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ABSTRACT 
 
 
 

  Model reference adaptive control is one of the various techniques of solving the control 
problem when the parameters of the controlled process are poorly known or vary during normal 
operation. To understand the dynamic behavior of a dc motor it is required to know its parameters. 
Armature inductance, armature resistance, inertia of the rotor, motor constants and friction 
coefficient are the main parameters of a dc motor. To identify all these parameters, some 
experiments should be performed. However, motor parameters change during the operation 
according to several conditions. Therefore, the performance of the controller, which has been 
designed considering constant motor parameters, becomes poorer due to parameter variations. For 
this reason, a model reference adaptive control method is proposed to control the position of a dc 
motor without requiring any fixed motor parameter. Experimental results show how well this 
method controls the position of the motor. 
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ÖZ 
 
 
 

Prosesin parametrelerinin tam olarak bilinmemesi veya parametrelerin çalışma esnasında 
değişmesi durumunda  kontrol probleminin çözümünde kullanılabilecek  çeşitli tekniklerden biri 
de model referans uyarlamalı denetimdir. Doğru akım motorunun dinamiğinin anlaşılması için 
motor parametrelerinin bilinmesi gerekmektedir. Bu parametrelerden başlıcaları armatür 
endüktansı, armatür direnci, rotorun dönel eylemsizliği, motor sabitleri ve rotor yatağındaki 
sürtünmedir. Tüm bu parametrelerin belirlenmesi için bazı deneylerin yapılması gerekir. Ancak 
motor parametreleri, motorun çalışması sırasındaki koşullara bağlı olarak değişmektedir. 
Dolayısıyla, parametrelerin değişmediği varsayılarak tasarlanmış olan denetleyicinin performansı, 
çalışma sırasındaki değişimlerden dolayı düşer. Bu nedenden dolayı bu çalışmada, sabit motor 
parametrelerine gerek kalmadan, bir dc motorun konumunun kontrol edildiği bir uyarlamalı 
denetim yöntemi sunulmaktadır. Deney sonuçları motor konumunun önerilen yöntem ile 
denetlenebildiğini göstermiştir. 

  
 

Anahtar Kelimeler: Model Referans Uyarlamalı Kontrol,  Lyapunov’un direkt metodu, Dc 
Motor. 
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CHAPTER I 
 
 

INTRODUCTION 
 
 
 

In spoken language, “to adapt” shows to change a behavior to become similar to new 

circumstances. Instinctively, an adaptive controller is so a controller that can modify its 

behavior in response to changes in the dynamics of the process and character of the 

disturbances. Since ordinary feedback also tries to reduce the effects of disturbances and plant 

uncertainty, the question of the distinction between feedback control and adaptive control 

without delay arises. Through the years there have been many efforts to explain adaptive 

control formally. At an early symposium in 1961 a long discussion ended with the following 

suggestion: “An adaptive system is any physical system that has been designed with an adaptive viewpoint.” 

A renewed try was made by an IEEE committee in 1973. It submitted a new vocabulary based 

on concepts like self-organizing control (SOC), and learning control system. However, these 

tries were not widely accepted. A meaningful definition of adaptive control, which would 

make it possible to look at a controller hardware and software and decide whether or not it is 

adaptive, is still lacking. However, there seems to be a general agreement that a constant –

gain feedback system is not an adaptive system (Aström, 1995).     

Adaptive systems have two advantages according to non adaptive systems. First of all, 

if plant parameters change during the operation according to the several conditions an 

adaptive system   adjusts itself, and the performance of the plant becomes as desired. In the 

non adaptive systems, controller is designed using constant plant parameters. When the plant 

parameters change, performance of the controller decreases.   

Second advantage of adaptive systems is the information of plant’s parameters is not 

required for a controller design. Control can be made partly or without any plant parameters. 
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Plant parameters must be known in the non adaptive systems. For this reason, research of the 

plant parameters brings us extra difficulties. 

Generally, the aim of adaptive systems is to control the plant with unknown parameters. 

There are two techniques for this purpose direct and indirect adaptive control respectively. 

The plant parameters are estimated on-line in indirect adaptive control. Direct adaptive 

control doesn’t need on line parameter estimation. Direct adaptive control is considered in this 

thesis. 

This method requires knowing plant’s zeros. Therefore, we consider plants without 

finite transmission zeros. For this reason, the method is proper for position control of dc 

motor. In this thesis the position control of a dc motor is considered by using model reference 

adaptive control (MRAC). Adaptation mechanism which adjusts recursively plant’s feed-

forward and feedback gains, tries that equalize the coefficients of closed loop plant to model’s 

coefficients. Hence if we choose proper model, plant output converges to the model output 

with time. 

The parameters in a dc motor are armature inductance, armature resistance, rotor inertia, 

friction coefficient, motor moment, load moment, armature voltage, motor speed, speed 

coefficient and moment coefficient. These parameters change with external effects and 

working conditions. These alterations effect motor dynamic. We will investigate the 

performance of adaptive tracking in spite of parameters variation. 

The solution of problem against to the parameters variations is investigated by many 

scientists. These are summarized below. 

 (Zeng at all, 1999) controls of flexible spacecraft with using output feedback and 

variable structure model reference adaptive control theory. For the derivation of control law, it 

is assumed that the parameters and the structure of the nonlinear functions in the model are 

unknown. It is shown that in the closed-loop system including the variable structure model 

reference adaptive control system designed using bounds on uncertain functions, the pitch 

angle tracks given reference trajectory and the vibration is suppressed.  

The speed which is needed for motor driver of induction motor is estimated from motor 

current without using sensor. The parallel MRAC is used for speed estimation. The error 

signal between reference model output and adjustable system output is driven to zero through 
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an adaptive law. The speed of motor is estimated very fast with using large adaptive gains 

(Kojabadi, 2005), (Park and Kwon, 2004). 

 

(Zhou and Wang, 2005)  control of a permanent magnet synchronous motor with using 

techniques of MRAC and back stepping control.  In the controller design, the input output 

feedback linearization is first of all used to compensate the nonlinearities in the nominal 

system. Then, adaptive back stepping control approach is adopted in order to derive the 

control scheme, which is strong to the parameter uncertainties and load torque disturbance.  

 

(Marino at all, 1998) present an adaptive nonlinear control algorithm for current fed 

induction motors which is adaptive with regards to both load torque and rotor resistance. The 

eighth order adaptive controller supplies reference signals for stator currents on the basis of: 

measurements of rotor speed, stator currents and stator voltages; estimates of rotor fluxes, 

which are the unmeasured state variables; estimates of torque load and rotor resistance which 

may vary significantly during operations. The dynamic controller assures speed tracking and 

bounded signals for every initial condition of the motor. When persistency of excitation 

conditions are satisfied, the rotor flux tracking error goes asymptotically to zero so that motor 

power efficiency may be enhanced. In addition, in this case, the estimates of rotor fluxes, 

torque load and rotor resistance tend asymptotically to their true values. Results show that 

persistency of excitation conditions are satisfied in physical operating conditions and that all 

estimation errors go quickly to zero so that high tracking performances are obtained both for 

speed and rotor flux.  

 

(Lee at all, 2000) present and compare possible intelligent control designs for precision 

motion control applications which are established upon the use of linear actuators. The control 

of linear motor is realized three different ways which include adaptive control, composite 

control using a radial-basis function for nonlinear compensation and an iterative learning 

control. Experimental results show that first two are more successful than last technique. 

 
(Eldeeb and Elmaraghy, 1998) present a new optimal controller designed for rigid-body 

robots containing motor dynamics. The new optimal adaptive controller developed in this 

work is established upon feedback linearization, it does not need acceleration feedback, and it 

does not assume full state is available for measurement but it needs an observer. Of course, it 

does not assume exact knowledge of either robot or actuator parameters. The optimality is on 
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the basis of the minimization of a performance index which turns out to be possible if we 

could find a solution to the Hamilton Jacobi equation. 

 

 
 

(Aiko  and Kimura, 2002)  aim to establish control theoretical validity of the feedback 

error learning scheme suggested as an architecture of brain motor control with deep 

physiological root in computational neuroscience. The feedback error learning method is 

formulated as a two-degree of freedom adaptive control. The stability of the adaptive control 

law is shown clearly based on the strict positive realness, under the supposition that the plant 

is stable and stably invertible. Results prove the effectiveness of the method. 

 
(McLain and Henson, 2000) present a nonlinear adaptive control strategy established upon 

radial basis function networks and principal component analysis. The suggested method is well 

suited for low dimensional nonlinear systems that are difficult to model and control via 

conventional means. The effective system dimension is decreased by applying nonlinear principal 

component analysis to state variable data obtained from open-loop tests. This permits the radial 

basis functions to be placed in a lower dimensional space than the original state space. The total 

number of basis functions is clearly described a priori, and an algorithm which adjusts the place of 

the basis function centers to encompass the current operating point is presented. The basis 

function weights are adapted on-line such that the plant output asymptotically follows a linear 

reference model. A highly nonlinear polymerization reactor is used to compare the nonlinear 

adaptive controller to a linear state feedback controller that takes advantage of the same amount 

of plant information. 

 
(Makoudi and Radouane 2000) present a distributed model reference adaptive control 

for interconnected subsystems in the sense that no information exchange occurs between the 

subsystems. The approach is established upon the interconnection output estimation using the 

polynomial series which suggests a general solution for interconnected subsystems. The 

parameter estimation scheme is an integrated adaptive data filtering with a recursive least-

squares algorithm with parameter projection and normalization. The problem of minimum 

phased subsystems is handled by an adaptive input output data filtering. Hence the zeros of 

each subsystem estimated model are replaced inside the unit circle. This estimated model 

which is minimum phased is then used for the control synthesis. It is shown that the stability 

conditions established upon weak interconnections are relaxed. Also the robustness of the 



 5

suggested adaptive control against unmodeled dynamics is expressed. At last, the results are 

illustrated by numerical examples. 

 

 (Tsai and Lin, 1997) present a model reference adaptive control approximation, it is 

formed in the modal space; it is applied for flutter control of a cantilever pipe conveying fluid. 

The control input is supplied by a pair of surface mounted piezoelectric actuators which are 

driven 180 o out of phase to provide an equivalent bending moment acting on the controlled 

system. Comparison of performance of the model reference adaptive control with that of the 

optimal independent modal space control shows  that the former is more robust than the latter 

in terms of flow speed variations, which are unknown in the control system designed ; that is, 

the adaptive approach can compensate a larger range of flow speed uncertainties without 

resulting in an unstable control system, hence successful flutter suppression of the fluid 

conveying cantilever pipe with high flow speed can be performed. 

 
(Lee at all, 1998 ) present that  an adaptive neural network full state feedback controller 

has been designed and applied to the passive line of sight (LOS) stabilization system. Model 

reference adaptive control (MRAC) is well founded for linear systems. However, this method 

cannot be utilized directly because the LOS system is nonlinear in nature. Utilizing the 

universal approximation property of neural networks, an adaptive neural network controller is 

presented by generalizing the model reference adaptive control technique, in which the gains 

of the controller are approached by neural networks. This ejects the requirement of linearizing 

the dynamics of the system, and the stability properties of the closed loop system can be 

satisfied. 

 
(Taware at all, 2003) present that friction correction for a benchmark system with load 

friction plus joint flexibility and damping is addressed. This is a difficulty of controlling a 

sandwich dynamic system with a non-smooth nonlinearity. Few non-adaptive and adaptive 

compensation designs are analyzed, established upon a state feedback output tracking model 

reference adaptive control scheme. Adequate output matching conditions are derived for 

friction compensation. Approximate linear parameterizations of nonlinear friction are built for 

adaptive friction compensator designs. Simulation results confirm the desired system 

performance. 

 
(Zhong, 2005) presents that model reference adaptive control problem for single input 

single output time invariant continuous time plants with input saturation is taking into account 
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with main attention focused on global properties. A sufficient condition is presented and a 

new design method of adaptive control systems is suggested. If a priori knowledge about the 

plant is available to choose the reference model and the reference input so that the sufficient 

condition holds, the closed loop adaptive control system designed by the suggested method 

can have global stability and globally output tracking property. It is shown that the sufficient 

condition is necessary in some cases. 

 
(Chien and Yao , 2004) present that a model reference adaptive control strategy is used 

to design an iterative learning controller for a class of repeatable nonlinear systems with 

uncertain parameters, high relative degree, initial output resetting error, input disturbance and 

output noise. The class of nonlinear systems should gratify some differential geometric 

conditions such that the plant can be transformed via a state transformation into an output 

feedback canonical form. An appropriate error model is derived based on signals filtered from 

plant input and output. The learning controller compensates for the unknown parameters, 

uncertainties and nonlinearity by means of projection type adaptation laws which update 

control parameters along the iteration domain. It is shown that the internal signals stay 

bounded for all iterations. The output tracking error will converge to a profile which can be 

adjusted by design parameters and the learning speed is increased if the learning gain is large. 

 
(Costa  at all, 2003) present that the design of Model Reference Adaptive Control for 

Multi Input Multi Output (MIMO) linear systems has not yet achieved, despite significant 

efforts, the completeness and simplicity of its Single Input Single Output (SISO) counterpart. 

One of the main obstructions has been the generalization of the SISO assumption that the sign 

of the high frequency gain (HFG) is known. Here they overcome this obstacle and present a 

more complete MIMO analog to the renowned Lyapunov based SISO design which is 

significantly less restrictive than the existing analogs. Their algorithm makes use of a new 

control parameterization derived from a factorization of the HFG matrix Kp = SDU, where S 

is positive symmetric definite, D is diagonal, and U is unity upper triangular. Only the signs 

of the entries of D or, equally, the signs of the leading principal minors of Kp, are assumed to 

be known. 
 

(Krstic and Banaszuk, 2005) consider a class of Multi Input Multi Output (MIMO) LTI 

models with uncertain resonant modes and time delays, which are common in control of 

instabilities arising in jet engines. With uncertain delays preventing the use of model 

reference adaptive control, they develop an adaptive MIMO pole placement scheme for the 
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system. They use indirect adaptation, estimating a small number of physical parameters from 

a nonlinearly parameterized plant. To address the highly noisy environment in jet engines 

they introduce the dead zone in the adaptation law and present simulations that successfully 

stabilize the system in the presence of noise and serious actuator saturation. 

 
(WANG at all, 1997) present novel approach for the fault detection and diagnosis 

(FDD) of faults in actuators and sensors by way of the use of adaptive updating rules. The 

system considered is linear time invariant and is subjected to an unknown input that 

represents either model uncertainty or immeasurable disturbances. Firstly, fault detection and 

diagnosis for linear actuators and sensors are considered, where a fixed observer is used to 

detect the fault while an adaptive diagnostic observer is built to diagnose the fault. Utilizing 

the augmented error technique from mode1 reference adaptive control, an observation error 

model is formulated and used to establish an adaptive diagnostic algorithm that produces an 

estimate of the gains of actuator and the sensor. An extension to the fault detection and 

diagnosis to include nonlinear actuators is also made, where a similar augmented error model 

to that used for linear actuators and sensors is acquired. As a result, a convergent adaptive 

diagnostic algorithm for estimating the parameters in the nonlinear actuators is improved.  

(Sinha and Pechev, 1999) present a model reference adaptive controller (MRAC) for 

magnetically suspended vehicles (maglev) using the criterion of stable maximum descent. The 

adaptation algorithm is forced to reduce the air gap error between the reference model and the 

actual system. The explicit relationship between the parameters of the performance criterion 

(function of the air gap error and its derivative) and the state feedback adaptation rule is 

produced for a single degree of freedom suspension system. Experimental results from a small 

representative test rig are presented to illustrate the efficiency of the suggested non linear 

controller in the presence of variations in pay load (suspended mass), disturbance force and 

air gap set point. Hardware aspects of the transporter and Digital Signal Processing (DSP) 

based real time controller are briefly discussed to emphasize some of the practical issues 

related to digital execution of the air gap adaptive control law.  

(Makoudi and Radouane, 1999) present a decentralized model reference adaptive 

control (DMRAC) for interconnected subsystems with unknown or time-varying time delay. 

The decentralization approximation is established upon the interconnection output estimation 

using the polynomial series which suggests a general solution for interconnected subsystems. 

The parameter estimation scheme is a combined adaptive data filtering with a recursive least 

squares algorithm with parameter projection and signal normalization. A “good data” model 



 8

is determined by an adaptive filtering of the input and output signals. The acquired model 

allows dealing with non-minimum phased subsystems with unknown or time-varying dead 

time and at the same time to relax the hypothesis of weak interconnections for decentralized 

control.  

(Tian and  Hoo, 2003) present that transition control is determined as a type of control 

method that is operated when the plant transitions from one steady state to another as a result 

of a set point change. Recent approaches have depended on multiple models and centralized 

or decentralized controller designs to address this issue. This work presents and improves a 

transition control framework that consists of multiple fixed and adaptive models within a 

state-shared non minimal realization and an ∞H  controller design. The effectiveness of this 

transition control framework is presented on two nonlinear single-input single-output reactors 

in the face of modeling errors, parameter uncertainties and disturbances. 

(Chaoa and Neoub, 2000) present that model reference adaptive control of air-lubricated 

capstan drive for precision positioning. Because friction-induced nonlinearities in positioning 

systems are mostly  range of motion-dependent, dual-model or dual-stage strategies are 

frequently adopted to deal with the incompatibility encountered when a system moves from 

submicrometer steps (micro mode) to larger scale strokes (macro mode). Despite the fact that 

good performance is usually acquired when each stage functions in its designed range of 

motion, a system often performs less sufficiently when operating near the switching point 

between models or stages. An air-lubricated capstan drive was used in this work to minimize 

the inconsistency between macro and micro modes, and a single mode MRAC was designed 

to control the capstan drive system for precision positioning. Accuracy better than 615 nm 

with no overshooting was obtained in all conditions tested (including 50 nm, 500 nm and 10 

mm steps).  

(Mirkin and  Gutman, 2005)  present that  two new output feedback adaptive control 

schemes established upon Model Reference Adaptive Control (MRAC) and adaptive laws for 

updating the controller parameters are improved for a class of linear MIMO systems with 

state delay. An effective controller structure established upon a new error equation 

parameterization is suggested to achieve tracking with the error tending to zero 

asymptotically. To accomplish exact asymptotical tracking, they introduce, in the standard 

MRAC structure for plants without delay, a new supplemental adaptive feedforward control 

component as an output of a dynamical system driven by the reference signal. Adaptive laws 

are improved using the SPR-Lyapunov design approximation and two suppositions regarding 

the previous knowledge of the high frequency matrix Kp. This study is the first asymptotic 
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exact zero tracking results for this class of systems in the framework of the certainty 

equivalence approximation. 

In this thesis the standard model reference adaptive control is used to control the 

position of a permanent magnet dc motor, some of its parameters can not be measured 

directly. Further, some of the other parameters are not constant and vary as the motor 

operates. A second order system is used as the reference model.   

This thesis is organized as follows: Fundamentals of MRAC is summarized in Chapter 

2. Model reference adaptive control for systems without finite transmission zeros is 

introduced in Chapter 3. MRAC for dc motor is given in Chapter 4. Simulation results are 

presented in Chapter 5. Finally conclusions are made in Chapter 6. 
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CHAPTER II 

 

MODEL REFERENCE ADAPTIVE CONTROL  

 

2.1 GENERAL CONTROL SYSTEM DESIGN STEPS 

 

The steps in a general control design problem are shown in Figure 2.1. Each step is 

explained below (Ioannou, 1994). 

 

 
                            Figure 2.1 General control system design steps. 
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Step 1. Modeling 

A plant model may be built by using physical laws or by processing the plant input 

output (I/O) data obtained by performing various experiments. But, this model may be 

complex for the controller design and additional simplifications may be necessary. Some of 

the approaches in many cases used to obtain a simplified model are 

(i) Linearization around functioning points,  

(ii) Model order decreasing techniques. 

In approximation (i) the plant is approximated by a linear model that is acceptable 

around a given operating point. Different functioning points may lead to some different linear 

models that are used as plant models. Linearization is performed by using Taylor's series 

expansion and approximation, fitting of empirical data to a linear model, etc. 

In approach (ii) small impacts and phenomena outside the frequency range of interest 

are disregarded leading to a lower order and uncomplicated plant model. 

Step 2. Controller Design 

The controller is planned to meet the performance necessities for the plant model.Δ   

symbolizes most of the unmodeled plant phenomena. The control engineer may be able to 

modify or redesign the controller to be more robust with respect to Δ .  This robustness 

analysis and redesign increases the ability for a successful execution in Step 3. 

Step 3. Implementation 

The implementation can be done using a digital computer. The type of computer, the 

type of interface devices between the computer and the plant, software tools are considered 

priority matters. Computer speed and preciseness limitations may constrain on the complexity 

of the controller. It may force the control engineer to go back to Step 2 or even Step 1. Other 

important aspect of implementation is the final adjustment, or as often called the tuning which 

is often done by trial and error and depends very much on the experience and intuition of the 

control engineer. 
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2.2 ADAPTIVE CONTROL 

The words “adaptive systems" and “adaptive control" have been employed as early as 

1950 (Ioannou, 1994). The design of autopilots for high-performance airplane was one of the 

first incentives for active investigation on adaptive control in the early 1950s. Airplane 

function over a broad range of speeds and heights, and its dynamics are nonlinear and 

conceptually time varying. For a given functioning point, described by the airplane speed and 

height, the complex airplane dynamics can be approached by a linear model of the similar 

shape as (2.1).  

 DuxCy,x)0(x;BuAxx T
0 +==+=& .                                                       (2.1) 

For instance, for a functioning point i , the linear airplane model has the following shape: 

             uDxCyx0xuBxAx i
T

i0ii +==+= ,)(;&                   (2.2) 

where y,u,x  are the state, input, output vectors, respectively; and iiii DC,B,A and  are 

coefficient matrix functions of the functioning point i. As the airplane moves through 

different flight situations, the functioning point changes goes to different values 

for iiii DC,B,A and . Since the output response y (t) transports information about the state x 

as well as the parameters, one may dispute that in principle, a complicated feedback controller 

should be able to learn about parameter alterations by processing y (t) and utilize the suitable 

gains to adapt them. This quarrel goes to a feedback control structure on which adaptive 

control is established. The controller building comprise of a feedback loop and a controller 

with adjustable gains as shown in Figure 2.2.  
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                      Figure 2.2 Controller building with adjustable controller gains. 

 

2.2.1 Direct and Indirect Adaptive Control 

An adaptive controller is shaped by combining an on-line parameter estimator, which 

gives estimates of unknown parameters at each moment, with a control law that is prompted 

from the known parameter case. The method of the parameter estimator, also referred to as 

adaptive law, is joined with the control law lead to two different approximations. In the first 

approximation, mentioned as indirect adaptive control, the plant parameters are estimated on-

line and used to compute the controller parameters. This approximation has also been 

mentioned as explicit adaptive control, due to the fact that the design is on the foundation of 

an explicit plant model. 

In the second approximation, mentioned as direct adaptive control, the plant model is 

parameterized regarding the controller parameters that are estimated directly without 

intermediate computations involving plant parameter estimates. This approximation has also 

been mentioned as implicit adaptive control due to the fact that the design is established upon 

the estimation of an implicit plant model. 

In indirect adaptive control, the plant model   P( *θ ) is parameterized with regards to 

some unknown parameter vector .*θ  For instance, for a linear time invariant (LTI) SISO  

plant model, *θ  may symbolize the unknown coefficients of the numerator and denominator 

of the plant model transfer function. An on-line parameter estimator generates an estimate 

 (t)θ  of *θ at each time t by working the plant input u and output y. The parameter estimate 

 (t)θ  clearly describes an estimated plant model characterized by  ( ) θ(t)P̂   that for control 

design aims is treated as the “true" plant model and is used to calculate the controller 

parameter  (t)Cθ by solving a specific algebraic equation  (t)Cθ  = F ( )(t)θ  at every time t. The 



 14

shape of the control law C ( )Cθ  and algebraic equation Cθ  = F ( )θ  is selected to be identical to 

that of the control law C ( )*
Cθ  and equation *

Cθ  = F ( )*θ  that could be used to encounter the 

performance necessities for the plant model P ( )*θ  if  *θ  was known. It is, hence, clear that 

with this approximation, C ( ) (t)Cθ  is designed at every time t to gratify the performance 

necessities for the estimated plant model  ( ) (t)ˆ θP , which may not be the same from the 

unknown plant model P ( )*θ . And so, the head problem in indirect adaptive control is to select 

the class of control laws C( Cθ ) and the class of parameter estimators that produce  (t)θ  and 

likewise the algebraic equation ( )( ) tF(t) θθ =C   so that C ( ) (t)Cθ   encounters the 

performance necessities for the plant model P ( )*θ  with unknown *θ .  The block diagram of 

an indirect adaptive control scheme is seen in Figure 2.3. 
 

                     

                                             Figure 2.3 Indirect adaptive control. 
 
 

In direct adaptive control, the plant model P ( )*θ  is parameterized in the sense of the 

unknown controller parameter vector *
Cθ , for which C ( )*

Cθ  encounters the performance 

necessities, to acquire the plant model )( *
CCP θ  with precisely the similar input output 

characteristics as P( *θ ). The on-line parameter estimator is designed based on )( *
CCP θ   in 

place of P ( *θ ) to supply direct estimates  (t)Cθ of *
Cθ at every time t by working the plant 

input u and output y. The estimate  (t)Cθ  is then used to update the controller parameter 

vector Cθ  without intermediate computations. The selection of the class of control laws 

C ( )Cθ  and parameter estimators producing  (t)Cθ  for which C ( ) (t)Cθ  encounters the 
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performance necessities for the plant model P( *θ ) is the basic problem in direct adaptive 

control. The characteristics of the plant model P ( )*θ  are very important in acquiring the 

parameterized plant model )( *
CCP θ  that is useful for on-line estimation. Due to that, direct 

adaptive control is constrained to a specific class of plant models. A class of plant models that 

is appropriate for direct adaptive control comprise of all SISO plant models that are 

minimum-phase, i.e., their zeros are placed in Re [s] < 0. The block diagram of direct 

adaptive control is seen in Figure 2.4. 

 

 

 
 

                              Figure 2.4 Direct adaptive control. 
 

 The foundation behind the design of direct and indirect adaptive control seen in 

Figures 2.3 and 2.4 is conceptually simple. The design of ( )CC θ  acts the estimates ( )tCθ  

(regarding direct adaptive control) or the estimates ( )tθ  (regarding adaptive control) as if they 

were the true parameters. This design approximation is named certainty equivalence and can 

be used to produce a broad class of adaptive control schemes by joining different on-line 

parameter estimators with different control laws. 

The idea in back of the certainty equivalence approximation is that as the parameter 

estimates, ( )tCθ  and ( )tθ  converge to the true ones *
Cθ and *θ , respectively, the performance 

of the adaptive controller ( )CC θ  be inclined to that accomplished by  ( )*
CC θ  concerning 

known parameters. 
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2.2.2 Model Reference Adaptive Control 
 
 

Model reference adaptive control (MRAC) comes from the model following problem or 

model reference control (MRC) problem. In MRC, a good comprehension of the plant and the 

performance necessities it has to encounter permit the designer to invent a model, mentioned 

as the reference model, that depicts the desired I/O characteristics of the closed-loop plant. 

The purpose of MRC is to discover the feedback control law that alters the structure and 

dynamics of the plant so that its I/O characteristics are precisely the same as those of the 

reference model. The building of an MRC diagram for a LTI, SISO plant is shown in Figure 

2.5. The transfer function ( )sWM  of the reference model is designed so that for a given 

reference input signal ( )tr  the output ( )tym  of the reference model depicts the wanted 

response the plant output ( )ty  must follow.  

 

                               
 

      Figure 2.5 Model reference control. 

 

The feedback controller symbolized by ( )*
CC θ  is designed so that all signals are delimited and 

the closed-loop plant transfer function from r to y is equal to ( )sWM . This transfer function 

matching assures that for any given reference input ( )tr , the tracking error myye −≅1 , which 

symbolizes the divergence of the plant output from the desired trajectory my , approaches to 

zero with time. The transfer function matching is accomplished by canceling the poles of the 

plant transfer function )(sG  and substituting them with those of ( )sWM  through the use of the 

feedback controller  ( )*
CC θ . The cancellation of the plant poles brings a limitation on the 

plant to be minimum phase, in other words, have stable poles. When the plant poles are not 

stable, its cancellation may easily go to uncontrolled signals. 
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The design of ( )*
CC θ  necessitates the learning of the coefficients of the plant transfer 

function )(sG . If *θ  is a vector including all the coefficients of );()( *θsGsG = , then the 

parameter vector *
Cθ  may be calculated by solving an algebraic equation of the shape 

*
Cθ  = F ( *θ )   .                                                                                                 (2.3) 

Finally for the realization of MRC, the plant model has to be minimum phase and its 

parameter vector *θ  has to be known precisely. 

When *θ  is not known the MRC scheme of Figure 2.5 can not be executed because 
*
Cθ  can not be computed applying Eq. 2.3. One method of referring to the unknown parameter 

matter is to utilize the certainty equivalence approximation to substitute the unknown *
Cθ  in 

the control law with its estimate ( )tCθ  acquired using the direct or the indirect approach. The 

deriving control schemes are accepted as MRAC and can be classified as indirect MRAC seen 

in Figure 2.6 and direct MRAC seen in Figure 2.7. 

 

                        
    
 

                                            Figure 2.6 Indirect MRAC. 
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                                Figure 2.7 Direct MRAC. 
 
 
 In this thesis, direct MRAC approach is used for the control of a permanent magnet dc 

motor which does not have finite transmission zeros and the method for this is discussed in 

the following chapter. 
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       CHAPTER III 

MRAC FOR SYSTEMS WITHOUT          

FINITE TRANSMISSION ZEROS  

 
The aim of this method realizes model reference adaptive control for the plant that has 

single input single output and without finite transmission zeros. Adaptation mechanism 

adjusts feedback gains of states   and the feed-forward gain of reference signal. The 

coefficients which are in the transfer function of closed loop plant are equalized to model’s. 

 
 

3.1 THE STRUCTURE OF THE ADAPTIVE CONTROL SYSTEM   
 

The structure of the adaptive control system is given Figure 3.1 (Karadeniz et al, 2004). 

In this figure r is  reference signal , u is plant’s input , g is feed forward gain , F=[F1 

F2......Fn]
T is feedback gains  of plant’s states, x  and  z  are controllable canonical form of 

plant and model’s  states respectively, e  is error signal between model and plant states. Plant 

follow model via ( )tF  and  ( )tg  which are updated every time step.  

                            
  Figure 3.1 The structure of the adaptive control system. 
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The transfer function of one input one output continuous time plant without finite 

transmission zeros is 
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The controllable canonical form of (3.1) is  
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which is in the form    

 
ubAxx +=& ,                                                                                                  (3.3 -a) 

1xy =  .                     (3.3 -b)  
 
As shown in this figure, the following feedback control law used is 

 
xF Tgru −=  .                                                                                                  (3.4) 

 
We can show the controlled plant’s state space equation is  
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Or most explicitly, 
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The reference model transfer function and state space equation are 
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which is in the form    

 rmm bzAz +=& .                                                      (3.6-c) 

Assume the model output   

1zym = .                                                                                                           (3.6-d) 

   

3.2 DERIVATION OF THE ADAPTIVE LAWS    

 

Similar adaptive laws used in (Karadeniz et al, 2004) are followed in the sequel. From 

Eqs. 3.5-a and 3.6-c, for the equivalence of the controlled plant and the reference model  

,T*FbAAm −=                         (3.7-a) 

,g*bbm =                                    (3.7-b) 

or explicitly 

== *
jj FF

K
aa j

*
j −

 ,       ( )nj ,....,2,1=  ,                                                     (3.8-a) 

K
K*gg

*

==  .                                               (3.8-b) 

Normally,   ja   and K   are not known. Resultantly,   *
jF      and  *g     are not known. 

Therefore  jF  and g may be different from *
jF and *g . The purpose of the adaptive law is to 

converge the present values of jF  and g to *
jF  and g*, respectively, i.e,   

( ) *

t

tlim FF ⎯→⎯
∞⎯→⎯

,            (3.9-a) 

( ) *

t

gtglim ⎯→⎯
∞⎯→⎯

.                         (3.9-b) 

Define the error by  

xze −= .                      (3.10-a) 

Then, derivative of the error is  
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xze &&& −=  .                                  (3.10-b) 

We manipulate the plant and model equations in (3.4), (3.5) and (3.6), respectively and obtain 
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Define:                 

,*FFΦF −=                          (3.12-a) 

.gg*
g −=Φ                   (3.12-b) 

Then,     

  ,F FΦ && =                              (3.12-c) 

.gg && −=Φ                                  (3.12-d) 

We renew the derivative of the error equation in (3.11),  
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We suggest Lyapunov’s method 1 for updating of F and g. For this we define the Lyapunov 

function           

2
g*F

T
F*

T

gg
P Φ

αα
11

++= ΦΦeeV   ,                                                           (3.14) 

where P is strictly positive real matrix to be found,  α  is a positive real coefficient. 

                                                 
1 Extra knowledge with relating to Lyapunov Theorem is placed in Appendix A. 
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Assuming g* > 0,   Lyapunov function satisfies 0V ≥  .             

 

Derivative of the Lyapunov’s function can be found from Eq. 3.14 and using Eq. 3.13 
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Where, first term of   Eq.3.15-a can be rewritten as shown in Eq.3.15-b 
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Eq. 3.15-b is replaced in to Eq. 3.15-a. So that, the derivative of Lyapunov’s function is 

acquired as  
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The matrix of the first quadratic form in Eq. 3.15-c is chosen as                  

QPAPA m
T
m −=+                                    (3.16) 

which is known as Lyapunov Equation where, the eigenvalues of mA  are negative for a stable 

reference model and the matrix Q   is chosen as positive definite symmetric matrix. So, the 

solution of Lyapunov Equation gives us positive definite symmetric matrix P .  Thus the first 

term of Eq. 3.15-c  ( )ePAPAe m
T
m +T  is made negative definite. If, the remaining terms of Eq. 
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3.15-c cancel each other, 0<V&  and stability is acquired. Therefore, the following equations 

must be realized for cancellation : 

 F
T

m
T ΦxbPeΦΦ α−=F
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F
& ,                                                                              (3.17-a) 

 ePbxΦΦΦ T
m

T
FF

T
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 m
TT

m bPeePb gggg rr2 ΦαΦαΦΦ −−=&  .                                                (3.17-c) 

Eqs. (3.17-a) and (3.17-b) are equivalent. To satisfy these equations,   the parameter FΦ&  can 

be chosen  

( ) ( )ttF ePbx T
mαΦ −=& .                                                                                  (3.18-a) To 

satisfy Eq. (3.17-c), the parameter gΦ&  can be set 

 ( ) ( )ttr T
mg ePbαΦ −=& .                                                                                 (3.18-b) 

The adaptive laws to update F and g are finally obtained from Eqs. 3.18-a, b together with 

Eqs. 3.12 c, d as follows  

( ) ( )tt ePbxF T
mα−=&  ,                                                                                   (3.18-c) 

( ) ( )ttr T
m ePbα=g&  .                                                                                        (3.18-d) 

Hence Eqs 3.18-c and 3.18-d are the adaptive laws which are chosen. So, with these choices, 

the derivative of Lyapunov function in Eq. 3.15 c is negative definite, that is                       

 0T <−= eQeV&                        (3.19) 

for  the nonzero error vector e. 

This implies  
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From Eq. 3.14, Eq. 3.19-a implies 
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Consequently, Eq. 3.12 a and b imply  
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respectively. With these equations,  Eq. 3.11 becomes  

eAe m=&                    (3.19-f) 
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Therefore,  

0lim
t

→
→∞

e  ,                            (3.19-h) 

since mA  is a stable matrix. Finally,  Eq. 3.19-h  leads to  

( ) ( )ttlim
t

zx →
∞→

                                                                                        (3.19-i) 

since xze −= . Thus the adaptive laws in Eqs. 3.18-c and 3.18-d approach the plant states to 

the model states. These are the desired requirements for the MRAC. Hence, the controlled 

closed loop plant is globally asymptotically stable. Even if, the plant is unstable, it can be 

controlled by at least the same order stable reference model.   

In the adaptive laws, α  > 0 is an arbitrary design constant referred to as the adaptive 

gain. The use of a larger value of the adaptive gain α  led to a faster convergence of plant 

output to model’s. The adaptive gain α  is usually chosen by trial and error using simulations 

in order to achieve a good rate of convergence. Small α  may result in slow convergence rate 

whereas large α  may make the differential equations stiff and difficult to solve numerically 

on a digital computer (Ioannou, 1994).  

For digital computations, we can convert Eq. (3.18-c) and (3.18-d) to (3.20-a) and 

(3.20-b), respectively: 

)k()k()k()1k( T
m PebxFF α−=+  ,                                                          (3.20-a) 

)k()k(r)k(g)1k(g T
m Pebα+=+  ,                                                           (3. 20-b) 

which  are discrete time versions and k denotes kT,  k=0,1,..2  and  T  is the sampling period, 

which will be called simulation step size or adaptation period in the sequel. 

There are two important matters with respect to choosing matrix P. These issues are 

explained with related to the second order plant and reference model. The matrices used for 

the changes of F and g are explicitly written as   
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i. With these values, the adaptive laws in Eqs. 3.20-a, b are written as  
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 26

Obviously mb  has negative property for the adaptive laws. Because, except only last element, 

its remaining element(s) is (are) zero. For this reason and as shown in Eqs. 3.22, except last 

row elements, other rows elements of P are ineffective on the adaptive laws. Advise that, the 

absolute values of last row elements of P are not very different from each other, otherwise the 

effect of elements of e on the adaptive laws are different ratios (Karadeniz et al, 2004).  

 

 

ii. As shown below in Eqs. 3.23-a and 3.23-b, if except diagonal elements, remaining 

elements of P are zero (b=0), only 2e  is effective on the adaptive laws. In these 

circumstances, adaptation may not occur. In order not to meet with such a result advise that, 

all the elements of matrix Q which is used in the Lyapunov equation (Eq. 3.16) are chosen 

different from zero. In fact with b=0 Eqs. 3.22-a, b reduces to  
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 ( ))k(ec)k(r)k(g)1k(g 2α+=+ .                                                              3.23-b 

 

There are two important matters with respect to choosing of adaptation period T or 

simulation step size. The inverse of  T  is called as adaptation frequency f. 

i. The selected simulation step size T must be large enough to permit the computations 

to be performed in real time. But the large simulation step size T may tend to result in an 

inferior performance in the closed loop plant and it is bad for disturbances rejection in 

adaptive law (CHAK  at all, 1997). For this reason simulation step size T must be bigger than 

computation time Tc    )(  T  T c> , otherwise simulation program does not work properly and it 

gives error message. Computation time Tc involves the evaluation of Eqs. 3.20-a, b and it 

depends on hardware features. It is not measured precisely or properly and already it is not 

unnecessary,  because Simulink gives error message automatically for  .)(  T  T c≤   

 

ii.    Simulation step size T must be smaller than plant’s Tpi  and model’s Tmi   time 

constants )T T T  T( miPi <<  and . Otherwise adaptation mechanism is insufficient for 

perception and correction to  the parameters variations of plant. 
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For simplicity and shortening the computation time PbT
m  is abbreviated by Ts  in the 

adaptive laws,  i.e .,  

Pbs T
m

T =  

Now, adaptive laws in Eqs. 3.20 a, b are defined as follow 

)k()k()k()1k( T esxFF α−=+ ,       (3.24-a) 

)k()k(r)k(g)1k(g T esα+=+ .         (3.24-b) 

Theoretically, the initial values of adaptation gains ( )0g)0( andF  may be any values. 

But, the desired performance results with a delay due to choosing the initial values very far 

from the steady stead values or optimal values ** gandF . The initial values of adaptation 

gains may be chosen zero or small values due to unknown optimal values. The initial values 

are chosen zero in this thesis. 

In the next chapter, the plant which is a permanent magnet DC motor will be introduced 

and its MRAC is achieved as desired in this chapter. 
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          CHAPTER 4 

                                      MRAC FOR DC MOTOR 

 Mathematical modeling of permanent magnet (PM) DC motor is presented. 

Parameters of DC motor to be controlled and order reduction of motor transfer function are 

investigated in this chapter. Then model reference adaptive control of the mentioned motor is 

presented.  

 

4.1 MATHEMATICAL MODELLING OF PM DC MOTORS   

 

Model of a PM DC motor is shown Figure 4.1 (Kuo, 1995). 

               
      Figure 4.1 Model of a separately excited PM DC motor. 

 

 

The motor variables and parameters in this figure are explained as follows: 

( )tia =armature current, 

aR =armature resistance, 

( )teb = back electromotive force (emf), 
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( )tTL =load torque, 

( )tTm = motor torque, 

( )tmθ =rotor displacement, 

iK =torque constant, 

bK =back emf constant, 

aL =armature inductance, 

( )tea =applied voltage, 

Φ =magnetic flux in the air gap, 

( )twm =rotor angular velocity, 

( )tJ m =rotor inertia, 

mB =viscous- friction coefficient. 

 

The mathematical modeling of PM DC motor is given as follows:  
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By direct substitution and eliminating all the nonstate variables from Eq. (4.1) through (4.4), 

the state equations of dc motor are presented in vector matrix form: 

 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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Notice  that in this case, ( )tTL is taken as second input in the state equations. 
 

The state diagram of the system is depicted as shown in Fig. 4.2, using Eq. (4.5). 

 

 

 
Figure 4.2 State diagram of a dc motor. 

 

The transfer function between the motor displacement and the applied voltage is 

acquired from the state diagram as  

 
 

( )
( ) ( ) ( )sBRKKsLBJRsJL

K
sE
s

maib
2

amma
3

ma

i

a

m

++++
=

Θ
                              (4.6) 

 

Here ( )tTL  is accepted zero. The importance of the transfer function  ( ) ( )sEs amΘ  is that the 

dc motor is basically an integrating device between these two variables due to the 

transmission pole at s = 0. 
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Figure 4.3 displays a block-diagram representation of the dc-motor. The benefit of 

utilizing block diagram is that it gives a comprehensible drawing of the transfer function 

relations between the internal and / or external variables  of the system. 

 

 

 
                               

Figure 4.3   Block diagram of a dc motor system. 

 
The values of bK  and iK  are identical if  bK  is represented in V/(rad/sec) and iK  is 

in (Nm)/A. If bK  and iK  are replaced by K ,  Eq. 4.6 reduces to 
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 Dividing both numerator and denominator by ma JL , Eq. 4.7 is normalized as  
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4.2 PARAMETERS OF DC MOTOR TO BE CONTROLLED 

 
 The knowledge of plant’s order is enough for MRAC design. In our application plant’s 

order is 3 which is seen in Eqs. 4.6-8. For simplicity and shortening the number of operation, 

plant’s order is reduced to 2. The exact knowledge of dc motor parameters is needed for using 

more formal order reduction methods. For finding of the parameters, two methods are utilized 

which are called usual empirical method and matlab’s system identification toolbox.  
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4.2.1 Usual Empirical Method 
  
 The transfer function between applied voltage )(sEa  and   rotor angular velocity 

)(sWm  and its parameters are researched using experimental method. The transfer function 

( ) ( )sEsW am  is easily obtained by substituting of ( )smΘ  with  1
m ssW −)(  in Eq. 4.7 or in Eq. 

4.8 to yield 
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respectively. 

 

aR  and  aL  are  easily measured by RLC meter to be aR = 15.36Ω , aL = 0.42 mH. 

Other parameters are found by applying  the following experimental scheme2 shown in Fig. 

4.4. Where, aE  is applied voltage, S is on-off switch, A is ammeter, M1 is controlled motor, 

E is encoder, mw  is rotor angular velocity (rad/s). Encoder output which is connected to the 

data acquisition board is displacement. The derivative of the displacement which is called 

angular velocity is realized by matlab’s simulink.  

 

 
Figure 4.4 Connection scheme for empirical method. 

 

                                                 
2  For a detailed version of the experimental setup refer to Fig. 4.13 where many of the subsytems are made 
functionless to obtain experimental test implied by Fig. 4.4.  
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The applied voltage aE is 8.00 V. After the switch is closed, steady-stead armature 

current is measured as aI =120 mA and velocity alteration becomes as in Fig. 4.5. Steady-

stead velocity is 668 rad/s. Dc motor has two time constants. One of them is very large with 

respect to the other. The big time constant is observable, the smaller time constant is not 

observable on this figure, because its mode goes rapidly to zero as soon as motor starts. As 

can be obtained in Fig. 4.5, motor reaches  63 %  of its steady-stead velocity value at  

=1τ 0.0638 second  where 1τ  is the  larger time constant of motor. Hence, (s+ 1
1
−τ ) is one 

the factor of the denominator polynomial of the motor transfer function ( ) ( )sEsW am . The 

smaller time constant or pole is to be found by computing. 

Under steady-state conditions, i.e. for constant ba ei and , Eq. 4.1 can be written as 

 

aaab RIEE −=  ,                                                                                                4.11 

where, aE = 8.00 V, aI = 120 mA and aR = 15.36 Ω . (Although the result are valid with in 2 

digits due to measurement errors in the value of aL , and 3 digits of aI , mW , in order not to 

cause the additional accumulative errors due to computation at least 4 digits are carried in the 

following.) This equation yields  

 

V6.15715.361200 =×−== .00.8WKE mbb . Since, mW  is measured to be 668 rad/s 

the torque or back emf constant is found to be   

bK = iK = K = 4-1092.17×==
668
157.6

W
E

m

b Vs/r .                                                  4.12 
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Figure 4.5 Velocity alteration of motor 

 
For computation of mB , consider the dc gain  

 

ma
2

a

m

BRK
K

E
W

+
=                                                                           4.13 

computed from 4.10 Eq.  replacing s by zero with mW =668r/s, aE =8.00V,  

-41092.17×=K Vs/r , aR = 15.36 Ω ;  this equation yields mB = 6101.656 −×  Nms/r. 

 

For computation of mJ , the denominator polynomial of the transfer function in Eq. 4.10 

is divided by (s+ 1
1
−τ ) and the remainder is equated to zero. This operation leads to  

 

( ) ( ) ma1aamma
2

1 BLLRJBRK +−=+ ττ .                                                             4.14 

 

With the measured values of aR , aL  and the already computed values of  1τ , K , mB  

( aR = 15.36Ω , aL =0.42 mH), =1τ 0.0638s, K = -41092.17× Vs/r , mB = 6101.656 −× Nms/r )  

this equation yields mJ = -7104.587× Kg 2m . 
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Thus all parameters of motor are found by a resistance measurement ( aR ), an inductance 

measurement ( aL ), the steady-stead test ( mW ) and the transient test ( 1τ ). In fact,   the last 

two tests are combined in the step response of the motor shown in Fig. 4.5.   Hence, the 

transfer function EMPH   which is found by empirical method between applied voltage aE  and 

displacement mΘ  is obtained by inserting the found parameters in Eq. 4.8. The result is as in 

Eq. (4.15), where, the second time constant 2τ  is  .s 10 2.735 -5×  
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4.2.2 Parameter Estimation with Matlab’ s System  Identification  Toolbox 
 

 System Identification Toolbox of Matlab builds mathematical models from measured 

input-output data. The transfer function of plant is estimated using Prediction Error Method 

from the measured dataset. In our application, measured dataset is acquired from executing 

the simulink scheme shown in Fig.4.6.  

 

 
Figure 4.6 Simulink scheme for getting measured input-output data 

 
 

The motor input signal aE  is a swept sinusoid (a chirp signal) whose frequency range is 

selected as between 0.05 and 10 Hz. The bottom level of the input signal aE is chosen as 2 

Volt, because the motor has dead zone between -1 and 1 V which produce bad effect for 

estimation of proper transfer function. Upper level of aE  selected as 10 V which is the 
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allowed maximum input voltage of motor. The output signal of motor is the shaft 

displacement  mΘ  which is obtained from output of the encoder. These input output data are 

saved to matlab’s workspace while the simulink program is executing. For estimation 

operation, Ident which is a graphical user interface to the System Identification Toolbox is 

started by writing to command line ‘ident’. The measured dataset import to Ident. 

The transfer functions are estimated within certain classes of candidate descriptions (model or 

template transfer functions). We select model transfer function  ( )[ ]21 s1)s1(sK ττ ++  

which is shown in left pane of Fig. 4.7. It contains one integral element, two poles and one 

gain. At first estimation, the fit rate between measured output and simulated output is very 

high (99.9 %) but K21 and, ττ are dissimilar from those in Eq.4.15. Before the second 

estimation, 21 ττ ,  which are put in to the template transfer function are accepted as known 

values from Eq. 4.15. As shown Fig.4.7, K  is found as 84.23 whilst the experimental value is 

83.51. Hence, the transfer function 3IDEH   which is found by the identification toolbox 

becomes as in Eq. 4.16. As shown left pane of Fig.4.8, measured output and simulated model 

output are seem one line. The fit rate between them is (99.9 %). It is a very good estimate.  
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  Figure 4.7 Parameter identification window related with third order estimation. 

 

 

          
Figure 4.8 Comparison of measured and simulated outputs related with third                                 
        order estimation.  
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To check the accuracy of the experimental results for the motor parameters, we now want to 

find motor parameters using Eq. 4.16. So Eq. 4.16 and Eq. 4.8 are equalized each other. Three 

equations which are shown below are obtained from this. 

 

    7104.827×=)JL(K ma ( ) /Vsr 3                                                                       4.17                                  

    4103.656×=+ mmaa J/BL/R r/s ,                                                                    4.18                                 

    ( ) 5105.729×=+ )JL/(BRK mama
2 ( )2sr                                                          4.19                                 

 

There are 5 unknown parameters in these equations, for solution of the equations; we must 

accept that, the values of whichever at least two are known. As mentioned in Section 4.2.1 

that,  aR  aL  and K  are known values with high confidence.  

 Suppose that,   aR = 15.36Ω  and K = -41092.17× Vs/r   are known and mB , mJ , aL  

are desired parameters. The solution of the equations for the remaining 3 parameters are 

mB =  -6101.591×  Nms/r, 

mJ = 7104.534 −×  Kg 2m  

aL = 51042.01 −×  H. 

The consistency of these results with the experimental ones are correct within errors 96.07%, 

98.84%, and 99.97%, respectively. 

For the second case assume   aL = 51042 −× H and K = -41092.17× Vs/r   are precisely 

determined experimentally and mB , mJ , aR  are desired parameters computed from the result 

of Identification Toolbox. The solution of equations in 4.17-19 for the remaining 

variables mB , mJ , aR  become  

 

mB = -6101.592×  Nms/r, 

mJ = -7104.546×  Kg 2m , 

aR = 15.35Ω . 

These are consistent with the experimental results within coherency 96.13%, 99.11% and  

99.93%,  respectively.  
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Consequently, these results based on the System Identification Toolbox are in good 

agreement with experimental ones of the previous section.  

 

 

4.3 APPROXIMATION OF HIGH ORDER SYSTEMS BY LOW ORDER                       

SYSTEM 

 

A high order system often contains less important poles that have little effect on the 

system response. Thus, given a high order system, it is desirable to find a low order 

approximating system, so that, the number of operation is reduced for the solution of control 

problem. Generally, in many applications which are utilizing dc motor,   plant’s order is 

accepted 2 due to neglecting of small aL . In addition to negligence of aL , we will offer extra 

two methods for order reduction. 

 

4.3.1 Order Reduction with Negligence of aL  

In this method, aL  is accepted zero. Replacement of aL = 0 in Eq. 4.7  and using the 

first set of parameter  values obtained by System Identification Toolbox found in Section 

4.2.2, namely   

  

            aR = 15.36Ω , 

K =   1092.17 -4× Vs/r , 

aL = 51042.01 −× H 0≅ , 

            mB =  -6101.591×  Nms/r, 

 mJ = 7104.534 −×  (Kg 2m ), 

the reduced transfer function  

            
 15.71)(s s

1323
+

=negLH                                                                                     4.20 

is obtained. 
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4.3.2 Order Reduction with Matlab’s “MODRED” and “BALREAL” Commands 

 

The order of the transfer function in Eq.4.16 is reduced to 2 using “modred” (model 

reduction) and “balreal” (balanced realization) commands3. Reduced transfer function 

redmodH  is  

 )1(s s
1319

65.5
H redmod +

=                                                                                       4.21 

which is almost the same within an error less than 0.2 % in the coefficients as in Eq. 4.20 

obtained by simply replacing aL  by zero. 

 

 

4.3.3  Order Reduction  with Matlab’s    System Identification  Toolbox 

 

 Second order transfer function of motor   is estimated from measured dataset which is 

the same dataset used in estimation of Eq.4.16. This time, we select template transfer function 

[ ])s1(sK 1τ+  as shown in left pane of Fig.4.9. This transfer function contains one integral 

element, one pole and one gain. Hence, the transfer function 2IDEH   which is predicted as 

second order becomes  

 )1(s s
1319

66.5
H 2IDE +

=                                                                                       4.22 

This result is also in good coherence with those in Eqs. 4.20 and 4.21. In fact, having the most 

similarity to the remaining two others, this model will be taken as reference in the sequel 

when discussing the MRAC. 

As shown in the left pane of Fig. 4.10, measured output and simulated model output are 

coincident. The fit rate between them is 99.9 % which is the same fit rate of Eq. 4.16.  

 

                                                 
3 The matlab program code with concerning these commands is placed in to the  C.2 
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    Figure 4.9 Parameter identification window related with second                   

 order estimation. 

 

 
Figure 4.10 Comparison of measured and simulated outputs related with second                 
          order estimation.  
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4.3.4 Comparison Between Third Order Transfer Function and  Second Order            

 Transfer Function 

 

In the previous section, it has already been concluded that the results of different 

reduction techniques are in good agreement. The transfer functions in Eqs. 4.16, 4.20, 4.21, 

4.22 are now compared with each other by plotting bode diagrams. All bode diagrams are 

shown in Fig. 4.11. 

 

 
 

  Fig. 4.11 Bode Diagrams of Transfer Functions 

 

In this figure bode diagrams of the transfer functions in Eqs.  4.16, 4.20, 4.21, 4.22 are 

remarked with . (point), o (circle), x (multiplication), + (plus) symbols, respectively. All of 

the bode curves concerning third and second order transfer functions seem identical over a 3 

decade frequency range strating from 0.1 r/s and extending to 100r/s. Hence, the order of dc 

motor’s transfer function   ( ) ( )sEs amΘ    may be well accepted as second order, and all the 

reduced second order transfer functions are almost equally well.  
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4.4 MRAC OF PM DC MOTORS 

 

 Since, the motor can be accepted as second order, the order of reference model and the 

number of states and its feedback gains of dc motor should be two accordingly.  The principle 

MRAC scheme of a dc motor displacement is shown in Fig.4.12. Where, ( )trθ  is reference 

signal input which is chosen as square wave. ( )tea  is the input voltage of motor. The 

displacement ( )tθ  is the first state of motor and it is assigned to be output. ( )twm  is the 

second state or velocity of the motor which is gotten by first derivative of displacement. 1F  

and 2F  are feedback gains of first and second states. g is feed forward gain of reference 

signal. e(t) is identified as difference or error signal between reference model output and dc 

motor output. Adaptation mechanism whose input are first state, second state, reference 

signal, error signal and its derivative adjust  feedback gains 1F  , 2F  and feed forward gain g . 

The aim of the adaptation is that, dc motor output converges to reference model output and 

error signal goes to zero.   

             
            Figure 4.12 The principle MRAC scheme of a dc motor displacement. 
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4.4.1 Experimental Setup for MRAC 

Physical scheme of MRAC of dc motor displacement is shown in Fig. 4.13. Where, 

M1 is the controlled motor which is a permanent magnet dc motor whose control voltage is 

got from female connector X1 of data acquisition board. E is dual channel encoder which 

measures displacement of motor shaft. The phases of the two-output (A and B) pulse trains 

are 90 degrees apart electrically. Each output produce 100 square wave per rotation. Encoder 

outputs are connected to female connector X2 of data acquisition board.  DM  which is 

identical with M1 is permanent magnet dc motor. It acts as load to for M1 and applies 

disturbance effect for displacement. Disturbance torque or load of M1 ( LT ) is adjusted by the 

armature current DI  of DM . 

Rext is 200Ω  external resistance which provides parameter variations for armature resistance 

so it applies disturbance effect for displacement. The maximum output voltage and maximum 

output current of motor driver are limited 10 V and 0.5 A, respectively. The shafts of M1, E 

and DM  are coupled to each other for experiment4. 

          
                                                   

                        Figure 4.13 Physical scheme of MRAC of a dc motor displacement. 

 

 

 

                                                 
4 The features of appliances and program codes are in appendix B and appendix C respectively. 
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4.4.2 Review of Adaptive Laws for the Control of Tested Motors 

 

The second order mathematical model in Eq. 4.22 is assumed as reference for the plant 

of this section. Adapting the notation in Fig. 4.12, we write this transfer function again for 

convenience  
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Direct realization procedure yields the following steps: 
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Equating the numerators and denominators, we obtain   

Fs 2−=Θ ,          4.24-b 

 

FsEF a
115.661319 −−= ,       4.24-c 

respectively. The following state transition signal flow graph in  Fig. 4.14 follows directly. 

 

                              
      Fig. 4.14 State transition signal flow graph of the motor model. 

 

Designing Θ  and dtdw Θ=  as the first and second state equations, we obtain the 

controllable state equations  
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These equations constituting the plant model correspond to Eqs. 3.2-a and 3.2-b respectively. 

Hence  
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Feedback control law in Eq. 3.4 becomes 
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For the reference model, we assume a prototype second order transfer function with 

undamped natural frequency nw  and damping coefficient ξ  (Kuo, B. C., 1995). Hence, 
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Following Eqs. 3.6-a, 3.6-b, 3.6-c and 3.6-d, we have  
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for the reference model. 

Finally adaptation laws are obtained explicitly using Eq. 3.20-a and b,  
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The explicit form of the Lyapunov Equation in (3.16) becomes  

⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
−−⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−
−

2221

1211

n
2
n2221

1211

2221

1211

n

2
n

QQ
QQ

w2w
0

pp
pp

pp
pp

w2
w0

ξξ
1

1
            4.33 

We find it convenient to remind that the rate of decrease of the Lyapunov function V is 

determined by Q due to Eq. 3.19 i.e,  
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eQeV T−=& . 

The error decays to zero by the time constants of the reference model if gΦandFΦ  in Eqs. 

3.13 become zero shortly so that this equation reduces to .eAe m=&  

On the base of the specific MRAC equations associated with the plant, the reference 

model the MRAC method given in this chapter, the obtained simulation result will be 

presented in the next chapter. 
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 CHAPTER 5 

 

                             SIMULATION RESULTS   
 
 

In this chapter, we investigate the performance of adaptive tracking for various adaptive 

gainsα , positive definite matrices P, simulation step sizes T, reference models and various 

disturbance effects. 

 

5.1 EFFECTS OF ADAPTIVE GAIN α  ON THE PERFORMANCE 

We investigate in this section, the effect of adaptive gain α  on the adaptive tracking 

performance for a proper positive definite matrix P, for fixed simulation step size T and a 

chosen reference model. We can suggest a reference model having the transfer function  
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 via choosing proper values for the ξ  and nw   parameters. As 

shown in  Eq. 5.1 and Eq. 5.2,  percent maximum overshoot and  quality factor  of the 

denominator polynomial is adjusted by onlyζ , as 

 

Percent maximum overshoot = 
2ζ1/ζπe100 −−

 ,                         5.1 

 

Quality factor of denominator polynomial = ( )ζ21  .    5.2 

 

The time delay dt , rise time rt  and settling time st  are approximately adjusted by both 

ς  and nw  (Kuo, 1995)  as in the  following formulas, respectively; 
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( ) n
2
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 49

( ) ,69.00w/2.3t ns <<≅ ζζ for         5.5-a 

 

( ) 69.0w/5.4t ns >≅ ζζ for .      5.5-b 

 

We choose ζ =1 and nw = 4 for the reference model. We get the following results by 

using the formulas 5.1 through 5.5;  

 

Percent maximum overshoot = 0, 

Quality factor of denominator polynomial = 0.5 < 1, 

4235.0td ≅ s,  

875.0tr ≅  s,  

125.1ts ≅ s. 

From Eq. 4.30, mA and mB  are  
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Its solution for P is 

⎥
⎦

⎤
⎢
⎣

⎡
=

0703.00625.0
0625.0625.0

P . 

P satisfies criterions that are  mentioned at the end of Section 3.2. Namely, all elements of P 

are different from zero and the elements of the bottom row be close each other ( cb ≅ ). 

From Eqs. 4.31and 4.32, adaptive laws are  
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As used in Eqs. 3.24a-b, PbT
m  is abbreviated by [ ]125.11T =s .            

So adaptive laws are written by simple way 
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Adaptation period T is chosen as 1 ms. The time constant of the plant (Eq. 4.22) 

is ms64s1038.666.151T 2
p ≅×== −  and the time constants of model are 1mT = 2mT =250 ms. 

Simulation step size T is sufficiently smaller than the plant’s and model’s time constants 

(T<Tpi and T<Tmi). It satisfies criterions that mentioned at the end of Section 3.2. 

Simulation step size T is bigger than the computation time Tc because computer is 

forced and   gives error message due to using simulation step size T smaller than 1ms, i.e; Tc 

≈1 ms. In fact T =1 ms is almost the minimum allowable value and the effects of other values 

are also investigated in the sequel.  

Reference signal is a square wave, its frequency is chosen 0.1 Hz (period is 10 s) and its 

amplitude is chosen between 2π  and π  in all simulations. 

As mentioned at the end of Section 3.2, adaptive gain α  will be chosen by trial and 

error using simulations in order to achieve a good rate of convergence. Simulation results for 

the rotor angular position  are shown in Figures 5.1, 5.2, 5.3 for adaptive 

gains 410−=α , 310−=α , 210−=α  respectively. All the figures indicate satisfactory 

convergence of the plant output to that of the model. But   the use of a larger value of the 

adaptive gain α  led to a faster convergence of plant output to model’s. The biggest adaptive 
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gain is chosen as 210−=α  because adaptive laws become stiff and difficult to solve 

numerically on the computer and simulink gives application error for 210−>α . The solid 

lines show model output, dotted lines show plant output, solid-dotted  lines if exist show error 

signal in all simulations. 

      

                  Figure 5.1 Simulation results for 410−=α , cb ≅ , T =1 ms 

           

                   Figure 5.2 Simulation results for 310 −=α , cb ≅ , T =1 ms 
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  Figure 5.3 Simulation results for 210 −=α , cb ≅ , T =1 ms. 

5.2 EFFECTS OF POSITIVE DEFINITE MATRIX P ON THE PERFORMANCE 

Now, we investigate how adaptive tracking performance is affected, if P matrix is 

chosen in improper form. We consider three  different P matrices whose bottom elements are 

not close each other for the  first two cases, the first bottom element is equal to zero for the  

last case.  

 i.  ⎥
⎦

⎤
⎢
⎣

⎡
=

0391.03125.0
3125.0126.2

P  for ⎥
⎦

⎤
⎢
⎣

⎡
=

0.0011
110

Q ,   

As seen in Eqs. 3.22-a and 3.22-b, the first bottom element (b) of P  is the  multiplier  of  e1 

( Θ−1z ) and the second bottom element (c) of P is the multiplier  of  e2 ( )wz2 − . This 

situation may be   stated as, e1   is   0.3125/0.0391=8 times more effective than  e2  on the 

adaptive laws. The simulation results are shown in Fig. 5.4 with respect to this situation. The 

error signal  e1  changes between +0.15 rad  and -0.15 rad. The error signal in Fig. 5.4 is 3 

times bigger than in Fig. 5.3. Shortly, the case of ( cb >> ) is less successful than ( cb ≅ ). 
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                     Figure 5.4 Simulation results for 210 −=α , cb >> , T =1 ms. 

ii.  ⎥
⎦

⎤
⎢
⎣

⎡
=

5078.00625.0
0625.0625.7

P  is for ⎥
⎦

⎤
⎢
⎣

⎡
=

81
12

Q . Contrary of previous case, this time the 

coefficient of  e2  is approximately  0.5078/0.0625 ≈  8  times bigger than  e1. As shown in 

Fig. 5.5  adaptive tracking is much worse than the previous one. The plant doesn’t follow the 

model properly, especially around 2/π  rad under steady-state condition. Shortly, the case of 

( cb << )  is more terrible than ( cb >> ).  
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                          Figure 5.5 Simulation results for 210 −=α , cb << , T =1 ms. 

 

iii.  ⎥
⎦

⎤
⎢
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⎡
=

0625.00
01

P   for ⎥
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⎤
⎢
⎣

⎡
=

10
00

Q  

As shown and mentioned in Eqs. 3.23-a and 3.23-b, only 2e  is effective on the adaptive 

laws. As shown in Fig. 5.6, adaptation can not occur and the plant output goes to away from 

the model output little by little. In order not to meet such a result it is  advise that all the 

elements of matrix Q are chosen different from zero.   

 



 55

 

                            Figure 5.6 Simulation results for 210 −=α , b=0, T =1 ms. 

 

 

5.3 EFFECTS OF SIMULATION STEP SIZE T ON THE PERFORMANCE 

Now, we investigate how adaptive tracking performance is affected if simulation step 

size (T )  is chosen larger than 1ms. We consider two different T values 10 ms and 100 ms. 

The simulation results with respect to the these values  are shown in Fig. 5.7 and   Fig. 5.8 

respectively. Although the simulation step size T (10 ms)  is smaller than pT (64 ms) and Tmi  

(250 ms),  adaptive tracking performance  shown  in Fig. 5.7 is less successful than the one in 

Fig. 5.3 whose T  value is  (1ms). Hence, even if  T<Tpi and T<Tmi, the larger simulation step 

size T, the lower  performance we get.  

Because, simulation step size T  (100 ms) is not smaller than pT (64 ms) adaptive 

tracking doesn’t occur as shown  in Fig. 5.8.  
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                    Figure 5.7 Simulation results for 210−=α , cb ≅ , T =10 ms. 

 

           

                        Figure 5.8 Simulation results for 210 −=α , cb ≅ , T =100 ms. 
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5.4  EFFECTS OF REFERENCE MODEL ON THE PERFORMANCE 

 

Now, we investigate the success of adaptive tracking for a faster and less stable 

reference model. ζ and nw are chosen as 0.2 and 8 respectively.  

We get the  following results by using the formulas 5.1 through 5.5. 

 

Percent maximum overshoot = 52.66, 

Quality factor of denominator polynomial = 2.5 > 1, 

01787.0td ≅ s,  

01615.0tr ≅  s, 

2ts ≅ s    for  69.00 << ζ . 

 

From Eq. 4.30, mA and mB  are  
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of which solution is   

⎥
⎦

⎤
⎢
⎣

⎡
=

2271.02266.0
2266.02563.14

P . 

P satisfies criterions that are  mentioned at the end of Section 3.2. Namely, the elements of 

bottom row be close each other.  

From Eqs. 4.31and 4.32, adaptive laws are  
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 As used in Eqs. 3.21a-b, PbT
m  is abbreviated by [ ]5313.145.14T =s . 

            So adaptive laws are simply written as 
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Adaptation period T is chosen 1ms in this simulation. The time constant of the plant is 

still ms64s1038.666.151T 2
p ≅×== − , and the time constants of the model yield m1T =625 

ms for the exponential decaying and m2T =125 ms for the oscillations period. In fact this 

amount of  oscillation period corresponds to a much smaller (approximately 4 times) time 

constant. Simulation step size T is much smaller than plant’s and model’s time constants 

(T<<Tpi and T<<Tmi). It satisfies criterions that mentioned at the end of Section 3.2. 

Reference signal is a square wave,  its frequency is chosen as 0.1 Hz and its amplitude 

is chosen between 2π  and π  in this simulation. Simulation result with respect to the 

mentioned model is shown Fig. 5.9. Because model trajectory or desired trajectory changes 

very rapidly due to faster behavior of the model, the plant does not follow the model properly 

especially around 2/π  rad.  
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Figure 5.9 Simulation result with respect to faster and less stable model. 

 

5.5 EFFECTS OF DISTURBANCES ON THE PERFORMANCE  

We will investigate the success of the adaptation mechanism against to the disturbance 

effects. We apply disturbance effects with two ways which are  changeable armature 

resistance (Rext) and load torque ( LT ). 

5.5.1 Disturbances with Changeable Armature Resistance  

   To begin with, we will apply disturbance effect by means of the disturbance 

potentiometer (Rext) which is connected in series with the armature resistance aR  of dc motor. 

The experimental scheme is shown in Fig. 4.13. The reference model and the values of other 

parameters which are  used for  this section  are same as those used for Fig. 5.3 namely, 
210−=α , b = 0.0625, c = 0.0703, T =1 ms.  
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                 Figure 5.10 Simulation result with respect to armature resistance variations  

 As shown in Fig. 5.10 the value of disturbance potentiometer (Rext) is increased by 

gradually within specified time intervals. No appreciable deviation occurs between resistance 

levels up to 110Ω , plant follows model very well. At time 25 second, disturbance resistance 

is increased to the value of 130 Ω  and adaptive tracking becomes poor. At time 39 second 

disturbance resistance is increased to the value of 140 Ω  and motor shaft stops. At first 

glance, this situation may be perceived as weakness of adaptation mechanism. As mentioned 

in the Section 4.2.2, dc motor has dead zone between -1 and 1 V levels of applied 

voltages aE . aR  is already known as 15.36 Ω  from Section 4.2.1, under these circumstances, 

from ohm law, dead zone armature current aI  interval is between -65mA and +65mA. In 

other words motor torque becomes not sufficient to overcome the static resistance and motor 

shaft doesn’t rotate between these levels. Total armature resistance is 

Ω36.15536.15140RT =+=   for Rext = 140Ω . Then maximum armature current is =aI 10 / 

155.36 =64.36 mA for maximum allowed input voltage V10Ea = . This value is inside of  

dead zone level. Hence, the stopping of the shaft for Rext = 140 Ω  is not an abnormal 

situation. Armature current   aI  is 68.79 mA for   Rext = 130Ω. This value is close to  dead 

zone, for this reason adaptive tracking is poor. Figure 5.10 shows that the value of sudden 
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change of 20Ω  in Rext does not spoil the control mechanism since there is not an perceptible 

difference on the values of the models and plant outputs (See subsequent intervals from 0 to 

25 ms). To view the effect of abrupt change of Rext within the region where the adaptation 

mechanism work well ( 110R0 ext ≤≤ ), we cary Rext   with parallel switch from 0 to 110Ω and 

110 to 0Ω  suddenly.  Simulation   results are shown in Fig. 5.11.     

                    

       Figure 5.11 Simulation results with respect to abrupt armature resistance variations 

                      (0 to 110Ω and 110 to 0Ω ) 

The switch wich is connected in  parallel with disturbance potentiometer (Rext) is on-off 

within specified time intervals. Although small deviations occur after switching time, 

adaptation mechanism adjust itself very rapidly in almost 1s. 

 

5.5.2 Disturbances with Changeable Load Torque  

Now, we will apply disturbance effect by means of disturbance motor DM  which is 

identical with M1. DM  acts as load for M1 and applies disturbance effect for displacement. 

Disturbance torque or load of M1 ( LT ) is adjusted by the armature current DI  of DM . As 

shown in Figure 5.12, disturbance current DI  is increased by gradually within specified time 

intervals. No deviations occur between disturbance current levels up to  0.4 A, plant follows 
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model very well. At time 33 second, disturbance current is increased to the value of 0.5 A 

and, after 2 seconds plant output leave the model output when the reference input reversed. 

As mentioned in Section 4.4.1, maximum output current of driver of M1 is limited with 0.5 A. 

At time 33 second, the currents of identical motors are equal, therefore their torqueses are 

same, and then the directions of torques are converse of each other, so motor shaft doesn’t 

rotate.  

              

                       Figure 5.12 Simulation result with respect to torque disturbances. 

In reality, the motor may be subject to two types of saturation or limitations. One 

limitation is that as the armature current increases due to the increase in aE , the magnetic 

circuit will saturate, so that the motor torque cannot exceed a certain maximum value. The 

second limitation is due to the maximum current that the motor can handle due to the heat 

dissipation rating of the motor. Amplifier gain or motor driver gain is subject to magnetic 

saturation and heat dissipation. For these reasons, the maximum output voltage and maximum 

output current of motor driver are limited 10V and 0.5A respectively. Unless  these 

limitations are not to be for motor and its driver, MRAC overcomes almost all excessive load 

parameter variations and adaptive tracking is continuous.  
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Figure 5.12 shows that the value of sudden change of 0.1mA in disturbance current of 

DM  does not spoil the control mechanism since there is not an perceptible difference on the 

values of the models and plant outputs (See subsequent intervals from 0 to 0.4mA). To view 

the effect of abrupt change of TL within the region where the adaptation mechanism work well 

( mA4.ID 00 ≤≤ ), we cary DI  from 0 to 0.4mA and 0.4 to 0 mA suddenly. Simulation results 

shown in Fig. 5.13. The switch wich is connected in  series with disturbance current source is 

made on-off  within specified time intervals. Although small deviations occur just after the 

switching time, adaptation mechanism adjust itself very rapidly in almost  1s. 

 

 

  Figure 5.13 Simulation result with respect to abrupt torque disturbances. 
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CHAPTER 6 
 
 

      CONCLUSIONS 

Model Reference adaptive control of a permanent DC motor is investigated in this 

study. After an introduction of different control problems and MRAC, the general theory 

about the method and its application to the considered motor (plant) is treated. Identification 

of motor parameters by experimental methods are evaluated to know the motor for handling 

the proper choice of the reference model and the correct judgement of the MRAC method. 

Other than gaining the theoretical and practical knowledge about MRAC, identification 

problem, matlab tools, this work has also been beneficial in getting acquaintance with the 

interactive study involving computer and real life.  

The main results of this study may be summarized as in the following bullets; 

• Model reference adaptive control is one of the various techniques of solving control problem 

when the parameters of the controlled process are poorly known or vary during normal operation. 

For this reason, a model reference adaptive control method is proposed to control the position of a 

dc motor without requiring any fixed motor parameter. Experimental results show how well this 

method controls the position of the motor. 

• This method is only suitable for plants without finite transmission zeros.  

• This method adjusts feedback gains of states and feed forward gain of closed loop plant, 

equalizes them to model’s.  

• If plant dynamics can be expressed with  lower order transfer function, reference model can 

be chosen as lower order. 

• The displacement of motor is measured by encoder. Encoder output has insignificant noise, 

hence, we don’t use filter for plant output.  

• To choice of small adaptive gain α  may result in slow convergent rate whereas large α  

may make the differential equations stiff and difficult to solve numerically on the computer. 

•  Simulation step size T must be bigger than the computation time Tc  )(  T  T c> ,   otherwise 

simulation program does not work properly and it gives error message. But the large 
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simulation step size T reduces the adaptive tracking performance. Computation time Tc 

involves the evaluation of adaptive laws and it depends on hardware features. It is not 

measured precisely or properly and already it is not unnecessary,  because Simulink gives 

error message automatically for  .)(  T  T c≤   

•   Simulation step size T must be smaller than plant’s and model’s time constants 

)T T T  T( miPi <<  and  otherwise adaptation mechanism is insufficient for perception and 

correction to  the parameters variations of plant. 

• The absolute values of bottom row elements of P must be close each other ( cb ≅ ) , these 

elements are coefficients of  error signals e  (e1 and e2)  on the adaptive laws. Otherwise the 

effect of elements of e on the adaptive laws are different ratios and adaptive tracking 

performance decreases. That is adaptation is more efficient when all entries of the error vector 

are almost equally weighted for adaptation.  

• If except diagonal elements, remaining elements of P are zero (b=0), only 2e  is effective on 

the adaptive laws. In these circumstances, adaptation doesn’t occur. In order not to meet with 

such a result advise that all the elements of matrix Q which is used in the Lyapunov equation 

(Eq. 3.16) are chosen different from zero. 

• In spite of change of motor parameters during working time, MRAC adjusts plant’s input so 

that  output of the plant becomes as model output.  

• The motor is subjected to two types of limitations, one is magnetic saturation and second is 

heat dissipation. For these reasons, the maximum output voltage and maximum output current 

of motor driver are limited within specific intervals. Unless these limitations are not exceeded 

for motor and its driver, MRAC overcomes all excessive load parameter variations and 

adaptive tracking is continuous.  

• The parameter  variations with time which are faster as compared to simulation step size T 

are not perceived and corrected by MRAC such as white noise and high frequency 

disturbances.  

• However, the method might be improved to apply the plants with finite transmission zeros 

and this is the subject of the future  work. 
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APPENDIX A 

 
 

LYAPUNOV STABILITY 
 
 
 

Consider the nonlinear, time-varying system (Butler, 1992): 

 

( )txfx ,=& .                                (A.1)  

Here, f is an  1xn  vector function and  x  is the 1xn  state vector. An equilibrium point 
*x of system (A.1) is characterized by ( ) 0xf =* . If the state x  of system (A.1) is situated at 

an equilibrium point at 0t = , it will stay on the equilibrium point for all 0t > . If the initial 

state isn’t exactly equal to the equilibrium state ( ( ) δ+= *x0x ), there are four possibilities.   

1. The state x can be made to remain in any specified vicinity ε  of *x by choosing a 

sufficiently small deviation δ of *x at 0t = . However, x  isn’t guaranteed to converge to *x . 

This behavior is called stable. 

2. The system isn’t stable. It is than said to be unstable. Note that if a system is unstable, 

this doesn’t imply divergence from *x .  It merely states that it is possible to specify an ε  

which doesn’t allow anyδ . A well known example of this is a harmonic oscillator which is 

oscillating with a specific frequency and amplitude: ( ) )sin(* wtAtx = .While x always lies 

between -A and +A, specifying A>ε  allows any initial deviation εδ < . However, no value 

of δ can be found that allows an A<ε  because x  will always exceed ε  for some time t . 

3. The state x will converge to *x as long as the initial deviation δ of *x is smaller than 

some boundary R. More formally, if R<δ , for an arbitrarily close vicinity μ  of *x a time *t   

exists such that for all *tt > , μ<− *xx .This notion is called asymptotic stability. Note that 

in this definition, starting within a boundary R from *x doesn’t imply that x  will remain 

within R for all 0t > , but only that .* ∞→→− tas0xx  

4. If the asymptotic stability is guaranteed for any initial deviationδ , the asymptotic 

property is said to be global. To check to which stability class a given system of the form 
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(A.1) belongs, Lyapunov’s direct method can be applied. Lyapunov’s method can only 

investigate stability properties of an equilibrium point 0x =* . Hence, other equilibrium points 

have to be transformed to  0x =*  by a transformation *xxx −=′ . In applying Lyapunov’s 

method, first a Lyapunov function  ( )xV  is defined. This function can be considered as a sort 

of energy function, while it has similar properties to the energy stored in the system. The 

Lyapunov function itself must satisfy 

( )xV >0,  0x ≠∀ . 

In addition to be comparable to energy function ( )xV  should be monotonically increasing, 

and go to infinity as ;x ∞→  

( ) 0xVx0 ><< αα ;  

( ) .xasxV ∞→∞→  

Now, it can be felt that if the stored energy in a system decreases as time passes, all energy 

will eventually leave the system and equilibrium 0x =  will be reached. Similarly,  if the time 

derivative of the Lyapunov function is always negative and hence V is decreasing with time, V 

will eventually become zero because V is monotonous. As V=0 implies x =0, also due to the 

monotonous character of V, a negative definite V&  guarantees asymptotic stability; 

 

0x0V ≠∀< ,& . 

To calculateV& , partial derivatives of V with respect to the elements of x are needed; 

 

( ) ( )
x
Vxf

x
V

dt
dxtxV

∂
∂
⋅=

∂
∂
⋅=,& . 

Hence, the partial derivative  
x
V
∂
∂  must be continuous. The above requirements on V 

guarantee global asymptotic stability. By using less strict requirements, other forms of 

stability are obtained. For example, if  V&  is negative semi-definite, which implies that 0V =&  

for some 0x ≠ , the stability is no longer asymptotic. If V isn’t monotonously increasing 

with ∞→x , the stability isn’t global. Note that Lyapunov’s method provides a stability 

guarantee: if the requirements mentioned are met, the system is guaranteed to be globally 

asymptotically stable. However, if the requirements aren’t satisfied, the system may still be 
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stable. In addition, the choice of the Lyapunov function V is crucial in the stability check. 

Different Lyapunov functions may give different stability results. 

For a linear system Axx =& , let us consider a quadratic Lyapunov function: 

xPxV T= , in which P is a symmetric positive definite matrix. Then; 

xQxxPxxPxV TT −=+= &&&  

in which    

PAPAQ T +=− . 

 

According to Lyapunov’s theorem, a positive definite symmetric matrix Q always yields a 

positive definite symmetric matrix P if the system Axx =&  is asymptotically stable. 
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APPENDIX B 
 
 

                      
 THE FEATURES OF APPLIANCES 
 
 
 

B.1 MOTOR SPECIFICATIONS 

 

• M1 and  DM  are identical permanent magnet dc motor. 

• Maximum armature current is 0.5 A  

• Maximum armature voltage is 10 V 

• Nominal speed is 5700 RPM. 

• Armature resistance is 15.36Ω  

• Armature inductance is 0.42 mH 

 

B.2 ENCODER SPECIFICATIONS 

 

• Typical dual-channel encoder  

• It produces 100 square waves per rotation. 

 

B.3 DATA ACQUISITION BOARD SPECIFICATIONS  

 

 The MF 614 multifunction I/O card is designed for the need of connecting PC 

compatible computers to real world signals. The MF 614 contains a 100 kHz throughput 12 

bit A/D converter with sample/hold circuit, four software selectable input ranges and 8 

channel input multiplexer, 4 independent 12 bit  D/A converters, 8 bit digital input port and 8 

bit digital output port, 4 quadrature encoder inputs with single-ended or differential interface 

and 5 timers/counters. The card is designed for standard data acquisition and control 

applications and optimized for use with Real Time Toolbox for MATLAB®.  
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B.4 HARDWARE SPECIFICATIONS 
 

• Microprocessor is Pentium 4, 3 GHz 

• RAM is 512MB 

• Hard disk is 20GB 

 

B.5 SOFTWARE SPECIFICATIONS 
 

• Matlab version is 7.1 

• Simulink version is 6.3 

• System Identification Toolbox version is 6.1.2 
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APPENDIX C 

 

THE MATLAB PROGRAM CODES 
 

 
 
C.1 SIMULINK SCHEME OF MRAC OF A DC MOTOR DISPLACEMENT 
 
 

 
                  
 
    Figure C.1 Simulink   scheme of MRAC  
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C.1.1 Inside of Model Block 

 

                 
                                 Figure C.2 Interior of Model Block 
 
 
C.1.2 Inside of Plant Block 
 
 

 
Figure C.3 Interior of Plant Block. 
 
 

C.1.3 Inside of S-Function Builder Block (Adaptation Mechanism) 
 

%this code is written with C++ program 
 Static double F1=0.0, F2=0.0, g=0.0, a=.01, s1=1, s2= 1.1250; 
  If (reset [0]>0.5) 
  F1=F2=g=0.0; 
  F1 -= a*(s1*x1[0]*e1 [0] + s2*x1[0]*e2 [0]); 
  F2 -= a*(s1*x2[0]*e1 [0] + s2*x2[0]*e2 [0]); 
  g += a*r [0]*(s1*e1 [0] +s2*e2 [0]); 
  U [0] = r [0]*g - F1*x1[0] - F2*x2[0];                                   
 
 
 
C.2 ORDER REDUCTION of MOTOR TRANSFER FUNCTION with MATLAB 
 
%ORDER REDUCTİON WITH MATLAB'S BALREAL AND MODRED COMMANDS 
TFIDE3=TF ([4.827E7], [1 3.656E4 5.729E5 0]) 
[NUM, DEN] = TFDATA (TFIDE3,'V'); 
SYS=TF([NUM(1,4)],[DEN(1,1) DEN(1,2) DEN(1,3)]); 
[SYSB, G] = BALREAL (SYS); 
SYSR = MODRED (SYSB, [2],'DEL'); 
SYSR=TF (SYSR); 
[NUM, DEN] = (TFDATA (SYSR,'V')); 
FPRINTF ('ORDER REDUCTION WITH MATLAB’ S BALREAL COMMAND =%5.15E\N') 
TFBAL=ZPK(TF([NUM(1,2)],[DEN(1,1) DEN(1,2) 0]))%END OF PROGRAM 
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