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ÖZ 
 
 
 

H Hilbert uzayında self-adjoint pozitif tanımlı A operatörlü diferansiyel denklemleri için 
lokal olmayan sınır  değer problemi  

 

                                                  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+−=

≤≤−=−

≤≤=+−

μ)1()1(

),01(),()()(

),10(),()()(
2

2

uu

ttftAu
dt

tdu

ttgtAu
dt

tud

 

 
ele alınmıştır. Bu sınır değer probleminin iyi konumlanmışlığı ağırlıklı Hölder uzaylarında  
doğruluğu ortaya konulmuştur. Eliptik-parabolik denklemlerin lokal olmayan sınır değer 
problemlerinin çözümü için koersatif eşitsizlikleri elde edilmiştir. Lokal olmayan sınır değer 
probleminin yaklaşık çözümü için birinci ve ikinci derecedeki yakınlaşması olan  fark 
şemaları sunulmuştur. Bu fark şemalarının iyi konumlanmışlığı Hölder uzaylarında 
kanıtlanmıştır. Uygulamalarda, Elliptik-parabolik denklemlerin fark şemalarının çözümü için 
koersatif eşitsizlikleri sağlanmıştır. Elliptik-parabolik denklemler için fark şemalarının Matlab 
ile çözümleri elde edilmiştir.  
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The abstract nonlocal boundary value problem 
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for differential equation in a Hilbert space H with the self-adjoint positive definite operator A 
is considered. The well-posedness of this problem in Hölder spaces with a weight is 
established. The coercivity inequalities for the solutions of the boundary value problems for 
elliptic-parabolic equations are obtained. The first and the second order accuracy difference 
schemes for the approximate solutions of this nonlocal boundary value problem are presented. 
The well-posedness of these difference schemes in Hölder spaces is established. In 
applications, the coercitivity inequalities for the solutions of difference schemes for elliptic-
parabolic equation are obtained. The Matlab implementation of these difference schemes for 
elliptic-parabolic equation is presented.  

 
Keywords: Elliptic-Parabolic Equation, Difference Schemes, Well-posedness, Coercivity 
Inequalities, Stability Estimates, Numerical Solutions. 
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CHAPTER 1

INTRODUCTION

It is known that various problems in fluid mechanics and dynamics, elasticity and other
areas of engineering, physics and biological systems lead to partial differential equations
of variable type. Methods of solutions of the nonlocal boundary value problems for partial
differential equations of variable type have been studied extensively by many researchers
(see, e.g.,[1]-[4],[16]-[41] and the references given therein).

Our goal in this work is to investigate the stability of difference schemes of the ap-
proximate solutions of the nonlocal boundary value problems for differential equations of
elliptic-parabolic type.

It is known that the mixed problem for elliptic-parabolic equations can be solved ana-
lytically by Fourier series method, by Fourier transform method and by Laplace transform
method.

Now, let us illustrate these three different analytical methods by examples.

First, we consider the following simple nonlocal boundary value problem for elliptic-
parabolic equation





∂u
∂t

+ ∂2u
∂x2 = (1− t) sin x, − 1 < t ≤ 0, 0 < x < π,

∂2u
∂t2

+ ∂2u
∂x2 = −t sin x, 0 < t < 1, 0 < x < π,

u (1, x) = u (−1, x) + 2 sin x, 0 ≤ x ≤ π,

u (t, 0) = u (t, π) = 0, − 1 ≤ t ≤ 1.

(1.1)

For the solution of the problem (1.1), we use the Fourier series method. In order to solve
the problem we need to separate u(t, x) into two parts

u(t, x) = v(t, x) + w(t, x) (1.2)
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where v(t, x) and w(t, x) are the solutions of the problems





∂v
∂t

= − ∂2v
∂x2 , − 1 < t < 0, 0 < x < π,

∂2v
∂t2

+ ∂2v
∂x2 = 0, 0 < t < 1, 0 < x < π,

v (1, x) = v (−1, x) + 2 sin x, 0 ≤ x ≤ π,

v (t, 0) = v (t, π) = 0, − 1 ≤ t ≤ 1.

(1.3)

and 



∂w
∂t

+ ∂2w
∂x2 = (1− t) sin x, − 1 < t < 0, 0 < x < π,

∂2w
∂t2

+ ∂2w
∂x2 = −t sin x, 0 < t < 1, 0 < x < π,

w (1, x) = w (−1, x) , 0 ≤ x ≤ π,

w (t, 0) = w (t, π) = 0, − 1 ≤ t ≤ 1.

(1.4)

Now, let us obtain the solution of (1.3) when −1 ≤ t ≤ 0, by the method of separation

of variables. To do this, a solution of the form

v(t, x) = T (t)X(x) 6= 0

is suggested. Taking the partial derivatives and substituting the result in (1.3), we obtain

T ′ (t)
T (t)

+
X ′′ (x)

X (x)
= 0

or

−T ′ (t)
T (t)

=
X ′′ (x)

X (x)
= λ. (1.5)

The boundary conditions presented in (1.3), require X (0) = X (π) = 0. Hence from (1.5)
we have the ordinary differential equations

X ′′ (x) = λX (x) , X (0) = X (π) = 0. (1.6)

If λ ≥ 0, then the boundary value problem (1.6) has only trivial solution X (x) = 0. For
λ < 0, the nontrivial solutions of the boundary value problem (1.6) are

Xk (x) = sin kx, where k = 1, 2, 3, · · ·, λ = λk = −k2 , k = 1, 2, 3, · · ·.

So, the nontrivial solutions of the boundary value problem (1.6) are

Xk (x) = sin kx, where k = 1, 2, 3, · · ·. (1.7)

The other ordinary differential equations presented in (1.5) is

T ′ (t) = −λT (t) ,
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with λ = −k2, k = 1, · · ·. The solution of this ordinary differential equation is

Tk (t) = Ake
k2t, where k = 1, 2, 3, · · ·.

Thus,

v (t, x) =
∞∑

k=1

vk(t, x) =
∞∑

k=1

Ake
k2t sin kx.

Now, we consider if 0 ≤ t ≤ 1 by the same method of separation of variables. To do
this a solution of the form

v(t, x) = T (t)X(x) 6= 0

is suggested. Taking the partial derivatives and substituting the result in (1.3), we
obtain

T
′′
(t)

T (t)
+

X ′′(x)

X(x)
= 0

or

−T
′′
(t)

T (t)
=

X ′′(x)

X(x)
= λ. (1.8)

The boundary conditions presented in (1.3), require X (0) = X (π) = 0. Hence from (1.8)
we have the ordinary differential equation

X ′′ (x) = λX (x) , X (0) = X (π) = 0.

We have already solved this ordinary differential equation in the previous part.The so-
lution is presented in (1.7). The other ordinary differential equation presented in (1.8)
is

T ′′ (t) = −λT (t) ,

with λ = −k2, k = 1, · · ·. The solution of this ordinary differential equation is

Tk (t) = (Bke
kt + Cke

−kt), where k = 1, 2, 3, · · ·.

Thus,

v(t, x) =
∞∑

k=1

vk(t, x) =
∞∑

k=1

(
Bke

kt + Cke
−kt

)
sin kx.

Using the nonlocal boundary conditions





v (1, x) = v (−1, x) + 2 sin x,
v (0+, x) = v (0−, x) ,
v′ (0+, x) = v′ (0−, x) ,

we obtain





Bke
k + Cke

−k = Ake
−k2

,
Bk + Ck = Ak,

k (Bk − Ck) = k2Ak
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for k 6= 1 and 



B1e + C1e
−1 = A1e

−1 + 2,
B1 + C1 = A1,
B1 − C1 = A1

It is easy to see that C1 = 0, A1 = B1 = 2
e−e−1 = 4

sinh 1
, Bk = Ck = Ak = 0 for all

k 6= 1.Then the solution of (1.3) is

v (t, x) ≡ 4

sinh 1
et sin x.

Second, we obtain the solution of (1.4). We seek a solution of the form

w (t, x) =
∞∑

k=1

Dk (t) sin kx.

If 0 ≤ t ≤ 1, then

wtt + wxx =
∞∑

k=1

(
D′′

k (t)− k2Dk (t)
)
sin kx = −t sin x.

From that it follows that
D′′

k (t)− k2Dk (t) = 0

for all k 6= 1 and D′′
1 (t)−D1 (t) = −t. Solving it, we can write

Dk (t) = Ck cosh kt + Bk sinh kt,

for all k 6= 1 and D1 (t) = C1 cosh t + B1 sinh t + t.Thus,

w(t, x) =
∞∑

k=1

vk(t, x) =
∞∑

k=2

(Ck cosh kt + Bk sinh kt) sin kx

+(C1 cosh t + B1 sinh t + t) sin x.

If −1 ≤ t ≤ 0, then

wt + wxx =
∞∑

k=1

(
D′

k (t)− k2Dk (t)
)
sin kx = (1− t) sin x.

From that it follows that
D′

k (t)− k2Dk (t) = 0

for all k 6= 1 and D′
1 (t)−D1 (t) = 1− t. Solving it, we can write

Dk (t) = Ake
k2t,

for all k 6= 1 and D1 (t) = A1e
t + t.Thus,

w(t, x) =
∞∑

k=1

vk(t, x) =
∞∑

k=1

Ake
k2t sin kx + (A1e

t + t) sin x.
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Using the nonlocal boundary conditions




w (1, x) = w (−1, x) ,
w (0+, x) = w (0−, x) ,
w′ (0+, x) = w′ (0−, x) ,

we obtain





Ck = Ak,
kBk = k2Ak,

Bk sinh k + Ck cosh k = Ake
−k2

for k 6= 1 and 



C1 = A1,
B1 + 1 = A1 + 1,

B1 sinh 1 + C1 cosh 1 + 1 = A1e
−1 − 1.

It is easy to see that C1 = A1 = B1 = 2
e−1−sinh 1−cosh 1

= − 4
sinh 1

, Bk = Ck = Ak = 0 for all
k 6= 1.Then the solution of (1.4) is

w (t, x) ≡ (− 4

sinh 1
et + t) sin x.

Therefore
u (t, x) = v (t, x) + w (t, x) ,

and
u (t, x) = t sin x.

Note that using the same manner, one obtains the solution of the following nonlocal

boundary value problem for the multidimensional elliptic-parabolic equation




∂2u(t,x)
∂t2

+
n∑

r=1

αr
∂2u(t,x)

∂x2
r

= g(t, x),

x = (x1, . . . , xn) ∈ Ω, 0 ≤ t ≤ T,

∂u(t,x)
∂t

+
n∑

r=1

αr
∂2u(t,x)

∂x2
r

= f(t, x),

x = (x1, . . . , xn) ∈ Ω,−T ≤ t ≤ 0,

ut(0+, x) = ut(0−, x), x ∈ Ω

u(T, x) = u (−T, x) + ϕ(x), x ∈ Ω,

u(t, x) = 0, x ∈ S

where αr > 0 and f(t, x) (t ∈ [0, T ] , x ∈ Ω), g(t, x) (t ∈ [−T, 0] , x ∈ Ω), ϕ(x), ψ(x)
(x ∈ Ω) are given smooth functions. Here Ω is the unit open cube in the n-dimensional
Euclidean space Rn (0 < xk < 1, 1 ≤ k ≤ n) with boundary

S, Ω = Ω ∪ S.
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However, the method of separation of variables can be used for problems having con-
stant coefficients. It is well-known that the most useful method for solving partial differ-
ential equations with dependent coefficients in t and in the space variables is difference
method.

Second, we will consider a mixed problem





∂u
∂t

+ ∂2u
∂x2 = (1 + t)e−x, − 1 < t < 0, 0 < x < ∞,

∂2u
∂t2

+ ∂2u
∂x2 = te−x, 0 < t < 1, 0 < x < ∞,

u (1, x) = u (−1, x) + 2e−x, 0 ≤ x < ∞,

u (t, 0) = t, ux (t, 0) = −t, − 1 ≤ t ≤ 1.

(1.9)

It can be solved by Laplace transformation method (in x). Let 0 ≤ t ≤ 1. Then, taking
the Laplace transform of both sides of the differential equation

utt + uxx = te−x,

we can write
L {utt}+ L {uxx} = L

{
te−x

}

or

(L {u (t, x)})tt + s2L {u (t, x)} − su (t, 0)− ux (t, 0) =
t

s + 1
.

Let
L{u(t, x)} = v(t, s).

So our problem becomes

vtt (t, s) + s2v (t, s)− st + t =
t

s + 1

or

vtt (t, s) + s2v (t, s) =
s2t

s + 1
.

Now the complementary solution is

vc (t, s) = c1 sin st + c2 cos st.

For the particular solution we can write

vp (t, s) =
t

s + 1
.

So

v (t, s) = c1 sin st + c2 cos st +
t

s + 1
. (1.10)

Now, let −1 ≤ t ≤ 0. Then,
ut + uxx = (1 + t) e−x.
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By taking the Laplace transform of both sides of the last differential equation, we obtain

L {ut}+ L {uxx} = L
{
(1 + t) e−x

}

or

(L {u (t, x)})t + s2L {u (t, x)} − su (t, 0)− ux (t, 0) =
1 + t

s + 1
.

Let
L {u (t, x)} = v (t, s) .

So our problem becomes

vt (t, s) + s2v (t, s)− st + t =
1 + t

s + 1

or

vt (t, s) + s2v (t, s) =
s2t + 1

s + 1
.

So

v (t, s) = c3e
−s2t +

t

s + 1
. (1.11)

Using the nonlocal boundary conditions





u (1, x) = u (−1, x) + 2e−x,
u (0+, x) = u (0−, x) ,
u′ (0+, x) = u′ (0−, x) ,

we obtain 



v (1, s) = v (−1, s) + 2
1+s

,

v (0+, s) = v (0−, s) ,
v′ (0+, s) = v′ (0−, s) .

Applying these conditions and using (1.10), (1.11), we get





c2 = c3,

sc1 + 1
s+1

= −s2c3 + 1
s+1

,

c1 sin s + c2 cos s + 1
s+1

= c3e
s2 − 1

s+1
+ 2

1+s
.

Solving it, we can write c1 = c2 = c3 = 0. Then

v (t, s) =
t

s + 1
.

Hence taking the inverse of Laplace transform, we obtain

u (t, x) = L−1 {v (t, s)} = L−1

{
t

s + 1

}
= tL−1

{
1

s + 1

}
= te−x.

So
u (t, x) = te−x

is the solution of the given nonlocal boundary value problem (1.9).
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Note that using the same manner one obtains the solution of the following nonlocal
boundary value problem for the multidimensional elliptic-parabolic equation





∂2u(t,x)
∂t2

+
n∑

r=1

αr
∂2u(t,x)

∂x2
r

= g(t, x),

x = (x1, . . . , xn) ∈ Ω
+
, 0 ≤ t ≤ T,

∂u(t,x)
∂t

+
n∑

r=1

αr
∂2u(t,x)

∂x2
r

= f(t, x),

x = (x1, . . . , xn) ∈ Ω
+
,−T ≤ t ≤ 0,

u(T, x) = u(−T, x) + ϕ(x),

ut(0+, x) = ut(0−, x) + ϕ(x), x ∈ Ω
+
,

u(t, x) = 0, x ∈ S+,

where αr > 0 and f (t, x)
(
t ∈ [0, T ] , x ∈ Ω

+
)

, g (t, x)
(
t ∈ [−T, 0] , x ∈ Ω

+
)

, ϕ (x) ,

ψ (x)
(
x ∈ Ω

+
)

are given smooth functions. Here Ω+ is the open set in the n-dimensional

Euclidean space Rn (0 < xk < ∞, 1 ≤ k ≤ n) with boundary

S+, Ω
+

= Ω+ ∪ S+.

However, Laplace transform method can be used only in the case of constant co-
efficients. It is well-known that the most useful method for solving partial differential
equations with dependent coefficients in t and in the space variables is difference method.

Third, we consider the problem





∂u
∂t

+ ∂2u
∂x2 = (1 + t(4x2 − 2)) e−x2

, − 1 ≤ t ≤ 0, −∞ < x < ∞,

∂2u
∂t2

+ ∂2u
∂x2 = t (4x2 − 2) e−x2

, 0 < t < 1, −∞ < x < ∞,

u (1, x) = u (−1, x) + 2e−x2
, −∞ ≤ x ≤ ∞.

(1.12)

It can be solved by using Fourier Transform method. We denote

v (t, s) = F {u (t, x)} .

Then, taking the Fourier transform of both sides of the differential equation in (1.12) for
−1 ≤ t ≤ 0, we obtain

vt (t, s)− s2v (t, s) = F
{(

1 + t(4x2 − 2)
)
e−x2

}
.
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Since (e−x2
)′′ = (4x2 − 2)e−x2

, we have that

F
{

(4x2 − 2)e−x2
}

= F
{

(e−x2

)′′
}

= −s2F
{

e−x2
}

. (1.13)

Then
vt (t, s)− s2v (t, s) = (1− ts2)F

{
e−x2

}
.

Solving it we can write

v (t, s) = c1e
s2t + tF

{
e−x2

}
. (1.14)

Now, taking the Fourier transform of both sides of the differential equation in(1.12) for
0 < t < 1, we obtain

vtt (t, s)− s2v (t, s) = F
{

t
(
4x2 − 2

)
e−x2

}
.

Using (1.13), we get

vtt (t, s)− s2v (t, s) = −ts2F
{

e−x2
}

.

Solving it we can write

v (t, s) = c2 cosh st + c3 sinh st + tF
{

e−x2
}

. (1.15)

Using the nonlocal boundary conditions





u (1, x) = u (−1, x) + 2e−x2
,

u (0+, x) = u (0−, x) ,
u′ (0+, x) = u′ (0−, x) ,

we obtain 



v (1, s) = v (−1, s) + 2F
{

e−x2
}

,

v (0+, s) = v (0−, s) ,
v′ (0+, s) = v′ (0−, s) .

Applying these conditions and using (1.14), (1.15), we get

v (t, s) = c1e
s2t + tF

{
e−x2

}
, (1.16)





c2 = c1,

sc3 + F
{

e−x2
}

= s2 + F
{

e−x2
}

,

c2 cosh s + c3 sinh s + F
{

e−x2
}

= c1e
−s2 − F

{
e−x2

}
+ 2F

{
e−x2

}
.

It is easy to see that c1 = c2 = c3 = 0. Then

v(t, s) = tF
{

e−x2
}

.

Finally taking the inverse of Fourier transform we obtain the solution of the problem
(1.12) as

u (t, x) = te−x2

.
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Note that using the same manner one obtains the solution of the following nonlocal
boundary value problem for the 2m-th order multidimensional elliptic-parabolic equation





∂2u
∂t2

+
∑

|r|=2m

ar
∂|τ |u

∂x
r1
1 ...∂xrn

n
= g(t, x),

0 ≤ t ≤ T, x, r ∈ Rn, |r| = r1 + · · ·+ rn,

∂u
∂t

+
∑

|r|=2m

ar
∂|τ |u

∂x
r1
1 ...∂xrn

n
= f(t, x),

−T ≤ t ≤ 0, x, r ∈ Rn, |r| = r1 + · · ·+ rn,

u(T, x) = u (−T, x) + ϕ(x), x ∈ Rn,

ut(0+, x) = ut(0−, x), x ∈ Rn,

where αr, f(t, x) (t ∈ [0, T ] , x ∈ Rn), g(t, x) (t ∈ [−T, 0] , x ∈ Rn), ϕ(x), ψ(x) (x ∈ Rn)
are given smooth functions.

As in the previous two analytical methods mentioned above, the Fourier transform
method can be used only in the case of constant coefficients. It is well-known that the
most useful method for solving partial differential equations with dependent coefficients
in t and in the space variables is difference method.

To sum up, all analytical methods described above, namely the Fourier series method,
the Laplace transform method and the Fourier transform method can be used only when
the differential equation has constant coefficients. It is well-known that the most general
method for solving partial differential equations with dependent coefficients in t and in
the space variables is difference method, which is basically realized by digital computers
and known to be numerical method. However the stability of different difference schemes
used in numerical methods need to be proved or justified theoretically.

In the present work the nonlocal boundary value problem



−d2u(t)

dt2
+ Au(t) = g(t), (0 ≤ t ≤ 1),

du(t)
dt

− Au(t) = f(t), (−1 ≤ t ≤ 0),
u(1) = u(−1) + µ

for differential equation in a Hilbert space H with the self-adjoint positive definite opera-
tor A is considered. The well-posedness of this problem in Hölder spaces with a weight is
established. The coercivity inequalities for the solutions of the boundary value problems
for elliptic-parabolic equations are obtained. The first order of accuracy and second order
of accuracy difference schemes for the approximate solutions of this nonlocal boundary
value problem are presented. The well-posedness of these difference schemes in Hölder
spaces is established. In applications, the coercivity inequalities for the solutions of differ-
ence schemes for elliptic-parabolic equation are obtained. Numerical examples are given.
The Matlab implementation of these difference schemes for elliptic-parabolic equation is
presented.

Let us briefly describe the contents of the various sections of the thesis. It consists of
six chapters.
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First chapter is the introduction.

Second chapter presents elementary statements in a Hilbert space that is needed for
this work.

Third chapter consists the main theorem about well-posedness of the nonlocal bound-
ary value problem for elliptic-parabolic equation in a Hilbert space. In applications this
abstract result permits us to obtain the coercivity stability inequalities for the solution
of the two nonlocal boundary value problems for elliptic-parabolic equations.

Fourth chapter presents the stable first order of accuracy difference scheme approxi-
mately solving the nonlocal boundary value problem for elliptic-parabolic equation in a
Hilbert space H with self-adjoint positive definite operator A. The well-posedness of this
difference scheme in Hölder spaces is established. In applications, the stability, almost
coercivity inequalities, coercivity inequalities for the solutions of difference scheme for
the approximate solution of the nonlocal boundary value problem for elliptic-parabolic
equation are obtained.

Fifth chapter presents the stable second order of accuracy difference scheme approxi-
mately solving the nonlocal boundary value problem for elliptic-parabolic equation in a
Hilbert space H with self-adjoint positive definite operator A. The well-posedness of this
difference scheme in Hölder spaces is established. In applications, the stability, almost
coercivity inequalities, coercivity inequalities for the solutions of difference scheme for
the approximate solution of the nonlocal boundary value problem for elliptic-parabolic
equation are obtained.

Sixth chapter is devoted to the applications. The method is considered by numerical
examples. A matlab program is given to conclude that the second order of accuracy is
more accurate. The figures and table are included for comparison.

Seventh chapter contains the conclusions.



CHAPTER 2

ELEMENTS OF HILBERT SPACE

This chapter covers selected concepts of the elementary Hilbert space theory as developed
in [Krein, S. G., 1966]. It also includes the basis for the solution properties in an Hilbert
space of the initial value problem considered in this thesis.

2.1 HILBERT SPACE

Definition 2.1. A complex linear space H is called an inner product space if there is a
complex-valued function 〈., .〉 : H ×H → C with the properties

i. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = σ,

ii. 〈x, y〉 = 〈y, x〉 for all x, y ∈ H ,

iii. 〈αx, y〉 = α 〈x, y〉, for all x, y ∈ H and α ∈ C,

iv. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ H.

The function 〈x, y〉 is called the inner product of x and y. A Hilbert space is a
complete inner product space. An inner product on H defines a norm on H given by
‖x‖ = 〈x, x〉1/2 . Hence inner product spaces are normed spaces, and Hilbert spaces are
Banach spaces.

Example 2.1. The space C2 [−1, 1] of all defined and continuous functions on a given
closed interval [−1, 1] is an inner product space with the inner product given by

〈x, y〉 =

1∫

−1

x(t)y(t)dt. (2.1)

Note that the space C2 [−1, 1] is not complete. So, C2 [−1, 1] is not a Hilbert space.

Example 2.2. The space L2 [−1, 1] = C2 [−1, 1] with the inner product (2.1) is a Hilbert
space.

12
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Theorem 2.1. Let x, y be any two vectors in a Hilbert space, then

|〈x, y〉| ≤ ‖x‖ ‖y‖ ( Schwartz inequality). (2.2)

Note that the inner product is related to the norm by the following identity

〈x, y〉 =
1

4

[(‖x + y‖2 − ‖x− y‖2) + i
(‖x + iy‖2 − ‖x− iy‖2)] . (2.3)

A norm on an inner product space satisfies the important Parallelogram law

Theorem 2.2. If H is a Hilbert space, then

‖x + y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 , ∀ x, y ∈ H. (Parallelogram law) (2.4)

Conversely, H is a complex complete normed space with the norm ‖·‖ satisfying
the equation (2.4) then H is a Hilbert space with the scalar product 〈·, ·〉 satisfying

‖x‖ = 〈x, x〉1/2 .

Example 2.3. The space lp of all sequence, x = (ξi) = (ξ1, ξ2, ...) such that |ξ1|p+|ξ2|p+...
converges with p 6= 2 is not an inner product space,hence not a Hilbert space.

Example 2.4. The space C [a, b] is not an inner product space,hence not a Hilbert space.

2.2 BOUNDED LINEAR OPERATORS IN H

Definition 2.2. Let H1 and H2 be two Hilbert spaces. A linear operator A is an operator
such that A : H1 → H2

A (αx + βy) = αAx + βAy for all α, β ∈ C and x, y ∈ H1.

The domain of A D (A) = {x ∈ H1,∃Ax ∈ H2} is a vector space and

R (A) = {y = Ax,∀x ∈ D (A)} denotes the range of A.

A linear operator A : H → H is said to be bounded if there exist a real number
M > 0 such that

‖Ax‖H ≤ M ‖x‖H for all x ∈ H. (2.5)

If a linear operator A : H → H is bounded with M , then

‖A‖ = inf M (2.6)

is called the norm of operator A.

Example 2.5. A bounded linear operator from H = L2 [0, 1] into itself is defined by

Ax = tx(t) , 0 ≤ t ≤ 1. (2.7)

Example 2.6. Another bounded linear operator L2 [0, 1] into itself is defined by

Ax(t) =

1∫

0

tsx(s)ds. (2.8)
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Theorem 2.3. The norm of the bounded linear operator A is

‖A‖ = sup
‖x‖≤1

‖Ax‖ = sup
x 6=σ

‖Ax‖
‖x‖ = sup

‖x‖=1

‖Ax‖ . (2.9)

Example 2.7. A is an operator defined by Ax = αx(t), A : L2 [0, 1] −→ L2 [0, 1] .
Then, ‖Ax‖ = |α| .

2.3 ADJOINT OF AN OPERATOR

Definition 2.3. Let A : H1 → H2 be a bounded linear operator, where H1 and H2

are Hilbert spaces. Then the Hilbert adjoint operator A∗ of A is the operator

A∗ : H2 → H1,

such that for all x ∈ H1 and y ∈ H2

〈Ax, y〉 = 〈x,A∗y〉 .
Theorem 2.4. The Hilbert adjoint operator A∗ of A is unique and bounded linear
operator with the norm

‖A∗‖ = ‖A‖ . (2.10)

Definition 2.4. A bounded linear operator A : H −→ H on a Hilbert space H is said
to be self-adjoint if 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ H.

Definition 2.5. A self-adjoint operator A is said to be positive if A ≥ 0, that is, (Ax, x) ≥
0 for all x ∈ H.

Example 2.8. A is an operator defined on the example 2.5. If α ∈ R1, then A is a
self-adjoint operator.

Example 2.9. A is an operator defined on the example 2.7. Then, A is a self-adjoint
positive operator.

Definition 2.6. Let A : D (A) −→ H be a linear operator with D (A) = H. Then A
is called symmetric if 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ D (A) . If A is symmetric and
D (A) = D (A∗), then A is a self-adjoint operator.

Example 2.10. Let Au = −d2u

dx2
+ u , u(a) = u(b) = 0 and H = L2 [a, b].

Then, A is a self-adjoint positive operator.

2.4 SPECTRUM

Definition 2.7. Let H be a Hilbert space and A : H −→ H be a linear operator with
D (A) ⊂ H. We associate the operator Aλ = A− λI , where λ ∈ C and I is the identity
operator on D(A).

If Aλ has an inverse, we denote it by Rλ (A) and we call it the resolvent operator of
A, or simply, resolvent of A.

Rλ (A) = (A− λI)−1 . (2.11)
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Definition 2.8. (Regular value, resolvent set, spectrum)

Let A be a linear operator with D (A) ⊂ H and H is a Hilbert space. A regular
value λ of A is a complex number such that

(R1) Rλ (A) exists.

(R2) Rλ (A) is bounded.

(R3) Rλ (A) is defined on a set which is dense in H.

The resolvent set ρ (A) of A is the set of all regular values of A. Its complement
σ (A) = C − ρ (A) is called spectrum of A , and λ ∈ σ (A) is called spectral value of A.
Furthermore, the spectrum ρ (A) is partitioned into three disjoint sets as follows.

The point spectrum or discrete spectrum σp (A) is the set such that Rλ (A) does
not exist. A λ ∈ σ (A) is called an eigenvalue of A.

The continuous spectrum σc (A) is the set such that Rλ (A) exists and satisfies
(R3) but not (R2), that is, Rλ (A) is unbounded.

The residual spectrum σr (A) is the set such that Rλ (A) exists (and may be
bounded or not) but does not satisfy (R3) , that is, the domain of Rλ (A) is not dense in
H.

If Aλx = (A− λI) x = 0 for some x 6= 0, then λ ∈ σp (A) , by definition, that is,
λ is an eigenvalue of A.

The vector x is called an eigenvector of A corresponding to eigenvalue λ. The
subspace of D(A) consisting of 0 and all eigenvectors of A corresponding to an eigenvalue
λ of A is called the eigenspace of A corresponding to that eigenvalue λ.

σ (A) = σc (A) ∪ σp (A) ∪ σr (A) , (2.12)

σ (A) ∪ ρ (A) = C.

Definition 2.9. Let H be a Hilbert space over the field of real numbers and for any
x ∈ H , let ‖x‖ denote the norm of x. Let J be any interval of the real line R. A function
x : J → H is called an abstract function. A function x(t) is said to be continuous at
the point t0 ∈ J, if

lim
t→t0

‖x(t)− x(t0)‖ = 0.

If x : J → H is continuous at each point of J , then we say that x is continuous on J
and we write x ∈ C [J,H] .

Definition 2.10. The Stieltjes integral of a function x:[a, b] →H with respect to a
function y:[a, b] →H1. Let H,H1 and H2 be three Hilbert spaces. A bilinear operator
P : H ×H1 → H2 whose norm is less than or equal to 1, that is,

‖P (x, y) ‖≤ ‖x‖‖ y‖ , (2.13)

is called a product operator. We shall agree to write P (x, y) = xy. Let x : [a, b] →
H and y : [a, b] → H1 be two bounded functions such that the product x(t)y(t) ∈ H2,
for each t ∈ [a, b] is linear in both x and y and

‖x(t)y(t)‖ ≤ ‖x(t)‖ ‖y(t)‖
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(for example, x(t) = A(t) is an operator with domain D [A (t)] ⊃ H1, or one of the func-
tion x,y is a scalar function). We denote the partition (a = t0 < t1 < t2 < ... < tn = b)
together with the points τ i (ti < τ 1 < ti+1, i = 0, 1, 2, ..., n− 1) by π and set |π| =
max

i
|ti+1 − ti| . We form the Stieltjes sum

Sπ =
n−1∑
i=1

x (τ i) [y (ti+1)− y (ti)] . (2.14)

If the lim Sπ exist as |π| → 0 and defines an element I in H2 independent of π, then I is
called the Stieltjes integral of the function x (t) by the function y (t) , and is denoted by

b∫

a

x (t) dy (t) . (2.15)

Theorem 2.5. If x ∈ C [[a, b] , H] and y : [a, b] → H1 are bounded variations on [a, b] ,
then the Stieltjes integral (2.15) exists.

Consider the function y : [a, b] → H1 and the partition

π : a = t0 < t1 < t2 < ... < tn = b.

Form the sum

V =
n−1∑
i=1

‖y (ti+1)− y (ti)‖ . (2.16)

The least upper bound of the set of all possible sums V is called the (strong)
total variation of the function y (t) on the interval [a, b] and is denoted by V b

a (y) . If
V b

a (y) < ∞, then y (t) is called an abstract function of bounded variation on [a, b] .

Example 2.11. If x ∈ C [[a, b] , H] and y : [a, b] → H1 are bounded variations on [a, b] ,
then ∥∥∥∥∥∥

b∫

a

x (t) dy (t)

∥∥∥∥∥∥
≤

b∫

a

‖x (t)‖ dV t
a [y (t)] ≤ max

t∈[a,b]
‖x (t)‖V b

a [y (t)] . (2.17)

2.5 PROJECTION OPERATOR, SPECTRAL FAMILY

Definition 2.11. A Hilbert space H is represented as the direct sum of a closed subspace
Y and its orthogonal complement Y ⊥ :

H = Y ⊕ Y ⊥ (2.18)

x = y + z , where y ∈ Y, z ∈ Y ⊥.

Since the sum is direct, y is unique for any given x ∈ H. Hence (2.18) defines a linear
operator

P : H −→ H,

x −→ y = Px.

P is called an orthogonal projection or projection on H.
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Theorem 2.6. A bounded linear operator P : H −→ H on a Hilbert space H is projection
if and only if P is self-adjoint and idempotent that is, P 2 = P.

Spectral family from dimensional case as follows: If matrix A has n different eigenval-
ues λ1 < λ2 < λ3... < λn. Then A has an orthogonal set of n vectors x1, x2, x3, ..., xn,where
xj corresponds to λj and we write these vectors as column vectors, for convenience. This
basis for H, has a unique representation:

x =
n∑

j=1

γjxj , γj = (x, xj) = xT xj , (2.19)

xj is an eigenvector of A, so that we have Axj = λjxj.

Ax =
n∑

j=1

λjγjxj. (2.20)

We can define an operator

Pj : H −→ H, (2.21)

x −→ γjxj .

Obviously, Pj is the projection (orthogonal projection) of H onto the eigenspace of A
corresponding to λj . From the equation (2.19) can be written

x =
n∑

j=1

Pjx hence I =
n∑

j=1

Pj, (2.22)

where I is the identity operator on H. Formula (2.20) becomes

Ax =
n∑

j=1

λjPjx hence A =
n∑

j=1

λjPj. (2.23)

This is a representation of A in terms of projections.

Theorem 2.7. (Spectral Theorem) A family of an orthogonal projection operators Eλ

(−∞ < λ < ∞) is said to be spectral representation identity if:

1) Eλ is strongly left-continuous in λ;

2) EλEµ = EµEλ = Eλ for λ < µ;

3) E−∞ = lim
λ→−∞

Eλ = 0 and E+∞ = lim
λ→∞

Eλ = I, where the limits are understood in

the sense of strong convergence. For every bounded function F (λ) defined on the entire
real axis, one can define the Stieltjes operator integral

∫ b

a

F (λ) dEλ. (2.24)

This integral is defined as the limit in the norm of integral sums of the form

N∑

k=0

F (λk)
(
Eλk+1

− Eλ
k

)
,
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if the segment [a, b] is finite, and as an important integral if a = −∞ or b = ∞. The
integral (2.24) is a bounded operator with

∥∥∥∥
∫ b

a

F (λ) dEλ

∥∥∥∥ ≤ sup
a≤λ≤b

|F (λ)| .

If the function F (λ) takes on only real values, the operator (2.24) is self-adjoint. If the
function F (λ) is real and bounded, then formula (2.24), after assigning an appropriate
meaning to the integral, yields a self-adjoint and generally speaking bounded operator
whose domain consists of only those elements x for which

∫ ∞

−∞
|F (λ)|2 d (Eλx, x) < ∞.

It turns out that to every self-adjoint operator A there corresponds some spectral repre-
sentation Eλ of the identity with

Ax =

∫ ∞

−∞
λdEλx

for x ∈ D (A) . The operators Eλ commute with any operator commuting with A.

If A is bounded, and m and M are the greatest lower bound and least upper bound of
its spectrum then Eλ = I for λ > M, so that

Ax =

∫ M+0

m

λdEλx.

If the operator A is positive definite, i.e., 〈Ax, x〉 ≥ δ 〈x, x〉 for some δ ≥ 0, then

Ax =

∫ ∞

a

λdEλx.

The real regular points of A are characterized by the fact that in their neighborhoods
the operator Eλ is constant. Thus, the points of the spectrum of A coincide with the
points of growth of the operator function Eλ.

By using the spectral representation one may bring into consideration a wide class of
functions of an unbounded self-adjoint operator. Thus, for example, for any continuous
function F (λ) it is natural to put

F (A) x =

∫ ∞

a

F (λ) dEλx.

where Eλ is the spectral resolution of the identity corresponding to operator A. From that,
it follows

‖F (A) x‖H ≤ sup
δ≤µ<∞

|F (λ) |.

Example 2.12. A is a self-adjoint positive definite operator. Show the below inequalities;

‖ Aαe−tA||H→H ≤ t−α, t > 0, 0 ≤ α ≤ 1. (2.25)
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‖
(
A

1
2

)α

e−tA
1
2 ||H→H ≤ t−α, t > 0, 0 ≤ α ≤ 1, (2.26)

‖
(
I − e−2A

1
2
)−1

‖H→H≤ M, (2.27)

‖
(
I + e−2A

1
2 + A

1
2 (I − e−2A

1
2 )− 2e−(A

1
2 +A)

)−1

‖H→H≤ M, (2.28)

‖ P k ‖H→H≤ M(1 + δτ)−k, kτ ‖ AP k ‖H→H≤ M, k ≥ 1, δ > 0, P = P (τA) = (I + τA)−1

(2.29)

‖ Aβ(P k+r − P k) ‖H→H ≤ M
(rτ)α

(kτ)α+β
, 1 ≤ k < k + r ≤ N, 0 ≤ α, β ≤ 1, (2.30)

‖ Rk ‖H→H≤ M(1 + δτ)−k, kτ ‖ BRk ‖H→H≤ M, k ≥ 1, δ > 0, R = (I + τB)−1, (2.31)

‖ Bβ(Rk+r −Rk) ‖H→H ≤ M
(rτ)α

(kτ)α+β
, 1 ≤ k < k + r ≤ N, 0 ≤ α, β ≤ 1, (2.32)

||(I −R2N)−1||H→H ≤ M, (2.33)

∥∥(I + (I + τA) (I + 2τA)−1 (
R2N−1 + B−1A

(
I −R2N−1

))− (2.34)

−(2I + τB) (I + 2τA)−1 RNPN−1)−1
∥∥

H→H
≤ M.

‖ P k ‖H→H≤ 1, ‖ C ‖H→H≤ 1, kτ ‖ AP kC2 ‖H→H≤ M, k ≥ 1, δ > 0, (2.35)

‖ Aβ(P k+r − P k)C2 ‖H→H ≤ M
(rτ)α

(kτ)α+β
, 1 ≤ k < k + r ≤ N, 0 ≤ α, β ≤ 1, (2.36)

where

P = P (τA) = (I − τA

2
)(I +

τA

2
)−1, C = C(τA) = (I +

τA

2
)−1,

∥∥(I + B−1A(I + τA + τC2)D
(
I −R2N−1

)
(2.37)

+DP 2R2N−1 − (2I + τB)DRNPN+2)−1
∥∥

H→H
≤ M,

where

D =

(
I + 2τA +

5

4
(τA)2

)−1

.

Solution. Using the spectral representation of the self-adjoint positive defined opera-
tors we can write

Aα exp(−At)ϕ =

∫ ∞

δ

µα exp(−µt)dEµϕ,
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where (Eµ) is the spectral family associated with A. Therefore, for any t ≥ 0 we have
that

‖Aα exp(−At)‖H→H ≤ sup
δ≤µ<∞

µα| exp(−µt)| = t−α.

The estimate (2.25) is proved. The proof of estimates (2.26) - (2.37) follow the
same scheme and relies on the spectral representation of the self-adjoint positive defined
operators.



CHAPTER 3

A NONLOCAL BOUNDARY VALUE

DIFFERENTIAL PROBLEM: WELL-POSEDNESS

We consider the nonlocal boundary value problem




−d2u(t)

dt2
+ Au(t) = g(t), (0 ≤ t ≤ 1),

du(t)
dt

− Au(t) = f(t), (−1 ≤ t ≤ 0),
u(1) = u(−1) + µ

(3.1)

for differential equation in a Hilbert space H with the self-adjoint positive definite oper-
ator A.

Let us denote by Cα
0,1([−1, 1], H), Cα

0,1([0, 1], H), Cα
0 ([−1, 0], H), 0 < α < 1 the Banach

spaces obtained by completion of the set of all smooth H-valued functions ϕ(t) on [a, b]
in the norms

‖ ϕ ‖Cα
0,1([−1,1],H)= ‖ϕ‖C([−1,1],H) + sup

−1<t<t+τ<0

(−t)α‖ϕ(t + τ)− ϕ(t)‖H

τα

+ sup
0<t<t+τ<1

(1− t)α(t + τ)α‖ϕ(t + τ)− ϕ(t)‖H

τα
,

‖ ϕ ‖Cα
0 ([−1,0],H)= ‖ϕ‖C([−1,0],H) + sup

−1<t<t+τ<0

(−t)α‖ϕ(t + τ)− ϕ(t)‖H

τα
,

‖ ϕ ‖Cα
0,1([0,1],H)= ‖ϕ‖C([0,1],H) + sup

0<t<t+τ<1

(1− t)α(t + τ)α‖ϕ(t + τ)− ϕ(t)‖H

τα
,

where C([a, b], H) stands for the Banach space of all continuous functions ϕ(t) defined
on [a, b] with values in H equipped with the norm

||ϕ||C([a,b],H) = max
a≤t≤b

‖ϕ(t)‖H .

A function u(t) is called a solution of problem (3.1) if the following conditions are
satisfied:

i. u(t) is a twice continuously differentiable on the segment [0, 1] and continuously
differentiable on the segment [−1, 1].
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ii. The element u(t) belongs to D(A) for all t ∈ [−1, 1], and the function Au(t) is
continuous on [−1, 1].

iii. u(t) satisfies the equation and nonlocal boundary condition (3.1).

A solution of problem (3.1) defined in this manner will from now on be referred to as
a solution of problem (3.1) in the space C(H) = C([−1, 1], H).

We say that the problem (3.1) is well-posed in C(H), if there exists the unique solution
u(t) in C(H) of problem (3.1) for any g(t) ∈ C([0, 1], H), f(t) ∈ C([−1, 0], H) and
µ ∈ D(A) and the following coercivity inequality is satisfied:

‖u′′‖C([0,1],H) + ‖u′‖C([−1,0],H) + ‖Au‖C(H) (3.2)

≤ M [‖g‖C([0,1],H) + ‖f‖C([−1,0],H) + ‖Aµ‖H ] ,

where M does not depend on µ, f(t) and g(t).

The problem (3.1) is not well- posed in C(H)[4]. The well-posedness of the boundary
value problem (3.1) can be established if one considers this problem in certain spaces
F (H) of smooth H-valued functions on [−1, 1].

A function u(t) is said to be a solution of problem (3.1) in F (H) if it is a solution of
this problem in C(H) and the functions u′′(t) (t ∈ [0, 1]), u′(t)(t ∈ [−1, 1]) and Au(t)(t ∈
[−1, 1]) belong to F (H).

As in the case of the space C(H), we say that the problem (3.1) is well-posed in F (H),
if the following coercivity inequality is satisfied:

‖u′′‖F ([0,1],H) + ‖u′‖F ([−1,0],H) + ‖Au‖F (H) (3.3)

≤ M [‖g‖F ([0,1],H) + ‖f‖F ([−1,0],H) + ‖Aµ‖H ] ,

where M does not depend on µ, f(t) and g(t).

We set F (H) equal to Cα
0,1(H) = Cα

0,1([−1, 1], H), (0 < α < 1) and we can establish
the following coercivity inequality.

Theorem 3.1. Suppose µ ∈ D (A) . Then the boundary value problem (3.1) is well-posed
in a Hölder space Cα

0,1(H) and the following coercivity inequality holds:

‖u′‖Cα
0 ([−1,0],H) + ||Au||Cα

0,1(H) + ‖u′′‖Cα
0,1([0,1],H) (3.4)

≤ M

α(1− α)

[
‖f‖Cα

0 ([−1,0],H) + ‖g‖Cα
0,1([0,1],H)

]
+ M ‖Aµ‖H .

Here M is independent of f(t), g(t) and µ.

Proof. First, we will obtain the formula for solution of the problem (3.1). It is known
that (see, e.g., [5]) for smooth data of the problems

{ −u′′ (t) + Au (t) = g (t) , (0 ≤ t ≤ 1) ,
u (0) = u0, u (1) = u1,

(3.5)
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{
u′ (t)− Au (t) = f (t) , (−1 ≤ t ≤ 0) ,
u (0) = u0,

(3.6)

there are unique solutions of the problems (3.5), (3.6), and the following formulas hold:

u(t) =
(
I − e−2A

1
2
)−1 [(

e−tA
1
2 − e−(−t+2)A

1
2
)

u0 (3.7)

+
(
e−(1−t)A

1
2 − e−(t+1)A

1
2
)

u1

]
+

(
I − e−2A

1
2
)−1

×
(
e−(1−t)A

1
2 − e−(t+1)A

1
2
) 1∫

0

A− 1
2 2−1

(
e−(1−s)A

1
2 − e−(s+1)A

1
2
)

g(s)ds

−
1∫

0

A− 1
2 2−1

(
e−(t+s)A

1
2 − e−|t−s|A 1

2

)
g(s)ds, 0 ≤ t ≤ 1,

and

u(t) = etAu0 +

t∫

0

e(t−s)Af(s)ds, − 1 ≤ t ≤ 0. (3.8)

Using the condition u(1) = u (−1) + µ and formulas (3.7), (3.8), we can write

u(t) =
(
I − e−2A

1
2
)−1 [(

e−tA
1
2 − e−(−t+2)A

1
2
)

u0 (3.9)

+
(
e−(1−t)A

1
2 − e−(t+1)A

1
2

)

e−Au0 +

−1∫

0

e−(1+s)Af(s)ds + µ





 +

(
I − e−2A

1
2

)−1

×
(
e−(1−t)A

1
2 − e−(t+1)A

1
2
) 1∫

0

A− 1
2 2−1

(
e−(1−s)A

1
2 − e−(s+1)A

1
2
)

g(s)ds

−
1∫

0

A− 1
2 2−1

(
e−(t+s)A

1
2 − e−|t−s|A 1

2
)

g(s)ds, 0 ≤ t ≤ 1.

For u0, using the condition u′(0+) = Au (0) + f(0) and formula (3.9), we obtain the
operator equation

Au (0) + f(0) =
(
I − e−2A

1
2

)−1 [
−A

1
2

(
I + e−2A

1
2

)
u0 (3.10)

+2A
1
2 e−A

1
2


e−Au0 +

−1∫

0

e−(1+s)Af(s)ds + µ





 +

1∫

0

e−sA
1
2 g(s)ds
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+
(
I − e−2A

1
2
)−1

2A
1
2 e−A

1
2

1∫

0

A− 1
2 2−1

(
e−(1−s)A

1
2 − e−(s+1)A

1
2
)

g(s)ds.

Since the operator

I + e−2A
1
2 + A

1
2 (I − e−2A

1
2 )− 2e−(A

1
2 +A)

has an inverse

T =
(
I + e−2A

1
2 + A

1
2 (I − e−2A

1
2 )− 2e−(A

1
2 +A)

)−1

,

for the solution of the operator equation (3.10) we have the formula

u0 = T


e−A

1
2


2

−1∫

0

e−(1+s)Af(s)ds (3.11)

+

1∫

0

A− 1
2

(
e−(1−s)A

1
2 − e−(s+1)A

1
2
)

g(s)ds


 + 2e−A

1
2 µ




+
(
I − e−2A

1
2

)
T


−A− 1

2 f(0) +

1∫

0

A− 1
2 e−sA

1
2 g(s)ds


 .

Hence, for the solution of the nonlocal boundary value problem (3.1), we have formulas
(3.8), (3.9) and (3.11).

Second, we will establish estimate (3.4). It is based on the estimates

‖u′‖Cα
0 ([−1,0],H) + ||Au||Cα

0 ([−1,0],H) (3.12)

≤ M

α(1− α)
‖f‖Cα

0 ([−1,0],H) + M ‖Au0‖H

for the solution of an inverse Cauchy problem (3.6) and on the estimates

‖u′′‖Cα
0,1([0,1],H) + ||Au||Cα

0,1([0,1],H) ≤ M

α(1− α)
‖g‖Cα

0,1([0,1],H) (3.13)

+M [‖Au0‖H + ‖Au1‖H ]

for the solution of the boundary value problem (3.5) and on the estimates

‖Au0‖H ≤ M

α(1− α)
[‖g‖Cα

0,1([0,1],H) + ‖f‖Cα
0 ([−1,0],H)] + M ‖Aµ‖H , (3.14)

‖Au1‖H ≤ M

α(1− α)
[‖f‖Cα

0 ([−1,0],H) + ‖g‖Cα
0,1([0,1],H)] + M ‖Aµ‖H (3.15)
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for the solution of the boundary value problem (3.1). Estimates (3.12) and (3.13) were
established in [6] and [7]. The proof of estimates (3.14)-(3.15) is based on the formulas

Au0 = Te−A
1
2


2

−1∫

0

Ae−(1+s)A (f(s)− f(−1)) ds

+

1∫

0

A
1
2 e−(1−s)A

1
2 (g(s)− g(1)) ds−

1∫

0

A
1
2 e−(s+1)A

1
2 (g(s)− g(0)) ds + 2Aµ




+
(
I − e−2A

1
2

)
T

1∫

0

A
1
2 e−sA

1
2 (g(s)− g(0)) ds + 2Te−A

1
2
(
e−A − I

)
f(−1)

+T
(
e−A

1
2 − e−2A

1
2

)
g(1) + T

(
I + 2e−3A

1
2 − 2e−2A

1
2 − e−A

1
2

)
g(0)

+T
(
e−2A

1
2 − 2e−(A

1
2 +A)

)
f(0),

Au1 = −e−Af(0) + Aµ

+e−A



Te−A

1
2


2

−1∫

0

Ae−(1+s)A (f(s)− f(−1)) ds

+

1∫

0

A
1
2 e−(1−s)A

1
2 (g(s)− g(1)) ds−

1∫

0

A
1
2 e−(s+1)A

1
2 (g(s)− g(0)) ds + 2Aµ




+
(
I − e−2A

1
2

)
T

1∫

0

A
1
2 e−sA

1
2 (g(s)− g(0)) ds + 2Te−A

1
2
(
e−A − I

)
f(−1)

+T
(
e−A

1
2 − e−2A

1
2

)
g(1) + T

(
I + 2e−3A

1
2 − 2e−2A

1
2 − e−A

1
2

)
g(0)

+T
(
I + e−2A

1
2 − 2e−(A

1
2 +A)

)
f(0)

}

+

−1∫

0

Ae−(1+s)A (f(s)− f(−1)) ds +
(
e−A − I

)
f(−1)

for the solution of problem (3.1) and on the estimates

‖
(
I − e−2A

1
2
)−1

‖H→H≤ M, (3.16)

‖
(
I + e−2A

1
2 + A

1
2 (I − e−2A

1
2 )− 2e−(A

1
2 +A)

)−1

‖H→H≤ M, (3.17)

‖
(
A

1
2

)α

e−tA
1
2 ||H→H ≤ t−α, t > 0, 0 ≤ α ≤ 1, (3.18)
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‖ Aαe−tA||H→H ≤ t−α, t > 0, 0 ≤ α ≤ 1. (3.19)

Theorem 3.1 is proved.

Now, we consider the applications of this abstract result. First, the mixed boundary
value problem for elliptic-parabolic equation





−utt − (a(x)ux)x + δu = g(t, x), 0 < t < 1, 0 < x < 1,

ut + (a(x)ux)x − δu = f(t, x),−1 < t < 0, 0 < x < 1,
u(t, 0) = u(t, 1), ux(t, 0) = ux(t, 1),−1 ≤ t ≤ 1,
u(1, x) = u(−1, x) + µ(x), 0 ≤ x ≤ 1,
u(0+, x) = u(0−, x), ut(0+, x) = ut(0−, x), 0 ≤ x ≤ 1

(3.20)

is considered. Problem (3.20) has a unique smooth solution u(t, x) for the smooth a(x) >
a > 0(x ∈ (0, 1)), and g(t, x)(t ∈ [0, 1], x ∈ [0, 1]), f(t, x)(t ∈ [−1, 0], x ∈ [0, 1]) functions
and δ = const > 0. This allows us to reduce the mixed problem(3.20) to the nonlocal
boundary value problem (3.1) in a Hilbert space H = L2[0, 1] with a self-adjoint positive
definite operator A defined by (3.20).

Theorem 3.2. The solutions of the nonlocal boundary value problem (3.20) satisfy the
coercivity inequality

‖ utt ‖Cα
0,1([0,1],L2[0,1]) + ‖ ut ‖Cα

0 ([−1,0],L2[0,1]) + ‖ u ‖Cα
0,1([−1,1],W 2

2 [0,1])

≤ M

α(1− α)

[
‖ g ‖Cα

0,1([0,1],L2[0,1]) + ‖ f ‖Cα
0 ([−1,0],L2[0,1])

]
+ M ‖µ‖W 2

2 [0,1] .

Here M does not depend on f(t, x) , g(t, x) and µ(x).

The proof of Theorem 3.2 is based on the abstract Theorem 3.1 and the symmetry
properties of the space operator generated by the problem (3.20).

Second, let Ω be the unit open cube in the n-dimensional Euclidean space Rn (0 <
xk < 1, 1 ≤ k ≤ n) with boundary S, Ω = Ω ∪ S. In [−1, 1]× Ω, the mixed boundary
value problem for multi-dimensional mixed equation





−utt −
n∑

r=1

(ar(x)uxr)xr = g(t, x), 0 < t < 1, x ∈ Ω,

ut +
n∑

r=1

(ar(x)uxr)xr = f(t, x),−1 < t < 0, x ∈ Ω,

u(t, x) = 0, x ∈ S, −1 ≤ t ≤ 1; u(1, x) = u(−1, x) + µ(x), x ∈ Ω,
u(0+, x) = u(0−, x), ut(0+, x) = ut(0−, x), x ∈ Ω

(3.21)

is considered. The problem (3.21) has a unique smooth solution u(t, x) for the smooth
ar(x) > a > 0 (x ∈ Ω) and g(t, x) (t ∈ (0, 1), x ∈ Ω), f(t, x) (t ∈ (−1, 0), x ∈ Ω)
functions. This allows us to reduce the mixed problem (3.21) to the nonlocal boundary
value problem (3.1) in a Hilbert space H = L2(Ω) of all the integrable functions defined
on Ω, equipped with the norm

‖ f ‖L2(Ω)= {
∫
· · ·

∫

x∈Ω

|f(x)|2dx1 · · · dxn} 1
2

with a self- adjoint positive definite operator A defined by (3.21).
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Theorem 3.3. The solutions of the nonlocal boundary value problem (3.21) satisfy the
coercivity inequality

‖ utt ‖Cα
0,1([0,1],L2(Ω)) + ‖ ut ‖Cα

0 ([−1,0],L2(Ω)]) + ‖ u ‖Cα
0,1([−1,1],W 2

2 (Ω))

≤ M

α(1− α)

[
‖ g ‖Cα

0,1([0,1],L2(Ω)) + ‖ f ‖Cα
0 ([−1,0],L2(Ω))

]
+ M ‖µ‖W 2

2 (Ω) .

Here M does not depend on f(t, x), g(t, x) and µ(x).

The proof of Theorem 3.3 is based on the abstract Theorem 1.1 and the symmetry
properties of the space operator generated by the problem (3.21) and the following the-
orem on the coercivity inequality for the solution of the elliptic differential problem in
L2(Ω).

Theorem 3.4. For the solutions of the elliptic differential problem

n∑
r=1

(ar(x)uxr)xr = ω(x), x ∈ Ω̃, (3.22)

u(x) = 0, x ∈ S

the following coercivity inequalities are valid [8],

n∑
r=1

‖uxr xr‖L2(Ω) ≤ M ||ω||L2(Ω).



CHAPTER 4

FIRST ORDER OF ACCURACY DIFFERENCE

SCHEME: WELL-POSEDNESS

Let us associate the boundary-value problem (3.1) with the corresponding first order of
accuracy difference scheme





−τ−2 (uk+1 − 2uk + uk−1) + Auk = gk,

gk = g (tk) , tk = kτ , 1 ≤ k ≤ N − 1,

τ−1 (uk − uk−1)− Auk−1 = fk, fk = f(tk−1),

tk−1 = (k − 1)τ , − (N − 1) ≤ k ≤ 0,

uN = u−N + µ, u1 − u0 = u0 − u−1.

(4.1)

A study of discretization, over time only, of the nonlocal boundary value problem also
permits one to include general difference schemes in applications, if the differential op-
erator in space variables, A, is replaced by the difference operators Ah that act in the
Hilbert spaces Hh and are uniformly self-adjoint positive definite in h for 0 < h ≤ h0.

Let P = P (τA) = (I + τA)−1, then the following estimates are satisfied [8]:

‖ P k ‖H→H≤ M(1 + δτ)−k, kτ ‖ AP k ‖H→H≤ M,k ≥ 1, δ > 0, (4.2)

‖ Aβ(P k+r − P k) ‖H→H ≤ M
(rτ)α

(kτ)α+β
, 1 ≤ k < k + r ≤ N, 0 ≤ α, β ≤ 1. (4.3)

Furthermore, for a self-adjoint positive definite operator A it follows that the operator
R = (I + τB)−1 is defined on the whole space H and it is a bounded operator and the
following estimates hold:

‖ Rk ‖H→H≤ M(1 + δτ)−k, kτ ‖ BRk ‖H→H≤ M, k ≥ 1, δ > 0, (4.4)

‖ Bβ(Rk+r −Rk) ‖H→H ≤ M
(rτ)α

(kτ)α+β
, 1 ≤ k < k + r ≤ N, 0 ≤ α, β ≤ 1. (4.5)

28
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Here B = 1
2
(τA +

√
A(4 + τ 2A)). From (4.2) and (4.4) it follows that

||(I −R2N)−1||H→H ≤ M, (4.6)

∥∥(I + (I + τA) (I + 2τA)−1 R2N−1 + B−1A (I + 2τA)−1 (
I −R2N−1

)− (4.7)

−(2I + τB) (I + 2τA)−1 RNPN−1)−1
∥∥

H→H
≤ M.

Theorem 4.1. For any gk, 1 ≤ k ≤ N − 1 and fk, −N + 1 ≤ k ≤ 0 the solution of the
problem (4.1) exists and the following formulas hold

uk = (I −R2N)−1
{[

Rk −R2N−k
]
u0 (4.8)

+
[
RN−k −RN+k

]
[
PNu0 − τ

0∑
s=−N+1

P s+Nfs + µ

]

− [
RN−k −RN+k

]
(I + τB)(2I + τB)−1B−1

N−1∑
s=1

[
RN−s −RN+s

]
gsτ

}

+(I + τB)(2I + τB)−1B−1

N−1∑
s=1

[
R|k−s| −Rk+s

]
gsτ , 1 ≤ k ≤ N,

uk = P−ku0 − τ

0∑

s=k+1

P s−kfs,−N ≤ k ≤ 0, (4.9)

u0 = Tτ (I + 2τA)−1 (I + τA)

{{
(2 + τB) RN

[
−τ

0∑
s=−N+1

P s+Nfs + µ

]
(4.10)

−RN−1B−1

N−1∑
s=1

[
RN−s −RN+s

]
gsτ

}

+(I −R2N)B−1

N−1∑
s=1

Rs−1gsτ − (I −R2N) (I + τB) B−1Pf0

}
,

where

Tτ = (I + (I + τA) (I + 2τA)−1 R2N−1 + B−1A (I + 2τA)−1 (
I −R2N−1

)

−(2I + τB) (I + 2τA)−1 RNPN−1)−1.

Proof. By [8], [9],

uk = (I −R2N)−1
{[

Rk −R2N−k
]
ξ +

[
RN−k −RN+k

]
ψ

− [
RN−k −RN+k

]
(I + τB)(2I + τB)−1B−1

N−1∑
s=1

[
RN−s −RN+s

]
gsτ

}
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+(I + τB)(2I + τB)−1B−1

N−1∑
s=1

[
R|k−s| −Rk+s

]
gsτ , 1 ≤ k ≤ N (4.11)

is the solution of the boundary value difference problem




−τ−2 (uk+1 − 2uk + uk−1) + Auk = gk,
gk = g (tk) , tk = kτ , 1 ≤ k ≤ N − 1,
u0 = ξ, uN = ψ

(4.12)

and

uk = P−kξ − τ

0∑

s=k+1

P s−kfs,−N ≤ k ≤ 0 (4.13)

is the solution of the inverse Cauchy problem

{
τ−1 (uk − uk−1)− Auk−1 = fk, fk = f(tk−1),
tk−1 = (k − 1)τ , − (N − 1) ≤ k ≤ 0, u0 = ξ.

(4.14)

Using (4.11), (4.13) and the formulas

ψ = u−N + µ, ξ = u0,

we obtain formulas (4.8), (4.9). For u0, using (4.8), (4.9) and the formula

u1 − u0 = u0 − u−1

we obtain the operator equation

(I −R2N)−1
{[

R−R2N−1
]
u0 +

[
RN−1 −RN+1

]

×
[
PNu0 − τ

0∑
s=−N+1

P s+Nfs + µ

]

− [
RN−1 −RN+1

]
(I + τB)(2I + τB)−1B−1

N−1∑
s=1

[
RN−s −RN+s

]
gsτ

}

+(I + τB)(2I + τB)−1B−1

N−1∑
s=1

[
Rs−1 −R1+s

]
gsτ = 2u0 − Pu0 + τPf0.

The operator

I + (I + τA) (I + 2τA)−1 R2N−1 + B−1A (I + 2τA)−1 (
I −R2N−1

)

−(2I + τB) (I + 2τA)−1 RNPN−1

has an inverse

Tτ = (I + (I + τA) (I + 2τA)−1 R2N−1 + B−1A (I + 2τA)−1 (
I −R2N−1

)

−(2I + τB) (I + 2τA)−1 RNPN−1)−1.
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and the following formula is satisfied:

u0 = Tτ (I + τA) (I + 2τA)−1

{{
(2 + τB) RN

[
−τ

0∑
s=−N+1

P s+Nfs + µ

]

−RN−1B−1

N−1∑
s=1

[
RN−s −RN+s

]
gsτ

}

+(I −R2N)B−1

N−1∑
s=1

Rs−1gsτ − (I −R2N) (I + τB) B−1Pf0

}
.

Theorem 4.1 is proved.

Let Fτ (H) = F ([a, b]τ , H) be the linear space of mesh functions ϕτ = {ϕk}Nb
Na

with val-
ues in the Hilbert space H. Next on Fτ (H) we denote C([a, b]τ , H) and Cα

0,1([−1, 1]τ , H),
Cα

0,1([0, 1]τ , H), Cα
0 ([−1, 0]τ , H), 0 < α < 1 - Banach spaces with the norms

‖ ϕτ‖C([a,b]τ ,H) = max
Na≤k≤Nb

‖ ϕk ‖H ,

‖ ϕτ‖Cα
0,1([−1,1]τ ,H) = ‖ ϕτ‖C([−1,1]τ ,H) + sup

−N≤k<k+r≤0
‖ ϕk+r − ϕk ‖E

(−k)α

rα

+ sup
1≤k<k+r≤N−1

‖ ϕk+r − ϕk ‖E
((k + r) τ)α(N − k)α

rα
,

‖ ϕτ‖Cα
0 ([−1,0]τ ,H) = ‖ ϕτ‖C([−1,0]τ ,H) + sup

−N≤k<k+r≤0
‖ ϕk+r − ϕk ‖E

(−k)α

rα
,

‖ ϕτ‖Cα
0,1([0,1]τ ,H) = ‖ ϕτ‖C([0,1]τ ,H) + sup

1≤k<k+r≤N−1
‖ ϕk+r − ϕk ‖E

((k + r)τ)α (N − k)α

rα
.

The nonlocal boundary value problem (4.1) is said to be stable in F ([−1, 1]τ , H) if we
have the inequality

‖ uτ ‖F ([−1,1]τ ,H) ≤ M
[
‖ f τ ‖F ([−1,0]τ ,H) + ‖ gτ ‖F ([0,1]τ ,H) + ‖ µ ‖H

]
,

where M is independent not only of f τ , gτ , µ but also of τ .

Theorem 4.2. The nonlocal boundary value problem (4.1) is stable in C([−1, 1]τ , H)
norm.

Proof. By [8],

∥∥{uk}0
−N

∥∥
C([−1,0]τ ,H)

≤ M
[
‖ f τ ‖C([−1,0]τ ,H) + ‖u0‖H

]
(4.15)

for the solution of an inverse Cauchy difference problem (4.14) and

∥∥∥{uk}N−1
1

∥∥∥
C([0,1]τ ,H)

≤ M
[
‖ gτ ‖C([0,1]τ ,H) + ‖u0‖H + ‖uN‖H

]
(4.16)



32

for the solution of the boundary value problem (4.12). The proof of Theorem 4.2 is based
on the stability inequalities (4.15) -( 4.16) and on the estimates

‖ u0 ‖H≤ M
[
‖ f τ ‖C([−1,0]τ ,H) + ‖ gτ ‖C([0,1]τ ,H) + ‖ µ ‖H

]
, (4.17)

‖ uN ‖H≤ M
[
‖ f τ ‖C([−1,0]τ ,H) + ‖ gτ ‖C([0,1]τ ,H) + ‖ µ ‖H

]
(4.18)

for the solution of the boundary value problem (4.1). Estimates (4.17) and (4.18) are
derived from formula (4.10) and estimates (4.2), (4.4), (4.7). Theorem 4.2 is proved.

The nonlocal boundary value problem (4.1) is said to be coercively stable (well posed)
in F ([−1, 1]τ , H) if we have the coercive inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖F ([0,1]τ ,H) + ‖ {τ−1(uk − uk−1)}0

−N+1 ‖F ([−1,0]τ ,H)

+
∥∥∥{Auk}N−1

−N

∥∥∥
F ([−1,1]τ ,H)

≤ M
[
‖ f τ ‖F ([−1,0]τ ,H) + ‖ gτ ‖F ([0,1]τ ,H) + ‖ Aµ ‖H

]
,

where M is independent not only of f τ , gτ , µ but also of τ .

Since the nonlocal boundary value problem (3.1) in the space C([0, 1], H) of continuous
functions defined on [−1, 1] and with values in H is not well-posed for the general positive
unbounded operator A and space H, then the well-posedness of the difference nonlocal
boundary value problem (4.1) in C([−1, 1]τ , H) norm does not take place uniformly with
respect to τ > 0. This means that the coercive norm

‖ uτ ‖Kτ (E) =
∥∥∥{Auk}N−1

−N

∥∥∥
C([−1,1]τ ,H)

+‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖C([0,1]τ ,H) + ‖ {τ−1(uk − uk−1)}0

−N+1 ‖C([−1,0]τ ,H)

tends to ∞ as τ → 0+. The investigation of the difference problem (4.1) permits to
establish the order of growth of this norm to ∞.

Theorem 4.3. Assume that µ ∈ D (A) and f0 ∈ D (I + τB) . Then for the solution of
the difference problem (4.1) we have almost coercivity inequality

‖ uτ ‖Kτ (E) ≤ M [‖ Aµ ‖H + ‖ (I + τB) f0‖H ]

+M min

{
ln

1

τ
, 1 + |ln ‖ A ‖H→H |

} [
‖ f τ ‖C([−1,0]τ ,H) + ‖ gτ ‖C([0,1]τ ,H)

]
,

where M is independent not only of f τ , gτ , µ but also of τ .

Proof. By [8],

‖ {τ−1(uk − uk−1)}0
−N+1 ‖C([−1,0]τ ,H)

+
∥∥{Auk}0

−N

∥∥
C([−1,0]τ ,H)

(4.19)

≤ M min

{
ln

1

τ
, 1 + |ln ‖ A ‖H→H |

}
‖ f τ ‖C([−1,0]τ ,H) + M ‖Au0‖H
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for the solution of an inverse Cauchy difference problem (4.14) and

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖C([0,1]τ ,H) +

∥∥∥{Auk}N−1
1

∥∥∥
C([0,1]τ ,H)

(4.20)

≤ M min

{
ln

1

τ
, 1 + |ln ‖ A ‖H→H |

}
‖ gτ ‖C([0,1]τ ,H) + M [‖Au0‖H + ‖AuN‖H ]

for the solution of the boundary value problem (4.12). Then the proof of Theorem 4.3 is
based on the almost coercivity inequalities (4.19), (4.20) and on the estimates

‖ Au0‖H ≤ M [‖ Aµ ‖H + ‖ (I + τB) f0‖H ]

+M min

{
ln

1

τ
, 1 + |ln ‖ A ‖H→H |

} [
‖ f τ ‖C([−1,0]τ ,H) + ‖ gτ ‖C([0,1]τ ,H)

]
,

‖AuN‖H ≤ M [‖ Aµ ‖H + ‖ (I + τB) f0‖H ]

+M min

{
ln

1

τ
, 1 + |ln ‖ A ‖H→H |

} [
‖ f τ ‖C([−1,0]τ ,H) + ‖ gτ ‖C([0,1]τ ,H)

]

for the solution of the boundary value problem (4.1) . The proof of these estimates follows
the scheme of the papers [8] and [9] and relies on the formula (4.10) and on the estimates
(4.2), (4.4) and (4.7). Theorem 4.3 is proved.

Theorem 4.4. Let the assumptions of Theorem 4.3 be satisfied. Then the boundary value
problem (4.1) is well-posed in a Hölder space Cα

0,1([−1, 1]τ , H) and the following coercivity
inequality holds:

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cα

0,1([0,1]τ ,H) +
∥∥∥{Auk}N−1

−N

∥∥∥
Cα

0,1([−1,1]τ ,H)

+‖ {τ−1(uk − uk−1)}0
−N+1 ‖Cα

0 ([−1,0]τ ,H)
≤ M [‖ Aµ ‖H + ‖ (I + τB) f0‖H ]

+
M

α(1− α)

[
‖ f τ ‖Cα

0 ([−1,0]τ ,H) + ‖ gτ ‖Cα
0,1([0,1]τ ,H)

]
,

where M is independent not only of f τ , gτ , µ but also of τ and α.

Proof. By [8] and [9],

‖ {τ−1(uk − uk−1)}0
−N+1 ‖Cα

0 ([−1,0]τ ,H)
+

∥∥{Auk}0
−N

∥∥
Cα

0 ([−1,0]τ ,H)
(4.21)

≤ M

α(1− α)
‖ f τ ‖Cα

0 ([−1,0]τ ,H) + M ‖Au0‖H

for the solution of an inverse Cauchy difference problem (4.14) and

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cα

0,1([0,1]τ ,H) +
∥∥∥{Auk}N−1

1

∥∥∥
Cα

0,1([0,1]τ ,H)
(4.22)
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≤ M

α(1− α)
‖ gτ ‖Cα

0,1([0,1]τ ,H) + M [‖Au0‖H + ‖AuN‖H ]

for the solution of the boundary value problem (4.12). Then the proof of Theorem 4.4 is
based on the coercivity inequalities (4.21) and (4.22) and on the estimates

‖Au0‖H ≤ M [‖Aµ‖H + ‖ (I + τB) f0‖H ] , (4.23)

+
M

α(1− α)

[
‖ f τ ‖Cα

0 ([−1,0]τ ,H) + ‖ gτ ‖Cα
0,1([0,1]τ ,H)

]

‖AuN‖H ≤ M [‖Aµ‖H + ‖ (I + τB) f0‖H ] (4.24)

+
M

α(1− α)

[
‖ f τ ‖Cα

0 ([−1,0]τ ,H) + ‖ gτ ‖Cα
0,1([0,1]τ ,H)

]

for the solution of the boundary value problem (4.1). Estimates (4.23)-(4.24) are derived
from the formulas

Au0 = Tτ (I + 2τA)−1 (I + τA)

×
{{

(2 + τB) RN

[
−τ

0∑
s=−N+1

AP s+N (fs − f−N+1) + Aµ

]

−RN−1AB−2

{
N−1∑
s=1

BRN−s (gs − gN−1) τ +
N−1∑
s=1

BRN+s (g1 − gs) τ

}}

+(I −R2N)AB−2

N−1∑
s=1

BRs−1 (gs − g1) τ

}

+Tτ (I + 2τA)−1 (I + τA)
{{

(2 + τB) RN
(
PN − I

)
f−N+1

−RN−1AB−2
{(

I −RN−1
)
gN−1 −

(
RN−2 −R2N−1

)
g1

}}

+(I −R2N)AB−2
(
I −RN−1

)
g1 − (I −R2N) (I + τB) B−1APf0

}
,

AuN = PN
{
Tτ (I + 2τA)−1 (I + τA)

×
{{

(2 + τB) RN

[
−τ

0∑
s=−N+1

AP s+N (fs − f−N+1) + Aµ

]

−RN−1AB−2

{
N−1∑
s=1

BRN−s (gs − gN−1) τ +
N−1∑
s=1

BRN+s (g1 − gs) τ

}}

+(I −R2N)AB−2

N−1∑
s=1

BRs−1 (gs − g1) τ

}}

−τ

0∑
s=−N+1

AP s+N (fs − f−N+1) + Aµ +
(
PN − I

)
f−N+1

+PN
{
Tτ (I + 2τA)−1 (I + τA)

{{
(2 + τB) RN

(
PN − I

)
f−N+1

−RN−1AB−2
{(

I −RN−1
)
gN−1 −

(
RN−2 −R2N−1

)
g1

}}
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+(I −R2N)AB−2
(
I −RN−1

)
g1 − (I −R2N) (I + τB) B−1APf0

}}

for the solution of problem (4.1) and estimates (4.2), (4.4) and (4.7). Theorem 4.4 is
proved.

Now, the applications of this abstract result to the approximate solution of the mixed
boundary value problem for elliptic-parabolic equation (3.21) are considered. The dis-
cretization of problem (3.21) was carried out in two steps. In the first step the grid
sets

Ω̃h = {x = xm = (h1m1, · · ·, hnmn),m = (m1, · · ·,mn) ,

0 ≤ mr ≤ Nr, hrNr = L, r = 1, · · ·, n} ,

Ωh = Ω̃h ∩ Ω, Sh = Ω̃h ∩ S

are defined. To the differential operator A generated by the problem (3.21) we assign the
difference operator Ax

h by the formula

Ax
hu

h
x = −

n∑
r=1

(
ar(x)uh

−
xr

)
xr,jr

(4.25)

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0 for all
x ∈ Sh.With the help of Ax

h we arrive at the nonlocal boundary-value problem





−d2uh(t,x)
dt2

+ Ax
hu

h(t, x) = gh(t, x), 0 ≤ t ≤ 1, x ∈ Ω̃h,

duh(t,x)
dt

− Ax
hu

h(t, x) = fh(t, x),−1 ≤ t ≤ 0, x ∈ Ω̃h,

uh(−1, x) = uh(1, x) + µh(x), x ∈ Ω̃h,

uh(0+, x) = uh(0−, x), duh(0+,x)
dt

= duh(0−,x)
dt

, x ∈ Ω̃h

(4.26)

for an infinite system of ordinary differential equations.

In the second step problem (4.26) is replaced by the difference scheme (4.1)





−uh
k+1(x)−2uh

k(x)+uh
k−1(x)

τ2 + Ax
hu

h
k (x) = gh

k (x),

gh
k (x) = {g(tk, xn)}M−1

1 , tk = kτ , 1 ≤ k ≤ N − 1, Nτ = 1, x ∈ Ω̃h,

uh
k(x)−uh

k−1(x)

τ
− Ax

hu
h
k−1 (x) = fh

k (x),

fh
k (x) = {f(tk−1, xn)}M−1

1 , tk−1 = (k − 1) τ ,−N + 1 ≤ k ≤ −1, x ∈ Ω̃h,

uh
−N(x) = uh

N(x) + µh(x), x ∈ Ω̃h,

uh
1(x)− uh

0(x) = uh
0(x)− uh

−1(x), x ∈ Ω̃h.

(4.27)
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Based on the number of corollaries of the abstract theorems given above, to formulate
the result, one needs to introduce the space L2h = L2(Ω̃h) of all the grid functions

ϕh(x) = {ϕ(h1m1, · · ·, hnmn)} defined on Ω̃h, equipped with the norm

∥∥ϕh
∥∥

L2(eΩh)
=


 ∑

x∈Ωh

∣∣ϕh(x)
∣∣2 h1 · · · hn




1/2

.

Theorem 4.5. Let τ and |h| =
√

h2
1 + · · ·+ h2

n be sufficiently small numbers.Then the
solutions of difference scheme (4.27) satisfy the following stability and almost coercivity
estimates:∥∥∥
{
uh

k

}N−1

−N

∥∥∥
C([−1,1]τ ,L2h)

≤ M
[
‖ (

fh
)

τ ‖C([−1,0]τ ,L2h) + ‖ (
gh

)
τ ‖C([0,1]τ ,L2h)

]
+ M

∥∥µh
∥∥

L2h
,

‖ {τ−2
(
uh

k+1 − 2uh
k + uh

k−1

)}N−1
1 ‖

C([0,1]τ ,L2h)
+ ‖ {τ−1(uh

k − uh
k−1)}0

−N+1 ‖C([−1,0]τ ,L2h)

+
∥∥∥
{
uh

k

}N−1

−N

∥∥∥
C([−1,1]τ ,W 2

2h)
≤ M

[∥∥µh
∥∥

W 2
2h

+ τ
∥∥fh

0

∥∥
W 1

2h

]

+M ln
1

τ + |h|
[
‖ (

fh
)

τ ‖
C([−1,0]τ ,L2h)

+ ‖ (
gh

)
τ ‖

C([0,1]τ ,L2h)

]
.

Here M does not depend on τ , h, µh(x) and gh
k (x), 1 ≤ k ≤ N − 1, fh

k ,−N + 1 ≤ k ≤ 0.

The proof of Theorem 4.5 is based on the abstract Theorems 4.2-4.3, on the estimate

min

{
ln

1

τ
, 1 +

∣∣ln ‖ Ax
h ‖L2h→L2h

∣∣
}
≤ M ln

1

τ + |h| (4.28)

as well as the symmetry properties of the difference operator Ax
h defined by the formula

(4.25) in L2h, along with the following theorem on the coercivity inequality for the solution
of the elliptic difference problem in L2h.

Theorem 4.6. For the solutions of the elliptic difference problem

Ax
hu

h(x) = ωh(x), x ∈ Ωh, (4.29)

uh(x) = 0, x ∈ Sh

the following coercivity inequality holds[10]:

n∑
r=1

∥∥∥
(
uh

)
−
xrxr,jr

∥∥∥
L2h

≤ M ||ωh||L2h
.

Theorem 4.7. Let τ and |h| be sufficiently small numbers.Then the solutions of difference
scheme (4.27) satisfy the following coercivity stability estimates:

‖ {τ−2
(
uh

k+1 − 2uh
k + uh

k−1

)}N−1
1 ‖

Cα
0,1([0,1]τ ,L2h)

+ ‖ {τ−1(uh
k − uh

k−1)}0
−N+1 ‖Cα

0 ([−1,0]τ ,L2h)

+
∥∥∥
{
uh

k

}N−1

−N

∥∥∥
Cα

0,1([−1,1]τ ,W 2
2h)
≤ M

[∥∥µh
∥∥

W 2
2h

+ τ
∥∥fh

0

∥∥
W 1

2h

]

+
M

α(1− α)

[
‖ (

fh
)

τ ‖
Cα

0 ([−1,0]τ ,L2h)
+ ‖ (

gh
)

τ ‖
Cα

0,1([0,1]τ ,L2h)

]
.

Here M does not depend on τ , h, µh(x) and gh
k (x), 1 ≤ k ≤ N − 1, fh

k ,−N + 1 ≤ k ≤ 0.
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The proof of Theorem 4.7 is based on the abstract Theorem 4.4, and the symmetry
properties of the difference operator Ax

h defined by the formula (4.25) and on the Theorem
4.6 on the coercivity inequality for the solution of the elliptic difference equation (4.29)
in L2h.

Note that in a similar manner can be constructed the difference schemes of the first
order of accuracy with respect to one variable for approximate solutions of the boundary
value problem (3.20). Abstract theorems given from above permit us to obtain the
stability, the almost stability and the coercive stability estimates for the solutions of
these difference schemes.



CHAPTER 5

SECOND ORDER OF ACCURACY DIFFERENCE

SCHEME

Now, the second order of accuracy difference scheme




−τ−2 (uk+1 − 2uk + uk−1) + Auk = gk,

gk = g (tk) , tk = kτ , 1 ≤ k ≤ N − 1,

τ−1 (uk − uk−1)− 1
2
(Auk−1 + Auk) = fk, fk = f(tk− 1

2
),

tk− 1
2

= (k − 1
2
)τ , − (N − 1) ≤ k ≤ 0,

uN = u−N + µ, u2 − 4u1 + 3u0 = −3u0 + 4u−1 − u−2

(5.1)

for the approximate solution of problem (3.1) is considered.

Let P = P (τA) = (I − τA
2

)(I + τA
2

)−1, C = C(τA) = (I + τA
2

)−1, then the following
estimates are valid [11],[12]:

‖ P k ‖H→H≤ 1, ‖ C ‖H→H≤ 1, kτ ‖ AP kC2 ‖H→H≤ M,k ≥ 1, δ > 0, (5.2)

‖ Aβ(P k+r − P k)C3 ‖H→H ≤ M
(rτ)α

(kτ)α+β
, 1 ≤ k < k + r ≤ N, 0 ≤ α, β ≤ 1, (5.3)

‖ Aβ(P k+2r − P k)C2 ‖H→H ≤ M
(2rτ)α

(kτ)α+β
, 1 ≤ k < k + 2r ≤ N, 0 ≤ α, β ≤ 1. (5.4)

From these estimates and (4.4) it follows that
∥∥(I + B−1A(I + τA + τC2)D

(
I −R2N−1

)
(5.5)

+DP 2R2N−1 − (2I + τB)DRNPN+2)−1
∥∥

H→H
≤ M,

where

D =

(
I + 2τA +

5

4
(τA)2

)−1

.

38
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Theorem 5.1. For any gk, 1 ≤ k ≤ N − 1 and fk, −N + 1 ≤ k ≤ 0 the solution of the
problem (5.1) exists and the following formula holds

uk = (I −R2N)−1
{[

Rk −R2N−k
]
u0+ (5.6)

[
RN−k −RN+k

]
[
PNu0 − τ

0∑
s=−N+1

P s+N−1Cfs + µ

]

− [
RN−k −RN+k

]
(I + τB)(2I + τB)−1B−1

N−1∑
s=1

[
RN−s −RN+s

]
gsτ

}

+(I + τB)(2I + τB)−1B−1

N−1∑
s=1

[
R|k−s| −Rk+s

]
gsτ , 1 ≤ k ≤ N,

uk = P−ku0 − τ

0∑

s=k+1

P s−k−1Cfs,−N ≤ k ≤ 0, (5.7)

u0 =
1

2
Tτ

(
2I + 4τA +

5

2
(τA)2

)−1

C−2 (5.8)

×
{

(
2I − τ 2A

)
{

(2 + τB) RN

[
−τ

0∑
s=−N+1

P s+N−1Cfs + µ

]

−RN−1B−1

N−1∑
s=1

[
RN−s −RN+s

]
gsτ

}

+(I −R2N)B−1

N−1∑
s=1

Rs−1gsτ

}}

+(I −R2N)(I + τB)
(
τB−1g1 − 4CB−1f0 + PCB−1f0 + CB−1f−1

)}
,

where
Tτ =

(
I + B−1A(I + τA +

τ

2
C−2)D

(
I −R2N−1

)

+D(I − τ 2A

2
)C−2R2N−1 −D(I − τ 2A

2
)C−2(2I + τB)RNPN

)−1

.

Proof. By [11],

uk = P−kξ − τ

0∑

s=k+1

P s−k−1Cfs,−N ≤ k ≤ 0 (5.9)

is the solution of the inverse Cauchy difference problem

{
τ−1 (uk − uk−1)− 1

2
(Auk−1 + Auk) = fk,

− (N − 1) ≤ k ≤ 0, u0 = ξ.
(5.10)
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Using (4.11), (5.9) and the formulas

ψ = u−N + µ, ξ = u0,

we obtain the formulas (5.6), (5.7). For u0, using (5.6), (5.7) and the formula

u2 − 4u1 + 3u0 = −3u0 + 4u−1 − u−2,

we obtain the operator equation

(
2I − τ 2A

) {
(I −R2N)−1

{[
R−R2N−1

]
u0

+
[
RN−1 −RN+1

]
[
PNu0 − τ

0∑
s=−N+1

P s+N−1Cfs + µ

]

− [
RN−1 −RN+1

]
(I + τB)(2I + τB)−1B−1

N−1∑
s=1

[
RN−s −RN+s

]
gsτ

}

+(I + τB)(2I + τB)−1B−1

N−1∑
s=1

[
Rs−1 −R1+s

]
gsτ

}

= −τ 2g1 + C2(2I + 4τA +
5

2
(τA)2)u0 + 4Cτf0 − PCτf0 − Cτf−1.

The operator

I + B−1A(I + τA +
τ

2
C−2)D

(
I −R2N−1

)

+D(I − τ 2A

2
)C−2R2N−1 −D(I − τ 2A

2
)C−2(2I + τB)RNPN

has an inverse
Tτ =

(
I + B−1A(I + τA +

τ

2
C−2)D

(
I −R2N−1

)

+D(I − τ 2A

2
)C−2R2N−1 −D(I − τ 2A

2
)C−2(2I + τB)RNPN

)−1

it follows that

u0 =
1

2
Tτ

(
I + 2τA +

5

4
(τA)2

)−1

C−2

×
{

(
2I − τ 2A

)
{

(2 + τB) RN

[
−τ

0∑
s=−N+1

P s+N−1Cfs + µ

]

−RN−1B−1

N−1∑
s=1

[
RN−s −RN+s

]
gsτ

}

+(I −R2N)B−1

N−1∑
s=1

Rs−1gsτ

}}

+(I −R2N)(I + τB)
(
τB−1g1 − 4CB−1f0 + PCB−1f0 + CB−1f−1

)}

for the solution of problem (5.1). Theorem 5.1 is proved.
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Theorem 5.2. The nonlocal boundary value problem (5.1) is stable in C([−1, 1]τ , H)
norm.

Proof. By [11],

∥∥{uk}0
−N

∥∥
C([−1,0]τ ,H)

≤ M
[
‖ f τ ‖C([−1,0]τ ,H) + ‖u0‖H

]
(5.11)

for the solution of an inverse Cauchy difference problem (5.10). Then, the proof of
Theorem 5.2 is based on the stability inequalities (5.11) and (4.16) and on the estimates

‖ u0 ‖H≤ M
[
‖ f τ ‖C([−1,0]τ ,H) + ‖ gτ ‖C([0,1]τ ,H) + ‖ µ ‖H

]
, (5.12)

‖ uN ‖H≤ M
[
‖ f τ ‖C([−1,0]τ ,H) + ‖ gτ ‖C([0,1]τ ,H) + ‖ µ ‖H

]
(5.13)

for the solution of the boundary value problem (5.1). Estimates (5.12) and (5.13) follow
from formula (5.8) and estimates (4.4), (5.2) and (5.5). Theorem 5.2 is proved.

Theorem 5.3. Assume that µ ∈ D (A) and f0, f−1, g1 ∈ D (I + τB) . Then for the
solution of the difference problem (5.1) we have almost coercivity inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖C([0,1]τ ,H) + ‖ {τ−1(uk − uk−1)}0

−N+1 ‖C([−1,0]τ ,H)

+
∥∥∥{Auk}N−1

1

∥∥∥
C([0,1]τ ,H)

+

∥∥∥∥∥
{

1

2
(Auk + Auk−1)

}0

−N+1

∥∥∥∥∥
C([−1,0]τ ,H)

≤ M [‖ Aµ ‖H + ‖ (I + τB) f0‖H + ‖ (I + τB) g1‖H + ‖ (I + τB) f−1‖H ]

+M min

{
ln

1

τ
, 1 + |ln ‖ A ‖H→H |

} [
‖ f τ ‖C([−1,0]τ ,H) + ‖ gτ ‖C([0,1]τ ,H)

]
,

where M is independent not only of f τ , gτ , µ but also of τ .

Proof. By [13],

‖ {τ−1(uk − uk−1)}0
−N+1 ‖C([−1,0]τ ,H)

+

∥∥∥∥∥
{

1

2
(Auk + Auk−1)

}0

−N+1

∥∥∥∥∥
C([−1,0]τ ,H)

(5.14)

≤ M min

{
ln

1

τ
, 1 + |ln ‖ A ‖H→H |

}
‖ f τ ‖C([−1,0]τ ,H) + M ‖Au0‖H

for the solution of an inverse Cauchy difference problem (5.10). Then the proof of Theo-
rem 5.3 is based on the almost coercivity inequalities (5.14), (4.20) and on the estimates

‖ Au0‖H ≤ M [‖ Aµ ‖H + ‖ (I + τB) f0‖H ]

+M min

{
ln

1

τ
, 1 + |ln ‖ A ‖H→H |

} [
‖ f τ ‖C([−1,0]τ ,H) + ‖ gτ ‖C([0,1]τ ,H)

]
,

‖AuN‖H ≤ M [‖ Aµ ‖H + ‖ (I + τB) f0‖H ]
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+M min

{
ln

1

τ
, 1 + |ln ‖ A ‖H→H |

} [
‖ f τ ‖C([−1,0]τ ,H) + ‖ gτ ‖C([0,1]τ ,H)

]

for the solution of the boundary value problem (5.1). The proof of these estimates follow
the scheme of the papers [11], [13] and relies on the formula (5.8) and on the estimates
(4.4), (5.2) and (5.5). Theorem 5.3 is proved.

Let C̃α
0,1([−1, 1]τ , H), C̃α

0 ([−1, 0]τ , H), 0 < α < 1 be the Banach spaces with the norms

‖ ϕτ‖ eCα
0,1([−1,1]τ ,H) = ‖ ϕτ‖C([−1,1]τ ,H) + sup

−N≤k<k+2r≤0
‖ ϕ2k+r − ϕk ‖E

(−k)α

(2r)α

+ sup
1≤k<k+r≤N−1

‖ ϕk+r − ϕk ‖E
((k + r) τ)α(N − k)α

rα
,

‖ ϕτ‖ eCα
0 ([−1,0]τ ,H) = ‖ ϕτ‖C([−1,0]τ ,H) + sup

−N≤k<k+2r≤0
‖ ϕk+2r − ϕk ‖E

(−k)α

(2r)α
.

Theorem 5.4. Let the assumptions of Theorem 5.3 be satisfied. Then the boundary value
problem (5.1) is well-posed in Hölder spaces Cα

0,1([−1, 1]τ , H) and C̃α
0,1([−1, 1]τ , H) and

the following coercivity inequalities hold:

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cα

0,1([0,1]τ ,H) + ‖ {τ−1(uk − uk−1)}0
−N+1 ‖ eCα

0 ([−1,0]τ ,H)

+
∥∥∥{Auk}N−1

1

∥∥∥
Cα

0,1([0,1]τ ,H)
+

∥∥∥∥∥
{

1

2
(Auk + Auk−1)

}0

−N+1

∥∥∥∥∥ eCα
0 ([−1,0]τ ,H)

≤ M

α(1− α)

[
‖ f τ ‖Cα

0 ([−1,0]τ ,H) + ‖ gτ ‖Cα
0,1([0,1]τ ,H)

]

+M [‖ Aµ ‖H + ‖ (I + τB) f0‖H + ‖ (I + τB) g1‖H + ‖ (I + τB) f−1‖H ] ,

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cα

0,1([0,1]τ ,H) + ‖ {τ−1(uk − uk−1)}0
−N+1 ‖ eCα

0 ([−1,0]τ ,H)

+
∥∥∥{Auk}N−1

1

∥∥∥
Cα

0,1([0,1]τ ,H)
+

∥∥∥∥∥
{

1

2
(Auk + Auk−1)

}0

−N+1

∥∥∥∥∥ eCα
0 ([−1,0]τ ,H)

≤ M

α(1− α)

[
‖ f τ ‖ eCα

0 ([−1,0]τ ,H) + ‖ gτ ‖Cα
0,1([0,1]τ ,H)

]

+M [‖ Aµ ‖H + ‖ (I + τB) f0‖H + ‖ (I + τB) g1‖H + ‖ (I + τB) f−1‖H ] ,

where M is independent not only of f τ , gτ , µ but also of τ and α.

Proof. By [14], [15]

‖ {τ−1(uk − uk−1)}0
−N+1 ‖Cα

0 ([−1,0]τ ,H)
+

∥∥∥∥∥
{

1

2
(Auk + Auk−1)

}0

−N+1

∥∥∥∥∥ eCα
0 ([−1,0]τ ,H)

(5.15)

≤ M

α(1− α)
‖ f τ ‖Cα

0 ([−1,0]τ ,H) + M ‖Au0‖H ,
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‖ {τ−1(uk − uk−1)}0
−N+1 ‖Cα

0 ([−1,0]τ ,H)
+

∥∥∥∥∥
{

1

2
(Auk + Auk−1)

}0

−N+1

∥∥∥∥∥ eCα
0 ([−1,0]τ ,H)

(5.16)

≤ M

α(1− α)
‖ f τ ‖ eCα

0 ([−1,0]τ ,H) + M ‖Au0‖H

for the solution of an inverse Cauchy difference problem (4.14). Then the proof of
Theorem 5.4 is based on the coercivity inequalities (5.15), (5.16) and (4.22) and on the
estimates

‖Au0‖H ≤ M

α(1− α)

[
‖ f τ ‖ eCα

0 ([−1,0]τ ,H) + ‖ gτ ‖Cα
0,1([0,1]τ ,H)

]
(5.17)

+M [‖ Aµ ‖H + ‖ (I + τB) f0‖H + ‖ (I + τB) g1‖H + ‖ (I + τB) f−1‖H ] ,

‖AuN‖H ≤ M

α(1− α)

[
‖ f τ ‖ eCα

0 ([−1,0]τ ,H) + ‖ gτ ‖Cα
0,1([0,1]τ ,H)

]
(5.18)

+M [‖ Aµ ‖H + ‖ (I + τB) f0‖H + ‖ (I + τB) g1‖H + ‖ (I + τB) f−1‖H ]

for the solution of the boundary value problem (5.1). Estimates (5.17)-(5.18) follow from
the formulas

Au0 = Tτ

(
I + 2τA +

5

4
(τA)2

)−1

C−2

×
{

(
2I − τ 2A

)
{

(2 + τB) RN

[
−τ

0∑
s=−N+1

AP s+N−1C (fs − f−N+1) + Aµ

]

−RN−1AB−1

N−1∑
s=1

RN−s (gs − gN−1) τ + RN−1AB−1

N−1∑
s=1

RN+s (gs − g1) τ

}

+(I −R2N)AB−1

N−1∑
s=1

Rs−1 (gs − g1) τ

}}

+(I −R2N)(I + τB)
(
τ 2Ag1 − 4CτAf0 + PCτAf0 + CτAf−1

)}

+Tτ

(
I + 2τA +

5

4
(τA)2

)−1

C−2 × {(
2I − τ 2A

) {
(2 + τB) RN

(
PN − I

)
f−N+1

+RN−1AB−2
(
RN−1 − I

)
gN−1 + RN−1AB−2

(
RN−2 −R2N−1

)
g1

}

+(I −R2N)AB−2
(
I −RN−1

)
g1

}}
,

AuN = PN

{
Tτ

(
I + τA +

5

4
(τA)2

)−1

C−2

×
{

(
2I − τ 2A

)
{

(2 + τB) RN

[
−τ

0∑
s=−N+1

AP s+N−1C (fs − f−N+1) + Aµ

]
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−RN−1AB−1

N−1∑
s=1

RN−s (gs − gN−1) τ + RN−1AB−1

N−1∑
s=1

RN+s (gs − g1) τ

}

+(I −R2N)AB−2

N−1∑
s=1

BRs−1 (gs − g1) τ − (I −R2N) (I + τB) B−1APf0

}}

+(I −R2N)(I + τB)
(
τ 2Ag1 − 4CτAf0 + PCτAf0 + CτAf−1

)}

+PNTτ

(
I + 2τA +

5

4
(τA)2

)−1

C−2
{(

2I − τ 2A
) {

(2 + τB) RN
(
PN − I

)
f−N+1

+RN−1AB−2
(
RN−1 − I

)
gN−1 + RN−1AB−2

(
RN−2 −R2N−1

)
g1

}

+(I −R2N)AB−2
(
I −RN−1

)
g1

}}

−τ

0∑
s=−N+1

AP s+N−1C (fs − f−N+1) + Aµ +
(
PN − I

)
f−N+1

for the solution of problem (5.1) and estimates (4.4), (5.2), (5.3), (5.4) and (5.5). Theorem

5.4 is proved.

Now, the applications of this abstract result to the approximate solution of the mixed
boundary value problem for elliptic-parabolic equation (3.21) is presented. Problem
(4.26) is replaced by the difference scheme (5.1), one can obtain the second order of
accuracy difference scheme





−uh
k+1(x)−2uh

k(x)+uh
k−1(x)

τ2 + Ax
hu

h
k (x) = gh

k (x),

gh
k (x) = {g(tk, xn)}M−1

1 , tk = kτ , 1 ≤ k ≤ N − 1, Nτ = 1, x ∈ Ω̃h,

uh
k(x)−uh

k−1(x)

τ
− Ax

h

2

(
uh

k (x) + uh
k−1 (x)

)
= fh

k (x),

fh
k (x) = {f(tk− 1

2
, xn)}M−1

1 , tk− 1
2

=
(
k − 1

2

)
τ ,−N + 1 ≤ k ≤ −1, x ∈ Ω̃h,

uh
−N(x) = uh

N(x) + µh(x), x ∈ Ω̃h,

−uh
2(x) + 4uh

1(x)− 3uh
0(x) = 3uh

0(x)− 4uh
−1(x) + uh

−2(x), x ∈ Ω̃h.

(5.19)

Theorem 5.5. Let τ and |h| be a sufficiently small numbers.Then the solutions of dif-
ference scheme (5.19) satisfy the following stability and almost coercivity estimates:

∥∥∥
{
uh

k

}N−1

−N

∥∥∥
C([−1,1]τ ,L2h)

≤ M
[
‖ f τ ‖C([−1,0]τ ,L2h) + ‖ gτ ‖C([0,1]τ ,L2h)

]
+ M

∥∥µh
∥∥

L2h
,

‖ {τ−2
(
uh

k+1 − 2uh
k + uh

k−1

)}N−1
1 ‖

C([0,1]τ ,L2h)
+ ‖ {τ−1(uh

k − uh
k−1)}0

−N+1 ‖C([−1,0]τ ,L2h)

+
∥∥∥
{
uh

k

}N−1

−N

∥∥∥
C([−1,1]τ ,W 2

2h)
≤ M

[∥∥µh
∥∥

W 2
2h

+ τ
∥∥fh

0

∥∥
W 1

2h

]
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+M ln
1

τ + |h|
[
‖ f τ ‖C([−1,0]τ ,L2h) + ‖ gτ ‖C([0,1]τ ,L2h)

]
.

Here M does not depend on τ , h, µh(x) and gh
k (x), 1 ≤ k ≤ N − 1, fh

k ,−N + 1 ≤ k ≤ 0.

The proof of Theorem 5.5 is based on the abstract Theorems 5.2-5.3, on the estimate
(4.28), as well as the symmetry properties of the difference operator Ax

h defined by the
formula (4.25) in L2h and on the Theorem 4.6 on the coercivity inequality for the solution
of the elliptic difference equation (4.29) in L2h.

Theorem 5.6. Let τ and |h| be sufficiently small numbers.Then the solutions of difference
scheme (5.19) satisfy the following coercivity stability estimates:

‖ {τ−2
(
uh

k+1 − 2uh
k + uh

k−1

)}N−1
1 ‖

Cα
0,1([0,1]τ ,L2h)

+ ‖ {τ−1(uh
k − uh

k−1)}0
−N+1 ‖ eCα

0 ([−1,0]τ ,L2h)

+
∥∥∥
{
uh

k

}N−1

1

∥∥∥
Cα

0,1([0,1]τ ,W 2
2h)

+

∥∥∥∥∥
{

uh
k + uh

k−1

2

}0

−N+1

∥∥∥∥∥
Cα

0,1([−1,1]τ ,W 2
2h)

≤ M
[∥∥µh

∥∥
W 2

2h

+ τ
∥∥fh

0

∥∥
W 1

2h

+ τ
∥∥fh

−1

∥∥
W 1

2h

+ τ
∥∥gh

1

∥∥
W 1

2h

]

+
M

α(1− α)

[
‖ (

fh
)τ ‖Cα

0 ([−1,0]τ ,L2h) + ‖ (
gh

)τ ‖
Cα

0,1([0,1]τ ,L2h)

]
,

‖ {τ−2
(
uh

k+1 − 2uh
k + uh

k−1

)}N−1
1 ‖

Cα
0,1([0,1]τ ,L2h)

+ ‖ {τ−1(uh
k − uh

k−1)}0
−N+1 ‖ eCα

0 ([−1,0]τ ,L2h)

+
∥∥∥
{
uh

k

}N−1

1

∥∥∥
Cα

0,1([0,1]τ ,W 2
2h)

+

∥∥∥∥∥
{

uh
k + uh

k−1

2

}0

−N+1

∥∥∥∥∥ eCα
0 ([−1,0]τ ,L2h)

≤ M
[∥∥µh

∥∥
W 2

2h

+ τ
∥∥fh

0

∥∥
W 1

2h

+ τ
∥∥fh

−1

∥∥
W 1

2h

+ τ
∥∥gh

1

∥∥
W 1

2h

]

+
M

α(1− α)

[
‖ (

fh
)τ ‖ eCα

0 ([−1,0]τ ,L2h)
+ ‖ (

gh
)τ ‖

Cα
0,1([0,1]τ ,L2h)

]
.

Here M does not depend on τ , h, µh(x) and gh
k (x), 1 ≤ k ≤ N − 1, fh

k ,−N + 1 ≤ k ≤ 0.

The proof of Theorem 5.6 is based on the abstract Theorem 5.4, and the symmetry
properties of the difference operator Ax

h defined by the formula (4.25) and on the Theorem
4.6 on the coercivity inequality for the solution of the elliptic difference equation (4.29)
in L2h.

Note that in a similar manner can be constructed the difference schemes of the second
order of accuracy with respect to one variable for approximate solutions of the boundary
value problem (3.20). Abstract theorems given from above permit to obtain the stability,
the almost stability and the coercive stability estimates for the solutions of these difference
schemes.



CHAPTER 6

NUMERICAL ANALYSIS

We consider the nonlocal boundary value problem





∂u
∂t

+ ∂2u
∂x2 = (1− t) sin x, − 1 < t ≤ 0, 0 < x < π,

∂2u
∂t2

+ ∂2u
∂x2 = −t sin x, 0 < t < 1, 0 < x < π,

u (1, x) = u (−1, x) + 2 sin x, 0 ≤ x ≤ π,

u (t, 0) = u (t, π) = 0, − 1 ≤ t ≤ 1.

(6.1)

for elliptic-parabolic equation.

Let

f (t, x) = (1− t) sin x,−1 < t < 0 , 0 < x < π,

g (t, x) = −t sin x, 0 < t < 1, 0 < x < π,

and
ϕ (x) = 2 sin x.

The exact solution of this problem is

u (t, x) = t sin x.

For approximate solutions of the nonlocal boundary value problem (3.1), we will use
the first order of accuracy and the second order of accuracy difference schemes. We have
the second order difference equations with respect to n with matrix coefficients. To solve
this difference equations, we have applied a procedure of modified Gauss elimination
method for difference equations with respect to n with matrix coefficients. The results
of numerical experiments permit us to show that the second order of accuracy difference
schemes are more accurate comparing with the first order of accuracy difference scheme.
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6.1 THE FIRST ORDER OF ACCURACY DIFFERENCE
SCHEME

We will consider the nonlocal boundary value problem (3.1) for elliptic-parabolic equa-
tion. For approximate solution of the nonlocal boundary-value problem (3.1), let’s con-
sider the set [−1, 1]τ× [0, π]h of a family of grid points depending on the small parameters
τ and h

[−1, 1]τ × [0, π]h = {(tk, xn) : tk = kτ , −N ≤ k ≤ N, Nτ = 1,

xn = nh, 0 ≤ n ≤ M, Mh = π}.

Applying the formula

u(xn+1)− 2u(xn) + u(xn−1)

h2
− u′′(xn) = O(h2),

we present the following first order of accuracy difference scheme in t for the approximate
solutions of the problem (4.1)





uk
n−uk−1

n

τ
+

uk−1
n+1−2uk−1

n +uk−1
n−1

h2 = f(tk−1, xn), −N + 1 ≤ k ≤ 0, 1 ≤ n ≤ M − 1,

uk+1
n −2uk

n+uk−1
n

τ2 +
uk

n+1−2uk
n+uk

n−1

h2 = g(tk, xn), 1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

u1
n−u0

n

τ
= −u−1

n+1−2u−1
n +u−1

n−1

h2 + sin xn, xn = nh, 1 ≤ n ≤ M − 1,

uN
n = u−N

n + 2 sin xn, xn = nh, 0 ≤ n ≤ M,

uk
0 = uk

M = 0,−N ≤ k ≤ N,

(6.2)

We have (2N + 1) × (2N + 1) system of linear equations in (4.2) and we will write
them in the matrix form. We can rewrite this system as the following form





(
1
h2

)
uk−1

n+1 + 1
τ
uk

n +
(− 1

τ
− 2

τ2

)
uk−1

n +
(

1
h2

)
uk−1

n−1 = f(tk−1, xn),

−N + 1 ≤ k ≤ 0, 1 ≤ n ≤ M − 1,

(
1
h2

)
uk

n+1 +
(

1
τ2

)
uk+1

n +
(− 2

τ2 − 2
h2

)
uk

n +
(

1
τ2

)
uk−1

n +
(

1
h2

)
uk

n−1 = g(tk, xn),

1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

(
1
h2

)
u−1

n+1 +
(− 2

h2

)
u−1

n +
(− 1

τ

)
u0

n +
(

1
τ

)
u1

n +
(

1
h2

)
u−1

n−1 = sin xn,

xn = nh, 1 ≤ n ≤ M − 1,

uN
n − u−N

n = 2 sin xn, 1 ≤ n ≤ M − 1,

uk
0 = uk

M = 0, −N ≤ k ≤ N,

(6.3)
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We denote

a =
1

h2
, b = −1

τ
− 2

h2
, c =

1

τ
,

d =
1

τ 2
, e = − 2

τ 2
− 2

h2
, f = − 2

h2
, g = −1

τ
.

ϕk
n =





2 sin xn, k = −N,
f(tk−1, xn), −N + 1 ≤ k ≤ 0,

g(tk, xn), 0 ≤ k ≤ N − 1,
sin xn, k = N.

ϕn =




ϕ−N
n

ϕ−N+1
n

...
ϕ0

n

ϕ1
n

...
ϕN

n




(2N+1)×1

,

A =




0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0
0 a 0 0 0 0 0 0 0 0
0 0 ... 0 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0 0
0 0 0 0 0 a 0 0 0 0
0 0 0 0 0 0 a 0 0 0
0 0 0 0 0 0 0 ... 0 0
0 0 0 0 0 0 0 0 a 0
0 0 0 0 a 0 0 0 0 0




(2N+1)×(2N+1)

,

B =




−1 0 0 0 0 0 0 0 0 1
b c 0 0 0 0 0 0 0 0
0 0 b c 0 0 0 0 0 0
... ... ... ... ... ... ... .... ... ...
0 0 0 0 b c 0 0 0 0
0 0 0 0 0 d e d 0 0
0 0 0 0 0 0 d e d 0
... ... ... ... ... ... ... ... ... ...
0 0 0 0 ... 0 0 d e d
0 0 0 0 f g c 0 0 0




(2N+1)×(2N+1)

,

and
C = A,

D =




1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
... ... ... ... ... ...
0 0 0 ... 1 0
0 0 0 ... 0 1




(2N+1)×(2N+1)

,
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Us =




U−N
s

U−N+1
s

...
U0

s

U1
s

...
UN−1

s

UN
s




(2N+1)×(1)

, s = n− 1, n, n + 1.

Then (6.3) can be written as




A Un+1 + B Un + C Un−1 = Dϕn, 1 ≤ n ≤ M − 1,

U0 = 0̃, UM = 0̃.
(6.4)

So, we have the second order difference equation with respect to n with matrix coef-
ficients. To solve this difference equation we have applied a procedure of modified Gauss
elimination method for difference equation with respect to n with matrix coefficients.
Hence, we seek a solution of the matrix equation in the following form

Un = αn+1Un+1 + βn+1, n = M − 1, · · ·, 2, 1, 0, (6.5)

where αj (j = 1, ...,M − 1) are (2N + 1) × (2N + 1) square matrices and βj (j =
1, ..., M − 1) are (2N + 1)× 1 column matrices. Using the equality

Us = αs+1Us+1 + βs+1, (for s = n, n− 1)

and the equality
A Un+1 + B Un + C Un−1 = Dϕn,

we can write

[A + Bαn+1 + Cαnαn+1]Un+1 +
[
Bβn+1 + Cαnβn+1 + Cβn

]
= Dϕn.

The last equation is satisfied if we select

A + Bαn+1 + Cαnαn+1 = 0,
[
Bβn+1 + Cαnβn+1 + Cβn

]
= Dϕn, 1 ≤ n ≤ M − 1.

From that it follows

αn+1 = − (B + Cαn)−1 A, (6.6)

βn+1 = (B + Cαn)−1 (Dϕn − Cβn) , n = 1, 2, 3, · · ·,M − 1.

For the solution of difference equations we need to find α1 and β1. We can find them
from U0 = α1U1 + β1. Thus, we have

α1 =




0 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0
... ... ... ... ...
0 0 0 ... 0




(2N+1)×(2N+1)

, (6.7)
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β1 =




0
0
0
...
0




(2N+1)×1

.

For the first step using formulas (6.6) and (6.7), we can compute αn+1 and βn+1, 1 ≤
n ≤ M − 1. For the second step we will find un, 0 ≤ n ≤ M. But, for this we need to find
uM . We can find uM from uM = uM−1 and uM−1 = αMuM + βM . Namely

uM = (I − αM)−1βM . (6.8)

Thus using formulas (6.5) and (6.8), we can compute un, 0 ≤ n ≤ M. We can summarize
the computation procedure by the following algorithm.

Algorithm

1. Step Set input time step τ = 1
N

and space step h = π
M

.

2. Step Use the first order of accuracy difference scheme and write it in matrix form

A Un+1 + B Un + C Un−1 = Dϕn, 1 ≤ n ≤ M − 1.

3. Step Determine the entries of the matrices A, B, C and D.

4. Step Find α1, β1 by the formula (6.7).

5. Step Compute αn+1, βn+1, 1 ≤ n ≤ M − 1 by the formula (6.6).

6. Step Compute UM by the formula (6.8).

7. Step Compute Un, n = M − 1, · · ·, 1, 0 by the formula (6.5).

Matlab Implementation of the First Order of Accuracy Difference Scheme

function [table,es,p]=rothermethod(N,M)

% first order of accuracy rother method mixed type

close; close;

if nargin<1; N=30 ; M=30 ;end;

tau=1/N; h=pi/M;

A=zeros(2*N+1,2*N+1);

for i=2:N+1; A(i,i-1)=1/(hˆ2); end;

for i=N+2:2*N; A(i,i)=1/(hˆ2); end;

A(2*N+1,N)=1/(hˆ2);

B=zeros(2*N+1,2*N+1);
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B(1,1)=-1;

B(1,2*N+1)=1;

for i=1:N;

B(i+1,i)=(-1/tau)-(2/hˆ2);

B(i+1,i+1)=1/tau;

end;

for i=N+2:2*N;

B(i,i)=(-2/(tauˆ2))-(2/(hˆ2));

B(i,i+1)=1/(tauˆ2);

end;

for i=N+1:2*N-1;B(i+1,i)=1/(tauˆ2);end;

B(2*N+1,N)=2/(hˆ2);

B(2*N+1,N+1)=-1/tau;

B(2*N+1,N+2)=1/tau;

for i=1:2*N+1;C(i,i)=1;end ;

C(2*N+1,2*N+1)=0;

alpha(2*N+1,2*N+1,1:1)= 0 ;

betha(2*N+1,1:1) = 0 ;

’fi(j) = fi(k,j) ’ ;

for j=1:2*N+1;

x=j*h;

fii(1,j:j)=2*sin(x); for k=2:N+1; t=(-N+k-1)*tau ; fii( k, j:j ) = f(t,x); end;

for k=N+2:2*N; t=(-N+k-1)*tau+tau; fii( k, j:j ) = g(t,x) ; end;

end;

fii(2*N+1,j:j)=sin(x);

’alpha(N+1,N+1,j) ve betha(N+1,j) ’ ;

for j=1:M-1;

alpha( :, :, j+1:j+1 ) = - inv(B+A*alpha(:, :, j:j))*A ;

betha( :, j+1:j+1 ) = inv(B+A*alpha(:, :, j:j ) )*(C*( fii(:, j:j ))-(A* betha(:,j:j) ));

end;

U( 2*N+1,1, M:M ) = 0;

for z = M-1:-1:1 ; U(:,:, z:z ) = alpha(:,:,z+1:z+1)* U(:,:,z+1:z+1 ) + betha(:,z+1:z+1);
end;

for z = 1:M ; p(:,z+1:z+1)=U(:,:,z:z); end;

’EXACT SOLUTION OF THIS PDE’ ;
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for j=1:M+1;

for k=1:2*N+1;

t=(-N+k-1)*tau;

x=(j-1)*h;

es(k,j) = exact(t,x);

end;

end;

’ERROR ANALYSIS’ ;

maxerror=max(max(abs(es-p)))

%%%%%%%%%%%%%%%GRAPH OF THE SOLUTION %%%%%%%%%%%%%%%

[xler,tler]=meshgrid(0:h:pi,-1:tau:1);

table=[es;p];

table(1:2:end,:)=es; table(2:2:end,:)=p;

q=min(min(table)); w=max(max(table)); figure; surf(xler,tler,es); title(’EXACT SO-
LUTION’);

set(gca,’ZLim’,[q w]);rotate3d;XLabel(’x axis’);YLabel(’t axis’);

figure; surf(xler,tler,p); title(’EULER-ROTHER’); rotate3d ;

set(gca,’ZLim’,[q w]);XLabel(’x axis’);YLabel(’t axis’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function estx=exact(t,x);

estx=t*sin(x);

function ftx=f(t,x);

ftx=(1-t)*sin(x);

function gtx=g(t,x);

gtx=-t*sin(x);
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6.2 THE SECOND ORDER OF ACCURACY DIFFERENCE
SCHEME

We present the following second order of accuracy difference scheme in t for the approx-
imate solutions of the problem (6.1)





uk
n−uk−1

n

τ
+

uk
n+1−2uk

n+uk
n−1

2h2 +
uk−1

n+1−2uk−1
n +uk−1

n−1

2h2 = f(tk − τ
2
, xn),

xn = nh, tk = kτ ,−N + 1 ≤ k ≤ 0, 1 ≤ n ≤ M − 1,

uk+1
n −2uk

n+uk−1
n

τ2 +
uk

n+1−2uk
n+uk

n−1

h2 = g(tk, xn),

xn = nh, tk = kτ , 1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

−u2
n + 4u1

n − 3u0
n = 3u0

n − 4u−1
n + u−2

n , xn = nh, 1 ≤ n ≤ M − 1,

uk
0 = uk

M = 0,−N ≤ k ≤ N,

(6.9)

We have again the (2N + 1)× (2N + 1) system of linear equations and we will write
them in the matrix form. We can rewrite this system in the following form
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n = 0, 0 ≤ n ≤ M,
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n = 2 sin xn, 1 ≤ n ≤ M − 1,
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M = 0, −N ≤ k ≤ N.
(6.10)

Denoting

x =
1

2h2
, y = −1

τ
− 1

h2
, z =

1

τ
− 1

h2
,

a =
1

h2
, d =

1

τ 2
, e = − 2

τ 2
− 2

h2
,
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ϕk
n =





2 sin xn, k = −N,
f(tk − τ

2
, xn),−N + 1 ≤ k ≤ 0,

g(tk, xn), 1 ≤ k ≤ N − 1,
0, k = N.

ϕn =




ϕ−N
n

ϕ−N+1
n

ϕ−N+2
n

..
ϕN−2

n

ϕN−1
n

ϕN
n




(2N+1)×1

,

A =




0 0 0 0 ... 0 0 0 0
x x 0 0 ... 0 0 0 0
0 x x 0 ... 0 0 0 0
0 0 x x ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 0 0 0 ... a 0 0 0
0 0 0 0 ... 0 a 0 0
0 0 0 0 ... 0 0 a 0
0 0 0 0 ... 0 0 0 0




(2N+1)×(2N+1)

,

B =




−1 0 0 0 ... 0 0 0 1
y z 0 0 ... 0 0 0 0
0 y z 0 ... 0 0 0 0
0 0 y z ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 0 0 0 d e d 0 0
0 0 0 0 ... d e d 0
0 0 0 0 ... 0 d e d
0 ... 1 −4 6 −4 1 ... 0




(2N+1)×(2N+1)

,

and
A = C,

D =




1 0 0 ... 0 0 0
0 1 0 ... 0 0 0
0 0 1 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 1 0 0
0 0 0 ... 0 1 0
0 0 0 ... 0 0 1




(2N+1)×(2N+1)

,

Us =




U−N
s

U−N+1
s

U−N+2
s

U−N+3
s

..
UN−1

s

UN
s




(2N+1)×(1)

, where s = n− 1, n, n + 1,
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(6.10) can be written as



A Un+1 + B Un + C Un−1 = Dϕn, 1 ≤ n ≤ M − 1,

U0 = 0̃, UM = 0̃.
(6.11)

So, we have the second order difference equation with respect to n with matrix coef-
ficients. To solve this difference equation we have applied a procedure of modified Gauss
elimination method for difference equation with respect to n with matrix coefficients.
Hence, we seek a solution of the matrix equation in the following form

Un = αn+1Un+1 + βn+1, n = M − 1, · · ·, 2, 1, 0, (6.12)

where αj (j = 1, ...,M − 1) are (2N + 1) × (2N + 1) square matrices and βj (j =
1, ..., M − 1) are (2N + 1)× 1 column matrices. Using the equality

Us = αs+1Us+1 + βs+1, (for s = n, n− 1)

and the equality
A Un+1 + B Un + C Un−1 = Dϕn,

we can write

[A + Bαn+1 + Cαnαn+1]Un+1 +
[
Bβn+1 + Cαnβn+1 + Cβn

]
= Dϕn.

The last equation is satisfied if we select

A + Bαn+1 + Cαnαn+1 = 0,[
Bβn+1 + Cαnβn+1 + Cβn

]
= Dϕn, 1 ≤ n ≤ M − 1.

From that it follows

αn+1 = − (B + Cαn)−1 A, (6.13)

βn+1 = (B + Cαn)−1 (Dϕn − Cβn) , n = 1, 2, 3, · · ·,M − 1.

For the solution of difference equations we need to find α1 and β1. We can find them
from U0 = α1U1 + β1. Thus, we have

α1 =




0 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0
... ... ... ... ...
0 0 0 ... 0




(2N+1)×(2N+1)

, (6.14)

β1 =




0
0
0
...
0




(2N+1)×1

.

For the first step using formulas (6.13) and (6.14), we can compute αn+1 and βn+1,
1 ≤ n ≤ M − 1. For the second step we will find un, 0 ≤ n ≤ M. But, for this we need
to find uM . We can find uM from uM = uM−1 and uM−1 = αMuM + βM . Namely

uM = (I − αM)−1βM . (6.15)

Thus using formulas (6.12) and (6.15), we can compute un, 0 ≤ n ≤ M. We can summarize
the computation procedure by the following algorithm.



56

Algorithm

1. Step Set input time step τ = 1
N

and space step h = π
M

.

2. Step Use the first order of accuracy difference scheme and write in matrix form

A Un+1 + B Un + C Un−1 = Dϕn, 1 ≤ n ≤ M − 1.

3. Step Determine the entries of the matrices A, B, C and D.

4. Step Find α1, β1 by the formula (6.13).

5. Step Compute αn+1, βn+1, 1 ≤ n ≤ M − 1 by the formula (6.14).

6. Step Compute UM by the formula (6.12).

7. Step Compute Un, n = M − 1, · · ·, 1, 0 by the formula (6.15).

Matlab Implementation of Second Order of Accuracy Difference Scheme

function [table,es,p]=rothermethod(N,M)

% second order accuracy rother method mixed type

close; close;

if nargin<1; N=30 ; M=30 ;end;

tau=1/N; h=pi/M;

A=zeros(2*N+1,2*N+1);

for i=2:N+1; A(i,i-1)=1/(2*hˆ2); end;

for i=2:N+1; A(i,i)=1/(2*hˆ2); end;

for i=N+2:2*N; A(i,i)=1/(hˆ2); end;

B=zeros(2*N+1,2*N+1);

B(1,1)=-1;

B(1,2*N+1)=1;

for i=1:N; B(i+1,i)=(-1/tau)-(1/hˆ2); end;

for i=2:N+1; B(i,i)=(1/tau)-(1/hˆ2); end;

for i=N+2:2*N; B(i,i)=(-2/(tauˆ2))-(2/(hˆ2)); end;

for i=N+2:2*N; B(i,i+1)=1/(tauˆ2); end;

for i=N+1:2*N-1; B(i+1,i)=1/(tauˆ2); end;

B(2*N+1,N-2)=1;

B(2*N+1,N-1)=-4;

B(2*N+1,N)=6;

B(2*N+1,N+1)=-4;
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B(2*N+1,N+2)=1;

for i=1:2*N+1; C(i,i)=1; end ;

C(2*N+1,2*N+1)=0;

alpha(2*N+1,2*N+1,1:1)= 0 ; betha(2*N+1,1:1) = 0 ;

’fi(j) = fi(k,j) ’ ;

for j=1:2*N+1;

x=j*h;

fii(1,j:j)=2*sin(x);

for k=2:N+1;

x=j*h;

t=(-N+k-1)*tau-tau/2 ;

fii( k, j:j ) = f(t,x);

end;

for k=N+2:2*N;

t=(-N+k-1)*tau;

x=j*h; fii( k, j:j ) = g(t,x) ;

end;

end;

fii(2*N+1,j:j)=0;

’alpha(N+1,N+1,j) ve betha(N+1,j) ler’ ;

for j=1:M-1;

alpha( :, :, j+1:j+1 ) = - inv(B+A*alpha(:, :, j:j))*A ;

betha( :, j+1:j+1 ) = inv(B+A*alpha(:, :, j:j ) )*(C*( fii(:, j:j ))-(A* betha(:,j:j) ));

end;

U( 2*N+1,1, M:M ) = 0;

for z = M-1:-1:1 ;

U(:,:, z:z ) = alpha(:,:,z+1:z+1)* U(:,:,z+1:z+1 ) + betha(:,z+1:z+1);

end;

for z = 1:M ; p(:,z+1:z+1)=U(:,:,z:z); end;

’EXACT SOLUTION OF THIS PDE’ ;

for j=1:M+1;

for k=1:2*N+1;

t=(-N+k-1)*tau;

x=(j-1)*h;
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es(k,j) = exact(t,x);

end;

end;

’ERROR ANALYSIS’ ;

maxerror=max(max(abs(es-p)))

%%%%%%%%%%%%%%%GRAPH OF THE SOLUTION %%%%%%%%%%%%%%%

[xler,tler]=meshgrid(0:h:pi,-1:tau:1);

table=[es;p];

table(1:2:end,:)=es; table(2:2:end,:)=p;

q=min(min(table));

w=max(max(table));

figure; surf(xler,tler,es); title(’EXACT SOLUTION’); set(gca,’ZLim’,[q w]);

rotate3d;XLabel(’x axis’);YLabel(’t axis’);

figure; surf(xler,tler,p); title(’APP. SOL.’); rotate3d ; set(gca,’ZLim’,[q w]);

XLabel(’x axis’);YLabel(’t axis’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function estx=exact(t,x)

estx=t*sin(x);

function ftx=f(t,x)

ftx=(1-t)*sin(x);

function gtx=g(t,x)

gtx=-t*sin(x);

6.3 COMPARISON OF THE RESULTS

Now, we will give the results of the numerical analysis. The exact and numerical solutions
are given in the figures 6.1, 6.2 and 6.3 for N = M = 30 .
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Figure 6.1:

Exact Solution

Figure 6.2:

Solution by the first order of accuracy difference scheme
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Figure 6.3:

Solution by the second order of accuracy difference schemes

The errors computed by

EN
M = max

−N≤k≤N,1≤n≤M−1

∣∣u(tk, xn)− uk
n

∣∣

of the numerical solutions are given in the following table.

Table 6.1. Comparison of the errors

Difference schemes N=M=20 N=M=30 N=M=60
The first order of accuracy difference scheme (6.2) 0.0468 0.0319 0.0163
The second order of accuracy difference scheme (6.9) 0.0008 O.00036 0.00009

Thus, the second order of accuracy difference scheme is more accurate comparing with
the first order of accuracy difference scheme.



CHAPTER 7

CONCLUSION

This work is devoted to the study of the well-posedness of the nonlocal boundary value
problem for elliptic-parabolic differential and difference equations. The following original
results are obtained:

• The abstract theorem on the well-posedness of the nonlocal boundary value problem
for elliptic-parabolic equation in a Hilbert space is established.

• The coercivity stability inequalities for the solutions of the two nonlocal boundary
value problems for elliptic-parabolic equations are obtained.

• The first and second order of accuracy difference schemes for the approximate solu-
tions of the nonlocal boundary problem for elliptic-parabolic differential equations
are presented.

• The abstract theorems on the well-posedness of the first and second order of ac-
curacy difference schemes for the approximate solutions of the nonlocal boundary
problem for elliptic-parabolic differential equation are established.

• The stability, almost coercivity inequalities, coercivity inequalities for the solutions
of difference schemes for the approximate solution of the nonlocal boundary value
problem for elliptic-parabolic equation are obtained.

• Numerical examples are presented. A Matlab program is given.

61
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