenens D)7 e Y 2RI D i

is a perfect square. Obviously, it holds if and only if

ayhy+ayhy ++aly hy = ((mod2)

ay by +aph, +- - +ax hy = 0(mod2)

17
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ak h, +ak ,h, +---+ak, h, = 0(mod2)

if and only if

a,, Ay a,, h,
Ay Aoy a,, h,
Ay Ay a,, )\ h, 0

So, the vector (4, h,, ..., hy) can be found from row-reduced echelon matrix by applying the

elementary row operations to the matrix

a,mod2 a,mod2 g, 6mod2
a,, mod2 a,, mod2 a,, mod?2
a, mod2 a,mod2 a,, mod?2

Example 3.6 n =4633.Let 0p={2,3,5}

N4633=68.07......cccvuinin.n Let 38 < x <98. By Maple define
H(x) =x°— 4633

38 3189 -3 X 1063
39 3112 -23389
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-3033
-2952
-2869
-2784
-2697
-2608
-2517
-2424
-2329
-2232
-2133
-2032
-1929
-1824
-1717
-1608
-1497
-1384
-1269
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-1033
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-789

-664

-537

-408

37337
-2°3%41
-19 X151
-2°3 X 29
-3 X29 X31
24163

-3 X 839
233 X 101
217 X 137
-2°3%31
-3°79
24127

-3 X643
-2°3 X 19
.17 X 101
2°3 X 67
-3 X499
-2°173
347
2732
-1033
23X 19
-3 X263
-2°83

-3 X179
2%3 X 17

19



66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
&9
90
91
92
93
94
95
96
97

277
_144

-

-9
128
267
408
551
696
843
992
1143
1296
1451
1608
1767
1928
2091
2256
2423
2592
2763
2936
3111
3288
3467
3648
3831
4016
4203
4392
4583
4776

3 X69 X31
23241
3 X 17 X41
243 X 47
2423
2°3*
32307
2°367
3X 17 X61
233X 137
3467
20319
3 X1277
24251
32467
2°3%61
4583
233 X199

L

x7="59= —1152 = —2.3 .5 (mod 4633)

We select those which are factorizable only by means of {2,3,5}:

20
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x2 =67=—144 = —2 3 5 (mod 4633)
x2=68=—9 = —2 35 (mod 4633)
x2=69= 128 =2 35 (mod 4633)

x 2= 85= 2592 = 2 35 (mod 4633)

x ;= 96=—50 = —2 35 (mod 4633)

1 11 0 0 1
7 4 0 7 5 1
(mod 2) =

2 2 2 0 4 0

0o 0 00 o0 2
1 1 1 0 0 1
1 0 0 1 1 1
0 0 0 O o0 O
0 0 0 0 O

It is row equivalent to

1 0 o0 1 1 1
0O 1 1 -1 -1 0
0 0 0 0 0 0
0 0 0 0 0 O

The corresponding solutions are



hy=(hy + hs + hy)
hzz(h3+h4+h5)

S O O O

for free A3, h4, h5, h6. In particular ,

S5}

~

w

> > > >

(=}

is a solution, i.e.,

68%69796% = (-2°3%5° ) (273°5%) (-2'3°5%) = (-1)*2"3%5?
ged (68.69.96 — 235.4633) = 113

Thus
4633 =41.113

22



CHAPTER 4

PUBLIC KEY CRYPTOGRAPHIC SYSTEM DEPENDS ON
FACTORIZATION

4.1. RSA

Nowadays, RSA is the most popular public key cryptosystem depended on large
integers RSA was found in 1977 by Ron Rivest, Adi Shamir and Leonard Adleman. Let
plaintext message units be blocks of k letters and ciphertext message units be block of 7 letters
(k</). First Alice and Bob agree upon a N- letter alphabet. Bob generates to distinct large
prime integers p and ¢. Then Bob calculates n=p.q. n is in the interval (N, N*).

P, PEZ/Nz. We obtain k and /by computing
k<[logN']</

The command in maple to compute & and / is as follows;

> k: = round (evalf (log [N] (n) ))
>/ k+1;

Next, Bob calculates (p-1). (¢-1) which equals to ¢ ()
The command in maple to compute ¢ (n) is phi (n);

Then Bob chooses a secret integer e, which is coprime to ¢(n). e is between 1 and ¢(n).
Also e is said to be public. The pair (n,e) is enciphering key. Bob makes (#,e) public and p,q
secret. Alice converts her message into numerical equivalence P. The encryption

transformation is;

C = P° (mod n) where 0 < P < N* -1

23
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The maple command to compute ciphertext is;

> ¢: p¥" /(mod n);,

Then Alice send ciphertext to Bob. Bob computes the decryption exponent d by using the

equation below.

d=e¢"' (mod ¢ (n))

The maple commond to calculate d is

>d: (1/e) mod ¢ (n)

Bob decipheries the ciphertext ¢ by solving the equation
P=C"=(P)*= P (mod n)
This works as ed-1 is a multiple of ¢(n), ed-1 = k.¢(n)

4= pd = pH™ Z pr p = po1)k = P(mod n)

Encryption and decryption transformations are

Z/Nz to Z/Nz



RSA

WX
Bob generates primes p and q which are distinct to form n.

Bob also choose public exponent e. Bob makes n,e public and keeps q,p secret

|

a)

; i\\\ :

\

/ Alice converts her message to its numerical equivalent P.

Alice enciphers her message C = P° mod n

Alice sends her<ciphertext C to Bob.

U —
7
Bob computes decryption exponent d = " mod (p-1)(g-1).

Bob computes plaintext P =C mod n

4.2 Figure of RSA

25
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3.4.1 Example :

Plaintext and ciphertext letters are writen in Turkish letter alphabet written in 29 —
letter. Plaintext message block is 2. And ciphertext message block 7 is 3. My plaintext is

“danger”

e =1009

p=23

q =101

n=p.q=23.101 =2323

¢ (n) = (p-1). (g-1) =22.100 = 2200

d =689
“danger”
Table 4.3 Turkish Letter Alphabet
a|blc|e¢|d|e|f|lgl|lg|h|1 I J k 1 m n o 0 P r s S t u i v y z
O 1 |23 ]|4|5|6|7 891011 |12 |13 |14 |15 |16 |17 |18 |19 |20 | 21 |22 |23 |24 |25 |26 |27 | 28

“da”=0+4.29=116
Ci =116 " (mod 2323) = 1772
“ng”=7+16.29 =471

C, =471 "% (mod 2323) = 1372
“er”=20+5.29=165
C; =165 " (mod 2323) = 1297

Then we will find it ciphertext;

C =1772=2.29"+3.29+3  =*“cgc”
C,=1372=1.29°+18.29+9 =“boh”
C3=1297=1.29"+15.29+21 =“bms”

The ciphertext is “CCCBOHBMS”
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3.4.2 Example : Plaintext message units are digraphs and ciphertext message units are

trigraphs. In both plaintext and ciphertext, 26-letter alphabet is used. My ciphertext is;
“ADSCIOASTBFDBZZ”
Enciphering key (n,e) is (2257,133)
First convert ciphertext blocks to their numerical equivalence.

C,=“ADS”=18+3.26+0.26° =96
C,=“CIO”=14+8.26+2.26° =1574
C3=“AST”=19+18.26+0.26"° =487
C;=“BFD”=3+5.26+1.26" =809
Cs=“BZZ”=25+25.26+1.26> =1351

First we compute d =e™' (mod ¢ (1) )
n=p.q

p=061and g=37
n=p.q=061.37=2257

o(n) = (p-1) . (g-1)

d(n) = (61-1) . (37-1)

60.36 = 2160

d =877 (mod 2160)

P, =967 (mod 2257)=17=17+0.26 = “ar”

P, =1574%"(mod 2257) =446 =4+ 17 . 26 = re”
P; =487 %7 (mod 2257) = 487 = 19+ 18 . 26 = “st”

P4 =809 *"7 (mod 2257) =320 =8 + 12 . 26 = “.mi”
Ps=1351"" (mod 2257) =264 =4+10.26 “ke”

The plaintexts is “arrestmike”



CHAPTER 5

PRIMALITY TESTING

5.1 PRIMALITY TESTING
In settings up the RSA Cryptosystem,it is necessary to generate large’’random primes .

5.1.1 Definition: Suppose p is an odd prime and a is an integer. a is defined to be a quadratic
residue modulo p if a0 (mod p) and the congruence y* = a (mod p) has a solution y € Zp. a is
defined to be a quadratic non-residue modulo p if a#0 (mod p) and a is not a quadratic residue

modulo p.

Example 5.1: In Z;; we have that 1’=1, 2’=4, 3°=9, 4°=5_ 5’=3 6’=3, 7°=5, 8°=9, 9’=4, and
(10)*=1.
Therefore the quadratic residues modulo 11 are 1,3,4,5 and 9, and the quadratic non-residues

modulo 11 are 2,6,7,8 and 10.

5.1.1 Theorem: Suppose that p is an odd prime and a is quadratic residue modulo p. Then
there exists y € Zp_ such that y* =a (mod p). Clearly, (-y)* =a (mod p), and y # y (mod p)
because p is odd. Now consider the quadratic congruence x*-a=0 (mod p). This congruence
can be factored as
(x-y).(xty)=0 (mod p),

which is the same thing as saying that p | (x-y).(x+y). Now, because p is prime, it follows that
p | (x-y) or p | (x+y). In other words, x= £ y (mod p), and we conculude that there are exactly
two solutions (modulo p) to the congruence x*-a=0 (mod p). Moreover, these two solutions

are negatives of each other modulo p.

28
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5.1.2 Definition : Let m be a large integer. A primality test determines whether m is prime or

not.

5.1.3 Definition : A number n passes the pseduoprime test to base a if
a" = a (mod n).

Of course, it doesn’t imply that 7 is prime.

5.1.4 Definition : Let a be a positive integer. If n is a composite (not prime) positive
integer and
n

a’ =a (mod n),

then 7 is called a pseudoprime to the base

Lemma : If gcd (a,n)= 1, then
a"=a(modn) ©a"' =1 (modn)

Proof : gcd(a, n)= 1 implies that a" mod #n exists. Thus we multiply both sides
of

a"= a (mod n)
by a”
We multiply both sides of

d"'= 1(mod n)

by a.

Example 5.2. For instance
2= 1 (mod 341)
with 341=11.31. Hence, 341 is a pseduoprime with base 2.

Example 5.3:
3”°=1 (mod 91)=7.13

= 91 is a pseduoprime with base 3.

5.1.5 Definition : A composite integer 7 is said to be a Carmichael integer if
d"'= 1(mod n)

for all positive integer a such that
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ged(a, n)=1,

.1.e., it is pseduoprime to any base a, where gcd(a, n)= 1.

Example 5.4:
a*%= 1(mod 561)
for any integer a such that gcd(a, 561)=1

a*= 1(mod 3)= (¢*)*™ =a"*" =1(mod 3) for all integer a
a'’= 1(mod 11)= (a'*)’® =4’ =1(mod 11) for all integer a
a'® = 1(mod 17)= (a'%)* =a"*° =1(mod 17) for all integer a

= a** =1(mod.11.13.17 =561)

A simple characterization of Carmichael integer is given by the following lemma:
Lemma : A positive integer n is a Carmichael integer < It is a product of distinct

odd primes

N=pip: " Pm

suchthat p,—1|n—1 for 1<i<m.

Proof: n > 2 since it is composite.
b"! =1(mod n)
for all positive integers b. 3 an integer a such that
ordya =\(n).
Since @™ = 1(mod n), it follows that
AMn)|n—1.
n>2 = Mn)iseven = nis odd.
Now, suppose that there exist an odd prime p such that
pln
for k> 2. Then
M =@ =p" 0= 1| Mn)
=pp-D-D9)p|n-1
contradiction. Thus,

n=prp2:--°Pm



where p;,p,, - -+, pm are distinct odd primes. Since

AMu)=lem {d (p1)=pi— L, d(p)=p>—1,........ , 0(Pm) =pm— 1},

obviously, p; — 1 | A(n) thus,

pi—1|n—1
for 1 <i<m.
Let n be a product of distinct prime integers, i.e.,

n=pip2:::Pm

Let a be a positive integer which is relatively prime to n. Then

ged(a, p)=1forl1 <i<m=

d’i"'=1(mod p;) for 1< i <m.
Sincepi—1|n—1for1<i<m,
There exist integers 7 for 1 <i<m
such that
n—1l=ripi—1) for 1 <i1i<m =
=@ = 1l(mod p;) for 1 <i<m =

"' = 1(mod n).

But this means that » is a Carmichael integer.

Example 5.5:1729 = 7.13.19 is Carmichael integer since

61728,12 | 1728, 18 | 172

Example 5.6: 41041 = 7.11.13.41 is Carmichael integer since

6 | 41040, 10 | 41040, 12 | 41040, 40 | 41040

2)825265 = 5.7.17.19.73
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b)321197185 = 5.19.23.29.37.137

€)5394826801 = 7.13.17.23.31.67.73

d)232250619601 = 7.11.13.17.31.37.73

€)9746347772161 = 7.11.13.17.19.31.37.41.641
1)1436697831295441 = 11.13.19.31.37.41.43.71.127
g)60977817398996785 = 5.7.17.19.23.37.53.73.79.89.233
h)7156857700403137441 = 11.13.17.19.29.37.41.43.61.97.109.127.

Corollary : A Carmichael integer is a product of at least three distinct primes.

Proof: Suppose n = p.q, where p and ¢ are distinct primes. Assume that p < ¢. By previous lemma

n—1=0(mod(qg — 1))
But
n—l=pg—1l=plg—1+D=1=plg—D+p—1
which implies that ¢ — 1 | p — 1. But it contradicts p <g.

5.1.6 Definition: Let n be an odd composite integer and a an integer such that

ged(a, n) = 1. 1f

n-1

a? = (EJ (mod n),
n

where (ij is the is the Jacobi symbol, then 7 is called an Euler pseduoprime to the base.
p

We know that if p is an odd prime and a is an integer

not divisible by p, then
pifl
a?’ = (EJ (mod n ),
p

where (ﬁj is the Legendre symbol.
p

32

Proposition : Ifnisan Euler pseduoprime to the base a, then it isalsoa pseduoprime to the base a.
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Proof:
ISR n1 p
a? = (—J (modn) =(a ? ) = (—Jz (mod n)
n n
which obviously implies that

A = 1(mod n).

5.1.7 Definition: Let n be an integer with

n—1=2",
where 1 is a nonnegative integer and s is an odd integer. If
a5= 1(mod n) or aSZJE —1(mod n)

for some 0 <j <r— 1 for an integer a, then we say that n passes strong pseduoprime test to

base a.

5.1.8 Definition: A composite integer n which passes the strong pseduoprime test for the base

a is called a strong pseduoprime to the base a

Example5.7: n = 15790321 =
n— 1= 15790320 = 2% 986895

2986895 — 128(mod 15790321)

but
228 — 2986895 — 16384(mod 15790321)

28 — 94986895 — (1104 15790321)

which means that n = 15790321 passes strong pseduoprime test to base 2.

5.1.9 Theorem : If p is a prime and p - a, then p passes strong pseduoprime test to base a.
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Proof: p—1=2"s. Let

p-1

b=a? —a” for0<k<r
=a" =1 (modp)
bi=bo=1(modp).

So,
by =1(modp)orb, =-1(modp)

Ifh; = 1 (mod p) then

b>=b;=1(modp).
Thus, b, = 1 (mod p ) or b, = -1 (mod p). So if ..

b, =

bi=by=by=........... =b=1(modp)

with k <r, then since b;,, = b, = -1 (mod p ).

b,,=1(modp)orb,,, =-1(modp)

Consequently, either

by =1(modp)
or 3 k such that 0 <k <r and

by =-1(modp).

I't means that p passes strong pseduoprime test to base a. The strong pseduoprime test to base a is

stronger than Euler pseduoprime test to base a, as it can be seen in following proposition.

Proposition: If # is a strong pseduoprime to base a, then it is an Euler pseduoprime to the base
a
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Proof : Let
Y Y .
n _pl pz p3 pm s
n—1=2s, where s is odd integer and

2
a®>= 1(mod n) or &° = —1

for some 0 <j <r—1.

casel:a5=1(mod n): Let a prime p divides n. Then

ordpa\s

since @ = 1(mod p) which implies that

ordpa

p_

is odd. But ord ,a also divides p — 1. Thus, it divides p — 1. Thus, it divides ! too.

Therefore,

p-1

a? =1(modn)= (EJ =1
p

by Euler’s criterion. The Jacobi symbol is

p PPy Py py ) A\

case2: aS2j = —I(mod n) for some 0 <j <r — 1: Again let a prime p divides n. Then
257 = —1(mod p) = (@2 )* = I(mod p) =
252" = I(mod p) = ord,a|s?" ' andord,a\ s¥=> ord,a=w2"",
,where w is an odd integer.Since

Jj+1
ordpalp— 12 |p—1,
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we have p = u¥"'+ | for some integer u.

ord ,a a (E] ord ,a _1
a ? E-l(modp):(—jza 2og 2 | 22
p

p-1 -1

= (-1 )["] =(-1 )Wl;”‘ =(-1 )% =(-1)"

which implies that

)-T (ij - [T =
i=1 \ P; i=1

&

3

n

( _1 )M,k, — ( _1 )klul+k2u2+ ......... +kmum
i=1
Now
n =pi‘1 plzfz .. pll‘;;n — (ul 2j+1 —+ l)kl (u2 2j+1 —+ l)kz P (um 2j+1 + l)km
=(1+ 2" k) (1 +2 ko wp) -+ (1 + 2 kpyu)(mod 2972)
=1+2"(kju+koust - + kpum )(mod 297?) =
s2 = nz—l =2 (kju, +kow + -+ kmum) )(mod 2942 =
7 =ku, +ku, + -+ kmum (mod 21
and

n-1

a7= (axzf)z"*lf./ — ((_1 )s )2""*./ :((_1 )s )21‘*1*./ :(_l )klul +kyuy +o kg up,

n-1

since (¢ 2 )= 1(modn)anda’® = [gj (mod n). Thus
n

(a
~ | 5 )(mod n)

which means that » is an Euler pseduoprime to the base a.

I
‘:
0[]
-

Remark : The converse is not true. We have seen that 1105 is an Euler pseduoprime

to the base 2, but it is not strong pseduoprime to the base 2.

Theorem 5.1.10: The Solovay-Strassen Probabilistic Primality Test: Let n be a positive integer.
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Select, at random, & integers less than #, and perform Euler pseduoprime test on
n for each of these bases. If any of these test fails, then n is composite. If n is composite, the

probability that n passes all £ tests is less than

Theorem 5.1.11: Rabin-Miller Probabilistic Primality Test: Let n» be an integer. Select, at
random, k different positive integers less than #n, and perform strong pseduoprime test on
n for each of these bases. If any of these test fails, then n is composite. If n is composite, the

probability that n passes all £ tests is less than

Of course, Rabin-Miller test is better than the Solovay-Strassen test

5.2. FACTORIZATION BY CONTINUED FRACTION

Let’s see the generalization of Fermat factorization. In the following lemma;

Lemma : It is possible to factor n if there exist positive integers x and y such that

x’=y’(modn)

0<y<x<mand x+y #n

Proof: The inequalities imply that » doesn’t divide (x —y) and doesn’t divide (x + y).
Consequently

ged(n,x —y) # n,ged(n,x +y) # n
n|(x—y)x+y) = gedm,x—y) # 1

for otherwise, n | x +y which is contradiction. By the same way
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Hence
ged(n,x +y) # 1.
are proper divisors of 7.
Example 5.1: 51> — 39> = 1080 = 0(mod 216).
ged(216, 51 —39) = 12, ged(216, 51 +39) =18

So 12 and 18 are factors of 1080.

Now, we can express the theorem on the factorization by means of continued fractions.

P]z; =-D""V1(mod n)

where pi and Vi, are defined. Suppose that £ + 1 is even, and Vji;
is a square, i.e.,

Vier = 1'2
for some integer r. Then

P? = r’(mod n)

which we can use it for obtaining the factors of n. Therefore, it is enough to look at the terms with

even indices in

Uk }
which are squares.
Example 5.2: Let’s factor 649 by continued fraction algorithm. Let

o, = 649 = LTVOH “1649.

Then
Uy =0,7,=1,a,=[649|=25 = p, =254, = 1.



So

Po=25,q9,=1
49 _ >
U=a,Vy—U,=a, =25,V =69V—U‘ ~ 649—25%=24

0

=2.103....

o UitV649 2544649
24

L
It implies that
a,=2= p,=252+1=351,q,=2

649-23% _

Uy,=aV, —U=224-25=23,V,= 22

5

But 5 is not a square.

a, =9.695...=2 a,=9 =

_ 23++/649
5

p,=9.51 +25=484=535, ¢,=9.2+1 =19

649-22° _

U, =95-23=22, V,= 33

= 22*3—3 VOO 1438, a1

a;
p,=1484+51, g,=1.19+2=21

_ 2
U,=133-22=11,V,= %:16:42

since
Po= 4y 9= Lpy=aya1 +1,4,=a,,

= 4D —1 12,9, = 3 g —1 + ¢, —2

for k£ = 2. Consequently,

5352 = 42(mod 649)

But

535 — 4 = 529 = 32.59 and 535 + 4 = 539 = 7211
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0cd(649, 32.59) = 59, ged(649, 7211) = 11
— 59.11 | 649,
In fact
649 = 59.11.

5.3 AGRAWAL-KAYAL-SAXENA PRIMALITY TESTING

Now I want to explain this primality test. It is also a nice applications of what we have

learned until now. First we need some lemmas:

Lemma : Let a be an integer and p be a positive integer. Suppose that a is relatively prime to
p- Then p is prime if and only if
x+a)’ =x”" +a)(mod p)
Proof: For 0 < i < p, the coefficient of x' in

xta)?” -(x" + a)(mod p)

is [pj a”—i and p | [pj Therefore
i i

x+a)? —(x? +a)=0(mod p).

Conversely, let g be a prime which divides p and let ¢* | | p, then ¢ does not divide

4

P~ s relatively prime to ¢* since a is relatively prime

Obviously, a
to p. Thus,

p doesn’t divide [pJ a”1
q

Lemma :1. Let p and r be prime integers, p # r. Let h(x) be any factor of the
polynomial
x" —1 € Fp[x].
If m = k(mod r), then
x" =x* (mod h(x))

2.The order of [x] in



Ep [x]/ < h(x) >

ist and

x -1

x—1
is product of irreducible polynomials of degree ord, p.

Proof: 1.Let m = n.r + k. Then

an+k _Xk =x k(xnr _l)zxk (X_l)(x"(”*l)_f_..._lr_l)'

Thus,

h(X) | an+k _ Xk
2.Let d=ord, p and h(x) be an irreducible factor of

with deg(h) = k. Then,
Fp [x)/ < h(x) >

is a field of pk elements. Let g(x) be a generator of
Ep [x]/ < h(x) >\ {0}
Then, g(x)" =g(x” )(mod p)

= g(x)"" = g(x”")(mod p).
Since p? = 1(mod r), by the first part of the lemma we have

x? =x(mod A(X)).
Thus,

g(x”") = g(x)(mod h(x))
which implies that

20" = g(x)(mod h(x)).

So,

g(x)p* =1 = 1(mod A(x)),
thus,

pt=1lp* -1
If, k | d,

On the other hand,
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x" =11in Fp [x]/ < h(x) >
since A(x) | X" — 1.Thus, order of X in

Fp [x)/ < h(x) >
is  since r is prime and x — 1 ¢ < h(x) >. So, |pk -1, 1e,

p" =1(mod r).
It implies that d | k. Consequently

k=d.

5.3.1 Definition: Let / be a polynomial in Fp [x], where p is a prime integer. Let » be
a fixed prime integer different from p. A positive integer m is called introspective for
f(x) if

x)" =fx" )inFp [x]/(x" — 1)
Now we want to prove some properties of introspective integers for f.
Lemma: If m, m' are introspective integers for f & Fp [x], then so is m m'

Proof:Since m, m' are introspective integers,

f(x)" =fx" )inEp [x]/(x" — 1)
and

f(x)" =fx" )inF[x]/(x" —1).

Substitute x™ in place of x in the second congruence

f(x" )m =f((x" )m)inF [x]/(x" —1)
= f(x" )m =f£(x"™ )inF [x]/(x" — 1)
= f(x")m =fx™ )inF[xJ/(x" —1)
since (x" — 1) | (x™ —1).
By applying the first congruence we get
fx™ y=f(x")" =(Fx")" =fx)™ inF [x}/(x" —1).

learned until now. First we need some lemmas:

Lemma: If m is introspective for f(x) and g(x) then it is also introspective for

f(x)g(x).
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Proof: Obviously,
(f(x) g(x)) " =f(x)" gx)" =fx") g(x") in Fp [x]/(x" — 1).

Corollary : Let n, 1, and r be positive integers. Let p be a prime divisor of n. Suppose that
x+a)" =x" ta(mod(x" — 1), n)

for every a, 0 < a <. Then any number in the set
I={[ﬁj P j20)
r
is introspective for any polynomial of the form

1
H(x+a)e”,ea >0
a=0

Proof: (x +a)" =x" + a(mod(x” — 1), n)

= xta)" =x"+tainFp [x]/(x" —1)
since p | n.

(x+a)? =x”+a in Fp[x]/(x" —1).

Now by equation, we have
((x+ a)”/p)p = (x’”” + a)p inF [x]/(x" —1)
Since

LHS=(x+a)”,RHSE(Xn/p)P +ainFp [x]/(x" —1).

Let ord, p=u> 1. We have
(xp+a)"'")=(x")"" +a)InFp [x)/(x,— 1),
which implies that
(x" +a)"")=((x"")"" +a) inF [x](x,~ 1)
sincer | p“ — 1. Therefore,
(x+a)"”=(x)"" +ainFp [x]/(x, — 1).

By previous lemmas it follows that any integer in I is introspective for any polynomial of the

form
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/
H(x+a)e”,ea >0
a=0

Now we need to define two groups:

5.3.2 Definition: Assume that gcd(n, r) = 1 and p a prime divisor of #n. Then
nY .
G={(—J p’ modr:i,j>0}
p

is a subgroup of Zp*

Obviously, G is generated by n mod » and p mod r, so |G| =t > ord, (n).

5.3.3 Definition: Let p, », n be as in the previous definition. Assume that » is prime. Let

1 be a fixed positive integer. Assume that ord, (p) > 1. Let A(x) be irreducible polynomial of

degree ord, (p) in Fp [x] which is a divisor of

x -1

x—1
Let
G={ [] (x+@)" +<h(x)>):ta>0,V1<a</(}
o<a<l
i.e., the subgroup of
Fp [x)/ < h(x) >\ {0}
generated by the cosets of

X, x+1,x+2,...,xt1

Lemma:Let 1< p. Then G is a cyclic group such that

t+0) (t+/
Gl = =
(+1) \t—1
Proof:G is a cyclic group since it is a subgroup of cyclic group

Fp [x)/ < h(x) >\ {0}

Now x is a primitive » — th root of unity by Lemma. Let f and g be two distinct polynomials of

degree lessthant and f=gin G. Let m € 1, so

)" =E ")) nFp [x]/(x" - 1),
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and
(g(x)" = (g(x" ) in Fp [x]/(x" - 1).
The equalities are also true in Fp [x]/ < A(x) > since 4(x) | x" — 1. Obviously,
Fx)" = (egx)"
in Fp [x]/ < h(x) > too. Consequently, we get
f(x" )=gx")inFp [x]/ < h(x)>.
So x™ is a root of the polynomial
s =f(y)-gy)Vm < G.
Since ged(m, r) =1, x™ is also a primitive r — th root of unity ¥V m € G. Therefore,
|G| =t
distinct roots of s(y) in Fp [x]/ < h(x) >. But it contradicts the fact that deg(s) <t.
Thus,
f #ginFp [x]/ < h(x) >

Since ¢ <p,i#jinFpfor 1 <i #;< /. So the elements
X, x+1,x+2,...,x+ /¢

are all distinct in Fp [x]/ < h(x) >. The number of elements in

(] (xta)“:ta>0, Vi<a<t, ) ta<t-1}

o<a<l 0<a</

t—1+/7+1 B t+/0 B t+/0
/+1 r+1) =1

Now let’s find an upper bound for | G | :

1S

Lemma:Assume that +/f </¢. If 7 is not a power of p then

| G | <n’t
Proof:Look at the following subset of I :

J={(£J pli0<ij<[e)
p
It has obviously

(1+ve))?

distinct numbers since n is not a power of p. Since



Gl =t <1+ [z ).

= m; > m, in J such that

m= my(mod r).

Thus,
x™ =x" mmFp[x]/<x"—1>.
Let
fx)=[] (x+a)“:ta>0
o<a<l
Then,

fx)m' =f(x" )inFp[x)/<x" —1>
=f(x" )inFp [x]/<x" —1>

— (Fx)™ inFp[x)/<x" —1>.

It implies that

(Em” = (EE)Im? inFp [xI/ < h(x) >,

where /(x) is an irreducible polynomial of degree ord, (p) in Fp [x] which is a divisor of

xt—

x -1

x—1

Thus, f(x) € G is a root of the polynomial

qy =y m y m
in the field Fp [x]/ < h(x) >. Since f is arbitrary in G, it follows that ¢ (y) has at least
|G| distinct roots in Fp [x]/ < A(x) >. But the degree of ¢ (y) is

N
m, < (—.p} Sn[*ﬁ]én v

Therefore,

46
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Lemma: Assume that log” n<tand ¢ = /¢(r) log n. Then

G| >n""

|G|> t+/ B f+1+¢-1
“le-1) -1 '
£+1[\/;10gn

Z[RGbgA m

since log” n<t=> Ji >log n which implies that
t-1> l\/;log nJ

Than it becomes

it

since g is a subgroup of Z_ we have ¢(r) > ¢. it is greater than
el 3 g e

Lemma: Icm(1,2,...,m)>2"

form=>7

Now for the main theorem, we need some lemmas for the existence of a proper
integer » for a given integer n.

Lemma: There exist an
r<max { 3, [log" n]}

such that ord, (1) >log’ n.

Proof: It is obvious if n = 2 and » = 3 since ord, (2) = 2 > log , 2 =1. Now assume that n> 2.

Let r be the smallest integer greater than 1 which doesn’t divide the product

[log Zn

]
n [logB] H(nl _ 1) ,
i=1

where B = [log, n] . Letd = gcd(r, n). Let p be a prime such that p | d and p* | | r for some

positive integer k.



r<B=p §B=:>k§(10gBJélogB
logp

which implies that

k | n[logB]

p
If this is true for all prime divisors of , then
r| jp lloe 8]
which is contradiction. Thus, d < r. But d also doesn’t divide
[log2 n] )
n [IOgB] H(nl _ 1)
i=1
Since » was the smallest integer greater than 1 which doesn’t divide
[log2 n]
n [10g3] H(nl _ 1) ,

i=1

it follows that d = 1.So we can talk about ord , n since ged(r, n) = 1. Now

ord, n>log’ n

since r doesn’t divide any of n’ — 1 for 1 <i<log” n.In order to see » <B,

[log Zn [log2 n]

)
n[lOgB] H(nl _1)<n[10g3] H ni:
i=1

i=1

n[logB]nlogzn(log2 n+1)/2£n10g4n£ 210g5n£23

Lemma:Implies that the least common multiple of first B integers is at least 2 .

Consequently

r<B.
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Remark:The existence of a suitable small integer » is a consequence of results from analytic

number theory which states that

|{p:pisprime,pixandP(p—1)>x2/3}|Zc X

b

logx

where P (n) denote the greatest prime divisor of .

Now we can give the main theorem
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5.3.1 AGRAWAL, KAYAL, SAXENA

5.3.1 Theorem:(Agrawal, Kayal, Saxena): The following algorithm returns prime if and only
if n is prime.
Algorithm:Input: integer n > 1.

e If(n=a"for a positive integer a and b > 1), output composite.

e Find the smallest 7 such that ord , (n) > log’ n

e if 1<gcd(a,n)<n for some a <r output composite

e Fora=1to [Wlogn 1 do if (x+a)" #x" +a in Z,,;/<x"—1>), output composite

e Output prime

Proof =:Casel:The algorithm returns prime in step 4: If n was not prime then There exist

would be a prime integer @ such that a | n. Then
I <gcd(a,n)=a<n

which implies that the algorithm would return composite in step 3. But it is contradiction.

=:Case 2:The algorithm returns prime in step 6: » was found in step 2 such
ord” (n)>log*n<1

Therefore, there exists a prime divisor p of n such that

ord, (p)>1
If p < n, we should have composite by step 3. If p = n, then we should have prime by step 4.
Therefore,
p=>r.
Now

ged (7, n) = 1 thus, ged (7, p) =1
since for otherwise, we should have composite in step 3. Therefore,
nr<€ZzZ r
We have the group G and
IG|=¢>ord, (n)>log” n

Let

¢ =|g0n)log,
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Consider the group G defined. We have
o(r)>ord, (n)>log’> n>1

Thus,
log n < \J¢(r) = (=[\¢(r) logn] < () <r<p
(t +€J
So |G| >
t-1
Now,

G
On the other hand, since G is a subgroup of Z .
t=|G| < (7).
It implies that

Vi< g(r)

so t< /. We conclude that » should be a power of p. But we

should have composite in step 1.
«:Step 1 and Step 3 can not return composite. Assume that step 4 doesn’t return
prime. Then step 5 doesn’t return composite. The proof of the following theorem can be

found.

5.3.2 Theorem:The runtime of the ALGORITHM is polynomial in the number of digits



CHAPTER 6

CONCLUSION

In Chapter 1, I explained history and development of cryptography.

In Chapter 2, I exposed number theory, I have included and explained divisors and
divisibility and the greatest common divisor in details. Extensive exercises are included for
number theory.

In Chapter 3, factoring algorithm defined on number theory has been covered with
examples. I exposed the pollard p-1 algorithm, the pollard rho algorithm, dixon’s random
squares algorithm, elliptic curve factorization, factor base method.

InChapter 4, I exposed public key cryptographic system which depends on
factorization and RSA.

In Chapter 5, I explained primality testing and, I have included and explained

manindra agrawal’s theorem.
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