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ABSTRACT 

First, I have included and explained some number theoretical facts in the beginning. Then 
Finite Field has been covered with examples in details. I explained Elliptic Curve 
Cryptosystems. I gave the maple algorithms which are useful for computing. 
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Öz 

Baslangicta sayilar teorisini ana hatlarıyla açıkladım. Sonra, Finite Field detaylı olarak 
örneklerle gosterilmiştir. Devamında Elliptic Curve Cryptosistemlerini açıkladım. 
Hesaplamaları yaparken kolaylık sağlamasi için maple algoritmaları yazılmıştır. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

 

Cryptography is the science of securely transmitting message from a sender to a

receiver. The objective is to encrypt the message in a way such that an eavesdropper would

not be able to read it. A cryptosystem is a system of algorithms for encrypting and decrypting 

messages for this purpose.  

Cryptography comes from the Greek words “Kryptos” which means hidden and

“Graphen” which means to write. Classical cryptosystems, substitution and transposition

ciphers, were used until modern cryptography were developed. The earliest known use of

cryptography is Egyptian Hieroglyphics. Later, Julius Caesar used a monoalphabetic 

substitution cipher. Frequency  analysis techniques for breaking monoalphabetic substitution 

ciphers invented around 1000 CE. In 1465, Alberti found polyalphabetic ciphers. 

Cryptography is performed by hand writing until the early 1900s. It became a mathematical

science in the middle of the 19th century. The cryptographic science was known by Russians, 

Europians and Arabics. They used cryptography in diplomatic and military communications.

In the beginning of 20th century US, Germans and Japans made use of simple cryptosystems

in military and diplomacy. By the invention of telegraph and radio, cryptology was 

developed. In the World War I, the Red Army of Russia organized its first cryptographic 

service. New ciphers were created by the Red Army in 1921-1922. Some ciphering  machines 

were developed  and started  to  be  used  in  1930s.  Germans  used  Enigma machine. Japans 

used  Krieg,  Fuller  and  Burg,  Purple  Code  machines in  World War II. In  1939-1940, 

Enigma was broken by American and British cryptographers. Moreover, the Purple Code was 

broken by Americans and Russians cryptographers. In 20th century, contemporary cryptology 

has displayed a considerable acceleration by the invention of computers.  

Diffie and Martin Hellman developed Diffie-Hellman key exchange in 1976. It is public 

key algorithm and depends on discrete logarithm in a finite field. Later, RSA was discovered 

1 
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by Ron Rivest, Adi Shamir and Leonard Adleman in 1977. El Gamal is introduced by  

El Gamal cryptosystem. It depends on discrete logarithm. In the middle of 1980s, Koblitz and  

Miller invented Elliptic Curve Cryptography(ECC) which is based on discrete logarithm on 

abelian groups 

To begin with, I exposed Finite Field. I use maple algorithms to solve examples. 

Furthermore, third chapter provides Elliptic Curve Cryptosystems. In chapter 3 I draw tables 

of Diffie-Hellman Key Exchange, El-Gamal and Massey-Omura Cryptosystems. Then, in 

chapter 4, I have included and explained Primality Test.  

In the future, I wish to work on algebraic curves, elliptic and hyper elliptic curves. 
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CHAPTER 2 
 
 

FINITE FIELD ARITHMETIC 
 
 
 
2.1  FINITE FIELD ARITHMETIC 

Number systems, the rational numbers, the complex numbers and the integers modulo a 

prime number are the examples of fields. A field has addition, substraction, multiplication and 

division operations. 

A field under addition and under multiplication satisfies the following arithmetic 

properties. 

i) ( F, + ) is an abelian group where the additive identity is 0. 

ii) ( F\{0}, .) is an abelian group where the multiplicative identity is 1. 

iii) The distributive law: for all c,α,β ε F, c(α+β)=cα+cβ 

In a field, subtraction of field elements is described with respect to addition such that α-

β=α+(-β) where -β is the unique element of F, that is, β+(-β)=0, for all α,β ε F. Division of 

field elements is described with respect to multiplication such that α/β=αβ-1 with β≠0 where 

β-1 is the inverse of β. Therefore a field consists two operations, addition which is denoted by 

+ and  multiplication which is denoted by •. 

 

2.2   EXISTENCE AND UNIQUENESS 

The number of elements  in a field is said to be the order of finite field.Assume that Fq 

be a finite field where q is the order of the finite field , Fq. q is a prime power  such that 

pmwhere p is a prime number , m is a positive integer. The prime number p is called the 

characteristic of F. F is called a prime field if m=1. F is called an extension field if m≥2. 
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2.3  PRIME FIELDS 

Assume that p is a prime number. In Fp, addition and multiplication operations are 

performed modulo p. The elements of Fp is {0, 1, 2,......., p-1} a mod p gives intiger remainder 

r where r is in the range [0, p-1]. This operation is said to be reduction modulo p.  

The addition and multiplication operations are defined as follows:  

i) Addition operation : Let α, β ε Fp. α+β=r where r ε Fp, r is the remainder when the 

integer α+β is divided by p. This operation is called addition modulo p and written α+β≡r 

( mod p ). 

ii) Multiplication operation : Let α, β ε Fp . αβ=s where s ε Fp, s is the remainder when 

the integer αβ is divided by p. This operation is called multiplication modulo p and 

written αβ≡s ( mod p ). The additive identity is the integer 0 and the multiplicative 

identity is integer 1. 

To define subtraction of field elements, we need to describe the additive inverse.  

 

       iii) Additive inverse : Let α ε Fp . (-α) is the additive inverse of α in Fp such that  

             α+(- α)≡0 ( mod p ). 

      To define division of field elements , we need to describe the multiplicative  

       inverse.                                                    

iv) Multiplicative inverse : Let α ε Fp where α ≠ 0. α-1 is the multiplicative inverse       of 

α in Fp such that αα-1≡1 (mod p). 

As it is stated above, subtraction and division are described in terms of additive and 

multiplicative inverses that is α- β (mod p ) is α+ (-β) (mod p ) and               α/ β (mod 

p) is α( β-1 ) (mod p ). 

To illustrate; the elements of F23 are {0, 1, 2,....., 22}. The following arithmetic 

operations are the examples of F23. 

i) Addition = 19+20=16 since 39 mod 23 = 16. 

ii) Subtraction = 19-20=22 since –1 mod 23 = 26.  
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iii) Multiplication = 19.20=12 since 380 mod 23 = 12. 

iv) Inversion : 19-1 = 17 since 19.17 mod 23 = 1. 

 

2.4. BINARY FIELDS (THE FINITE FIELD F2
m ) 

There are two ways to construct F2
m. One of them is polynomial basis representation. 

The elements of F2
m are the polynomials whose coefficients are in the field F2 = {0,1} with 

degree at most m-1. 

               F2
m = {αm-1 Xm-1 + αm-2 Xm-2 + .....................+ α2 X2 + α1 X +α0  : αi ε {0, 1} } 

 

We choose an irreducible binary polynomial f(x) with degree m, which cannot be factored 

into binary polynomials whose degrees less than m. 

Addition operation in binary fields is the usual addition of polynomials, with coefficient 

arithmetic performed modulo 2. 

  i) Addition operation : Let  

      α=αm-1 Xm-1 + αm-2 Xm-2 + .....................+ α2 X2 + α1 X +α0  , 

      β=βm-1 Xm-1 +β m-2 Xm-2 + .....................+ β2 X2 + β1 X +β0  ε F2
m . 

      α+β=r where r ε F2
m . r= rm-1Xm-1+ ..........................+r0 with ri ≡αi + βi (mod 2 ). 

     Multiplication operation in binary fields is done modulo the reduction    polynomial     

f(x),  

   ii) Multiplication operation:  Let  

      α=αm-1 Xm-1 + αm-2 Xm-2 + .....................+ α2 X2 + α1 X +α0  , 

             β=βm-1 Xm-1 +β m-2 Xm-2 + .....................+ β2 X2 + β1 X +β0  ε F2
m . 
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 αβ= s where s ε F2
m . s=sm-1 Xm-1 +s m-2 Xm-2 + .....................+ s2 X2 + s1 X +s0 is the 

remainder as the polynomial s=αβ is divided by f(x) with all coefficient arithmetic performed 

modulo 2. 

 To define subtraction of F2
m we need to describe the additive inverse. 

    iii) Additive inverse : Let α ε F2
m . (- α) is the additive inverse of α in F2

m such that                     

.         α+(- α)=0 in F2
m 

To define subtraction of F2
m we need to describe the additive inverse. 

 

     iv) Multiplicative inverse : Let α ε F2
m where α ≠ 0. α-1 is the multiplicative inverse         

          of α in  F2
m  such that αα-1 =1 in F2

m . 

As it is stated above, subtraction and division are described with respect to additive and 

multiplicative inverses that is α - β in F2
m is equal to α +(- β) in F2

m and      α / β in F2
m is 

equal to α ( β-1 ) in F2
m . 

For example; the elements of F2
4 are the 16 binary polynomials of degree at most 3 such 

that {0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1, x3, x3+1, x3+x, x3+x+1, x3+x2, x3+x2+1, x3+x2+x, 

x3+x2+x+1}. 

We choose the reduction polynomial f(x) = x4+x2+1 in F2
4. The following arithmetic 

operations are the examples of F2
4.  

                i)   Addition : (x3+x2+1)+ (x2+x+1) = x3+x      

          ii)  Subtraction :     (x3+x2+1)- (x2+x+1) = x3+x   

          Because –1 = 1 in F2 . 

          iii) Multiplication :       (x3+x2+1) (x2+x+1) = x2+1  since 

         (x3+x2+1) (x2+x+1) = x5+x4+x3+ x4+x3+x2+ x2+x+1=  x5+x+1     

         ( x5+x+1) mod ( x4+x+1 )= x2+1 

          iv) Inversion : ( x3+x2+1 )-1=x2 since (x3+x2+1 )( x2 ) mod ( x4+x+1 ) = 1 

         We find the inversion of ( x3+x2+1 ) by performing Euclidean and extended                                       

          Euclidean Algorithm. 
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                                  x4+x+1 =( x3+x2+1 ) ( x )+ ( x3+1 ) 

                                  x3+x2+1 = ( x3+1 ) 1 + x2 

                                       x3+1 = x2+x +1 

                                             1 = ( x3+1 ) - x2 x 

                                               = ( x3+1 ) – x ( ( x3+x2+1 ) - ( x3+1 ) ) 

                                               = ( x3+1 ) – x ( x3+x2+1 ) - x ( x3+1 )  

                                               = ( x+1 ) ( x3+1 ) – x ( x3+x2+1 ) 

                                               = ( x+1 ) (( x4+x+1 ) – x ( x3+x2+1 ) ) – x ( x3+x2+1 )   

                                                = ( x+1 ) ( x4+x+1 ) –( x2+x ) ( x3+x2+1 ) – x ( x3+x2+1 )   

                                                = ( x+1 ) ( x4+x+1 ) – x2 ( x3+x2+1 )   

 

 In maple we can perform finite field arithmetic easily. 

 

Let’s do the example above in maple;  

 

 G: GF (2,4,alpha^4 + alpha+1): 

 a:=  alpha^3 + alpha^2+1; 

                                                a: α3+α2+1 

 a:= G [ConvertIn ] (a) ;  

                                                                a:=( α3+α2+1 ) mod 2 

 b: = alpha^2 + alpha+1; 

                                  b: α2+α+1 

 b:= G [ConvertIn ] (b) ; 

 b:=( α2+α+1 ) mod 2 

   # addition operation # 

  addition : = G [`+` ] (a,b) ;   

                                       addition := ( α3+α ) mod 2 

 

   # subtraction operation # 

 subtraction := G [`-`] (a,b) ;                             

                                                                  subtraction:= ( α3+α ) mod 2  

 



 8

 

                     # multiplication operation #  

 multiplication := G [`*`] (a,b) ; 

                                                   multiplication:= ( α2+1) mod 2   

                     # inversion  # 

 inversion := G[ inverse ](a) ; 

                                                                       inversion := α2 mod 2 

                                                          

 

 

2.4.1   Table 1-reduction polynomial(s) 

 

 

Field 

 

Reduction Polynomial(s) 

F2
113 f(x)= x113+x9+1 

F2
131 f(x)= x131+x8+x3+x2+1 

F2
163 f(x)= x163+x7+x6+x3 

F2
193 f(x)= x193+x15+1 

F2
233 f(x)= x233+x74+1 

F2
239 f(x)= x239+x36+1  or   f(x)= x239+x158+1 

F2
283 f(x)= x283+x12+x7+x5+1 

F2
409 f(x)= x409+x87+1 

F2
571 f(x)= x571+x10+x5+x2+1 

 

                                      

 

2.5 EXTENSION FIELDS 

Let p be a prime and m≥2. The set of all polynomial in the variable x with coefficients 

from Fp is denoted by Fp [X] and the reduction polynomial is f(x). The elements in Fp
m are the 

polynomials of degree at most m-1 in Fp [X]. 
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           Fp
m = {αm-1 Xm-1 + αm-2 Xm-2 + .....................+ α2 X2 + α1 X +α0  : αi ε Fp } 

 

The usual addition of polynomials with coefficient arithmetic performed in Fp is the addition 

operation.Multiplication operation is performed  modulo f(x) which is the reduction 

polynomial. 

For example; Let p=251 and m=5 . The reduction polynomial                        

f(x)=x5+x4+12x3+9x2+7 in F251[X]. This reduction polynomial can be used for the 

construction of F251
5.  

Assume that   

                  α=123x4+76x2+7x+4 and β= 196x4+12x3+225x2+76 in F251
5 . 

 i)   Addition         :  α+β=(123x4+76x2+7x+4)+(196x4+12x3+225x2+76) 

                                        =68x4+12x3+50x2+7x+80 

 ii)   Subtraction   :    α- β=( 123x4+76x2+7x+4 )-( 196x4+12x3+225x2+76 ) 

                                             =178x4+239x3+102x2+7x+17 

 iii)  Multiplication :  α.β=( 123x4+76x2+7x+4 ).( 196x4+12x3+225x2+76) 

                                       =117x4+151x3+117x2+182x+217 

 iv)   Inversion :    α-1 =109x4+111x3+250x2+98x+85 

Let’s  do  the  example  above  in  maple; 

 

 

  G: GF (251,5,alpha^5 + alpha^4+12*alpha^3+9*alpha^2+7);  

                                                 

 a:= G [ConvertIn ] (123*alpha^4+76*alpha^2+7*alpha+4) ;  

                                                                a:= ( 123α4+76α2+7α+4 ) mod 251 
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 b:= G [ConvertIn ] (196*alpha^4+12*alpha^3+225*alpha^2+76) ; 

 b:=( 196α4+12α3+225α2+76) mod 251 

  # addition operation # 

 addition : = G [`+` ] (a,b) ;   

                                                       addition := (68 α4+12α3+50α2 +7α+80) mod 25 

 # subtraction operation # 

 subtraction := G [`-`] (a,b) ;                             

                                                      subtraction:=(178α4+239α3+102α2+7α+179)mod251             

# multiplication operation # 

 multiplication := G [`*`] (a,b) ; 

                                    multiplication:=(117α4+151α3+117α2+182α+217)mod25 

 # inversion  # 

 inversion := G[ inverse ](a) ; 

                                                     inversion := (109α4+111α3+250α2 +98α+85) mod 251 

 

 

2.6  SUBFIELDS OF FINITE FIELD  

F is called a subfield of K if F≤K. In this instance, K is called an extansion field of F. 

Exactly a finite field Fp
m has one subfield of order pt for each divisor t of m. This means that 

α pt = α for αε Fp
m.  
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CHAPTER 3 
 
 

ELLIPTIC CURVES 
 
 
 

3.1. DEFINITION OF ELIPTIC CURVE 

 

The generalized Weierstrass Equation for an elliptic curve is    

y2+a1xy+a3y= x3+a2x2+a4x+a6 

where a1, a2, a3, a4, a5, a6 are constants. We can describe an elliptic curve over Fq in terms of 

the solutions to an equation in Fq . Fq is a prime finite field or a binary finite field. The form of 

the equation depends on finite field Fq. If the field is prime finite field, we use the equation 

y2≡x3+ax+b ( mod p ) . If the field is binary finite field, we use the equation y2+xy= x3+ax2+b 

in F2
m . 

Theorem3.1.1 : (Hasse )  

Let the elliptic curve E be defined over the finite field Fq. Then the order of E(Fq) is 

denoted by # E(Fq) which satisfies                   

                           ⏐q+1 - E(Fq)⏐≤ 2 q  

Theorem 3.1.2:  

            Let q=pm where p is prime and m is a positive integer. Let N = q+1-t. The Elliptic 

Curve E is defined over Fq such that # E (Fq ) = N ıf and only ıf │t│≤2 q  and t satisfies one 

of the following :  

i) gcd (t,p) =1 

ii) m is even and t=±2 q  

iii) m is even , p≡1 (mod 3 ), and t= ± q  



 12

iv) m is odd , p=2 or 3, and t= ± p(m+1) / 2 

v) m is even, p≡1 (mod 4 ) , and t=0  

vi) m is odd and t = 0   

  Let the order of the base point G be n which is a large prime. The number of points on the 

curve is equal to nh denoted # E (Fq ) =nh . h is the cofactor which is a small integer . 

Moreover , h is not divisible by n . For efficiency reasons , it is useful to get the cofactor to be 

as small as possible. In prime finite field , h=1,2 or 4 . In binary finite field    h=2  or  4. 

Calculating the number of points on an Elliptic Curve over Fp . First , we select an x ε Fp and 

state if there is corresponding y on the curve that is for a given x we test if f(x)=x3+ax+b (mod 

p ) is a quadratic residue. 

 

3.1.3 Definition: (The Legendre Symbol ):  

   Let α be an integer and p be an odd prime . The Legendre Symbol (α/p) is defined as 

follows :    

 

                                     0 , if p divides α ; 

            

        (α/p)  =             1 , if α is quadratic residue modulo p ; 

                       

                              -1 , if α is not quadratic residue modulo p ; 

 

We use legendre symbol to find out an integer is a quadratic residue modulo p or not. Then 

the following cases are based on f(x) is a quadratic residue or not modulo p; 

 

i) if f(x) is quadratic residue , there are two points (x , ±y ). 

ii) if f(x) divides p , there is a single point (x , 0 ). 

iii) İf f(x) is not quadratic residue , there is no point . 
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3.1.4 Example :  Let E be an Elliptic Curve y2 =x3 +x+6  over F11. The point (2,7) has 

order 13. So N11 = #E(F11) is a multiple of 13. Hasse’s theorem implies that 

                                        11+1-2 11 ≤ N11 ≤ 11+1+2 11  

The  only multiple of 13 in this range is 13. Hence, N11 =13.  

 

3.1.5 Example : The  elliptic curve E  y2 =x3 -10x+21  is defined over F557. The point  

             (2,3) has order 189. Hasse’s theorem implies that  

 

                                          557+1-2 557  ≤ N557 ≤ 557+1+2 557  

 which means that 

                                             511 ≤ N55 

 

 Hence, N557 is a multiple of 189.The only multiple of 189 in the range   

           

       511 ≤ N557 ≤ 605 is 3 . 189 = 567.  So N557 = #E(F557) = 567. 

 

 

3.2 ELLIPTIC CURVES OVER PRIME FIELD 

 

 Assume that Fp is a prime finite field where p is an odd prime number . Let α, β  in Fp 

such that  4α3+27 β2 Τ 0 (mod p ) . A non –singular elliptic curve is the set of solutions or 

points (x,y) for x,y ε Fp to the equation  

 

                                   y2 ≡ x3+ax+b (mod p)   

 

together with an extra point ϑ is said to be the point at infinity . The equation   

y2 ≡ x3+ax+b (mod p) is said to be the defining equation of E(Fp) . The equation x3+ax+b=0 

has one real root or three real roots. Assume that the point G=(xG, yG) is given ,  xG is called 

the x-coordinate of G , yG is called the y-coordinate of G . The identity element is the point at 

infinity , ϑ  

#E(Fp) is the number of points on E(Fp) . The Hasse Theorem says that : 
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                                  p+1-2 q  ≤ #E(Fp) ≤  p+1+2 q  

 

 

3.3 ADDITION LAW  

 

1. Adding the point at infinity to itself . 

     ϑ+ϑ= ϑ 

2. Adding the point at infinity to any other point. 

(x,y)+ ϑ= ϑ +(x,y) =(x,y) for all (x,y) εE(Fp) . 

3. Adding two points with the same x-coordinates when the points are either        

different or have y-coordinate 0. 

(x,y)+(x,-y) =ϑ for all (x,y) ε E(Fp). 

The negative of (x,y) is (x,-y) 

4. Adding two points with different x-coordinates 

Let (x1 , y1 ) in E(Fp) and (x2,y2) ε E(Fp) .  

These are two points such that x1 ≠ x2. 

(x3 , y3 )= (x1 , y1 )+ (x2,y2) where  

 

                        λ≡(y2-y1)/(x2-x1) (mod p ) 
 
                        x3 = λ2 – x 1 –x2   (mod p ) 
 
                        y3 = λ (x1 – x3 )-y1 (mod p ) 
 

 

We can compute λ, x3, y3 in maple such that; 

 

 Lambda := ( Py[2] - Py[1] ) / ( Px[2] - Px[1] ) mod p; 

 Px[3] := (lambda^2 – Px[1] – Px[2] ) mod p; 

 Py[3] := (lambda* (Px[1] – Px[3] ) – Py[1] ) mod p; 

 

5. Adding a point itself (double a point ) 

Let (x1 , y1 ) in E(Fp) where y1 ≠  
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                      λ ≡ (3x2
1 + a )/ 2y1 (mod p ) 

                      x3 = λ2 –2x 1    (mod p ) 

                      y3 = λ (x1 – x3 ) - y1 (mod p ) 

 

We can compute λ, x3, y3 in maple such that; 

 

 Lambda := ( 3* ( Px[1]^2 ) +a ) – ( 2*Py[1] ) mod p; 

 Px[3] := ( ( lambda^2 )  – ( 2*Px[1] ) )  mod p; 

 Py[3] := (lambda* (Px[1] – Px[3] ) – Py[1] ) mod p; 

 

The set of points on E(Fp ) constructs a group under this addition law. Moreover , the group is 

abelian .Cryptographic systems depended on Elliptic Curve Cryptography base on scalar 

multiplication of elliptic curve points.Let k be an integer and Gbe a point E(Fp) . The process 

of adding G to itself k times is called scalar multiplication , denoted by kG . We calculate 

scalar multiplication of Elliptic Curve points by applying the addition law. 

 

3.3.1 Example :   

 

Let E be the curve   y2 =x3 +x+6  over F11. To count points on E, we make a list of the 

possible values of x and we compute the square roots y of   x3 +x+6  ( mod 11 ). 
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     x                         x3 +x+6                           y                          points 

     0 6 -     - 

                      1 8 -     - 

      2 5 ±4                      (2,4) (2,7) 

                      3 3 ±5                      (2,5) (2,6) 

                      4 8 -     - 

                      5 4 ±2                      (5,2) (5,9) 

                      6 8 -     - 

                      7 4 ±2                      (7,2) (7,9) 

                      8 9 ±3                      (8,3) (8,8) 

                      9 7 -     - 

                     10 4 ±2                     (10,2) (10,9) 

                     ∞ - ∞   ∞ 

 

Therefore E ( F11 ) has order 13. If any group of prime order is cyclic then E is isomorphic to 

Z13. Let α = ( 2,7 ) is a generator point. We can calculate powers of α which is given below 

example. 

 

 

3.3.2 Example :  Let compute powers of α = ( 2,7 ) , 

              calculate 2α = ( 2,7 ) + ( 2,7 )   by  

 

                           λ≡(3.22 + 1 ) / ( 2.7 ) (mod 11 ) 

                ≡ 8 ( mod 11 ) 

                           x3 = ( 82 –2.2 )    (mod 11 ) 

                               =  5 ( mod 11 ) 

                                       y3 = ( 8 .(2 – 5 ) - 7 )(mod 11 ) 

                  =2 ( mod 11 ) 
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Hence, 2α = ( 5,2 ) 

                    

calculate 3α = ( 5,2 ) + ( 2,7 )   by  

             λ≡(7 -2 ) / ( 2 - 5 ) (mod 11 ) 

   ≡ 2 ( mod 11 ) 

             x3 = ( 22 –5 - 2 )    (mod 11 ) 

                  =  8 ( mod 11 ) 

                         y3 = ( 2 .(5 – 8 ) – 2 )(mod 11 ) 

     =3 ( mod 11 ) 

 

Now, let’s continue to compute powers of α in maple. 

 

 lambda := ( y2 – y1 ) / (x2 – x1 )   mod 11 ; 

x3 := lambda^2 – x1 – x2    mod 11 ; 

y3 :=  lambda* ( x1 – x3 ) – y1     mod 11 ; 

                                                    

                                                  λ := 3 

                                  x5 := 10 

                               y5 := 2 

 

 

 lambda := ( y2 – y1 ) / (x2 – x1 )   mod 11 ; 

x3 := lambda^2 – x1 – x2    mod 11 ; 

y3 :=  lambda* ( x1 – x3 ) – y1     mod 11 ; 

                                                    

                                                  λ := 9 

                               x6 := 3 

                               y6 := 6 
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 lambda := ( y2 – y1 ) / (x2 – x1 )   mod 11 ; 

x3 := lambda^2 – x1 – x2    mod 11 ; 

y3 :=  lambda* ( x1 – x3 ) – y1     mod 11 ; 

 

                                                  λ := 10 

                                x7 := 7 

                                y7 := 9 

 

 

 lambda := ( y2 – y1 ) / (x2 – x1 )   mod 11 ; 

x3 := lambda^2 – x1 – x2    mod 11 ; 

y3 :=  lambda* ( x1 – x3 ) – y1     mod 11 ; 

                                                    

                                                  λ := 7 

                                x8 := 7 

                               y8 := 2 

 

 

 lambda := ( y2 – y1 ) / (x2 – x1 )   mod 11 ; 

x3 := lambda^2 – x1 – x2    mod 11 ; 

y3 :=  lambda* ( x1 – x3 ) – y1     mod 11 ; 

                                                    

                                                  λ := 10 

                                x9 := 3 

                               y9 := 5 

 

 lambda := ( y2 – y1 ) / (x2 – x1 )   mod 11 ; 

x3 := lambda^2 – x1 – x2    mod 11 ; 

y3 :=  lambda* ( x1 – x3 ) – y1     mod 11 ; 

                                                    

                                                  λ := 9 

                                 x10 := 10 

                               y10 := 9 
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 lambda := ( y2 – y1 ) / (x2 – x1 )   mod 11 ; 

x3 := lambda^2 – x1 – x2    mod 11 ; 

y3 :=  lambda* ( x1 – x3 ) – y1     mod 11 ; 

                                                    

                                                  λ := 3 

                                x11 := 8 

                               y11 := 8 

 

 lambda := ( y2 – y1 ) / (x2 – x1 )   mod 11 ; 

x3 := lambda^2 – x1 – x2    mod 11 ; 

y3 :=  lambda* ( x1 – x3 ) – y1     mod 11 ; 

                                                    

                                                 λ := 2 

                             x12 := 5 

                              y12 := 9 

 

 

 lambda := ( y2 – y1 ) / (x2 – x1 )   mod 11 ; 

x3 := lambda^2 – x1 – x2    mod 11 ; 

y3 :=  lambda* ( x1 – x3 ) – y1     mod 11 ; 

                                                    

                                                  λ := 8 

                                x13 := 2 

                               y13 := 4 

 

        

 

3.4 ELLIPTIC CURVE OVER BINARY FINITE FIELDS 

 

 Assume that a , b ε F2
m where b ≠ 0 in F2

m .A non-super singular elliptic curve E over 

the finite field F2
m defined by the parameters a ,b in  F2

m consists of the set of solutions or 

points p=(x ,y) for x , y in F2
m to the equation : 
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                                           y2+xy=x3+ax2+b in F2
m  

 

together with an extra point ϑ is said to be  the point at infinity. # E(F2
m ) is the number of 

points on E (F2
m ) . The Hasse theorem says that  

 

                              2m+1-2 m2 ≤E( F2
m ) ≤ 2m+1+2 m2  

 

 

3.5 ADDITION LAW  

 

a. Adding the point at infinity to itself  

 ϑ + ϑ = ϑ 

b. Adding the point at infinity to any other point  

(x, y) +ϑ = ϑ + (x,y )= ( x, y) for all (x, y) ε E (F2
m ) 

c. Adding two points with the same x-coordinates when the points are either 

different or have y-coordinates 0 . 

(x, y) + ( x, x+y) = ϑ for all (x, y) ε E (F2
m ) 

The negative of (x, y) is equal to (x, x+y).  

d. Adding two points with different x-coordinates . Let (x1, y1 ) in E (F2
m ), 

       x1 ≠ x2 . 

(x3, y3 ) =(x1, y1) + (x2, y2 ) where  

 

            λ= (y1 +y2)/(x1+x2) in F2
m  

 
            x3 = λ2+λ+x1+x2+a in F2

m  
 
           y3 = λ (x1 +x3) +x3 +y1 in F2

m  
 

We can compute  λ, x3, y3 in maple 

 

         λ := G[`/ `] ( G[` + `] (Py [1] , Py [2] ), (G[`+ `] (Px [1] , Px [2] ) ) ; 

  Px[3] := G[` + `] ( G[` + `]  (G[` + `] (G[` + `] (G[`^`] ( λ, 2 ), λ ), Px[1] ), Px[2] ), a ); 

  Py[3] := G[` + `] ( G[` + `]  (G[` * `] (G[` + `] ( Px[1] , Px[3] ), λ ), Px[3] ), Py[1] ); 
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e. Adding a point itself (double a point ) 

                                    λ = x1+(y1/x1) in F2
m  

 
                                   x3 = λ2+λ+a in  F2

m  
 
                                   y3 = x1

2+(λ+1)x3 in F2
m   

 
We can compute  λ, x3, y3 in maple 
 

           λ := G[` + `] ( G[` / `] ( Py [1] , Px [1] ),  Px [1] ) ; 

          Px[3] := G[` + `] ( G[` + `]   (G[`^`] ( λ, 2 ), λ ),  a ); 

          Py[3] := G[` + `]   (G[` * `] (G[` + `] ( λ , 1 ), Px[3] ) , G[`^`] ( Px[1] , 2 )  ); 

  

The set of points on E (F2
m ) constructs an abelian group under this addition law. 

Cryptographic systems depended on Elliptic Curve Chryptography base on scalar 

multiplication of elliptic curve points. Let k be an integer and G be a point in E (F2
m) the 

process of adding G to itself k times is called scalar multiplication, denoted by kG. We 

calculate scalar multiplication of elliptic curve points by applying the addition law. 

 

 

3.6 ELLIPTIC CURVE DOMAIN PARAMETERS OVER PRIME FINITE FIELD 

 

Elliptic Curve domain parameters over finite fields consist of a prime integer p defining 

the finite field Fp, two elements a,b in Fp defining on elliptic curve E(Fp ) specified by the 

equation y2 ≡x3 +ax+b ( mod p ), a base point G= (xG, yG) on E(Fp), a prime n which is the 

order of G, and an integer h which is the cofactor that #E(Fp)=hn:  

                     

                                              T = ( p , a , b , G , n , h ) 

 

The approximate security level in bits desired from the elliptic curve domain parameters must 

be  an integer t ε { 56, 64, 80, 96, 112, 128, 192, 256 }  

Validating the elliptic curve domain parameters over Fp is as follows : 

i) Confirm that p is an odd prime such that [ log2 p ] =2t if t≠256 or such that              

[ log2 p]=521 if t=256 . 
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ii) Confirm that a, b, xG and yG  are integers in the interval [ 0 , p-1 ]. 

iii) Confirm that 4a3+27b2 ≢0 ( mod p ) . 

iv) Confirm that  y2
G ≡x3

G + axG +b ( mod p ) . 

v) n is prime . 

vi) Confirm that h≤4, and that h = [ ( p +1 )2 / n ] . 

vii) Confirm that nG =ϑ . 

viii) Confirm that pB ≡  1 ( mod n ) for any 1≤ B < 20 ,and that nh = p.  

 

3.7 ELLIPTIC CURVE DOMAIN PARAMETERS OVER BINARY FINITE FIELDS  

 

Elliptic Curve domain over binary finite fields consist of a positive integer m defining 

the finite field F2
m an irreducible binary polynomial f(x) of degree m defining the 

representation of F2
m , two elements a, b in F2

m defining the elliptic curve E(F2
m ) specified by 

the equation y2+xy = x3+ax2+b in F2
m, a base point G = ( xG , yG ) on E (F2

m ), a prime n 

which is the order of G, and an integer h which is the cofactor that # E(F2
m )= hn :  

 

                                   T = (m, f(x), a, b, G, n, h) 

 

Validating the elliptic curve domain parameters over F2
m is as follows : 

 

i) Assume that tl implies the smallest integer greater than t in the set                        

{ 56, 64, 80, 96, 112, 128, 192, 256 }. Confirm that m is an integer in the set 

{113, 131, 163, 193, 233, 239, 283, 409, 571 } such that 2t < m < 2tl . 

ii) Confirm that f(x) is a binary irreducible polynomial of degree m which is listed 

in Table 1.  

iii) Confirm that a, b, xG, yG are binary polynomials of degree m-1 or less . 

iv) Confirm that b ≠ 0 in F2
m . 

v) Confirm that y2
G+xG yG=x3

G+ax2
G+b in F2

m . 

vi) Confirm that n is prime . 

vii) Confirm that h ≤ 4 , and that h = [ ( m2 +1 )2 / n . 
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viii) Confirm that nG =ϑ .  

ix) Confirm that  2mB ≡  1 ( mod n ) for any 1 ≤ B <2 0, and that nh ≠ 2m . 

 

 

3.8 ELLIPTIC CURVE CRYPTOSYSTEMS 

 

The modren symetric cryptosystems are faster than the asymetric cryptosystems. 

Symetric cryptosystems are not secure as encryption and decryption keys are the same. On the 

otherhand, asymetric cryptosystems are secure since encryption and decryption keys are 

different each other. Public key cryptosystems depends on factorization large integer into 

primes and discrete logarithm. Elliptic Curve Cryptosystems is based on discrete logarithm on 

a finite abelian group. 

 

 

3.9 ELLIPTIC CURVE DISCRETE LOGARITHM PROBLEM 

 

Assume that a base point G and the point kG be given. These points are on the curve. 

Finding the value of k is called the discrete logarithm problem. It is believed that finding k is 

really hard problem. Using algebraic groups is desired by many cryptosystems. A group is a 

set of elements with custom described arithmetic operations on those elements. For elliptic 

curve groups, these specific operations are described geometrically. There are some 

limitations on these groups of operations such that the number of points on such a curve 

creates underlying field for an elliptic curve group. 

 

 

3.10 DIFFIE-HELLMAN KEY EXCHANGE 

 

Alice and Bob choose an elliptic curve E over a finite field Fq and a base point              

G ε E ( Fq ). We must be careful while choosing curve and base point that order of point must 

be large prime and the discrete logarithm problem must be hard in E (Fq ).  
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Next, Alice selects a private integer α and computes GAlice = αG. Then Alice sends 

GAlice to Bob. After that, Bob generates a private integer β and compute GBob =βG 

Then Bob sends GBob to Alice. Hence, Alice calculates the key such that αGBob = αβG. Bob 

calculates the key such that βGAlice =βαG .  

The elliptic curve E, the finite field Fq ,the points G ,GAlice ,GBob are public . Alice and Bob 

keep α and β private . Solving discrete logarithm problem in E(Fq ) to find α and β is feasible. 
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DIFFIE – HELLMAN KEY EXCHANGE 

 

       Alice selects a private integer α and computes  GAlice = αG.   
 

 

       Alice sends  GAlice  to Bob.  

 

 Bob generates a private integer β and computes GBob= βG. 

 

 

Bob sends  GBob  to Alice 

 

            Alice calculates the key  αGBob= αβG.  

 

 

Bob calculates the key  βGAlice = βαG.  
 
 

3.10  Figure 1-Diffie-Hellman Key Exchange 
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3.11EL-GAMAL  

   

 Bob generates an elliptic curve E over a finite field Fq and a base point  

G ε E(Fq ) whose order must be a large prime. While choosing an elliptic curve E over finite 

field Fq, the discrete logarithm problem must be very hard. Bob selects a private integer s and 

calculates B =sG. Bob makes the elliptic curve E, the finite field Fq, the point G, and B public. 

But, Bob keeps s secret. Then, Alice sends her message to Bob by performing the following : 

 

 Alice represents her message as a point M ε E(Fq). 

 Alice generates a secret integer k at random and calculates M1=kG. 

 Alice calculates M2=M+kB. 

 Alice sends M1 and M2 to Bob. 

 

The whole process implemented by Alice is encryption procedure. 

Bob decrypts the chipertext by solving  

 

                                     M=M2 – sM1 

as  

   

                                    M2 – sM1 = (M+kB ) – skG  

 

                                                    = M+k(sG) –s(kG)  = M 
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EL GAMAL 

Bob chooses point G in E(Fq). Bob selects a private integer s  

           and calculates B = sG. Bob makes E(Fq), G, B public. 

 

Alice represents her message as a point M in Fq 

                  Alice generates a secret integer k at random  

                  Alice calculates M1 = kG 

                  Alice calculates M2 = M + kB 

 

 

Alice sends  M1  and M2 to Bob. 

                                                                                  

                                                                                    

Bob decrypts the ciphertext by solving  M = M2 – sM1. 

 

as 

 

M2 – sM1 = (M + kB ) - skG = M + k(sG) – s(kG) = M 

 

3.12Figure 2-El Gamal 
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3.13  MASSEY-OMURA ENCRYPTION   

 

 Alice and Bob an elliptic curve E over a finite field Fq.  

      We must be careful while choosing E(Fq) since the discrete logarithm  

       problem  must be very hard in E(Fq ). Assume that N= # E(Fq).  

 Alice expresses her message as a point M ε E(Fq)  

 Alice selects a secret integer eA with gcd (eA, N )=1 and calculates M1=eAM and 

sends M1 to Bob . 

 Bob selects a secret integer eB with gcd (eB, N )=1 and calculates M2=eBM1 and 

sends M2 to Alice . 

 Alice calculates dA ε ZN such that dAeA ≡1 ( mod N ) .Then she calculates M3=dAM2 

and sends M3 to Bob . 

 Bob calculates dB ε ZN such that dB eB ≡ 1( mod N ). Then he calculates M4= dBM3. 

So, M4 = M is the original message. 

 

dA is the inverse of eA ( mod N ) and dB is the inverse of eB ( mod  N ). 
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MASSEY OMURA ENCRYPTION 

Alice selects a secret integer  eA  and calculates M1 = eA.M 

 

Alice sends M1  to Bob 

 

Bob  selects a secret integer eB and calculates M2 = eBM1= eBeAM 

 

Bob sends M2 to Alice                      

   

Alice calculates M3 = dAM2 = dAeBeAM = eBM 

 

Alice sends M3 to Bob 

   

   Bob calculates M4 = dBM3 = dBeBM = M               

 
3.12  Figure 3 – Massey Omura Encryption 
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CHAPTER 4 
 

 
PRIMALITY TEST  

 
 

 

 4.1. PRIMALITY TEST  

In this section ,we will study more efficient methods as Miller-Rabin test, The rho 

method,Factor base algorithm, Continued Fraction method and Quadratic Sieve method. 

 

 4.1.1 Definition : Let m be a large integer. A primality test determines whether m is 

prime or not.  

 

Example 4.1. If there exist an integer a such that 

an  ≢ a(mod n), 

then n is not prime integer. It is known that if n is a prime integer then 

an ≡ a(mod n) 

for any integer a. Therefore it is a primality test. 

 

4.1.2. Definition : A number n passes the pseduoprime test to base a if 

an ≡ a (mod n). 

Of course, it doesn’t imply that n is prime. 

 

4.1.3. Definition : Let a be a positive integer. If n is a composite(not prime) positive 

integer and 

an  ≡ a (mod n), 

then n is called a pseudoprime to the base a. 

 

Lemma :  If gcd (a, n ) = 1, then  
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a ≡n a ( mod n ) ≡⇔ −1na 1 (mod n ) 

 

Proof : gcd(a, n) = 1 implies that a* mod n exists. Thus we multiply both sides 

of  

an ≡ a(mod n) 

by a*. 

We multiply both sides of 

an-1 ≡ 1(mod n) 

by a. 

 

Example 4.2. For instance 

2340 ≡ 1 (mod341) 

with 341 = 11.31. Hence, 341 is a pseduoprime with base 2. 

 

Example 4.3.   

2560 ≡ 1(mod561), 561 = 3.11.17 

⇒  561 is a pseduoprime with base 2. 

 

Example 4.4. 

390 ≡ 1(mod91)91 = 7.13 

⇒91 is a pseduoprime with base 3. 

 

4.1.4. Definition : A composite integer n is said to be a Carmichael integer if 

an-1 ≡ 1(mod n) 

for all positive integer a such that 

gcd(a, n) = 1, 

.i.e., it is pseduoprime to any base a, where gcd(a, n) = 1. 

 

Example 4.5.  

a560 ≡ 1(mod561) 

for any integer a such that gcd(a, 561) = 1  
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a2 ≡ 1(mod3) =) (a2)280 = a560 ≡ 1(mod3)         for all integer a 

a10 ≡ 1(mod11) ⇒  (a10)56 = a560 ≡ 1(mod11)   for all integer a 

a16 ≡ 1(mod17) ⇒ (a16)35 = a560 ≡ 1(mod17)    for all integer a 

 

⇒a560 ≡ 1(mod.11.13.17 = 561) 

 

A simple characterization of Carmichael integer is given by the following lemma:  

 

Lemma : A positive integer n is a Carmichael integer ⇔ It is a product of distinct 

odd primes 

n = p1 p2 · · · pm 

 

such that pi − 1 | n − 1 for 1≤  i ≤ m. 

 

Proof:  n > 2 since it is composite. 

bn-1 ≡ 1(mod n) 

for all positive integers b.There exist an integer a such that 

ordna = λ(n). 

Since an-1 ≡ 1(mod n) ,it follows that 

λ(n) | n − 1. 

n > 2 ⇒ λ(n) is even  ⇒ n is odd. 

Now, suppose that ∃ an odd prime p such that 

pk | n 

for k ≥ 2.Then 

λ(pk) = φ (pk) = pk-1 (p − 1) | λ(n) 

⇒ pk-1(p − 1) | (n − 1) =) p | n − 1 

contradiction.Thus, 

n = p1 p2 · · · pm, 

where p1, p2, · · · , pm are distinct odd primes. Since 

 

                  λ(n) = lcm {φ (p1) = p1 − 1, φ(p2) = p2 − 1,…….., φ(pm) = pm − 1}, 
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obviously ,pi − 1 | λ(n) thus, 

 

pi − 1 | n − 1 

for 1 ≤ i ≤ m. 

Let n be a product of distinct prime integers, i.e., 

n = p1 p2 · · · pm 

Let a be a positive integer which is relatively prime to n. Then 

gcd(a, pi) = 1 for 1 ≤ i ≤ m ⇒ 

ap
i - 1 ≡ 1( mod pi ) for 1≤  i ≤ m. 

Since pi − 1 | n − 1 for 1 ≤ i ≤ m , 

∃ integers ri for 1 ≤ i ≤ m 

such that 

n − 1 = ri (pi  − 1) f or 1 ≤ i ≤ m. ⇒  

an−1  = (api −1)ri   ≡ 1(modpi ) f or 1 ≤ i ≤ m ⇒  

an−1  ≡ 1(mod n). 

 

But this means that n is a Carmichael integer. 

 
 
Example 4.6. 561 is Carmichael integer since 

 

561=3.11.17 

and 

 

2 | 560, 10 | 560, 16 | 560. 

 

This one is shorter than the proof of the previous example. 
 

Example 4.7.  1729 = 7.13.19 is Carmichael integer since 

 

6 | 1728, 12 | 1728, 18 | 172 
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Example 4.8.  41041 = 7.11.13.41 is Carmichael integer since 

 

6 | 41040, 10 | 41040, 12 | 41040, 40 | 41040  

 
a)825265 = 5.7.17.19.73 

b)321197185 = 5.19.23.29.37.137 

c)5394826801 = 7.13.17.23.31.67.73 

d)232250619601 = 7.11.13.17.31.37.73 

e)9746347772161 =7.11.13.17.19.31.37.41.641 

f )1436697831295441 = 11.13.19.31.37.41.43.71.127 

g)60977817398996785 = 5.7.17.19.23.37.53.73.79.89.233 

h)7156857700403137441 = 11.13.17.19.29.37.41.43.61.97.109.127. 

 

Corollary : A Carmichael integer is a product of at least three distinct primes. 
 

Proof: Suppose n  =  p.q, where p and q  are distinct primes. Assume that  p  <  q. By previous 

lemma 

n − 1 ≡ 0(mod(q − 1)) 
 
But 

 
n − 1 = pq − 1 = p(q − 1 + 1) − 1 = p(q − 1) + p − 1 

 
which implies that q − 1 | p − 1. But it contradicts p < q. 

 

4.1.5. Definition: Let n be an odd composite integer and  a be an integer such that 

gcd(a, n) = 1. If 

 

                                                 a 2
1−n

≡ ⎟
⎠
⎞

⎜
⎝
⎛

n
a  ( mod n ), 

where 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a is the is the Jacobi symbol,then n is called an Euler pseduoprimeto the base a 

 

a 2
1−p

≡ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a  ( mod n ), 
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where 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a  is the Legendre symbol. 

 
 
Example 4.9. n = 1105 is an Euler pseduoprime to the base a = 2 since 

 
2552 ≡ 1(mod1105) 

 and 
 
 

⎟
⎠
⎞

⎜
⎝
⎛
1105

2  = ⎟
⎠
⎞

⎜
⎝
⎛

5
2   ⎟

⎠
⎞

⎜
⎝
⎛
13
2  ⎟

⎠
⎞

⎜
⎝
⎛
17
2  = ( -1 ) 8

152 −

 ( -1 ) 8
1132 −

 ( -1 ) 8
1172 −

 

= ( 1) 36213 ++ =1 
 
Proposition :  If  n  is  an  Euler  pseduoprime  to  the  base  a,  then  it  is  also  a  pse- duoprime to 
the base a. 
 
Proof :   

         

a 2
1−n

 ≡  ⎟
⎠
⎞

⎜
⎝
⎛

n
a  ( mod n ) ⇒ ( a 2

1−n

)2 ≡  ⎟
⎠
⎞

⎜
⎝
⎛

n
a 2  ( mod n ) 

which obviously implies that 

an−1  ≡ 1(modn). 

 

4.1.6. Definition:  Let n be an integer with 
n − 1 = 2r , 

 
where r is a nonnegative integer and s is an odd integer.If 

 

as  ≡ 1(modn) or as2
j  ≡ −1(modn) 

 

for some 0 ≤ j ≤ r − 1 for an integer a, then we say that n passes strong pseduoprime test to 

base a. 

 

4.1.7 Definition:   A composite integer n which passes the strong pseduoprime test for the base 

a is called a strong pseduoprime to the base a 

 

Example 4.10.  n = 1105 ⇒  
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n-1 = 1104 = 2469 

269    ≡  967 ( mod 1105 ) 

22.69   ≡  259 ( mod 1105 ) 

2 69.22

 ≡  781 ( mod 1105 ) 

2 69.23

  ≡  1 ( mod 1105) 

 

Therefore 1105 is not a strong pseduoprime to the base 2. Because we didn’t get 
 

(−1) 
 

one step before getting 1. 

 

Example 4 . 1 1 .  n = 15790321 ⇒  

 

n − 1 = 15790320 = 24 986895 

2986895  ≡ 128(mod15790321) 

 

but 

22s  = 22.986895  ≡ 16384(mod15790321) 

24s  = 24.986895  ≡ −1(mod15790321) 

 
 
which means that n = 15790321 passes strong pseduoprime test to base 2. 

 

4.1.1. Theorem If p is a prime and p - a, then p passes strong pseduoprime test to base a. 

 

 

Proof:  p − 1 = 2r s. Let 

bk = a k
p
2

1−

 = a
krs −2   for  0 ≤  k ≤  r 

= ap-1  ≡  1 ( mod p ) 

b 2
1 = b0 ≡  1 ( mod p ). 

So, 
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b1 ≡  1 (mod p )  or  b1 ≡  -1 (mod p ) 

 

If  b1 ≡  1 (mod p ) then   

 

b 2
2 ≡  b1 ≡  1 ( mod p ). 

Thus, b2 ≡  1 (mod p ) or b2 ≡  -1 (mod p ). So if .. 

 
bo ≡b1 ≡  b2 ≡b3 ≡………..≡  bk ≡  1 ( mod p ) 

 
with k < r, then since b 2

1+k ≡  bk ≡  -1 ( mod p ). 

 
b ≡+1k  1 ( mod p ) or b ≡+1k  -1 ( mod p ) 

 
Consequently, either 

br ≡  1 ( mod p ) 

or ∃ k such that 0 ≤ k ≤ r and 

bk ≡  -1 ( mod p ). 

 

It means that p passes strong pseduoprime test to base a. The strong pseduoprime test to base a is 

stronger than Euler pseduoprime test to base a, as it can be seen in following proposition. 
 

Proposition:  If n is a  strong pseduoprime to base a, then it is an  Euler pseduo- prime to the 

base a. 

 

Proof : Let  

n = p 1
1
k p 2

2
k p 3

3
k ……………p mk

m , 

n − 1 = 2r s, where s is odd integer and 

as  ≡ 1(modn) or as2j   
≡ −1 

for some 0 ≤ j ≤ r − 1. 

 

case1:as≡ 1(modn): Let a prime p divides n. Then 

ord p a \ s 
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since as  ≡ 1(modp) which implies that  

ord p a 

is odd. But ord p a also divides p − 1.Thus, it divides p – 1.Thus, it divides 
2

1−p  too. 

Therefore, 

                                                 a 2
1−p

≡1 ( mod n )⇒  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a  = 1 

by Euler’s criterion. The Jacobi symbol is 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a  = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
kk

m
kkk pppp

a
.....321

321

  = Π
=

m

i 1

  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ip
a

ik = 1 

 

a 2
1−n

   = ( ) 128
−r

a 1≡  ( mod n ). Thus , 

a 2
1−n

   = ⎟
⎠
⎞

⎜
⎝
⎛

n
a  =1 

 

case2:   as2j   ≡ −1(modn) forsome 0 ≤ j ≤ r − 1: Again let a prime p divides n. Then 

as2j
   ≡ −1(modp) ⇒  (as2j

 )2  ≡ 1(modp) ⇒  

as2j+1
   ≡ 1(modp) ⇒  ord pa | s2j+1  and ord pa   \  s2j⇒  ord p a = w2j+1, 

,where w is an odd integer.Since 

ordp a | p − 1, 2j+1  | p − 1, 

 

we have p = u2j+1  + 1 for some integer u. 

 

a 2
aord p

 ≡  -1 ( mod p ) ⇒  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
a  ≡  a

⎟
⎠
⎞

⎜
⎝
⎛ −

2
1p

= a ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
aord

p

p

aord p 12 ≡  

( -1 )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
aord

p

p

1

 = (-1 ) 12
1
+

−
jw

p

 = ( -1 ) w
u

 = ( -1 ) u  

 

which implies that  
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⎟
⎠
⎞

⎜
⎝
⎛

n
a  = Π

=

m

i 1

ik

ip
a
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= Π

=

m

i 1
(( -1 ) iu ) ik = 

Π
=

m

i 1
( -1 ) iiku  = ( -1 ) mmukukuk +++ .........2211  

Now  

n = p 1
1
k  p 2

2
k  · · · p mk

m   = (u1 2j+1  + 1) 1k  (u2 2j+1  + 1) 2k   · · · (um 2j+1  + 1) mk    ≡ 

(1 + 2j+1 k1 u1  )(1 + 2j+1 k2u2) · · · (1 + 2j+1 km um )(mod 22j+2 ) 

≡ 1 + 2j+1 (k1 u1  + k2u2   + · · · + km um )(mod 22j+2 ) ⇒  

s2
1−r
= 2

1−n
≡2j ( k1 u1  + k2u2  + · · · + km um ) )(mod 22j+2 ) ⇒  

s2r−1−j  ≡ k1 u1  + k2 u2  + · · · + km um (mod 2j+1 ) 

and 

a 2
1−n

= ( )jsa 2 jr −−12 ≡  ( ( -1 ) s  )
jr −−12 = ( ( -1 ) s  )

jr −−12 = ( -1 )  m m  2 2  1 1 uk  · · · uk uk +++  

 

since (a 2
1−n

) 2 ≡  1 ( mod n ) and a ⎟
⎠
⎞

⎜
⎝
⎛≡

n
ajs2  ( mod n ). Thus 

a 2
1−n

≡ ⎟
⎠
⎞

⎜
⎝
⎛

n
a

(modn) 

which means that n is an Euler pseduoprime to the base a. 

 
Remark : The converse is not true. We have seen that 1105 is an Euler pseduoprime 

to the base 2, but it is not strong pseduoprime to the base 2 

 

Theorem 4.1.2. The Solovay-StrassenProbabilistic Primality Test:Let n be a positive integer. 

Select, at random, k integers less than n, and perform Euler pseduoprıme test on 

n for each of these bases. If any of these test fails, then n is composite. If n is composite, the 

probability that n passes all k  tests is less than 

 
k

⎟
⎠
⎞

⎜
⎝
⎛

2
1  

 

 



 40

Theorem 4.1.3. Rabin-Miller Probabilistic Primality Test:Let n be an integer. Select, at 

random, k different positive integers less than n, and perform strong pseduoprime test on 

n for each of these bases. If any of these test fails, then n is composite. If n is composite, the 

probability that n passes all k  tests is less than 

 
k

⎟
⎠
⎞

⎜
⎝
⎛

4
1  

 

Of course, Rabin-Miller test is better than the Solovay-Strassen test 

 

4.2. FACTORIZATION  BY  CONTINUED  FRACTION 

 

Let’s  see the generalization of Fermat factorization .in the following lemma. 

 

Lemma : It is possible to factor n if ∃ positive integers x and y  such that 

 

x ≡2 y 2 ( mod n ) 

0 < y < x < n, and x + y ≠  n 

 

Proof: The inequalities imply that n doesn’t divide (x − y) and doesn’t divide (x + y). 

Consequently 

 

gcd(n, x − y) ≠  n, gcd(n, x + y) ≠  n 

n | (x − y)(x + y) ⇒  gcd(n, x − y) ≠  1 

 

for otherwise, n | x + y which is contradiction. By the same way 

Hence 

gcd(n, x + y) ≠  1. 

are proper divisors of n. 

 

Example 4.10.  512 − 392  = 1080 ≡ 0(mod216). 

gcd(216, 51 − 39) = 12, gcd(216, 51 + 39) = 18 
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So 12 and 18 are factors of 1080. 

 

Now, we can express the theorem on the factorization by means of continued fractions. 

P 2
k   ≡(-1)k+1Vk+1(modn) 

where pk and Vk+1 are defined. Suppose that k + 1 is even, and Vk+1 

is a square, i.e.,  

Vk+1  = r2 

 

for some integer r. Then 

 

P 2
k
≡ r2 (modn) 

which we can use it for obtaining the factors of n. Therefore,it is enough to look at the terms with 

even indices in  

{Vk } 

which are squares. 

 

Example 4.11. Let’s factor 649 by continued fraction algorithm. Let 

0α  = 649  = .
1

6490 +  

Then 

U 0  = 0 , V 0  = 1 , a 0  = [ ]649  = 25 . ⇒  p 0  = 25 , q 0  = 1. 

So 

p 0  = 25 , q 0  = 1 

U 1  = a 0 V 0   U 0  = a 0  = 25 , V 1  = 
0

2
1649

V
U−  = 649  25 2 = 24 

1α = 
1

1 649
V

U +  = 
24

64925 + = 2.103…. 

It implies that 

1a = 2⇒ 1p = 25.2 + 1 = 51, 1q = 2 

2U = 1a 1V   1U = 2.24  25 = 23 , 2V = 
24

23649 2−  = 5 
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But 5 is not a square. 

 

2α = 
5

64923+
= 9.695….⇒ 2a =9 ⇒  

2p = 9.51 + 25 = 484 = 535, 2q =9.2 +1 = 19 

3U  = 9.5  23= 22 , 3V = 
5

22649 2− = 33 

3α = 
33

64922 + = 1.438….⇒ 3a =1 

⇒  3p = 1.484 + 51 , 3q = 1.19 + 2 = 21 

4U = 1.33  22 = 11 , 4V = 
33

11649 2− = 16 = 4 2
 

since 

po  = ao, qo  = 1, p1  = ao a1  + 1, q1  = a1, 

pk = ak pk-1  + pk-2, qk  = ak qk-1  + qk-2 

for k ≥ 2. Consequently, 

5352  ≡ 42(mod 649) 

But                              

535 − 4 = 529 = 32 .59 and 535 + 4 = 539 = 7211 

gcd(649, 32.59) = 59, gacd(649, 7211) = 11 

⇒  59.11 | 649. 

In fact 

649 = 59.11. 

 

 

4.3. THE  p-1  FACTORING  ALGORITHM(POLLARD) 

 

Let n be an odd composite integer and p be one of its unknown prime factor. Choose M such 

that it covers all small prime factors of  p − 1 (Here, we assume that p − 1 has only small 

prime factors). Then,  

2M !  ≡ 1(modp) 
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if p − 1 | M !. 

u = gcd(2M !  − 1, n) 

 

gives a nontrivial factorization of  n if u = 1 and u = n.Here,  the diffuculty is to find 

a good large M to find the solution. The method is succesful if n has a prime factor p 

such that p − 1 has small prime factors. 
 

 

Example 4.12.  Let n = 12657 .Take M  = 3 . 

 

23!  − 1 = 26  − 1 = 63. 

gcd(63, 12657) = 3 

Hence, 3 is a factor of 12657.In fact, 12657 = 3.4219. 

 

Example 4.13.  Let n = 34567. 
 

                                         21!  ≡ 2(mod34567) ⇒  gcd(2 − 1, 34567) = 1 

                                         22!  ≡ 4(mod34567) ⇒  gcd(4 − 1, 34567) = 1 

                                         23!  ≡ 64(mod34567) ⇒  gcd(64 − 1, 34567) = 1 

                                         24!  ≡ 12221(mod34567) ⇒  gcd(12221 − 1, 34567) = 13 
 

Hence 34567 = 13.2659 

 

Example 4.14. Let n = 36287 

 

                                         21!  ≡ 2(mod36287) ⇒  gcd(2 − 1, 36287) = 1 

                                         22!  ≡ 4(mod36287) ⇒  gcd(4 − 1, 36287) = 1 

                                         23!  ≡ 64(mod36287) ⇒  gcd(64 − 1, 36287) = 1 

                                         24!  ≡ 12622(mod36287)  ⇒ gcd(12622 − 1, 36287) = 1 

                                         25!  ≡ 34644(mod36287) ⇒  gcd(34644 − 1, 36287) = 1 

                                         26!  ≡ 27347(mod36287)  ⇒ gcd(27347 − 1, 36287) = 1 

                                         27!  ≡ 25133(mod36287) ⇒ gcd(25133 − 1, 36287) = 1 
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                                        28!  ≡ 34505(mod36287)  ⇒ gcd(34505 − 1, 36287) = 1 

                                       29!  ≡ 5844(mod36287) ⇒  gcd(5844 − 1, 36287) = 1 

                                       210!  ≡ 14473(mod36287) ⇒  gcd(14473 − 1, 36287) = 1 

                                       211!  ≡ 18162(mod36287) ⇒  gcd(18162 − 1, 36287) = 1 

                                       212!  ≡ 6589(mod36287) ⇒  gcd(6589 − 1, 36287) = 1 

                                       213!  ≡ 18734(mod36287) ⇒  gcd(18734 − 1, 36287) = 131. 
 

Thus, 131 is a factor of 36287. In fact,36287 = 131.277. 

 

Remark : To find the least positive remainder of  2M !   modulo n, we can do the following 

computations 

 

2s ≡  2 2 mod n , s 3 ≡ s 3
2 mod n , s 4  ≡ s 4

3 mod n , ………2 !M = s M ≡  s M
M 1− mod n 

since modular exponention can be done efficiently. 

 

Remark: Later, we will see the elliptic factorization method which is the advanced form of p − 1 

factoring algorithm. 
  

4.4. Rho-Method(POLLARD): 

 

Again, let n be an odd composite integer and p be one of its unknown prime fac- tor. 

Choose a polynomial with integer coefficients f (x) of degree at least 2. For instance 

, 

f (x) = x2  + 1. 
 

Select a particular value x = xo  at random. Calculate 

 

x1  = f (xo ), x2  = f (x1) = f (f (xo )), 

xi  = f (xi−1), 

Stop at M th step, where 

x M  ≢ Kx ( mod n ) and  x M ≡ Kx ( mod p ) for some 1 Mk ≤≤  

 

Example 4.15 : n = 1041. Let x0  = 2 and f (x) = x2  + 1. 
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x1  = 5 ⇒  5≢2(mod1041) and 5 − 2 = 3 | 1041 ⇒  

1041 = 3.347 
 

Example 4.16:.  n = 36287. Let’s select x = x0  = 2 and f (x) = x2  + 1 

x1  = 5  ⇒ 5≢2(mod 36287) and 5 − 2 = 3 doesn’t divide 36287 

                  x2  = 26  ⇒  26≢2(mod 36287), gcd(24, 36287) = 1 

                                                26≢5(mod 36287), gcd(21, 36287) =  

                  x3  = 677  ⇒  677≢2(mod 36287), gcd(675, 36287) =  
 

677≢5(mod 36287), gcd(672, 36287) = 1 
677≢26 (mod 36287 ), gcd (651 , 36287 ) = 1 

 
                  x4  = 458330 ≡ 22886(mod 36287) ⇒  
 

22886=2(mod 36287), gcd(22884, 36287) = 1 

22886=5(mod 36287), gcd(22881, 36287) = 1 

22886=26(mod 36287), gcd(22860, 36287) = 1 

22886=677(mod 36287), gcd(22209, 36287) = 1 

 

                   x5  = 210066388901 ≡ 2439(mod 36287) ⇒  

2439=2(mod 36287), gcd(2437, 36287) = 1 

2439=5(mod 36287), gcd(2434, 36287) = 1 

2439=677(mod 36287), gcd(1762, 36287) = 1 

2439=22886(mod 36287), gcd(20447, 36287) = 1 

 

                  x6 = 33941 ⇒ 33941=2(mod 36287), gcd(33939, 36287) = 1 

33941=5(mod 36287), gcd(33936, 36287) = 1 

33941=26(mod 36287), gcd(33915, 36287) = 1 

33941=677(mod 36287), gcd(33264, 36287) = 1 

33941=22886(mod 36287), gcd(11055, 36287) = 1 

33941=2439(mod 36287), gcd(31502, 36287) = 1 

 

                    x7 = 24380 ⇒ 24380=2(mod 36287), gcd(24378, 36287) = 1 

24380=5(mod 36287), gcd(24375, 36287) = 1 

24380=26(mod 36287), gcd(24354, 36287) = 1 
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24380=677(mod 36287), gcd(23703, 36287) = 1 

24380=2288(mod 36287), gcd(1494, 36287) = 1 

24380=2439(mod 36287), gcd(21941, 36287) = 1 

24380=33941(mod 36287), gcd(9561, 36287) = 1 

 

                        x8  = 3341 ⇒ 3341=2(mod 36287), gcd(3339, 36287) = 1 

3341=5(mod 36287), gcd(3336, 36287) = 1 

3341=26(mod 36287), gcd(3315, 36287) = 1 

3341=677(mod 36287), gcd(2664, 36287) = 1 

3341=22886(mod 36287), gcd(20222, 36287) = 1 

3341=2439(mod 36287), gcd(902, 36287) = 1 

3341=33941(mod 36287), gcd(30600, 36287) = 1 

3341=24380(mod 36287), gcd(21039, 36287) = 1 

                          x9  = 22173⇒ 22173=2(mod 36287), gcd(22171, 36287) = 1 

22173=5(mod 36287), gcd(22168, 36287) =1 

22173=677(mod 36287), gcd(21496, 36287) = 1 

22173=22886(mod 36287), gcd(713, 36287) = 1 

22173=2439(mod 36287), gcd(19734, 36287) = 1 

22173=33941(mod 36287), gcd(11764, 36287) = 1 

22173=24380(mod 36287), gcd(2207, 36287) = 1 

22173=3341(mod 36287), gcd(18832, 36287) = 1 

                          x10  = 25654 ⇒  25654=2(mod 36287), gcd(25652, 36287) = 1 

25654=5(mod 36287), gcd(25649, 36287) = 1 

25654=26(mod 36287), gcd(25628, 36287) = 1 

25654=677(mod 36287), gcd(24977, 36287) = 1 

25654=22886(mod 36287), gcd(2768, 36287) = 1 

25654=2439(mod 36287), gcd(23215, 36287) = 1 

25654=33941(mod 36287), gcd(8287, 36287) = 1 

25654=24380(mod 36287), gcd(1274, 36287) = 1 

25654=3341(mod 36287), gcd(22313, 36287) = 1 

25654=22173(mod 36287), gcd(3481, 36287) = 1 

                       x11  = 26685 ⇒  26685=2(mod 36287), gcd(26683, 36287) = 1 

26685=5(mod 36287), gcd(26680, 36287) = 1 
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26685=26(mod 36287), gcd(26659, 36287) = 1 

26685=677(mod 36287), gcd(26008, 36287) = 1 

26685=22886(mod 36287), gcd(3799, 36287) = 131 

 

Thus ,131 is a factor of 36287.In fact,36287 = 131.277. 

 

4.5. FACTOR  BASE  METHOD: 

 

Let n be an integer.We calculate 

x 2   − n 

for several values of x,i.e.,for ao, a1 , . . . , am .Suppose that we find 

a
1i  ,a 2i  , . . . , a ki

 

among them, such that 

(a 2
1i
n)(a 2

2i
n),……,(a 2

ki
n)≡b 2 (mod n). 

for some integer b. Then, we can obtain the factors of n since 

a 2
1i
a 2

2i
……..a 2

ki
≡ b 2 (mod n). 

We select the values of x such that x2 − n is a small integer. Thus, it has small prime factors. 

Therefore, we may select x in the interval 

 

n M < x < n +M 

 

for some integer M. Then, we try to factorize x 2  − n for which x is in the interval.We 

select a set of primes 

℘={ -1 , p1 , p 2 ,………….,p k } 

 

,called a factor base satisfying p < B.B is an integer depending on the size of n.   −1 

is also included in℘ .  

Construct the following table 

 

℘                                   n M < x < n +M                        x 2  − n 

p1                                          x1                                             x 2
1 n= p 11

1
a p 21

2
a ……p 1ka

k  
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p 2                                         x 2                                            x 2
2 n= p 12

1
a p 22

2
a ……p 2ka

k  

. . 

.                                          . 

.                                          . 

p k  

                                            x u                                               x 2
u n= p ua1

1 p ua2
2 ……..p kua

k  

 

 

Select those x whose prime factors are contained in ℘. Now, we have to find integer 

h1 , h 2 ,……..h u  

which are 0 or   1 such that 

 

( p 11
1
a p 21

2
a ……….p 1ka

k ) 1h (p 12
1
a p 22

2
a ………p 2ka

k ) 2h ………….(p ua1
1 p ua2

2 ……..p kua
k ) uh  

 

is a perfect square.Obviously, it holds if and only if 

 

a11 h1  + a12 h2 + · · · + a1u hu≡   0(mod2) 

a21 h1  + a22 h2 + · · · + a2u hu≡   0(mod2) 

 

. 

ak1 h1  + ak2 h2  + · · · + aku hu≡   0(mod2) 

 

if and only if 

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

kukk

u

u

aaa

aaa
aaa

.........
........................
........................
........................

........
........

21

22221

11211

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

uh

h
h

.

.

.
2

1

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
.
.
.
0
0
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So, the vector (h1, h2, . . . , hu) can be found from row-reduced echelon matrix by apply- ing the 

elementary row operations to the matrix 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

2mod2mod.2mod
..........................................................
..........................................................
..........................................................

2mod2mod2mod
2modmod.2mod

21

22221

11211

kukk

u

u

aaa

aaa
aaa

 

 

Example 4.18.  n = 4633.Let ℘={2, 3, 5} 

 

4633 = 68.07………………..Let 38 ≤≤ x 98. By Maple define 

H(x) = x 2  4633 
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  38 -3189         -3 ×1063 
 39 -3112                -23389 
 40 -3033                -32337  
        41 -2952                -233241 
                       42 -2869                -19 ×151  
                       43 -2784                -253 ×29  
                       44 -2697                -3 ×29 ×31  
                     45 -2608                -24163 
                     46 -2517                -3 × 839 
                     47 -2424                -233 × 101  
                     48 -2329                -17 × 137  
                     49 -2232                -233231  
                     50 -2133                -3379  

                       51 -2032                -24127 
                       52 -1929                -3 ×643 
                       53 -1824                -253 ×19 
                       54 -1717                -17 × 101  
  H =               55 =  -1608 =      -233 ×67 = 
                       56 -1497               -3 ×499 
                       57 -1384               -23173 
                       58 -1269               -3347 
                       59 -1152               -2732 
                       60 -1033               -1033 
                       61 -912                 -243×19 
                       62 -789                 -3 ×263 
                       63 -664                 -2383 
                       64 -537                 -3 ×179 
                       65 -408                 -233 ×17 
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                       66 -277                       -277 
                       67 -144                       -2432 

 68   -9                           -32 
 69  128                           27  
        70  267                       3 ×89 
                       71  408                      233 ×17 
                       72  551                       19 ×29  
                       73  696                      233 ×29   
                     74  843                       3 ×281 
                     75  992                          2531 
                     76  1143                       32127  
                     77  1296                        2434   
                     78  1451                       1451 
                     79  1608                     233 ×67 

                       80  1767                   3 ×69 ×31 
                       81  1928                       23241 
                       82  2091                   3 ×17 ×41 
                       83   2256                     243 ×47 
  H =               84 =    2423  =              2423  = 
                       85  2592                        2534 
                       86  2763                       32307 
                       87  2936                       23367 
                       88  3111                   3×17 ×61 
                       89  3288                     233×137   
                       90  3467                         3467 
                       91  3648                      263×19 
                       92  3831                     3 ×1277 
                       93  4016                        24251 
                       94  4203                        32467 
                       95  4392                       233261 
                       96  4583                        4583 
                       97                     4776                    233 ×199 
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We select those which are factorizable only by means of {2, 3, 5}: 

 

x 2
1 = 59≡ −1152 = −2  .3  .5  (mod4633) 

                                        x 2
2  = 67≡ −144 = −2  3  5  (mod4633) 

                                        x 2
3 = 68≡ −9 = −2  3  5  (mod4633) 

                                   x 2
4 = 69≡ 128 = 2  3  5  (mod4633) 

                                   x 2
5 = 85≡ 2592 = 2  3  5  (mod4633) 

                                   x 2
6 = =   96≡ −50 = −2  3  5  (mod4633) 

 

Therefore, the matrix is  

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

200000
040222
157047
100111

  (mod 2) = 

 

 

                                          

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

000000
000000
111001
100111

  . 

It is row equivalent to 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−−

000000
000000
011110
111001

 

 

    

The corresponding solutions are 
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
++=
++=

0
0
0
0

)(
)(

5432

6541

hhhh
hhhh

 

 

for free h3 , h4 , h5 , h6 .In particular , 

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

6

5

4

3

2

1

h
h
h
h
h
h

= 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1
0
1
1
0
0

 

 
is a solution, i.e., 

 

682692962 = (-203250 ) (273050) (-213052) = (-1)2283252 

gcd ( 68.69.96  2435,4633) = 113 

 

Thus 

4633 = 41.113 
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CHAPTER 5 
 
 

CONCLUSION 
 

 

 

In Chapter 1, I explained the history and development of cryptography.  

In Chapter 2, I exposed finite field, I have included and explained prime finite field  and 

boundary finite field in details. Extensive exercises are included for arithmetic of finite field. 

In Chapter 3, Elliptic Curves defined on finite field has been covered with examples. I 

exposed the Diffie-Hellman Key Exchange, El – Gamal, Massey – Omura Encryption. 

In Chapter 4, I exposed Primality Test.  

Some maple commands have been written for finite field arithmetic. 
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