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ABSTRACT

In this thesis, elliptic curves, elliptic curves over a finite field and cryptography
applications of elliptic curves are basically investigated. Especially, I give information
about encryption and decryption methods for the cryptosystems which can be defined
over a finite field such as Diffie — Hellman , Massey — Omura and ElGamal. These

concepts were also supported by the cited examples.
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Bu tez ¢aligsmasinda, temel seviyede eliptik egriler, sonlu bir cisim tlizerinde eliptik
egriler ve bu egrilerin Kriptografi uygulamalari incelenmistir. Ozellikle Diffie —
Hellman , Massey — Omura ve ElGamal gibi kriptosistemlerinin sonlu bir cisim
tizerindeki sifreleme ve desifre etme yontemleri hakkinda bilgiler verdim. Ayrica bu

sistemler Orneklerle desteklendi.

Anahtar Kelimeler: Kriptografi, sifreleme, desifre, sonlu cisimler, eliptik egriler,

maple, diskriminant, ikinci dereceden kalan.
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CHAPTER 1

INTRODUCTION

1.1 WHAT IS CRYPTOGRAPHY

As the field of cryptography has advanced, the dividing lines for what is and what
is not cryptography have become blurred. Cryptography today might be summed up as
the study of techniques and applications that depend on the existence of difficult
problems. Cryptanalysis is the study of how to compromise (defeat) cryptographic
mechanisms, and cryptology (from the Greek kryptds 16gos, meaning ~"hidden word") is
the discipline of cryptography and cryptanalysis combined. To most people,
cryptography is concerned with keeping communications private. Indeed, the protection
of sensitive communications has been the emphasis of cryptography throughout much

of its history. However, this is only one part of today's cryptography.

Encryption is the transformation of data into a form that is as close to impossible
as possible to read without the appropriate knowledge. Its purpose is to ensure privacy
by keeping information hidden from anyone for whom it is not intended, even those
who have access to the encrypted data. Decryption is the reverse of encryption; it is the

transformation of encrypted data back into an intelligible form.

Encryption and decryption generally require the use of some secret information,
referred to as a key. For some encryption mechanisms, the same key is used for both
encryption and decryption; for other mechanisms, the keys used for encryption and

decryption are different .

Today's cryptography is more than encryption and decryption. Authentication is as
fundamentally a part of our lives as privacy. We use authentication throughout our

everyday lives - when we sign our name to some document for instance - and, as we



move to a world where our decisions and agreements are communicated electronically,

we need to have electronic techniques for providing authentication.

Cryptography provides mechanisms for such procedures. A digital signature binds
a document to the possessor of a particular key, while a digital timestamp binds a
document to its creation at a particular time. These cryptographic mechanisms can be
used to control access to a shared disk drive, a high security installation, or a pay-per-
view TV channel.

The field of cryptography encompasses other uses as well. With just a few basic
cryptographic tools, it is possible to build elaborate schemes and protocols that allow us
to pay using electronic money , to prove we know certain information without revealing
the information itself, and to share a secret quantity in such a way that a subset of the

shares can reconstruct the secret .

While modern cryptography is growing increasingly diverse, cryptography is
fundamentally based on problems that are difficult to solve. A problem may be difficult
because its solution requires some secret knowledge, such as decrypting an encrypted
message or signing some digital document. The problem may also be hard because it is
intrinsically difficult to complete, such as finding a message that produces a given hash

value.

1.2 TECHNIQUES IN CRYPTOGRAPHY

1.2.1 Rsa

The RSA cryptosystem is a public-key cryptosystem that offers both encryption
and digital signatures. Ronald Rivest, Adi Shamir and Leonard Adleman developed the

RSA system in 1977; RSA stands for the first letter in each of its inventors’ last names.

The RSA algorithm works as follows: take two large primes, p and g, and compute
their product n = pg; n is called the modulus. Choose a number, e, less than n and
relatively prime to (p-1)(g-1), which means e and (p-1)(g-1) have no common factors
except 1. Find another number d such that (ed - 1) is divisible by (p-1)(g-1). The values
e and d are called the public and private exponents, respectively. The public key is the



pair (n, e); the private key is (n, d). The factors p and g may be destroyed or kept with
the private key.

It is currently difficult to obtain the private key d from the public key (n, e).
However if one could factor n into p and g, then one could obtain the private key d.
Thus the security of the RSA system is based on the assumption that factoring is

difficult. The discovery of an easy method of factoring would "break™ RSA.

Here is how the RSA system can be used for encryption and digital signatures (in

practice, the actual use is slightly different.
1.2.2 Encryption

Suppose Alice wants to send a message m to Bob. Alice creates the ciphertext ¢ by
exponentiating: ¢ = m® mod n, where e and n are Bob's public key. She sends ¢ to Bob.
To decrypt, Bob also exponentiates: m = c® mod n; the relationship between e and d
ensures that Bob correctly recovers m. Since only Bob knows d, only Bob can decrypt

this message.
1.2.3 Digital Signature

Suppose Alice wants to send a message m to Bob in such a way that Bob is
assured the message is both authentic, has not been tampered with, and from Alice.
Alice creates a digital signature s by exponentiating: s = m? mod n, where d and n are
Alice's private key. She sends m and s to Bob. To verify the signature, Bob
exponentiates and checks that the message m is recovered: m = s* mod n, where e and n

are Alice's public key.

Thus encryption and authentication take place without any sharing of private keys:
each person uses only another's public key or their own private key. Anyone can send
an encrypted message or verify a signed message, but only someone in possession of the

correct private key can decrypt or sign a message.



1.2.4 Elliptic curve cryptosystem.

Elliptic curve cryptosystems were first proposed independently by Victor Miller
and Neal Koblitz in the mid-1980s. At a high level, they are analogs of existing public-
key cryptosystems in which modular arithmetic is replaced by operations defined over
elliptic curves. The elliptic curve cryptosystems that have appeared in the literature can
be classified into two categories according to whether they are analogs to the RSA

system or to discrete logarithm based systems.

Just as in all public-key cryptosystems, the security of elliptic curve cryptosystems
relies on the underlying hard mathematical problems. It turns out that elliptic curve
analogs of the RSA system are mainly of academic interest and offer no practical
advantage over the RSA system, since their security is based on the same underlying
problem, namely integer factorization. The situation is quite different with elliptic curve
variants of discrete logarithm based systems. The security of such systems depends on
the following hard problem: Given two points G and Y on an elliptic curve such that
Y = kG (that is, Y is G added to itself k times), find the integer k. This problem is
commonly referred to as the elliptic curve discrete logarithm problem.

Presently, the methods for computing general elliptic curve discrete logarithms are
much less efficient than those for factoring or computing conventional discrete
logarithms. As a result, shorter key sizes can be used to achieve the same security of
conventional public-key cryptosystems, which might lead to better memory
requirements and improved performance. One can easily construct elliptic curve
encryption, signature, and key agreement schemes by making analogs of ElGamal,
DSA, and Diffie-Hellman. These variants appear to offer certain implementation
advantages over the original schemes, and they have recently drawn more and more

attention from both the academic community and the industry.

1.2.5 Are elliptic curve cryptosystem secure?

In general, the best attacks on the elliptic curve discrete logarithm problems have
been general brute-force methods. The current lack of more specific attacks means that
shorter key sizes for elliptic cryptosystems appear to give similar security as much
larger keys that might be used in cryptosystems based on the discrete logarithm problem



and integer factorization. For certain choices of elliptic curves there do exist more
efficient attacks. Menezes, Okamoto, and Vanstone have been able to reduce the
elliptic curve discrete logarithm problem to the traditional discrete logarithm problem
for certain curves, thereby necessitating the same size keys as is used in more traditional

public-key systems. However these cases are readily classified and easily avoided.

In 1997, elliptic curve cryptography began to receive a lot more attention; by the
end of 1999, there were no major developments as to the security of these
cryptosystems. The longer this situation continues, the more confidence will grow that
they really do offer as much security as currently appears. However, a sizeable group of
very respected researchers have some doubts as to whether this situation will remain
unchanged for many years. In particular, there is some evidence that the use of special
elliptic curves, sometimes known as Koblitz curves, which provide very fast
implementations, might allow new specialized attacks. As a starting point, the basic
brute-force attacks can be improved when attacking these curves. While RSA
Laboratories believes that continued research into elliptic curve cryptosystems might
eventually create the same level of wide-spread trust as is enjoyed by other public-key
techniques (provided there are no upsets), the use of special purpose curves will most

likely always be viewed with extreme skepticism.
1.2.6 Diffie-Hellman cryptosystem.

The Diffie-Hellman key agreement protocol (also called exponential key
agreement) was developed by Diffie and Hellman in 1976 and published in the ground-
breaking paper "New Directions in Cryptography.” The protocol allows two users to

exchange a secret key over an insecure medium without any prior secrets.

The protocol has two system parameters p and g. They are both public and may be
used by all the users in a system. Parameter p is a prime number and parameter g
(usually called a generator) is an integer less than p, with the following property: for
every number n between 1 and p-1 inclusive, there is a power k of g such that n = g~

mod p.

Suppose Alice and Bob want to agree on a shared secret key using the Diffie-

Hellman key agreement protocol. They proceed as follows: First, Alice generates a
random private value a and Bob generates a random private value b. Both a and b are



drawn from the set of integers. Then they derive their public values using parameters p
and g and their private values. Alice's public value is g* mod p and Bob's public value is
g° mod p. They then exchange their public values. Finally, Alice computes g*° = (g°)?
mod p, and Bob computes g°* = (g%)° mod p. Since g*° = g* = k, Alice and Bob now

have a shared secret key k.

The protocol depends on the discrete logarithm problem for its security. It
assumes that it is computationally infeasible to calculate the shared secret key k = g
mod p given the two public values g* mod p and g° mod p when the prime p is
sufficiently large. Maurer has shown that breaking the Diffie-Hellman protocol is

equivalent to computing discrete logarithms under certain assumptions.

The Diffie-Hellman key exchange is vulnerable to a man-in-the-middle attack. In
this attack, an opponent Carol intercepts Alice's public value and sends her own public
value to Bob. When Bob transmits his public value, Carol substitutes it with her own
and sends it to Alice. Carol and Alice thus agree on one shared key and Carol and Bob
agree on another shared key. After this exchange, Carol simply decrypts any messages
sent out by Alice or Bob, and then reads and possibly modifies them before re-
encrypting with the appropriate key and transmitting them to the other party. This
vulnerability is present because Diffie-Hellman key exchange does not authenticate the
participants. Possible solutions include the use of digital signatures and other protocol

variants.

The authenticated Diffie-Hellman key agreement protocol, or Station-to-Station
(STS) protocol, was developed by Diffie, van Oorschot, and Wiener in 1992 to defeat

the man-in-the-middle attack on the Diffie-Hellman key agreement protocol.

The immunity is achieved by allowing the two parties to authenticate themselves

to each other by the use of digital signatures and public-key certificates.

Roughly speaking, the basic idea is as follows. Prior to execution of the protocol,
the two parties Alice and Bob each obtain a public/private key pair and a certificate for
the public key. During the protocol, Alice computes a signature on certain messages,

covering the public value g mod p. Bob proceeds in a similar way. Even though Carol



is still able to intercept messages between Alice and Bob, she can not forge signatures
without Alice's private key and Bob's private key. Hence, the enhanced protocol defeats

the man-in-the-middle attack.

In recent years, the original Diffie-Hellman protocol has been understood to be an
example of a much more general cryptographic technique, the common element being
the derivation of a shared secret value (that is, key) from one party's public key and
another party's private key. The parties' key pairs may be generated anew at each run of
the protocol, as in the original Diffie-Hellman protocol. The public keys may be
certified, so that the parties can be authenticated and there may be a combination of

these attributes.

In chapter 2, the basic definitions of groups, rings and fields are given.

In chapter 3, finite fields are defined with the basic theorems.

In chapter 4, the cryptosystems such as Massey — Omura and EIGamal are defined over
a finite field.

In chapter 5, Quadratic residues and Legendre Symbol are defined.

In chapter 6, the operations on elliptic curves are defined.

In chapter 7, | define elliptic curves over a finite field by an example.

Finally, in chapter 8, elliptic curve cryptosystems over a finite field are defined.



CHAPTER 2

GROUPS RINGS AND FIELDS

2.1 GROUPS

Definition 2.1.1(Herstein, 1996) A nonempty set G is said to be a group if in G there is
defined an operation * such that :

i) a,be G implies that a *b € G (We describe this by saying that G is closed under
%),
ii) Given a,b,c € G , then
ax(bxc)=(axb)*c
This is described by saying that the associative law holds in G.
iii) There exists a special element e € G such that
a*e=e*a=aq forall aeG
e 1s called the identity or unit element of G.
iv) For every a € G there exists an element b € G such that
axb=bxa=e
We describe this element b as ¢~ and call it the inverse of @ in G.

These four defining postulates are called group axioms.
Example2.1.1 Let R* be the set of all positive real numbers and let the operation *
on R*
Be the ordinary product of real numbers. R* is a group under *.
Definition 2.1.2(Herstein, 1996) A group G is said to be abelian if
a*b=b*q forall q,beG.

Lemma 2.1.1 If G is a group then

i) Its identity element is unique.

ii) Every a € G has a unique inverse a'eG.

ii)If acG (@) '=a



iv)ForabeG (ab)_1 =ba!

2.2 RINGS

Definition2.2.1 A nonempty set R is said to be a ring if in R there are two operations +
and - such that:

i) a,b € R implies that a+b e R

iiya+b=b+a for a,be R

iiiy (a+b)+c=a+(b+c) for a,b,ceR.

iv) There exists an element O € R such that O+a =a forevery aeR.
v) Given a € R there exists b € R such that a+b =0

Vi) a,b € R implies that a-be R

vii) a-(b-c)=(a-b)-¢ for a,b,ceR

viii ) a.(b+c)=ab+a.c and

(b+c)a=ba+ca forab,ceR.

Definition 2.2.2(Commutative Ring) A commutative ring is a ring R that satisfies this
axioms:

ab=ba forall a,be R

Example2.2.1 The set of integers Z ,with the usual addition and multiplication, is a

commutative ring with identity.

Example2.2.2 The set of odd integers with the usual addition and multiplication is not a

ring.Because the sum of two odd integers is not odd.

2.3 FIELDS

Definition2.3.1 A field is a set F', containing at least two elements, on which two

operations + and - ( called addition and multiplication ,respectively) are defined so that
for each pair of elements x,y in F there are unique elements x+ y and x-y (often
written xy)in F for which the following conditions hold for all x,y,z € F':

i) x+y=y+x (commutativity of addition)
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ii) (x+y)+z=x+(y+z) (associativity of addition)
iii) There is an element 0 € F' called zero, such that x + 0 = x. (existence of an
additive identity)

iv) For each x there is an element —x € F' such that x+(—x) =0 (existence of
additive inverses)

v) xy=yx (commutativity of multiplication)

Vi) (x-y)-z=x-(y-z) (associativity of multiplication)

vii) (x+y)-z=x-z+y-z and x-(y+z)=x-y+x-z (distributivity)

viii ) There is an element 1 € F', such that 1 # 0 and x-1= x (existence of a
multiplicative identity)

ix) If x # 0, then there is an element x'eF suchthat x-x ' =1. (existence of

multiplicative inverses)

Definition2.3.2(Herstein, 1996) A commutative ring R is an integral domain if
a-b=0 in R implies that a=0 or 6=0.
Definition2.3.3(Herstein, 1996) A ring R with unit is said to be a division ring if for

every a # 0 in R there is an element b € R (usually written as a_l) such that

a-a'=a

ca=1
Definition2.3.4 A ring R is said to be a field if R is a commutative division ring.
Example2.3.1 Let R = Z4 the integers mod 6, with the addition and the multiplication
defined by

[a]+[p]=[a+b] and [a]b]=[ab].
Note that [0] is the 0 required by our axioms for a ring, and [1] is the unit element of R.
Note however, that Z¢ is not an integral domain, for [2]3]=[6]=[0], yet [2]=[0] and
[3]#[0].R is commutative ring with unit.
This example suggests the
Definition2.3.5(Herstein,1996) An element a # 0 in ring R is a zero-divisor in R if
ab =0 forsome b #0 in R.
Note that both [2] and [3] in Z4 are zero-divisors.An integral domain is, of course, a
commutative ring without zero-divisors.

Example2.3.2 The set R real numbers with the usual addition and multiplication, is a

field.
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Example2.3.3 if p is prime, then Z, is a field.

2.3.1 Properties of a Field

1) A vector space can be defined over any field /' by the same properties that are used
to define a vector space over the real numbers.Any vector space has a basis, and the
number of elements in a basis is called its dimension. An extension field, i.e., a bigger
field containing F' is automatically a vector space over F. We call it a finite extension if
it is a finite dimensional vector space.By the degree of a finite extension we mean its
dimension as a vector space. One common way of obtaining extension fields is to adjoin

an element to F : we say that K = F(a) if K is the field consisting of all rational

expressions formed using « and elements of F.(Koblitz, 1994)

2) The polynomial ring can be defined over any field F. It is denoted F[x] ; it consists of
all finite sums of powers of x with coefficients in F . One adds and multiplies
polynomials in F[x] in the same way as one does with polynomials over the reals.The

degree d of a polynomial is the largest power of x which occurs with nonzero

coefficient; in a monic polynomial the coefficient of x4 is 1. We say that g divides f,
where f,g e F [x], if there exists a polynomial /e F [x] such that  fg=h. The
polynomial p(x) € F[x] is irreducible if p(x) is of positive degree and given any

polynomial f{x) in F[x], then either p(x)/f(x) or p(x) is relatively prime to f{x).

3) Given any polynomial f(x) € F[x] there is an extension field K of F such that f(x)

splits into a product of linear factors (equivalently, had d roots in K, counting

multiplicity,where d is its degree) and such that K is the smallest extension field

containing those roots.K is called the splitting field of f. For example, Q(\/E) is the
splitting field of f(x)=x*—2, and to obtain the splitting field of f(x)=x>—2 one

must adjoin to Q both 3/2 and /-3 .(Koblitz, 1994)
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2.3.2 Characteristic of a Field

Definition2.3.6 If F is a field of k elements for any a € F ; na=0 if there exists ne Z"
the smallest number of these positive integers is called the characteristic of the field.If

there is no such an integer then the characteristic of F is 0.

Example2.3.4 The field of rational numbers Q, the field of real numbers R and the

field of complex numbers C has characteristic 0.



CHAPTER 3

FINITE FIELDS

3.1 FINITE FIELDS

Definition3.1.1 Finite field is field which contains finite number of elements.Denoted

as [}, where ¢ is the number of elements in it.

Theorem3.1.1 Suppose that F,is a finite field of ¢ number of elements and
characteristic is p with prime subfield ¥, .Then we can regard F| as a vector space over
F, with the dimension of n .We can find a basis {e;,e;,......,e,} for F, over F, Every
element £, of is uniquely expressible in the form;

a=ea +ed,+...+e,a
There are just p choices for each coordinate ¢; , so the total number of elements in F,
is

p.p.pe..p=p"
| —

n—times

3.1.1 Existence of multiplicative generators of finite fields

There are g-1 nonzero elements, and, by the definition of a field, they form an
abelian group with respect to multiplication. This means that the product of two nonzero
elements is nonzero, the associative law and commutative law hold, there is an identity
element 1, and any nonzero element has an inverse.It is a general fact finite groups that

the order of any element must divide the number of elements in the group. For the sake

of completeness, we give a proof of this in the case of our group F; .

13
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Proposition 3.1.1(Koblitz, 1994) The order of any a € Fq* divides g-1.
Proof. Let d be the smallest power of a which equals 1. (Note that there is a finite
power of a that is 1, since the powers of a in the finite set Fq* can not all be distinct, and

2

as soon as a' =a’ for j>1i we have a/™ = 1.) Let S={l,a,a ,....,ad_l} denote the

set of all powers of a, and for any b e F; let bS denote the coset consisting of all

elements of the form ba’ It is easy to see that any two cosets are either identical or

distinct (namely: if some bja’ in bS is also in b,S, i.e. , if it is of the form b,a’ , then
any element blail im hS is of the form to be in b,S , because

.l . s A . .
ba' =ba' a" ' =b,a’*" ). And each coset contains exactly d elements. Since the
union of all the cosets exhausts Fq* , this means that Fq* is a disjoint union of d-

element sets; hence d | (g-1).

Definition3.1.2(Koblitz, 1994) A generator g of a finite field £, is an element of

order g —1; equivalently, the powers of g run through all of the elements of Fq* .

Proposition3.1.2(Koblitz, 1994) Every finite field has a generator. If g is a generator
of Fq* , then g7 is also a generator if and only if g.c.d (j,g-1)=1. In particular , there a

total of ¢(q —1) different generators of Fq* .

Proof. Suppose that a € Fq* has order d , i.e.,a® =1and no lower power of a gives 1. By

proposition(3.1.1), d divides g-1. Since a is the smallest power which equals 1, it

follows thatthe elements a,az, ..... a? =1 are distinct. We claim that the elements of

order d are precisely the ¢(d) values a’ for which g.cd(j,d)=1. First, since the d

distinct powers of a all satisfy the equation x4 = 1, these are all of the roots of the

equation. Any element of order d must thus be among the powers of a. However, not all

powers of a have order d, since if g.c.d(j,d)=d'>1, then a’ has lower order : because
d/d' and j/d' are integers, we can write (aj)(d/d,) :(ad)j/d’ =1. Conversely, we
now show that a’/ does have order d whenever g.c.d(j,d)=1.1fj is prime to d and if

a’ had a smaller order d", then a" raised to either the Jj-th or the d-th power would
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give 1, and hence a®’ raised to the power g.cd(j,d)=1 would give 1. But this

contradicts the fact that a is of order d and so a? = 1.Thus ,a’ has order d if and only

if g.c.d(j,d)=1.This means that, if there is an element a of order d , then there are
exactly @(d) elements of order d. So for every d| (g—1) there are only two
possibilities: no element has order d , or exactly ¢(d) elements have order d .Now
every element has some order d | (g—1). And there are either 0 or ¢(d) elements of

order d. But

D od)=q-1

d|(g-1)
which is the number of elements in Fq* .Thus the only way that element can have some

order d | (g—1) is if there are always @(d) (and never O)elements of order d. In

particular, there are ¢(q—1) elements of order ¢ —1; and, if g is any element of order

g —1, then the other elements of order ¢—1 are precisely the powers gj for which

g.cd(j,q—1)=1. This completes the proof.

3.1.2 Existence and uniquness of finite fields with prime power number of elements

Proposition3.1.3(Koblitz, 1994) If F, is a field of ¢= pf elements, then every
element satisfies the equation x? —x=0 and F, is precisely the set of roots of that
equation. Conversely, for every prime power g = pf the splitting field over F, of the

polynomial x? —x is a field of ¢ elements.

Proof. First suppose that F, is a finite field. Since the order of any nonzero element
satisfies the equation x4 =1, and hence, if we multiply both sides by x the equation
x? = x. Of course, the element 0 also satisfies the latter equation. Thus, all g elements
of £, are roots of the degree —g polynomial x? — x . Since this polynomial cannot have

more than g roots, its roots are precisely the elements of F,, . Notice that this means that

F, is the splitting field of the polynomial x? —x, that is , the smallest field extension of

Fq which contains all of its roots.
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Conversely, let g = pf be a prime power, and let F° be the splitting field over £, of

the polynomial x?—x. Note that x?—x has derivative gx?' —1=—1(because the

integer ¢ is a multiple of p and so is 0 in field F), ); hence, the polynomial x? —x has no
common roots with its derivative and therefore has no multiple roots. Thud F must

contain at least ¢ distinct roots of x? —x . But we claim that the set of g roots is already

a field. The key point is that a sum or product of two roots is again a root. Namely, if a
and b satisfies the polynomial we have a? =a, b? =b and hence (ab)? = ab, i.e., the

product is also a root.

Example3.1.1 Consider Z/(5), is isomorphic to F5 ={0,1,2,3,4} with the isomorphism
given by: [0]>0, [1]]>1, [2]>2 [38]—3, [4]>4. The tables for the two
operations + and - for elements in Fy are as follows:

Table 3.1 Operations + and - for elements in Fj

+ 01234 101 23 4
0j01 23 4 00 00O0O
111 2340 11012 3 4
223401 210241 3
313401 2 3/]03 142
4/4 0123 4/0 4 3 23

Corollary3.1.1 A finite field has prime characteristic.

Example3.1.2 There is no a finite field containing 6 elements. Because we can not write
6as p" ie., 6 p"

Corollary3.1.2 A finite field F has always a subfield with a prime number of elements.
Theorem3.1.2(Lidl and Niederreiter,1994) For f € F[x], the residue class ring

F[x]/(f) is afield if and only if f is irreducible over F.
Example3.1.3 Let f(x)= P +x+le F,[x]. Then F[x]/(f) has the p" = 22

elements [0], [1], [x], [x+1] The operation tables for this residue class ring are obtained

by performing the required operations with the polynomials determining the residue

classes and by carrying out mod f* if necessary:
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Table 3.2 Operation tables for residue class ring

+ [0] [1] [x]  Be+1] - [0 [1] [x]  [x+1]
[0] [0] [1] x]  x+1]  [0] |[[0] [O] [0] [0]
[1] [1] 0] [+1] [x] 1] o] [1] [x]  [x+1]
[x] [x]  [x+1] [0] [1] x] (0] ] [x+1] [1]

[x+1]| be+1]  [x] [1] 0]  [x+1]/[0] [x+1] [1] [x]

By inspecting these tables, or from the irreducibility of f over F, and theorem(3.1.2),
it follows that F,[x]/(f) is a field. This is an example for which the number of

elements is not a prime.
Definition3.1.3 For a finite field F, we denote by Fq* the multiplicative group of
nonzero elements of £

Theorem3.1.3(Lidl and Niederreiter, 1994) For every finite field F, the multiplicative

group F; of nonzero elements of F, is cyclic.

Example3.1.4 Construct Fj .
Since 9=3% we consider monic irreducible polynomials of degree 2 over Fj:

x? +1, x? +2, x> +2x+2. For example letting « be a root of x?+1 i.e., a’+1= 0,

so & =2 we can write out the powers of « .

a =a,
a2=2,
a3=2a,

a =2a(a)=2a%=2(2) =1
and so o has order 4 and does not generate the cyclic group of order 8, i.e., & is not a
primitive element. On the other hand, consider A a root of the polynomial X2 +x+2,

sothat 2+ A1+2=0 or A2 =24+1.Now the powers of A gives us :
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A=2

2 =21+1

B =222+ =22 +21=20QA+1)+1=21+2
=2 4220=242421=2

2 =22

M =22=21+2

A =22 420=2A+14+21=A+1
B=+i1=22+1+41=1

So A is a primitive element and we have represented the elements of F;y as the 8

powers of 4 together with 0.

3.1.3 Automorphisms of Fields

Two fields are said to be isomorphic if there exists a bijection from one to the
other which preserves both binary operations. If F and K are isomorphic fields then

there exists a bijection f :F — K such that
fx+y)=f(x)+f(y) and
Jy)=fx)f ()

forall x andy in F'. The map f is called an isomorphism.

Definition3.1.4 An isomorphism from a field to itself is called an automorphism.

Theorem3.1.4 If F' is a finite field of characteristic p, then the mapping ¢ defined by
¢(a) = a? is an automorphism of F.
Proof.  @(ab) = (ab)? =a?b? = p(a)p(b), so ¢ preserves multiplication.

p(a+b)=(a+b)’ =a’ +b? = p(a)+ @(b) and addition is preserved. The middle step
follows from the binomial theorem and the fact that p is a prime, so all the intermediate

coefficients have a factor of p and therefore 0. That ¢ is a bijection follows from the
fact that ¢(a) =0 implies a =0.

Definition3.1.5 The automorphism x — x? is called Frobenius automorphism .
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Lemma3.1.1 If g(x) in Z,[x] is irreducible of degree n , then q(x)l (x™ —x) where

n

m=p

Theorem3.1.5 If K and L are finite fields having the same number of elements, then K

and L are isomorphic fields.

Proof. Suppose that K and L have p" elements. By theorem(3.1.3) L isa cyclic
group generated, say by the element b in L. Then certainly, Z,(b) - the field obtained
by adjoining b to Z, - is all of L. Since [L : ZpJ= n, b is algebraic over Z, of degree
n, with n =deg(q(x)) where g(x) is the minimal polynomial in Z,[x] for b, and is
irreducible in Z ,[x].

The mapping y :Z ,[x] > L =Z,(b) defined by y(f(x))=f(b) isa
homomorphism of Z ,[x] onto L with kernel (¢(x)) the ideal of Z ,[x] generated by
q(x). So

L=7,[x]/(q(x))

Because ¢(x) is irreducible in Z ,[x] of degree n by lemma(3.1.1) g(x) must divide

x" —x, where m = p". However, the polynomial x"" —x factors in K[x] as
x"—x=(x—a)(x-ay)....(x—a,)

where ay,a,,....a, are all the elements of K .Therefore, ¢(x) divides
(x—ay)(x—-ay)....x—a,,). Here g(x) can not be relatively prime to all the x—a; in
K[x], hence for some j, g(x) and x—a; have a common factorof degree at least 1.In
short x—a; mustdivide ¢(x) in K[x], so g(x)=(x—a;)h(x) for some A(x) in K[x].
Therefore, g(a;)=0.

Since ¢g(x) is irreducible in Z ,[x] and a;is a root of g(x), g(x) must be the
minimal polynomial for a;in Z [x]. Thus Z ,(a;)=Z ,[x] / (g(x))= L. This tells us,
among other things, that we have[Z ,(a;):Z,]=n, and since Z,(a;)c K and

[K:Z,]=n we conclude that Z (a;) =K . Therefore, K =Z,(a;) = L. Thus we get

the result that we are after, namely, that K and L isomorphic fields. This proves the

theorem.
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Corollary3.1.3 If f is a prime number, then there are ( pf — p)/ fdistinct monic
irreducible polynomials of degree /" in F),[x].

Example3.1.5 Let f(x) = x4+ x4, g(x)= x> +le F5[x].Find g.cd(f,g)

using the Euclidean algorithm for polynomials, and Express the g.c.d in the form

u(x) f(x)+v(x)g(x)
Solution. Polynomial division gives us the sequence of equalities below, which lead to

the conclusion that g.c.d(f,g)=x+1 , and the next sequence of equalities enables us

working backwards, to Express x+1 as a linear combination of / and g . We have:

F=(x+D)g+(x>+x)
g=(x+Dx*+x)+(x+1)

X tx= x(x+1)

and then
x+1:g+(x+l)(x2+x)
=g+(x+D(f+(x+Dg)

= (x+Df+(x*)g

Example3.1.6 The subfields of the finite field F230 can be determined by lisitng all

positive divisors of 30. The containment relations between these various subfields are

displayed in the following diagram.
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F230
/ \
Fye oo Fys
> <
F, F, F|25
\ /
%)

Figure 3.1 Relations between the subfields of F230
Lemma3.1.2(Rosen, 2000) If F'is a field of prime characteristic p, then

(a+p)y =’ +p”
for all &, € F and all positive integers n.

Proof. Let a, 8 € F . Applying the binomial theorem to (a + ) we have

= af +0a? f+0aP 2B ...+ 0aBP + pP

n—1

n—1 n—1
Proceeding by induction on 7 , suppose that we have (a+8)? =af +p7*
Then

@+ B =la+p? 1 =@ + g7 ) =+ "



CHAPTER 4

FINITE FIELD CRYPTOSYSTEMS

4.1 BASIC NOTIONS

Cryptography is the study of methods of sending messages in disguised form so
that only the intended recipients can remove the disguise and read the message. The
message we want to send is called the plaintext and the disguised message is called the
ciphertext. The plaintext and ciphertext are written some alphabet (usually, but not
always, they are written in the same alphabet) consisting of a certain number N of

J% ¢¢

letters. The term “letter” “(or “character”) can refer not only to the familiar A—Z, but
also to numerals, blanks, punctuation marks, or any other symbols that we allow
ourselves to use when writing the message.(If we don’t include a blank , for example,
then all of the words are run together, and the messages are harder to read.) The process
of converting a plaintext to a ciphertext is called enciphering or encryption, and the

reverse process is called deciphering or decryption.(Koblitz, 1994)

The plaintext and ciphertext are broken up into message units. A message unit
might be a single letter, a pair of letters(digraph), a tirple of letters(¢rigraph), or a block
of 50 letters. An enciphering transformation is a function that takes any plaintext

message unit and gives us a ciphertext message unit. In other words, it is a map f from

the set P of all possible plaintext message units to the set C of all possible ciphertext

message units. We shall always assume that f is a 1-1 correspondence. That is, given
a ciphertext message unit, there is one and only one plaintext message unit for which it
is the encryption.

The deciphering transformation is the map f ~! which goes back and recovers

the plaintext from the ciphertext. We can represent the situation schematically by the
diagram

22
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-1
pr—L sc— 1 ,p.

Any such set-up is called a cryptosystem.

4.1.1 Representation of a message in a finite field Fp,,

Since Fp” is an n — dimensional vector space over F,, , 3 abasis

where a,ay,.....,a,_1€F » not all of them zero. On the other hand ,such a nonzero n-

tuple (agy,ay,.....,a,_; ) determines a message as an integer

in
an \{0}=1{1,2,.....p" -1}
If we use an N-letter alphabet with k-blocks such that
NF<p"1
then a k-block is represented as an integer
P= bk_lNk_1 + bk_sz_2 + e t BN + by
in

Z ¢ ={0.1.2,...N*}

P = P+1 determines an element in an \{0} since N* < p" —1, thus, an element P is
determined in Fp” \{0}.

Remark. Let Fp,, = Iy (o) and unique monic irreducible polynomial be

fx)=x"+ Cn_lxn_1 + Cn_zxn_2 Tt +c1x+¢
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Then

P:ao +a1a+a2a2+ ..... +a, & B
where a; € Fp for i =0,1,2,....,n—1. Since

Fy(@) = Fplx]l/ < f>

Fp” can be represented by the set of all polynomials of degree less than n,i.e.,

{bn_lxn_1 +oe +l72x2 +bx+by:b € F; fori=012,.,n-1}

where the addition of polynomials is the obvious one and the multiplication of the

polynomials can be done the usual multiplication modulo

f(x)= X"+ cn_lxn_1 + cn_zxn_2 +. e x+cg
Example4.1.1 p=3,n=3. It is easy to see that x> +2x?+1 is irreducible in Zs[x].
Thus,

Zy[x] /< x> +2x7 +1>= Fyy
Fg MO} = {1,2,5,x +1,x+2,2x,....,2x" +2x +2}

Take N =26 <3 —1. Then

AB C D E F G H I J K L M

1 2 x x+1 x+2  2x 2x+1 2x+2 x% x2 41 X242  xP4+x  xP4x+l

N 0 P Q R S T

x2+x+2 x2+2x x2+2x+1 x2+2x+2 2x2 2x2+1 2x2+2

U Vv W X Y Z
2x2+x 2x2+x+1 2x2+x+2 2x2+x 2x2+2x+1 2x2+2x+2
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4.2 THE MASSEY-OMURA CRYPTOSYSTEM(For Finite Fields)

We suppose that everyone has agreed upon a finite field F,, which is fixed and

publicly known. Each user of the system secretly selects a random integer e between
0 and g—1 such that gcd(e,q—1) =1 and, using the euclidean algorithm, computes its

inverse d = e_lmodq—l i.e., de=1(modg—1). If user 4 (Nikita) wants to send a

message P to Michael, first she sends him the element P°4. This means nothing to
Michael, who, not knowing d 4, con not recover P. But, without attempting to make
sense of it, he raises it to his eg, and sends P°4°B back to Nikita. The third step is for
Nikita to unravel the message part of the way by raising to the d 4 —th power , because

placa = P, this means that she returns P to Michael, who can read the message by

raising this to the dp —th power.(Koblitz, 1994)

The idea behind this system is rather simple, and it can be generalized to settings
where one is using other processes besides exponentiation in finite fields. However,
some words of caution are in order. First of all, notice that it is absolutely necessary to
use a good signature scheme along with the Massey-Omura system. Otherwise, any

person C who is not supposed to know the message P could pretend to be Michael,
returning to Nikita P°4°C; not knowing that an intruder was using his own e, she

would proceed to raise to the d 4 and make it possible for C to read the message. Thus,

the message P¢4°8 from Michael to Nikita must be accompained by some
authentification, i.e., some message in some signature scheme which only Michael

could have send.

In the second place, it is important that, after a user such as B or C has

deciphered various messages P, and so knows various pairs (P,P°4), he can not use

that information to determine e,. That is suppose Michael could solve the discrete log

problem in F; , thereby determinig from P and P4 what e, must be. In that case he

could quickly compute d4 = ezl modg—1 and then intercept and read all future

messages from Nikita, whether intended for him or not.
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4.2.1 Massey-Omura Protocol

Nikita Michael

—————\
1. Nikita selects a private number 1. Michael selects a private number
eq4,0<ey<p-2 ep,0<ep <p-2.
2. Nikita calculates 2. Michael calculates
d,=e; mod(p-1) dg =eg mod(p-1)
3. Nikita calculates
m®4 mod p. \
m®b
4. Michael calculates
/(meA )8 mod p.
n€ACB

5. Nikita selects a private number

(m€4€8 )% 4 = °B (mod p).

\>

6.Michael calculates

(m°B )dB mod p=m

Figure 4.1 Massey-Omura Cryptosystem Protocol
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Example4.2.1 Take the finite field F33 .Suppose that Alice chooses e, = 3. It is correct

since g.c.d(3,26) =1. Its arithmetic inverse d 4=9. Alice sends plaintext

13 »

go
to Bob as

(2x+1)3 (2 +2x) 3 )=(2x 2 +2, x 2 +2x+1)
since x> =x 2 +2. So ,Bob receives ciphertext

(t.p)
If the private key of Bob is eg =5 ,then dp =21 and Bob sends
(2x% +2)° , (x> +2x+1)°) = (x% +x+1, 2x +1) = (m, 2)
to Alice since

2

by Maple : (Rem (2x2 + 2)5 , O +2x% +1 ,X)mod3 gives x“ +x+1

and
By Maple : ( Rem (()c2 +2x+ 1)5 , X +2x% +1 ,X) mod3 gives 2x+1
Now , Alice sends
(> +x+1)7, 2x+1)°) = 2x2 +1, x* +x+2) = (s,n)
to Bob since

By Maple : ( Rem ((x2+x—i-1)9 ,x3+2x2+1,x) mod 3 gives 237 +1

By Maple : (Rem((Zerl)9 , O +2x% +1 ,X) mod 3 gives X rx+2.
Bob can obtain the original plaintext by calculating
@+, P+ x+1)2) = 2x+1), x2 +2x) = (g,0)
since
By Maple : ( Rem ((2x2 + 1)21 , O +2x% +1 ,X) mod3 gives 2x+1
and

By Maple : (Rem (()c2 +x+ 1)21 , X +2x% +1 ,X) mod3 gives X4

Example4.2.2 The Massey-Omura Cryptosystem Works as follows.
Setup

O p,alarge prime number, is chosen and made public.

0 Nikita chooses private integers e, and d 4 such that e.d 4 =1l(mod p—1).
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0 Michael chooses private integers ep and dpg such that egz.dp =1(mod p—1).

For Nikita to send a message m € {1,2...., p —1} to Michael:
0 Nikita computes ¢y = m°4 mod p and sends it to Michael.
0 Michael computes ¢; = ch mod p and sends it to Nikita.
0 Nikita computes ¢y = cld 4'mod p and sends it to Michael.

0 Michael computes c3 = c;_iB mod p.
Show that m = c3
Since ey.d 4 =1(mod p—1) and eg.dg =1(mod p—1), there are integers k, and kp
such that eyd 4 =k (p—-1)+1 and eg.dp =kp.(p—1)+1.
Now,clearly
¢y = meaesdads.

Note that

eqepdy ydp =k (p=D+1D.(kg.(p-1+1) =

k kg(p-1)2+(ky+kg)(p-1)+1 and

C3 = meA‘eB'dA'dB
_ pkaks (P +(k 1+kg)(p-1)+1
= (mp—l)kAkB(p—l)(mp—l)kA+kB ml

= (1)kaks(P=1) (ykaks(P=D 1 (By FL.L)

=m

4.3 THE ELGAMAL CRYPTOSYSTEM(For Finite fields).
We start by fixing a very large finite field £, and element g € Fq* (preferably, but

not necessary, a generator). We suppose that we are using plaintext message units with

numerical equivalents P in £, . Each user 4 randomly chooses an integer a = a4, say

in the range 0 <a <g—1. This integer a is the secret deciphering key. The public

enciphering key is the element g% Fy.
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To send a message P to the user 4, we choose an integer £ at random, and then send

4 the following pair of elements of F :

(g*.Pg™)
Notice that we can compute gak without knowing a, simply by raising g% to the

k —th power . Now A, who knows a, can recover P from this pair by raising the first

element gk to the a—th power and dividing the result into the second element. In
other words what we send A consists of a disguised form of the message— P is

k

“wearing a mask” g™ - along with a “clue” , namely gk , which can be used to take off

the mask .

4.3.1 The ElGamal Algorithm

Key Generation
O Select a large prime p and g, a primitive element mod p .
0 Recipient Michael has a secret number a and computes b = g%(mod p)
The EIGamal Encryption Algorithm
i) Sender (Nikita) a random number k£ ,0<k < p—1
ii) Computes the message key, K = b* (mod p)

iii) k and K are used to compute the ciphertext (cj,c,) for message m
¢ =g" (mod p)
¢y = Km(mod p)

iv) This then sent to recipient

The EIGamal Decryption Algorithm

To decrypt the message is deterministic and consists of two steps:

i) Extracts the message key K = ¢{' (mod p)

ii) K is used to unmask the plaintext message m

m= cQK_l(modp)
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Example4.3.1 Take the finite field F33 and g = x. Suppose that Bob chooses a =3.

Then
gt =P =2 —1=x%+2
is public key. Suppose that Alice chooses k =2 . Then ,Alice sends plaintext
“help”

to Bob as
(%, 2x+2)x%), (%, (x +2)x%), (2%, (2% + 2x +1)x%)
Since
X8 = (x)2 = (x2 —i—2)2 =xXx+4x> +4= (x2 +2)x+x2 +1
= +x2+2x+1

=x2+2+x2+2x+1

=2x2 +2x

(2x+2)(2x2+2x):4x3+8x2+4x:(x2+2)+2x2+x:x+2,
(x+2)2x% +2x) = 22> + 652 +4x = 2(x* +2) +x = 2x% + x +1,
(x2 +x)(2x2 +2x) = 23t +4x3 +2x2 =

2x(x% +2)+x% +2+2x2 =2(x? +2) +4x+2=2x7 + x,

(x2 +2x+1)(2x2 +2x) = 25t +6x3 +6x7 +2x=

2x(x? +2)+2x = 2(x> +2) +6x = 2x% +1.

Thus, Bob receives ciphertext as
“(LE), (LV), (1LU), (1,S)”

Since it is the correspondent of

(x2,x+2), (x22x7 +x+1), (x2,2x7 +2x), (x2,2x7 +1).

Example4.3.2 Suppose, p =97 with primitive root g =5

Recipient Michael chooses secret a = 58 computes and publishes his public key:

b =5%(mod97) = 44

Nikita wishes to send the message m =3 to Michael.
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She obtains Michael’s public key a = 58.
She chooses random &k =36 and computes stream key:
K =b*(mod p) = K = 44°°(m0d97) = 75
She then computes the ciphertext pair:
¢1 = g"(mod p) = ¢; = 5°®(mod97) = 50
¢y = Km(mod p) = ¢y =75.3(mod97) =31

and sends the ciphertext (50,31) to Michael. Michael recovers the message key

K = ¢f (mod p) = K =50°%(mod97) =75
Michael computes the inverse
K ' =22(mod97)

Michael recovers the message m

m=31.22(mod97) =3

4.4 THE DIFFIE-HELLMAN KEY EXCHANGE SYSTEM

Because public key cryptosystems are relatively slow compared to classical
crypyosystems, it is often more realistic to use them in a limited role in conjunction
with a classical cryptosystem in which the actual messages are transmitted. In
particular, the process of agreeing on a key for a classical cryptosystem can be
accomplished fairly efficiently using a public key system. The first detailed proposal for
doing this, due to W.Diffie and M.E.Hellman, was based on the discrete logarithm
problem.(Koblitz, 1994)

We suppose that the key fort he classical cryptosystem is a large randomly chosen
positive integer (or a collection of such integers).For example, suppose wewant to use

an afine matrix transformation of pairs of digraphs.

(¢ ([ Jmar
C= P+ mod N
c d f

where 0<a,b,c,d,e,f <N 2 and P is a column vector consisting of the numerical
equivalents of two successive plaintext digraphs in a N —/etter alphabet. Once we have

a randomly selected &

0<k< N2
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Wecantakea,b,c,d,e,f tobe the six digits in k written to the base N 2 .(We

must check that ad —bc is invertible modulo N2 , 1.e., that it has no common factor
with N ; otherwise we choose another random integer £ .)
We observe that choosing a random integer in some interval is equivalent to choosing a

random element of a large finite field of roughly the same size. Let us suppose, for
example, that we want to choose a random positive k£ < N 12 If our finite field is a
prime field of p elements, we simply let an element of F), correspond to an integer
from 0 to p—1 in the usual way; if the resulting integer is larger than N 12, we reduce

it modulo N 12.

We now describe the Diffie-Hellman method for generating a random element of a

large finite field F,. We suppose that ¢ is public knowledge; everyone knows what

finite field our key will be in. We also suppose that g is some fixed element of F,

which is also not kept secret. Ideally, g should be a generator of F; ; however, this is
not absolutely necessary. The method described below for generating a key will lead
only to elements of F, which are powers of g; thus, if we really want our random
element of F; to have a chance of being any element, g must be a generator.

Suppose that two users N (Nikita) and M (Michael) want to agree upon a key
which they will use to encrypt their subsequent messages to one another. Nikita chooses

a random integer a between 1 and g—1, which she keeps secret, and computes

gle F, , which she makes public. Michael does the same: He chooses a random & and

makes public gb . The secret key they use is then g“b. Both users compute this key.

For example, Nikita knows gb and her own secret a.

4.4.1 Diffie-Hellman Setup

All users agree on global parameters:
0 Large prime integer or polynomial g
O « aprimitive root mod q

Each user generates their key
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0 Chooses a secret key (number): xy <g

o Compute their public key: yy =a™N mod ¢

Each user makes public that key yy

4.4.2 Diffie - Hellman Key Exchange

Shared session key forusers N and M is Ky :
KNM = OCXN.XM mod q
= yf\,M mod g (which M can compute)

=y NV mod ¢ (which N can compute)
Ky 1s used as session key in private-key encryption scheme between Nikita and

Micheal. If Nikita and Micheal subsequently communicate, they will have the same key
as before, unless they choose new public-keys attacker needs an x, must solve discrete
log.

Example4.4.1

Users Nikita and Micheal who wish to swap keys:

Agree on prime ¢ =353 and o =3

Select random secret keys:

0 N chooses xy =97 , M chooses x;; =233

Compute public keys:
0 yy=3"mod353=40  (Nikita)
0 yy =3%3mod353=248 (Micheal)
Compute shared session key as:
Knar = vy ™y mod 353=248"7 =160 (Nikita)

Ky = yv™ mod 353=40233 =160  (Michael)

Example4.4.2 Suppose that Alice and Bob agree to communicate using affine
enciphering transformation

C=AP+B mod N.



34

The message units are single letters in the 29- letter alphabet with A-Z corresponding to
0-25, blank=26, =27, 7=28. Regard the key (A,B) as an element of
A+ Bx in F292 \{0}

Here we can take

x2+x+1

as irreducible polynomial of degree 2 in Zyg[x] and g = x. Let Alice chooses a =128.

Then
g1?% = x128 —28x 128
(By Maple : (Rem (xlzg,x2 +x+1,x) mod29 gives 28x+28)
is made public by Bob.
a) The enciphering key

g% = (x128)220 = (28x +28)?%0 = 28x + 28
b) The ciphertext of Alice corresponding to
"are you in danger?"

1S

?yceoicupcz?pwyla
since
(28.0+28,28.17+28,28.4+28,28.26+28,28.24+28,28.14+28,
28.20+28,28.26+28,28.8+28,28.13+28,28.26+28,28.3+28,
28.0+28,28.13+28,28.6+28,28.4+28,28.17+28,28.28+28)
is equal to

(28,11,24,2,4,14,8,2,20,15,2,25,28,15,22,24,11,0) modulo 29.

Example4.4.3 Suppose p =347 and g =11(g =11 generates Z§47)

Nikita randomly selects xp =240 computes yy =1 1240 (mod347) =49 and sends

Yy =49 to Michael.

Michael randomly selects x;, =39 computes y,, :1139(mod347) =285 and sends

vy =285 to Nikita. Nikita computes yjf/}\’ = 285240 (mod347) =268

Michael computes y;f]M = 4939(mod347) =268



CHAPTER 5

QUADRATIC RESIDUES AND LEGENDRE SYMBOL

5.1 QUADRATIC RESIDUES

Proposition5.1.1(Koblitz, 1994) Let g be a generator of Fq* . Then g’ is an n-th root of
unity if and only if nj=0modg—1 . The number of n-th roots of unity is
gcd(n,g—1). In particular, F, has a primitive n-th root of unity if and only if
n | g—1.If & is a primitive n-th root of unity in F,, then &7 is also a primitive n-th

root if and only if g.c.d(j,n)=1.

Proof. Any element of Fq* can be written as a power gj of the generator g. A power of

gis 1 if and if only the power is divisible by ¢ —1. Thus, an element g/ is an n-th root

of unity if and only if »nj=0modg—1. Next, let d = g.c.d(n,q—1). The equation
nj =0modg —1 is equivalent to the equation g j= Omod(q7_1) . Since n/d is prime to

g —1/d , the latter congruence is equivalent to requiring j to be a multiple of ¢ —1/d . In

other words the d distinct powers of gq_l/ 4 are precisely the n-th roots of unity. There

are n such roots if and only if d=n, ie., n | g-1. Finally, if n divides ¢—1, let
&= g(q_l)/ " Then &’ equals 1 if and only if 7| j . The k-th power of &/ equals 1 if and

only if ki =0modn. It is easy to see that &/ has order n. if and only ifj is prime to n.
Thus there are ¢(n) different primitive n-th roots of unity if » | g-1 . This completes

the proof.

Corollary5.1.1(Koblitz, 1994) If g.c.d(n,q—1) =1, then 1 is the only n-th root of unity.

Corollarys.1.2 The element —1 € F, has a square root in £, if and only if ¢ =1mod4.

35
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Definition5.1.1Burton, 2002) Let p be an odd prime and g.c.d(a, p) =1. If the quadratic

congruence x* =amod p has a solution, then a is said to be a quadratic residue of p.

Otherwise a is called a quadratic nonresidue of p.

Example5.1.1 Consider the case of the prime p =13. To find out how many of the
integers 1,2,3,....,12 are quadratic residues of 13, we must know which of the
congruences

x? = a(mod13)
are solvable when a runs through the set {1,2,3,....,12}. Modulo 13, the squares of the

integers 1,2,3,....,12 are

12=12%=1
22=11>=4
32=10%>=9
42=9%=3
52=82=12
62=7=10

Consequently, the quadratic residues of 13 are 1,3,4,9,10,12, and 2,5,6,7,8,11 are
quadratic nonresidues.

Theoremb5.1.1(Euler’s Criterion)(Burton, 2002) Let p be an odd prime and
g.cd(a,p)=1.Then a is a quadratic residue of p if and only if

a'?™ D2 = 1(mod p).

Corollary5.1.3(Burton, 2002) Let p be an odd prime and g.c.d(a,p)=1.Then a is a

quadratic residue or nonresidue of p according to whether

aP~/2 = I(mod p) or a'Ph2 = —1(mod p)

Example5.1.2 In the case where p =13, we find that

23-D/2 226 — 64 =12 = —I(mod13)

Thus by the Corollary(5.1.3), the integer 2 is a quadratic nonresidue of 13.
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Theorem5.1.2 The number of quadratic residues is equal to the number of quadratic

nonresidues.

5.2 LEGENDRE SYMBOL

Let a be an integer and p>2 a prime. We define the Legendre symbol (i) equals to
p

0,1 or -1, as follows :

0, ifpla

(%)= 1, if a is aquadratic residue mod p ;

-1, if a is a quadratic nonresidue mod p .
Thus, the Legendre symbol is simply a way of identifying whether or not an integer is a
quadratic residue modulo p.(Koblitz, 1994)
Proposition5.2.1

(%)E a?™2 mod p

Proof. If a is divisible by p, then both sides are= 0mod p. Suppose pta . By Fermat’s

Little Theorem , in F, the square of a?D2 is 1,50 a?7V/? jtselfis +1. Letg bea
generator of F ", and let a = g’ . As we saw a is a residue if and only if j is even. And

alP™V/2 = gJ(P7D/2 g | ifand only if j(p—1) is divisible by p—1, i.e., if and only if
j 1is even. Thus, both sides of the congruence in the proposition are +1 in F,, and each

side is +1 if and only ifj is even.
5.2.1 Properties of Legendre Symbol.

Theorem5.2.1
i) If a=b(mod p), then (a/ p) = (b/ p)
ii) (a*/p) =1
iii) (a/ p) = a» ™V (mod p)

iv) (ab/ p) = (a/ p)(b/ p)
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v) (1/p)=1 and (=1/p)=(-D"""?
vi) (ab*/p) = (a/ p)®*/p) = (a] ).
Example5.2.1 Let us ascertain whether the congruence x? = —46(mod17) is solvable.

This can be done by evaluating the Legendre symbol (—47/17). We first appeal to
properties (iv) and (v) of Theorem(5.2.1) to write

(—46/17) = (- 1/17)(46/17) = (46/17)
Because 46 =12(mod17) it follows that
(46/17) = (12/17)
Now property (vi) gives
(12/17) = (3.2%/17) = (3/17)
But

(3/17)=307D12 =38 = (81)% = (—4)> = —1(mod17)
where we have made appropriate use of property (iii) of theorem(5.2.1) ; hence
(3/17) =—1. Inasmuch as (-46/17)=—1 the quadratic congruence x> = —46(mod17)

admits no solution.



CHAPTER 6

ELLIPTIC CURVES

6.1 GENERAL INFORMATION

Elliptic curves have been extensively studied for over a hundred years, and there is
a vast literature on the topic. Orginally pursued mainly for aesthetic reasons, elliptic
curves have been recently become a tool in several important applied areas, including
coding theory, pseudorandom bit generation; and number theory algorithms

( Goldwasser and Kilian for primalitiy proving and Lenstra for integer factorization).

Over the last two or three decades,elliptic curves have been playing an
increasingly important role both in number theory and in related fields such as
Cryptography.For example in 1980’s elliptic curves started being used in Cryptography
and elliptic curve techniques were developed for factorization and primality testing.lt

became famous after the proof of Fermat’s Last Theorem.(By Wiles)

In 1985, Koblitz and Miller independently proposed using the group of points on
an elliptic curve defined over a finite field in discrete log cryptosystems.The primary
advantage that elliptic curve systems have over systems based on the multiplicative
group of a finite field(and also over systems based on the intractability of integer
factorization) is the absence of a subexponential-time algorithm that could find discrete
logs in these groups. Consequently, one can use an elliptic curve group that is smaller in
size while maintaining the same level of security.The result is smaller key sizes,
bandwidth savings, and faster implementations, features which are especially attractive
foe security applicaitons where computational power and integrated circuit space is

limited, such as smart cards, PC(personal computer) cards, and wireless devices.

39
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Elliptic curves also appear in the so-called elliptic curve analogues of the RSA
cryptosystem, as first proposed by Koyama. In these systems, one works in an elliptic

curve defined over the ring Z,, and the order of the elliptic curve group serves as the

trapdoor. The security of these schemes is based on the difficulty of factoring n . They
are called elliptic because these equations first arose in the calculation of the arc lenght
of ellipses.

Definition6.1.1(Koblitz, 1994) Let K be a field of characteristic = 2,3, and let

X +ax+b (where a,b € K') be a cubic polynomial with no multiple roots. An elliptic

curve over K is the set of points (x,y) with x, y € K which satisfy the equation

y2=x3+ax+b (1)

Together with a single element denoted co and called the “ point at infinity”

If K is a field of characteristic 2, then an elliptic curve over K is the set of points

satisfying an equation of the type either

y2+cy:x3+ax+b 2)

or else

Stax’+b (3)

y2 +xy=x
( here we do not care whether or not the cubic on the right has multiple roots) together

with a “point at infinity” .

If K is a field of characteristic 3, then an elliptic curve over K is the set of points
satisfying the equation

y2 =x>+ax* +bx+c 4)

Definition6.1.2(Koblitz, 1994) Let E be an elliptic curve over the real numbers and let
P and Q be two points on E. We define the negative of P and the sum P +Q

according to the following rules:

1) If P is the point at infinity oo, then we define —P to be co and P +Q to be Q ; that
is, o serves as the additive identity of the group of points. In what follows, we shall

suppose that neither P nor Q is the point at infinity.
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2) The negative —P 1is the point with the same x-coordinate but negative the y-

coordinate of P, i.e., —(x,y)=(x,—y). It is obvious from (1) that (x,—y) is on the
curve whenever (x,y) is.

3) If Pand Q have different x-coordinates, then it is not hard to see that the line
I = PQ intersects the curve in exactly one more point R (unless that line is tangent to
the curve at P,in which case we take R =P, or at O , in which case we take R =Q).
Then define P+Q to be —R, i.e., the mirror image ( with respect to the x-axis) of the

third point of intersection.

4)If Q=—-P (i.e., O has the same x-coordinate but minus the y-coordinate), then we
define P+ Q = o (the point at infinity).

5) The final possibility is P = Q. Then let / be the tangent line to the curve at P, let R
be the only other point of intersection of / with the curve , and define P+Q =—-R.

Example6.1.1

Figure 6.1 The elliptic curve y? =x(x?-1)
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6.1.1 Adding Points P and Q — Geometric Approach.

o0
Q
AV

Q=2 y) -r - (x3, -v3)

v

(X],yI)ZP - .
1 R = (x3’J’3)

Figure 6.2 Chord-and-tangentrule P+ Q =R, P+ Q

To get the sum of two points on the curve follow the steps given below:

i) Draw a line that intersects distinct points P and Q
B The line will intersect a third point —R
ii) Draw a vertical line through point —R
B The line will intersect a fourth point R
iii) Point R is defined as the summation of points P and Q

B R=P+Q



6.1.2 Adding Points P and (-P ) — Geometric Approach.

Figure 6.3 Sum of the points P and (-P)

To get the sum of the points P and (-P) follow the steps given below:

i) Draw a line that intersects points P and —P

B The line will not intersect a third point

ii) For this reason, elliptic curves include 9C, a point at infinity

B P+(-P)=

B OC is the additive identity

43
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6.1.3 Doubling the Point P — Geometric Approach

-R = (x3, -y3)

.
o*
R

§ R = (x3,3)

Figure 6.4 Point doubling P+P=2P=R

i) Draw a line tangent to point P

B The line will intersect a second point -R

ii) Draw a vertical line through point —R

B The line will intersect a third point R

iii) Point R is defined as the summation of point P with itself

B R=2P
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6.2 THE GROUP STRUCTURE OF ELLIPTIC CURVES
Let K be a field and let
Ez{(x,y)erK:y2 :x3+ax+b}u{oo}

where oo is an articial point added to the set of graph of equation which will play the

role of zero element of the group.(Kendirli, 2006) The operation is defined as follows:

Casel. Pand Qe E,P#(Q, P#ow, Q=#owo then

1) If x; # x,, the line through P =(x;,);) and Q =(x,,y,) intersects the curve at a

point R' = (x3,y3) since

—((—y2 _yl)(x—x1)+y1)+x3 +ax+b=0

Xy =X

has three roots, i.e.,

X +Xy+ X3 :(_y2 _yl)z
Xy =X
thus
— V1,2
xy = (2270 y -
Xy =X
y3= (2224 )05 —x1)+
Xy =X
Define
P+O=R,

where R = (x3,—y3) is the reflection of R’ across the x-axis.

2) x; =xy = y, =—y;. The line through P =(x,y) and QO =(x;,—y) is a vertical

line which intersects the curve at «, i.e.,

P+Q0=x
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Case 2. P=0Q =(x,y;) then the slope of the tangent line at P can be calculated by

implicit differentiation

3x12 +a
2y

20 =32 +a=>m=

1) If y; =0, then the line is vertical and intersects the curve at «, i.e.,
P+P=w

2) If y; #0, then

3

—(m(x—x1)+y1)2 +x +ax+b=0

has a double root at x; since the derivative of equation

—2(m(x—x1)+y1)m+3x2 +a=0

has also x; as its root. Thus,
_ 2 _ 2
X+x +x3=m" = x3=m"-2x

y3=m(x3—x)+y

Consequently ,

P+ P =(m*=2x;,—~(m(x; —x) + 1))

Case 3. Q0 = then
1) If P=(x,y,)# o, the line through P and Q is a vertical line which intersects the

curve at

P'= (xla_yl)

Whose reflection across the x-axis is P itself. Thus, P+o =P .
2)If P =oo then we define

00+ 00 = 00
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Example6.2.1 y2 =x>—4 isan elliptic curve over Q. If P=(2,2) and Q= (5,-11),

then
-11-2» 106
= -2-5=—+
x3 = ( s 5 ) 5
-13 106 -1090
=—(—-D+2=—"1
¥3= 3 (9 ) Y
Hence
106 1090
P+0=(—,—
0 (9 57 )

Theorem6.2.1 An elliptic curve is an Abelian group under the operation defined with
the identity element 0.

Note.(Point at infinity)(Koblitz, 1994) We have not yet said much about the “point at
infinity” 00. By definition, it is the identity of the group law. It is the “third point of
intersection” of any vertical line with the curve; that is, such a line has points of
intersection of the form (xj,),(x;,—y;) and 0. A more natural way to introduce the
point 2O is as follows.

By the projective plane we mean the set of equivalance classes of triples (x,y,z)
(not all component zero) where two triples are said to be equivalent if they are a scalar
multiple of one another, ie., (AX,AY,41Z)~(X,Y,Z). Such an equivalence class is
called a projectice point.

If a projective point has nonzero Z, then there is one and only one triple in its
equivalence class of the form (x,y,1): simply set x=X/Z, y=Y/Z. Thus the
projectice plane can be identified with all points (x,y) of the ordinary plane plus the
points for which Z =0. The latter points make up what is called the line at infinity
roughly speaking, it can be visualized as the “horizon” on the plane. Any equation
F(x,y)=0 of a curve in the afine plane corresponds to an equation F(X,Y,Z)=0
satisfied by the  corresponding  projective  points:  simply  replace
x by X/Z and y by Y/Z and multiply by a power of Z to clear denominators. For

example, if we apply this procedure to the afine equation (1) of an elliptic curve,
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obtain its “projective equation” Y 27 = Xx3+aXz?+bZ>. This latter equation 1is
satisfied by all projective points (X,Y,Z) with Z# 0 for which the corresponding
afine points (x,y), where x=X/Z,y=Y/Z, satisfy (1). In addition, what projective
points (X,Y,Z) on the line at infinity satisfy the equation F=0? Setting Z =0 in the
equation leads to 0=X 3, i.e., X =0. But the only equivalence class of triples
(X,Y,Z) with both X and Z zero is the class of (0,1,0). This is the point we call 0. It

is the point on the intersection of the y —axis with the line at infinity.

Definition6.2.1 The value A =4a>+27bh> is called the discriminant of the elliptic
curve.
Corollary6.2.1 46 +27p% 20 < x> +ax+b =0 has three distinct roots.

After these now an elliptic curve can be expressed in the form below:
{(x,y) e FxF: y2 =X +ax+b:4a> +27b% = O}U{oo}

3 and y2 =x2(x+1)

Example6.2.2 The curves defined by y2 =X
are not elliptic curves. Why.?

Because the polynomials on the right hand side have a multiple root. So from the
perivous corollary, if the curve has multiple root then the discriminant is equal to 0, then

the equation can not define an elliptic curve.



CHAPTER 7

ELLIPTIC CURVES OVER AFINITE FIELD

7.1 ELLIPTIC CURVES OVER A FINITE FIELD
Let F be a finite field and let £ be an elliptic curve defined over F . Since there are
only finitely many pairs (x, y) with x,y € F, the group E(F) is cyclic.

34 x+1 over F5. To count points on E, we

Example7.1.1 Let E be the curve y2 =X
make a list of the possible values of x, then of Sx+l (mod5), then of the square

roots y of Ox+l (mod5). This yields the points on E .

Table 7.1 Points of curve over Fj

x> +x+1 y  points
+1 (0,1),(0,4)

1

3 - —

1 +1 (2,1),2,4)
1 +1 3,1),3,4)
4 2 4,2),4,3)

o0 o0

8 & W N — O

Therefore, E(F5) has order 9, i.e.,

E(F5) = {(0,1),(0,4),(2,1),(2,4),(3,1),(3,4),(4,2),(4,3)} U {oo}

We now show that this ia cyclic group. Take a random point as P =(0,1). Let’s
calculate 2P . Before, recall that;
P+0=((2=2 —x—xy . (2= —x3) - p)

X2~ X X2 =X

49
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P+P:((3x21 +a)2_2x1 ’ 3x{ +a

N N

(x1—x3)= 1)

P=(0,)) P+P=(0,)+(0,)=2

2 2
302415 0 300+

P+P=
(« 2.1 2.1

)(0=x3)=1)

LA
=70, 50-2-D

_ L9
_( ’ 8) (452)

Now let’s calculate 3P;

3P=P+2P=(0,1)+(4,2)

22 oa 20—
= (=) 04, = )O-x3)-D)

1 1,1
= (——4, ~(——+4)-1
TR TR

631
_(16’ 64)

= (2.0

Similarly, if you do the calculations you will get ;
4P=2P+2P=(3,)
SP=3P+2P=(2,4)
6P =3P+3P=(43)
7P =P+6P=(0,4)
8P=P+7P=(34)
O9P=P+8P =

50
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So order of (0,1) is equal to 9. All 8 non-zero elements with o0 form a cyclic group.
(0,1) is a generator of this group.

3

Table 7.2 Nonzero elements of the group over y2 =x" +x+1mod5

P=(0,) 5P =(2,4)

2P=(42) | 6P=(423)

3P=(2) | 7P=(0,4)

4P=3,) |8P=(34)

Theorem7.1.1 Let E be an elliptic curve over a field K and let n be a positive integer.

If the characteristic of K does not divide n, or is 0, then
Elnl=72,®Z7Z,
If the characteristic of K is p >0 and p | n,write n= p’'n’ with ptn’. Then

Elnl=72,®2, or Z,DZ,

Theorem?7.1.2(Washington, 2003) Let E be an elliptic curve over the finite field F, .
Then

E(Fy) =2, or Zy, ®Zy,

for some integer n >1 , for some integers ny,n, =1 with n; dividing », .

Proof. A basic result in number theory says that a finite Abelian group is isomorphic to

a direct sum of cyclic groups

2, ®Z, ©.....0Z

With #; | niyp for i>1. Since, for each i, the group Z, has n; elements of order
dividing n;, we find that E(F,) has n{ elements of order dividing n;. By

Theorem(7.1.2), there are at most n12 such points (even if we allow coordinates in the

algebraic closure of £, ). Therefore » < 2. This is the desired result.
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7.1.1 Group Law of Elliptic Curves Over Finite Fields

Consider the set E(F),) over addition. We can see that;

i) VP,Qe€ E(Fp), if Re E(Fp) (Closure Property)

it) VP,O,R € E(F),) then P+(Q+R)=(P+0)+R (4ssociative Property)

iii) 30 € E(F),) such that VP € E(F))) , P+ =+ P = P (Identity element)

v) VP € E(Fp),3(=P) € E(F}) st P+(—P) = (—P) = o (Inverse element)

v) VP,Q € E(F},), P+Q = Q+P (Commutative Property)
Thus we see that E(F),) forms an Abelian group under addition.
Theorem?7.1.3(Hasse)(Washington, 2003) Let E be an elliptic curve over the finite

field £}, . Then the order of E(F7) satisfies

| g+1-#E(F,) | <2{q
7.2 FINDING THE TYPE OF THE GROUP

Example7.2.1 Let’s find the type of the group when
y2 =x>+5x+7
over Z7.
First, determine whether the discriminant is different from 0 or not. Recall that;
A = 4a° +27b?
A=4xa®+27b% = 4x 55 +27x7% = 3(mod 7)
Now we can use Hasse Theorem in order to estimate the number of elements in £(Z7).
| 7+1-#E(Z7) | <247 ~5.2915
| 8—#E(Z7) | <5 =3<#E(Fy)<13
On the other hand,
(0,0) € E(Z7) since 0 +5x0+7 = 0(mod 7). By Maple, we can obtain all multiples of

(0,0) in the following way.
> multsell([0,0],2,5,7,7);
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[[1,[0,0],[2,[" infinity” , “infinity”9]]
Now,

(2,2) e E(F7)

since 23 +2x5+7 = 4(mod7) . By Maple
> multsell([2,2],4,5,7,7);
[11,[2,2],[2,[4,01,[3,[2,5],[4,[“infinity” , “infinity]].

Another point
(3,0) € E(Z7)

since 03 +5x0+7 = 0(mod7) . By Maple
>multsell([3,0],4,5,7,7);
[[1,[3,0],[2,[“infinity” , “infinity”]],
[[3,[3,0],[4,[“infinity” , “infinity”]]

Another point
(4.0)€ E(Z7)

since 4° +5x4+7 = 0(mod 7). By Maple
> multsell([4,0],2,5,7,7);
[[1,[4,0],[2,[“infinity” , “infinity”]]

(6,))e E(Z7)

since 6> +5x6+7 = I(mod7). By Maple
> multsell([6,1],4,5,7,7);
[[1,[6,1],[2,[4,0],[3,[6,6],[4,] “infinity” , “infinity”]]

We have found 8 different elements so the order of group is 8. But non of these
elements is the generator of the whole group so this group is not cyclic. Moreover, there
is an element of order 4. Therefore,

E(Z7)=Zy*Z4
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Example7.2.2 Find the type of the group when y2 =x>+5x+7 over Z13

40> +27b% = A =4x5> +27x7% = 3(mod13)
Now we can use Hasse Theorem in order to estimate the number of elements in

E(Zy3).

| 13+1-#E(Z3) | <2413 = 72111
| 13+1-#E(Zy3) | <7
7 <#E(Z3) <21

When x =0 then y does not exist. You can see this procedure in Maple as below:
>legendre (7,13);
-1
x=1then y=0
(1,0) € E(Zy3)

since 1° +5x1+7 = 0(mod13)

Using Maple to determine the order of the point,
> multsell([1,0],21,5,7,13);

[[1, [1, O]], [2, ["infinity", "infinity"]], [3, [1, O]],

[4, ["infinity", "infinity"]], [5, [1, 0]], [6, ["infinity", "infinity"]],

[7, [1, 0]], [8, ["infinity", "infinity"]], [9, [, 0]],

10, ["infinity", "infinity"]], [11, [1, O]],

12, ["infinity", "infinity"]], [13, [1, O]],
"11, [15, [1, 0]],

16, ["infinity", "infinity"]], [17, [1, O],

18, ["infinity", "infinity"]], [19, [1, O]],

20, ["infinity", "infinity"]], [21, [1, 0]]]

'

[
[
[14, ["infinity", "infinity
[
[
[

When x=2 then y=5
(2,5 € E(Zy3) since 2*+5x2+7=12(mod13)
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> multsell([2,5],21,5,7,13);

[[1, [2, 510, [2, [5, 12]], [3, [10, 11]], [4, [4, 011, [5, [10, 2]],

[6, [5, 111, [7, [2, 8]], [8, ["infinity", "infinity"]], [9, [2, 5]],

[10, [5, 12]], [11, [10, 11]], [12, [4, 0]], [13, [10, 2]], [14, [5, 1]],
[15, [2, 8]], [16, ["infinity", "infinity"]], [17, [2, 511, [18, [5, 12]],
[19, [10, 11]], [20, [4, O]], [21, [10, 2]]]

Here we have found at least 9 different elements so the order of (2,5)
which is 8 must divide the order of the group.But by Hasse theorem we know
that the order of group is at most 21.So the order of the group is must be 16.
Therefore,

E(Z)3)=2Z,y*7Zg

But here there is a critical point to investigate , what is it.? The question is this ,
why especially, £(Z;3) isomorphic to Z, *Zg . Why not E(Z;3) isomorphic to Z;4 or
Zy*Zy or Zy*Zy*Zy*Z, . They also have 16 elements as Z, * Zg. The answer for

this question can be this ;

We have an element having the order 8, soin Zy*Z, andin Zy*Zy*Zy*Z,
there is no an element of order 8 , by the way we can immediately omit them. Only Z4
is left. Z;¢ has an element of order 8 and also an element of order 2, but here the group

which is generated by the point (1,0) is not contained by the group which is generated
by the point (2,5). Thus
E(Zy3) =2, %23



CHAPTER 8

ELLIPTIC CURVE CRYPTOSYSTEMS OVER
A FINITE FIELD

8.1 THE BASIC SETUP

Nikita wants to send a message, often called the plaintext, to Michael. In order to
keep the eavesdropper Eve from reading the message, she encrypts it to obtain the
ciphertext. When Michael receives the ciphertext, he decrypts it and reads the message.
In order to encrypt the message. Nikita uses an encryption key. Michael uses a
decryption key to ecrypt the ciphertext. Clearly, the decryption key must be kept secret

from Eve.

There are two basic types of encryption. In symmetric encryption, the encryption
key and decryption key are the same, or one can be easily deduced from the other.
Gogular symmetric encryption methods include the Data Encryption Standard (DES)
and the Advanced Encryption Standard (AES, often referred to by its original name
Rijndeal). In this case, Nikita and Michael need to have some way of establishing a key.
For example. Michael could send a messenger to Nikita several days in advance. Then,
when it is time to send the message, they both will have the key. Clearly is impractical

in many situations.

The other type of encryption is public key encryption, or asymmetric encryption.
In this case, Nikita and Michael do not need to have prior contact. Michael publishes a
public encryption key, which Nikita uses. He also has a private decryption key that
allows him to decrypt ciphertexts. Since everyone knows the encryption key, it should
be infeasible to deduce the decryption key from the encryption key. The most famous
public key system is known as RSA and is based on the difficulty of factoring integers
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into primes. Another wellknown system is due to EIGamal and is based on the difficulty

of the discrete logarithm problem.

Generally, public key systems are slower than good symmetric systems.
Therefore, it is common to use a public key system to establish a key that is then used in
a symmetric system. The improvement in speed is important when massive amounts of

data are being transmitted.

8.1.1 Representation of a message in an elliptic curve

y2 =X+ Ax+B

over a finite field Fp,, . Again, if we use an N-/etter alphabet with k —blocks such that

n_
Nk<p !
100

then a k£ —block is represented as an integer
l_) = bk_lNk_l + bk_sz_z +...+ b]N + bo
in Z,x ={0.1.2,... N* =1} . Let

x;=P.100+ for 0< j <100

Let Z = x=j(mod p") and

x;=by ; +b1,j.p+b2,j.p2 +...+bn_1,j.pn_1
So let
xj=by jag+b ja+by joy+..+b, .0,
where
{ag.a1,a0,....0,_1}

Is a fixed vector space basis of Fp” over F\,=Z,.For j=0,12,..,99 compute

_ .3
tj—Xj+AXj+B

in Fp,, .Ifwefinda yg in Fp” such that

2
Yo =1

We take P = (xg,yq). If not we look at y; for s ,1e.,
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2
Y1 =51

It is easy to see that there is only about a +00 probability that this method will fail to
2

produce a point P whose x-—coordinate corresponds to an integer between

m.100+m.100+99.
8.2 THE MASSEY-OMURA CRYPTOSYSTEM(For Elliptic Curves)

Nikita wants to sends a message to Michael over public channels. They have not
yet established a private key. One way to do this is the following. Nikita puts her
message in a box and puts her lock on it. She sends the box to Michael. Michael puts his
lock on it and sends it back to Nikita. Nikita then takes her lock off and sends the box
back to Michael. Michael then removes his lock, opens the box, and reads the message.

This procedure can be implemented mathematically as follows.

1. Nikita and Michael agree on an elliptic curve £ over a finite field F,
such that the discrete log problem is hard in E(F,).Let N =#E(F).
2. Nikita represents her message as a point M € E(F,). (We'll discuss how to do

this below)

3. Nikita chooses a secret integer m 4 with gcd(m,, N) =1, computes
My =m M,

and sends M to Michael.

4. Michael chooses a secret integer mp with ged(mpg,N) =1, computes
My =mpM,,

and sends M, to Nikita.

5. Nikita computes m}ll € Z . She computes
M3 =my'M,

and sends M5 to Michael.

6.Michael computes m[;l € Zy . He computes
My =mg Ms.

Then M4 =M 1is the message.
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Let's show that M4 is the original message M . Formally, we have

My = ml}lm;ilmBmAM =M,
but we need to justify the fact that mgl , which is an integer representing the inverse of
my mod N, and m, cancel each other. We have m;llmA =1(mod N), so
m;llm 4 =1+kN for some k. The group E(F,) has order N, so Lagrange's theorem

implies that N R =co for any R € E(F,). Therefore,

mgmR=(1+kN)R=Rko=R.

Applying this to R =mpgM , we find that
Ms = m;llmBmAM =mgM .
Similarly, ml_;l and mp cancel, so
My=mgMy=mgmgM =M .

The eavesdropper Eve knows E(F,) and the points m M ,mpm, M , and

mpM . Let a= m}ll b= ml_gl ,P=mmpM . Then we see that Eve knows P,bP,aP
and wants to find abP. This is the Diffie-Hellman problem.

The above procedure works in any finite group. It seems that the method is rarely
used in practice.

It remains to show to represent a message as a point on an elliptic curve. We use a
method proposed by Koblitz. Suppose E is an elliptic curve given by

y2 = x>+ Ax+ Bover F - The case of an arbitrary finite field /7, is similar. Let m be

a message, expressed as a number 0 <m < p/100. Let x; =100, + j for 0 < j <100.

For ;j=0,2,...99, compute s; = xi- + ij +B.If s§.p_1)/2

j =1(mod p), then s is

a squre mod p, in which case we do not need to try any more values of j. When

p=3(mod4), a squre root of s; is then given by y; = s§p+1)/4 (mod p). When

p=1(mod4), a square root of s; can also be computed, but the procedure is more

complicated (see [19]). We obtain a point (x;,y;) on E. To recover m from (x;,y;),

simply compute [x; /100] (= the greatest integer less than or equal to x ;/1g) . Since
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s j is essentially a random element of F ;,‘ , which is cyclic of even order, the probability

is approximately 1/2 that s ; is a square. So the probability of not being able to find a

point for m after trying 100 values is around 27100,

Example8.2.1 Consider the elliptic curve £ defined by

y2 =x>+x+1

over finite field F'. We prepare the table below



we prepare the following table

~.

O 0 39 N N B~ W N =

N N N N N N N /= o e e e e ek e e
A L A WD = O OV 0NN W N = O

bi

a+2
o*+atl
o*+1

o+1

a+2

2a
207+
a*+2a+1
202+2a+1
202120
207+a+1
o2

2

2a+1
2072042
20242
20+2
20°+1

a

a*+2a
20+0+2
o*+at2
o*+a
o*+20+2
202

1
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NN = O

I+a
ot2

20
20+1
20+2

o2

o*+1
0242
o*ta
o*+atl
o*+o+2
o?+2a
o*+20+1
o*+20+2
20°
202+1
20242
20%+a
202+0+1
20%+0+2
207120
207+20+1

20242042

y:i\/x3+x+1

+1

0

None
None
+(202+0+1)
+(0+2)
None
None
+(a2+2)
+(20%+a)
+(o*+1)
None

+o

None
None
None
None
None
+(o*+o+1)
None
None
+(207+20a)
+(02)
H(ot1)

(o> +2a+1)

+(20*+20+1,2024+20+1)

None
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(x,»)

(0,1),(0,2)

(1,0

none

none
(1+a,20*+0+1),(1+a,0*+20+2)
(a+2,0+2),(a+2,20+1)

none

none
Qat2,02+2),2a+2,20%+1)
(02,20%+a),(0?,02+20)
(02+1,02+1),(a>+1,20%+2)
none

(a>+a,a),(o*+a,0)

none

none

none

none

none
(2o?,02+0+1),(20%,20%+20+2)
none

none
(2o*+a,202+2a),(202+0,0%+0)
(2o*+o+1,02),(20*+a+1,20%)
Qo*+o+2,0+1),20*+a+2,0+1)
2o*2a,02+20+1),(202+20,202+0+2)
(20*+20+1,0*+0a+2)

none
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since
b3 =2
2 doesn’t have a square root, since
(a+2)*+(0+2)+1=0*+0o+1=b?
its square rootis b=a +2,...

Now, the number of elements in E (F33 ) is N =28. Suppose that Alice chooses e4 =5

it is correct since ged(28,5) =1. Its arithmetic inverse d 4 =17 .Alice sends plaintext

(13 2

go
to Bob as
5(2 + 2a), (@ +2)),5(2 + a +2a?), (a +1)
A+ a2a? +1), (@® +2a +12a +2)
since

g — 6> xp =600 =6(mod27) —> xg = 6 =0.1+2.3 > xo = 2a —

so=(a)’ +2a+1=2a% +2a+2=b"

which doesn’t have a square root. So,

X =601=7(mod27) > x =7=1.1+23>x =1+ 2a

si=(1+2a)° +(1+2a)+1=2a> +2a +1=b’

which doesn’t have a square root. Next,

Xy =602 =8(mod27) — x, =8=2.1+23 > x, =2+ 2a

sy=Q2+2a)P +2+2a)+1=2a> +2a=b"" = y, =p> =a? + 2.
Thus, “g” will be represented by
2+ 2a,a” +2)
on the elliptic curve E. Now let's look at “o” :
0 —> 14— xy =1400 = 23(mod27) —> xp =23=2.1+13+23%> >
x0:2+a+2a2.—>s0:x8 + X +1=a® +2a+1=5 = ) =b*=a +1.

Thus “0” will be represented by

2+a+2a2,a+1.
(
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So, “go” is represented by
Q2+ 2a,a”+2), 2Qa’ +a +2,a +1).
Now, Alice will compute
52 +2a,a” +2),52a% +a + 2,a +1).
5Q2+2a,a” +2)=50",p°):

Q+2a,a” +2) + 2+2a,a> +2)

Since
S CL3 3 R N WY BV
2(a” +2) 20°+1 b
the sum is
' = 20" BB - b1 + 261y 1) = (10 (1 + b), -1t - B).
So,

2 + b = b = 2 N
(b17 bS) (b17 bS) (b16b19 b21) (b9 b21)

.62+ 07,62 =(%.6")
Since the slope

S S S SRR
22l pBp2l 48

m

and
xy3=m? —2x =00 267 =p1% 4% =p% 1+)=0""" =2,
3 =m(xy —x3) =y =B B° —52) b2 = b= b2 (14 by =b 2010 _p_p13 =
a=0b".
So, it remains to calculate
(b"7,b%) + (b*,b°).
The slope

b’ — b’ _2a2+2a+1—a2—2_a2+2a+2_1

m= = = =1.
b> b a’+a+1-2a-2 o’ +2a+2
X, =m’—x,—x,=1-b" -b*=1-2a-2-a’ —a-1=2a’ +1=b"

yy=b"7-b"-b*=2a+2=0".
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n_n

So, the ciphertext for "g" is
Qa’+1=b"2a+2=5").
Now, let's look at
"o"=QRa’+a+2=b" a+1=>b"):

1 1 L _ o

m = = ==
2(a+1) 2a+2 b"

Thus,
x,=m’ =2x,=b" =2b" =p" - =p" - b =’ +a =b”
and
v =m(x, —x;) -y, =b°(b* =b?)—b* =b* —b° —b* =2a=a =b".
Therefore,

Qa*+a+2=b"a+1=b")+Qa’* +a+2=>b",a+1=0b")=(b>,b").

Now.
(b23,b19)+(b23,b19):
since
1 1 1 20

ST AT

we have
X, =m’ - 2x, =p* 2P =p" - =@* +1=0"

and

yy=m(x, —x;,)—y, =b* (> -b*)-b" =b" —b* -b"” =2a° +2=5".
Let's look at
Qa’*+a+2=b",a+1=b*)+(",b"):
The slope
b —b* b’ _po

b _p2 _bT_
xy=m?—x —x, =b0—pP o pP =l PP — g 1=0",

vy =m(x —x3)—y =b20B2 =% —p* =b1° - b2 —p* = 120+ 2 =0
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n_n

So, the ciphertext for "o" is
5a’ +a+2=b" a+1=b")=(a+1=b",a”> +2a+2=b"").

Consequently Bob receives cipherteext

Qa’*+1=b"2a+2=>b"),(a+1=b",a° +2a+2=5b").
Then Bob calculates in the same way the expression

3(b'",6"),3(b*,6™)
and send it to Alice. She then calculates
17(3(h"*,6'")), 17(3(b*,b**))

and sends it to Bob. Then Bob can see the orginal plaintext by calculating

19(17(3(6',5'7))), 19(17(3(b* ,b**))).

8.3 THE ELGAMAL CRYPTOSYSTEM(For Elliptic Curves)

Nikita wants to send a message to Michael. First, Michael establishes his public

key as follows. He chooses an elliptic curve £ over a finite field /7, such that the
discrete log problem is hard for E(F, ). He also chooses a point P on E (usually, it is

arranged that the order of P is a large prime). He chooses a secret integer s and

computes B =sP. The elliptic curve E, the finite field /7, and the points P and B

are Michael's public key. They are made public. Michael's private key is the integer s .
To send a message to Michael, Nikita does the following:
1. Downloads Michael's public key.

2. Expresses her message as a point M € E(F).
3. chooses a secret random integer k and computes M| = kP .
4. Computes M, =M +kB .
5. sends M,M, to Michael.
Michael decrypts by calculating
M =M, —sM;.
This decryption works because

My —sMy=(M +kB)—s(kP)=M + k(sP)—skP=M .
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The eavesdropper Eve knows Michael's public information and the points A and
M, . If she can calculate discrete logs, she can use P and B to find s, which she can
then use to decrypt the message as M, —sMy. Also, she could use P and M to find
k. Then she can calculate M =M, —kB. If she cannot calculate discrete logs, there

does not appear to be a way to find M .

It is important for Nikita to use a different random k& each time she sends a
message to Nikita. Suppose Nikita uses the same k& for both M and M'. Eve
recognizes this because then M = M. She she then computes M5 —M, =M'-M .

Suppose M is a sales announcement that is made public a day later. Then Eve finds out

M , sos he calculates M'=M — M, + M5 . Therefore, knowledge of one plaintext M

allows Eve to deduce another plaintext M in this case.

Example8.3.1 Consider the Example(8.2.1). Let
O=(a,a’ +a).
Suppose that Bob chooses a =4 .Then 40 is public key. Let's calculate it:

(a,a’ +a)+(a,a” +a)= (0,0 +a +1=5?)

. 1 1 1 16
since m= > =5 =5 =0

2a +a) bbb b

X, =b" -2a=b"-2a=0

y, =b(a-0)-a’-a=b"b’ -a’-a=a’+a+1=b".

Moreover,

(0,6*)+(0,b%) = (b™,2)
since mzﬁzb%:b“,

x, =b?-20=a’+a+2=5b"
y,=b"(0-b?)-b"=a’+a-a’-a-1=2.

Therefore

40 = (b )2).
Suppose that Alice chooses k =2.
20 = (0,b)



to Bob as

((0,6%),(P + (40 + 40))) = ((0,5%),(b",b%)).

Since m = L
22 1

Il
I
Il
—_
N

x1-2b"=1-b"=a’ +a =b"
v, =1(b*” =b*)-2=0,
40 +40 = (a’ +a = b>)0).
Now, we need to calculate

(P+(40+40)=Q2+2a=b",a> +2=0")+(b>,0)

n_n

since "g" is represented by
Q2+2a=b",a> +2=0).

O_bS b18
" e

x, =b —b" —b® =2a+1=b",
y, =b" ("7 -b")-b’ =a’ +2a+1=b".
Now, we calculate similiarly for "o":
(P+(40+40)=R+a+2a’ =b*,a+1=b")+(b>,0):

0_b4 b17
The Slope m = W = bT = b25' ThllS,

X _bSO_bZI_b23 _O
3 - Y
y, =b? (b -0)-b*=a’ +a+2=>b"
Thus, Bob receives ciphertext as

((0,67),(6",6%)),((0,6°),(0,6™)).

8.4 THE DIFFIE-HELLMAN KEY EXCHANGE SYSTEM

68

Nikita and Michael want to agree on a common key that they can us efor

exchanging data via a symmetric encryption scheme such as DES(Data Encryption

Standard) or AES(Advanced Encryption Standard). For example, Nikita and Michael

could be banks that want to transmit financial data. It is impractical and time-consuming

to use a courier to deliver the key. Moreover, we assume that Nikita and Michael have
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had no prior contact and therefore the only communication channels between them are
public. One way to eatablish a secret key is the following method, due to Diffie and
Hellman (actually, they used multiplicative groups of finite fields).

1. Nikita and Michael agree on an elliptic curve E' over a finite field /7, such that
the discrete logarithm problem is hard in E(F,). They also agree on a point
p € E(Fy) such that the subgroup generated by P has large order (usually, the curve

and point are chosen so that the order is a large prime).
2. Nikita chooses a secret integer a , computes
P, =aP,
and sends P, to Michael.

3. Michael chooses a secret integer b, computes

P, =bP,
and sends P, to Nikita.
4. Nikita computes
aPy, = abP .
5. Michael computes
bP, =baP.

6. Nikita and Michael use some publicly agreed on method to extract a key from
abP . For example, they could use the the last 256 bits of the x -coordinate of abP as

the key. Or they could evaluate a hash function at the x -coordinate.

Example8.4.1 Consider the elliptic curve E defined by

y2 =0 +x+1

over finite field F33 . Assume that

O0=(a, a’+ Q)
as in the previous example. Let the key of Alice be a =2 , and the key of Bob be b =4.
Then

ab0 =80 = (a +a* =b>* ,0)



70

which was calculated in the previous example( Example 8.3.1). Therefore we can take
the enciphering transformation as
C = P+1(modN)
where the message units are single letters in the 29 —letter alphabet with A—Z
corresponding to 27, ?=28. Therefore, Alice sends plaintext
Addition of infinity is essentially the projective completion of the afine curve as a
ciphertext
beejujpo.pg. jogjojuz. jt. fitfoujbmmz.uif .qspk
fdujwf .dpngmfujpo.ps.uif bggjof .dvswf
to Bob.



CHAPTER 9

CONCLUSIONS

As a branch of mathematics, abstract algebra shares an important topic with

number theory which is called finite fields.

Finite fields have many applications in many branches of mathematics especially
in number theory. In this thesis, we studied elliptic curves over a finite field with
cryptographic applications. We see that defining an elliptic curve over a finite field

offers us more security. Namely, let’s define an elliptic curve over Z(where p is a

prime number). When you choose p as a large prime then it means that the ciphertext

becomes so hard to crack.

On the other hand, when we compare elliptic curve cryptosystem with the others
such as RSA, Diffie — Hellman Key Exchange and ElGamal cryptosystem, we have
some practical advantages of elliptic curve cryptosystem as mentioned below.

i) Faster then the other systems

i) Low power consumption

iii) Low memory usage

iv) Low CPU utilization

For example, it is estimated that a key size of 4096 bits for RSA gives the same
level of security as 313 bits in an elliptic curve system. This means that
implementations of elliptic curve cryptosystems require smaller chip size, less power

consumption.

As a consequence, the study of elliptic curves includes much beautiful and deep number

theory. Until recently this study was almost exclusively the province of pure
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mathematicians. Now elliptic curves can claim their place as one of the important
subjects in the study of cryptography. Not only are they useful theoretically but are
already having great practical impact.
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