
THERMAL DISTRIBUTIONS AROUND AN INSULATED BARRIER 

AT THE INTERFACE OF GRADED COATING AND A HOMOGENEOUS 

SUBSTRATE 

 

 

 

 

 

 

by 

 

 

 

 

 

 

Nurdane GÜDÜK 

 

 

 

 

 

 

 

 

 

 

 

July 2006 

 



THERMAL DISTRIBUTIONS AROUND AN INSULATED BARRIER 

AT THE INTERFACE OF GRADED COATING AND A HOMOGENEOUS 

SUBSTRATE 

 

by 

 

Nurdane GÜDÜK 

 

A thesis submitted to 

The Graduate Institute of Sciences and Engineering 
 
 

of 
 
 

Fatih University 
 
 

in partial fulfillment of the requirements for the degree of 
Master of Science 

 
 

In 
 
 

Mathematics Department 
 
 
 
 
 

July 2006 
Istanbul,Turkey 

 
 

 

 

 

 



APPROVAL PAGE 

 
 
 

I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Master of  Science. 
                                                                                               _____________________        

Assist.Prof.Dr. Ali ŞAHİN 
 
 
 This is to certify that I have read this thesis and in my opinion it is fully 

adequate, in scope and quality, as a thesis for the degree of Master of Science.            
 
 

                                                                                               _____________________         
Assist.Prof.Dr. Ali ŞAHİN 

                                                                                            Supervisor 
 
Examining Committee Members 
 
Assist.Prof.Dr. Ibrahim ABU-ALSHAIKH              ________________________ 
             
Assist.Prof.Dr. Yüksel KÖSEOĞLU              ________________________ 
 
Assist.Prof.Dr. İbrahim KARATAY   ________________________ 
 
         
 
 
 

It is approved that this thesis has been written in compliance with the formatting 
rules laid down by the Graduate Institute of Sciences and Engineering. 

 
 

                                                                                   ___________________________                    
Assist.Prof.Dr. Nurullah ARSLAN 

 
 
 
 
                                                             Date 
                                                         July 2006                                                                                       

 



 iii

THERMAL DISTRIBUTIONS AROUND AN INSULATED BARRIER 

AT THE INTERFACE OF GRADED COATING AND A HOMOGENEOUS  

SUBSTRATE 

 

Nurdane GÜDÜK 

 

M.S. Thesis-Mathematics Department 

July 2006 

 

Supervisor: Assist. Prof. Dr. Ali ŞAHİN 

 

ABSTRACT 

 

 
 The main purpose of this study is to examine the effect of thermal flux or heat 

applied to an insulated barrier at the interface between the inhomogeneous composite 

coating and homogeneous metallic substrate. Using the superposition method the 

geometry was simplified and then applying Fourier integral transform method to steady 

state nonlinear heat conduction equation the problem was translated to the solution of an 

integral equation with Cauchy type of singularity. Eliminating the singularities with 

known numerical techniques the thermal distribution around the barrier was obtained in 

terms of orthogonal polynomials. The effect of inhomogeneity and thickness parameters 

was shown in figures. The obtained results could be used to evaluate the stress 
distribution around the barrier and also stresses are stimulated to find stress intensity 

factors on the barrier (at this point barrier turns to crack). 

 

Keywords:    Composite Materials, Heat Equation, Integral Transform, Cauchy type   

Singularity, Thermal Distribution. 
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DERECELENDİRİLMİŞ TABAKA VE HOMOJEN ORTAM ARASINDAKİ 

YÜZEYDE İZOLE EDİLMİŞ BİR BARİYERİN ETRAFINDAKİ ISI DAĞILIMI 

 

Nurdane GÜDÜK 

 

Yüksek Lisans Tezi-Matematik Bölümü 

Temmuz 2006 

 

Tez Danışmanı: Yrd.Doç.Dr. Ali ŞAHİN 

 

ÖZET 

 

 

Bu çalışmanın asıl amacı homojen olmayan malzemeden oluşmuş bir tabaka ile 

homojen olan metal bir malzeme arasındaki izole edilmiş bir bariyerin yüzeyine 

uygulanan termik akışın veya ısının etkisini incelemektir. Süperpozisyon metodu 

kullanılarak problem basitleştirilmiş, zamandan bağımsız lineer olmayan ısı denklemine 

Fourier integral transform metodu uygulanılarak problem Cauchy tipinde tekil integral 

denklemin çözümüne indirgenmiştir. Tekilliklerin bilinen nümerik tekniklerle yok 

edilmesi sonucu bariyer etrafındaki ısı dağılımı ortogonal  polinomlar cinsinden elde 

edilmiştir. Homojen olmayan malzemenin ve kalınlığının parametrelerinin etkisi 

figürlerde gösterilmiştir. Elde edilen sonuçlar bariyer etrafındaki gerilimlerin 

şiddetlerinin hesabınde kullanılabilirler ve hatta bu gerilimler bariyerin üzerindeki 

gerilim yoğunluk faktörlerinin bulunmasında kullanılabilirler. 

 

Anahtar Kelimeler:  Komposit malzemeler, ısı denklemi, integral dönüşümleri, 

Cauchy tekillikleri, sıcaklık dağılımı. 
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CHAPTER 1 

 

INTRODUCTION 

 

 
 The concept of various types of composites and bonded materials which are 

progressively changing properties to improve material performance has been used in 

many technological applications such as microelectronics, transportation and aerospace. 

Due to severe environment conditions, conventional materials do not seem to be 

adequate to meet the requirements of new technologies. The new developments in 

science and technology are heavily depend on new materials like composites, 

intermetallics and alloys to provide the necessary flexibility in the design and 

processing of these new materials. For most of the industrial applications, in which the 

uniformity in material properties is a general requirement, it is essential that every part 

of the material in use exhibits uniform properties. Last decades the considerable effort 

in development of composites has been put into determining how to uniformly mix the 

dispersoid within the matrix [1]. 

 Composite materials can be prepared using several techniques including Chemical 

Vapor Deposition (CVD), Physical Vapor deposition (PVD), etc. Over the past several 

decades considerable progress has been made in using ceramic coatings to protect 

metallic components from high temperature environments. As a result of such coating 

progress some metallic parts in a surface of spacecraft can be protected as high as 

1700 C , while the inside is cooled to about 700 C . The success of spacecraft 

construction relies on the successful ceramic coatings, commonly referred to as Thermal 

Barrier Coatings (TBCs), which can protect the craft from severe environments. Most 

TBCs are structurally as well as functionally complex and, therefore, should be 

considered and studied as a material system. TBC system can be used, for example, in 

aircraft engines typically that consist of a thick thermally insulating ceramic layer on the 

metallic substrate. 
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 From a practical standpoint, the conventional approach for accommodating the 

material mismatch between the metallic substrate and ceramic coating is to make the 

ceramic layer compliant by incorporating structural defects, such as microcracks and 

porosity as well as vertically segmented columns. However, in terms of achieving long-

term durability, several major problems are associated with the presence of these 

microstructural defects. Thus, increased temperature and prolonged time exposure 

become an important issue, resulting in, for example, increase in thermal conductivity 

and decrease in coating compliance.  

 In high temperature applications, which is one of the important technological 

areas, metals and metal alloys appear to be very susceptible to oxidation, creep and 

generally to loss of structural integrity. Low strength and low toughness have always 

been the disadvantages of ceramics. Thus, as an alternative to conventional thermal 

barrier ceramic coatings, in 1980's the concept of Functionally Graded Materials 

(FGMs) was proposed. For extensive information see [2-26]. 

 FGMs are very attractive for high temperature applications and wear protective 

coatings. It is essentially two-phase particulate composites synthesized in such a way 

that the volume fractions of the constituents vary continuously in the thickness direction 

to give a predetermined composition profile. The composition profile which varies from 

0% ceramic at the interface to 100% ceramic near the surface, in turn, is selected in such 

a way that the resulting nonhomogeneous material exhibits the desired 

thermomechanical properties. The concept of FGMs could provide great flexibility in 

material design by controlling both composition profile and microstructure. Current and 

potential applications of the concept of FGMs include not only thermal barrier coatings 

of high temperature components but also wear-resistant coatings on load transfer 

components, armors or shields with improved impact resistance, and thermoelectric 

cells. In addition to the fabricated FGMs, some materials naturally possess the same 

physical properties that vary continuously across the interfacial region or through the 

thickness as a natural consequence of material processing.  

 The main purpose of this study is to examine the interaction between the 

composite coating, which is nonhomogeneous material, and the metallic substrate, 

which is homogeneous one, under high temperature or heat flux. The constant heat flux 

has been applied to the surface of coating and the effect of heat on the insulated barrier 

at the interface between composite coating and metallic substrate has been investigated. 

In Chapter 2, it was summarized the heat equation and its solution in different 
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techniques such as separation of variable and integral transform methods for finite and 

infinite media (geometries), respectively. In Chapter 3, some numerical integration 

techniques were studied. Main part of the work here is in Chapter 4, which is the part 

related to the modeling of temperature distribution around the barrier at the interface 

between composite coating and metallic substrate. In this chapter, superposition method 

was used to simplify the geometry of the problem and then by using Fourier integral 

transform method, the problem with the boundary conditions was translated to the 

integral equation with Cauchy type of singularity. Moreover, in Chapter 4 using a 

known standard technique, the integral equation was solved and the thermal 

distributions on the insulated barrier at the interface between coating and substrate were 

represented for different inhomogeneity and thickness parameters in Chapter 5. The 

results were compared with the homogeneous infinite and semi-infinite geometries and 

it was shown that results are perfectly matched and converged.  
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CHAPTER 2 

 

SUMMARIES ON DIFUSSION EQUATION AND ITS SOLUTION 

 

 
2.1   DERIVATION OF THE HEAT EQUATION 

 

 Suppose that we have a one dimensional rod of length L  for which we make the 

following assumptions 

1. The rod is made  of a single homogeneous conducting material 

2. The rod is laterally insulated (heat flows only in the x  direction) 

3. The rod is thin(The radius is very small compared to the length L).  

 

 
 

Figure 2.1: Thin Conducting Rod 
 

 If we apply the principle of conservation of heat segment ( , )x x x+ ∆  we can claim that 

the net change of heat inside ( , )x x x+ ∆  is equivalent to the addition of the net flux of heat 

across the boundaries and the total heat generated inside ( , )x x x+ ∆ . Now inasmuch as the 

total amount of heat inside ( , )x x x+ ∆  at any time t  is measured by [29] as 

    ( )( , ) ,
x x

x

x x x c Au s t dsρ
+∆

+ ∆ = ∫ ,       (2.1) 

where c  and ρ  are the thermal capacity and the density of the rod, respectively, as cross 

sectional area of the rod is given by A . We can write the conservation of energy 

            ( ) ( ), ,
x x x x

x x

d dc Au s t ds c A u s t ds
dt dt

ρ ρ
+∆ +∆

=∫ ∫          
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                              ( ) ( ) ( ), , ,
x x

x x
x

kA u x x t u x t A f s t ds
+∆

= + ∆ − +⎡ ⎤⎣ ⎦ ∫ ,   (2.2) 

where k  is the thermal conductivity of the rod and ( ),f x t  is the external heat. From 

the mean value theorem, if ( )f x  is a continuous function on [ ],a b  then there exist at 

least one number ,ξ  ,a bξ< <  that satisfies 

    ( ) ( )( ).
b

a

f x dx f b aξ= −∫        (2.3) 

Applying this result to Equation (2.2) we arrive at the following equation: 

( ) ( ) ( ) ( ), , , , ,t x xc Au t x kA u x x t u x t Af t xρ ξ ξ∆ = + ∆ − + ∆⎡ ⎤⎣ ⎦           x x xξ< < + ∆  (2.4) 

or 

   ( ) ( ) ( ) ( ), , 1, , .x x
t

u x x t u x tku t f t
c x c

ξ ξ
ρ ρ

+ ∆ −⎧ ⎫
= +⎨ ⎬∆⎩ ⎭

   (2.5) 

Finally, letting 0x∆ →  we have the desired result 

   ( ) ( ) ( )2, , ,t xxu x t u x t F x tα= +       (2.6) 

where 2 k cpα =  is called the diffusivity of the rod and the function 

( ) ( ) ( )1, ,F x t c f x tρ −=  is named as the heat source density. 

Suppose that the rod were not laterally insulated and that heat can flow in and out 

across the lateral boundary at a rate proportional to the difference between the 

temperature ( ),u x t  and the surrounding medium that we keep at zero. In this case, the 

conservation of heat principle will give  

   ( )2 ,t xxu u u F x tα β= − +        (2.7) 

where β  is the rate constant ( )0β >  for the lateral heat flow. 

 

2.2   HEAT EQUATION IN CARTESIAN COORDINATES 

 

 Suppose that we have a thin homogeneous bar of uniform cross section placed 

along the x -axis from 0 to .L  Assume that the sides of the bar are sufficiently well 

insulated that no heat energy is lost through them and that the bar is sufficiently thin 

that temperature at any given time is constant on any given cross section perpendicular 

to the x -axis. Then the temperature u  is a function of x  and t  only. To derive an 
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equation for ( ), ,u x t  begin with the experimentally observed fact that the amount of 

heat energy per unit time passing between two parallel plates of area ,A  distance d  

apart, and temperatures 1T  and 2 ,T  is proportional to 1 2 ,A T T d−  and flows from the 

warmer to the cooler plate. Let k  be the constant of proportionality. Then the amount of 

heat energy per unit time flowing from the warmer to the cooler plate can be expressed 

as ( )1 2k A T T d−  where k  is the coefficient of thermal conductivity and depends upon 

the material in the plates. 

Now, by conservation of energy, the rate at which heat flows into any portion of 

the bar must equal the rate at which that part of the bar absorbs heat energy. We will 

obtain an equation for ( ),u x t  by calculating the flux and absorption terms and setting 

them equal. 

 

     

      

 

 

Figure 2.2: A thin homogeneous bar of 

uniform cross section placed along the x -axis. 
Figure 2.3: A portion of the bar between 0x  

and 0 .x x+ ∆  

 

For the flux term, look at a portion of the bar between 0x  and 0 ,x x+ ∆  as shown in 

Figure 2. We imagine that x∆  is very small. The instantaneous rate of energy transfer 

from left to right across the section at 0x  at time t  is [30] 

  ( )
0 0

0 0

1 1, ,
2 2, lim .

d

kA u x d t u x d t
R x t

d→

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦= −     (2.8) 
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The minus sign in front of the limit is due to the fact that energy flows left to right 

exactly when the temperature left of 0x  is greater than to the right of 0.x  Similarly, the 

rate of energy transfer from left to right at 0x x+ ∆  is 

 ( )
0 0

0 0

1 1, ,
2 2, lim .

d

kA u x x d t u x x d t
R x x t

d→

⎡ ⎤⎛ ⎞ ⎛ ⎞+ ∆ + − + ∆ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦+ ∆ = −           (2.9) 

We recognize these limits as 

( ) ( )0 0, ,uR x t kA x t
x
∂

= −
∂

 and  ( ) ( )0 0, ,uR x x t kA x x t
x
∂

+ ∆ = − + ∆
∂

,          (2.10) 

assuming that both k  and the cross-sectional area A  are constants. The net rate F  at 

which heat energy flows into the portion between 0x  and 0x x+ ∆  is then 

 ( ) ( ) ( ) ( )0 0 0 0, , , , .u uF R x t R x x t kA x x t x t
x x
∂ ∂⎛ ⎞= − + ∆ = + ∆ −⎜ ⎟∂ ∂⎝ ⎠

           (2.11) 

The amount of heat entering this portion of the bar in time t∆  is then ,F t∆  or 

 ( ) ( )0 0, ,u ukA x x t x t t
x x
∂ ∂⎛ ⎞+ ∆ − ∆⎜ ⎟∂ ∂⎝ ⎠

                (2.12) 

which is the flux term. For the absorption term, the average change u∆  in temperature 

over the time t∆  is directly proportional to the flux ,F t∆  and inversely proportional to 

the mass .m∆  Thus, for some constants  

 .F tu
s m
∆

∆ =
∆

                           (2.13) 

Since ,m A xρ∆ = ∆  in which ρ  is the density, then 

 .F tu
s A xρ

∆
∆ =

∆
                           (2.14) 

Now, the average change u∆  is equal to the actual temperature change at some point x  

between 0x  and 0 .x x+ ∆  Then, from 

 ( ) ( ), , F tu u x t t u x t
s A xρ

∆
∆ = + ∆ − =

∆
               (2.15) 

the flux can be written as 

 ( ) ( ), , .F t s A u x t t u x t xρ∆ = + ∆ − ∆⎡ ⎤⎣ ⎦                (2.16) 

By equating absorption and flux terms (Equ. 2.11 and 2.16 respectively) 

 ( ) ( ) ( ) ( )0 0, , , ,u ukA x x t x t t s A u x t t u x t x
x x

ρ∂ ∂⎛ ⎞+ ∆ − ∆ = + ∆ − ∆⎡ ⎤⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠
              (2.17) 
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and upon dividing by ,A x t∆ ∆  we have 

 
( ) ( ) ( ) ( )0 0, , , ,

.

u ux x t x t u x t t u x tx xk s
x t

ρ

∂ ∂
+ ∆ − + ∆ −⎛ ⎞∂ ∂ = ⎜ ⎟∆ ∆⎝ ⎠

            (2.18) 

Let 0x∆ →  and 0,t∆ →  noting that 0x x→  as 0.x∆ →  Then, Equation (2.2) can be 

written as 

 
2

2

u uk s
x t

ρ∂ ∂
=

∂ ∂
                   (2.19) 

or in more general form as 

 
2

2
2

u ua
t x

∂ ∂
=

∂ ∂
                   (2.20) 

where 2 /a k sρ=  is called the thermal diffusivity of the bar. To determine ( ),u x t  for 

all 0t ≥  and 0 ,x L≤ ≤  we need boundary conditions and initial data.  

 Associated with the heat conduction equation 

    
2

2
2 ,u ua

t x
∂ ∂

=
∂ ∂

  ( )0, 0t x L> ≤ ≤            (2.21) 

there are different initial and boundary conditions depends on the physical definition of 

a problem. As an example, if ends of the bar were kept at constant temperature 1T  and 

the temperature at the beginning ( )0t =  on point x  is given as ( ) ,f x  then the 

boundary and initial temperature conditions are, respectively, defined as 

  ( ) ( ) 10, , ,u t u L t T= =   ( )0 ,t >               (2.22) 

  ( ) ( ),0 ,u x f x=    ( )0 .x L≤ ≤              (2.23) 

If the bar is insulated from both ends then the boundary and initial conditions are 

defined as 

  ( ) ( )0, , 0,u ut L t
x x
∂ ∂

= =
∂ ∂

 ( )0 ,t >               (2.24) 

  ( ) ( ),0 ,u x f x=    ( )0 x L≤ ≤               (2.25) 

where the boundary conditions specify no heat flow across the ends of the bar. In two 

and three dimensional cartesian coordinate systems, the heat equation can be given, 

respectively, as follows: 

                 
2 2

2
2 2 ,u u ua

t x y
⎛ ⎞∂ ∂ ∂

= +⎜ ⎟∂ ∂ ∂⎝ ⎠
                 (2.26) 
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2 2 2

2
2 2 2 .u u u ua

t x y z
⎛ ⎞∂ ∂ ∂ ∂

= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
                (2.27) 

Corresponding boundary and initial conditions would have to accompany these partial 

differential equations to determine a unique solution. 

 

2.3   SEPARATION OF VARIABLES 

 

 Separation of variables is one of the oldest techniques for solving initial-

boundary-value problems and applies to problems where 

  1. The PDE is linear and homogeneous. 

  2. The boundary conditions are of the form 

   ( ) ( )0, 0, 0xu t u tα β+ = ,               (2.28) 

   ( ) ( )1, 1, 0xu t u tγ δ+ = ,               (2.29) 

where , ,α β γ  and δ  are constants. To show how method works let us apply it to a 

specific problem. Consider the initial boundary value problem (IBVP) (heat conduction 

equation)  

   
2

2
2 ,u u

t x
α∂ ∂

=
∂ ∂

  ( )0, 0 1 ,t x> ≤ ≤             (2.30) 

along with the following boundary and initial conditions, respectively,  

  ( ) ( )0, 1, 0,u t u t= =  ( )0 ,t >                (2.31) 

  ( ) ( ),0 ,u x x= Φ   ( )0 1 .x≤ ≤                (2.32) 

 

         
 

Figure 2.4: Diagram of the diffusion problem 

 

 Here we have a finite rod where temperature at the ends is fixed at zero. We are 

also given data for the problem in the form of an initial condition; our goal is to find the 
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temperature ( ),u x t  at later points in time. As an overview, separation of variables 

looks for simple type solutions to the PDE of the form 

  ( ) ( ) ( ),u x t X x T t=                  (2.33) 

where ( )X x  is some function of x  and ( )T t  is some function of t . The solutions are 

simple because any temperature ( ),u x t  of this form will retain its basic shape for 

different values of time t  [29]. 

 
 

Figure 2.5: Graph of ( ) ( )X x T t  for different values of .t  

 

 The general idea is that it is possible to find an infinite number of these solutions 

to the PDE. These simple functions ( ) ( ) ( ),n n nu x t X x T t=  are the building blocks of 

our problem, and the solution ( ),u x t  is found by adding the simple fundamental 

solutions ( ) ( )n nX x T t  in such a way that the resulting sum 

  ( ) ( )
1

n n n
n

A X x T t
∞

=
∑                  (2.34) 

satisfies the initial conditions. Inasmuch as this sum still satisfies the PDE and the BCs, 

we now have the solution to our problem. Let us solve the given problem above as an 

example of the method. 

 

Step 1: Finding elementary solutions to the PDE in Equation (2.30-2.32)  

 To begin we look for solutions of the form ( ) ( ) ( ),u x t X x T t=  by substituting 

( ) ( )X x T t  into the PDE and solving for ( ) ( ).X x T t  Making this substituting gives 

  ( ) ( ) ( ) ( )2 .X x T t X x T tα′ ′′=                 (2.35) 
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Now here is the part that makes all this work: If we divide each side of this equation by 

( ) ( )2 X x T tα  we have  

  ( )
( )

( )
( )2

T t X x
T t X xα
′ ′′

=                   (2.36) 

and obtain what is called separated variables, that is, the left side of the equation 

depends only on t  and the right side only on .x  Inasmuch as x  and t  are independent 

of each other, each side must be a fixed constant; hence we can write 

  2

T X k
T Xα
′ ′′
= =                   (2.37) 

or 

  
2 0,

0.
T k T
X kX

α′− =
′′ − =

                  (2.38) 

So now we can solve each of these two ordinary differential equations (ODEs) and then 

multiply them together to get a solution to the PDE. However, we make an important 

observation, namely, that we want the separation constant k  to be negative. With this in 

mind it is general practice to rename 2k λ= −  where λ  is nonzero. Calling our 

separation constant by its new name, we can write the two ODEs as    

  2 2 0,T Tλ α′− =                   (2.39) 

  2 0.X Xλ′′ − =                   (2.40) 

We will now solve these equations. Both equations are standard type ODEs and have 

solutions 

           ( ) 2 2tT t Ae λ α−=  ,   ( )an arbitrary contantA           (2.41) 

  ( ) ( ) ( )sin cosX x A x B xλ λ= +  ( ),  arbitraryA B             (2.42) 

and hence all functions 

  ( ) ( ) ( )2 2
, sin costu x t e A x B xλ α λ λ−= +⎡ ⎤⎣ ⎦               (2.43) 

will satisfy the PDE 2 .t xxu uα=  At this point, we have an infinite number of functions 

that satisfy the PDE. 

 

Step 2: Finding solutions to the PDE and the BCs 

 We are now to the point where we have many solutions to the PDE but not all of 

them satisfy the BCs or the IC. The next step is to choose a certain subset of our current 

crop of solutions that satisfy the boundary conditions in Equation (2.31-2.32). To do 
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this, we substitute our solutions (2.43) into BCs given in Equation (2.31) and we will 

obtain the coefficient B  as follows: 

  ( ) 2 2
0, 0 0,tu t Be Bλ α−= = ⇒ =                (2.44) 

  ( ) 2 2
1, sin 0 sin 0.tu t Ae λ α λ λ−= = ⇒ =              (2.45) 

The last BC restricts the separation constant λ  from being any nonzero number, it must 

be a root of the equation sin 0.λ =  In other words, in order that ( )1, 0,u t =  it is 

necessary to pick  

  , 2 , 3 ,...λ π π π= ± ± ±   or 1, 2,3,...n n nλ π= ± =           (2.46) 

Note that last BC could also 0,A =  but if we choose this, we would get the zero 

solution in Equation (2.43). We have now finished the second step and have found an 

infinite number of functions 

  ( ) ( ) ( )
2

, sin ,n n
nu x t A e n xπα π−=  1, 2,3,...n =             (2.47) 

Each n  value satisfies the PDE and BCs given in Equation (2.47). These are building 

blocks of the problem, and our desired solution will be a certain sum of these simple 

functions; the specific sum will depend on the initial condition 

 

Step 3: Finding the Solution to the PDE, BCs and the IC 

   The last step is to add the fundamental solutions 

  ( ) ( ) ( )
2

1
, sinn

n

nu x t A e n xπα π
∞

=

−=∑                (2.48) 

in such a way that the initial condition (2.33) is satisfied. Substituting the sum into the 

IC gives 

  ( ) ( )
1

sinn
n

x A n xπ
∞

=

Φ =∑                 (2.49) 

Is it possible to expand the initial temperature ( )xΦ  as the sum of the elementary 

functions as follows? 

  ( ) ( ) ( )1 2 3sin sin 2 sin 3 ...A x A x A xπ π π+ + +              (2.50) 

How to find the coefficients nA . 
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(a) (b)

 

 
 

 

(c) (d)

 

Figure 2.6: Fundamental solutions ( ) ( ) ( )
2

, sinn t
n nu x t A e n xπα π−=  where (a) ( )1 ,u x t  (b) 

( )2 ,u x t   (c) ( )3 ,u x t   (d) ( )4 ,u x t  

 

One uses a property of the functions 

  ( ){ }sin ; 1, 2,...n x nπ =                 (2.51) 

known as orthogonality. It turns out that these functions are orthogonal to each other in 

the sense of 

  ( ) ( )
1

0

0
sin sin

1/ 2
m n

m x n x dx
m n

π π
≠⎧

= ⎨ =⎩
∫              (2.52) 

This property can be illustrated by at the graphs of these functions Figure 4. So, we are 

now in position to solve for the coefficients in the expression 

   ( ) ( ) ( ) ( )1 2 3sin sin 2 sin 3 ...x A x A x A xπ π πΦ = + + +             (2.53) 

We multiply each side of this equation by ( )sin m xπ  ( , an arbitrary integer )m and 

integrate from zero to one; we get 

  ( ) ( ) ( )
1 1

2

0 0

1sin sin .
2m mx m x dx A m x dx Aπ πΦ = =∫ ∫             (2.54) 

Solving for mA  gives 
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  ( ) ( )
1

0

2 sin .mA x m x dxπ= Φ∫                 (2.55) 

The solution is  

  ( ) ( ) ( )
2

1
, sinn

n

n tu x t A e n xπα π
∞

=

−=∑                (2.56) 

where the coefficient nA are given by Equation (2.55). 

 

2.4   SUPERPOSITION METHOD 

 

 Let us mention the solution of nonhomogeneous heat equation by superposition 

method. Suppose we have the linear problem  

  ( )
2

2 sin ,u u x
t x

π∂ ∂
= +

∂ ∂
  ( )0, 0 1t x> ≤ ≤             (2.57) 

along with the following boundary and initial conditions [31], respectively,  

  ( ) ( )0, 1, 0,u t u t= =   ( )0 ,t >               (2.58) 

  ( ) ( ),0 sin 2 ,u x xπ=   ( )0 1 .x≤ ≤               (2.59) 

Here we have a nonhomogeneous heat equation, so separation of variables is not a 

viable method of attack. We could use the finite sine transform on the variable x  or the 

Laplace transform on ,t  but still another idea would be to consider two subproblems 1P  

and 2P  of main problem P  as follows: 

( )1P    ( )
2

2 sin ,u u x
t x

π∂ ∂
= +

∂ ∂
  ( )0, 0 1t x> ≤ ≤            (2.60) 

along with 

  ( ) ( )0, 1, 0,u t u t= =   ( )0 ,t >               (2.61) 

  ( ),0 0,u x =    ( )0 1x≤ ≤               (2.62) 

and 

( )2P    
2

2 ,u u
t x

∂ ∂
=

∂ ∂
    ( )0, 0 1t x> ≤ ≤            (2.63) 

along with 

  ( ) ( )0, 1, 0,u t u t= =   ( )0 ,t >               (2.64) 

  ( ) ( ),0 sin 2 ,u x xπ=   ( )0 1 .x≤ ≤               (2.65) 
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These two problems can be solved individually with a little effort and it should be clear 

here that the sum of the solutions to 1P  and 2P  is the solution to the original problem P : 

that is 

  ( ) ( ) ( ) ( ) ( )
22 2

2

1, 1 sin sin 2 .ttu x t e x e xππ π π
π

−−= − +             (2.66) 

 

2.5   INTEGRAL TRANSFORM METHOD 

 

 Integral transforms can use superposition; for instance, let us show how the finite 

sine transform uses this principle. Consider the nonhomogeneous heat equation [31]  

  ( )
2

2 , ,u u f x t
t x

∂ ∂
= +

∂ ∂
  ( )0, 0 1t x> ≤ ≤             (2.67) 

along with the following boundary and initial conditions, respectively,  

  ( ) ( )0, 1, 0,u t u t= =   ( )0 ,t >               (2.68) 

  ( ),0 0,u x =    ( )0 1x≤ ≤               (2.69) 

and consider its solution by use of the finite sine transform. We start by expanding the 

Equation (2.67) into a sine series like 

 ( ) ( ) ( )
1 1 1

sin sin sinn n n
n n n

A n x B n x F n xπ π π
∞ ∞ ∞

= = =

= +∑ ∑ ∑              (2.70) 

where 

  ( ) ( ) ( )
1

0

2 , sin ,n tA t u x t n x dxπ= ∫                (2.71) 

  ( ) ( ) ( )
1

0

2 , sin ,n xxB t u x t n x dxπ= ∫                (2.72) 

  ( ) ( ) ( )
1

0

2 , sin .nF t f x t n x dxπ= ∫                (2.73) 

Note that coefficients ,n nA B  and nF  are actually functions of t  since we started with 

functions of x and .t  We have resolved the input ( ),f x t  into simple components 

( ).nF t  We would add the ( )nU t  to get the solution ( ), .u x t  To find the simple 

responses ( )nU t  we must take our resolved PDE and perform a little calculus on the 
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coefficient ( )nA t  and ( ) ,nB t  so that the integrands contain u  instead of tu  and .xxu  

Integration of by parts given us 

( ) ( ) ( ) ( ) ( ) ( )1 1

0 0

2 , sin 2 , sin ,n
n t

dU tdA t u x t n x dx u x t n x dx
dt dt

π π
⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

∫ ∫           (2.74) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

2 1

0

2 , sin 2 0, 1 1,n
n xx nB t u x t n x dx n U t n u t u tπ π π +⎡ ⎤= = − + + −⎣ ⎦∫       (2.75) 

 where ( )nU t  is the sine transform of ( ), .u x t  Substituting our BCs in Equation (2.68) 

into (2.75), we have 

    ( ) ( ) ( )2
n nB t n U tπ= −                (2.76) 

and the resolved PDE becomes 

  ( ) ( ) ( )2

1
sin 0.n n n

n
U n U F t n xπ π

∞

=

⎡ ⎤′ + − =⎣ ⎦∑               (2.77) 

Since this is identity in ,x  the coefficients must be zero; that is 

    ( ) ( )2 .n n nU n U F tπ′ + =                (2.78) 

Hence, we have our input-output relationship between nF  and .nU  Before we can solve 

for ( ) ,nU t  however we must go to initial condition given in Equation (2.69). If we 

expand ( ),0u x  as a sine series and set it equal to zero we get 

    ( ) ( )
1

0 sin 0.n
n

U n xπ
∞

=

=∑               (2.79) 

Hence, the initial condition is given as  

   ( )0 0, 1, 2,....nU n= =               (2.80) 

We have now resolved our original initial boundary value problem into the simple input 

output problems. We can solve each of these problems by using an integrating factor in 

any case, we get 

   ( ) ( ) ( ) ( )
2 2

0

.
t

n t n
n nU t e e F dπ π τ τ τ−= ∫               (2.81) 

We have now found the responses ( )nU t  to the simple inputs ( ).nF t  The final step is to 

sum of these simple responses                                                

                          ( ) ( ) ( )
1

, sinn
n

u x t U t n xπ
∞

=

=∑                (2.82) 
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to obtain the solution to the original problem  [31]. 

 

2.6   THE FOURIER TRANSFORM 

 

It is possible to find an analogous representation for some of functions. Without 

going through the details of the proofs, we can show that the Fourier series 

representation of a function ( )f x  can be given as 

  ( ) ( ) ( )0

1
cos / sin /

2 n n
n

af x a n x L b n x Lπ π
∞

=

= + +⎡ ⎤⎣ ⎦∑  

and also it can be turned into the Fourier integral  representation (continuous frequency 

resolution) like 

  ( ) ( ) ( ) ( ) ( )
0 0

cos sinf x a x d b x dξ ξ ξ ξ ξ ξ
∞ ∞

= +∫ ∫  

where 

 ( ) ( ) ( )1 cosa f x x dxξ ξ
π

+∞

−∞

= ∫   and   ( ) ( ) ( )1 sinb f x x dxξ ξ
π

+∞

−∞

= ∫  

for nonperiodic functions ( )f x  defined on ( ), .−∞ +∞  Here, we see that the Fourier 

integral representation has solved the function ( )f x  into all frequencies 0<ξ <∞  (and 

not just multiples of one basic frequency, as with periodic functions). The frequency 

spectrum is defined as 

  ( ) ( ) ( )2 2C a bξ ξ ξ= +  

which measures the composition of the function ( )f x  in terms of its frequencies. Note 

that functions ( )f x  that have sharp corners give rise to frequency spectra with large 

frequencies, since sharp corners require high-frequency components to represent them. 

On the other hand, the simple periodic function ( )( ) sinf x xξ=  obviously has a 

frequency spectrum that is zero everywhere except at 0.ξ ξ=  

 We are now in a position to define what a general form is as the exponential 

Fourier transform. By use of Euler’s equation cos sinie iθ θ θ= + , we can rewrite 

equation after a little effort as  

  ( ) ( )1 1
2 2

i x i xf x f x e dx e dξ ξ ξ
π π

+∞ +∞
−

−∞ −∞

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫ ∫   
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which is known as Fourier integral representation. From this, we can write the two 

equations 

  ( ) ( ) ( )1 ,
2

i xf x F f x e dxξξ
π

+∞
−

−∞

ℑ ≡ =⎡ ⎤⎣ ⎦ ∫  

  [ ] ( ) ( )1 1
2

i xF f x F e dξξ ξ
π

+∞
−

−∞

ℑ ≡ = ∫   

that are the Fourier and inverse Fourier transform, respectively [31]. 

 

2.6.1   Useful Properties of the Fourier Transform 

 

2.6.1.1   Linear Transformation  

  

 The Fourier transform is a linear transformation; that is, it can be written as  

  [ ] [ ] [ ].af bg a f b gℑ + = ℑ + ℑ  

 

2.6.1.2   Transformation of Derivatives 

  

 If the Fourier transform transforms the x − variable and if the function being 

transformed is a partial derivative of a function ( , )u x t  with respect to ,x   then the rules 

of   transformation are 

  [ ] ( ) [ ]1 , ,
2

i x
x xu u x t e dx i uξ ξ

π

+∞
−

−∞

ℑ = = ℑ∫  

  [ ] ( ) [ ]21 , .
2

i x
xx xxu u x t e dx uξ ξ

π

+∞
−

−∞

ℑ = = − ℑ∫  

On the other hand, if we transform the partial derivative ( ),tu x t  then the transform is 

given by 

  [ ] ( ) [ ]1 , ,
2

i x
t tu u x t e dx u

t
ξ

π

+∞
−

−∞

∂
ℑ = = ℑ

∂∫  

  [ ] ( ) [ ]
2

2

1 , .
2

i x
tt ttu u x t e dx u

t
ξ

π

+∞
−

−∞

∂
ℑ = = ℑ

∂∫  
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2.6.1.3   Convolution Property 

  

 The general idea is that the transform of a product of two functions ( ) ( )f x g x  is 

not the product of the individual transforms; that is  

  ( ) ( ) [ ] [ ].f x g x f gℑ ≠ ℑ ℑ⎡ ⎤⎣ ⎦  

We now derive the aforementioned time convolution theorem. Suppose that  

  ( ) ( ) ( )*h x f x g x=  

then, given that ( ){ } ( )f x F ξℑ = , ( ){ } ( )g x G ξℑ =  and ( ){ } ( )h x H ξℑ = , it can be 

written as 

( ) ( ) ( ){ } ( ) ( ) ( ) ( )1* ,
2

i xH f x g x f g x d f g x d e dxξξ β β β β β β
π

+∞ +∞ +∞
−

−∞ −∞ −∞

⎧ ⎫ ⎡ ⎤
= ℑ = ℑ − = −⎨ ⎬ ⎢ ⎥

⎩ ⎭ ⎣ ⎦
∫ ∫ ∫

 

( ) ( ) ( ) ( ) ( ) ( ) ( ).i x iH f g x e dx d G f e d G Fξ ξβξ β β β ξ β β ξ ξ
+∞ +∞ +∞

− −

−∞ −∞ −∞

⎡ ⎤
= − = =⎢ ⎥

⎣ ⎦
∫ ∫ ∫  

It can be shown that the Fourier transform of a product, that is commutative, is given by 

the convolution of the individual transforms as 

  ( ) ( ) ( ) ( ) ( ).H G F F Gξ ξ ξ ξ ξ= =  

Example 2.1: For given two functions ( )f x x=  and ( ) 2xg x e−= the convolution is  

  ( )( ) ( ) 21*
2 2

xf g x x e dξξ ξ
π

+∞
−

−∞

= − =∫     

that is a new function and the following identity is used to arrive this value  

  
2

e dξ ξ
+∞

−

−∞
∫ = .π  

 

2.6.1.4   Scaling Property 

  

 If ( ){ } ( )f x F sℑ =  then for a nonzero real constant 0a >  it can be written that 

 ( ){ } ( ) ( )1 1 1 1 .
2 2

i i
a adf ax f e f e d F

a a a a

β ξξ ββ ξβ β β
π π

+∞ +∞
− −

−∞ −∞

⎛ ⎞ℑ = = = ⎜ ⎟
⎝ ⎠∫ ∫  
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 From this, the time scaling property, it is evident that if the width of a function is 

decreased while its height is kept constant, then its Fourier transform becomes wider 

and shorter. If its width is increased, its transform becomes narrower and taller. 

 

2.6.1.5   Shifting Property 

  

 If ( ){ } ( )f x F sℑ =  and 0x  is a real constant, then 

 ( ){ } ( ) ( ) ( ) ( )0 0
0 0

1 1 .
2 2

i x i xi xf x x f x x e dx f e d e Fξ β ξξ β β ξ
π π

+∞ +∞
− +−

−∞ −∞

ℑ − = − = =∫ ∫    

This time shifting property states that the Fourier transform of a shifted function is just 

the transform of the unshifted function multiplied by an exponential factor having a 

linear phase. Likewise, the frequency shifting property states that if ( )F ξ  is shifted by 

a constant 0s , its inverse transform is multiplied by 0ixse  

  ( ){ } ( )02
0 .i xsf x e F s sπℑ = −  

 

2.6.2.   The Solution of Partial Differential Equations by Means of Fourier 

Transform 

 

2.6.2.1   Laplace’s Equation 

  

 In this subsection we will consider some problem involving Laplace’s equations 

  ( ) 0nu r∆ =  

where n  is the dimension of the space, ( )u r  is a function of the position vector 

( )1 2, ,..., nr x x x=  and n∆  denotes the Laplacian operator  

  
2 2 2

2 2 2
1 2

... .n
nx x x

∂ ∂ ∂
∆ = + + +

∂ ∂ ∂
 

 

2.6.2.2   Laplace’s Equation in a Half Plane 

  

 Here we wish to determine a function ( ),u x y  satisfying Laplace‘s equation 

   



 

 

21

                   ( )2 , 0u x y∆ =  

in the half plane 0y ≥  subject to the boundary condition 

  ( ) ( ),0 ,u x f x x= −∞ < < ∞  

and the limiting condition 

  ( ) 2 2, 0, , .u x y x yρ ρ→ →∞ = +  

If we introduce the Fourier transform 

  ( ) ( ), , ;U y u x y xξ ξ= ℑ →⎡ ⎤⎣ ⎦  

then it follows  that Laplace’s equation  is equivalent to the  equation 

  ( )
2

2
2 , 0U y

y
ξ ξ

⎛ ⎞∂
− =⎜ ⎟∂⎝ ⎠

 

and the boundary condition  is also equivalent to the condition 

  ( ) ( ),0U Fξ ξ=  

where ( ) ( );F f xξ ξ= ℑ⎡ ⎤⎣ ⎦  and the limiting condition  implies the condition 

  ( ), 0, .U y yξ → →∞  

The condition ( ), 0u x y →  as x →∞  follows from the Riemann-Lebesque lemma. We 

therefore obtain the expression 

  ( ) ( ), yU y F e ξξ ξ −=  

for the Fourier transform of the function ( ), .u x y  Using the convolution theorem we see 

that 

  ( ) ( ) ( )1,
2

u x y f t g x t dt
π

∞

−∞

= −∫  

where  

  ( ) 1
2 2

2; .y yg x e x
x y

ξ ξ
π

−− ⎡ ⎤= ℑ → =⎣ ⎦ +
 

Substituting this result into the last equation we obtain the expression 

    ( ) ( )
( )

( )2 2
, , 0

f t dtyu x y y
x t yπ

∞

−∞

= >
− +∫  

for the required function.    
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CHAPTER 3 

 

METHODS OF NUMERICAL INTEGRATION 

 

 
3.1   THE RIEMANN INTEGRAL 

 
We shall be dealing entirely with functions that are integrable in the sense of Riemann. 

In the case of functions of one variable, this concept can be developed as follows. Suppose 

that ( )y f x=  is a bounded function on the finite interval [ ], .a b  Partition the interval [ ],a b  

in to n  subintervals by the points 0 1 ... .na x x x b= < < < =  Let 1ξ  be any point in the i th 

subinterval: 1 ,i i ix xξ− ≤ ≤  and form the sum 

( )( )1
1

.
n

i i i
i

f x xξ −
=

−∑                     (3.1) 

Sums of this sort are called Riemann sums [32]. Let the maximum length of the 

subintervals be denoted by ( )1: max ,i ix x −∆ ∆ = −  and consider a sequence of sums of type 

(3.1) as 1 2 3, , ,..., ,...mS S S S  whose corresponding maximum subintervals 1 2 3, , ,..., ,...m∆ ∆ ∆ ∆  

approach zero, lim 0.mm→∞
∆ =  If, for any sequence of this type and corresponding to any choice 

of iξ  , the sequence { }mS  have a common limit ,S  then ( )f x  is said to have the Riemann 

integral S  over [ ],a b  and shown as 

( ) .
b

a

S f x dx= ∫           (3.2) 

A necessary and sufficient condition that a bounded function ( )f x  have a Riemann 

integral is that ( )f x  be continuous almost everywhere. In particular, if ( )f x  continuous on  

[ ], ,a b  it has a Riemann integral. Also, ( )f x  is bounded on [ ],a b  and  
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continuous except for a finite number of points of discontinuity, it has a Riemann 

integral. 

 The following properties of the Riemann integral are fundamental. It is assumed 

that ( )f x  and ( )g x  are bounded and Riemann-integrable on [ ],a b  then 

( ) 0,
a

a

f x dx =∫            (3.3) 

( ) ( ) ,
b b h

a a h

f x dx f x h dx
+

+

= −∫ ∫          (3.4)

 ( ) ( ) ,
b a

a b

f x dx f x dx= −∫ ∫          (3.5)

 ( ) ( ) ( ) ,
b c c

a b a

f x dx f x dx f x dx+ =∫ ∫ ∫         (3.6) 

( ) ( ) ,
b b

a a

cf x dx c f x dx=∫ ∫          (3.7) 

( ) ( )( ) ( ) ( ) .
b b b

a a a

f x g x dx f x dx g x dx+ = +∫ ∫ ∫       (3.8) 

If ( ) ( )f x g x≤  almost everywhere on [ ],a b , then 

            ( ) ( ) .
b b

a a

f x dx g x dx≤∫ ∫            (3.9) 

In particular, if ( ) 0f x ≥  on [ ],a b , then ( ) 0
b

a

f x dx ≥∫ . If ( )f x  and ( )g x  are both 

increasing or both decreasing on [ ],a b , then 

( ) ( ) ( ) ( ) ( ) .
b b b

a a a

b a f x g x dx f x dx g x dx
⎛ ⎞⎛ ⎞

− ≥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫ ∫             (3.10) 

If ( )f x  and ( )g x  are opposite type, then the inequality is reversed. If ( )f x  is 

bounded Riemann-integrable function on [ ], ,a b  then so is ( )f x , and 

( ) ( ) .
b b

a a

f x dx f x dx≤∫ ∫                 (3.11) 
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3.2   GENERALIZED MEAN-VALUE THEOREM 

 

Let ( )f x  and ( )g x  be continuous and also ( ) 0g x ≥  on .a x b≤ ≤  Then, there 

exists a value ,ξ ( ) ,a bξ< <  such that  

( ) ( ) ( ) ( ) .
b b

a a

f x g x dx f g x dxξ=∫ ∫                (3.12) 

 

3.2.1   First Mean-Value Theorem 

 

Let ( )f x  be continuous on .a x b≤ ≤  Then, there exists a value ,ξ ( ) ,a bξ< <  

such that 

( ) ( ) ( ).
b

a

f x dx b a f ξ= −∫                 (3.13) 

If ( )m f x M≤ ≤  over ,a x b≤ ≤  then ( ) ( ) ( ).
b

a

m b a f x dx M b a− ≤ ≤ −∫  

 

3.2.2   The Fundamental Theorem of Integral Calculus 

 

If ( )F x  is differentiable on [ ],a b  and ( )F x′ is Riemann-integrable there then 

( ) ( ) ( ).
b

a

F x dx F b F a′ = −∫                 (3.14) 

A formulation that is sufficient for our purposes is: If ( )f x  is continuous on a x b≤ ≤  

and ( )F x  is any indefinite integral of ( )f x  then 

( ) ( ) ( ).
b

a

f x dx F b F a= −∫                 (3.15) 

 

3.2.3   Integration by Parts 

 

           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
b b

a a

f x g x dx f b g b f a g a f x g x dx′ ′= − −∫ ∫            (3.16) 
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It is sufficient to assume that ( )f x  and ( )g x  are continuously differentiable on 

.a x b≤ ≤  A special Riemann sum arises when [ ],a b  is subdivided into n  equal parts 

and iξ  is taken at the right-hand end point of its subinterval: 

( )
1

n

n
k

S h f a kh
=

= +∑                  (3.18) 

where ( ) / .h b a n= −  If iξ  is taken at the left-hand end point of its subinterval, we 

obtain 

( )
1

0
.

n

n
k

S h f a kh
−

=

= +∑                  (3.19) 

 

3.3   IMPROPER INTEGRALS 

 
Integrals whose range or integrand is unbounded are known as improper 

integrals. Such integrals are defined as the limits of certain integrals. 

 

3.3.1   Integrals over [ )0,∞  

 

 Whenever the limit exists the following definition can be written 

( ) ( )
0 0

lim .
r

r
f x dx f x dx

∞

→∞
=∫ ∫                 (3.20) 

Similar definitions are used for ( )
a

f x dx
∞

∫  and for ( ) .
a

f x dx
−∞
∫  

 

3.3.2   Integrals over ( ),−∞ ∞  

 

Here two definitions are employed. The first commonly employed definition says 

( ) ( ) ( )
0

0

.f x dx f x dx f x dx
∞ ∞

−∞ −∞

= +∫ ∫ ∫                (3.21) 

The second one  

( ) ( )lim
r

r
r

f x dx f x dx
∞

→∞
−∞ −

=∫ ∫                 (3.22) 
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which is known as the Cauchy principal value of the integral frequently designated by 

( ) .P f x dx
∞

−∞
∫                  (3.23) 

Whenever both limits exist, the limiting values in the first and the second definitions 

will be identical, but the limit in the second one may exist in cases where that in the first 

definition does not. 

 

 

3.3.3   Unbounded Integrals 

 

Assume that ( )f x  is defined on ( ],a b  and is unbounded in the neighborhood of 

x a=  then the integral over the interval ( ],a b  can be given as 

( ) ( )lim
b b

r a
a r

f x dx f x dx
+→

=∫ ∫                 (3.24) 

whenever the latter limit exists. A similar definition applies to integrands that are 

unbounded in the neighborhood of the upper limit of integration. Suppose that a c b< <  

and ( )f x  is unbounded in the vicinity of .x c=  The Cauchy Principal Value of the 

integral, is defined by the limit  

( ) ( ) ( )
0

lim .
b c r b

r
a a c r

P f x dx f x dx f x dx
+

−

→
+

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∫ ∫ ∫              (3.25) 

A common principal value integral is the Hilbert transform which is defined as 

( ) ( ) , , .
b

a

f t
g x P dt a b a x b

t x
= −∞ ≤ < ≤ ∞ ≤ ≤

−∫            (3.26) 

A sufficient condition for the existence of the Hilbert transform is that ( )f t  satisfy a 

Lipshitz condition in [ ], .a b  This mean that there are constants 0k >  and 0 1α< <  such 

that for any two points 1t  and 2t  in [ ],a b  we have   

( ) ( )1 2 1 2 .f t f t k t t α− ≤ −                 (3.27) 

 

3.4   HIGHER RULES AS AN EXAMPLE OF RIEMANN SUMS 

 

It follows from the definition (3.1) that an integration formula  [33] 
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( ) ( )
1

b n

i i
ia

f x dx w f ξ
=

≈∑∫                 (3.28) 

will be a Riemann sum if we can find points 0 1 ... na x x x b= < < < =  such that  

1 0 1 1,..., n n nx x w x x w−− = − =  and 1 .i i ix xξ− ≤ ≤              (3.29) 

Many higher rules qualify as Riemann sums. Thus, the trapezoidal rule, Simpson’s rule 

and the Newton-Cotes rules of order 4,5,6,7n =  are all Riemann sums. It has been 

proved that the Romberg rules are Riemann sums. The Gauss rules, nG , of all orders are 

also Riemann sums. 

 

3.4.1   Simpson’s Rule 

 
This rule is by far the most frequently used in obtaining approximate integrals. As 

one of the famous scientist Milton Abramowitz [33] used to say-somewhat in jest-that 

95% of all practical work in numerical analysis boiled down to application of Simpson’s 

rule and linear interpolation. 

 

Theorem 3.1: Let ( ) [ ]4 , ;f x C a b∈  then for ,a bξ< <  

 ( ) ( ) ( ) ( ) ( ) ( )
5

44 .
6 2 2880

b

a

b ab a a bf x dx f a f f b f ξ
−− ⎡ + ⎤⎛ ⎞− + + = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫       (3.30) 

 The Simpson approximation 

 ( ) ( ) ( )4
6 2

b

a

b a a bf x dx f a f f b− ⎡ + ⎤⎛ ⎞≈ + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫              (3.31) 

is therefore exact for all polynomials of degree three or less. Simpson’s rule is most 

frequently applied in its extended or compound form. The interval [ ],a b  is divided into 

a number of equal subintervals or panels and Simpson’s rule is applied to each. Let 

0 1 2 1 2... n na x x x x b−= < < < < =  be a sequence of equally spaced points in [ ],a b : 

1 , 0,..., 2 1.i ix x h i n+ − = = −  Set ( ).i if f x=  Then the compound Simpson’s rule is 

( ) ( ) ( )
2

0

0 1 3 2 1 2 4 2 2 24 ... 2 ... .
3

nx

n n n n
x

hf x dx f f f f f f f f E− −= + + + + + + + + + +⎡ ⎤⎣ ⎦∫          (3.32) 

The remainder nE  is given by 
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( ) ( )
5

4 ,
90n
nhE f a bξ ξ= − < < .               (3.33) 

If N  designates the number of subdivisions of [ ], ,a b  then 2N n=  and ( ) / ,h b a N= −  

so that 

      ( ) ( ) ( )
5

4
4 , .

180n

b a
E f a b

N
ξ ξ

−
= − < <               (3.34) 

For functions that have four continuous derivatives, Simpson’s rule converges to the 

true value of the integral with rapidly 4N −  at worst. In practice, therefore, one might 

expect that the use of ten subintervals would secure about four decimals, and the use of 

100 subintervals would secure about eight decimals. 

 

Example 3.1: Integrate the functions 

( )1
1 ,

1
f x

x
=

+
 ( )2 ,

1x

xf x
e

=
−

 ( ) 3/ 2
3f x x=   and  ( ) 1/ 2

4f x x=  

over [ ]0,1  by Simpson’s rule. 

 

n  ( )1f x  ( )2f x  ( )3f x  ( )4f x  
1 .6944 4444 .7774 9413 .4023 6892 .6380 7119 
2 .6932 5395 .7775 0400 .4004 3191 .6565 2627 
4 .6931 5450 .7775 0446 .4000 7723 .6630 7925 
8 6931 4759 .7775 0450 .4000 1368 .6653 9814 

16 .6931 4708 .7775 0438 .4000 0235 .6662 1804 
32 .6931 4683 .7775 0416 .4000 0033 .6665 0782 
64 .6931 4670 .7775 0411 .3999 9984 .6666 1024 

128 .6931 4664 .7775 0407 .3999 9973 .6666 4641 
Exact value .6931 4718 .7775 0463 .4000 0000 .6666 6667 

 

The theoretical error bound may be easily computed for the first function. We select 

8n =  we have 

( ) ( )4
4 0 1

1 max .
18016n x

E f x
≤ ≤

≤ −  

Now ( ) ( ) ( ) 54
1 24 1 ,f x x −= +  so that ( ) ( )4

10 1
max 24.

x
f x

≤ ≤
=  Therefore 

424 /180.16 .000002.nE ≤ ≈  

The observed error at 8n =  is 0.0000004. Note that after 16,n =  the accuracy of the 

answer has deteriorated due to round off. 
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 The second function is a Debye function. It has only an apparent singularity at 

0,x =  and we have ( )20
lim 1.
x

f x
→

=  The value 1 was inserted at 0.x =  Since ( )2f x  has 

derivatives of all orders in [ ]0,1 ,  we can use the error estimate, but we have to compute 

the fourth derivative of ( )/ 1xx e −  and estimate its maximum value. This is a 

troublesome computation; we can avoid it by using the series expansion for ( )/ 1xx e − . 

We have 

( )2
01 !

nn
x

n

Bxf x x
e n

∞

=

= =
− ∑  

where nB  is the n th Bernoulli number. Hence 

( )4
2 46 8

4 ...
1 2! 4!x

B Bx B x x
e

⎛ ⎞ = + + +⎜ ⎟−⎝ ⎠
 

and 

( ) ( )4 6 8
2 40 1

max ... 0.5
2! 4!x

B Bm f x B
≤ ≤

= ≤ + + + ≤  

selecting we have 4 6.05 /180.4 10 .E −≤ ≈  This high accuracy is borne out by 

comparison with the exact value. 

 

Example 3.2: Determine the value of the elliptic integral 

( )( )
1/ 23

2 2

2

2 1 2 .I x x dx
−

⎡ ⎤= + −⎣ ⎦∫  

Using Simpson’s rule with an interval of 0.1  yields .141117,I =  an alternative 

computation of this integral can be made from tables of the elliptic integral of the first 

kind; it yields the same value of .141117.I =    

 

3.4.2   Integration Rules of Gauss Type 

 

Let ( ) 0w x ≥  be a fixed weight function defined on [ ],a b  then the integral 

 ( ) ( ) ( ) ( ),
b

a

w x f x g x dx f g=∫                (3.35) 
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is known as the inner product of the functions ( )f x  and ( )g x  over the interval [ ],a b  

with respect to the weight ( )w x . For a given weight ( ) ,w x  it is possible to define a 

sequence of polynomials ( ) ( )0 1, ,...p x p x  which are orthogonal and which ( )np x  is of 

exact degree n : 

( ) ( ) ( ) ( ), 0, .
b

m n m n
a

p p w x p x p x dx m n= = ≠∫             (3.36) 

By multiplying each ( )np x  by an appropriate constant we can produce a set of 

polynomials * ,np  which are orthonormal: 

( ) ( ) ( ) ( )* * * * 0 .
,

1 .

b

m n m n mn
a

if m n
p p w x p x p x dx

if m n
δ

≠⎧
= = = ⎨ =⎩
∫           (3.37) 

The leading coefficient of *
np  can be taken as positive: 

* ..., 0n
n n np k x k= + > .                (3.38) 

 

Theorem 3.2: The zeros of orthogonal polynomials are real, simple and located in the 

interior of [ ],a b . 

 

Theorem 3.3: The orthonormal polynomials *
np  satisfy a three-term recurrence 

relationship 

( ) ( ) ( )

( ) ( ) ( )

* * *
1 2

1/ 2

* *
1 0

, 1, 2,3,...,

, 0 and 0, .

n n n n n n

b

n n
a

p a x b p x c p x n

a c p x p x w x dx

− −

−

= + − =

⎛ ⎞
≠ = = ⎜ ⎟

⎝ ⎠
∫

          (3.39) 

The following recurrence is particularly convenient for systematic computation. 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

*
1

0

1/ 2* * * * *
1 1

1/ 2*

0,

1,

, , ,

/ , , 0,1,2,...

n n n n n n n n

n n n n

p x

p x

p x xp x xp p p x p p p x

p x p x p p n

−

+ −

=

=

= − −

= =

            (3.40) 

If n  distinct points 1,..., nx x  of the interval [ ],a b  are specified in advance, then we 

know that we can find coefficients 1,..., nw w  such that the rule  
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( ) ( ) ( )
1

b n

k k
ka

w x f x dx w f x
=

≈∑∫                        (3.41) 

will be exact for all polynomials of class 1.n−℘  If we treat both the x ’s and the w ’s as 

2n  unknowns, and determine them carefully perhaps we can arrange matters so that the 

rule will be exact for polynomials of class 2 1,n−℘  that is, for linear combinations of the 

2n  powers 2 2 11, , ,..., .nx x x −  This is possible, and the solution is intimately related to the 

orthogonal polynomials generated by the weight function ( )w x . 

 

Theorem 3.4: Let ( ) 0w x ≥  be a weight function defined on [ ],a b  with corresponding 

orthonormal polynomials *.np  Let the zeros of ( )*
np x  be 1 2 ... .na x x x b< < < < <  Then 

we can find positive constants 1,..., nw w  such that 

( ) ( ) ( )
1

b n

k k
ka

w x p x dx w p x
=

=∑∫                (3.42) 

whenever ( )p x  is a polynomial of class 2 1n−℘  and where the weights kw  have the 

explicit representation like  

( ) ( )
1

* *
1

1 .
'

n
k

n n k n k

kw
k p x p x
+

+

= −               (3.43) 

When abscissas and weights have been determined as this theorem, we say that the 

resulting integration rule is of Gauss type. We shall frequently refer to the n -point 

Gauss rule with the weight ( ) 1w x ≡  by the symbol .nG  It should be observed that if 

( )w x  is a symmetric function like 

( ) ( )1 1 ,
2 2

w a b x w a b x⎛ ⎞ ⎛ ⎞+ + = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

              (3.44) 

then the abscissas kx  are located symmetrically in the interval [ ],a b  and the weights 

corresponding to symmetric points are equal. Thus, in this case, half the work of the 

computation of these fundamental constants can be saved. The error incurred in 

Gaussian integration is governed by the following estimate. 

 

Theorem 3.5: Let ( )w x , 1,..., nx x , 1,..., nw w  be as in the previous theorem. Then, if 

( ) [ ]2 , ,nf x C a b∈  
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( ) ( ) ( ) ( )
( ) ( )

( )

2

2
1

, .
2 !

nb n

n k k
k na

f
E f w x f x dx w f x a b

n k
ξ

ξ
=

= − = < <∑∫           (3.45) 

 

Corollary: In the case of the Jacobi weight function  [33] 

( ) ( ) ( )1 1 , 1 1w x x xα β α β= − + > − > −              (3.46) 

over the interval [ ]1,1 ,−  the error is given by, for 1 1,ξ− < <  

( ) ( ) ( )
( ) ( )( )

( ) ( )
2 1

22 1 1 !
.

2 1 2 2 2 !

n
n

n

n n n
E f f

n n n

α β β α β
ξ

α β α β

+ + + Γ + + Γ + + +
=
Γ + + + Γ + + +

          (3.47) 

 

Corollary: In the case of the weight ( ) 1w x ≡  over [ ]1,1 ,−  the error is given by 

( ) ( )
( ) ( )

( ) ( )
42 1

2
3

2 !
, 1 1

2 1 2 !

n
n

n

n
E f f

n n
ξ ξ

+

= − < <
+ ⎡ ⎤⎣ ⎦

.            (3.48) 

In general, over the interval [ ],a b  and for the weight ( ) 1w x ≡  the error is given by 

( ) ( ) ( )
( ) ( )

( ) ( )
2 1 4

2
3

!
, .

2 1 2 !

n
n

n

b a n
E f f a b

n n
ξ ξ

+−
= < <

+ ⎡ ⎤⎣ ⎦
             (3.49) 

 

Thus, we see that Gauss rules are best in the sense that integrate exactly 

polynomials of as high degree as possible with a formula of the type ( )1
.n

k kk
w f x

=∑  

This optimality often carries over to near-optimality when this term has been defined in 

the language of normed spaces. The positive weights are also useful in keeping down 

roundoff error. 

There are several disadvantages to Gauss rules. The weights and abscissas of the 

Gauss rules are generally irrational numbers. If computing is done by hand, it is an 

error-liable nuisance to deal with many digits, and so in years gone by, the Gauss rules 

were not popular. Digital computers, on the other hand, do not distinguish between 

simple numbers such as 0.5000000 and more complicated numbers such as 

0.577350269. The Gauss rules which integrate exactly polynomials of maximal degree 

are excellent for large classes of functions arising in practice and are now very popular. 

But the old difficulty of rational versus irrational still comes into play in that the 

preparation of a program for Gauss integration requires the typing up and checking of 

many irrational numbers. 



 

 

33

 

 

3.5   PROCEEDING TO THE LIMIT 

 

 The basic definition 

( ) ( )
0 0

lim
r

r
f x dx f x dx

∞

→∞
=∫ ∫                         (3.50) 

suggests a primitive mode of procedure. Let 0 10 ...r r< < <  be a sequence of numbers 

that converge to infinity. Write  

( ) ( ) ( )
0 1

00 0

...
r r

r

f x dx f x dx f x dx
∞

= + +∫ ∫ ∫ .             (3.51) 

Each of the integrals on the right-hand side is proper, and the evaluations are terminated 

when ( )1 .n

n

r

r
f x dx ε+ ≤∫  This is only a practical termination criterion and is not correct 

theoretically. The interval is frequently doubled at each step; that is, 2 .n nr =  The idea 

behind this selection is that if an arithmetic sequence is used ( )like  nr cn=  the 

contribution of each additional step may be too insignificant to be worth a special 

computation. Furthermore, it may be less then ,ε  thus stopping the process. 

 

Example 3.3:  4
0

, 2
1

nr x
n

n n
eI dx r

x

−

= =
+∫  

n  nI  Number of functional 
evaluations 

0 .5720 2582 35 
1 .6274 5952 52 
2 .6304 3990 100 
3 .6304 7761 178 
4 .6304 7766 322 

Exact value .6304 7783  
 

 

3.5.1   Speed-Up of Convergence 

 

The method just described may be speeded up if one can obtained a reasonably 

good asymptotic expansion for the tail ( ) .
r

f x dx
∞

∫   
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Example 3.4:  Using the first term of the shifted Laguerre rule that 4 4 .
1 1

x r

r

e cedx
x r

− −∞
≈

+ +∫  

We shall now use Richardson’s extrapolation to infinity in the form 

                       ( ) ( )
( ) ( ) ( )1 1

4
1

, , 2 .
1

r
n n n n n

n n
n n

I r I r eI r r
r r r

φ φ
φ

φ φ

−
+ +

+

−
′ = = =

− +
           (3.52) 

This yields 

 

n  nI  
0 .6299 6722 
1 .6304 6682 
2 .6304 7765 
3 .6304 7766 

 

Note that 1I ′  is much better than 2I  and 2I ′  is almost identical to 4.I  Speed-up methods 

using the epsilon algorithm have been applied to integrals over an infinite range with 

limited success. 

 

3.5.2   Nonlinear Transformation 

 

Speed-up methods similar to those used for accelerating the convergence of 

slowly convergent series may be applied to infinite integrals. Let ( ) [ ],f x C a∈ ∞  and 

assume that 

( ) ( )
t

a

F t f x dx= ∫                           (3.53) 

converges to S  as .t →∞  A function ( )1F t  is said to converge more rapidly to S  than 

( )F t  if  

( )
( )

1lim 0.
t

S F t
S F t→∞

−
=

−
                 (3.54) 

Let us now define ( ) ( )
( )

; , 0
f t k

R t k k
f t
+

= >  for ( ) 0f t ≠  and denote by ( ) ,R k  

( )lim ;
t

R t k
→∞

, if it exists. We are now in a position to define the G -transform of F  and 

give some of its properties. 
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Definition: The G -transform of F is given by   

[ ] ( ) ( ) ( )
( ) ( ),

; , , , 1
1 ,

F t k R t k F t
G F t k R t k

R t k
+ −

= ≠
−

           (3.55) 

for any k  such that ( ), 1R t k ≠  and [ ]; ,G F t k  converges to .S  If ( ) 0R k ≠  or ( ) 1R k ≠  

the convergence is more rapid than that of ( )F t k+ . A limiting case of G -transform, 

which also converges more rapidly than ( )F t k+ , may be defined in which ( ),R t k  is 

replaced by ( )R k  in Equation (3.55). 

 

Example 3.5: ( )
0

sin 1,5707963...
2

t xF t dx
x

π
= → =∫  

( ) ( )sin
, .

sin
t k tR t k

t t k
+

=
+

  

With k π=  and ( ) ( ) ( ), / 1 ,R t t t Rπ π π= − + → − =   

[ ]
0 0

sin 1 sin; ,
2 2

t tt x xG F t dx dx
t x t x

πππ
π π

++
= +

+ +∫ ∫  

for 9t π=  and G ≈ 1,5707886. Using the Euler transformation on the same range the 

value yields 1.5707911.  

In case ( ) 1,R k =  we may be able to achieve better convergence with the Q -

transform which, when defined, converges more rapidly than ( )1F t +  and [ ]; ,1 .G F t  

Let ( )lim 1 ,1 .
r

q t R t
→∞

= −⎡ ⎤⎣ ⎦  If 1q ≠ , we define the Q -transform of ( )F t  by 

[ ] [ ] ( )( ) ( ); ; ,1 / 1 .Q F t qG F t F t q= − −               (3.56) 

 

Example 3.6: ( )
( )2

0

1 11 .
11

t

F t dx
tx

= = −
++∫  

In this case we can work everything out analytically. We have that 

( ) ( ) ( )( )2
,1 1 / 2 ,R t t t= + +  

[ ] 12, 1, ; ,1 1
2 3

q S G F t
t

= = = −
+

 and [ ] ( )( )
1; ,1 1 .

1 2 3
Q F t

t t
= +

+ +
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Similar to the G -transform is the B -transform. Let ( ) ( )
( )

; ,
f tk

t k k
f t

ρ =  ( )1, 0k f t> ≠  

and let ( ) ( )lim ;
t

k t kρ ρ
→∞

=  exist. The B -transform is given by 

[ ] ( ) ( ) ( )
( ) ( ),

; , , , 1.
1 ,

F kt t k F t
B F t k t k

t k
ρ

ρ
ρ

−
= ≠

−
            (3.57) 

If ( ) [ ]1, ; ,k B F t kρ ≠  converges to S  more rapidly than ( )F t  while if 

( ) 0kρ ≠  or ( ) 1kρ ≠  convergence is more rapid than that of ( )F kt . As previously, a 

limiting case may be defined where ( ),t kρ  is replaced by ( ) 0kρ ≠  or ( ) 1kρ ≠  in 

Equation (3.57). This transformation also converges more rapidly than ( )F kt . 

 

Example 3.7: ( ) 2
0

.
1 2

t dxF t
x

π
= →

+∫   For ( )1.1, 18, ; , 1.57099504k t B F t k= = =  with 

an error less than 0.0002. 

 

3.5.3   Truncation of the Infinite Interval 

 

We may also reduce the infinite interval to a finite interval by ignoring the “tail” 

of the integrand. Rigorous application of this method requires that the analyst be able to 

estimate this tail by some simple analytical device. 

 

Example 3.8: Determine numerically 
2

2

0

.
k

x kx

k

ee dx e dx
k

∞ ∞ −
− −≤ =∫ ∫  

For 4k = , we have 
2 8/ 10ke k− −≈ . For a seven-figure computation, it suffices to 

evaluate 
2

4

0

xe dx−∫  by some standard method. 

 

Example 3.9: Determine numerically 2
0

sin .
1

x dx
x

∞

+∫  

We have 1 22
2

sin ...
1k

x dx r r
xπ

∞

= + +
+∫  where

( )

( )2

22 1

sin .
1

k j

j k j

xr dx
x

π

π

+

+ −
=

+∫  Since 2 2 10, 0n nr r +< >  

and 1 2 ...,r r> >  we have 
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( )( )2 1 2 1

1 2 1 2 2 22 2

sin 1... .
1 4

k k

k k

x dxr r r dx
x x k

π π

π π π
+ +

+ + < = < <
+∫ ∫  

For a truncation error 410 ,−  this analysis suggests that 28.k ≈  

 

3.5.4   Reducing the Intensity of the Singularity 

 

Suppose it is possible to express the integrand ( )f x  in the form 

( ) ( ) ( )f x g x r x= +  where ( )
0

g x dx
∞

∫  is available in closed form or from other sources 

and where the remainder ( ) 0r x →  more rapidly than ( )f x  as x →∞ . The burden of 

evaluation is now thrown to ( )
0

r x dx
∞

∫  which presumably will be attended by less 

numerical difficulty. Repeated application of this principle can lead to convergent or 

asymptotic expansions. 

 

Example 3.10: Evaluate  2
0

sin
1
x x dx

x

∞

+∫   more rapidly. 

 

2 2
0 0 0

sin 1 sinsin
1 1

x x xx dx dx dx
x x x x

∞ ∞ ∞

= −
+ +∫ ∫ ∫ 2

0

1 sin .
2 1

x dx
x x

π ∞

= −
+∫  

 

3.6   ELIMINATING SINGULARITIES IN THE EVALUATION OF SINE AND 

COSINE INTEGRAL OVER THE INTERVAL ( )0, .∞  

  

We find the iterative formula for the evaluation of integral whose integrand is 

given as a rational trigonometric function like ( )sin ,cosnt f at at−  where n  is a positive 

integer. Before starting the process of formulation we should know the identities of 

special functions ( )Si t  and ( )Ci t , sine and cosine integrals, respectively, as follows: 

 

3.6.1   Sine and Cosine Integrals 

 

The sine and cosine integrals are defined, respectively, as [31] 
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( )
0

sini ,
x tS x dt

t
= ∫                  (3.58) 

( )
0

cosi .
x tC x dt

t
= ∫                  (3.59) 

The main purpose of this section is obtaining an iterative method to evaluate the 

following integrals 

sin
n

A

dθω θ
θ

∞

∫  and  cos .n
A

dθω θ
θ

∞

∫              (3.60) 

First of all, we will start from the definition of integration by parts such as 

( )uv u v uv′ ′ ′= +                   (3.61) 

and rewriting the Equation (3.61) again using an exact integral 

.
b b b b

b b

a a
a a a a

v du u dv uv u dv uv v du+ = ⇒ = −∫ ∫ ∫ ∫             (3.62) 

Using the integration by parts technique along with definitions given in Equation (3.58) 

as follows 

( )
0 0

sin sin sin sini
2

x

x x

xt t t tS x dt dt dt dt
t t t x t

π∞ ∞ ∞⎛ ⎞
= = − = −⎜ ⎟

⎝ ⎠
∫ ∫ ∫ ∫           (3.63) 

then one can obtain that 

( )sin i .
2x

xt dt S x
t x

π∞

= −∫                 (3.64) 

Similarly, with the definition of ( )iC x   

( ) 0
0 0

cos 1 cosi log ,
xx t tC x dt x dt

t t
γ −

= = + −∫ ∫                      (3.65) 

( ) 0
0

cos 1 coslog
x

x

t tdt Ci x x dt
t t

γ
∞ −

= − = − − +∫ ∫             (3.66) 

where 0γ  is called as Euler’s constant and its value is 0 0.57721566490.γ =  Now, let us 

solve the integral by using the integration by parts technique as follows: 

  2 2

sin sin cos
.

A AA

S d d
α ω α ω α ωω ωα ω α

ω α ω α α

∞∞ ∞⎛ ⎞
⎜ ⎟= = +
⎜ ⎟−⎝ ⎠

∫ ∫           (3.67) 

The last integral in Equation (3.67) is ( )iC x−  integral then the 2S  becomes  
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( )2 2

sin sin

A

A
S d Ci A

A
α ω ωω ωα ω ω

ω α ω

∞

= = −∫             (3.68) 

where 
sin

lim 0.
α

α ω
α→∞

=  Similarly for the integral 

2 2

cos cos sin

A AA

C d d
α ω α ω α ω

α ω α
α α α

∞∞ ∞

= = −
−∫ ∫             (3.69) 

and using the Equation (3.58) for ( )Si x  the value 2C  becomes 

( )2 2

cos cos
2A

AA
C d Si A

A A
ωα ω ω πα ω ω

α ω

∞ ⎛ ⎞
= = − −⎜ ⎟⎜ ⎟

⎝ ⎠
∫                    (3.70) 

where 
cos

lim 0.
α

α ω
α→∞

=  

 In general, for integer 2k ≥ , the recursive formula can be obtained by using 

integration by parts technique as follow: 

( ) 1 1

sin sin cos
,

1 1k k k k
A AA

S d d
k k

α ω α ω ω α ωω ωα α
ω α ω α α

∞∞ ∞

− −

⎛ ⎞
⎜ ⎟= = −
⎜ ⎟− −
⎝ ⎠

∫ ∫   

( ) 1 1

sin cos
,

1 1k k k
A

A
S d

k A k
ω ω α ωω α

ω α

∞

− −

⎛ ⎞
= +⎜ ⎟⎜ ⎟− −⎝ ⎠

∫  

( ) 11

sin
.

1 1k kk

A
S C

k A k
ω ωω

ω −−

⎛ ⎞
= +⎜ ⎟⎜ ⎟− −⎝ ⎠

               (3.71) 

Similarly, 

( ) 1 1

cos cos sin1 ,
1 1k k k k

A AA

C d d
k k

α ω α ω α ω
α α

α α α

∞∞ ∞

− −= = +
− −∫ ∫  

( ) 1 1

cos sin
,

1 1k k k
A

A
C d

k A k
ω ω α ω

α
α

∞

− −= −
− − ∫  

( ) 11

cos
.

1 1k kk

A
C S

k A k
ω ω

−−= −
− −

                (3.72) 

Once we obtain the value of 1S  and 1C  then the rest of the integrals for 2k ≥  can be 

evaluated by using the recursive formula. Some examples are given below. 

 

Example 3.11: Find the recursive formula for 3S  and 3C . 

Now, let us solve the following integrals by using the integration by part 
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3 33 3

sin sin sin ,
A A A

dS d d
ω ω

θ ωω ω α α αθ ω α
ω θ ω ω αα

ω

∞ ∞ ∞

= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫ ∫  

3 22 2

sinsin cos ,
A A

A
S d C

Aω ω

ωα αω α ω
α α ω

∞ ∞⎛ ⎞ ⎛ ⎞
⎜ ⎟= + = −⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∫  

2 12

coscos cos sin .
AA A

A
C d d S

Aωω ω

ωα α αα α
α α α ω

∞∞ ∞

= = − = −
−∫ ∫  

Back substitution along with the value of the integral 1S  given in Equation (3.64) 

results the value of integral 3S . Similarly 

2
3 33 3

cos cos cos ,
A A A

dC d d
ω ω

θ ω α α αθ ω α
θ ω αα

ω

∞ ∞ ∞

= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫ ∫  

( )
2 2

3 222 2

coscos sin ,
A A

A
C d S

Aω ω

ωα αω α ω
α α ω

∞ ∞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − = −

⎜ ⎟− ⎜ ⎟⎝ ⎠ ⎝ ⎠
∫  

2 12

sinsin sin cos .
AA A

A
S d d C

Aωω ω

ωα α αα α
α α α ω

∞∞ ∞

= = + = +
−∫ ∫  

Applying back substitution along with the value of the integral 1C  given in Equation 

(3.66) the value of 3C  can be obtained. 
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CHAPTER 4 

 

THERMAL DISTRIBUTIONS AROUND AN INSULATED BARRIER AT 

THE INTERFACE OF A GRADED COATING AND A  

HOMOGENEOUS SUBSTRATE 
 

 

4.1   DEFINITION OF THE PROBLEM 

 

 Starting with the diffusion equation in xyz -coordinate [31]  

  T T T Tk k k
t x x y y z z

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 ,                 (4.1) 

which can be reduced to the following  form for steady-state conduction in 2-D problem 

 0T Tk k
x x y y

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
  ,                                                                                    (4.2) 

where k  is conductivity which can be expressed exponential function [29] such as 

 ( ) 0
yk y k eβ= ,  0 , :k β  constants.                             (4.3) 

Suppose that heat is supplied over the area  a x a− < <   in the plane 0z =  at rate depending 

on y only. The diffusion equation can be written in a simple form for the temperature 

( ),T x y as 

 
2 2

2 2 0T T T
x y y

β∂ ∂ ∂
+ + =

∂ ∂ ∂
.                    (4.4)  
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Figure 4.1: Geometry of the heat conduction problem 

 

 We will solve the problem given in Figure 4.1 using superposition method such 

that the temperature function  ( ),T r z  will be addition of two problems. The first 

problem is the one – dimensional problem 

 
2

1 1
2 0T T

y y
β ∂ ∂

+ =
∂ ∂

             (4.5) 

on y -axis along with the boundary conditions, 

 ( ) ( )1 ,k y T x y finite
y
∂

→
∂

 as ρ → −∞   where 2 2 ,x yρ = +                 (4.6) 

 ( ) ( )1 1,0 ,0T x T x+ −= ,              , 0,x y−∞ < < ∞ =         (4.7) 

 ( ) ( )1 0,
y h

k y T x y Q
y =

∂
=

∂
 ,   ,x y h−∞ < < ∞ =         (4.8) 

and the second problem is two-dimensional heat conduction problem 

 
2 2

2 2 2
2 2 0T T T

x y y
β∂ ∂ ∂

+ + =
∂ ∂ ∂

          (4.9) 

on ( ),x y  plane along with the boundary conditions, 

 ( ) ( )2 ,k y T x y finite
y
∂

→
∂

 as ρ → −∞  where 2 2 ,x yρ = +     (4.10) 

 ( ) ( )2 , 0
y h

k y T x y
y =

∂
=

∂
,  , ,y h x= −∞ < < ∞      (4.11) 

h

aa− x

y
Q−

( ), ( )y yµ λ
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 ( ) ( )2 2,0 ,0 ,T x T x
y y

+ −∂ ∂
=

∂ ∂
  0, ,y a x= < < ∞      (4.12) 

 ( ) ( ),0 ,0 ,T x T x+ −=    0, ,y a x= < < ∞      (4.13) 

 ( ) ( ) 0, ,k y T x y Q
y
∂

= −
∂

  0, .y a x a= − < <      (4.14) 

 

4.2   ONE-DIMENSIONAL HEAT CONDUCTION PROBLEM ( )1T y  

 

 One-dimensional heat conduction problem given in Figure 4.2 can be obtained by 

solving (4.5) such that 

 ( )1
, 0 ,

, 0.

yA Be y h
T y

C Dy y

β−⎧ + < <
= ⎨

+ <⎩
                   (4.15) 

 
Figure 4.2: Geometry of the one dimensional heat conduction problem 

 

Using regularity condition (4.6) the coefficient D  should be zero and from boundary 

conditions (4.7) and (4.8) 

 A B C+ =    as   0,y =          (4.16) 

 ( )0 0
y hk e Be Qβ ββ −− =    ⇒    0

0

QB
kβ

= −   and 0

0

.QC A
kβ

= −      (4.17) 

Then, the solution of (4.5) will be determined by arbitrarily choosing 0A =  as 

h

y

x

0Q−

( ), ( )y yµ λ
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 ( )
0

0
1

0

0

, 0 ,

, 0.

yQ e y h
k

T y
Q y
k

β

β

β

−⎧− < <⎪⎪= ⎨
⎪− <
⎪⎩

        (4.18) 

 

4.3   TWO-DIMENSIONAL HEAT CONDUCTION PROBLEM ( )2 ,T x y  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3:  Geometry of the two dimensional heat conduction problem 

 

 We will solve Equation (4.9) by using Fourier integral transform method for 

plane-strain problem. Defining temperature distribution [27] ( )2 , ,T x y  

 ( ) ( )2
1, , ,

2
i xT x y y e dξτ ξ ξ

π

+∞

−∞

= ∫         (4.19) 

and substituting it into (4.9) it will be obtained as 

 ( ) ( ) ( )
2

2 2, , , 0.i x i x i xy e d y e d y e d
y y x

ξ ξ ξτ ξ ξ β τ ξ ξ τ ξ ξ
+∞ +∞ +∞

−∞ −∞ −∞

∂ ∂ ∂
+ + =

∂ ∂ ∂∫ ∫ ∫        (4.20) 

Using the properties of Fourier transform [31], 

 ( ) ( ) ( ), ,
n

n
n f x y i F y

x
ξ ξ

⎧ ⎫∂
ℑ =⎨ ⎬∂⎩ ⎭

        (4.21) 

Equation (4.20) can be expressed in terms of an ordinary differential equation as  

 ( ) ( )2 2 , 0D D yβ ξ τ ξ+ − =          (4.22) 

h

aa− x

y

0Q

( ), ( )y yµ λ
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where D  is the differential operator, /D d dy= . The solution of the differential 

equation can be obtained by using the characteristic equation of the Equation (4.22) and 

it can be given as 

 ( )
( )
( ) ( )

1 2
1 2

1 2

, 0 ,
,

, 0

r y r y

y y

A e A e y h
y

B e B e yξ ξ

ξ
τ ξ

ξ ξ −

⎧ + < <⎪= ⎨
+ <⎪⎩

      (4.23) 

where 

 2 2
1

1 4
2 2

r β ξ β= − + +        and        2 2
2

1 4
2 2

r β ξ β= − − +     (4.24) 

are the roots of the characteristic equation in (4.22). Let us examine the sign of the roots 

as follows 

 2 2
1 2 1

1 4 ,
2 2

r m m βξ β= − = + −              (4.25) 

 ( ) 2 2
2 2 1

1 4
2 2

r m m βξ β= − + = − + −            (4.26) 

where 1m  and 2m  are defined as  

 1 2
m β

=  and  2 2
2

1 4 .
2

m ξ β= +             (4.27) 

Finally, we observed that 

 
2

1
21 0,

2 2
r

ββ ξ
β

⎛ ⎞
= − + + >⎜ ⎟

⎝ ⎠
             (4.28) 

 
2

2
21 0

2 2
r

ββ ξ
β

⎛ ⎞
= − − + <⎜ ⎟

⎝ ⎠
             (4.29) 

then 

 2 1 0m m− >  and 2 1 0m m+ > .             (4.30) 

The solution of ( ), yτ ξ  that is transformed temperature now can be written in the 

following form 

 ( )
( ) ( ) ( ) ( )

( ) ( )

2 1 2 1
1 2

1 2

, 0 ,
,

, 0.

m m y m m y

y y

A e A e y h
y

B e B e yξ ξ

ξ ξ
τ ξ

ξ ξ

− +

−

⎧ + < <⎪= ⎨
+ <⎪⎩

            (4.31) 

Since the transformed temperature function is bounded function at infinity then 

coefficient ( )2B ξ  becomes zero ( )as .ye yξ− →∞ → −∞  Also, using the boundary 
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conditions (4.11) the coefficient ( )2A ξ  can be expressed in terms of coefficients ( )1A ξ  

as 

 222 1
2 1

2 1

mm mA e A
m m

−
=

+
               (4.32) 

and from the boundary condition (4.12) one can easily obtained ( )1B ξ  in terms of 

( )1A ξ  like 

 ( )22 2 1
1 11 .m h m mB e A

ξ
−

= −               (4.33) 

Finally, the transformed temperature function ( ), yτ ξ  can be written in terms of only 

one unknown constant ( )1A ξ  as follows: 

 ( )

( ) ( ) ( )

( ) ( )

2 1 2 12

2

22 1
1

2 1

2 2 1
1

, 0 ,
,

1 , 0.

m m y m m ym

ym

m me e e A y h
m m

y
m me e A yξ

ξ
τ ξ

ξ
ξ

− − +−⎧ + < <⎪ +⎪= ⎨ −⎪ − <
⎪⎩

   (4.34) 

Now, we will define a new function, which is so-called the density function [37], to find 

unknown constant ( )1A ξ  at the interface of nonhomogeneous graded coating and 

homogeneous substrate like  

 ( ) ( ) ( ){ }2 2,0 ,0dx T x T x
dx

φ + −= −              (4.35) 

which satisfies 

 ( ) 0
a

a

dφ η η
−

=∫  and ( ) 0φ η =  at .a x< < ∞     (4.36) 

Let ( )ξΦ  be defined as the Fourier transform of the density function ( )xφ  given in 

Equation (4.35). The transformed density function ( ) ,ξΦ  is identically zero at the 

outside of the barrier. We will obtained the last unknown constant ( )1A ξ  in terms of the 

new function  ( )ξΦ  such as, 

 ( ) ( ) ( )( )1
1 1 ,0 ,0 ,

2 2
i x i xe d i e dξ ξξ ξ ξ τ ξ τ ξ ξ

π π

+∞ +∞
+ −

−∞ −∞

Φ = −∫ ∫   

 ( ) ( ) ( )( ),0 ,0iξ ξ τ ξ τ ξ+ −Φ = −              (4.37)  

where 
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( ) ( )222 1
1

2 1

,0 1 ,m hm m e A
m m

τ ξ ξ+ ⎛ ⎞−
= +⎜ ⎟+⎝ ⎠

       ( ) ( ) ( )22 2 1
1,0 1 .m h m me Aτ ξ ξ

ξ
− −
= −          (4.38)  

By substituting the function values ( ),0τ ξ +  and ( ),0τ ξ −  into Equation (4.37) it may 

be obtained as 

 ( )
( ) ( )( ) ( )

222 2 2 2
2 1 2 1 2 1 2 1

1
2 1

.
m hm m m m m m m m e

i A
m m

ξ ξξξ ξ
ξ

+ − + + − + −
Φ =

+
 

From Equation (4.27), the last expression for ( )ξΦ  can be reduced to the following 

form 

 ( )
( ) ( )( )

( )
2

2 2 2
2 1 2 1

1
2 1

.
m hm m m m e

i A
m m

ξ ξ ξ ξξξ ξ
ξ

+ − + − +
Φ =

+
       (4.39) 

Then, using inverse Fourier transform the last unknown constant function, ( )1A ξ , can 

be obtained along with the condition (4.36) as 

 ( ) ( ) ( )( ) ( )
2

2 1
1 2

2 1 2 1

1 .
a i s

m h a

m mA s e ds
i m m m m e

ξξ φ
ξ ξ ξ

−

−

⎛ ⎞+
= ⎜ ⎟⎜ ⎟+ − + − +⎝ ⎠

∫     (4.40) 

After all the derivative of transformed temperature is 

( )
( ) ( ) ( ) ( )( ) ( )

( )( ) ( )

2 1 2 12

2

2
2 1 2 1 1

2
2 1 1

, 0 ,
,

1 , 0

m m y m m ym h

ym h

m m e m m e e A y hd y
dy e m m e A yξ

ξ
τ ξ

ξ

− − +⎧ − − − < <⎪= ⎨
− − <⎪⎩

    (4.41) 

and from the boundary condition (4.14) as 0y −→  one can reduced the problem into 

integral equation as follows: 

 ( )( ) ( )22 0
2 1 1

0
0

1lim 1 ,
2

ym hy i x

y

Qe e m m e A e d
k

ξβ ξξ ξ
π−

∞

→
−∞

− − = −∫  

 ( ) ( )( )
( ) ( )( ) ( )

2

2

2 2 2
2 1 0

20
02 1 2 1

11 1lim ,
2

m h
y i x

m hy

e m m Qe e d
i km m m m e

ξ β ξξ ξ
π ξ ξ ξ−

∞
+

→
−∞

⎡ ⎤− −
⎢ ⎥Φ = −

+ − + − +⎢ ⎥⎣ ⎦
∫  

 ( ) ( ) ( )
( ) ( )( )

2

2

2 2
0

20
02 1 2 1

11 1lim ,
2

m h
y i x

m hy

e Qe e d
i km m m m e

ξ β ξ
ξ ξ

ξ
π ξ ξ ξ−

∞
+

→
−∞

⎡ ⎤− Φ
⎢ ⎥ = −

+ − + − +⎢ ⎥⎣ ⎦
∫  

 ( ) ( ) ( )
( ) ( )( )

2

2

2

0
20

02 1 2 1

11lim ,
2

am h i s
y i xa

m hy

i e s e ds Qe e d
km m m m e

ξ
ξ β ξ

ξ φ
ξ

π ξ ξ−

−∞
+ −

→
−∞

⎡ ⎤− −⎢ ⎥ = −
⎢ ⎥+ − + − +
⎢ ⎥⎣ ⎦

∫
∫  
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( ) ( ) ( )

( ) ( )( )
( )

2

2

2
0

20
0 2 1 2 1

11 lim .
2

ym ha
i s x

m hy
a

i e eQ s ds e d
k m m m m e

ξ β
ξξ

φ ξ
π ξ ξ−

+∞
− −

→
− −∞

− −
− =

+ − + − +∫ ∫            (4.42) 

Defining some values in Equation (4.42) in terms of basic variables and saying that 

2
R β

ξ
= , one may express as 

 
2

2 2 2
2 1

21 4 1 1 ,
2 2 2 2 2

m m R R
ξ ξβ β ββ ξ ξ ξ

ξ ξ
⎛ ⎞

− = + − = + − = + −⎜ ⎟⎜ ⎟
⎝ ⎠

   (4.43) 

 
2

2 2 2
2 1

21 4 1 1 ,
2 2 2 2 2

m m R R
ξ ξβ β ββ ξ ξ ξ

ξ ξ
⎛ ⎞

+ = + + = + + = + +⎜ ⎟⎜ ⎟
⎝ ⎠

   (4.44) 

 

2

22 2
2

2 1
2 2 142 .

h
h Rhm he e e e

βξ
ξ ξβ ξ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

+
++= = =        (4.45) 

Substituting Equations (4.43-4.45) into (4.42) it can be obtained as 

( )
( ) ( ) ( )

( )

2

2

2 1

0

0 2 12 20

11 lim .
2 1 1 1 1

yh R i s x
a

y h R
a

e e eQ s ds d
k i R R R R e

ξ βξ ξ

ξ

ξ
φ ξ

π ξ
−

++ − −
∞

→ +
− −∞

−
− =

⎡ ⎤+ + − + + − +⎢ ⎥⎣ ⎦
∫ ∫     (4.46) 

To solve the infinity integral in Equation (4.46) it will be used some identities related to 

the complex function properties of the integrand such as 

 ( ) ( ) ( ) ( )( )1 cos sin ,i s x i s xe ie i s x i s x
i

ξ ξ ξ ξ− − − −= − = − − − −  

            ( ) ( )sin cos .s x i s xξ ξ= − − − −  

Since         ( ) ( ) ( )
0

0

f d f d f dξ ξ ξ ξ ξ ξ
∞ ∞

−∞ −∞

= +∫ ∫ ∫  and defining that 

0 0 d dξ ξ ξ ξ−∞ ∞= − ⇒ = −  

It can be written that 

 ( ) ( ) ( )
0

0

,f d f d f dξ ξ ξ ξ ξ ξ
∞

∞

−∞
−∞

= +∫ ∫ ∫  

        ( ) ( ) ( ) ( ) ( )
0

0 0 0

.f d f d f d f dξ ξ ξ ξ ξ ξ ξ ξ
∞ ∞ ∞

−∞

= − − + = − +∫ ∫ ∫ ∫  

After all of these simplifications the part that contains infinity integral in Equation 

(4.46) can be defined as 
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 ( )
( )
( )

2

2

2 1

2 2 2 1

1

1 1 1 1

h R

h R

e
F

R R R R e

ξ

ξ
ξ

+

+

−
=
⎡ ⎤+ + − + + − +⎢ ⎥⎣ ⎦

 

and the same equation can be written in the following form 

   ( ) ( )
( )

( ) ( )
( )

0
0 0

lim ,
i s x i s x

y y

y

e eF e d F e d
i i

ξ ξ
ξ β ξ βξ ξ ξ ξ

−

∞ ∞− − −
+ +

→
− +∫ ∫  

( ) ( ) ( ) ( )( )
0

0

lim cos siny

y
iF e i s x s x dξ βξ ξ ξ ξ

−

∞
+

→
= − − −∫  

 ( ) ( ) ( ) ( )( )
0

0

lim sin cosy

y
F e s x i s x dξ βξ ξ ξ ξ

−

∞
+

→
+ − − − −∫  

( ) ( ) ( )
0

2 sin .yF e s x dξ βξ ξ ξ
∞

+= − −∫  

As a result of these simplification Equation (4.46) can be reduced to the form of 

( ) ( ) ( ) ( )0

0
0 0

2 1 lim 2 sin .
a

y

y
a

Q s ds F e s x d
k

ξ βφ ξ ξ ξ
π −

∞
+

→
−

− = − −∫ ∫                 (4.47) 

Now the next step is the asymptotically expand the integrand to separate the singular 

part if any. For this purposes we will examine the integrand ( )2F ξ  as ξ →∞  (or 

0R → ) 

( )
( )

2
2

22

2 1
2 1

2 12 2 2 1

2 1

1 1 1 1

h R
h R

h Rh R

e e

eR R R R e

ξ
ξ

ξξ

+
− +

− ++

− −

⎡ ⎤+ + − + + − +⎢ ⎥⎣ ⎦

 

   
( )

( )
2

2

2 1

2 2 1 2

2 1
,

1 1 1 1

h R

h R

e

R R e R R

ξ

ξ

+

− +

− −
=

+ + − + + − +
 

   ( )22 211 1
2

h he e Rξ ξ− −= − + − ( ) ( )32 4 2 21 11 1
4 4

h h he h e e Rξ ξ ξξ− − −⎛ ⎞+ − − − −⎜ ⎟
⎝ ⎠

 

   ( ) ( )( )2 2 4 21 11 1 1 .
2 8

h h h he e h e eξ ξ ξ ξξ− − − −⎡+ − − − − −⎢⎣
 

   ( ) ( )2 4 6 2 2 3 41 1 3 1 0 .
2 4 4

h h h h he h e e e e R Rξ ξ ξ ξ ξξ− − − − − ⎤⎛ ⎞− + − − − +⎜ ⎟ ⎥⎝ ⎠ ⎦
 

Simplifying the last expression as ,ξ →∞  

( ) ( )3 5 7 9 11 13 131 1 1 5 7 21 331 0 ,
2 8 16 128 256 1024 2048

F R R R R R R R R R= + − + − + − + −    (4.48) 
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( )
3 5 7 9 11

1 1 1 5 7 211 ...
2 2 8 2 16 2 128 2 256 2 1024 2

F β β β β β βξ
ξ ξ ξ ξ ξ ξ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (4.49) 

 

 As we realized the second part of the integrand which contains the exponential 

function tends to zero as 0R →  ( ).ξ →∞  To eliminate the singularity, so called 

Cauchy type, let us write the integral equation (4.47) again like 

( ) ( )( ) ( ) ( ) 0

0
00

21 lim 2 1 1 sin .
a

y

y
a

Qs ds F e s x d
k

ξ βφ ξ ξ ξ
π −

∞
+

→
−

− − + − = −∫ ∫                (4.50) 

Separating the integrand as 

( ) ( ) ( )
0

0

1 lim sin
a

y

y
a

s ds e s x dξ βφ ξ ξ
π −

∞
+

→
−

−∫ ∫  

   ( ) ( )( ) ( ) ( ) 0

0
00

21lim 2 1 sin ,
a

y

y
a

Qs ds F e s x d
k

ξ βφ ξ ξ ξ
π−

∞
+

→
−

+ − − − = −∫ ∫    (4.51) 

we will examine the first infinity integral to show the singularity part as follows: 

( )
0

0

lim siny y

y
e e s x dξ β ξ ξ

−

∞

→
−∫  

 ( ) ( ) ( )
2 2 20

cos sin cos
lim ,

2

y y y
y

y

xe s x x ye s x s se s x
e

y s sx x

ξ ξ ξ
β ξ ξ ξ

−→

⎛ ⎞− − − − + − −
= ⎜ ⎟

+ − +⎝ ⎠
 

 
( ) ( )( ) ( )

( )220

1 cos sin
lim ,

y y
y

y

s x e s x ye s x
e

y s x

ξ ξ
β

ξ ξ
−→

⎛ ⎞− − − − −
⎜ ⎟=
⎜ ⎟+ −⎝ ⎠

 

 
( ) ( )( )

( )
( )

( )2 22 20

1 cos sin
lim ,

y y
y

y

s x e s x ye s x
e

y s x y s x

ξ ξ
β

ξ ξ
−→

⎛ ⎞− − − −
⎜ ⎟= −
⎜ ⎟+ − + −⎝ ⎠

 

 
( ) ( )( )

( )
( )

( )2 22 20 0

1 cos sin
lim lim

y y
y y

y y

s x e s x ye s x
e e

y s x y s x

ξ ξ
β β

ξ ξ
− −→ →

− − − −
= −

+ − + −
 

 
( )2

10s x
s xs x

−
= − =

−−
    

where the value 1
s x−

is called as the dominant term of the integral equation. Then, the 

Equation (4.50) becomes 

( ) ( ) ( )( ) ( ) ( ) 0

0
00

21 1lim 2 1 sin
a a

y

y
a a

s Qds s ds F e s x d
s x k

ξ βφ
φ ξ ξ ξ

π π−

∞
+

→
− −

+ − − − = −
−∫ ∫ ∫            (4.52) 
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and as 0y −→ the Equation (4.52) turn into 

 ( ) ( ) ( ) ( ) 0

00

21 1 sin
a a

a a

s Qds s ds k s x d
s x k
φ

φ ξ ξ ξ
π π

∞

− −

+ − = −
−∫ ∫ ∫                (4.53) 

where 

 ( )
( )

( )
2

2

2 1

2 2 1 2

2 1
1.

1 1 1 1

h R

h R

e
k

R R e R R

ξ

ξ
ξ

− +

− +

− −
= −

+ + − + + − +
     (4.54) 

Now, we will try to solve the infinity integral in Equation (4.53) by separating it into 

two parts over the interval [ ]0, A  and [ ],A ∞  

( )1 a

a

s
ds

s x
φ

π − −∫  

  ( ) ( ) ( ) ( ) ( ) 0

00

21 sin sin
A

a

c aa
A

Qs ds k s x d k s x d
k

φ ξ ξ ξ ξ ξ ξ
π

∞

−

⎛ ⎞
+ − + − = −⎜ ⎟

⎝ ⎠
∫ ∫ ∫    (4.55) 

where ( ) ( )ck kξ ξ= is a close form of the integrand and ( )ak ξ  is an asymptotic 

expansion of integrand as ξ →∞  given by 

( )ak ξ ( )
3 5 7 9 11

131 1 1 5 7 21 0
2 2 8 2 16 2 128 2 256 2 1024 2

Rβ β β β β β
ξ ξ ξ ξ ξ ξ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

or 

 ( ) ( )
3 5 7 9 11

13
2 6 3 9 5 14 7 17 9 21 11

1 1 1 5 1 7 1 21 1 0 .
2 2 2 2 2 2ak Rβ β β β β βξ

ξ ξ ξ ξ ξ ξ
= − + − + − −    (4.56) 

 

4.4   NUMERICAL PROCEDURE 

 

 Numerical procedure starts with non-dimensionalization process by defining that 

,s at ds a dt= ⇒ =      ,x ar dx a dr= ⇒ =  ,a a d dξ λ ξ λ= ⇒ =          (4.57) 

         ,h al=     .aβ κ=               (4.58) 

According to all new variables, the Equation (4.55) that is dimensionless anymore 

becomes 

( )1

1

1 at
dt

t r
φ

π − −∫  

 ( ) ( ) ( ) ( ) ( )
1

0

01 0

21 sin sin
A

c a
A

Qat dt k t r d k t r d
k

φ λ λ λ λ λ λ
π

∞

−

⎛ ⎞
+ − + − = −⎜ ⎟

⎝ ⎠
∫ ∫ ∫       (4.59) 



 

 

52

 

where 

 ( )
( )2 2

2 2

4

2 2 4 2 2

2 1
1,

1 14 1 4 1
2 2 2 2

l

c
l

e
k

e

κ λ

κ λ

λ
ξ

κ κκ λ κ λ
λ λ λ λ

− +

− +

− −
= −
⎛ ⎞+ + − + + − +⎜ ⎟
⎝ ⎠

   (4.60) 

 ( ) ( )
3 5 7 9 11

13
2 6 3 9 5 14 7 17 9 21 11

1 1 1 5 7 21 0 .
2 2 2 2 2 2ak Rκ κ κ κ κ κλ

λ λ λ λ λ λ
= − + − + − −     (4.61) 

Since we have some singularities in the interval [ ]1,1−  then we have to eliminate them. 

Let us examine the close form solution of the following integrals 

 ( )
0 0

sinsin t r t rt r
d d

t r
λλ

λ λ
λ λ

∞ ∞− −−
=

−∫ ∫  

then using the transform t rλ θ− =  

 ( ) ( )
0 0

sin sin sgn .
2 2

t r t rt r
d d t r

t r t r
λ θ π πλ θ
λ θ

∞ ∞− −−
= = = −

− −∫ ∫                (4.62) 

Now substituting these values into the integral equation in (4.59) like 

( ) ( ) ( ) ( )
1 1 1

0

01 1 1

21 1 1,
2 4 2 4

t r t rt Qdt t dt H t r t dt
t r t r t r k
φ π κ π κφ φ

π π π− − −

⎛ − ⎞ −
+ − + = −⎜ ⎟− − −⎝ ⎠

∫ ∫ ∫       (4.63) 

where 

 ( ) ( ) ( ) ( ) ( )
0

, sin sin .
A

c a
A

H t r k t r d k t r dλ λ λ λ λ λ
∞

= − + −∫ ∫      (4.64) 

Let us simplify the looks of the integral equation by defining new functions like 

 ( ) ( ) ( ) ( ) ( )
1 1 1

0

01 1 1

21 , ,
t Qdt t X t r dt t Y t r dt

t r k
φ

φ φ
π − − −

+ + = −
−∫ ∫ ∫      (4.65) 

where 

 ( ) ( )1, , ,
8

t r
X t r H t r

t r
πκ

π
⎛ − ⎞

= −⎜ ⎟−⎝ ⎠
        (4.66) 

 ( ), .
8

t r
Y t r

t r
κ −

=
−

          (4.67) 

To solve the integral equation we redefine the density functions ( )tφ  as series of 

orthogonal functions [31-33] such as 

 ( ) ( )
2

0

T

1

N
n

n
n

t
t A

t
φ

=

=
−

∑               (4.68) 

along with the conditions 
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 ( )
1

1

0,t dtφ
−

=∫   ( ) ( )x xφ φ= − −        (4.69) 

where ( )Tn t  is called as the Chebyshev polynomial of the first kind which are 

orthogonal with respect to the weight function 
2

1 .
1 t−

 Now, by using the single 

valuedness condition given in Equation (4.36) and noting that ( )0 1T t = , 

 ( ) ( ) ( )1 1
0

2
01 1

T T
0

1

N
n

n
n

t t
t dt A dt

t
φ

=− −

= =
−

∑∫ ∫         (4.70) 

then 0 0A =  due to the orthogonality properties of the Chebyshev polynomials. By using 

the oddness of ( )tφ  given in Equation (4.69), Equation (4.68) can be written in terms of 

odd indices of the Chebyshev polynomials like 

 ( ) ( )2 1

2
1

T
.

1

N
n

n
n

t
t A

t
φ −

=

=
−

∑           (4.71) 

Let us write the integral equation (4.65) again by substituting functions ( )tφ  into 

integral equation such as 

         ( )
( )

1
2 1

2
1 1

T1
1

N
n

n
n

t
A dt

t r tπ
−

= − − −
∑ ∫  

   ( ) ( ) ( ) ( )
1 1

2 1 2 1 0
2 2

1 1 01 1

T T 2, , .
1 1

N N
n n

n n
n n

t t QA X t r dt A Y t r dt
kt t

− −

= =− −

+ + = −
− −

∑ ∑∫ ∫    (4.72) 

Now we will examine each integral in the system above starting from the first integral. 

By using the following identity for Chebyshev polynomials 

 ( )
( ) ( )

1

2
1

1

0, 0 , 1 1,
T1

1 U , 0 , 1 1

k

k

k r
t

dt
t r t r k r

π −
−

= − < <⎧
⎪= ⎨

− − ⎪ > − < <⎩
∫       (4.73) 

then the first integral in Equation (4.72) becomes 

 ( )
( )

( )
1

2 1
2 22

1

T1 U
1

n
n

t
dt r

t r tπ
−

−
−

=
− −

∫         (4.74) 

where ( )2 2U n r−  the Chebyshev polynomial of the second kind and defined as 

 ( ) ( ) ( )
( )

sin 1 arccos
U

sin arccosk

k r
r

r
+⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

        (4.75) 
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for 2 2k n= −  the second kind of Chebyshev polynomials can be expressed in terms of 

trigonometric function of sines and cosines as 

 ( ) ( ) ( )
( )2 2

sin 2 1 arccos
U .

sin arccosn

n r
r

r−

−⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

        (4.76) 

For the other integrals in Equation (4.72) we will define a map such that 

cos sin ,t dt dθ θ θ= ⇒ = −    
( )

01
arccos

t
rr

θ=    and    
( )arccos

1
rr

t θ
π

=
−

  (4.77) 

also, from the definition of Chebyshev polynomials of the first kind, it can be written 

that 

 ( ) ( ) ( ) ( )T cos arccos cos arccos cos cos .k t k t k kθ θ= = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦    (4.78) 

The second integral in Equation (4.72) can be expressed as in the form of 

 ( ) ( ) ( ) ( )( )
1 0

2 1

2
1

cos 2 1T
, , sin ,

sin1
n nt

X t r dt X t r d
t π

θ
θ θ

θ
−

−

−⎡ ⎤⎣ ⎦= −
−

∫ ∫  

           ( ) ( )
0

cos 2 1 , .n X t r d
π

θ θ= −⎡ ⎤⎣ ⎦∫       (4.79) 

Because of the disadvantage of Gauss quadrature, the third integral in Equation (4.72) 

that contains sign function has to be rewritten to eliminate the singularity in the 

following form 

 ( ) ( ) ( )
1 1

1 1

.
r

r

t r
t dt t dt t dt

t r
φ φ φ

− −

−
= −

−∫ ∫ ∫                   (4.80) 

Then, the third integral can be expressed as 

 ( ) ( ) ( ) ( )
( )arccos

2 1

2
1

cos 2 1T
, sin ,

sin 81

rr
n nt

Y t r dt d
t π

θ κθ θ
θ

−

−

−⎡ ⎤⎣ ⎦= −
−

∫ ∫  

          ( )
( )arccos

cos 2 1
8 r

n d
πκ θ θ= −⎡ ⎤⎣ ⎦∫       (4.81) 

and 

 ( ) ( ) ( ) ( )
( )

1 0

2
arccos

cos 2 1T
, sin ,

sin 81
k

r r

nt
Y t r dt d

t

θ κθ θ
θ
−⎡ ⎤⎣ ⎦= −

−
∫ ∫     

         ( )
( )arccos

0

cos 2 1 .
8

r

n dκ θ θ= −⎡ ⎤⎣ ⎦∫       (4.82) 

Then the integral can be evaluated as 
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( ) ( ) ( ) ( )
( )

( )( )1 arccos2 1

21 arccos 0

T
, cos 2 1 cos 2 1 ,

8 81

rn
E r

t
Y r Y t r dt n d n d

t

πκ κθ θ θ θ−

−
= = − − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

−
∫ ∫ ∫

 

           ( ) ( )
( )

( )

arccos

arccos 0

cos 2 1 cos 2 1 ,
8

r

r

n d n d
πκ θ θ θ θ

⎛ ⎞
⎜ ⎟= − − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟
⎝ ⎠

∫ ∫  

       
( )

( )
( ) ( )sin 2 1 sin 2 1 arccos

,
arccos8 2 1 2 1 0

n n r
rn n

πθ θκ ⎛ ⎞− −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= − +⎜ ⎟⎜ ⎟− −⎝ ⎠
 

        ( ) ( ) ( )sin 2 1 arccos
, 1,2,3, ,...

4 2 1E

n r
Y r n

n
κ ⎛ ⎞−⎡ ⎤⎣ ⎦= =⎜ ⎟⎜ ⎟−⎝ ⎠

              (4.83) 

then the integral equation in (4.72) becomes 

( ) ( ) ( ) ( ) 0
2 2

1 1 1 00

2U cos 2 1 cos , ,
N N N

n n n n E
n n n

QA r A n X r d A Y r
k

π

θ θ θ−
= = =

+ − + = −⎡ ⎤⎣ ⎦∑ ∑ ∑∫  

( ) ( ) ( ) ( ) 0
2 2

1 00

2U cos 2 1 cos ,
N

n n E
n

QA r n X r d Y r
k

π

θ θ θ−
=

⎛ ⎞
+ − + = −⎡ ⎤⎜ ⎟⎣ ⎦

⎝ ⎠
∑ ∫     (4.84) 

where 

 ( ) ( ) cos1cos , cos , .
8 cos

r
X r H r

r
θπκθ θ

π θ
⎛ − ⎞

= −⎜ ⎟−⎝ ⎠
      (4.85) 

and ( )cos ,H rθ  is defined in Equation (4.64). Defining 

 ( ) ( ) ( ) ( ) ( )2 2
0

U cos 2 1 cos ,in i n Ea r r n X r d Y r
π

θ θ θ−= + − +⎡ ⎤⎣ ⎦∫                (4.86) 

as a new function then the integral equation can be turned into the system of algebraic 

equations for each discrete value of ir   in the interval [ ]1,1− , such as 

 ( ) 0

1 0

2 .
N

n in i
n

QA a r
k=

= −∑           (4.87) 

For example, when we choose the number of collocation points, ir  as 5 the following 

system can be obtained to be solved 

 

11 12 13 14 15 0 01

21 22 23 24 25 0 02

31 32 33 34 35 3 0 0

4 0 041 42 43 44 45

5 0 051 52 53 54 55

2 /
2 /
2 / .
2 /
2 /

a a a a a Q kA
a a a a a Q kA
a a a a a A Q k

A Q ka a a a a
A Q ka a a a a

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ =
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

        (4.88) 
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From the solution of the system given by Equation (4.87), nA  are obtained at each 

collocation point. The temperature distribution around the insulated barrier may easily 

be calculated by using Equations (4.35) and (4.71) as follows: 

 ( ) ( ) ( )( ) ( )
( )

2 1

2
1

T /
/ ,0 ,0 ,

1 /

N
n

n
n

x adx a T x T x A
dx x a

φ −+ −

=

= − =
−

∑  

     ( ) ( )( ) ( )
( )

2 1

2
1

T /
,0 ,0 ,

1 /

x xN
n

n
na a

ad T T d A d
d a

η
η η η η

η η
−+ −

=− −

− =
−

∑∫ ∫  

         ( ) ( ) ( )
( )

2 1

2
1

T /
,0 ,0 ,

1 /

xN
n

n
n a

x a
T T A d

a a

η
η η η

η
−+ −

= −
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The close form solution for the integral in Equation (4.89) can be shown to be 

 

 ( ) ( ) ( )
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x a
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ds x a x a k
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−

−

= − − >
−

∫      (4.90) 

Or by defining a new variable 

 ( )cos , arccos / ,x aη η π θ= ≤ ≤         (4.91) 

the value of the integral in Equation (4.89) can be obtained as 

 ( ) ( )
( ) ( ) ( )arccos //

2
1

sin 2 1 arccos /T
cos 2 1 .

2 11

x ax a
k n x as

ds n d
ns π

θ θ
−

−⎡ ⎤⎣ ⎦= − =⎡ ⎤⎣ ⎦ −−
∫ ∫    (4.92) 

Then the difference in temperature distribution on the plane of the insulated barrier may 

be obtained as 

 ( ) ( ) ( ) ( )( )
1

sin 2 1 arccos /
,0 ,0

2 1

N

n
n

n x a
T x T x A

n
+ −

=

−
− =

−∑ .     (4.93) 

By using the relation in Equation (4.76), the temperature distribution on the plane of 

insulated barrier can be shown in terms of coefficients nA  and  ( )2 2U /n x a−  as 

 ( ) ( ) ( ) ( ) ( )2 2 2*

1

U /
,0 ,0 1 / .

2 1

N
n

n
n

x a
T x T x T x x a A

n
−+ −

=

= − = −
−∑     (4.94) 

In the next section, temperature distribution difference on the barrier surface will be 

represented for different material nonhomogeneity parameter .β   
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CHAPTER 5 

 

CONCLUSION OF THE STUDY 
 

 

5.1   CONCLUSION AND DISCUSSION 

 

 At the end of the analytical part in Chapter 4, the temperature distribution on the barrier 

as a series of Chebyshev polynomials of the second kind with suitable coefficients nA  is 

obtained. The values of nA  are obtained from the Equation (4.87) as a solution of the system 

depends on the part of integral equation in (4.84) which contains the effect of 

nonhomogeneity parameter .β  In the following figures the effect of the nonhomogeneity 

parameter β  and the thickness of the nonhomogeneous coating h
a  on the thermal 

distribution on the barrier are shown for different values. 
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Figure 5.1: Temperature distribution on the barrier for various thicknesses of coating as 

nonhomogeneity parameter 0.β =  

 

 From the close form solution of a homogeneous infinite medium containing an 

insulated barrier the temperature distribution is given [27] as  

  ( ) ( ) ( ) 2 20

0

,0 ,0 2 .QT x T x T x a x
k

π+ −= − = −         (5.1) 

 The results of this study were compared with Equation (5.1) for homogeneous 

medium ( 0β = ) with a large thickness parameter .h
a  Assuming that 10.0h

a =  is 

large enough for comparing the homogeneous case in Equation (5.1) it was shown that 

there is a perfect agreement (Fig. 5.1).  In this study, the results for homogeneous 

medium ( 0β = ) with different coating thicknesses h
a  are perfectly match the results 

given in [27]. As it is expected the decreasing coating thickness increases the 

temperature distribution on the barrier. Due to the convergence of the numerical scheme 

used in this study the lowest coating thickness accepted as 0.10h
a =  which gives the 

highest temperature distribution on the barrier. The effect of the coating thickness on 

the temperature distribution increases as the thickness is getting smaller and smaller 

(Fig. 5.1).  
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 Results for nonhomogeneous case of hardening coating material ( 0β > ) are 

represented in Figures 5.2–5.5. Observing the all four figures together one can easily 

see that the temperature distribution on the barrier is increasing with decreasing coating 

thickness h
a  values. As it is seen in Figure 5.3, 1.0,β =  temperature distribution on 

the barrier of infinite medium (semi-infinite coating on semi-infinite substrate) is 

decreasing in terms of the results given in Equation (5.1). As a result, in designing or 

manufacturing machine parts that work under constant thermal flux one can use the 

hardening coating material to be in need of low temperature distribution on the barrier. 

Once we obtained the thermal stress distribution around a barrier one can easily find the 

thermal stresses around it by using equilibrium equations and stress-strain relations   

[36, 28]. 

 

 

 
Figure 5.2: Temperature distribution on the barrier for various thicknesses of coating as 

nonhomogeneity parameter 0.5β = . 
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Figure 5.3: Temperature distribution on the barrier for various thicknesses of coating as 

nonhomogeneity parameter 1.0β = . 

 

 
Figure 5.4: Temperature distribution on the barrier for various thicknesses of coating as 

nonhomogeneity parameter 2.0β = . 
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Figure 5.5: Temperature distribution on the barrier for various thicknesses of coating as 

nonhomogeneity parameter 4.0β = . 

  

 Similarly, observing the Figures 5.6–5.9 in which the nonhomogeneous coating is 

softening through the substrate ( 0β < ) it can be seen that the temperature distribution 

on the barrier is increasing when the thickness of the coating is decreasing as it is 

expected. When it is compared to homogeneous case given in Equation (5.1) the 

temperature distribution on the barrier of infinite medium (solid line) is increasing 

rapidly. In designing process it is not easy to find an application for this case due to 

high thermal stresses on the barrier caused by high temperature distribution.   

 In Figure 5.10, it is shown the effect of the nonhomogeneity parameter on the 

temperature distribution where the solid line represents the infinite medium and the 

values are matched with Equation (5.1) at 0.β =  Observing the Figure 5.10, one can 

easily observe that the decreasing nonhomogeneity parameter β  in coating increases 

the temperature distribution on the barrier. Also, the effect of the thickness of coating 

can be seen obviously on the same figure. 
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Figure 5.6: Temperature distribution on the barrier for various thicknesses of coating as 

nonhomogeneity parameter 0.5β = − . 

 

 

 
 

Figure 5.7: Temperature distribution on the barrier for various thicknesses of coating as 

nonhomogeneity parameter 1.0β = − . 
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Figure 5.8: Temperature distribution on the barrier for various thicknesses of coating as 

nonhomogeneity parameter 2.0β = − . 

 
 

Figure 5.9: Temperature distribution on the barrier for various thicknesses of coating as 

nonhomogeneity parameter 4.0β = − . 
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Figure 5.10: Temperature distribution on the barrier versus nonhomogeneity parameter β  for 

various thicknesses of coating. 
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APPENDIX A 
 
 
 
CHEBYSHEV POLYNOMIAL OF THE FIRST KIND 
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CHEBYSHEV POLYNOMIALS OF THE SECOND KIND 
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SPECIAL CHEBYSHEV POLYNOMIALS OF THE SECOND KIND 
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RELATIONS BETWEEN ( )Tn x  AND ( )Un x  
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