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ABSTRACT 

 

 

In this thesis, elliptic curves, elliptic curves over a finite field and cryptography 

applications of elliptic curves are basically investigated. Especially, I give information 

about encryption and decryption methods for  the cryptosystems which can be defined 

over a finite field such as Diffie – Hellman , Massey – Omura and ElGamal. These 

concepts were also supported by the cited examples.  

 

Keywords: Cryptography, encryption, decryption, finite fields, elliptic curves, maple, 

discriminant, quadratic residue. 

 



 iv

SONLU BİR CİSİM ÜZERİNDE ELİPTİK EĞRİLER 

VE KRİPTOGRAFİ UYGULAMALARI 

 

Ahmet YAŞAR 

 

Yüksek Lisans Tezi – Matematik 

Ağustos 2006 

 

Tez Yöneticisi: Prof. Dr. Barış KENDİRLİ 

 

 

ÖZ 

 

Bu tez çalışmasında, temel seviyede eliptik eğriler, sonlu bir cisim üzerinde eliptik 

eğriler ve bu eğrilerin Kriptografi uygulamaları incelenmiştir. Özellikle Diffie – 

Hellman , Massey – Omura ve ElGamal gibi kriptosistemlerinin sonlu bir cisim 

üzerindeki şifreleme ve deşifre etme yöntemleri hakkında bilgiler verdim. Ayrıca bu 

sistemler  örneklerle desteklendi. 
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CHAPTER 1 
 
 

INTRODUCTION 

1.1 WHAT IS CRYPTOGRAPHY 

As the field of cryptography has advanced, the dividing lines for what is and what 

is not cryptography have become blurred. Cryptography today might be summed up as 

the study of techniques and applications that depend on the existence of difficult 

problems. Cryptanalysis is the study of how to compromise (defeat) cryptographic 

mechanisms, and cryptology (from the Greek kryptós lógos, meaning ``hidden word'') is 

the discipline of cryptography and cryptanalysis combined. To most people, 

cryptography is concerned with keeping communications private. Indeed, the protection 

of sensitive communications has been the emphasis of cryptography throughout much 

of its history. However, this is only one part of today's cryptography.  

Encryption is the transformation of data into a form that is as close to impossible 

as possible to read without the appropriate knowledge. Its purpose is to ensure privacy 

by keeping information hidden from anyone for whom it is not intended, even those 

who have access to the encrypted data. Decryption is the reverse of encryption; it is the 

transformation of encrypted data back into an intelligible form.  

Encryption and decryption generally require the use of some secret information, 

referred to as a key. For some encryption mechanisms, the same key is used for both 

encryption and decryption; for other mechanisms, the keys used for encryption and 

decryption are different . 

Today's cryptography is more than encryption and decryption. Authentication is as 

fundamentally a part of our lives as privacy. We use authentication throughout our 

everyday lives - when we sign our name to some document for instance - and, as we
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move to a world where our decisions and agreements are communicated electronically, 

we need to have electronic techniques for providing authentication.  

 
Cryptography provides mechanisms for such procedures. A digital signature binds 

a document to the possessor of a particular key, while a digital timestamp  binds a 

document to its creation at a particular time. These cryptographic mechanisms can be 

used to control access to a shared disk drive, a high security installation, or a pay-per-

view TV channel.  

 
The field of cryptography encompasses other uses as well. With just a few basic 

cryptographic tools, it is possible to build elaborate schemes and protocols that allow us 

to pay using electronic money , to prove we know certain information without revealing 

the information itself, and to share a secret quantity in such a way that a subset of the 

shares can reconstruct the secret . 

 
While modern cryptography is growing increasingly diverse, cryptography is 

fundamentally based on problems that are difficult to solve. A problem may be difficult 

because its solution requires some secret knowledge, such as decrypting an encrypted 

message or signing some digital document. The problem may also be hard because it is 

intrinsically difficult to complete, such as finding a message that produces a given hash 

value. 

 

1.2 TECHNIQUES IN CRYPTOGRAPHY 

 
1.2.1 Rsa 
 

The RSA cryptosystem is a public-key cryptosystem that offers both encryption 

and digital signatures. Ronald Rivest, Adi Shamir and Leonard Adleman developed the 

RSA system in 1977; RSA stands for the first letter in each of its inventors’ last names.  

The RSA algorithm works as follows: take two large primes, p and q, and compute 

their product n = pq; n is called the modulus. Choose a number, e, less than n and 

relatively prime to (p-1)(q-1), which means e and (p-1)(q-1) have no common factors 

except 1. Find another number d such that (ed - 1) is divisible by (p-1)(q-1). The values 

e and d are called the public and private exponents, respectively. The public key is the 
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pair (n, e); the private key is (n, d). The factors p and q may be destroyed or kept with 

the private key. 

It is currently difficult to obtain the private key d from the public key (n, e). 

However if one could factor n into p and q, then one could obtain the private key d. 

Thus the security of the RSA system is based on the assumption that factoring is 

difficult. The discovery of an easy method of factoring would "break" RSA. 

Here is how the RSA system can be used for encryption and digital signatures (in 

practice, the actual use is slightly different. 

1.2.2 Encryption 

Suppose Alice wants to send a message m to Bob. Alice creates the ciphertext c by 

exponentiating: c = me mod n, where e and n are Bob's public key. She sends c to Bob. 

To decrypt, Bob also exponentiates: m = cd mod n; the relationship between e and d 

ensures that Bob correctly recovers m. Since only Bob knows d, only Bob can decrypt 

this message.  

1.2.3 Digital Signature 

Suppose Alice wants to send a message m to Bob in such a way that Bob is 

assured the message is both authentic, has not been tampered with, and from Alice. 

Alice creates a digital signature s by exponentiating: s = md mod n, where d and n are 

Alice's private key. She sends m and s to Bob. To verify the signature, Bob 

exponentiates and checks that the message m is recovered: m = se mod n, where e and n 

are Alice's public key.  

Thus encryption and authentication take place without any sharing of private keys: 

each person uses only another's public key or their own private key. Anyone can send 

an encrypted message or verify a signed message, but only someone in possession of the 

correct private key can decrypt or sign a message. 
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1.2.4 Elliptic curve cryptosystem. 

Elliptic curve cryptosystems were first proposed independently by Victor Miller  

and Neal Koblitz in the mid-1980s. At a high level, they are analogs of existing public-

key cryptosystems in which modular arithmetic is replaced by operations defined over 

elliptic curves. The elliptic curve cryptosystems that have appeared in the literature can 

be classified into two categories according to whether they are analogs to the RSA 

system or to discrete logarithm based systems.  

Just as in all public-key cryptosystems, the security of elliptic curve cryptosystems 

relies on the underlying hard mathematical problems. It turns out that elliptic curve 

analogs of the RSA system are mainly of academic interest and offer no practical 

advantage over the RSA system, since their security is based on the same underlying 

problem, namely integer factorization. The situation is quite different with elliptic curve 

variants of discrete logarithm based systems. The security of such systems depends on 

the following hard problem: Given two points G and Y on an elliptic curve such that     

Y = kG (that is, Y is G added to itself k times), find the integer k. This problem is 

commonly referred to as the elliptic curve discrete logarithm problem. 

Presently, the methods for computing general elliptic curve discrete logarithms are 

much less efficient than those for factoring or computing conventional discrete 

logarithms. As a result, shorter key sizes can be used to achieve the same security of 

conventional public-key cryptosystems, which might lead to better memory 

requirements and improved performance. One can easily construct elliptic curve 

encryption, signature, and key agreement schemes by making analogs of ElGamal, 

DSA, and Diffie-Hellman. These variants appear to offer certain implementation 

advantages over the original schemes, and they have recently drawn more and more 

attention from both the academic community and the industry.  

1.2.5 Are elliptic curve cryptosystem secure? 

In general, the best attacks on the elliptic curve discrete logarithm problems have 

been general brute-force methods. The current lack of more specific attacks means that 

shorter key sizes for elliptic cryptosystems appear to give similar security as much 

larger keys that might be used in cryptosystems based on the discrete logarithm problem 
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random private value a  and Bob  generates a random private value b.    Both a and b are  

and integer factorization. For certain choices of elliptic curves there do exist more 

efficient attacks. Menezes, Okamoto, and Vanstone  have been able to reduce the 

elliptic curve discrete logarithm problem to the traditional discrete logarithm problem 

for certain curves, thereby necessitating the same size keys as is used in more traditional 

public-key systems. However these cases are readily classified and easily avoided.  

In 1997, elliptic curve cryptography began to receive a lot more attention; by the 

end of 1999, there were no major developments as to the security of these 

cryptosystems. The longer this situation continues, the more confidence will grow that 

they really do offer as much security as currently appears. However, a sizeable group of 

very respected researchers have some doubts as to whether this situation will remain 

unchanged for many years. In particular, there is some evidence that the use of special 

elliptic curves, sometimes known as Koblitz curves, which provide very fast 

implementations, might allow new specialized attacks. As a starting point, the basic 

brute-force attacks can be improved when attacking these curves. While RSA 

Laboratories believes that continued research into elliptic curve cryptosystems might 

eventually create the same level of wide-spread trust as is enjoyed by other public-key 

techniques (provided there are no upsets), the use of special purpose curves will most 

likely always be viewed with extreme skepticism.  

1.2.6 Diffie-Hellman cryptosystem. 

The Diffie-Hellman key agreement protocol (also called exponential key 

agreement) was developed by Diffie and Hellman  in 1976 and published in the ground-

breaking paper "New Directions in Cryptography." The protocol allows two users to 

exchange a secret key over an insecure medium without any prior secrets.  

The protocol has two system parameters p and g. They are both public and may be 

used by all the users in a system. Parameter p is a prime number and parameter g 

(usually called a generator) is an integer less than p, with the following property: for 

every number n between 1 and p-1 inclusive, there is a power k of g such that n = gk 

mod p.  

Suppose Alice and Bob want to agree on a shared secret key using the Diffie-

Hellman  key  agreement  protocol.  They  proceed  as follows:  First, Alice generates  a 
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drawn from the set of integers. Then they derive their public values using parameters p 

and g and their private values. Alice's public value is ga mod p and Bob's public value is 

gb mod p. They then exchange their public values. Finally, Alice computes gab = (gb)a 

mod p, and Bob computes gba = (ga)b mod p. Since gab = gba = k, Alice and Bob now 

have a shared secret key k. 

The protocol depends on the discrete logarithm problem for its security. It 

assumes that it is computationally infeasible to calculate the shared secret key k = gab 

mod p given the two public values ga mod p and gb mod p when the prime p is 

sufficiently large. Maurer  has shown that breaking the Diffie-Hellman protocol is 

equivalent to computing discrete logarithms under certain assumptions. 

The Diffie-Hellman key exchange is vulnerable to a man-in-the-middle attack. In 

this attack, an opponent Carol intercepts Alice's public value and sends her own public 

value to Bob. When Bob transmits his public value, Carol substitutes it with her own 

and sends it to Alice. Carol and Alice thus agree on one shared key and Carol and Bob 

agree on another shared key. After this exchange, Carol simply decrypts any messages 

sent out by Alice or Bob, and then reads and possibly modifies them before re-

encrypting with the appropriate key and transmitting them to the other party. This 

vulnerability is present because Diffie-Hellman key exchange does not authenticate the 

participants. Possible solutions include the use of digital signatures and other protocol 

variants.  

The authenticated Diffie-Hellman key agreement protocol, or Station-to-Station 

(STS) protocol, was developed by Diffie, van Oorschot, and Wiener in 1992 to defeat 

the man-in-the-middle attack on the Diffie-Hellman key agreement protocol.  

The immunity is achieved by allowing the two parties to authenticate themselves 

to each other by the use of digital signatures and public-key certificates.  

Roughly speaking, the basic idea is as follows. Prior to execution of the protocol, 

the two parties Alice and Bob each obtain a public/private key pair and a certificate for 

the public key. During the protocol, Alice computes a signature on certain messages, 

covering the public value ga mod p. Bob proceeds in a similar way. Even though Carol  



 

 

7

 

is still able to intercept messages between Alice and Bob, she can not forge signatures 

without Alice's private key and Bob's private key. Hence, the enhanced protocol defeats 

the man-in-the-middle attack. 

In recent years, the original Diffie-Hellman protocol has been understood to be an 

example of a much more general cryptographic technique, the common element being 

the derivation of a shared secret value (that is, key) from one party's public key and 

another party's private key. The parties' key pairs may be generated anew at each run of 

the protocol, as in the original Diffie-Hellman protocol. The public keys may be 

certified, so that the parties can be authenticated and there may be a combination of 

these attributes.  

In chapter 2, the basic definitions of groups, rings and fields are given. 

In chapter 3, finite fields are defined with the basic theorems. 

In chapter 4, the cryptosystems such as Massey – Omura and ElGamal are defined over 

a finite field. 

In chapter 5, Quadratic residues and Legendre Symbol are defined. 

In chapter 6, the operations on elliptic curves are defined. 

In chapter 7, I define elliptic curves over a finite field by an example. 

Finally, in chapter 8, elliptic curve cryptosystems over a finite field are defined. 
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CHAPTER 2 
 
 

GROUPS RINGS AND FIELDS 
 

 
2.1 GROUPS 

 
Definition 2.1.1(Herstein, 1996)  A nonempty set G is said to be a group if in G there is 
defined an operation ∗  such that : 
     

 i) a,b∈G implies that Gba ∈∗ (We describe this by saying that G is closed under        

∗ ). 

ii) Given Gcba ∈,, , then 

cbacba ∗∗=∗∗ )()(  

This is described by saying that the associative law holds in G. 

iii) There exists a special element Ge∈  such that  

aaeea =∗=∗  for all Ga∈  

e is called the identity or unit element of G. 

νi ) For every Ga∈  there exists an element Gb∈  such that  

eabba =∗=∗  

We describe this element b as 1−a  and call it the inverse of a in G. 

These four defining postulates  are called group axioms. 

Example2.1.1 Let  +ℜ  be the set of all positive real numbers  and let the operation ∗  

on +ℜ  

Be the ordinary product of real numbers. +ℜ  is a group under ∗ . 

Definition 2.1.2(Herstein, 1996) A group G is said to be abelian  if  

abba ∗=∗  for all a,b∈G. 

Lemma 2.1.1 If  G is a group then 

 i) Its identity element is unique. 

ii) Every Ga∈  has a unique inverse Ga ∈−1 . 

iii) If  Ga∈    aa =−− 11)(   

 

        8 
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νi ) For a,b∈G    111)( −−− = abab  

2.2 RINGS 

 
Definition2.2.1 A nonempty set R is said to be a ring if in R there are two operations + 

and  ⋅ such that: 

i) Rba ∈,  implies that Rba ∈+  

ii) abba +=+   for Rba ∈,  

iii) )()( cbacba ++=++   for  Rcba ∈,, . 

νi ) There exists an element R∈Ο  such that aa =+Ο  for every Ra∈ . 

ν ) Given  Ra∈  there exists Rb∈  such that 0=+ ba  

iν ) Rba ∈,  implies that  Rba ∈⋅  

iiν ) cbacba ⋅⋅=⋅⋅ )()(     for  Rcba ∈,,  

iiiν ) cabacba ..).( +=+   and 

         acabacb ..).( +=+    for Rcba ∈,, . 

 

Definition 2.2.2(Commutative Ring) A commutative ring is a ring R that satisfies this 

axioms: 

baab =   for all  Rba ∈,   

 

Example2.2.1 The set of integers Ζ ,with the usual addition and multiplication, is a  

commutative ring with identity. 

 

Example2.2.2 The set of odd integers with the usual addition and multiplication is not a 

ring.Because the sum of two odd integers is not odd. 

 

2.3 FIELDS 

 
Definition2.3.1 A  field  is a set F , containing at least two elements, on which two 

operations + and (⋅ called addition and multiplication ,respectively) are defined so that 

for each pair of elements yx,  in F  there are unique elements yxandyx ⋅+ (often 

written xy ) in F  for which the following conditions hold for all Fzyx ∈,, : 

i) xyyx +=+   (commutativity of addition) 
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ii) )()( zyxzyx ++=++   (associativity of addition) 

iii) There is an element F∈0  called zero, such that .0 xx =+  (existence of an      

      additive identity) 

νi ) For each x  there is an element Fx∈−  such that 0)( =−+ xx   (existence of                          

        additive inverses) 

ν ) yxxy =    (commutativity of multiplication) 

iν ) )()( zyxzyx ⋅⋅=⋅⋅    (associativity of multiplication) 

iiν ) zyzxzyx ⋅+⋅=⋅+ )(   and  zxyxzyx ⋅+⋅=+⋅ )(   (distributivity) 

iiiν ) There is an element F∈1 , such that 01 ≠  and xx =⋅1  (existence of a  

         multiplicative identity) 

ix ) If 0≠x , then there is an element Fx ∈−1  such that 11 =⋅ −xx . (existence of  

      multiplicative inverses) 

 

Definition2.3.2(Herstein, 1996) A commutative ring R  is an integral domain  if 

0=⋅ba  in R  implies that 0=a  or  0=b . 

Definition2.3.3(Herstein, 1996) A ring R with unit is said to be a division ring if for 

every 0≠a  in R there is an element Rb∈ (usually written as 1−a ) such that  

111 =⋅=⋅ −− aaaa  

Definition2.3.4 A ring R  is said to be a field  if  R  is a commutative division ring. 

Example2.3.1 Let 6Ζ=R  the integers mod 6, with the addition and the multiplication 

defined by 

[ ] [ ] [ ]baba +=+   and  [ ][ ] [ ]abba = . 

Note that [ ]0  is the 0 required by our axioms for a ring, and [ ]1  is the unit element of R. 

Note however, that 6Ζ  is not an integral domain, for [ ][ ] [ ] [ ]0632 == , yet [ ] [ ]02 ≠  and 

[ ] [ ]03 ≠ .R is commutative ring with unit. 

This example suggests the 

Definition2.3.5(Herstein,1996) An element 0≠a  in ring R is a zero-divisor  in R if 

0=ab  for some 0≠b  in R. 

Note that both [ ]2  and [ ]3  in 6Ζ  are zero-divisors.An integral domain is, of course, a 

commutative ring without zero-divisors. 

Example2.3.2 The set ℜ  real numbers  with the usual addition and multiplication, is a 

field. 
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Example2.3.3 if  p is prime, then pΖ  is a field. 

 

2.3.1 Properties of a Field 

1) A vector space  can be defined over any field F  by the same properties that are used 

to define a vector space over the real numbers.Any vector space has a basis, and the 

number of elements in a basis is called its dimension. An extension field, i.e., a bigger 

field containing F  is automatically a vector space over F. We call it a finite extension  if 

it is a finite dimensional vector space.By the degree of a finite extension we mean its 

dimension as a vector space. One common way of obtaining extension fields is to adjoin 

an element to F : we say that )(αFK =  if  K  is the field consisting of all rational 

expressions formed using α  and elements of  F.(Koblitz, 1994) 

 

2) The polynomial ring can be defined over any field F. It is denoted F[x] ; it consists of 

all finite sums of powers of x with coefficients in F . One adds and multiplies 

polynomials in F[x] in the same way as one does with polynomials over the reals.The 

degree d  of a polynomial is the largest power of x which occurs with nonzero 

coefficient; in a monic polynomial  the coefficient of dx  is 1. We say that g divides f, 

where Fgf ∈, [x], if there exists a polynomial Fh∈ [x] such that   fg=h. The 

polynomial ][)( xFxp ∈  is irreducible if )(xp  is of positive degree and given any 

polynomial f(x) in F[x], then either )()( xfxp   or  p(x) is relatively prime to f(x). 

 

3) Given any polynomial ][)( xFxf ∈  there is an extension field K of F such that f(x) 

splits into a product of linear factors (equivalently, had d  roots in K, counting 

multiplicity,where d is its degree) and such that K  is the smallest extension field 

containing those roots.K is called the splitting field  of  f. For example, Q )2(  is the 

splitting field of 2)( 2 −= xxf , and to obtain the splitting field of 2)( 3 −= xxf  one 

must adjoin to Q  both 3 2  and 3− .(Koblitz, 1994) 
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2.3.2 Characteristic of a Field 

Definition2.3.6 If F is a field of  k elements for any Fa∈ ; na=0  if there exists +Ζ∈n  

the smallest number of these positive integers is called the characteristic of the field.If 

there is no such an integer then the characteristic of F is 0. 

 
Example2.3.4 The field of rational numbers Q, the field of real numbers ℜ  and the 

field of complex numbers ℂ has characteristic 0. 
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CHAPTER 3 

 

FINITE FIELDS 
 

3.1 FINITE FIELDS 

Definition3.1.1 Finite field is field which contains finite number of elements.Denoted 

as qF  where q  is the number of elements in it. 

 
Theorem3.1.1 Suppose that qF is a finite field of q  number of elements and 

characteristic is p with prime subfield pF .Then we can regard qF as a vector space over 

pF  with the dimension of n .We can find a basis },......,,{ 21 neee  for qF  over pF .Every 

element qF  of is uniquely expressible in the form;  

nneeea ααα +++= ......2211  

There are just p choices for each coordinate iα  , so the total number of elements in qF  

is  

n

timesn

ppppp =
−

43421
.........  

 

3.1.1 Existence of multiplicative generators of finite fields 
 

There are q-1 nonzero elements, and, by the definition of a field, they form an 

abelian group with respect to multiplication.This means that the product of two nonzero 

elements is nonzero, the associative law and commutative law hold, there is an identity 

element 1, and any nonzero element has an inverse.It is a general fact finite groups that 

the order of any element must divide the number of elements in the group. For the sake 

of completeness, we give a proof of this in the case of our group *
qF . 

 

13 
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Proposition 3.1.1(Koblitz, 1994) The order of any *
qFa∈  divides q-1. 

Proof.  Let d  be the smallest power of  a  which equals 1. (Note that there is a finite 

power of a that is 1, since the powers of a in the finite set *
qF  can not all be distinct, and 

as soon as ji aa =   for  j > i  we have .)1=−ija  Let },....,,,1{ 12 −= daaaS  denote the 

set of all powers of a, and for any *
qFb∈   let bS  denote the coset consisting of all 

elements of the form jba .It is easy to see that any two cosets are either identical or 

distinct (namely: if some iab1  in Sb1  is also in Sb2 , i.e. , if it is of the form jab2  , then 

any element 
ιiab1  in Sb1  is of the form to be in Sb2  , because 

ιiab1 = iab1
iiji aba −+− =

ιι
2

1 ). And each coset contains exactly d  elements. Since the 

union of all the cosets exhausts *
qF , this means that  *

qF  is a disjoint union of  d-

element sets; hence d│(q-1) .  

 

Definition3.1.2(Koblitz, 1994) A generator  g  of a finite field qF  is an element of 

order  1−q ; equivalently, the powers of  g  run through all of the elements of  *
qF . 

Proposition3.1.2(Koblitz, 1994) Every finite field has a generator. If g is a generator  
of  *

qF , then jg  is also a generator if and only if  g.c.d (j,q-1)=1. In particular , there a 

total of )1( −qϕ  different generators of *
qF . 

Proof. Suppose that *
qFa∈  has order d , i.e., 1=da and no lower power of a gives 1. By 

proposition(3.1.1), d divides q-1. Since da  is the smallest power which equals 1, it 

follows thatthe elements 1,....., 2 =daaa  are distinct. We claim that the elements of 

order d are precisely the )(dϕ  values ja  for which 1),(.. =djdcg . First, since the d 

distinct powers of a all satisfy the equation 1=dx , these are all of the roots of the 

equation. Any element of order d must thus be among the powers of a. However, not all 

powers of a have order d, since if ddjdcg ′=),(.. >1, then ja  has lower order : because 

dd ′  and dj ′  are integers, we can write .1)()( )( == ′′ djdddj aa  Conversely, we 

now show that ja  does have order d  whenever .1),(.. =djdcg If j is prime to d  and if  

ja  had a smaller order d ′′ , then da ′′  raised to either the j-th or the d-th power would 
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give 1, and hence da ′′  raised to the power 1),(.. =djdcg  would give 1. But this 

contradicts the fact that a is of order d and so .1≠′′da Thus , ja  has order d  if and only 

if 1),(.. =djdcg .This means that, if there is an element a of order d , then there are 

exactly )(dϕ  elements of order d. So for every d│ )1( −q  there are only two 

possibilities: no element has order d , or exactly )(dϕ  elements have order d .Now 

every element has some order d│ )1( −q . And there are either 0 or )(dϕ  elements of 

order d. But  

∑
d∣q−1

d  q−1
 

which is the number of elements in *
qF .Thus the only way that element can have some 

order d│ )1( −q  is if  there are always  )(dϕ  (and never 0)elements of order d. In 

particular, there are )1( −qϕ  elements of order 1−q ; and, if g is any element of order 

1−q , then the other elements of order 1−q  are precisely the powers jg  for which 

.1)1,(.. =−qjdcg  This completes the proof. 

 

3.1.2 Existence and uniquness of finite fields with prime power number of elements 

 

Proposition3.1.3(Koblitz, 1994) If qF  is a field of fpq =  elements, then every 

element satisfies the equation 0=− xxq  and qF  is precisely the set of roots of that 

equation. Conversely, for every prime power fpq =  the splitting field  over qF  of the 

polynomial xxq −  is a field of q elements. 

Proof. First suppose that qF  is a finite field. Since the order of any nonzero element 

satisfies the equation 11 =−qx , and hence, if we multiply both sides by x the equation 

xxq = . Of course, the element 0 also satisfies the latter equation. Thus, all q elements 

of qF  are roots of the degree –q  polynomial xxq − . Since this polynomial cannot have 

more than q roots, its roots are precisely the elements of qF . Notice that this means that 

qF  is the splitting field of the polynomial xxq − , that is , the smallest field extension of  

qF  which contains all of its roots. 
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Conversely, let fpq =  be a prime power, and let F  be the splitting field over pF  of 

the polynomial xxq − . Note that xxq −  has derivative 111 −=−−qqx (because the 

integer q is a multiple of p and so is 0 in field pF ); hence, the polynomial xxq −  has no 

common roots with its derivative and therefore has no multiple roots. Thud F must 

contain at least q distinct roots of xxq −  . But we claim that the set of q roots is already 

a field. The key point is that a sum or product of two roots is again a root. Namely, if a 

and b satisfies the polynomial we have bbaa qq == ,  and hence abab q =)( , i.e., the 

product is also a root.  

 

Example3.1.1 Consider )5(Ζ , is isomorphic to }4,3,2,1,0{5 =F  with the isomorphism 

given by: [ ] [ ] [ ] [ ] [ ] 44,33,22,11,00 →→→→→ . The tables for the two 

operations ⋅+ and   for elements in 5F  are as follows: 

Table 3.1 Operations  ⋅+ and  for elements in 5F  

 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3                          

 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 3  

 

Corollary3.1.1 A finite field has prime characteristic. 

Example3.1.2 There is no a finite field containing 6 elements. Because we can not write 

6 as np  i.e., np≠6   

Corollary3.1.2 A finite field F  has always a subfield with a prime number of elements. 

Theorem3.1.2(Lidl and Niederreiter,1994) For ][xFf ∈ , the residue class ring 

)(][ fxF  is a field  if and only if  f  is irreducible over F. 

Example3.1.3 Let ][1)( 2
2 xFxxxf ∈++= . Then )(][2 fxF   has the 22=np  

elements [ ] [ ] [ ] [ ].1,,1,0 +xx  The operation tables for this residue class ring are obtained 

by performing the required operations with the polynomials determining the residue 

classes and by carrying out fmod  if necessary: 
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Table 3.2  Operation tables for residue class ring 

 0 1 x x 1
0 0 1 x x 1
1 1 0 x 1 x
x x x 1 0 1

x 1 x 1 x 1 0
 

 0 1 x x 1
0 0 0 0 0
1 0 1 x x 1
x 0 x x 1 1

x 1 0 x 1 1 x
        

 

By inspecting these tables, or from the irreducibility of  f  over 2F  and theorem(3.1.2), 

it follows that )(][2 fxF  is a field. This is an example for which the number of 

elements is not a prime. 

Definition3.1.3 For a finite field qF  we denote by *
qF  the multiplicative group of 

nonzero elements of qF . 

Theorem3.1.3(Lidl and Niederreiter, 1994)  For every finite field qF  the multiplicative 

group *
qF  of nonzero elements of qF  is cyclic. 

 

Example3.1.4 Construct 9F . 

Since 239 =  we consider monic irreducible polynomials of degree 2 over 3F : 

22,2,1 222 ++++ xxxx . For example letting α  be a root of 12 +x  i.e., 012 =+α , 

so 22 =α  we can write out the powers of α . 

 

αα =1 , 

22 =α , 

  αα 23 = , 

                                 1)2(22)(2 24 ==== αααα  

and so α  has order 4 and does not generate the cyclic group of order 8, i.e., α  is not a 

primitive element. On the other hand, consider λ  a root of the polynomial 22 ++ xx , 

so that 1202 22 +==++ λλλλ or . Now the powers of λ  gives us :  
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λλ =1  

122 += λλ  

λλλλλλλλ 2)12(22)12( 23 =++=+=+= +2 

22222 24 =++=+= λλλλλ  

λλ 25 =  

22 26 +== λλλ  

1212227 +=++=+= λλλλλλ  

11228 =++=+= λλλλλ  

 

So λ  is a primitive element and we have represented the elements of 9F  as the 8 

powers of λ  together with 0. 

 

3.1.3 Automorphisms of Fields 

 
Two fields are said to be isomorphic if there exists a bijection from one to the 

other which preserves both binary operations. If  F and K  are isomorphic fields then 

there exists a bijection  KFf →:   such that  

)()()( yfxfyxf +=+  and 

)()()( yfxfxyf =  

for all x  and y  in F . The map f  is called an isomorphism. 

 

Definition3.1.4 An isomorphism from a field to itself is called an automorphism. 

Theorem3.1.4 If F  is a finite field of characteristic p, then the mapping ϕ  defined by 

paa =)(ϕ  is an automorphism of F. 

Proof. )()()()( babaabab ppp ϕϕϕ === , so ϕ  preserves multiplication. 

)()()()( babababa ppp ϕϕϕ +=+=+=+  and addition is preserved. The middle step 

follows from the binomial theorem and the fact that p is a prime, so all the intermediate 

coefficients have a factor of p and therefore 0. That ϕ  is a bijection follows from the 

fact that 0)( =aϕ  implies 0=a . 

Definition3.1.5 The automorphism pxx →  is called Frobenius automorphism . 
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Lemma3.1.1 If )(xq  in ][xpΖ  is irreducible of degree n , then q(x)│ )( xxm −  where 

npm =  . 

 

Theorem3.1.5 If  K  and L are finite fields having the same number of elements, then K  

and L are isomorphic fields. 

Proof. Suppose that K  and L  have np  elements. By theorem(3.1.3) *L  is a cyclic 

group generated, say by the element b  in L. Then certainly, )(bpΖ - the field obtained 

by adjoining b to pΖ - is all of L. Since [ ] nL p =Ζ: , b  is algebraic over pΖ  of degree 

n, with ))(deg( xqn =  where )(xq  is the minimal polynomial in ][xpΖ  for b, and is 

irreducible in ][xpΖ . 

The mapping )(][: bLx pp Ζ=→Ζψ  defined by )())(( bfxf =ψ  is a 

homomorphism of ][xpΖ  onto L with kernel ))(( xq  the ideal of ][xpΖ  generated by 

)(xq . So                                                 

))((][ xqxL pΖ≅  

Because )(xq  is irreducible  in ][xpΖ  of degree n  by lemma(3.1.1) )(xq  must divide 

xxm − , where npm = . However, the polynomial xxm −  factors in ][xK  as  

)).....()(( 21 m
m axaxaxxx −−−=−  

where maaa ,....., 21   are all the elements of K .Therefore, )(xq  divides 

))....()(( 21 maxaxax −−− . Here )(xq  can not be relatively prime to all the iax −  in 

][xK , hence for some j, )(xq  and jax −  have a common factorof degree at least 1.In 

short jax −  must divide  )(xq  in ][xK , so )()()( xhaxxq j−=  for some )(xh  in ][xK .                 

Therefore, 0)( =jaq . 

Since )(xq  is irreducible in ][xpΖ  and ja is a root of )(xq , )(xq  must be the 

minimal polynomial for ja in ][xpΖ . Thus Lxqxa pjp ≅Ζ≅Ζ ))((][)( . This tells us, 

among other things, that we have na pjp =ΖΖ ]:)([ , and since Ka jp ⊂Ζ )(  and 

nK p =Ζ ]:[  we conclude that Ka jp =Ζ )( . Therefore, LaK jp ≅Ζ= )( . Thus we get 

the result that we are after, namely, that K and L  isomorphic fields. This proves the 

theorem. 
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Corollary3.1.3 If  f  is a prime number, then there are fpp f )( −   distinct monic 

irreducible polynomials of degree f  in ][xFp . 

Example3.1.5 Let 1)( 234 +++= xxxxf , ][1)( 2
3 xFxxg ∈+= . Find ),(.. gfdcg  

using the Euclidean algorithm for polynomials, and Express the dcg ..  in the form  

)()()()( xgxxfxu ν+  

Solution. Polynomial division gives us the sequence of equalities below, which lead to 

the conclusion that 1),(.. += xgfdcg  , and the next sequence of equalities enables us 

working backwards, to Express x+1 as a linear combination of f  and g . We have: 

)1())(1(

)()1(
2

2

++++=

+++=

xxxxg

xxgxf
 

                                          xx +2 = x(x+1) 

and then 

))(1(1 2 xxxgx +++=+  

                  = ))1()(1( gxfxg ++++  

      = gxfx )()1( 2++  

 

Example3.1.6 The subfields of the finite field 302
F can be determined by lisitng all 

positive divisors of  30. The containment relations between these various subfields are 

displayed in the following diagram. 
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                                                            302
F             

                  
 
                                      62

F               102
F                   152F  

                                                                                     
 
                                    22

F                  32
F                     52

F  

                                                                                         
                                                                                                     
                                                
                                                             2F                                      
                                                                          
                                                                            

Figure 3.1 Relations between the subfields of 302
F  

 

Lemma3.1.2(Rosen, 2000) If F is a field of prime characteristic p, then  

 
nnn ppp βαβα +=+ )(  

for all F∈βα ,  and all positive integers n. 

Proof. Let F∈βα , . Applying the binomial theorem to p)( βα +   we have  

pppppp pppp βαββαβααβα +++
−

++=+ −−− 1221 )1.(.....)1.
2

)1(()1.()(  

          
= ppppp βαββαβαα +++++ −−− 1221 0.....00  

                 
                                = pp βα +  . 
 

Proceeding by induction on n , suppose that we have 
111

)(
−−−

+=+
nnn ppp βαβα . 

Then 
nnnnnn pppppppp βαβαβαβα +=+=+=+

−−−
)(])[()(

111
. 
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CHAPTER 4 

 

FINITE FIELD CRYPTOSYSTEMS 
 

4.1 BASIC NOTIONS 
 
 
Cryptography is the study of methods of sending messages in disguised form so 

that only the intended recipients can remove the disguise and read the message. The 

message we want to send is called the plaintext and the disguised message is called the 

ciphertext. The plaintext and ciphertext are written some alphabet (usually, but not 

always, they are written in the same alphabet) consisting of a certain number N  of 

letters. The term “letter” “(or “character”) can refer not only to the familiar  A Z− , but 

also to numerals, blanks, punctuation marks, or any other symbols that we allow 

ourselves to use when writing the message.(If we don’t include a blank , for example, 

then all of the words are run together, and the messages are harder to read.) The process 

of converting a plaintext to a ciphertext is called enciphering  or  encryption, and the 

reverse process is called deciphering or decryption.(Koblitz, 1994) 

 

The plaintext and ciphertext are broken up into message units. A message unit 

might be a single letter, a pair of letters(digraph), a tirple of letters(trigraph), or a block 

of 50 letters. An enciphering transformation is a function that takes any plaintext 

message unit and gives us a ciphertext message unit. In other words, it is a map f  from 

the set P of all possible plaintext message units to the set C of all possible ciphertext 

message units. We shall always assume that f  is a 11−  correspondence. That is, given 

a ciphertext message unit, there is one and only one plaintext message unit for which it 

is the encryption.  

The deciphering transformation  is the map 1−f  which goes back and recovers 

the plaintext from the ciphertext. We can represent the situation schematically by the 

diagram 

 

 
22 
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PCP ff ⎯⎯ →⎯⎯→⎯
−1

 . 

Any such set-up is called a cryptosystem. 

 

4.1.1 Representation of a message in a finite field npF  

Since npF  is an −n dimensional vector space over pF  , ∃  a basis  

110 ,......,, −nααα  

such that any element npFofP \{0}  is uniquely represented as  

111100 ...... −−+++= nnaaaP ααα  

where 110 ,.....,, −naaa pF∈  not all of them zero. On the other hand ,such a nonzero n-

tuple ( 110 ,.....,, −naaa ) determines a message as an integer 

1
1

2
210 ..... −

−++++= n
n papapaaP  

in 

npΖ \{0}= }1,....,2,1{ −np  

If we use an N-letter alphabet with k-blocks such that 

1−≤ nk pN  

then a k-block is represented as an integer 

01
2

2
1

1 ..... bNbNbNbP k
k

k
k ++++= −

−
−

−  

in 

},....,2,1,0{ 1−=Ζ k
n Nk  

 

1+= PP  determines an element in npΖ \{0} since 1−≤ nk pN , thus, an element P  is 

determined in npF \{0}. 

Remark. Let )(αpp FF n =  and unique monic irreducible  polynomial be         

01
2

2
1

1 ......)( cxcxcxcxxf n
n

n
n

n +++++= −
−

−
−  
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Then 

},.....,,,1{ 12 −nααα  

is a basis of npF  over pF . Thus, any element npFinP  can be written uniquely as  

1
1

2
210 ..... −

−++++= n
naaaaP ααα  

where pi Fa ∈   for 1,....,2,1,0 −= ni . Since 

Fp ≃ Fpx╱  f  

npF  can be represented by the set of all polynomials of degree less than n,i.e., 

{ ii
n

n Fbbxbxbxb ∈++++−
− :..... 01

2
2

1
1   for }1,...,2,1,0 −= ni  

where the addition of polynomials is the obvious one and the multiplication of the 

polynomials can be done the usual multiplication modulo 

01
2

2
1

1 .....)( cxcxcxcxxf n
n

n
n

n +++++= −
−

−
−  

Example4.1.1 3,3 == np . It is easy to see that 12 23 ++ xx   is irreducible in ][3 xΖ . 

Thus, 

][3 xΖ / >++< 12 23 xx ≃ 33F  

33F \{0} }222,....,2,2,1,,2,1{ 2 ++++= xxxxxx  

Take 1326 3 −≤=N . Then  

 
A  B   C    D         E          F      G         H        I         J             K             L               M   
1   2    x   x+1     x+2      2x    2x+1   2x+2    2x    12 +x     22 +x      xx +2      12 ++ xx  
 
 
      N                 O                P                       Q               R             S              T 

22 ++ xx     xx 22 +     122 ++ xx        222 ++ xx      22x      12 2 +x     22 2 +x  
 

     U                  V                     W                  X                   Y                         Z 
xx +22       12 2 ++ xx       22 2 ++ xx      xx +22       122 2 ++ xx        222 2 ++ xx  
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4.2 THE MASSEY-OMURA CRYPTOSYSTEM(For Finite Fields) 
 

We suppose that everyone has agreed upon a finite field qF , which is fixed and 

publicly known. Each user of the system secretly selects a random integer e  between 

10 −qand  such that 1)1,gcd( =−qe  and, using the euclidean algorithm, computes its 

inverse 1mod1 −= − qed   i.e., )1(mod1 −≡ qde . If user A (Nikita) wants to send a 

message P to Michael, first she sends him the element AeP . This means nothing to 

Michael, who, not knowing Ad , con not recover P. But, without attempting to make 

sense of it, he raises it to his Be , and sends BAeeP  back to Nikita. The third step is for 

Nikita to unravel the message part of the way by raising to the thd A −  power , because 

PP AAed = , this means that she returns BeP  to Michael, who can read the message by 

raising this to the thdB −  power.(Koblitz, 1994) 

 
The idea behind this system is rather simple, and it can be generalized to settings 

where one is using other processes besides  exponentiation in finite fields. However, 

some words of caution are in order. First of all, notice that it is absolutely necessary to 

use a good signature scheme along with the Massey-Omura system. Otherwise, any 

person C  who is not supposed to know the message P could pretend to be Michael, 

returning to Nikita CAeeP ; not knowing that an intruder was using his own Ce , she 

would proceed to raise to the Ad  and make it possible for C  to read the message. Thus, 

the message BAeeP  from Michael to Nikita must be accompained by some 

authentification, i.e., some message in some signature scheme which only Michael 

could have send. 

 
In the second place, it is important that, after a user such as B  or C  has 

deciphered various messages P , and so knows various pairs ),( AePP , he can not use 

that information to determine Ae . That is suppose Michael could solve the discrete log 

problem in *
qF , thereby determinig from P  and AeP  what Ae  must be. In that case he 

could quickly compute 1mod1 −= − qed AA  and then intercept and read all future 

messages from Nikita, whether intended for him or not. 
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4.2.1 Massey-Omura Protocol 
 

                                       
 

  
 

1. Nikita selects a private number                              1. Michael  selects a private number   

20, −≤≤ pee AA                                     .20, −≤≤ pee BB   

2. Nikita calculates        2.  Michael calculates  

)1mod(1 −≡ − ped AA             )1mod(1 −= − ped BB  

3. Nikita calculates  

.mod pm Ae       

bem    

4. Michael calculates                        

.mod)( pm BA ee  

BAeem  

5. Nikita selects a private number   

).(mod)( pmm BABA edee =  

                                                              Bem        

 

6.Michael calculates  

  mpm BBe d =mod)(  

 

 

Figure 4.1 Massey-Omura Cryptosystem Protocol 
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Example4.2.1 Take the finite field 33F .Suppose that Alice chooses 3=Ae . It is correct 

since 1)26,3(.. =dcg . Its arithmetic inverse Ad =9. Alice sends plaintext 

“ go” 

to Bob as 

((2x+1) 3 ,(x 2 +2x) 3 )=(2x 2 +2, x 2 +2x+1) 

since x 3 =x 2 +2. So ,Bob receives ciphertext 

(t,p) 

If the private key of Bob is 5=Be ,then 21=Bd  and Bob sends 

),()12,1())12(,)22(( 25252 gmxxxxxx =+++=+++  

to Alice since 

:Mapleby (Rem 3mod),12,)22( 2352 xxxx +++  gives 12 ++ xx  

and 

(:MapleBy Rem ),12,)12(( 2352 xxxxx ++++ mod 3  gives 12 +x  

Now , Alice sends 

),()2,12())12(,)1(( 22992 nsxxxxxx =+++=+++  

to Bob since 

(:MapleBy Rem (( ),12,)1 2392 xxxxx ++++  mod 3  gives 12 2 +x  

(:MapleBy Rem(( ),12,)12 239 xxxx +++  mod 3  gives 22 ++ xx . 

Bob can obtain the original plaintext by calculating 

),()2,)12())1(,)12(( 2212212 ogxxxxxx =++=+++  

since 

(:MapleBy Rem ),12,)12(( 23212 xxxx +++  mod 3  gives 12 +x  

and 

:MapleBy (Rem ),12,)1(( 23212 xxxxx ++++  mod 3   gives xx +2  

 

Example4.2.2 The Massey-Omura Cryptosystem Works as follows. 

Setup 

o p , a large prime number, is chosen and made public. 

o Nikita chooses private integers Ae  and Ad  such that )1(mod1. −≡ pde AA . 
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o Michael chooses private integers Be  and Bd  such that )1(mod1. −≡ pde BB . 

For Nikita to send a message }1,...,2,1{ −∈ pm  to Michael: 

o Nikita computes pmc Ae mod0 =  and sends it to Michael. 

o Michael computes pcc Be mod01 =  and sends it to Nikita. 

o Nikita computes pcc Ad mod12 =  and sends it to Michael. 

o Michael computes pcc Bd mod23 = . 

Show that 3cm =  

Since )1(mod1.)1(mod1. −≡−≡ pdeandpde BBAA , there are integers Ak  and Bk  

such that 1)1.(.1)1(. +−=+−= pkdeandpkde BBBAAA . 

Now,clearly  

BABA ddeemc ...
3 = . 

Note that  

=+−+−= )1)1.().(1)1.((... pkpkddee BABABA  

1)1)(()1(. 2 +−++− pkkpkk BABA   and 

BABA ddeemc ...
3 ≡  

                                                             1)1)(()1( 2 +−++−≡ pkkpkk BABAm  

                                                             11)1(1 .).()( mmm BABA kkppkkp +−−−≡  

                                                             mpkkpkk BABA .)1.()1( )1()1( −−≡     (By F.L.L) 

                                                             m≡  

 

4.3 THE ELGAMAL CRYPTOSYSTEM(For Finite fields). 

We start by fixing a very large finite field qF  and element *
qFg ∈  (preferably, but 

not necessary, a generator). We suppose that we are using plaintext message units with 

numerical equivalents P  in qF . Each user A  randomly chooses an integer Aaa = , say 

in the range 10 −<< qa . This integer a  is the secret deciphering key. The public 

enciphering key is the element q
a Fg ∈ . 
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To send a message P  to the user A , we choose an integer k  at random, and then send 

A  the following pair of elements of qF : 

),( akk Pgg  

Notice that we can compute akg  without knowing a , simply by raising ag  to the 

powerthk − . Now A , who knows a , can recover P  from this pair by raising the first 

element kg  to the powertha −  and dividing the result into the second element. In 

other words what we send A consists of a disguised form of the message P−  is 

“wearing a mask” akg - along with a “clue” , namely kg , which can be used to take off 

the mask . 

 

4.3.1 The ElGamal Algorithm 

 
Key Generation 

o Select a large prime p  and g , a primitive element pmod . 

o Recipient Michael has a secret number a  and computes )(mod pgb a≡  

The ElGamal Encryption Algorithm 

)i Sender (Nikita) a random number 10, −≤≤ pkk  

)ii Computes the message key, )(mod pbK k≡  

)iii k  and K  are used to compute the ciphertext ),( 21 cc  for message m  

)(mod1 pgc k≡  

)(mod2 pKmc ≡  

)iv This then sent to recipient  

 

The ElGamal Decryption Algorithm 

To decrypt the message is deterministic and consists of two steps: 

)i Extracts the message key )(mod1 pcK a≡  

)ii K  is used to unmask the plaintext  message m  

)(mod1
2 pKcm −≡  
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Example4.3.1 Take the finite field 33F  and xg = . Suppose that Bob chooses 3=a . 

Then 

212 223 +=−−== xxxga  

is public key. Suppose that Alice chooses 2=k . Then ,Alice sends plaintext  

“help” 

to Bob as 

))12(,(,))2(,(,))22(,( 6226262 xxxxxxxxxx ++++  

Since  

1)2(44)2()( 22232226 +++=++=+== xxxxxxxxx  

                                                                 = 1223 +++ xxx  

                                                                 = 122 22 ++++ xxx  

                                                                 = xx 22 2 +  

 

22)2(484)22)(22( 22232 +=+++=++=++ xxxxxxxxxx , 

12)2(2462)22)(2( 22232 ++=++=++=++ xxxxxxxxxx , 

23422 242)22)(( xxxxxxx ++=++ = 

xxxxxxxx +=+++=++++ 22222 224)2(222)2(2 , 

xxxxxxxx 2662)22)(12( 23422 +++=+++ = 

126)2(22)2(2 222 +=++=++ xxxxxx . 

 

Thus, Bob receives ciphertext as 

“(I,E) , (I,V) , (I,U) , (I,S)” 

Since it is the correspondent of  

)12,(,)22,(,)12,(,)2,( 2222222 +++++ xxxxxxxxxx . 

 

Example4.3.2 Suppose, 97=p  with primitive root 5=g  

Recipient Michael chooses secret 58=a  computes and publishes his public key: 

44)97(mod558 =≡b  

Nikita wishes to send the message 3=m  to Michael. 
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She obtains Michael’s public key 58=a . 

She chooses random 36=k  and computes stream key: 

75)97(mod44)(mod 36 =≡⇒= KpbK k  

She then computes the ciphertext pair: 

50)97(mod5)(mod 36
11 =≡⇒≡ cpgc k  

  31)97(mod3.75)(mod 22 =≡⇒≡ cpKmc  

and sends the ciphertext )31,50(  to Michael. Michael recovers the message key 

75)97(mod50)(mod 58
1 =≡⇒≡ KpcK a  

Michael computes the inverse  

)97(mod221 ≡−K  

Michael recovers the message m  

3)97(mod22.31 =≡m  

 

4.4 THE DIFFIE-HELLMAN KEY EXCHANGE SYSTEM 

 
Because public key cryptosystems are relatively slow compared to classical 

crypyosystems, it is often more realistic to use them in a limited role in conjunction 

with a classical cryptosystem in which the actual messages are transmitted. In 

particular, the process of agreeing on a key for a classical cryptosystem can be 

accomplished fairly efficiently using a public key system. The first detailed proposal for 

doing this, due to W.Diffie and M.E.Hellman, was based on the discrete logarithm 

problem.(Koblitz, 1994) 

We suppose that the key fort he classical cryptosystem is a large randomly chosen 

positive integer (or a collection of such integers).For example, suppose wewant to use 

an afine matrix transformation of pairs of digraphs. 

2mod N
f
e

P
dc
ba

C ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡  

where 2,,,,,0 Nfedcba ≤≤   and P  is a column vector consisting of the numerical 

equivalents of two successive plaintext digraphs in a letterN −  alphabet. Once we have 

a randomly selected k   

120 Nk <<  
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We can take a , b , c , d , e , f   to be the six digits in k written to the base 2N .(We 

must check that bcad −  is invertible modulo 2N , i.e., that it has no common factor 

with N ; otherwise we choose another random integer k .) 

We observe that choosing a random integer in some interval is equivalent to choosing a 

random element of a large finite field of roughly the same size. Let us suppose, for 

example, that we want to choose a random positive 12Nk < . If our  finite field is a 

prime field of p  elements, we simply let an element of pF  correspond to an integer 

from 10 −pto  in the usual way; if the resulting integer is larger than 12N , we reduce 

it modulo 12N . 

 
We now describe the Diffie-Hellman method for generating a random element of a 

large finite field qF . We suppose that q  is public knowledge; everyone knows what 

finite field our key will be in. We also suppose that g  is some fixed element of qF , 

which is also not kept secret. Ideally, g  should be a generator of *
qF ; however, this is 

not absolutely necessary. The method described below for generating a key will lead 

only to elements of qF  which are powers of g ; thus, if we really want our random 

element of *
qF  to have a chance of being any element, g  must be a generator. 

Suppose that two users N (Nikita) and M (Michael) want to agree upon a key 

which they will use to encrypt their subsequent messages to one another. Nikita chooses 

a random integer a  between 11 −qand , which she keeps secret, and computes 

q
a Fg ∈  , which she makes public. Michael does the same: He chooses a random b  and 

makes public bg . The secret key they use is then abg . Both users compute this key. 

For example, Nikita knows bg and her own secret a . 

 

4.4.1 Diffie-Hellman Setup 

All users agree on global parameters: 

o Large prime integer or polynomial q  

o α  a primitive root mod q 

Each user  generates their key 
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o Chooses a secret key (number): qxN <   

o Compute their public key: qy Nx
N modα=  

Each user makes public that key Ny  

 

4.4.2 Diffie - Hellman Key Exchange 

Shared session key for users MandN is NMK : 

qK MN xx
NM mod.α=  

                                                              qy Mx
N mod=   (which M can compute) 

                                                              qy Nx
M mod=   (which N can compute) 

NMK  is used as session key in private-key  encryption scheme between Nikita and 

Micheal. If  Nikita and Micheal subsequently communicate, they will have the same key 

as before, unless they choose new public-keys attacker needs an x , must solve discrete 

log. 

Example4.4.1 

Users Nikita and Micheal who wish to swap keys: 

Agree on prime 353=q  and 3=α  

Select random secret keys: 

o N chooses 97=Nx  ,  M chooses 233=Mx  

Compute public keys: 

o 40353mod397 ==Ny  (Nikita) 

o 248353mod3233 ==My  (Micheal) 

Compute shared session key as: 

160248353mod 97 === Nx
MNM yK  (Nikita) 

16040353mod 233 === Mx
NNM yK  (Michael) 

 

Example4.4.2 Suppose that Alice and Bob agree to communicate using affine 

enciphering transformation 

C≡AP+B mod N. 
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The message units are single letters in the 29- letter alphabet with A-Z corresponding to        

0-25, blank=26,  .=27,  ?=28. Regard the key (A,B) as an element of 

229FinBxA+ \{0} 

Here we can take 

12 ++ xx  

as irreducible polynomial of degree 2 in ][29 xΖ  and xg = . Let Alice chooses 128=a .  

Then 

2828128128 +== xxg  

(:( MapleBy Rem 29mod),1,( 2128 xxxx ++  gives )2828 +x  

is made public by Bob. 

a) The enciphering key  

2828)2828()( 220220128 +=+== xxxgab  

b) The ciphertext of Alice corresponding to  

"are you in danger?" 

is 

?lyceoicupcz?pwyla 

since 

  

(28.0+28,28.17+28,28.4+28,28.26+28,28.24+28,28.14+28, 

28.20+28,28.26+28,28.8+28,28.13+28,28.26+28,28.3+28, 

28.0+28,28.13+28,28.6+28,28.4+28,28.17+28,28.28+28) 

is equal to  

(28,11,24,2,4,14,8,2,20,15,2,25,28,15,22,24,11,0) modulo 29. 

 

Example4.4.3 Suppose 347=p    and  )11(11 *
347Zgeneratesgg ==  

Nikita randomly selects 240=Nx  computes  49)347(mod11240 ==Ny   and sends 

49=Ny  to Michael. 

Michael randomly selects 39=Mx  computes  285)347(mod1139 ==My  and sends 

285=My  to  Nikita. Nikita computes  268)347(mod285240 =≡Nx
My  

Michael computes  268)347(mod4939 =≡Mx
Ny  
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CHAPTER 5 

 

QUADRATIC RESIDUES AND LEGENDRE SYMBOL 
 

5.1 QUADRATIC RESIDUES 
 
Proposition5.1.1(Koblitz, 1994) Let g be a generator of *

qF . Then jg  is an n-th root of 

unity if and only if 1mod0 −≡ qnj  . The number of n-th roots of unity is 

)1,(.. −qndcg . In particular, qF  has a primitive n-th root of unity if and only if 

n│ 1−q . If ξ  is a primitive n-th root of unity in qF , then jξ  is also a primitive n-th 

root if and only if 1),(.. =njdcg . 

 

Proof. Any element of  *
qF  can be written as a power jg  of the generator g. A power of 

g is 1  if and if only the power is divisible by 1−q . Thus, an element jg  is an n-th root 

of unity if and only if  1mod0 −≡ qnj . Next, let )1,(.. −= qndcgd . The equation 

1mod0 −≡ qnj  is equivalent to the equation )1mod(0
d

qj
d
n −

≡ . Since dn  is prime to 

dq 1− , the latter congruence is equivalent to requiring  j to be a multiple of dq 1− . In 

other words the d  distinct powers of dqg 1−   are precisely the n-th roots of unity. There 

are n such roots if and only if  nd = , i.e., n│q-1. Finally, if n  divides 1−q , let 

nqg )1( −=ξ . Then jξ equals 1 if and only if n│j . The k-th power of jξ  equals 1 if and 

only if  nkj mod0≡ . It is easy to see that jξ  has order n. İf and only if j  is prime to n. 

Thus there are )(nϕ  different primitive n-th roots of unity if  n│q-1 . This completes 

the proof. 

 

Corollary5.1.1(Koblitz, 1994) If 1)1,(.. =−qndcg , then 1 is the only n-th root of unity. 

Corollary5.1.2 The element qF∈−1  has a square root in qF  if and only if 4mod1≡q . 
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Definition5.1.1Burton, 2002) Let p be an odd prime and 1),(.. =padcg . If the quadratic 

congruence pax mod2 ≡  has a solution, then a  is said to be a quadratic residue of p. 

Otherwise a  is called a quadratic nonresidue of p. 

Example5.1.1 Consider the case of the prime 13=p . To find out how many of the 

integers 1,2,3,….,12 are quadratic residues of 13, we must know which of the 

congruences  

)13(mod2 ax ≡  

are solvable when a runs through the set {1,2,3,….,12}. Modulo 13, the squares of the 

integers 1,2,3,….,12 are 

   

1076

1285

394

9103

4112

1121

22

22

22

22

22

22

≡≡

≡≡

≡≡

≡≡

≡≡

≡≡

 

 

Consequently, the quadratic residues of 13 are 1,3,4,9,10,12, and  2,5,6,7,8,11 are 

quadratic nonresidues. 

Theorem5.1.1(Euler’s Criterion)(Burton, 2002) Let p be an odd prime and 

1),(.. =padcg . Then a is a quadratic residue of p if and only if  

)(mod12)1( pa p =− . 

 

Corollary5.1.3(Burton, 2002) Let p be an odd prime and .1),(.. =padcg Then a  is a 

quadratic residue or nonresidue of p according to whether  

)(mod12)1( pa p ≡−    or   )(mod12)1( pa p −≡−  

 

Example5.1.2 In the case where 13=p , we find that  

)13(mod1126422 62)113( −≡≡==−  

Thus by the Corollary(5.1.3), the integer 2 is a quadratic nonresidue of 13. 
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Theorem5.1.2 The number of quadratic residues is equal to the number of quadratic 

nonresidues. 

 

5.2 LEGENDRE SYMBOL 

Let a  be an integer and p>2  a prime. We define the Legendre symbol  )(
p
a  equals to  

0,1 or -1 , as follows : 

 

                                             0,   if  p│a 

( )=p
a   1,   if  a  is a quadratic residue mod p ; 

               -1,   if  a  is a quadratic nonresidue mod p . 
 
 
Thus, the Legendre symbol is simply a way of identifying whether or not an integer is a 
quadratic residue modulo p.(Koblitz, 1994) 
 
Proposition5.2.1  

( ) pa p
p
a mod2)1( −≡  

 
Proof. If a  is divisible by p, then both sides are pmod0≡ . Suppose p∤a . By Fermat’s 

Little Theorem , in pF  the square of 2)1( −pa  is 1, so 2)1( −pa  itself is 1± . Let g  be a 

generator of *
pF , and let jga = . As we saw a  is a residue if and only if  j is even. And 

2)1(2)1( −− = pjp ga   is 1  if and only if )1( −pj  is divisible by 1−p , i.e., if and only if 
j  is even. Thus, both sides of the congruence in the proposition are 1±  in pF , and each 
side is +1 if and only if j  is even. 
 
5.2.1 Properties of Legendre Symbol. 
 
Theorem5.2.1 
 

i) If  )(mod pba ≡ , then )()( pbpa =  
 
ii) 1)( 2 =pa  
 
iii) )(mod)( 2)1( papa p−≡  
 
iv) ))(()( pbpapab =  
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v) 1)1( =p   and  2)1()1()1( −−=− pp  
 
vi) )())(()( 22 papbpapab == . 

 
Example5.2.1 Let us ascertain whether the congruence )17(mod462 −≡x  is solvable. 
 
This can be done by evaluating the Legendre symbol )1747(− . We first appeal to 
properties (iv)  and (v)  of  Theorem(5.2.1) to write 
 

)1746()1746)(171()1746( =−=−  
 
Because )17(mod1246 ≡  it follows that  

 
)1712()1746( =  

 
Now property (vi)  gives  
 

)173()172.3()1712( 2 ==  
 
But 
 

)17(mod1)4()81(33)173( 2282)117( −≡−≡≡≡≡ −  

where we have made appropriate use of property (iii) of  theorem(5.2.1) ; hence 

1)173( −= . Inasmuch as 1)1746( −=−   the quadratic congruence )17(mod462 −≡x  

admits no solution. 
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CHAPTER 6 

 

ELLIPTIC CURVES 
 

6.1 GENERAL INFORMATION 

 
Elliptic curves have been extensively studied for over a hundred years, and there is 

a vast literature on the topic. Orginally pursued mainly for aesthetic reasons, elliptic 

curves have been recently become a tool in several important applied areas, including 

coding theory, pseudorandom bit generation; and number theory algorithms                    

( Goldwasser and Kilian for primalitiy proving and Lenstra for integer factorization). 

 

Over the last two or three decades,elliptic curves have been playing an 

increasingly important role both in number theory and in related fields such as 

Cryptography.For example in 1980’s elliptic curves started being used in Cryptography 

and elliptic curve techniques were developed for factorization and primality testing.It 

became famous after the proof of Fermat’s Last Theorem.(By Wiles) 

 

In 1985, Koblitz and Miller independently proposed using the group of points on 

an elliptic curve defined over a finite field in discrete log cryptosystems.The primary 

advantage that elliptic curve systems have over systems based on the multiplicative 

group of a finite field(and also over systems based on the intractability of integer 

factorization) is the absence of a subexponential-time algorithm that could find discrete 

logs in these groups. Consequently, one can use an elliptic curve group that is smaller in 

size while maintaining the same level of security.The result is smaller key sizes, 

bandwidth savings, and faster implementations, features which are especially attractive 

foe security applicaitons where computational power and integrated circuit space is 

limited, such as smart cards, PC(personal computer) cards, and wireless devices. 
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Elliptic curves also appear in the so-called elliptic curve analogues of the RSA 

cryptosystem, as first proposed by Koyama. In these systems, one works in an elliptic  

curve defined over the ring nΖ , and the order of the elliptic curve group serves as the 

trapdoor. The security of these schemes is based on the difficulty of factoring n . They 

are called elliptic because these equations first arose in the calculation of the arc lenght 

of ellipses. 

Definition6.1.1(Koblitz, 1994) Let K  be a field of characteristic≠ 2,3, and let 

baxx ++3  (where Kba ∈, ) be a cubic polynomial with no multiple roots. An elliptic 

curve   over K is the set of points (x,y) with Kyx ∈,  which satisfy the equation  

           baxxy ++= 32                                         (1) 

Together with a single element denoted ∞   and called the “ point at infinity” 

 

If K is a field of characteristic 2, then an elliptic curve  over K  is the set of points 

satisfying an equation of the type either 

                                      baxxcyy ++=+ 32                                     (2) 

or else 

                                      baxxxyy ++=+ 232                                   (3) 

( here we do not care whether or not the cubic on the right has multiple roots) together 

with a “point at infinity” ∞ . 

 

If K is a field of characteristic 3, then an elliptic curve over K  is the set of points 

satisfying the equation 

                                        cbxaxxy +++= 232                                    (4) 

 

Definition6.1.2(Koblitz, 1994) Let Ε  be an elliptic curve over the real numbers and let 

P  and Q  be two points on Ε . We define the negative of  P and the sum P +Q  

according to the following rules: 

 

1) If P is the point at infinity ∞ , then we define –P  to be ∞  and  P +Q  to be  Q ; that 

is, ∞  serves as the additive identity of the group of points. In what follows, we shall 

suppose that neither P  nor  Q  is the point at infinity. 
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2) The negative  –P  is the point with the same x-coordinate but negative the y-

coordinate      of P, i.e., ),(),( yxyx −=− . It is obvious from (1) that ),( yx −  is on the 

curve whenever   ),( yx  is. 

3) If  P and  Q  have different  x-coordinates, then it is not hard to see that the line 

PQl =  intersects the curve in exactly one more point R (unless that line is tangent to 

the curve at P,in which case we take PR = , or at Q , in which case we take QR = ). 

Then define QP +  to be R− , i.e., the mirror image ( with respect to the x-axis) of the 

third point of intersection.  

4) If PQ −=   (i.e., Q has the same  x-coordinate but minus the y-coordinate), then we 

define ∞=+QP  (the point at infinity). 

5) The final possibility is QP = . Then let l be the tangent line to the curve at P , let R  

be the only other point of intersection of  l   with the curve , and define RQP −=+ . 

Example6.1.1 

                          

                                  
 

                                          Figure 6.1   The  elliptic curve  )1( 22 −= xxy   
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6.1.1 Adding Points  P and Q   –  Geometric Approach. 
                                   
                                                             ∞                                                             

 
   

                    
             Figure 6.2 Chord-and-tangent rule  P + Q = R, P ≠ Q 

 
 

 
To get the sum of two points on the curve follow the steps given below: 
 
 
)i Draw a line that intersects distinct points P and Q 

 
 The line will intersect a third point –R 

 
)ii Draw a vertical line through point –R 

 
 The line will intersect a fourth point R 

 
)iii   Point R is defined as the summation of points P and Q 

 
 R = P + Q 

 
 
 
 
 

x

y  

(x1, y1) = P 

 Q = (x2, y2) 

 R = (x3, y3)

 

-R = (x3, -y3)
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6.1.2 Adding Points P and (–P ) – Geometric Approach. 
 
 
 
 

                        
 
 
                                   Figure 6.3 Sum of  the points P and (-P) 
 
 
 
To get the sum of the points P and (-P)  follow the steps given below: 
 
 
)i Draw a line that intersects points P and –P 

 
 The line will not intersect a third point 

 
 

)ii For this reason, elliptic curves include ∞ , a point at infinity 
 

 P + (-P) = ∞ 
 
 

 ∞  is the additive identity 
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6.1.3 Doubling the Point P – Geometric Approach 
 
 
 
 

                       
          

Figure 6.4 Point doubling  RPPP ==+ 2  
 
 
 
)i   Draw a line tangent to point P 

 
 The line will intersect a second point -R 

 
 

)ii   Draw a vertical line through point –R 
 

 The line will intersect a third point R 
 
 

)iii   Point R is defined as the summation of point P with itself 
 

 R = 2·P 
 
 
 
 

x 

y

P = (x1, y1)

 R = (x3, y3) 

-R = (x3, -y3) 
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6.2 THE GROUP STRUCTURE OF  ELLIPTIC CURVES 
 
Let K  be a field and let 
 

}{}:),{( 32 ∞∪++=×∈= baxxyKKyxE  
 
where ∞   is an articial point added to the set of graph of equation which will play the 

role of zero element of the group.(Kendirli, 2006) The operation is defined as follows: 

 
Case1. P  and ∞≠∞≠≠∈ QPQPEQ ,,,    then 
 
1) If 21 xx ≠ , the line through ),( 11 yxP =   and  ),( 22 yxQ =  intersects the curve at a 

point ),( 33 yxR =′  since  

 

0)))((( 3
11

12

12 =++++−
−
−

− baxxyxx
xx
yy  

 
has three roots, i.e., 
 

2

12

12
321 )(

xx
yyxxx

−
−

=++  

 
thus 
 

21
2

12

12
3 )( xx

xx
yyx −−

−
−

=  

 
 

113
12

12
3 ))(( yxx

xx
yyy +−

−
−

=  

 
Define 
 

RQP =+  , 
 
where ),( 33 yxR −=  is the reflection of  R′  across the x-axis. 
 
2) 1221 yyxx −=⇒= . The line through  ),( 11 yxP =  and  ),( 11 yxQ −=  is a vertical 

line which intersects the curve at ∞ , i.e., 

 
∞=+QP  
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Case 2. ),( 11 yxQP ==  then the slope of the tangent line at P  can be calculated by 

implicit differentiation 

 

1

2
12
2

332
y

axmaxyy +
=⇒+=′  

1) If 01 =y , then the line is vertical and intersects the curve at ∞ , i.e., 

 

∞=+ PP  

 

2) If 01 ≠y , then  

0))(( 32
11 =++++−− baxxyxxm  

 

has a double root at 1x  since the derivative of equation 

03))((2 2
11 =+++−− axmyxxm  

 

has also 1x  as its root. Thus,  

1
2

3
2

311 2xmxmxxx −=⇒=++  

                                                        1133 )( yxxmy +−=  

 

Consequently ,  

)))((,2( 1131
2 yxxmxmPP +−−−=+  

 

Case 3. ∞=Q  then  

1) If ∞≠= ),( 11 yxP , the line through P and  Q  is a vertical line which intersects the 

curve at  

),( 11 yxP −=′  

 

Whose reflection across the x-axis is P  itself. Thus , PP =∞+  . 

2)If  ∞=P   then we define  

∞=∞+∞  
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Example6.2.1 432 −= xy  is an elliptic curve over ℚ. If  )2,2(=P   and  )11,5( −=Q , 

then  

 

9
10652)

25
211( 2

3 =−−
−
−−

=x  

 

27
10902)2

9
106(

3
13

3
−

=+−
−

=y  

 

Hence 

27
1090,

9
106(=+QP ) 

 

Theorem6.2.1 An elliptic curve is an Abelian group under the operation defined with 

the identity element ∞ . 

Note.(Point at infinity)(Koblitz, 1994) We have not yet said much about the “point at 

infinity”  ∞ . By definition, it is the identity of the group law. It is the “third point of 

intersection”  of any vertical line with the curve; that is, such a line has points of 

intersection of the form ),(),,( 1111 yxyx −  and ∞ . A more natural way to introduce the 

point ∞  is as follows. 

By the projective plane we mean the set of equivalance classes of triples ),,( zyx  

(not all component zero) where two triples are said to be equivalent if they are a scalar 

multiple of one another, i.e., ),,( ZYX λλλ ~ ),,( ZYX . Such an equivalence class is 

called a projectice point. 

If a projective point has nonzero Ζ , then there is one and only one triple in its 

equivalence class of the form :)1,,( yx  simply set ZYyZXx == , . Thus the 

projectice plane can be identified with all points ),( yx  of the ordinary plane plus the 

points for which 0=Ζ . The latter points make up what is called the line at infinity 

roughly speaking, it can be visualized as the “horizon” on the plane. Any equation 

0),( =yxF  of a curve in the afine plane corresponds to an equation 0),,(~ =ZYXF  

satisfied by the corresponding projective points: simply replace 

ZYbyyandZXbyx  and multiply by a power of Ζ  to clear denominators. For 

example, if we apply this procedure to the  afine equation (1) of an elliptic curve,  
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obtain its “projective equation” 3232 bZaXZXZY ++= . This latter equation is 

satisfied by all projective points 0),,( ≠ZwithZYX  for which the corresponding 

afine points (x,y), where ZYyZXx == , , satisfy (1). In addition, what projective 

points ),,( ZYX  on the line at infinity satisfy the equation 0~ =F ? Setting 0=Z  in the 

equation leads to 30 X= , i.e., 0=X . But the only equivalence class of triples 

),,( ZYX  with both ZandX  zero is the class of )0,1,0( . This is the point we call ∞ . It 

is the point on the intersection of the axisy −  with the line at infinity. 

 

Definition6.2.1 The value 23 274 ba +=Δ   is called the discriminant of the elliptic 

curve. 

Corollary6.2.1 0274 23 ≠+ ba 03 =++⇔ baxx   has three distinct roots. 

After these now an elliptic curve can be expressed in the form below: 

 

{ } { }∞≠+++=×∈ U0274::),( 2332 babaxxyFFyx  

 

Example6.2.2 The curves defined by 32 xy =    and    )1(22 += xxy  

are not elliptic curves. Why.? 

Because the polynomials on the right hand side have a multiple root. So from the 

perivous corollary, if the curve has multiple root then the discriminant is equal to 0, then 

the equation can not define an elliptic curve. 
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CHAPTER 7 

 

ELLIPTIC CURVES OVER A FINITE FIELD 

 
7.1 ELLIPTIC CURVES OVER A FINITE FIELD 

Let F  be a finite field and let E  be an elliptic curve defined over F . Since there are 

only finitely many pairs ),( yx  with Fyx ∈, , the group )(FE  is cyclic. 

Example7.1.1 Let E  be the curve 5
32 1 Foverxxy ++= . To count points on E , we 

make a list of the possible values of ,x  then of )5(mod13 ++ xx , then of the square 

roots y of )5(mod13 ++ xx . This yields the points on E . 

 
 

Table 7.1  Points of curve over 5F  

x x3 x 1 y points
0 1 1 0,1,0,4
1 3 − −

2 1 1 2,1,2,4
3 1 1 3,1,3,4
4 4 2 4,2,4,3
    

 
 
Therefore, )( 5FE  has order 9, i.e., 
 

{ } { }∞∪= )3,4(),2,4(),4,3(),1,3(),4,2(),1,2(),4,0(),1,0()( 5FE  
 
We now show that this ia cyclic group. Take a random point as )1,0(=P . Let’s 

calculate P2 . Before, recall that;  

)))((,)(( 131
12

12
21

2

12

12 yxx
xx
yyxx

xx
yyQP −−

−
−

−−
−
−

=+  

 

 

 
         49 



 50

))(
2

3,2)
2

3(( 131
1

2
1

1
2

1

2
1 yxx

y
axx

y
axPP −−

+
−

+
=+  

 

 

)1,0(=P                                ?)1,0()1,0( =+=+ PP  

                              )1)0)(
1.2

10.3(,0.2)
1.2

10.3(( 3
2

2
2

−−
+

−
+

=+ xPP  

     

                                                         = 1)
4
10(

2
1,0

4
1( −−− ) 

           

                                                         = )2,4()
8
9,

4
1( =−  

Now let’s calculate P3 ; 

)2,4()1,0(23 +=+= PPP  

                                                       = )1)0)(
04
12(,40)

04
12(( 3

2 −−
−
−

−−
−
− x  

 

                                                       = )1)4
16
1(

4
1,4

16
1( −+−−  

 

                                                       = )
64
1,

16
63( −−   

 

                                                       = )1,2(   

 

Similarly, if you do the calculations you will get ; 

)1,3(224 =+= PPP  

 )4,2(235 =+= PPP  

)3,4(336 =+= PPP  

                                                      )4,0(67 =+= PPP  

)4,3(78 =+= PPP  

                                                      ∞=+= PPP 89  
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So order of  )1,0(  is equal to 9. All 8 non-zero elements with ∞  form a cyclic group. 

)1,0( is a generator of this group. 

 

Table 7.2 Nonzero elements of the group over 5mod132 ++= xxy  

)1,0(=P  )4,2(5 =P  

)2,4(2 =P  )3,4(6 =P  

)1,2(3 =P  )4,0(7 =P  

)1,3(4 =P  )4,3(8 =P  

 

 

Theorem7.1.1 Let E  be an elliptic curve over a field K  and let n  be a positive integer. 

If the characteristic of K  does not divide n , or is 0, then  

][nE ≃ nn Ζ⊕Ζ  

If the characteristic of  K  is 0>p  and  p│n , write npn r ′=  with p∤n′ . Then 

][nE ≃ nn ′′ Ζ⊕Ζ    or    nn ′Ζ⊕Ζ  

 

Theorem7.1.2(Washington, 2003) Let E  be an elliptic curve over the finite field qF . 

Then 

)( qFE ≃ nΖ       or       
21 nn Ζ⊕Ζ  

for some integer 1≥n  , for some integers 1, 21 ≥nn   with 1n  dividing 2n . 

Proof. A basic result in number theory says that a finite Abelian group is isomorphic to 

a direct sum of cyclic groups 

rnnn Ζ⊕⊕Ζ⊕Ζ ........
21

, 

With in │ 1+in   for 1≥i . Since, for each i, the group 
inΖ  has 1n  elements of order 

dividing 1n , we find that )( qFE  has rn1  elements of order dividing 1n . By 

Theorem(7.1.2), there are at most 2
1n  such points (even if we allow coordinates in the 

algebraic closure of qF ). Therefore 2≤r . This is the desired result. 
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7.1.1 Group Law of Elliptic Curves Over Finite Fields 

Consider the set  )( pFE  over addition. We can see that; 

)i )(,)(, pp FERifFEQP ∈∈∀  (Closure Property) 

)ii )(,, pFERQP ∈∀   then RQPRQP ++=++ )()(  (Associative Property) 

)iii PPPFEPthatsuchFE pp =+∞=∞+∈∀∈∃∞ ,)()(  (Identity element) 

)iv ∞=−=−+∈−∃∈∀ )()(.)()(,)( PPPtsFEPFEP pp  (Inverse element) 

)v PQQPFEQP p +=+∈∀ ,)(,  (Commutative Property) 

Thus we see that )( pFE  forms an Abelian group under addition. 

Theorem7.1.3(Hasse)(Washington, 2003) Let E  be an elliptic curve over the finite 

field qF . Then the order of )( qFE  satisfies 

│ −+1q # )( qFE │ q2≤  

 

7.2 FINDING THE TYPE OF THE GROUP 

 

Example7.2.1 Let’s find the type of the group when  

7532 ++= xxy  

over 7Ζ . 

First, determine whether the discriminant is different from 0 or not. Recall that; 

23 274 ba +=Δ  

)7(mod372754274 2323 ≡×+×=+×=Δ ba  

Now we can use Hasse Theorem in order to estimate the number of elements in )( 7ΖE . 

│ −+17 # )( 7ΖE │ 2915.572 ≈≤  

         │ −8 # )( 7ΖE │ ≤⇒≤ 35 # 13)( 7 ≤FE  

On the other hand, 

)()0,0( 7Ζ∈ E  since  )7(mod070503 ≡+×+ . By Maple, we can obtain all multiples of 

(0,0) in the following way. 

);7,7,5,2],0,0([multsell>  
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[",2[],0,0[,1[[ infinity” , “infinity”9]] 

Now, 

)()2,2( 7FE∈  

since )7(mod475223 ≡+×+ . By Maple 

);7,7,5,4],2,2([multsell>  

[[1,[2,2],[2,[4,0],[3,[2,5],[4,[“infinity” , “infinity”]]. 

 

Another point 

)()0,3( 7ZE∈  

since )7(mod070503 ≡+×+  . By Maple 

>multsell([3,0],4,5,7,7); 

 [[1,[3,0],[2,[“infinity” , “infinity”]], 

[[3,[3,0],[4,[“infinity” , “infinity”]] 

 

Another point 

)()0,4( 7Ζ∈ E  

since )7(mod074543 ≡+×+ . By Maple 

);7,7,5,2],0,4([multsell>  

[[1,[4,0],[2,[“infinity” , “infinity”]] 

 

)()1,6( 7Ζ∈ E  

since )7(mod176563 ≡+×+ . By Maple 

);7,7,5,4],1,6([multsell>  

[[1,[6,1],[2,[4,0],[3,[6,6],[4,[“infinity” , “infinity”]] 

 

We have found 8 different elements so the order of group is 8. But non of these 

elements is the generator of the whole group so this group is not cyclic. Moreover, there 

is an element of order 4. Therefore,  

427 )( Ζ∗Ζ≅ΖE  
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Example7.2.2 Find the type of the group when 7532 ++= xxy   over  13Ζ  

)13(mod372754274 2323 ≡×+×=Δ=+ ba  

Now we can use Hasse Theorem in order to estimate the number of elements in 

)( 13ΖE . 

│ −+113 # )( 13ΖE │ 2111.7132 ≈≤  

 

│ −+113 # )( 13ΖE │ 7≤  

 

≤7 # 21)( 13 ≤ZE  

 

When 0=x  then y  does not exist. You can see this procedure in Maple as below: 

>legendre (7,13); 

1−  

1=x  then 0=y  

)()0,1( 13Ζ∈ E  

since )13(mod071513 ≡+×+  

Using Maple to determine the order of the point, 

> multsell([1,0],21,5,7,13); 

 

 [[1, [1, 0]], [2, ["infinity", "infinity"]], [3, [1, 0]], 

                         [4, ["infinity", "infinity"]], [5, [1, 0]], [6, ["infinity", "infinity"]], 

[7, [1, 0]], [8, ["infinity", "infinity"]], [9, [1, 0]], 

                                [10, ["infinity", "infinity"]], [11, [1, 0]], 

                                [12, ["infinity", "infinity"]], [13, [1, 0]], 

                                [14, ["infinity", "infinity"]], [15, [1, 0]], 

                                [16, ["infinity", "infinity"]], [17, [1, 0]], 

                                [18, ["infinity", "infinity"]], [19, [1, 0]], 

                                [20, ["infinity", "infinity"]], [21, [1, 0]]] 

 

When  x=2   then  y=5 

(2,5)∈ )( 13ΖE     since   2³+5×2+7≡12(mod13) 
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> multsell([2,5],21,5,7,13); 

     

[[1, [2, 5]], [2, [5, 12]], [3, [10, 11]], [4, [4, 0]], [5, [10, 2]], 

[6, [5, 1]], [7, [2, 8]], [8, ["infinity", "infinity"]], [9, [2, 5]], 

[10, [5, 12]], [11, [10, 11]], [12, [4, 0]], [13, [10, 2]], [14, [5, 1]], 

[15, [2, 8]], [16, ["infinity", "infinity"]], [17, [2, 5]], [18, [5, 12]], 

[19, [10, 11]], [20, [4, 0]], [21, [10, 2]]] 

     

Here  we  have   found  at  least  9 different  elements  so  the  order  of  (2,5) 

which  is  8  must  divide  the  order  of  the  group.But  by  Hasse  theorem we  know 

that  the  order  of  group  is  at  most  21.So the  order of  the  group is  must  be  16. 

Therefore, 

8213)( Ζ∗Ζ≅ΖE  

 
But here there is a critical point to investigate , what is it.? The question is this , 

why especially, )( 13ΖE  isomorphic to 82 Ζ∗Ζ  . Why not )( 13ΖE  isomorphic to 16Ζ  or  

44 Ζ∗Ζ  or 2222 Ζ∗Ζ∗Ζ∗Ζ  . They also have 16 elements as 82 Ζ∗Ζ . The answer for 

this question can be this ;  

 
We have an element having the order 8, so in  44 Ζ∗Ζ  and in  2222 Ζ∗Ζ∗Ζ∗Ζ   

there is no an element of order 8 , by the way we can immediately omit them. Only 16Ζ  

is left. 16Ζ  has an element of order 8 and also an element of order 2 , but here the group 

which is generated by the point (1,0) is not contained  by the group which is generated 

by the point (2,5). Thus  

8213)( Ζ∗Ζ≅ΖE  
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CHAPTER 8 

 

ELLIPTIC CURVE CRYPTOSYSTEMS OVER 

A FINITE FIELD 

 

8.1 THE BASIC SETUP  

 
Nikita  wants to send a message, often called the plaintext, to Michael. In order to 

keep the eavesdropper Eve from reading the message, she encrypts it to obtain the 

ciphertext. When Michael receives the ciphertext, he decrypts it and reads the message. 

In order to encrypt the message. Nikita uses an encryption key. Michael uses a 

decryption key to ecrypt the ciphertext. Clearly, the decryption key must be kept secret 

from Eve. 

 
There are two basic types of encryption. In symmetric encryption, the encryption 

key and decryption key are the same, or one can be easily deduced from the other. 

Ğoğular symmetric encryption methods include the Data Encryption Standard (DES) 

and the Advanced Encryption Standard (AES, often referred to by its original name 

Rijndeal). In this case, Nikita and Michael need to have some way of establishing a key. 

For example. Michael could send a messenger to Nikita several days in advance. Then, 

when it is time to send the message, they both will have the key. Clearly is impractical 

in many situations. 

 
The other type of encryption is public key encryption, or asymmetric encryption. 

In this case, Nikita and Michael do not need to have prior contact. Michael publishes a 

public encryption key,  which Nikita uses. He also has a private decryption key that 

allows him to decrypt ciphertexts. Since everyone knows the encryption key, it should 

be infeasible to deduce the decryption key from the encryption key. The most famous 

public key system is known as RSA and is based on the difficulty of factoring integers 
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into primes. Another wellknown system is due to EIGamal and is based on the difficulty 

of the discrete logarithm problem. 

 
Generally, public key systems are slower than good symmetric systems. 

Therefore, it is common to use a public key system to establish a key that is then used in 

a symmetric system. The improvement in speed is important when massive amounts of 

data are being transmitted. 

 

8.1.1 Representation of a message in an elliptic curve 

BAxxy ++= 32  

over a finite field npF . Again, if we use an N-letter alphabet with blocksk −  such that 

100
1−

<
n

k pN  

then a blockk −  is represented as an integer 

01
2

2
1

1 ... bNbNbNbP k
k

k
k ++++= −

−
−

−  

in }1,...,2,1,0{ −=Ζ k
N Nk . Let 

jPx j += 100.           for 1000 <≤ j  

Let )(mod n
jj pxx ≡  and 

1
,1

2
,2,1,0 ...... −

−++++= n
jnjjjj pbpbpbbx  

So let 

1,12,21,10,0 ....... −−++++= njnjjjj bbbbx αααα  

where 

},...,,,{ 1210 −nαααα  

İs a fixed vector space basis of  npF  over ppF Ζ= . For 99,...,2,1,0=j  compute 

BAxxt jjj ++= 3  

in npF . If we find a 0y  in npF  such that 

0
2
0 ty =  

We take ),( 00 yxP = . If not we look at 1y   for 1s  , i.e., 
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1
2
1 sy =  

It is easy to see that there is only about a 1002
1  probability that this method will fail to 

produce a point P  whose coordinatex −  corresponds to an integer between 

99100.100. ++mm . 

 
8.2 THE MASSEY-OMURA CRYPTOSYSTEM(For Elliptic Curves) 

 

Nikita wants to sends a message to Michael over public channels. They have not 

yet established a private key. One way to do this is the following. Nikita puts her 

message in a box and puts her lock on it. She sends the box to Michael. Michael puts his 

lock on it and sends it back to Nikita. Nikita then takes her lock off and sends the box 

back to Michael. Michael then removes his lock, opens the box, and reads the message. 

This procedure can be implemented mathematically as follows. 

1. Nikita and Michael agree on an elliptic curve E  over a finite field qF  

such that the discrete log problem is hard in )( qFE . Let )(# qFEN = .  

2. Nikita represents her message as a point )( qFEM ∈ . (We`ll discuss how to do 

this below) 

3. Nikita chooses a secret integer Am  with gcd 1),( =Nma , computes       

MmM A=1 , 

and sends 1M  to Michael. 

4. Michael chooses a secret integer Bm  with gcd 1),( =NmB , computes  

12 MmM B= , 

and sends 2M  to Nikita. 

5. Nikita computes NA Zm ∈−1 . She computes  

2
1

3 MmM A
−=  

and sends 3M  to Michael. 

6.Michael computes NB Zm ∈−1 . He computes  

3
1

4 MmM B
−= . 

Then MM =4  is the message. 
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Let`s show that 4M  is the original message M . Formally, we have  

MMmmmmM ABAB == −− 11
4 , 

but we need to justify the fact that 1−
Am , which is an integer representing the inverse of 

Am  mod N , and Am  cancel each other. We have )(mod11 Nmm AA ≡− , so 

kNmm AA +=− 11  for some k . The group )( qFE  has order N , so Lagrange`s theorem 

implies that ∞=RN  for any )( qFER∈ . Therefore,  

RRkRkNRmm AA =∞=+=− )1(1 . 

Applying this to MmR B= , we find that 

MmMmmmM BABA == −1
3 . 

Similarly, 1−
Bm  and Bm  cancel, so 

MMmmMmM BBB === −− 1
3

1
4 . 

The eavesdropper Eve knows )( qFE  and the points MmA , Mmm AB , and 

MmB . Let MmmPmbma BABA === −− ,, 11 . Then we see that Eve knows aPbPP ,,  

and wants to find abP . This is the Diffie-Hellman problem. 

The above procedure works in any finite group. It seems that the method is rarely 

used in practice. 

It remains to show to represent a message as a point on an elliptic curve. We use a 

method proposed by Koblitz. Suppose E  is an elliptic curve given by 

BAxxy ++= 32 over pF . The case of an arbitrary finite field qF  is similar. Let m  be 

a message, expressed as a number 100/0 pm <≤ . Let jx mj += 100 for .1000 <≤ j  

For  ,99,.....2,1,0=j  compute BAxxs jjj ++= 3 . If )(mod12/)1( ps p
j ≡− , then js  is 

a squre mod p , in which case we do not need to try any more values of j . When 

)4(mod3≡p , a squre root of  js  is then given by )(mod4/)1( psy p
jj
+≡ . When 

)4(mod1≡p , a square root of  js  can also be computed, but the procedure is more 

complicated (see [19]). We obtain a point ),( jj yx  on E . To recover m from ),( jj yx , 

simply compute ]100/[ jx  (= the greatest integer less than or equal to )100/jx . Since 
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js  is essentially a random element of x
pF , which is cyclic of even order, the probability 

is approximately 1/2 that js  is a square. So the probability of not being able to find a 

point for m  after trying 100 values is around 1002− . 

 
Example8.2.1 Consider the elliptic curve E  defined by  

132 ++= xxy  

over finite field F . We prepare the table below 
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i  ib  

1 α+2 

2 α²+α+1 

3 α²+1 

4 α+1 

5 α²+2 

6 2α 

7 2α²+α 

8 α²+2α+1 

9 2α²+2α+1 

10 2α²+2α 

11 2α²+α+1 

12 α² 

13 2 

14 2α+1 

15 2α²+2α+2 

16 2α²+2 

17 2α+2 

18 2α²+1 

19 α 

20 α²+2α 

21 2α²+α+2 

22 α²+α+2 

23 α²+α 

24 α²+2α+2 

25 2α² 

26 1 

                                               

 

we prepare the following table 
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x 13 ++±= xxy  ),( yx  

0 ±1 (0,1),(0,2) 

1 0 (1,0) 

2 None none 

α None none 

1+α ±(2α²+α+1) (1+α,2α²+α+1),(1+α,α²+2α+2) 

α+2 ±(α+2) (α+2,α+2),(α+2,2α+1) 

2α None none 

2α+1 None none 

2α+2 ±(α²+2) (2α+2,α²+2),(2α+2,2α²+1) 

α² ±(2α²+α) (α²,2α²+α),(α²,α²+2α) 

α²+1 ±(α²+1) (α²+1,α²+1),(α²+1,2α²+2) 

α²+2 None none 

α²+α ±α (α²+α,α),(α²+α,α) 

α²+α+1 None none 

α²+α+2 None none 

α²+2α None none 

α²+2α+1 None none 

α²+2α+2 None none 

2α² ±(α²+α+1) (2α²,α²+α+1),(2α²,2α²+2α+2) 

2α²+1 None none 

2α²+2 None none 

2α²+α ±(2α²+2α) (2α²+α,2α²+2α),(2α²+α,α²+α) 

2α²+α+1 ±(α²) (2α²+α+1,α²),(2α²+α+1,2α²) 

2α²+α+2 ±(α+1) (2α²+α+2,α+1),(2α²+α+2,α+1) 

2α²+2α ±(α²+2α+1) (2α²+2α,α²+2α+1),(2α²+2α,2α²+α+2)

2α²+2α+1 ±(2α²+2α+1,2α²+2α+1) (2α²+2α+1,α²+α+2) 

2α²+2α+2 None none 
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since 

213 =b  

2 doesn’t have a square root, since 

(α+2)³+(α+2)+1=α²+α+1=b² 

its square root is 2+= αb ,… 

Now, the number of elements in )( 33FE  is 28=N . Suppose that Alice chooses 5=Ae  

it is correct since 1)5,28gcd( = . Its arithmetic inverse 17=Ad .Alice sends plaintext  

“ go ” 

to Bob as 

))1(),22((5)),2(),22((5 22 +++++ ααααα  

)22,12(),12,1( 22 +++++ ααααα  

since 

→=→+==→≡=→→ α23.21.06)27(mod66006 000 xxxg  

1523
0 22212)2( bs =++=++= αααα  

 

                                                                                                                                                                

which doesn`t have a square root. So, 

α213.21.17)27(mod7601 111 +=→+==→≡= xxx  

923
1 1221)21()21( bs =++=++++= αααα  

which doesn`t have a square root. Next,  

α223.21.28)27(mod8602 222 +=→+==→≡= xxx  

.2221)22()22( 25
2

1023
2 +==⇒=+=++++= ααααα bybs  

 Thus, “g” will be represented by 

)2,22( 2 ++ αα  

on the elliptic curve E. Now let`s look at “o” : 

→++==→≡=→→ 2
00 3.23.11.223)27(mod23140014 xxo  

.1121.22 4
0

82
0

3
00

2
0 +==⇒=++=++=→++= ααααα bybxxsx  

Thus “o” will be  represented by  

).1,22( 2 +++ ααα  
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So, “go” is represented by 

).1,22(),2,22( 22 +++++ ααααα  

Now, Alice will compute 

).1,22(5),2,22(5 22 +++++ ααααα  

5 )2,22( 2 ++ αα = :),(5 517 bb  

)2,22( 2 ++ αα  + )2,22( 2 ++ αα  

Since  

121
12

1
)2(2

1)22(3 28
1822

2
++===

+
=

+

++
= αα

αα
α b

b
m  

the sum is 

).),1(())2(,2( 52416517161781716 bbbbbbbbbbb −−+=−+−−  

So,  

),(),(),(

).,(),(,(),(

192219219

219211916)517517

bbbbbb

bbbbbbbbb

=+

==+
 

Since the slope  

18
8211321
11

.2
1 b

bbbb
m ====  

 

and  

,)1(22 21999910936
1

2
3 bbbbbbbbxmx ==+=+=−=−=  

.

)1()()(
19

13192020212918
1313

b

bbbbbbbbbbbyxxmy

=

=−=−=+−=−−=−−= +

α
 

So, it remains to calculate 

).,(),( 92517 bbbb +  

The slope  

.1
22
22

221
2122

2

2

2

22

172

59

=
++
++

=
−−++
−−++

=
−

=
αα
αα

ααα
ααα

bb
bbm  

1822217
21

2
3 1212211 bbbxxmx =+=−−−−−=−−=−−= αααα  

.22 1751817
3 bbbby =+=−−= α  
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So, the ciphertext for ""g  is  

).22,12( 17182 bb =+=+ αα  

Now, let`s look at 

.1
22

1
)1.(2

1
:)1,22(""

9
17

4212

b
b

m

bbo

==
+

=
+

=

=+=++=

αα

ααα
 

Thus,  
2328182113182118

1
2

3 22 bbbbbbbxmx =+=−=−=−=−= + αα  

and 

.2)()( 19464423219
131

3 bbbbbbbbyxxmy ==−=−−=−−=−−= αα  

Therefore, 

).,()1,22()1.22( 192342124212 bbbbbb ==+=+++=+=++ αααααα  

Now. 

:),(),( 19231923 bbbb +  

since 

,11
2

1 20
63219 b

bbb
m ====  

we have  
3210142340

1
2

3 122 bbbbbxmx =+=−=−=−= α  

 

and 

.22)()( 1621923171932320
1313 bbbbbbbbyxxmy =+=−−=−−=−−= α  

Let`s look at 

:),()1,22( 1634212 bbbb +=+=++ ααα  

The slope 

.20
15

9

213

416

b
b
b

bb
bbm ==

−
−

=  

 

.22)()(

,1

24242415442120
1313

43211432140
21

2
3

bbbbbbbbyxxmy

bbbbbbbxxmx

=++=−−=−−=−−=

=+=−−=−−=−−=

αα

α
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So, the ciphertext for ""o  is 

).22,1()1,22(5 24244212 bbbb =++=+==+=++ αααααα  

Consequently Bob receives cipherteext 

).22,1(),22,12( 242417182 bbbb =++=+=+=+ ααααα  

Then Bob calculates in the same way the expression 

),(3),,(3 2441718 bbbb  

and  send it to Alice. She then calculates 

)),(3(17)),,(3(17 2441718 bbbb  

and sends it to Bob. Then Bob can see the orginal plaintext by calculating 

))).,(3(17(19))),,(3(17(19 2441718 bbbb  

 

8.3 THE ELGAMAL CRYPTOSYSTEM(For Elliptic Curves) 

 
Nikita wants to send a message to Michael. First, Michael establishes his public 

key as follows. He chooses an elliptic curve E  over a finite field qF  such that the 

discrete log problem is hard for )( qFE . He also chooses a point P  on E  (usually, it is 

arranged that the order of  P  is a large prime). He chooses a secret integer s  and 

computes sPB = . The elliptic curve E , the finite field qF , and the points P  and B  

are Michael`s public key. They are made public. Michael`s private key is the integer s . 

To send a message to Michael, Nikita does the following: 

1. Downloads Michael`s public key. 

2. Expresses her message as a point )( qFEM ∈ . 

3. chooses a secret random integer k  and computes kPM =1 . 

4. Computes kBMM +=2 . 

5. sends 21, MM  to Michael. 

Michael decrypts by calculating 

12 sMMM −= . 

This decryption works because 

MskPsPkMkPskBMsMM =−+=−+=− )()()(12 . 
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The eavesdropper Eve knows Michael`s public information and the points 1M  and 

2M . If she can calculate discrete logs, she can use P  and B  to find s , which she can 

then use to decrypt the message as 12 sMM − . Also, she could use P  and 1M  to find 

k . Then she can calculate kBMM −= 2 . If she cannot calculate discrete logs, there 

does not appear to be a way to find M . 

It is important for Nikita  to use  a different random k  each time she sends a 

message to Nikita. Suppose Nikita uses the same k  for both M  and M ′ . Eve 

recognizes this because then 11 MM ′= . She she then computes MMMM −′=−′ 22 . 

Suppose M  is a sales announcement that is made public a day later. Then Eve finds out 

M , sos he calculates 22 MMMM ′+−=′ . Therefore, knowledge of one plaintext M  

allows Eve to deduce another plaintext M ′  in this case.  

 

Example8.3.1  Consider the Example(8.2.1). Let  

).,( 2 ααα +=O  

Suppose that Bob chooses 4=a .Then O4  is public key. Let`s calculate it: 

)1,0(),(),( 2222 b=++=+++ αααααααα  

since                                  ,11
)(2

1 16
1023132 b

bbb
m ===

+
=

αα
 

022 632
3 =−=−= αα bbx  

2221916216
3 1)0( bbbby =++=−−=−−−= ααααααα . 

Moreover,  

)2,(),0(),0( 2222 bbb =+  

since                                          ,1
2
1 11

152 b
bb

m ===  

22222
3 20.2 bbx =++=−= αα  

21)0( 2222211
3 =−−−+=−−= ααααbbby . 

Therefore  

)2,(4 22bO = . 

Suppose that Alice chooses 2=k . 

),0(2 2bO =  
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to Bob as 

)),(),,0(()))44((),,0(( 81422 bbbOOPb =++ . 

Since ,1
1
1

2.2
1

===m  

232922
3 1.21 bbbx =+=−=− αα  

,02)(1 2322
3 =−−= bby  

)0,(44 232 bOO =+=+ αα . 

Now, we need to calculate  

)0,()2,22())44(( 235217 bbbOOP +=+=+=++ αα  

since ""g  is represented by  

)2,22( 5217 bb =+=+ αα . 

⇒==
−
−

= 10
8

18

1723

50 b
b
b

bb
bm  

,12 14231720
3 bbbbx =+=−−= α  

825141710
3 12)( bbbbby =++=−−= αα . 

Now, we calculate similiarly for ""o : 

:)0,()1,22())44(( 234212 bbbOOP +=+=++=++ ααα  

The slope  .0 25
18

17

2123

4

b
b
b

bb
bm ==
−
−

= Thus, 

,0232150
3 =−−= bbbx  

22242125
3 2)0( bbbby =++=−−= αα  

Thus, Bob receives ciphertext as  

)),0(),,0(()),,(),,0(( 2228142 bbbbb . 

 

8.4 THE DIFFIE-HELLMAN KEY EXCHANGE SYSTEM  

 
Nikita and Michael  want to agree on a common key that they can us efor 

exchanging data via a symmetric encryption scheme such as DES(Data Encryption 

Standard) or AES(Advanced Encryption Standard). For example, Nikita and Michael 

could be banks that want to transmit financial data. It is impractical and time-consuming 

to use a courier to deliver the key. Moreover, we assume that Nikita and Michael have 
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had no prior contact and therefore the only communication channels between them are 

public. One way to eatablish a secret key is the following method, due to Diffie and 

Hellman (actually, they used multiplicative groups of finite fields). 

1. Nikita and Michael agree on an elliptic curve E  over a finite field qF  such that 

the discrete logarithm problem is hard in )( qFE . They also agree on a point 

)( gFEp∈  such that the subgroup generated by P  has large order (usually, the curve 

and point are chosen so that the order is a large prime). 

2. Nikita  chooses a secret integer a , computes  

,aPPa =  

and sends aP  to Michael. 

3. Michael chooses a secret integer b , computes  

,bPPb =  

and sends bP  to Nikita. 

4. Nikita computes  

abPaPb = . 

5. Michael computes  

baPbPa = . 

6. Nikita and Michael use some publicly agreed on method to extract a key from 

abP . For example, they could use the the last 256 bits of the x -coordinate of abP  as 

the key. Or they could evaluate a hash function at the x -coordinate. 

 

Example8.4.1 Consider the elliptic curve E  defined by 

132 ++= xxy  

over finite field 33F . Assume that 

),( 2 ααα +=O  

as in the previous example. Let the key of Alice be 2=a  , and the key of Bob be 4=b . 

Then 

)0,(8 232 bOabO =+== αα  
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which was calculated in the previous example( Example 8.3.1). Therefore we can take 

the enciphering transformation as  

)(mod1 NPC +≡  

where the message units are single letters in the alphabetletter−29   with ZA−  

corresponding to 28?,27 = . Therefore, Alice sends plaintext 

Addition of infinity is essentially  the projective completion  of the afine curve as a 

ciphertext 

qspkuifzfttfoujbmmjtjogjojuzpgbeejujpo ......  

dvswfbggjofuifpsdpnqmfujpofdujwf .....  

to Bob. 
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CHAPTER 9 

 

CONCLUSIONS 

 

 
As a branch of mathematics, abstract algebra shares an important topic with 

number theory which is called finite fields. 

 
Finite fields have many applications in many branches of mathematics especially 

in number theory. In this thesis, we studied elliptic curves over a finite field with 

cryptographic applications. We see that defining an elliptic curve over a finite field 

offers us more security. Namely, let’s define an elliptic curve over pZ (where p is a 

prime number). When you choose p as a large prime then it means that the ciphertext 

becomes so hard to crack. 

 
On the other hand, when we compare elliptic curve cryptosystem with the others 

such as RSA, Diffie – Hellman Key Exchange and ElGamal cryptosystem, we have 

some practical advantages of elliptic curve cryptosystem as mentioned below. 

i) Faster then the other systems 

ii) Low power consumption 

iii) Low memory usage 

iv) Low CPU utilization 

 
For example, it is estimated that a key size of 4096 bits for RSA gives the same 

level of security as 313 bits in an elliptic curve system. This means that 

implementations of elliptic curve cryptosystems require smaller chip size, less power 

consumption. 

 
As a consequence, the study of elliptic curves includes much beautiful and deep number 

theory. Until recently this study was almost exclusively the province of pure 
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mathematicians. Now elliptic curves can claim their place as one of the important 

subjects in the study of cryptography. Not only are they useful theoretically but are 

already having great practical impact. 
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