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ABSTRACT

First, I have included and explained some number theoretical facts in the beginning. Then
Finite Field has been covered with examples in details. I explained Elliptic Curve
Cryptosystems. I gave the maple algorithms which are useful for computing.
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Oz

Baslangicta sayilar teorisini ana hatlariyla agikladim. Sonra, Finite Field detayli olarak
orneklerle gosterilmistir. Devaminda Elliptic Curve Cryptosistemlerini acikladim.
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CHAPTER 1

INTRODUCTION

Cryptography is the science of securely transmitting message from a sender to a
receiver. The objective is to encrypt the message in a way such that an eavesdropper would
not be able to read it. A cryptosystem is a system of algorithms for encrypting and decrypting
messages for this purpose.

Cryptography comes from the Greek words “Kryptos” which means hidden and
“Graphen” which means to write. Classical cryptosystems, substitution and transposition
ciphers, were used until modern cryptography were developed. The earliest known use of
cryptography is Egyptian Hieroglyphics. Later, Julius Caesar used a monoalphabetic
substitution cipher. Frequency analysis techniques for breaking monoalphabetic substitution
ciphers invented around 1000 CE. In 1465, Alberti found polyalphabetic ciphers.
Cryptography is performed by hand writing until the early 1900s. It became a mathematical
science in the middle of the 19th century. The cryptographic science was known by Russians,
Europians and Arabics. They used cryptography in diplomatic and military communications.
In the beginning of 20th century US, Germans and Japans made use of simple cryptosystems
in military and diplomacy. By the invention of telegraph and radio, cryptology was
developed. In the World War I, the Red Army of Russia organized its first cryptographic
service. New ciphers were created by the Red Army in 1921-1922. Some ciphering machines
were developed and started to be used in 1930s. Germans used Enigma machine. Japans
used Krieg, Fuller and Burg, Purple Code machines in World War II. In 1939-1940,
Enigma was broken by American and British cryptographers. Moreover, the Purple Code was
broken by Americans and Russians cryptographers. In 20th century, contemporary cryptology

has displayed a considerable acceleration by the invention of computers.

Diffie and Martin Hellman developed Diffie-Hellman key exchange in 1976. It is public

key algorithm and depends on discrete logarithm in a finite field. Later, RSA was discovered

1



by Ron Rivest, Adi Shamir and Leonard Adleman in 1977. El Gamal is introduced by
El Gamal cryptosystem. It depends on discrete logarithm. In the middle of 1980s, Koblitz and
Miller invented Elliptic Curve Cryptography(ECC) which is based on discrete logarithm on

abelian groups

To begin with, I exposed Finite Field. I use maple algorithms to solve examples.
Furthermore, third chapter provides Elliptic Curve Cryptosystems. In chapter 3 I draw tables
of Diffie-Hellman Key Exchange, El-Gamal and Massey-Omura Cryptosystems. Then, in

chapter 4, I have included and explained Primality Test.

In the future, I wish to work on algebraic curves, elliptic and hyper elliptic curves.



CHAPTER 2

FINITE FIELD ARITHMETIC

2.1 FINITE FIELD ARITHMETIC

Number systems, the rational numbers, the complex numbers and the integers modulo a
prime number are the examples of fields. A field has addition, substraction, multiplication and

division operations.

A field under addition and under multiplication satisfies the following arithmetic

properties.

1)  (F,+)is an abelian group where the additive identity is 0.
i1) ( F\{0},.)is an abelian group where the multiplicative identity is 1.

ii1) The distributive law: for all c,a,p € F, c(a+p)=co+cp

In a field, subtraction of field elements is described with respect to addition such that -
B=oa+(-B) where - is the unique element of F, that is, f+(-B)=0, for all o, ¢ F. Division of
field elements is described with respect to multiplication such that a/p=ap” with p=0 where
B is the inverse of B. Therefore a field consists two operations, addition which is denoted by

+ and multiplication which is denoted by e.

2.2 EXISTENCE AND UNIQUENESS

The number of elements in a field is said to be the order of finite field. Assume that Fq
be a finite field where q is the order of the finite field , Fq. q is a prime power such that
p"where p is a prime number , m is a positive integer. The prime number p is called the

characteristic of F. F is called a prime field if m=1. F is called an extension field if m>2.



2.3 PRIME FIELDS

Assume that p is a prime number. In F,, addition and multiplication operations are
performed modulo p. The elements of F, is {0, 1, 2,....... , p-1} amod p gives intiger remainder

r where r is in the range [0, p-1]. This operation is said to be reduction modulo p.
The addition and multiplication operations are defined as follows:

1) Addition operation : Let a, B € F,. a+B=r where r ¢ F, r is the remainder when the

integer o+ is divided by p. This operation is called addition modulo p and written o+P=r

(modp).

ii) Multiplication operation : Let o, € F, . ap=s where s ¢ F,, s is the remainder when

the integer o} is divided by p. This operation is called multiplication modulo p and
written aff=s ( mod p ). The additive identity is the integer 0 and the multiplicative
identity is integer 1.

To define subtraction of field elements, we need to describe the additive inverse.

1i1) Additive inverse : Let a € F, . (-a) is the additive inverse of a in F, such that

o+(- 2)=0 (mod p ).
To define division of field elements , we need to describe the multiplicative
inverse.

iv) Multiplicative inverse : Let o & F, where a. # 0. o' is the multiplicative inverse ~ of

o in F, such that ao'=1 (mod p).
As it is stated above, subtraction and division are described in terms of additive and

multiplicative inverses that is a- B (mod p ) is a+ (-f3) (mod p ) and o/ B (mod

p)is o B) (modp).

To illustrate; the elements of F,3; are {0, 1, 2,...., 22}. The following arithmetic

operations are the examples of Fy;.

1) Addition = 19+20=16 since 39 mod 23 = 16.
ii)  Subtraction = 19-20=22 since —1 mod 23 = 26.



iii)  Multiplication = 19.20=12 since 380 mod 23 = 12.

iv)  Inversion: 19" = 17 since 19.17 mod 23 = 1.

2.4. BINARY FIELDS (THE FINITE FIELD F,™)

There are two ways to construct F>™. One of them is polynomial basis representation.
The elements of F,™ are the polynomials whose coefficients are in the field F, = {0,1} with

degree at most m-1.

Fo™ = {01 X™ 4 oo X" 4 o, +to X+ o X +ap aie {0, 1} }

We choose an irreducible binary polynomial f(x) with degree m, which cannot be factored

into binary polynomials whose degrees less than m.

Addition operation in binary fields is the usual addition of polynomials, with coefficient

arithmetic performed modulo 2.

1) Addition operation : Let

0=0mt X+ Ol X2 e, +ar X2+ oy X +op
-1 ) 2
B:Bm-l Xm +B m-2 Xm T o + Bz X+ B1 X +B0 S Fzm .
at+B=r where r € Fo™ . 1= I X™ ' oo +ro with ;=0 + B; (mod 2 ).

Multiplication operation in binary fields is done modulo the reduction  polynomial

f(x),

i1) Multiplication operation: Let

=0t X+ Ol X2 e, +ar X2+ oy X +op

B=Bunt X™ B m2 X2+ e, + By X2+ B X +Bo € F™.



aP= s where s € F2™ . s=8m1 X™ 45 m2 X F oo, + 55 X2 + 81 X +sg is the
remainder as the polynomial s=af3 is divided by f(x) with all coefficient arithmetic performed

modulo 2.
To define subtraction of F,™ we need to describe the additive inverse.

iii) Additive inverse : Let o € F,™ . (- o) is the additive inverse of o in F,™ such that

ot+(- 0)=0 in F,"™

To define subtraction of F,™ we need to describe the additive inverse.

iv) Multiplicative inverse : Let o € F,™ where o # 0. ol is the multiplicative inverse

of ain F,™ such that o' =1 in F,™.

As it is stated above, subtraction and division are described with respect to additive and
multiplicative inverses that is o - B in F,™ is equal to o +(- B) in F,™ and o/ B in F,™ is
equal to o (B ) in F,™.

For example; the elements of F,* are the 16 binary polynomials of degree at most 3 such
that {0, 1, x, x+1, X2, X2+1, XX, xXHx+1, X, X3+1, XHx, xX+x+1, x° +X2, x3+x2+1, x3+xz+x,
X +x>+x+1}.

We choose the reduction polynomial f(x) = x*+x*+1 in F,*. The following arithmetic
operations are the examples of F,".

i) Addition : (x+x*+1)+ (x*+x+1) = x’+x

i) Subtraction: (x*+x*1)- (x*+x+1) = x*+x

Because—-1=1inF,.

i) Multiplication :  (x*+x*+1) (x*+x+1) =x*+1 since

(x3 +x%+1) (x2+x+1) = x+x xR X xt 1= X+l

(x>+x+1) mod ( x*+x+1 )= x*+1

iv) Inversion : ( x’+x*+1 )'=x* since (x*+x*+1 )( x*) mod ( x*+x+1)=1
We find the inversion of ( x’+x’+1 ) by performing Euclidean and extended

Euclidean Algorithm.



xtx+] =(x+x3+) (x)+ (x°+1)
X+l =(x°+1) 1+ x°
X+ = x*+x +1
1=(x+1)-x"x
=(x+1 ) —x ((xX+x*+1) - (x*+1))
=(x+1 )= x (X+x+1 ) -x (x*+1)
=(x+1) (x+1)=x (xX*+x*+1)
=(x+1) ((x™x+] ) = x (X+x+1 ) ) —x (xX+x+1)
=(x+1) (xMx+]) =(xHx) (X1 ) = x (xX+x+])

=(x+1) (x*x+1 ) —x* (x*+x+1)

In maple we can perform finite field arithmetic easily.

Let’s do the example above in maple;

» G: GF (2,4,alpha”4 + alphat1):
> a:= alpha”3 + alpha’2+1;
a: oo+l
» a=G [Convertln | (a) ;
a:=( o’+a’+1) mod 2
» b:=alpha"2 + alpha+1;
b: oo+l
» b:=G [Convertln ] (b) ;
b:=( a’+a+1) mod 2
# addition operation #
» addition: =G [+ ](a,b);

addition := ( o’ +o. ) mod 2

# subtraction operation #
» subtraction ;=G ['-] (a,b) ;

subtraction:= ( a’+o. ) mod 2



# multiplication operation #
» multiplication := G ['*'] (a,b) ;
multiplication:= ( a’+1) mod 2
# inversion #
» inversion := G[ inverse |(a) ;

inversion := o® mod 2

2.4.1 Table 1-reduction polynomial(s)

Field Reduction Polynomial(s)

F2113 f(X): X113+X9+1

F,=t f(x)= XEhCHC -+

SRE f(x)= XX

13 f(x)= X Px+1

F2233 f(X): X233+X74+1

F2239 f(X): X239+X36+1 or f(X): X239+X158+1
F2283 f(X): X283+X12+X7+X5+1

7 )= X0 +1

F2571 f(X): X571+X10+X5+X2+1

2.5 EXTENSION FIELDS
Let p be a prime and m>2. The set of all polynomial in the variable x with coefficients
from F, is denoted by F, [X] and the reduction polynomial is f(x). The elements in F," are the

polynomials of degree at most m-1 in F,, [X].



Fo™ = {0t X™ + 0 X"+ . +op X2+ oy X +ag aieFy )

The usual addition of polynomials with coefficient arithmetic performed in F, is the addition
operation.Multiplication operation is performed modulo f(x) which is the reduction
polynomial.

For example; Let p=251 and m=5 . The reduction polynomial
f(x):x5+x4+12x3+9x2+7 in Fy51[X]. This reduction polynomial can be used for the
construction of F2515 .

Assume that
a=123x*+76x*+7x+4 and p= 196x*+12x>+225x*+76 in Fys;" .
i) Addition o oHP=(123x76x*+7x+4)+(196x +12x°+225x*+76)
=68x*+12x°+50x7+7x+80
ii) Subtraction : a- P=( 123x+76x*+7x+4 )-( 196x*+12x°+225x*+76 )
=178x* 239x°+102x*+7x+17
iii) Multiplication : o.p=( 123x*+76x*+7x+4 ).( 196x*+12x*+225x*+76)
=117x*+151x>+117x*+182x+217
iv) Inversion: o =109x*+111x’+250x*+98x+85

Let’s do the example above in maple;

» G: GF (251,5,alpha™5 + alpha™4+12*alpha”3+9*alpha2+7);

» a:= G [Convertln ]| (123*alpha™4+76*alpha”2+7*alpha+4) ;
a:=( 123a*+760*+70+4 ) mod 251
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» b:=G [Convertln ] (196*alpha”4+12*alpha”3+225*alpha”2+76) ;
b:=( 1960 *+12a’+2250>+76) mod 251

# addition operation #

> addition: =G [+ ](a,b);

addition := (68 a’+120’+500” +70a+80) mod 25
# subtraction operation #
» subtraction ;=G ['-] (a,b) ;

subtraction:=(1780*+2390°+1020°+7a+179)mod251

# multiplication operation #
» multiplication := G ['*'] (a,b) ;
multiplication:=(117a*+1510’+1170*+1820+217)mod25
# inversion #
» inversion := G[ inverse ](a) ;

inversion = (1090*+111a’+2500> +980+85) mod 251

2.6 SUBFIELDS OF FINITE FIELD

F is called a subfield of K if F<K. In this instance, K is called an extansion field of F.
Exactly a finite field F,™ has one subfield of order p' for each divisor t of m. This means that

a ™= a for ag F,™
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CHAPTER 3

ELLIPTIC CURVES

3.1. DEFINITION OF ELIPTIC CURVE

The generalized Weierstrass Equation for an elliptic curve is
y2+a1xy+a3y= x3 +a2x2+a4x+a6
where a; a,, a3, a4, as, a¢ are constants. We can describe an elliptic curve over Fg in terms of
the solutions to an equation in Fq F is a prime finite field or a binary finite field. The form of
the equation depends on finite field Fq. If the field is prime finite field, we use the equation
y’=x"+ax+b ( mod p ). If the field is binary finite field, we use the equation y*+xy= x’+ax’+b

in Fzm .
Theorem3.1.1 : (Hasse )

Let the elliptic curve E be defined over the finite field F,. Then the order of E(F,) is
denoted by # E(F,) which satisfies

|q+1 - E(Fy) | <24/q
Theorem 3.1.2:

Let g=p™ where p is prime and m is a positive integer. Let N = g+1-t. The Elliptic
Curve E is defined over Fg such that # E (F, ) = N 1f and only 1f | t | <2 \/E and t satisfies one

of the following :

i) ged(t,p) =1
i1) m is even and t=+2 \/E

iil) mis even, p=1 (mod 3 ), and t=+ \/E
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iv) mis odd , p=2 or 3, and t= = p™’?

v) miseven,p=1(mod4), and t=0

vi) misoddandt=0

Let the order of the base point G be n which is a large prime. The number of points on the
curve is equal to nh denoted # E (Fy ) =nh . h is the cofactor which is a small integer .
Moreover , h is not divisible by n . For efficiency reasons , it is useful to get the cofactor to be
as small as possible. In prime finite field , h=1,2 or 4 . In binary finite field h=2 or 4.
Calculating the number of points on an Elliptic Curve over F,, . First , we select an x € F;, and
state if there is corresponding y on the curve that is for a given x we test if f(x)=x"+ax-+b (mod

p ) is a quadratic residue.

3.1.3 Definition: (The Legendre Symbol ):

Let a be an integer and p be an odd prime . The Legendre Symbol (a/p) is defined as

follows :
‘
0, if p divides a ;
(a/p) = < 1, if a is quadratic residue modulo p ;
-1, if a 1s not quadratic residue modulo p ;
\

We use legendre symbol to find out an integer is a quadratic residue modulo p or not. Then

the following cases are based on f(x) is a quadratic residue or not modulo p;

1) if f(x) is quadratic residue , there are two points (x , +y ).
i1) if f(x) divides p , there is a single point (x , 0 ).

1i1) If f(x) is not quadratic residue , there is no point .
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3.1.4 Example : Let E be an Elliptic Curve y> =x’ +x+6 over F;;. The point (2,7) has
order 13. So Nj; = #E(F;;) is a multiple of 13. Hasse’s theorem implies that

11+1-2/11 < Nj < 114142411

The only multiple of 13 in this range is 13. Hence, N;; =13.

3.1.5 Example : The elliptic curve E y2 =x> -10x+21 is defined over Fss; The point
(2,3) has order 189. Hasse’s theorem implies that

557+1-2+/557 < Nss57<557+142+/557

which means that

511 < Nss
Hence, Nss7 is a multiple of 189.The only multiple of 189 in the range

511 < N557S 6051s3.189=1567. So N557 = #E(F557) =567.

3.2 ELLIPTIC CURVES OVER PRIME FIELD

Assume that F;, is a prime finite field where p is an odd prime number . Let a, B in F,,
such that 40’+27 B> T 0 (mod p ) . A non —singular elliptic curve is the set of solutions or

points (x,y) for x,y € F, to the equation
y? = x’+ax+b (mod p)

together with an extra point 9 is said to be the point at infinity . The equation

y? = x’+ax+b (mod p) is said to be the defining equation of E(F,) . The equation x’+ax+b=0
has one real root or three real roots. Assume that the point G=(xg, yg) is given , Xg is called
the x-coordinate of G, yg is called the y-coordinate of G . The identity element is the point at
infinity , 9

#E(F}) 1s the number of points on E(F,) . The Hasse Theorem says that :
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p+1-24/g <HE(F)) < p+1+24/g

3.3 ADDITION LAW

1. Adding the point at infinity to itself .
9+9=9

2. Adding the point at infinity to any other point.
(x,y)+ 9= 8 +(x,y) =(x,y) for all (x,y) eE(F,) .

3. Adding two points with the same x-coordinates when the points are either
different or have y-coordinate 0.
(x,y)+(x,-y) =9 for all (x,y) € E(F,).
The negative of (x,y) is (X,-y)

4. Adding two points with different x-coordinates
Let (x1,y1 ) in E(Fp) and (x2,y2) € E(F}) .
These are two points such that x; #x;.

(X3, y3 )= (X1, y1 )t (X2,y2) where

A=(y2-y1)/(x2-X;) (mod p )
X3=A"—X;—x, (modp)

Y3 =A (X1 —X3)-y1 (mod p)

We can compute A, X3, y3 in maple such that;

» Lambda = ( Py[2] - Py[1] )/ ( Px[2] - Px[1] ) mod p;
» Px[3]:= (lambda*2 — Px[1] — Px[2] ) mod p;
» Py[3] := (lambda* (Px[1] — Px[3] ) — Py[1] ) mod p;

5. Adding a point itself (double a point )
Let (x1, y1 ) in E(F,) where y; #
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AL=(3x* +a) 2y (modp)
X3 = % —2x1 (modp)

ys=A(X1—x3)-yi (modp)
We can compute A, X3, y3 in maple such that;

» Lambda = (3* (Px[1]"2)+a)—(2*Py[1] ) mod p;
» Px[3]:=((lambda™2) —(2*Px[1])) mod p;
» Py[3] := (lambda* (Px[1] — Px[3] ) - Py[1] ) mod p;

The set of points on E(F}, ) constructs a group under this addition law. Moreover , the group is
abelian .Cryptographic systems depended on Elliptic Curve Cryptography base on scalar
multiplication of elliptic curve points.Let k be an integer and Gbe a point E(F,) . The process
of adding G to itself k times is called scalar multiplication , denoted by kG . We calculate

scalar multiplication of Elliptic Curve points by applying the addition law.
3.3.1 Example:

Let E be the curve y2 =x° +x+6 over Fy;. To count points on E, we make a list of the

possible values of x and we compute the square roots y of x> +x+6 (mod 11).
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X X2 +x+6 y points

0 6 - -

1 8 - -

2 5 4 (2,4) (2,7)
3 3 5 (2,5) (2,6)
4 8 - -

5 4 +2 (5.2) (5.9)
6 8 - -

7 4 +2 (7,2) (7.9)
8 9 +3 (8,3) (8,8)
9 7 - -

10 4 +2 (10,2) (10,9)
o - o o

Therefore E ( Fy; ) has order 13. If any group of prime order is cyclic then E is isomorphic to
Z13. Let o = ( 2,7 ) is a generator point. We can calculate powers of o which is given below

example.

3.3.2 Example : Let compute powers of o =(2,7),
calculate 2o =(2,7)+(2,7) by

A=(3.22+1)/(2.7) (mod 11)
=8 (mod11)
X3=(8"-2.2) (mod11)
= 5(mod 11)
y3=(8.2-5)-7)mod 11)
=2(mod 11)



Hence, 2a=(5,2)

calculate 3 =(5,2)+(2,7) by
A=(7-2)/(2-5)(mod 11)
=2(mod11)
x3=(2"-5-2) (mod11)
= 8(mod11)
y3=(2.(5-8)—-2)(mod 11)
=3 (mod 11)

Now, let’s continue to compute powers of o in maple.

» lambda:=(y,—y1)/(Xx2—%x;) mod11;
X3 :=lambda”2 —x; —x, mod 11 ;

y3 := lambda* (x; —x3)—y; modl1l;

» lambda:=(y,—y;)/(X2—%x;) mod11;
X3 :=lambda”2 —x; —x, mod 11 ;

y3 := lambda* (x; —x3)—y; modl1l;

17
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» lambda:=(y,—y;)/(Xx2—%x;) mod11;
X3 :=lambda”2 —x; —x, mod 11 ;

y3 := lambda* (x; —x3)—y; modl1l;

A =10
X7I=7

Y7 =9

» lambda:=(y,—y;)/(X2—x;) mod 11 ;
X3 :=lambda™2 —x; —-x, mod 11 ;

y3 := lambda* (x;—x3)—y; mod11;

» lambda:=(y>—y1)/(X2—x;) mod 11 ;
X3 ;= lambda™2 —x; —x, mod 11 ;

y3 ;= lambda* (x;—x3)—y; modl1l;

» lambda:=(y,—y;)/(X2—x;) mod 11 ;
X3 :=lambda™2 —x; —x, mod 11 ;

y3 := lambda* (x;—x3)—y; modl1l;
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» lambda:=(y,—y;)/(Xx2—%x;) mod11;
X3 :=lambda”2 —x; —x, mod 11 ;

y3 := lambda* (x; —x3)—y; modl1l;

A=3
X111=8

Yi1 =8

» lambda:=(y>—y1)/(X2—x;) mod 11 ;
X3 ;= lambda™2 —x; —x, mod 11 ;

y; ;= lambda* (x;—x3)—y; modl1l;

» lambda:=(y,—y1)/(X2—x;) mod11;
X3 :=lambda™2 —x; —x, mod 11 ;

y3 := lambda* (x;—x3)—y; modl1l;

3.4 ELLIPTIC CURVE OVER BINARY FINITE FIELDS

Assume that a, b ¢ F,™ where b # 0 in F,™ .A non-super singular elliptic curve E over
the finite field F,™ defined by the parameters a ,b in F,™ consists of the set of solutions or

points p=(x ,y) for x , y in F,"™ to the equation :
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y+xy=x>+ax’+b in F,"

together with an extra point 9 is said to be the point at infinity. # E(F,™ ) is the number of
points on E (F,™) . The Hasse theorem says that

2M+1-24/2" <B(Fy™) < 2™+ 142+4/2”

3.5 ADDITION LAW

o

Adding the point at infinity to itself
$+3=3

b. Adding the point at infinity to any other point
(x,y) t9 =3 +(x,y )=(x,y) forall (x,y) ¢ E (F,™)

c. Adding two points with the same x-coordinates when the points are either
different or have y-coordinates O .
(x,y) + (x,xty) =9 for all (x,y) ¢ E (F,™)
The negative of (X, y) is equal to (x, x+y).

d. Adding two points with different x-coordinates . Let (x;, y; ) in E (F,™),

X] # X3 .

(X3, y3 ) =(x1, Y1) + (X2, y2 ) where

A= (y1 +y2)/(x1+x5) in F,™
X3 = AHA+x+x+a in Fy™

y3 = A (X +X3) +x3 +y; in F,™

We can compute A, X3, y3 in maple

A =G/ (G + 7] (Py [1], Py [2]), (G['+ T (Px [1], Px [2]) ) ;
Px[3]:=G[ + ' T(G[ +°] (G[" + '1(G[" + 1(G['"™'1 (A, 2), 1), Px[1]), Px[2] ), a);
Py[3]:=G[ + ' T(G[ +°1 (G[" * "1(G[" + 1 (Px[1], Px[3]), &), Px[3]), Py[1] );
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e. Adding a point itself (double a point )
A = x1:(y1/x1) in F,"

X3= A+h+ain F,"
y3 = X12+(7\,+1)X3 in Fzm

We can compute A, X3, y3 in maple

A=Gl (G /] (Py [1], Px [1]), Px[1]);
Px[3]:=G[ +'T(G[ +'1 (G['""](A,2),2), a);
Py[3]:=G[ +] (G *"J(G[" + '] (A, 1), Px[3]), G['"*] (Px[1],2) )

The set of points on E (F,™ ) constructs an abelian group under this addition law.
Cryptographic systems depended on Elliptic Curve Chryptography base on scalar
multiplication of elliptic curve points. Let k be an integer and G be a point in E (F,™) the
process of adding G to itself k times is called scalar multiplication, denoted by kG. We

calculate scalar multiplication of elliptic curve points by applying the addition law.

3.6 ELLIPTIC CURVE DOMAIN PARAMETERS OVER PRIME FINITE FIELD

Elliptic Curve domain parameters over finite fields consist of a prime integer p defining
the finite field F,, two elements a,b in F, defining on elliptic curve E(F, ) specified by the
equation y* =x> +ax+b ( mod p ), a base point G= (Xg, yG) on E(Fp), a prime n which is the

order of G, and an integer h which is the cofactor that #E(F,)=hn:
T=(p,a,b,G,n,h)

The approximate security level in bits desired from the elliptic curve domain parameters must
be an integerte { 56, 64, 80, 96, 112, 128, 192, 256 }
Validating the elliptic curve domain parameters over F,, is as follows :
1) Confirm that p is an odd prime such that [ log, p ] =2t if t#256 or such that
[ logs p]=521 if =256 .
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1) Confirm that a, b, xg and yg are integers in the interval [ 0, p-1].
iii)  Confirm that 4a’+27b%=0 (mod p ).

iv)  Confirm that v’ =x’g + axg +b (modp) .

V) nis prime .

vi)  Confirm that h<4, and thath=[ ( /p +1)*/n].

viil)  Confirm that nG =5 .
viii)  Confirm that p® = 1 (mod n ) for any 1< B <20 ,and that nh = p.

3.7 ELLIPTIC CURVE DOMAIN PARAMETERS OVER BINARY FINITE FIELDS

Elliptic Curve domain over binary finite fields consist of a positive integer m defining
the finite field F,™ an irreducible binary polynomial f(x) of degree m defining the
representation of F,™ , two elements a, b in F,™ defining the elliptic curve E(F,™ ) specified by
the equation y2+xy = x’+ax’+b in F,™, a base point G = ( X , Y6 ) on E (F,™), a prime n

which is the order of G, and an integer h which is the cofactor that # E(F,™ )=hn :
T = (m, f(x), a, b, G, n, h)
Validating the elliptic curve domain parameters over F," is as follows :

1) Assume that t implies the smallest integer greater than t in the set
{ 56, 64, 80, 96, 112, 128, 192, 256 }. Confirm that m is an integer in the set
{113, 131, 163, 193, 233, 239, 283, 409, 571 } such that 2t <m <2t .

1) Confirm that f(x) is a binary irreducible polynomial of degree m which is listed
in Table 1.

1i1) Confirm that a, b, Xg, yg are binary polynomials of degree m-1 or less .

iv) Confirm that b # 0 in F,™ .

V) Confirm that y’+xg yo=x’g+ax’g+b in F,™ .

vi) Confirm that n is prime .

vii)  Confirm thath <4, and thath=[ (v2" +1)*/n.
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viii))  Confirm that nG =39 .
1X) Confirm that 2™ = 1 (mod n ) for any 1 <B <2 0, and that nh # 2™ .

3.8 ELLIPTIC CURVE CRYPTOSYSTEMS

The modren symetric cryptosystems are faster than the asymetric cryptosystems.
Symetric cryptosystems are not secure as encryption and decryption keys are the same. On the
otherhand, asymetric cryptosystems are secure since encryption and decryption keys are
different each other. Public key cryptosystems depends on factorization large integer into
primes and discrete logarithm. Elliptic Curve Cryptosystems is based on discrete logarithm on

a finite abelian group.

3.9 ELLIPTIC CURVE DISCRETE LOGARITHM PROBLEM

Assume that a base point G and the point kG be given. These points are on the curve.
Finding the value of k is called the discrete logarithm problem. It is believed that finding k is
really hard problem. Using algebraic groups is desired by many cryptosystems. A group is a
set of elements with custom described arithmetic operations on those elements. For elliptic
curve groups, these specific operations are described geometrically. There are some
limitations on these groups of operations such that the number of points on such a curve

creates underlying field for an elliptic curve group.

3.10 DIFFIE-HELLMAN KEY EXCHANGE

Alice and Bob choose an elliptic curve E over a finite field F; and a base point
G ¢ E ( Fq ). We must be careful while choosing curve and base point that order of point must

be large prime and the discrete logarithm problem must be hard in E (Fy ).
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Next, Alice selects a private integer a and computes Gajice = 0G. Then Alice sends
Gailice to Bob. After that, Bob generates a private integer 3 and compute Ggop =fG
Then Bob sends Gg,p to Alice. Hence, Alice calculates the key such that aGg., = afG. Bob
calculates the key such that BGajice =PaG .
The elliptic curve E, the finite field Fy ,the points G ,Gaiice ,GBob are public . Alice and Bob

keep o and B private . Solving discrete logarithm problem in E(F ) to find o and 3 is feasible.
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DIFFIE - HELLMAN KEY EXCHANGE

Alice calculates the key aGg.s= afG.

Bob calculates the key pG 4ic. = paG.

3.10 Figure 1-Diffie-Hellman Key Exchange
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3.11EL-GAMAL

Bob generates an elliptic curve E over a finite field F, and a base point
G ¢ E(Fy ) whose order must be a large prime. While choosing an elliptic curve E over finite
field F, the discrete logarithm problem must be very hard. Bob selects a private integer s and
calculates B =sG. Bob makes the elliptic curve E, the finite field F,, the point G, and B public.

But, Bob keeps s secret. Then, Alice sends her message to Bob by performing the following :

» Alice represents her message as a point M € E(F).

» Alice generates a secret integer k at random and calculates M,=kG.
» Alice calculates M,=M-+kB.

> Alice sends M; and M, to Bob.

The whole process implemented by Alice is encryption procedure.

Bob decrypts the chipertext by solving

M:Mz — SM1

as

M2 - SM1 = (M'H(B ) —skG

= M+k(sG) —s(kG) =M
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EL GAMAL
W, L

and calculates B = sG. Bob makes E(Fq), G, B public.

o

—

ﬂ Alice represents her message as a point M in Fq
ice generates a secret integer k at random
Alicesalculates M; = kG

Alice calcutates M, = M + kB

Alice sends M;>and M, to Bob.

@

_

W) |
e —
c~_"Bob decrypts the ciphertext by solving M = M, — sM;.

as

M, —sM;=(M+ kB) - skG=M + k(sG) — s(kG) =M

3.12Figure 2-El Gamal




28

3.13 MASSEY-OMURA ENCRYPTION

» Alice and Bob an elliptic curve E over a finite field F,,.
We must be careful while choosing E(F;) since the discrete logarithm
problem must be very hard in E(F, ). Assume that N=# E(F,).

» Alice expresses her message as a point M ¢ E(F,)

» Alice selects a secret integer ex with ged (ea, N )=1 and calculates M;=eaM and
sends M; to Bob .

» Bob selects a secret integer eg with ged (eg, N )=1 and calculates M,=egM; and
sends M, to Alice .

» Alice calculates ds € Zy such that daea =1 ( mod N ) .Then she calculates M3=d M,
and sends M; to Bob .

» Bob calculates dg € Zy such that dg eg = 1( mod N ). Then he calculates M4= dgM3.

So, M4 =M is the original message.

da is the inverse of es ( mod N ) and dg is the inverse of eg ( mod N ).
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MASSEY OMURA ENCRYPTION

e

—

W
ﬂ Alice selects a secret integer e4 and calculates M; = es M

ice sends M; to Bob

™
(d
\

8y

L

T~
=
\ vf«é\\;\

c~_-Bob selects a secret integer eg and calculates M, = egM;= ege .M

ends M, to Alice

@

==

ﬂ Alice calculates M;=dM,=degesM = egM

ice sends M;to Bob

N
@

W,

g

c~_— Bob calculates M, = dgM; = dgegM = M

3.12 Figure 3 — Massey Omura Encryption
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CHAPTER 4

PRIMALITY TEST

4.1. PRIMALITY TEST
In this section ,we will study more efficient methods as Miller-Rabin test, The rho

method,Factor base algorithm, Continued Fraction method and Quadratic Sieve method.

4.1.1 Definition : Let m be a large integer. A primality test determines whether m is

prime or not.

Example 4.1. If there exist an integer a such that
a" # a(mod n),

then 7 is not prime integer. It is known that if # is a prime integer then
a" = a(mod n)

for any integer a. Therefore it is a primality test.

4.1.2. Definition : A number n passes the pseduoprime test to base a if
a" = a (mod n).

Of course, it doesn’t imply that 7 is prime.

4.1.3. Definition : Let a be a positive integer. If n is a composite(not prime) positive
integer and
n

a’ =a (mod n),

then 7 is called a pseudoprime to the base a.

Lemma : Ifged (a, n) =1, then
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a"=a(modn) <a""' =1 (modn)

Proof : ged(a, n) = 1 implies that " mod n exists. Thus we multiply both sides
of
a"=a(mod n)
bya'".
We multiply both sides of
a"' = 1(mod n)

by a.

Example 4.2. For instance
2% =1 (mod341)
with 341 = 11.31. Hence, 341 is a pseduoprime with base 2.

Example 4.3.
2°° = 1(mod561), 561 =3.11.17

= 561 is a pseduoprime with base 2.

Example 4.4.
3% = 1(mod91)91 = 7.13

=91 is a pseduoprime with base 3.

4.1.4. Definition : A composite integer 7 is said to be a Carmichael integer if
a"' = 1(mod n)
for all positive integer a such that
ged(a, n) =1,

.1.e., it is pseduoprime to any base a, where gcd(a, n) = 1.

Example 4.5.
a% = 1(mod561)
for any integer a such that ged(a, 561) =1
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a*= 1(mod3) =) (¢*)*™ = a°*° = 1(mod3) for all integer a

a'*=1(mod11) = ("9 =4** = 1(mod11) for all integer a

a'’ = 1(mod17) = (a'%)* =’ = 1(mod17) for all integer a
= ¢ = 1(mod.11.13.17 = 561)

A simple characterization of Carmichael integer is given by the following lemma:

Lemma : A positive integer z is a Carmichael integer < It is a product of distinct

odd primes
n=pip2:Pm
such thatp;—1|n—1for 1< i<m.
Proof: »n> 2 since it is composite.
b""' = 1(mod n)
for all positive integers b.There exist an integer a such that
ord,a = Mn).
Since "' = 1(mod n) ,it follows that
AMn)|n—1.

n>2 = Mn)iseven = nis odd.
Now, suppose that 3 an odd prime p such that
p“|n
for k > 2.Then
Mp) =) =p"" (- 1| Mn)
=>p@-DIm-1)=)pln-1
contradiction.Thus,

n=pip2-:Pm

where py, p2, - * *, pm are distinct odd primes. Since

AMm)=lem {¢ (p)=p1 =L, ¢(2) =p2— L,........ » O(Pm) =Pm — 13,



obviously ,p; — 1 | A(n) thus,

pi—1|n—1
forl1 <i<m.
Let n be a product of distinct prime integers, i.¢.,

n=pipP2" " Pm

Let a be a positive integer which is relatively prime to #. Then
ged(a,p)=1forl<i<m=

aP = 1( mod p;) for 1< i <m.

Sincepi—1|n—1forl1<i<m,
T integersri for 1 <i<m
such that
n—1=rip;— 1) forl<i<m =
a" ! = @i = 1(modp;) for 1 <i<m =

a"! = [(mod n).

But this means that » is a Carmichael integer.

Example 4.6. 561 is Carmichael integer since

561=3.11.17

and

21560,10 | 560, 16 | 560.

This one is shorter than the proof of the previous example.

Example 4.7. 1729 = 7.13.19 is Carmichael integer since

61728,12 | 1728,18 | 172

33
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Example 4.8. 41041 = 7.11.13.41 is Carmichael integer since

6 | 41040, 10 | 41040, 12 | 41040,40 | 41040

a)825265 = 5.7.17.19.73

b)321197185 = 5.19.23.29.37.137

¢)5394826801 = 7.13.17.23.31.67.73

d)232250619601 = 7.11.13.17.31.37.73

€)9746347772161 =7.11.13.17.19.31.37.41.641
1)1436697831295441 = 11.13.19.31.37.41.43.71.127
£)60977817398996785 = 5.7.17.19.23.37.53.73.79.89.233
h)7156857700403137441 = 11.13.17.19.29.37.41.43.61.97.109.127.

Corollary : A Carmichael integer is a product of at least three distinct primes.

Proof: Suppose » = p.q, where p and ¢ are distinct primes. Assume that p < g¢. By previous

lemma
n— 1= 0(mod(q — 1))
But
n—l=pg—1=pg—1+)—1=p@g—1)+p—1

which implies that ¢ — 1 | p — 1. But it contradicts p <g¢.

4.1.5. Definition: Let n be an odd composite integer and a be an integer such that
ged(a, n) = 1. If

n-1

agz(ﬁj (mod n),
n

where (1] is the is the Jacobi symbol,then 7 is called an Euler pseduoprimeto the base a
p

1
2

a ELEJ(modn),
p
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where (ﬁj is the Legendre symbol.
p

Example 4.9. n = 1105 is an Euler pseduoprime to the base @ = 2 since

2552 = 1(mod1105)

2 ~ g 3 3 . 52871 _ 13;71 - 17;71
(mj_(sj (13) (wj (D e e

— ( 1) 3+21436 :1

and

Proposition : If n is an Euler pseduoprime to the base a, then it is also a pse- duoprime to
the base a.

Proof :

n-1 n-1
a? = (ﬁj (modn) =(a 2 ) = [ﬁjz (mod n)
n n
which obviously implies that

a1 = 1(modn).

4.1.6. Definition: Let n be an integer with

n—1=2",

where r is a nonnegative integer and s is an odd integer.If
s 2
a® = 1(modn) or ¢’* = —I1(modn)

for some 0 < j <r — 1 for an integer a, then we say that n passes strong pseduoprime test to

base a.

4.1.7 Definition: A composite integer n which passes the strong pseduoprime test for the base

a is called a strong pseduoprime to the base a

Example 4.10. n=1105 =



n-1=1104 =29
2% =967 (mod 1105)
229 =259 (mod 1105)

2%% = 781 (mod 1105)
2%% =1 (mod 1105)

Therefore 1105 is not a strong pseduoprime to the base 2. Because we didn’t get
(=D
one step before getting 1.

Example4.11. n = 15790321 =

n—1= 15790320 = 24986895

2986895 = 128(mod15790321)

but
225 — 2986895 — 16384(mod15790321)

248 — 4986895 — | (110d15790321)

which means that n = 15790321 passes strong pseduoprime test to base 2.

4.1.1. Theorem If p is a prime and p - a, then p passes strong pseduoprime test to base a.

Proof: p—1=2%s. Let

p-1
v r—k
bh=a? =a* for0<k<r

=a"" =1 (modp)

S
Il
S

(=)
If

1 (modp).
So,

36



37

by=1(modp) or by = -1 (modp)

If by = 1 (mod p ) then

b =b =1(modp).
Thus, b, = 1 (modp ) or b, = -1 (mod p ). So if ..

bo=b=by=by=........... =by=1(modp)

with k <r, then since b;,, = bx = -1 (mod p ).

by,=1(modp)orb,, =-1(modp)

Consequently, either
by =1(modp)
or 3 k such that 0 <k <r and

by = -1 (modp).

I't means that p passes strong pseduoprime test to base a. The strong pseduoprime test to base a is

stronger than Euler pseduoprime test to basea, as it can be seen in following proposition.

Proposition: If » is a strong pseduoprime to base a, then it is an Euler pseduo- prime to the

base a.

Proof : Let

= kl k2 k3 m
=P PPy ceeeeeeennnnn. P,

n—1=2%s, where s is odd integer and

a® = 1(modn) or &°

forsome 0 <j <r—1.

casel:a®= 1(modn): Let a prime p divides n. Then

ordpa\s
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since @5 = 1(modp) which implies that

ord ,a
is odd. But ord ,a also divides p — 1.Thus, it divides p — 1.Thus, it divides P2 to0.
Therefore,
Pl
a?=1(modn)= (ﬁj =1
p
by Euler’s criterion. The Jacobi symbol is
a | — a - a |, =1
- it (2]
[p) [pf‘pézpé"’ ----- pffj A\
n—1 i
a2 = (a8)2 —1 (modn). Thus,
n—1
- (2)
n
case2: o2 = —1(modn) forsome 0 <j <r — 1: Again let a prime p divides n. Then
52 = —1(modp) = (aS2J )* = 1(modp) =
j+1 - . R
52 = I(modp) = ord ,a|s2 " andord,a \ s2= ord,a=w>"",

,where w is an odd integer.Since

ordpa | p—1,2ijl lp—1,

we have p = w21 41 for some integer u.

ord ,a a [L—IJ ord ,a _ 1
a ? E-l(modp):[—]sa 2)og 2 | 2 =
p

p-1 ] p-1 u

(-1>[”"p“ (1) =) = ()

which implies that
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)= (i] - T =
n i P

i=l1 i=l1

ﬁ ( _1 )uiki — ( _1 )k1u|+k2u2+ ......... +kmum
i=1

Now
n:pf] p/;z pf;m = (uy 2j+1 _|_1)k1 (u22J+1 _|_1)k2 ...(um2j+1 _|_1)km _

1+ u )+ gu) -1+ 2 kpum )(mod 22312

=1+ (ku, +ku, + - +kmum)(mod 2212 =

s2 7= "T =2i (ku, +kou ++ +kmum) J(mod 22172 =

27173 =k u, +kyu, + -+ kmum (mod 291

and

n-1
a 2 = (aSZ’ )2"1’] = ((_1 )s )2"717’ — ( ( -1 )s )2”171 — ( -1 )klul +kouy +o+kuy

n—1 )
since (a 2 )’ = l(modn)anda“'zjz( j (mod 7). Thus

1 (a
2 =(;j(modn)

which means that 7 is an Euler pseduoprime to the base a.

I | Q

(]

Remark : The converse is not true. We have seen that 1105 is an Euler pseduoprime

to the base 2, but it is not strong pseduoprime to the base 2

Theorem 4.1.2. The Solovay-StrassenProbabilistic Primality Test:Let n be a positive integer.
Select, at random, k integers less than », and perform Euler pseduoprime test on
n for each of these bases. If any of these test fails, then n is composite. If n is composite, the

probability that n passes all k tests is less than
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Theorem 4.1.3. Rabin-Miller Probabilistic Primality Test:Let n be an integer. Select, at
random, k different positive integers less than #, and perform strong pseduoprime test on
n for each of these bases. If any of these test fails, then n is composite. If »n is composite, the

probability that n passes all k tests is less than

Of course, Rabin-Miller test is better than the Solovay-Strassen test

4.2. FACTORIZATION BY CONTINUED FRACTION

Let’s see the generalization of Fermat factorization .in the following lemma.

Lemma : It is possible to factor n if 3 positive integers x and y such that

x’=y*(modn)

I<y<x<nand x+y #n

Proof: The inequalities imply that n doesn’t divide (x —y) and doesn’t divide (x +y).
Consequently

ged(n,x —y) # n,ged(n,x +y) # n
n|(x—y)x+y) = ged(n,x —y) # 1

for otherwise, n | x +y which is contradiction. By the same way
Hence
ged(n,x +y) # 1.

are proper divisors of 7.

Example 4.10. 51> —39* = 1080 = 0(mod216).
ged(216, 51 — 39) = 12, gcd(216, 51 + 39) = 18
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So 12 and 18 are factors of 1080.

Now, we can express the theorem on the factorization by means of continued fractions.
P2 =(-1)"'"Vi11(modn)

where pk and Vk+1 are defined. Suppose that k + 1 is even, and Vk+1
is a square, i.e.,

2
Vk+1 =T
for some integer r. Then

P2 =1 (modn)
which we can use it for obtaining the factors of 7. Therefore,it is enough to look at the terms with

even indices in

{Vk }

which are squares.

Example 4.11. Let’s factor 649 by continued fraction algorithm. Let

o, = 649 = LV ”1649.

Then
Uy=0.V,=1,2,=[649]|=25. = p,=25,q,=1.
So
Po=25,9,=1
4 _ 2
U =a,V,—U,=a,=25,V,= P "Yl _ 649 95724
0
U, +649 25+ /649
o= - ~2.103....
% 24

It implies that
a,=2= p,=252+1=51, q,=2

649 -23* _

Uy= ¥, —U=224-25=23, ;= —

5
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But 5 is not a square.

23+ /649
= %=9.695....:> a,=9 =
P, =9.51+25 =484 =535, ¢,=9.2+1 = 19
2
U, =95-23=2, y,= 29722 _33
= 222—3 VO 1438, a, =1

= p,=1484+51, ¢,=1.19+2=21

2
U,=133-22=11,V,= %=16=42

since
Po =a,q, =1,p1 =apa, +1,q, =a,,
Pk = 4P TP e = A Qp T

for k = 2. Consequently,

5352 = 42(mod 649)

But
535 — 4 = 529 = 32 59 and 535 + 4 = 539 = 7211
ecd(649, 32.59) = 59, gacd(649, 72 11) = 11
= 59.11 | 649.
In fact
649 = 59.11.

43. THE p-1 FACTORING ALGORITHM(POLLARD)

Let n be an odd composite integer and p be one of its unknown prime factor. Choose M such
that it covers all small prime factors of p — 1 (Here, we assume that p — 1 has only small

prime factors). Then,

M = 1(modp)



ifp—1|M!.

u= gcd(2M! —1,n)

gives a nontrivial factorization of n if u = 1 and u = n.Here, the diffuculty is to find
a good large M to find the solution. The method is succesful ifn has a prime factor p

such that p — 1 has small prime factors.

Example 4.12. Let n = 12657 .Take M =3 .

2 —1=20—1=6
ged(63,12657) =3
Hence, 3 is a factor of 12657.In fact, 12657 = 3.4219.

Example 4.13. Let n = 34567.

21 = 2(mod34567) = ged(2 — 1,34567) = 1

22! = 4(mod34567) = ged(d — 1,34567) = 1

23! = 64(mod34567) = ged(64 — 1,34567) = 1

2 = 12221(mod34567) = ged(12221 — 1,34567) = 13

Hence 34567 = 13.2659

Example 4.14. Let n = 36287

21N = 2(mod36287) = ged(2 — 1,36287) = 1

22! = 4(mod36287) = ged(d — 1,36287) = 1

23! = 64(mod36287) = ged(64 — 1,36287) = 1

2 = 12622(mod36287) = ged(12622 — 1,36287) = 1
29! = 34644(mod36287) = ged(34644 — 1,36287) = 1
20! = 27347(mod36287) = ged(27347 — 1,36287) = 1

27! =25133(mod36287) = ged(25133 — 1,36287) = 1

43
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28! = 34505(mod36287) = ged(34505 — 1,36287) = 1
29! = 5844(mod36287) = ged(5844 — 1,36287) = 1
2100 = 14473(mod36287) = gcd(14473 — 1,36287) = 1
21! = 18162(m0d36287) = ged(18162 — 1,36287) = 1
212! = 6589(mod36287) = gcd(6589 — 1,36287) = 1

2131 = 18734(mod36287) = gcd(18734 — 1,36287) = 131.

Thus, 131 is a factor of 36287. In fact,36287 = 131.277.

Remark : To find the least positive remainder of 2M' modulo n, we can do the following

computations

— 2 o3 _ o4 M! _ oM
s,=2"modn,s;=s;modn,s, =s;modn, ......... 27 =s, =s,, ,modn

since modular exponention can be done efficiently.

Remark: Later, we will see the elliptic factorization method which is the advanced form of p — 1

factoring algorithm.

4.4. Rho-Method(POLLARD):

Again, let n be an odd composite integer and p be one of its unknown prime fac- tor.

Choose a polynomial with integer coefficients £(x) of degree at least 2. For instance

b

f(x)=x% + 1.
Select a particular value x = x_ at random. Calculate
x1 =1(x,),x, = f(x)) = £(£(x,)),
xi = f(xi—1),

Stop at M th step, where

Xy * Xg(modn)and x,, = x, (modp) forsome 1<k <M

Example 4.15 : n = 1041. Let xo = 2 and £(x) = x> + 1.
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X, =5 = 5¥2(mod1041) and 5—2=3| 1041 =
1041 = 3.347

Example 4.16:. n = 36287. Let’s select x = x, = 2 and £(x) = x>+ 1
X, =35 =5#2(mod 36287) and 5 —2 = 3 doesn’t divide 36287

X, =26 = 26#2(mod 36287), gcd(24,36287) = 1
26%5(mod 36287), ged(21, 36287) =
X, =677 = 677#2(mod 36287), ged(675, 36287) =

677%5(mod 36287), ged(672,36287) = 1
677%26 (mod 36287 ), ged (651 , 36287 )= 1

x, = 458330 = 22886(mod 36287) =

22886=2(mod 36287), ged(22884,36287) = 1

22886=5(mod 36287), ged(22881,36287) = 1
22886=26(mod 36287), gcd(22860, 36287) = 1
22886=677(mod 36287), gcd(22209, 36287) = 1

X, = 210066388901 = 2439(mod 36287) =
2439=2(mod 36287), gcd(2437, 36287) = |
2439=5(mod 36287), gcd(2434, 36287) = 1
2439=677(mod 36287), ged(1762, 36287) = 1
2439=22886(mod 36287), ged(20447,36287) = 1

Xe = 33941 = 33941=2(mod 36287), gcd(33939, 36287) = 1

33941=5(mod 36287), ged(33936, 36287) = 1
33941=26(mod 36287), ged(33915, 36287) = 1
33941=677(mod 36287), ged(33264, 36287) = 1
33941=22886(mod 36287), gcd(11055, 36287) = 1
33941=2439(mod 36287), ged(31502, 36287) = 1

X, = 24380 = 24380=2(mod 36287), ged(24378,36287) = 1

24380=5(mod 36287), ged(24375,36287) = 1
24380=26(mod 36287), ged(24354, 36287) = |
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24380=677(mod 36287), ged(23703, 36287) = 1
24380=2288(mod 36287), ged(1494, 36287) = 1
24380=2439(mod 36287), gcd(21941,36287) = 1
24380=33941(mod 36287), ged(9561,36287) = 1

Xg = 3341 => 3341=2(mod 36287), gcd(3339, 36287) = 1

3341=5(mod 36287), gcd(3336, 36287) = |
3341=26(mod 36287), ged(3315,36287) = 1
3341=677(mod 36287), gcd(2664, 36287) = 1
3341=22886(mod 36287), ged (20222, 36287) = |
3341=2439(mod 36287), ged(902, 36287) = 1
3341=33941(mod 36287), ged(30600, 36287) = 1
3341=24380(mod 36287), ged(21039, 36287) = 1
Xy = 22173=> 22173=2(mod 36287), ged(22171, 36287) = 1

22173=5(mod 36287), ged(22168, 36287) =1
22173=677(mod 36287), ged(21496, 36287) = 1
22173=22886(mod 36287), ged(713, 36287) = 1
22173=2439(mod 36287), ged(19734, 36287) = |
22173=33941(mod 36287), gcd(11764, 36287) = 1
22173=24380(mod 36287), ged(2207, 36287) = 1
22173=3341(mod 36287), ged(18832, 36287) = 1
X190 = 25654 = 25654=2(mod 36287), gcd(25652, 36287) = 1
25654=5(mod 36287), ged(25649, 36287) = 1
25654=26(mod 36287), gcd(25628, 36287) = 1
25654=677(mod 36287), gcd(24977, 36287) = 1
25654=22886(mod 36287), ged(2768,36287) = 1
25654=2439(mod 36287), ged(23215,36287) = 1
25654=33941(mod 36287), gcd(8287, 36287) = 1
25654=24380(mod 36287), ged(1274,36287) = 1
25654=3341(mod 36287), ged(22313,36287) = 1
25654=22173(mod 36287), gcd(3481,36287) = 1
X)) = 26685 = 26685=2(mod 36287), gcd(26683, 36287) = 1
26685=5(mod 36287), ged(26680, 36287) = 1
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26685=26(mod 36287), gcd(26659, 36287) = 1
26685=677(mod 36287), gcd(26008, 36287) = 1
26685=22886(mod 36287), gcd(3799, 36287) = 131
Thus ,131 is a factor of 36287.In fact,36287 = 131.277.

4.5. FACTOR BASE METHOD:

Let n be an integer.We calculate

2

X" —n
for several values of x,i.e..for a, a,,...,amm .Suppose that we find
a, a. ,...,d.

b b I

among them, such that
(al.zl—n)(afz—n), ...... ,(ai—n)zbz(mod n).
for some integer b. Then, we can obtain the factors of n since
a;a; .....a; =b*(modn).
We select the values of x such that x* — n is a small integer. Thus, it has small prime factors.

Therefore, we may select x in the interval

Jn—M<x < n+M

for some integer M. Then, we try to factorize x> — n for which x is in the interval. We

select a set of primes

P={-1,D s Pgseveeeennennn N

,called a factor base satisfying p < B.B is an integer depending on the size of n. —1

is also included in g .

Construct the following table

o \/Z—M<x<\/;+M x* —n

2 — as (31
P Xy X, —=n=Pp, Py --eeee P



2 — 1 D2 1y 2 .y
P, X, X —n=pipi .. ... pi

h,h,,...h,

which are 0 or 1 such that

ap

(PP oo P (pipiE . P}

is a perfect square.Obviously, it holds if and only if

a, h, +a,h,+---+a,hy= 0(mod2)

ay; hl + a22h2 + - Fay huE 0(1’1’10(12)

axi h1 =+ ax h2 + A huE 0(m0d2)

if and only if

48
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So, the vector (h, h,, ..., hy) can be found from row-reduced echelon matrix by apply- ing the

elementary row operations to the matrix

a,mod2 a,.mod a,, mod?2
a,, mod2 a,, mod2 a,, mod?2
a,,mod2 a,,.mod2 a,, mod2

Example 4.18. n =4633.Let p=1{2,3,5}

V4633=68.07......cccvvinnn.n Let 38 < x <98. By Maple define
H(x) =x>— 4633



/f 38 \\
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

-3189
-3112

-3033
-2952
-2869
-2784
-2697
-2608
-2517
-2424
-2329
-2232
-2133
-2032
-1929
-1824
-1717
-1608
-1497
-1384
-1269
-1152
-1033
912

-789

-664

-537

-408

/ -3 X 1063 \
-2°389
37337
-2°3%41

.19 X 151
2%3 X 29
3 X29 X31
2163

-3 X 839
233 X 101
217 X 137
2°3731
-3°79
24127

3 X643
2°3 X 19
.17 X 101
233 X67
-3 X499
2°173
-3°47

2732

-1033
243X 19
-3 X263
-2’83

23 X179
233 X 17
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67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
&9
90
91
92
93
94
95
96
97

3 X69 X31
2°241
3 X 17 X41
243 X 47
2423
2534
32307
23367
3X17 X61
233X 137
3467
20319
3 X 1277
24251
32467
2°3%61
4583
233 X199

51
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We select those which are factorizable only by means of {2,3,5}:

x7=59=—1152=—2 .3 .5 (mod4633)
x5 =607=—144 = —2 3 5 (mod4633)
X2=068=—9=—2 3 5 (mod4633)
x2=069=128 =2 3 5 (mod4633)
x:=285=12592 =2 3 5 (mod4633)

x2== 9%=-50=—23 5 (mod4633)

Therefore, the matrix is

1 1.1 0 0 1
7 4 0 7 5 1
(mod 2) =
2 2 2 0 4 0
0o 0 00 o0 2
1 1 1 0 0 1
1 0 0 1 1 1
0O 0 0 O 0
0O 0 0 O
It is row equivalent to
1 0 o0 1 1 1
0o 1 1 -1 -1 0
0 0 0 0 0 O
0 0 0 0 0 o0

The corresponding solutions are



for free hy, h,,hs, h.In particular,

is a solution, i.e.,

Thus

hy=(h, +hs +hy)
hy=(hy+h, +hy)
0
0
0
0
h, 0
h, 0
hy | |1
h| |1
hy 0
h 1

N

68269796 = (-2375° ) (273°5%) (-2'3%5?) = (-1)*2%3%5?
ged (68.69.96 — 2%35,4633) = 113

4633 =41.113
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CHAPTER 5

CONCLUSION

In Chapter 1, I explained the history and development of cryptography.

In Chapter 2, I exposed finite field, I have included and explained prime finite field and
boundary finite field in details. Extensive exercises are included for arithmetic of finite field.

In Chapter 3, Elliptic Curves defined on finite field has been covered with examples. I
exposed the Diffie-Hellman Key Exchange, El — Gamal, Massey — Omura Encryption.

In Chapter 4, I exposed Primality Test.

Some maple commands have been written for finite field arithmetic.
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