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ABSTRACT 
 

In this paper, a Continuous and a Discrete version of Particle Swarm Optimization 
(PSO) algorithms proposed for a well known discrete problem, Uncapacitated Facility 
Location (UFL) problem. 

PSO is one of the recent metaheuristics based on evolutionary algorithms invented 
by Eberhart and Kennedy based on the metaphor of social interaction and 
communication such as bird flocking and fish schooling. It has been successfully 
applied to a wide range of applications. On the other hand, developing solution methods 
for the UFL problem has been a hot topic of research for the last 40 years. Thus PSO 
algorithms are proposed to solve UFL problems. In order to improve the solution 
quality local searches are embedded in the PSO algorithms. To make a confidential 
comparison the proposed PSO algorithms are applied to the benchmark suites collected 
from OR library. The results are presented and compared with the optimum results in 
the literature. It is concluded that the proposed PSO algorithms have found optimum 
results in a reosanable CPU time.  

Keywords: Particle Swarm Optimization, Uncapacitated Facility Location 
Problem, Continuous PSO, Discrete PSO 
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ÖZ 
 

Bu tezde bir sürekli ve bir kesikli parçacık sürü optimizasyonu (PSO) algoritması 
iyi bilinen bir kesikli problem olan kapasitesiz tesis yerleştirme (UFL) problemleri için 
önerilmiştir.  

PSO, Eberhart ve Kennedy tarafından önerilen ve evrimsel algoritmalara dayanan 
yeni bir sezgisel yöntemdir. Kuş ve balık sürülerinin sosyal iletişimi sırasında oluşan 
hareketlerinden esinlenilmiş ve şu ana kadar çok çeşitli problemleri çözmek için 
başvurulmuştur. Diğer taraftan, UFL son kırk yıldır araştırmacılar tarafından çözüm 
yöntemleri önerilen bir konudur. Bu yüzden UFL problemleri için PSO algoritmaları 
önerilmiştir. Çözüm kalitesini artırmak için ayrıca bu PSO algoritmalarına birer yerel 
arama algoritması eklenmiştir. Güvenilir karşılaştırmalar yapabilmek için  önerilen PSO 
algoritmaları yöneylem araştırmaları kütüphanesindeki karşılaştırma problemlerine 
uygulanmıştır. Sonuçlar ortaya konulmuş ve literatürdeki optimum değerler ile 
karşılaştırılmıştır. Sonuç olarak  önerilen PSO algoritmaları optimum sonuçları kabul 
edilebilir işlem zamanı  içinde elde etmiştir.  

Anahtar Kelimeler: Parçacık Sürü Optimizasyonu, Kapasitesiz Tesis Yerleştirme 
Problemi, Sürekli PSO, Kesikli PSO 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

Partly as a consequence of globalization, the selection of a facility’s location has 

become extremely complicated.  Furthermore, selection of a suboptimal location could 

be very costly. Location problems are one of the most widely studied problems in NP-

hard (Cornuéjols et al., 1990) combinatorial optimization problems thus there is a very 

rich literature in operations research (OR) for this kind of problem (Mirchandani and 

Francis, 1990). Based on some assumptions, location problems can be classified into 

four basic categories: p-median problems, p-center problems, uncapacitated facility 

location problems, and capacitated facility location problems (Ghosh, 2002). 

In the uncapacitated facility location (UFL) problem the cost of satisfying the 

client requirements has two components a fixed cost component of setting up a facility 

in a given site, and a transportation cost component of satisfying the customer 

requirements. Capacities of all the facilities in the UFL problems are assumed to be 

infinite (Ghosh, 2002). 

Performance of a solution method is determined through the execution time of the 

algorithm and the quality of the results. In order to be qualified, a method should give 

logical outputs and should achieve the objective of the study optimally.  

UFL problems can be solved by mathematical (exact) models such as dynamic 

programming, branch & bound or integer linear programming algorithms. If the 

complexity of the problem is a little bit increased, it is still possible to solve the problem 

polynomially by making some assumptions.  
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Exact methods are able to solve only small sized problems. As a matter of fact 

exact algorithms are useful when the number of sites and customers are less. If we 

attempt to solve complex problems with exact methods, even we are sure that we will 

get the optimal results at last, our lives may not allow completing the runs; since 

enumerating the problem takes very long times. That enforced researchers to use 

heuristics and metaheuristics methods that each has good reputation in solving various 

combinatorial and real world problems. 

Heuristics reveal invaluable solutions. Known heuristic methods start with a 

single solution and try to develop better solutions in the next generations from the 

solution currently at hand. Worse solutions are not accepted. Therefore, the execution 

terminates at the first local minimum being trapped. Thus metaheuristics methods that 

not permit to trap in the first local optima have been introduced.  

Suppose the following scenario: a group of birds are randomly searching for food 

in an area. There is only one piece of food in the area being searched. All of birds do not 

know where the food is. A large number of birds synchronously, change direction 

suddenly, and scatter and regroup together. Each individual benefits from the 

experience of its own and that of the other members of the swarm during the search for 

food. But they know how far the food is in each iteration. So what is the best strategy to 

find the food? The effective one is to follow the bird that is nearest to the food. 

Inspired by the scenario and used it to solve the optimization problems, Kennedy 

and Eberhart (1995) presented the Particle Swarm Optimization. In PSO, each single 

solution is a bird in the search space. We call it particle. Since PSO is population-based 

and evolutionary in nature, the members in a PSO algorithm tend to follow the leader of 

the group, i.e., the one with the best performance. The particles move around in a multi-

dimensional search space with a velocity, which is constantly updated by the particle's 

own experience and the experience of the particle's neighbors or the experience of the 

whole swarm. All the particles have fitness values that are evaluated by the fitness 

function to be optimized, and have velocities that direct the flying of the particles. The 

particles fly through the problem space by following the current optimum particles. 

The organization of this thesis is as follows. Chapter 2 introduces the 

uncapacitated facility location problem and literature review about it. With which 
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techniques UFL problems have been tried to solve. Chapter 3 presents the particle 

swarm optimization, benchmark with some other metaheuristics and for which problems 

PSO has been proposed. In Chapter 4 the proposed Continuous PSO (CPSO) and 

Discrete PSO (DPSO) algorithms for UFL problems and implementing of Local Search 

algorithm to both CPSO and DPSO is presented. In Chapter 5 the proposed algorithms 

experimental results are given. Chapter 6 is the Conclusions of the study. 



 

 

4

 
 
 
 
 

CHAPTER 2 
 
 

UNCAPACITATED FACILITY LOCATION PROBLEM 
 
 
 

The success or failure of business and public facilities depends in a large part on 

their locations. Effective supply chain management has led to increased profit, increased 

market share, reduced operating cost, and improved customer satisfaction for many 

businesses. One strategic decision in supply chain management is facility location 

(Simchi-Levi et al., 2000). Due to their strategic nature, facility location problems have 

been widely studied by researchers and practitioners over many years.  

In this chapter, literature review about UFL problem and general structure of 

uncapacitated facility location problem will be presented. 

 

2.1   LITERATURE REVIEW 

There are different titles for the uncapacitated facility location problem in the 

literature: the problem of a non recoverable tools optimal system (Beresnev et al., 

1978); the standardization and unification problem (Gimady, 1970); the optimal 

parameter problem for the uniform technical system (Beresnev, 1971); the location of 

bank accounts problem (Cornuejols et al., 1977); warehouse location problem 

(Khumawala, 1972); uncapacitated facility location problem (Krarup and Pruzan, 1983) 

etc. Because of the academic interest to one investigation this problem has different 

interpretations as for many mathematical models. The terminology of Uncapacitated 

Facility Location (UFL) problem to describe the model is used although the others 

interpretations will possible too. 
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Developing solution methods for the UFL problem has been a hot topic of 

research for the last 40 years. Thus, UFL problems have been studied and examined 

extensively (Kratica et al., 2001) by various attempts and approaches. Because the UFL 

problem is NP-hard (Cornuéjols, 1990) exact algorithms may not be able to solve large 

practical problems. Since they are NP-Hard problems, the larger the size of the problem, 

the harder to find the optimal solution and furthermore, the longer to reach reasonable 

results. All important approaches relevant to UFL problems can be classified into two 

main categories: exact algorithm such as branch and bound, primal and dual ascent 

methods, linear programming and Lagrangean relaxation algorithms and metaheuristic 

based methods (Aydin and Fogarty, 2004). Krarup and Pruzan (1983) and Cornuéjols et 

al. (1990) gave excellent surveys and reviews of applications and solution methods. 

There are a variety of exact algorithms for the UFL problem, such as the dual 

approach of Erlenkotter (1978) and the primal-dual approaches of Körkel (1989). 

Erlenkotter (1978) developed a dual approach (DUALOC) for the UFL problem. The 

DUALOC algorithm (Erlenkotter, 1978) is one of the most respected methods based on 

OR approaches as the fastest one for UFL problems for a long time. It is based on a 

linear programming dual formation (LP dual) in condensed form that evolved in simple 

ascent and adjustment procedures. If ascent and adjustment procedures do not find the 

optimal solution, Branch and- Bound (BnB) procedure completes the solution process. 

Although this dual approach is an exact algorithm, it can also be used as a heuristic to 

find good solutions.  

Guignard (1985) proposed to strengthen the separable Lagrangean relaxation of 

the UFL problems by using Bender’s inequalities generated during a Lagrangean dual 

ascent procedure. The coupling of that technique with a good primal heuristic could 

reduce the integrity gap. Simao and Thizy (1989) presented a streamlined dual simplex 

algorithm designed on the basis of a covering formulation of the UFL problem. Their 

computational experience with standard data sets indicates the superiority of dual 

approaches. Körkel (1989) showed how to modify a primal-dual version of 

Erlenkotter’s (1978) exact algorithm to get an improved procedure. The computational 

experience with large-scale problem instances indicated that speedup to DUALOC is 

significant (more than one order of magnitude). Conn and Cornuéjols (1990) present a 

method based upon the exact solution of the condensed dual of LP relaxation via 
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orthogonal projections. In Holmberg (1995) and Holmberg and Jornsten (1996) a 

primal-dual solution approach based on decomposition principles is used. They fixed 

some variables in the primal sub-problem and relaxed some constraints in the dual sub-

problem. By fixing their Lagrange multipliers, both of these problems become easier to 

solve than the original one. The computational tests proved the advantageous in 

comparison to the dual ascent method of Erlenkotter. 

Kratica et al. (2001) have applied genetic algorithms to UFL problems to solve 

1000x1000-sized customer-facility instances. They considered many benchmarks within 

the literature to be solved by their algorithm in addition to their own similar large size 

problems. They compared their results with DUALOC algorithm showing that their 

algorithm is much more efficient than DUALOC for problems larger than 100x1000. 

Although DUALOC has better results for some benchmarks, it is worse in time 

consumption.  

Kuehn and Hamburger (1963) developed the first heuristic that has two phases. 

The first phase is a greedy approach, called the ADD method that starts with all 

facilities closed, keeps adding (opening) the facility resulting in the maximum decrease 

in the total cost (1), and stops if adding any more facility will no longer reduce the total 

cost. The second phase is a local search method in which an open facility and a closed 

facility are interchanged as long as such an interchange reduces the total cost. Another 

greedy heuristic is the DROP method that starts with all facilities open, keeps dropping 

(closing) the facility that gives the maximum decrease in the total cost, and stops if 

dropping any more facility will no longer reduce the total cost (Daskin, 1995). These 

early heuristics provided the basis for many sophisticated heuristics and provided an 

initial incumbent for many exact solution algorithms. Al-Sultan and Al-Fawzan (1999) 

presented a tabu search algorithm which produce very good solutions but takes 

significant computing time and limits the applicability of the algorithm. Michel and Van 

Hentenryck (2004) proposed tabu search and generated very robust solutions. Sun 

(2005) presents another tabu search procedure which tested against the Lagrangian 

method and heuristic procedures reported by Ghosh (2002) and Resende and Werneck 

(2003). In addition artificial neural network approaches have been proposed to solve 

UFL problems by Gen et al. (1996) and Vaithyanathan et al. (1996). 
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Jaramillo et al. (2002) applied a genetic algorithm that is mainly based on the 

operators that Beasley and Chu (1996) applied in their genetic algorithms for covering 

problems. They compared their results with a Lagrangean relaxation algorithm 

presented by Beasley (1993). Although Kratica et al. (2001) have proposed a very 

similar approach, Jaramillo et al. (2002) give a fresher and less time consuming 

approach. Alves and Almeida (1992) presented simulated annealing algorithms which 

produce high quality solutions but are quite expensive in computation times. Aydin and 

Fogarty (2004) presented a distributed evolutionary simulated annealing algorithm 

implementation that can get the better quality of solutions within shorter times. 

In addition, many successful UFL model applications have been provided to some 

problems. The bank account location problem, network design, vehicle routing, 

distributed data and communication networks (Ghosh,2002), computer network design, 

cluster analysis, machine scheduling, economic lot sizing, portfolio management (Gen 

et al., 1996) are some instances without facilities to locate problems that can be 

modeled as an UFL problem. 

 

2.2   GENERAL STRUCTURE OF UFL PROBLEM 

There are a variety of models representing a variety of facility location problems. 

Most of these problems are combinatorial in nature. Based on some assumptions, 

location problems can be classified into four basic categories: 

• Uncapacitated Facility Location (UFL) 

 No limits for capacity, no idea on the number of sites to open 

• Capacitated Facility Location (CFL) 

 There are limits for capacities, no idea on the number of sites to open 

• p-Median Problems (p-MP) 

 Fixed number of open sites, evaluating by minisum 

• p-Centre Problems  (p-CP) 

 Fixed number of open sites, evaluating by minimax 

In a UFL problem, a fixed cost is associated with the establishment of each 

facility and a fixed cost is associated with the opening and using of each road from a 
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customer to a facility. The objective of a UFL problem is to decide where to locate the 

facilities and which roads to use so as to minimize the total cost. There are a number of 

sites, n and a number of customers, m. Each site has a fixed cost fci. There is a transport 

cost from each site to each customer cij. There is no limit of capacity for any candidate 

site and the whole demand of each customer has to be assigned to one site. We are 

asked to find the number of sites (facilities) to be established and specify those sites 

such that the total cost will be minimized (2.1). The mathematical formulation of UFL 

can be stated as follows (Cornuéjols et al., 1990): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⋅= ∑∑ ∑

= = =

m

j

n

i

n

i
iiijij yfcxcZ

1 1 1
min  (2.1) 

subject to 

∑
=

=
n

i
ijx

1
1 (2.2) 

0 ≤ xij≤ yi  and  yi ∈ {0; 1}; (2.3) 

where: 

 i= 1,…,n ; j=1,… ,m 

xij represents the quantity supplied from facility i to customer j; 

yi indicates whether facility i is established (yi = 1) or not (yi = 0). 

The constraint (2.2) makes sure that all demands have been met by the open sites, and 

the constraint (2.3) is to keep integrity. Since it is assumed that there is no capacity limit 

for any facility, the demand size of each customer is ignored, and therefore constraint 

(2.2) established without considering demand variable.  
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CHAPTER 3 
 
 

PARTICLE SWARM OPTIMIZATION 
 
 
 

3.1   INTRODUCTION 

Exact methods are able to solve only small sized problems. As a matter of fact 

exact algorithms are useful when the number of sites and customers are less. If we 

attempt to solve complex problems with exact methods, even we are sure that we will 

get the optimal results at last, our lives may not allow completing the runs; since 

enumerating the problem takes very long times.  

Heuristics reveal invaluable solutions. Known heuristic methods start with a 

single solution and try to develop better solutions in the next generations from the 

solution currently at hand. Worse solutions are not accepted. Therefore, the execution 

terminates at the first local minimum being trapped.  

Note that, a landscape of an objective function does not have a continual increase 

or decrease. Namely, let’s say in a minimization problem, two succeeding minima may 

have a maximum point in between. If our solution is closer to the local minimum, then 

we have the risk to be trapped at this local minimum. Not accepting the worse solutions 

will hinder to overcome the hill and reach the global minimum. Thus, we can say that, 

heuristics do not always offer us optimal solutions.  

Heuristics were developed for the minimizing the number of problems or they 

were used for initializing the solution or the solution set of metaheuristics.   

Recently metaheuristics are of the greatest interest; since they give the optimal or 

near-optimal solutions in a shorter time than exact algorithms do. Mostly used 
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metaheuristics are the Simulated Annealing, Tabu Search, Genetic Algorithms, Particle 

Swarm Optimization, Ant Colony Optimization etc. 

In Simulated Annealing and Tabu Search, solutions are obtained from an initially 

formed solution; whereas in Genetic Algorithms, Particle Swarm Optimization (PSO) or 

Ant Colony Optimization methods, the solutions are obtained from an initially 

constructed population. 

The solutions obtained from the metaheuristics methods can be improved by 

hybridizing the algorithm with local search. The algorithm starts with a complete 

solution and tries to find a better solution by using the neighborhood of the current 

solution. We call the solutions as neighbors if the latter solution can be obtained by 

modifying the current one.  

Metaheuristics are able to solve difficult problems in few minutes. Since in 

metaheuristics, worse solutions are given an opportunity, being trapped at local optima 

is prevented. Therefore, the solution quality will be increased if metaheuristic methods 

are used.  

In PSO, instead of using more traditional genetic operators, each particle 

(individual) adjusts its “flying” according to its own flying experience and its 

companions’ flying experience. On one hand, it can be counted as an evolutionary 

method with its way of exploration via neighborhood of solutions (particles) across a 

population (swarm) and exploiting the generational information gained.  On the other 

hand, it is different from other evolutionary methods in such a way that it has no 

evolutionary operators such as crossover and mutation. Another advantage is its ease of 

use with fewer parameters to adjust. In PSO, the potential solutions, so-called particles, 

move around in a multi-dimensional search space with a velocity, which is constantly 

updated by the particle's own experience and the experience of the particle's neighbors 

or the experience of the whole swarm.  

PSO is distinctly different from other evolutionary-type methods in a way that it 

does not use the filtering operation (such as crossover and/or mutation) and the 

members of the entire population are maintained through the search procedure so that 
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information is socially shared among individuals to direct the search towards the best 

position in the search space. 

In PSO, the system is initialized with a population of random solutions and 

searches for optima by updating generations. However, unlike GA, PSO has no 

evolution operators such as crossover and mutation. In PSO, the potential solutions, 

called particles, fly through the problem space by following the current optimum 

particles. Compared to GA, the advantages of PSO are that it is easy to implement and 

there are fewer parameters to adjust (Allahverdi and Al-Anzi, 2006).  

There are also some studies that compare the PSO with some other heuristic 

techniques. To illustrate, Allahverdi, and Al-Anzi (2006) compared a tabu search and a 

PSO for the assembly scheduling Problem and they asserted PSO heuristic performs 

very well for difficult problems. Salman et al. (2003) showed that the PSO algorithm 

solution quality is better than that of GA in most of the test cases for Task Assignment 

Problem. Moreover, the PSO algorithm runs faster as compared with GA. 

Nature-inspired algorithms are useful because they are based upon well-known 

models. The underlying physics of such models can act as a guide on how to structure 

algorithms, and may inspire the confidence to try them over other types of algorithms. 

Random selection, self-organization, distributed computation, and emergent, shall we 

say ‘swarm’, intelligence are all attractive features of these algorithms. 

Suppose the following scenario: a group of birds are randomly searching for food 

in an area. There is only one piece of food in the area being searched. All of birds do not 

know where the food is. A large number of birds synchronously, change direction 

suddenly, and scatter and regroup together. Each individual benefits from the 

experience of its own and that of the other members of the swarm during the search for 

food. But they know how far the food is in each iteration. So what is the best strategy to 

find the food? The effective one is to follow the bird that is nearest to the food. 

Inspired by the scenario and used it to solve the optimization problems, Kennedy 

and Eberhart (1995) presented the Particle Swarm Optimization in 1995. In PSO, each 

single solution is a “bird” in the search space. We call it “particle”. Since PSO is 

population-based and evolutionary in nature, the members in a PSO algorithm tend to 



 

 

12

follow the leader of the group, i.e., the one with the best performance. The particles 

move around in a multi-dimensional search space with a velocity, which is constantly 

updated by the particle's own experience and the experience of the particle's neighbors 

or the experience of the whole swarm. All the particles have fitness values that are 

evaluated by the fitness function to be optimized, and have velocities that direct the 

flying of the particles. The particles fly through the problem space by following the 

current optimum particles. 

There are four PSO models defined by Kennedy. The complete velocity update 

formula is named as the Full Model. If the cognition component, c1 is omitted, it is 

defined as the Social-Only Model and if social component, c2 is omitted, then the model 

is called the Cognition-Only Model. And the fourth model is the Selfless Model which is 

a kind of Social-Only Model. In this model, it selects its global best only from its 

neighbors.  

In this chapter, literature review, the basic elements of PSO, the implementation 

of PSO to a problem and the effects of the parameters on PSO will be presented 

respectively.  

 

3.2   LITERATURE REVIEW 

The particle swarm concept originated as a simulation of a simplified social 

system. The original intent was to graphically simulate the graceful but unpredictable 

choreography of a bird flock. Initial simulations were modified to incorporate nearest-

neighbor velocity matching, eliminate ancillary variables, and incorporate 

multidimensional search and acceleration by distance (Kennedy and Eberhart, 1995, 

Eberhart and Kennedy, 1995). At some point in the evolution of the algorithm, it was 

realized that the conceptual model was, in fact, an optimizer. Through a process of trial 

and error, a number of parameters extraneous to optimization were eliminated from the 

algorithm, resulting in the very simple original implementation (Eberhart et al., 1996). 

Two variants of the PSO algorithm are developed, namely PSO with a local 

neighborhood, and PSO with a global neighborhood. According to the global 

neighborhood, each particle moves towards its best previous position and towards the 
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best particle in the whole swarm, called gbest model. On the other hand, according to 

the local variant so called pbest, each particle moves towards its best previous position 

and towards the best particle in its restricted neighborhood (Kennedy and Eberhart, 

2001). It has some tuning parameters which influence the performance of the algorithm; 

the exploration and exploitation tradeoff. In the work of Eberhart et al. (1996), it was 

realized that some of the parameters were redundant, and they removed from the 

original algorithm. The mathematical equations of the original version of PSO is as, 

( ) ( )t
ij

t
j

t
ij

t
ij

t
ij

t
ij xgrcxprcvv −+−+=+ .... 2211

1  (3.1) 

11 ++ += t
ij

t
ij

t
ij vxx   (3.2) 

c1: cognition learning rate 

c2: social learning rate 

r1 and r2: random constant numbers 

Trelea (2003) gives some insights about parameter selection in PSO. According to 

the article, some parameters can be discarded; since they add no value to the algorithm. 

Trelea (2003) analyzes the deterministic PSO algorithm for its dynamic behavior and 

convergence property.  

The velocities of particles’ on each dimension ( ijv ) are restricted to Vmax. A larger 

Vmax facilitates global exploration, while smaller Vmax facilitates local exploitation. Shi 

and Eberhart (1998 a and b) added the inertia weight as a constant to the velocity in 

order to control the exploration and exploitation. The use of inertia weight improved the 

performance of the algorithm in many applications.  

( ) ( )t
ij

t
j

t
ij

t
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t
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t
ij xgrcxprcvwv −+−+=+ ..... 2211

1  (3.3) 

w: inertia weight  

Clerc (1999) introduced the constriction factor (κ ) to PSO. It controls, constrains 

velocities and thus insures convergence. κ negated the need for Vmax. 
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Eberhart and Shi (2001b) demonstrated that although previous evolutionary 

paradigms can generally solve static problems, PSO can successfully optimize dynamic 

systems. It can not be known when a larger or a smaller inertia weight is needed. 

Therefore, that value is set to a dynamic value which starts from 0.9 and descends 

linearly till 0.4. When it reaches to 0.4 it is increased again to 0.9. 

Six years after the introduction of PSO Eberhart and Shi reviewed the 

development, applications and the written books and articles (Eberhart and Shi, 2001a) 

Although the applications of PSO on combinatorial optimization problems are 

still limited, PSO has its merit in the having a simple concept, low computational cost, 

cognitive memory, maintaining a population of solution, and having an elegant 

productive cooperation between its populations (Salman, 2003). After PSO was first 

introduced by Eberhart and Kennedy (1995) and Kennedy and Eberhart (1995), it has 

been successfully applied to optimize various continuous nonlinear functions. It was 

applied successfully since then to a handful of computer science and engineering 

problems (Kennedy and Eberhart, 1995), (Kennedy et al., 2001), (Shi and Eberhart, 

1999), (Sugantha, 1999), (Ozcan and Mohan, 1999), (Clerc, 1999). Some of the wide 

application areas of PSO are power and voltage control (Yoshida, 2000), neural network 

training (Van den Bergh et al., 2000) task assignment (Salman et al., 2003), scheduling 

problems (Allahverdi and Al-Anzi, 2006), mass-spring system (Brandstatter and 

Baumgartner, 2002), supplier selection and ordering problem (Yeh, 2003), and other 

areas where GA can be applied (Allahverdi and Al-Anzi, 2006). More literature can be 

found in reference (Kennedy and Eberhart, 2001). 

PSO shares many similarities with evolutionary computation techniques such as 

Genetic Algorithms (GA) (Eberhart and Shi,1998). Applications, parameter selection, 
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and a modified version of PSO have been considered, respectively, by Eberhart and Shi 

(2001) and Shi and Eberhart (1998a), (1998b). 

The PSO models the social dynamics of flocks of birds and serves as an optimizer 

for both of continuous and discrete functions. The convergence and parameterization 

aspects of the PSO have been discussed thoroughly (Parsopoulos and Vrahatis,2002), 

(Clerc and Kennedy,2002), (Trelea, 2003). 

It has also been shown that a hybrid strategy which embeds a local optimizer such 

as hill-climbing in between the iterations of a metaheuristic algorithm can improve the 

performance significantly (Michalewicz and Fogel, 2002).  

Since PSO is developed for continuous optimization problem initially, most 

existing PSO applications are resorting to continuous function value optimization 

(Eberhart and Shi, 1998; Kennedy and Eberhart, 1995). Recently a few researches have 

been conducted for discrete combinatorial optimization problems. Kennedy and 

Eberhart (1997) introduced a discrete binary version of PSO in 1997. Salman et al. 

(2003) apply PSO for solving task assignment problem. Yin (2004) proposed a discrete 

PSO algorithm for optimal polygonal approximation of digital curves. Liao (in press) et 

al. presented another discrete algorithm for flowshop scheduling problems and lastly 

Pan et al. proposed another for solving the no-wait flowshop scheduling problems. 

 

3.3    THE BASIC ELEMENTS OF PSO 

In a PSO algorithm, each member is called “particle”, and each particle flies 

around in the multi-dimensional search space with a velocity, which is constantly 

updated by the particle’s own experience and the experience of the particle’s neighbors 

or the experience of the whole swarm. The basic elements of the PSO algorithm can be 

summarized as follows 

3.3.1   Initialization: 

 In PSO, each particle corresponds to a candidate solution of the underlying 

problem. Thus, let each particle represent a decision to solve problem using a vector of 
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m elements, and each element is an integer value between 1 to r. Fig. 3.1 shows an 

illustrative example for the ith particle which corresponds to a task assignment that 

assigns five tasks to three processors, and particle i, 5=2 means that task 5 is assigned to 

processor 2. The PSO randomly generates an initial swarm of n particles, where n is the 

swarm size. These particle vectors will be iteratively modified at each iteration, t based 

on collective experiences in order to improve their solution quality (YinT et al., 2005). 

 1 2 3 4 5 

The ith particle 3 2 1 2 2 

 

 

Figure 3.1   Initializing example for the ith particle 

3.3.2   Particle and Population:  

In PSO, each single solution is a “bird” in the search space. We call it “particle”. 

All the particles have fitness values that are evaluated by the fitness function to be 

optimized, and have velocities that direct the flying of the particles. The particles fly 

through the problem space by following the current optimum particles. t
iX denotes the ith 

particle in the swarm at iteration t and is represented by n number of dimensions as 

[ ]t
in

t
i

t
i

t
i xxxX ,..,, 21= , where t

ijx  is the position value of the ith particle with respect to the 

jth dimension ( nj ,...,2,1= ).  

Population; tpop  is the set of ρ  particles in the swarm at iteration t, i.e., 

[ ]tttt XXXpop ρ,...,, 21=  . 

3.3.3   Particle velocity:  

To simulate the bird flocking for food foraging, the particle vectors are iteratively 

modified during the PSO evolution. According to the fitness values of these particle 

vectors, each particle remembers the best vector it experienced so far, referred to as Pi, 

and the best vector experienced by its neighbors, G. The particle’s neighbors are defined 

as the particles within its topological neighborhood in the solution space. There are two 

versions for keeping the neighbors’ best vector, namely pbest and gbest. In the local 

version, each particle keeps track of the best vector pbest attained by its local topological 

particle i,3 = 1 
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neighborhood of particles. In many applications, the neighborhood size is set to about 

15% of the swarm size. For the global version, the best vector gbest is determined by any 

particles in the entire swarm. Hence, the gbest model is a special case of the pbest model 

(YinT et al., 2005). 

During each PSO iteration, particle i adjusts its velocity vij and position vector xij 

through each dimension j by referring to, with random multipliers, the personal best 

vector (Pi) and the swarm’s best vector (G, if the global version is adopted) using 

equations (3.2) and (3.3).  

t
iV  is the velocity of particle i at iteration t. It can be defined as 

[ ]t
in

t
i

t
i

t
i vvvV ,...,, 21= , where t

ijv  is the velocity of particle i at iteration t with respect to 

the jth dimension.  

The particle’s velocity on each dimension is set restricted by a maximum velocity 

vmax, which controls the maximum travel speed during each iteration to avoid this 

particle flying past good solutions. If a velocity on a dimension of a particle exceeds 

Vmax, then it is limited to Vmax. Vmax controls the exploration and exploitation ability of a 

particle. It helps to search the regions between the current position and the target 

position.  

Fine-tuning Vmax is so important that a large value of Vmax facilitates global 

exploration, while a smaller Vmax encourages local exploitation. If Vmax is set too high or 

too small, the particles can’t explore the search space sufficiently and they could stuck 

at local optima.  

3.3.4   Particle Position:  

t
iX  is the position of particle i at iteration t. It can be defined as 

[ ]t
in

t
i

t
i

t
i xxxX ,...,, 21= , where t

ijx  is the position of particle i at iteration t with respect to 

the jth dimension.  

The particle’s position on each dimension is set restricted by a maximum position 

xmax, which controls the maximum travel distance during each iteration to avoid this 

particle flying past good solutions. If a position on a dimension of a particle exceeds 
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Xmax, then it is limited to Xmax. Xmax controls the exploration and exploitation ability of a 

particle. It helps to search the regions between the current position and the target 

position. It is usually set to 4 or 5 times of Vmax. 

3.3.5   Inertia weight:  

tw  is a parameter to control the impact of the previous velocities on the current 

velocity. When suitably set, the inertia weight helps to balance the local and global 

exploration, thus the optimal value can be obtained in a few iterations. High values 

encourage global exploration, while low values facilitate local exploitation. 

3.3.6   Fitness Evaluation:  

The objective function of the problem can be used to measure the quality of each 

particle vector. However, this value is discredited if the particle vector violates at least 

one of the problem constraints. In modern heuristics, infeasible solutions also provide 

valuable clue to targeting the optimal solution (Michalewicz and Fogel, 2002). The 

degree of infeasibility for trial solutions can be measured and transformed to a penalty 

which grows in proportional to the infeasibility level, thus guiding the search toward 

feasible space (YinT et al., 2005). 

3.3.7   Personal best:  

t
iP  represents the best position of the particle i with the best fitness until iteration 

t, so the best position associated with the best fitness value of the particle i obtained so 

far is called the personal best. For each particle in the swarm, t
iP  can be determined and 

updated at each iteration t. For each particle, the personal best is defined as 

[ ]t
in

t
i

t
i

t
i pppP ,...,, 21=  where t

ijp is the position value of the ith personal best with respect 

to the jth dimension ( nj ,...,2,1= ). 

3.3.8   Global best:  

tG  denotes the best position of the globally best particle achieved so far in the 

whole swarm. The global best is then defined as [ ]t
n

ttt gggG ,...,, 21=  where t
jg  is the 

position value of the global best with respect to the jth dimension ( nj ,...,2,1= ). 
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3.3.9   Termination criterion:  

It is a condition that the search process will be terminated. It might be a maximum 

number of iteration or maximum CPU time to terminate the search.  

 

3.4   THE IMPLEMENTATION OF PSO TO A PROBLEM 

The complete computational procedure of a PSO algorithm to a problem can be 

summarized as follows: 

3.4.1   Initialize 

 The first step of the PSO is, like other algorithms, the initializing of the 

elements. The initializing procedure is usually as follows: 

• Set n=0, m=equal (optional) the number of dimensions. 

• Generate n particles randomly as explained before,{ }miX i ,..,1,0 =  

where [ ]00
1

0 ,.., inii xxX = . 

• Generate initial velocities of particles randomly{ }miVi ,..,1,0 = where 

[ ]00
1

0 ,.., inii vvV =  

• Evaluate each particle i in the swarm using the objective function 0
if for 

m,..,1i = . 

• For each particle i in the swarm, set 00
ii XP = , where 

[ ]000
1

0
1

0 ,.., ininiii xpxpP ===  along with its best fitness value, 0
i

p
i ff =  for 

mi ,..,1= . 

• Find the best fitness value { }00 min ii ff = for mi ,..,1= with its corresponding 

position 0
lX  .  

• Set global best to 00
lXG =  where [ ]nlnl xgxgG ,1,1

0 ,.., ===  with its fitness 

value 0
l

g ff =  
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3.4.2   Update iteration counter 

If one of the pre-determined termination criterions have not met update iteration 

counter: 1+= tt  

3.4.3   Update inertia weight 

If dynamic inertia weight is employed: α*1−= tt ww  where α is decrement factor 

and usually taken 0,975. 

3.4.4   Update velocity 

After finding the two best values (Pi and G), the particle updates its velocity with 

the equation (3.3)  

3.4.5   Update position 

After finding the new velocity (Vi), the particle updates its position vector with the 

equation (3.2)  

3.4.6   Evaluate Fitness 

Each particle vector in the swarm is assigned a fitness value indicating the merit 

of this particle vector such that the swarm evolution is navigated by best particles. The 

higher the fitness value is, the better the quality of the particle vector is for 

maximization problems and vice versa for minimization problems. 

3.4.7   Update personal best 

Each particle is evaluated by using fitness function to see if personal best will 

improve. That is, if p
i

t
i ff < for m,..,1i = , then personal best is updated as t

i
t

i XP = and 

t
i

p
i ff = for mi ,..,1= . 

3.4.8   Update global best 

Find the minimum value of personal best. { } miforff p
i

t
i ,..,1min == . If 

gt
l ff < , then the global best is updated as t

l
t XG = and t

l
g ff =  
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3.4.9   Terminate 

The PSO algorithm is terminated with a maximal number of iterations, the best 

particle vector of the entire swarm cannot be improved further after a sufficiently large 

number of iterations, or a maximum CPU time, otherwise go to step 2.  

According the gbest model of Kennedy and Eberhart (2001) the pseudo code of 

the PSO algorithm is elaborated in the below figure.  

Begin 
 Initialize one particles positions 
 Do{ 
 For each particle 
   Calculate fitness value 
   Find the particle best (Pi)  
   Find the global best (G) 
   For each particle  
    Calculate particle velocity, V, according(3.3)  
    Update particle position, X, according (3.2)  
 }While (termination criterion is not met) 
End 
 
Figure 3.2   The pseudo code of PSO algorithm 
 
 

3.5   THE EFFECTS OF THE PARAMETERS 

 
3.5.1   Examples of dynamic behavior 

Simulations of particle behavior for parameters a and b were performed with: x0 = 

2, v0 = -0.1, p = 0, m = 50 iterations. (Trelea, 2003) 

( ) ( )kkkk xprbxprbvav −⊗⊗+−⊗⊗+⊗=+ 2221111  (3.6) 

11 ++ ⊗+⊗= kkk vdxcx  (3.7) 

The particle samples its state space relatively well. The exploration of state space 

and the exploitation of the current optimum are balanced. In contrast, the oscillations 

shown in Fig. 3.3(b) decay quickly. The exploitation is favored compared to 

exploration. As a general rule, parameter couples close to the center of the stability 

triangle induce quick convergence, while parameter couples close to its borders require 
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many iterations to converge. The terms “slow” and “quick” convergence should be 

related to the allowed number of iterations (m). If, for example, m = 1000 iterations 

were allowed instead of 50, then the parameters used in Fig. 3.3(a) should be interpreted 

as inducing a “quick” convergence, since most of the particle positions (≈ 900) would 

be quite close to the equilibrium. In real-life problems the number of allowed iterations 

is a function of the admissible computation time and of the complexity of the cost 

function. Harmonic oscillations can be combined with zigzagging as in Fig. 3.3(c) 

(complex eigenvalues with negative real part). 

 
Figure 3.3. Examples of dynamic behavior of a single particle for various choices of the 
parameters a and b. (a) Harmonic oscillations with slow convergence. (b) Harmonic 
oscillations with quick convergence. (c) Harmonic oscillations with zigzagging. (d) 
Non-oscillatory convergence. (e) Symmetric zigzagging. (f) Asymmetric zigzagging. 

An example of non-oscillatory convergence is given in Fig. 3.3(d) (real positive 

eigenvalues). For optimization purposes this behavior is not recommended in general, 

since the state space is only sampled on the one side of the current optimum. In special 

cases, however, this might be a useful option. For example, negative values of x might 

not make sense in a given optimization problem while the optimum is suspected to lie at 

or near zero. 

Symmetric zigzagging convergence is shown in Fig. 3.3(e) (real negative 

eigenvalues). The parameters a and b can be tuned to make the convergence either slow 
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or fast as in the case of harmonic oscillations. Asymmetric zigzagging is illustrated in 

Fig. 3.3(f) (real eigenvalues with opposite signs). 

 

3.5.2   Effect of the random numbers 

The rigorous analysis of the optimization algorithm with random numbers 

described by Eqs. (3.6) and (3.7). Qualitatively, the considerations presented in the 

previous paragraphs remain valid, however, as shown by extensive simulation studies. 

The presence of random numbers enhances the zigzagging tendency and slows down 

convergence, thus improving the state space exploration and preventing premature 

convergence to non-optimal points. This is especially true when the particle’s own 

attraction point p1 is situated far from the population attraction point p2. The equivalent 

attraction point p, is, in the case of the random algorithm, given by: 

2
2211

22
1

2211

11 p
rbrb

rbp
rbrb

rbp
+

+
+

=  (3.8) 

If  p1= p2, it changes from iteration to iteration even if no better solutions are 

discovered, i.e., p1 and p2 remain constant. In the long run, however, it is expected that 

p1 = p2 as all the particles in the population “agree” upon a single best point which 

becomes the unique attractor. In this case, Eq. (3.8) says that p = p1 = p2 irrespective of 

the generated random numbers. 
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CHAPTER 4 
 
 

THE PROPOSED CONTINUOUS AND DISCRETE PSO 
ALGORITHMS FOR UFL PROBLEM 

 
 

4.1   THE CONTINUOUS PSO ALGORITHM FOR UFL PROBLEM 

 

The Continuous PSO (CPSO) algorithm proposed here for the UFL problem 

considers each particle based on three key vectors; position (Xi), velocity (Vi), and open 

facility (Yi). Xi = [xi1, xi2, xi3,…,xin] denotes the ith position vector in the swarm, where 

xik is the position value of the ith particle with respect to the kth dimension 

(k=1,2,3,…,n). Vi = [ vi1, vi2, vi3,…,vin ] denotes the ith velocity vector in the swarm, 

where vik is the velocity value of the ith particle with respect to the kth dimension. Yi= 

[yi1, yi2, yi3…yin ] represents the opening or closing  facilities identified based on the 

position vector(Xi),  where yik represents opening or closing the kth  facility of the ith 

particle. For an n-facility problem, each particle contains n number of dimensions. 

Initially, the position and velocity vectors are generated randomly and uniformly 

as continuous sets of values, using the following rules: 

( ) 2minmaxmin rvvvvij ×−+=  (4.1) 

( ) 1minmaxmin rxxxxij ×−+=  (4.2) 

where vmin=-4.0, vmax=4.0, xmin=-10.0, xmax=10.0 which are consistent with the literature 

(Shi and Eberhart, 1998). r1 and r2 are uniform random numbers between [0,1]. The 

position vector  

Xi = [xi1, xi2, xi3,…,xin] corresponds to the continuous position values for n 

facilities, but it does not represent a candidate solution to calculate a total cost. In order 

to create a candidate solution, a particle, the position vector is converted to binary 
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variables, ii XY ← , which is also a key element of a particle. In other words, a 

continuous set is converted to a discrete set for the purpose of creating a candidate 

solution, particle. The fitness of the ith particle is calculated by using open facility vector 

(Yi). For simplicity, from now on )( iii XYf ←  will be denoted with fi. 

In order to ascertain how to derive an open facility vector from a position vector, 

an instance of 5-facility problem is illustrated in Table 4.1. Position values are 

converted to binary variables using the following formula: 

⎣ ⎦2modii xy =  (4.3) 

In equation (4.3) a position value is first divided by 2 and the absolute value of the 

remainder is floored; then the obtained integer number is taken as an element of the Y 

vector. For example, fifth element of Y vector, y5, can be found as follows:  

⎣⎪-5.45 mod 2⎥ ⎦ = ⎣ ⎢-1.45⎥ ⎦  = ⎣ 1.45 ⎦  = 1. 

 

Table 4.1   An illustration of deriving open facility vector from position vector for a 5-
facility problem for CPSO 

ith Particle Vectors Particle Dimension (k) 

 1 2 3 4 5 

Position Vector(Xi) 1.8 3.01 -0.99 0.72 -5.45 
Velocity Vector(Vi) -0.52 2.06 3.56 2.45 -1.44 

Open Facility Vector (Yi) 1 1 0 0 1 

Considering the 5-facility to 6-customer example shown in Table 4.2, the total 

cost of supplying all customers from the open facilities that is determined by Open 

Facility Vector (Yi) in Table 4.1 can be calculated as follows:  

Total Cost = {Open facilities fixed costs (fci) + minimum cost of supply from 

open facilities, i, to customer j, (cij ) )} 

= {(12+5+9) + (min(2,3,1) + min(0,5,12) + min(11,6,8) + min(19,18,13) + 

min(3,9,10) + min(4,7,0)} = {(26) + (1 + 0 + 6 + 13 + 3 + 0)} = {26 + 23} = {49} 
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Table 4.2   An example of 5-facility to 6-customer problem 

Facility Locations 1 2 3 4 5 

Fixed Cost 12 5 3 7 9 

C
us

to
m

er
s 

1 2 3 6 7 1 

2 0 5 8 4 12 

3 11 6 14 5 8 

4 19 18 21 16 13 

5 3 9 8 7 10 

6 4 7 9 6 0 

For each particle in the swarm, a personal best, ],...,,[ 21 iniii pppP = , is defined, 

whereby pik denotes the position value of the ith personal best with respect to the kth 

dimension. The personal bests are determined just after generating Yi vectors and their 

corresponding fitness values. In every generation, t, the personal best of each particle is 

updated based on its position vector and fitness value. Regarding the objective function, 

)( iii XYf ← , the fitness values for the personal best of the ith particle, Pi , is denoted 

by ( )ii
p

i PYff ←=  and obtained with (4.4).  

⎪
⎩

⎪
⎨

⎧ ≤
=

++

otherwise

  if         

)(

)()1()1(

tp
i

tp
i

tp
i

tp
i

p
i

f

fff
f  (4.4) 

The personal best values are equal to position values (Pi=Xi) initially, where Pi = 

[pi1=xi1, pi2=xi2, pi3=xi3,…, pin=xin] and the fitness values of the personal bests are equal to 

the fitness of positions, i
pb

i ff = . 

Then, the best particle in the whole swarm is selected as the global best (the best 

particle in the whole swarm). G= [g1, g2, g3,…,gn ] denotes the best position of the 

globally best particle achieved so far in the whole swarm.  Therefore, the global best 

fitness, )GY(ffg ←= , can be obtained by using the equation (4.5) 

At the beginning, global best fitness value is determined as the best of personal 

bests over the whole swarm, { }pb
ig ff min=  , with its corresponding position vector Xg, 



 

 

27

which is to be used for G=Xg, where G = [g1=xg1, g2=xg2, g3=xg3,…, gn=xgn] and Yg = [yg1, 

yg2, yg3,…, ygn] denotes the open facility vector of the global best found. 

⎪
⎩

⎪
⎨

⎧ ≤
=

++

otherwise

  if         11

t
g

t
g

t
g

t
g

g

f

fff
f  (4.5) 

Afterwards, the velocity of each particle is updated based on its personal best and 

the global best in the following way: 

( ) ( )( )t
ik

t
k

t
ik

t
ik

t
ik

t
ik xgrcxprcvwv −+−+⋅=+

2211
1  (4.6) 

where w  is the  inertia weight used to control the impact of the previous velocities on 

the current one and t stands for generation . In addition, r1 and r2 are random numbers in 

[0,1] and c1 and c2 are the learning factors, which are also called social and cognitive 

parameters. The next step is to update the positions in the following way. 

11 ++ += t
ik

t
ik

t
ik vxx  (4.7) 

After obtaining position values updated for all particles, the corresponding open 

facility vectors are determined with their fitness values in order to start a new iteration if 

the predetermined stopping criterion is not satisfied. 

Begin 
 Initialize Velocity (4.1) 
 Initialize Position (4.2) 
 Obtain open facility vector (4.3) 
 Evaluate (2.1) 
 Do 
  Find personal best (4.4) 
  Find global best (4.5) 
  Update Velocity (4.6) 
  Update Position (4.7) 
  Update open facility vector (4.3) 
  Evaluate (2.1) 
  Apply local search (for CPSOLS) 
 While (Not Termination) 
End 
 

Figure 4.1   Pseudo code of CPSO algorithm for UFL problem 
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In this study, we apply the gbest model of Kennedy and Eberhart (2001) for 

CPSO, which is elaborated in the above pseudo code. 

 
4.2   THE DISCRETE PSO ALGORITHM FOR UFL PROBLEM 

 As usual, actual modeling begins with decision variables in optimization. 

However, these decisions qualitatively differ from each other in two ways: First, if it 

can take on any value in a specified interval that called continuous variable; the other, if 

it is limited to a fixed or countable set of values that called discrete variable.  When 

there is an option, such as when optimal variable magnitudes are likely to be large 

enough that fractions have no practical importance, modeling with continuous variables 

is preferred to discrete because optimizations over continuous variables are generally 

more tractable than are ones over discrete variables (Rardin, 1998). In discrete 

variables, the choices are often only 1 and 0 namely all-or-nothing. Usually selecting, 

opening or affirmative decisions are represented by 1 and non-selecting, closing or 

negative decisions are represented by 0. 

PSO is initialized with a group of random particles (solutions) and then searches 

for optima by updating generations. In every iteration, each particle is updated by 

following two “best” values. The first one is the best solution (fitness) it has achieved so 

far (the fitness value is also stored). This value is denoted Pi. Another “best” value that 

is tracked by the particle swarm optimizer is the best value, obtained so far by all 

particles in the population. This best value is a global best and called G. 

The DPSO algorithm proposed here for the UFL problems considers each particle 

based on only open facility vector (Yi). Yi= [yi1, yi2, yi3…yin ] represents the opening or 

closing  facilities identified based on the position vector(Xi), where yik represents 

opening or closing kth facility of the ith particle. For an n-facility problem, each particle 

contains n number of dimensions. The dimensions of Y randomly generated as 1 or 0. 

The fitness of the ith particle is calculated by using Yi vector and denoted with )( ii Yf . 

Since the behavior of a particle is a compromise among three possible choices: to 

follow its own position ( t
iY ), to go towards its personal best position t

iP and to go 
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towards the best position of the particle in the whole swarm population tG , the position 

of the particle at iteration t can be updated as follows (Pan et al., 2006). 

( )( )( )111
12132 ,, −−−⊕⊕⊕= tt

i
t

i
t

i GPYFwFcFcY  (4.8) 

( )1
1

−⊕= t
i

t
i YFwλ  (4.9) 

The update equation (4.8) consists of three components: The first component is 

(4.9), which represents the velocity of the particle. In the (4.9), F1 represents the swap 

operator which is conducted in such a way that two distinct facilities from the open 

facility vector, 1−t
iY , of particle are randomly selected and interchanged with the 

probability of w. In other words, a uniform random number, r, is generated between 0 

and 1. If r is less than w then the swap operator is applied to generate a perturbed Yi  

vector of the particle by ( )1
1

−= t
i

t
i YFλ , otherwise current Yi is kept as 1−= t

i
t
i Yλ . 

( )1
21 , −⊕= t

i
t
i

t
i PFc λδ  (4.10)

The second component is (4.10), which is the cognition part of the particle 

representing the private thinking of the particle itself. In the component (4.10), F2 

represents the crossover operator conducted by using a one-cut crossover with the 

probability of c1. Note that t
iλ  and 1t

iP − will be the first and second parents for the 

crossover operator respectively. It is resulted either in ( )1
2 , −= t

i
t
i

t
i PF λδ  or in 

t
i

t
i λδ = depending on the choice of a uniform random number. 

( )tt
i

t
i GFcX ,32 δ⊕=  (4.11)

The third component is (4.11), which is the social part of the particle representing 

the collaboration among particles. In the component (4.11), F3 represents the crossover 

operator conducted by using a two-cut crossover with the probability of c2. Note that t
iδ  

and 1tG −  will be the first and second parents for the crossover operator respectively. It is 

resulted either in ( )1
3 , −= tt

i
t

i GFY δ  or in t
i

t
iY δ=  depending on the choice of a uniform 

random number (Pan et al., 2006). 



 

 

30

The corresponding Yi vectors are determined with their fitness values so as to start 

a new iteration if the predetermined stopping criterion is not satisfied.  

In this study, we apply the gbest model of Kennedy and Eberhart (2001) for 

DPSO, which is elaborated in the following pseudo code given below. 

Begin 
 Initialize open facility vector 
 Evaluate (2.1) 
 Do 
  Find personal best (4.4) 

 Find global best (4.5) 
 Update open facility vector (4.8) 
  Apply velocity component (4.9) 
  Apply cognition component (4.10) 
  Apply social component (4.11) 
  Evaluate (2.1) 
 Apply local search (for DPSOLS) 

 While (Not Termination) 
End 
 
Figure 4.2   Pseudo code of DPSO algorithm for UFL problem 

An example is presented to demonstrate how an open facility location vector gets 

the fitness of the solution. However, it does not show the steps of PSO algorithm.  

Table 4.3   An illustration of open facility vector for a 5-facility problem for DPSO 

ith Particle Vectors Particle Dimension (k)
 1 2 3 4 5 
Open Facility Vector (Yi) 1 1 0 0 1 

Considering the 5-facility problem shown in Table 4.2, total cost of the Open 

facility vector (Yi) can be calculated as follows: 

Fixed Costs+ min (cost of which facility supply the customer) = 

{(12+5+9) + (min(2,3,1) + min(0,5,12) + min(11,6,8) + min(19,18,13) + 

min(3,9,10) + min(4,7,0)} = {(26) + (1 + 0 + 6 + 13 + 3 + 0)} = {26 + 23} = {49} 
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4.3   THE LOCAL SEARCH ALGORITHM FOR PSO 

Apparently, PSO conducts such a rough search that it produces premature results, 

which do not offer satisfactory solutions. For this purpose, it is inevitable to hybridize 

PSO with a local search algorithm so as to produce more satisfactory solutions. In this 

study, a simple local search method for both CPSO and DPSO is applied. 

The solutions obtained from the metaheuristics methods can be improved by 

hybridizing the algorithm with local search. The neighborhood structure with which 

neighbor solutions are determined to move is one of the key elements in metaheuristics. 

The algorithm starts with a complete solution and tries to find a better solution by using 

the neighborhood of the current solution. The solutions are called as neighbors if the 

latter solution can be obtained by modifying the current one.  

The performance of the hybrid algorithm depends on the efficiency of the 

neighborhood structure. Thus, a local search method to neighbors of the global best 

position vector is proposed. For the UFL problem, flip operator is employed as a 

neighborhood structure. Flip operator can be defined as picking one position value of 

the global best randomly and then changing its value with using (4.12) for CPSOLS. 

⎩
⎨
⎧

−≤<
+≤≤

=
115.0
15.00

i

i
i g

g
g

ρ
ρ

 (4.12)

where ρ is a uniformly generated number between 0 and 1. To employ same operator 

for DPSOLS (4.13) is used since only binary values are stored in vectors. This operator is 

used for opening a new facility or closing an open one. 

ii gg −←1  (4.13)

The local search algorithm applied in this study is sketched in Figure 4.3. The 

global best found at the end of each iteration of PSO is adopted as the initial solution by 

local search algorithm. In order not to loss the best found and to diversify the solution, 

the global best is randomly modified in which two facilities are flipped based on both 

random parameters generated, η and κ. Then, flip operator is applied to global best 

vector as long as it gets a better solution. After evaluating, the final produced solution, 

s, is replaced with the old global best if it is better than the initial one.  
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Begin 
 Set global best position vector (Yg) to s0  
 Modify s0 based on η,κ and set to s 
 Set 0 to loop 
 Repeat: 
  Apply Flip to s and get s1  
  if(f(s1)• f(s))  
  Replace s with s1 
  else 
  loop=loop+1 
 Until loop< n is false 
 if (f(s)• f(s0)) 
  Replace Yg with s 
End 

 

Figure 4.3   Pseudo code for local search 
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CHAPTER 5 
 
 

EXPERIMENTAL RESULTS 
 
 
 

This experimental study has been completed in two stages; first, we compared the 

PSO algorithms without local search then hybrid PSO algorithms statistically and with 

respect to their solution quality. Experimental results provided in this section are carried 

out with four algorithms over 15 benchmark problems well-known by the researchers of 

UFL field. The benchmarks are undertaken from the OR Library (Beasley, 2001), a 

collection of benchmarks for operations research (OR) studies. The benchmarks are 

introduced in Table 5.1 with their sizes and the optimum values. Although the optimum 

values are known, it is really hard to hit the optima in every attempt of optimization. 

Since the main idea is to test the performance of PSO algorithm with UFL benchmark, 

the results are provided in Tables as the solution quality: Average Relative Percent 

Error (ARPE), Hit to optimum Rate (HR) and Computational Processing Time (CPU). 

ARPE is the percentage of difference from the optimum and defined as following: 

R
U

UH
ARPE

R

i

i∑
=

×⎟
⎠
⎞

⎜
⎝
⎛ −

=
1

100  
(5.1)

where Hi denotes the ith replication solution value, U is the optimal value provided in 

the literature and R is the number of replications. HR provides the ratio between the 

number of runs yielded the optimum and the total numbers of experimental trials. 

Obviously, the higher the HR the better quality of solution, while the lower the 

ARPE the better quality. The computational time spent for CPSO and DPSO cases are 

obtained as time to get best value over 1000 iterations, while for CPSOLS and DPSOLS 

cases are obtained as time to get best value over 250 iterations. All algorithms and other 
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related software were coded with Borland C++ Builder 6 and run on an Intel Centrino 

1.7 GHz PC with 512MB memory.  

Table 5.1   Benchmarks tackled with the sizes (number of facilities × number of 
customers) and the optimum fitness values 
 

Problem Size Optimum 
Cap71 16×50 932615.75
Cap72 16×50 977799.40
Cap73 16×50 1010641.45
Cap74 16×50 1034976.98
Cap81 25×50 796648.44
Cap82 25×50 854704.20
Cap83 25×50 893782.11
Cap84 25×50 928941.75
Cap91 25×50 796648.44
Cap92 25×50 854704.20
Cap93 25×50 893782.11
Cap94 25×50 928941.75
Cap101 25×50 796648.44
Cap102 25×50 854704.20
Cap103 25×50 893782.11
Cap104 25×50 928941.75
Cap111 50×50 793439.56
Cap112 50×50 851495.33
Cap113 50×50 893076.71
Cap114 50×50 928941.75
Cap121 50×50 793439.56
Cap122 50×50 851495.33
Cap123 50×50 893076.71
Cap124 50×50 928941.75
Cap131 50×50 793439.56
Cap132 50×50 851495.33
Cap133 50×50 893076.71
Cap134 50×50 928941.75
CapA 100×1000 17156454.48
CapB 100×1000 12979071.58
CapC 100×1000 11505594.33

 

 

5.1    CONTINUOUS PSO PARAMETERS 

The parameters used for the CPSO and CPSOLS algorithms are as follows: The 

size of the population (swarm) is the number of facilities, the social and cognitive 

parameters are taken as c1=c2=2 and other parameters: minimum position value, xmin= -
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10.0, maximum position value, xmax=10.0, minimum velocity vmin=-4.0, maximum 

velocity vmax=4.0 are set as shown which are consistent with the literature (Shi and 

Eberhart, 1998). Inertia weight, w, is taken as a random number between 0.5 and 1. As 

mentioned before, number of iteration is set to 1000 iterations for each benchmark suite 

for CPSO algorithm and 250 iterations for CPSOLS algorithm. Finally, each problem 

solution run is conducted for 30 replications. All replications fitness results and 

statistical CPU results are given in Appendix.  

 

5.2    DISCRETE PSO PARAMETERS 

There are fewer parameters used for the DPSO and DPSOLS algorithms and they 

are as follows: The size of the population (swarm) is the number of facilities, the social 

and cognitive probabilities, c1 and c2, are set as c1=c2=0.5 and inertia weight, w, is set to 

0,9. As it is mentioned before, number of iteration is set to 1000 iterations for each 

benchmark suite for DPSO algorithm and 250 iterations for DPSOLS algorithm. Each 

problem solution run is conducted for 30 replications. All replications fitness results and 

statistical CPU results are given in Appendix.  

There are two termination criteria that have been applied for every run: First one 

is getting the optimum solution, the other is reaching the maximum iteration number 

that is chosen for obtain the result in a reasonable CPU time. 

 

5.3    THE COMPARISON OF CPSO AND DPSO 

The performance of CPSO algorithm looks not very impressive as the results 

produced within the range of time over 1000 iterations. The CPSO search found 6 

optimal solutions whereas the DPSO algorithm found 12 among 15 benchmark 

problems. The ARPE index which is expected lower for good solution quality is very 

high for CPSO when applied CapA, CapB and CapC benchmarks and none of the 

attempts for these benchmarks hit the optimum value. As come to the ARPE index of 

DPSO, it is better than the ARPE index of CPSO but not satisfactory as expected. In 

term of CPU, DPSO is better than CPSO as well. It may be possible to improve the 

solutions quality by carrying on with algorithms for a further number of iterations, but, 
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then the main idea and useful motivation of employing the heuristics, i.e. getting a 

better quality within shorter time, will be lost. This fact imposed that it is essential to 

empower PSO with hybridizing with a local search algorithm. Thus a simple local 

search algorithm is employed in this case for that purpose, as mentioned before. 

Table 5.2   Experimental Results of CPU and Fitness values for CPSO 

CPSO CPU Fitness  
Problem Average Best Worse Std ARPE HR 
Cap71 0.1318 932615.75 934199.14 562.23 0.03 0.83 
Cap72 0.1318 977799.40 983713.81 1324.30 0.05 0.83 
Cap73 0.1865 1010641.45 1012643.69 702.13 0.03 0.73 
Cap74 0.1781 1034976.98 1045342.23 2124.54 0.10 0.00 
Cap81 0.8823 796648.44 802457.23 1480.72 0.18 0.00 
Cap82 0.7672 854704.20 857380.85 1015.64 0.13 0.33 
Cap83 1.2474 893782.11 899348.08 1303.87 0.09 0.00 
Cap84 0.6000 928941.75 944394.83 3842.64 0.29 0.60 
Cap91 0.8813 796648.44 802457.23 1480.72 0.18 0.00 
Cap92 0.7667 854704.20 857380.85 1015.64 0.13 0.33 
Cap93 1.2516 893782.11 899348.08 1303.87 0.09 0.00 
Cap94 0.6021 928941.75 944394.83 3842.64 0.29 0.60 
Cap101 0.8818 796648.44 802457.23 1480.72 0.18 0.00 
Cap102 0.7667 854704.20 857380.85 1015.64 0.13 0.33 
Cap103 0.9938 893782.11 899424.91 1695.79 0.14 0.00 
Cap104 0.6026 928941.75 944394.83 3842.64 0.29 0.60 
Cap111 3.6182 795291.86 804549.64 2429.54 0.91 0.00 
Cap112 3.5474 851495.33 868567.16 4297.07 0.76 0.00 
Cap113 3.9031 893076.71 909908.70 4753.48 0.55 0.00 
Cap114 3.3375 928941.75 951803.25 6619.05 0.69 0.23 
Cap121 3.6141 795291.86 804549.64 2429.54 0.91 0.00 
Cap122 3.5495 851495.33 868567.16 4297.07 0.76 0.00 
Cap123 3.8901 893076.71 909908.70 4753.48 0.55 0.00 
Cap124 3.3359 928941.75 951803.25 6619.05 0.69 0.23 
Cap131 3.6156 795291.86 804549.64 2429.54 0.91 0.00 
Cap132 3.5599 851495.33 868567.16 4297.07 0.76 0.00 
Cap133 3.7792 893076.71 909908.70 4210.93 0.50 0.00 
Cap134 3.3333 928941.75 951803.25 6619.05 0.69 0.23 
CapA 19.5739 18351465.40 24638983.70 1608650.32 21.24 0.00 
CapB 17.1318 13390061.37 15356618.36 532161.62 10.14 0.00 
CapC 17.6149 11970113.17 13572876.10 350412.47 8.16 0.00 
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Table 5.3   Experimental Results of CPU and Fitness values for DPSO 

 

DPSO CPU Fitness 
Problem Average Best Worse Std ARPE HR 
Cap71 0.0641 932615.75 932615.75 0.00 0.00 1.00 
Cap72 0.0651 977799.40 977799.40 0.00 0.00 1.00 
Cap73 0.0708 1010641.45 1010641.45 0.00 0.00 1.00 
Cap74 0.0693 1034976.98 1034976.98 0.00 0.00 1.00 
Cap81 0.3130 796648.44 796648.44 0.00 0.00 1.00 
Cap82 0.3062 854704.20 854704.20 0.00 0.00 1.00 
Cap83 0.9365 893782.11 893782.11 0.00 0.00 1.00 
Cap84 0.2011 928941.75 928941.75 0.00 0.00 1.00 
Cap91 0.3119 796648.44 796648.44 0.00 0.00 1.00 
Cap92 0.3063 854704.20 854704.20 0.00 0.00 1.00 
Cap93 0.9333 893782.11 893782.11 0.00 0.00 1.00 
Cap94 0.2016 928941.75 928941.75 0.00 0.00 1.00 
Cap101 0.3130 796648.44 796648.44 0.00 0.00 1.00 
Cap102 0.3062 854704.20 854704.20 0.00 0.00 1.00 
Cap103 0.3625 893782.11 894008.14 57.35 0.00 0.93 
Cap104 0.2021 928941.75 928941.75 0.00 0.00 1.00 
Cap111 2.6141 793439.56 795927.69 759.45 0.16 0.13 
Cap112 2.6589 851495.33 854061.12 683.00 0.09 0.17 
Cap113 2.7984 893076.71 894095.76 420.88 0.04 0.47 
Cap114 1.7136 928941.75 928941.75 0.00 0.00 1.00 
Cap121 2.5453 793439.56 795935.81 822.12 0.17 0.13 
Cap122 2.6318 851495.33 854061.12 683.00 0.09 0.17 
Cap123 2.8167 893076.71 894095.76 420.88 0.04 0.47 
Cap124 1.7146 928941.75 928941.75 0.00 0.00 1.00 
Cap131 2.5464 793439.56 795935.81 822.12 0.17 0.13 
Cap132 2.6328 851495.33 854061.12 683.00 0.09 0.17 
Cap133 2.5292 893076.71 894095.76 398.07 0.04 0.43 
Cap134 1.7167 928941.75 928941.75 0.00 0.00 1.00 
CapA 17.8972 17810901.35 19366467.31 367959.31 8.65 0.00 
CapB 17.0652 13287703.69 13923731.30 135262.96 4.92 0.00 
CapC 17.1340 11855107.73 12180785.60 85472.59 4.54 0.00 

 

5.3.1   Statistically Testing 

To compare the results statistically and to understand which algorithm 

outperforms the other algorithm the paired t-test method is employed. Because different 

pairs are independent, the differences (D) of each replication are independent of one 

another. If we let D= X-Y, where X and Y are the first and second observations, 

respectively, within an arbitrary pair, then the expected difference is: 

21)()()( μμμ −=−=−= YEXEYXED . Thus any hypothesis about 21 μμ − can be 

phrased as a hypothesis about the mean difference Dμ . That is, to test hypotheses about 
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21 μμ −  when data is paired, the differences D1, D2, …, Dn are formed and a one-

sample t-test (based on n-1 df) on the differences is carried out (Devore, 2000).  

00 : Δ=DH μ  (5.2) 

ns
d

t
D /

0Δ−=  (5.3) 

where 0H  is a null hypothesis and 21 μμμ −=D , t is test statistic value. 

 d and sD are the sample mean and standard deviation, respectively, of the di’s. 

Table 5.4   Statistic comparison between CPSO and DPSO  

CPSO-DPSO Level of significance: t0.05, 29 t0.010, 29 t0.005, 29 t0.0005, 29 

Problem d  Ds  t-value 1.6991 2.462 2.7564 3.6594 
Cap71 242.890 562.234 2.366 Accept Deny Deny Deny 
Cap72 487.713 1324.303 2.017 Accept Deny Deny Deny 
Cap73 345.448 702.130 2.695 Accept Accept Deny Deny 
Cap74 984.860 2124.542 2.539 Accept Accept Deny Deny 
Cap81 1458.365 1480.723 5.395 Accept Accept Accept Accept 
Cap82 1150.032 1015.636 6.202 Accept Accept Accept Accept 
Cap83 847.699 1303.867 3.561 Accept Accept Accept Deny 
Cap84 2660.544 3842.637 3.792 Accept Accept Accept Accept 
Cap91 1458.365 1480.723 5.395 Accept Accept Accept Accept 
Cap92 1150.032 1015.636 6.202 Accept Accept Accept Accept 
Cap93 847.699 1303.867 3.561 Accept Accept Accept Deny 
Cap94 2660.544 3842.637 3.792 Accept Accept Accept Accept 
Cap101 1458.365 1480.723 5.395 Accept Accept Accept Accept 
Cap102 1150.032 1015.636 6.202 Accept Accept Accept Accept 
Cap103 1278.946 1703.947 4.111 Accept Accept Accept Accept 
Cap104 2660.544 3842.637 3.792 Accept Accept Accept Accept 
Cap111 5945.298 2598.722 12.531 Accept Accept Accept Accept 
Cap112 5676.582 4496.727 6.914 Accept Accept Accept Accept 
Cap113 4473.693 4609.130 5.316 Accept Accept Accept Accept 
Cap114 6422.655 6619.049 5.315 Accept Accept Accept Accept 
Cap121 5850.919 2604.797 12.303 Accept Accept Accept Accept 
Cap122 5676.582 4496.727 6.914 Accept Accept Accept Accept 
Cap123 4473.693 4609.130 5.316 Accept Accept Accept Accept 
Cap124 6422.655 6619.049 5.315 Accept Accept Accept Accept 
Cap131 5850.919 2604.797 12.303 Accept Accept Accept Accept 
Cap132 5676.582 4496.727 6.914 Accept Accept Accept Accept 
Cap133 4055.578 4136.184 5.370 Accept Accept Accept Accept 
Cap134 6422.655 6619.049 5.315 Accept Accept Accept Accept 
CapA 2159683.544 1679082.732 7.045 Accept Accept Accept Accept 
CapB 677197.294 537134.664 6.905 Accept Accept Accept Accept 
CapC 416177.758 354427.972 6.431 Accept Accept Accept Accept 

 
Number of accepted hypotheses (H1) 31 29 27 25 
Number of denied hypotheses (H1) 0 2 4 6 
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The results are investigated with 95%, 99%, 99.5%, 99.95%   levels of 

confidence. The first proposed hypothesis (H1) is DPSO is better than CPSO. If the H1 

is true, t-values for the problems have to be greater than the level of significance value. 

The DPSO produced significantly better fitness results than CPSO for all problems for 

95% level of confidence. Apparently, for the other levels of confidence, number of 

accepted hypotheses is much more than denied hypotheses (Table 5.4). Thus, we can 

say that DPSO is generated more robust results than CPSO.  

 

5.4    THE COMPARISON OF CPSOLS AND DPSOLS 

The performance of PSO algorithms with local searches looks very impressive 

compared to the CPSO and the DPSO algorithms with respect of all three indexes. HR 

is 1.00 which means 100% of the runs yield with optimum for all benchmark except 

CapB and CapC for CPSOLS and except CapA, CapB and CapC for DPSOLS. On the 

other hand, it should be mentioned that DPSOLS found optimum solutions for all 

instances while DPSOLS found optimums except for CapC. The ARPE index results of 

CPSOLS and DPSOLS are very small for both algorithms and very similar to each other 

thus there is no meaningful difference. In term of CPU, CPSOLS consumed 18% more 

time than DPSOLS thus we can say that the results of DPSOLS are more robust than 

CPSOLS. 
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Table 5.5   Experimental Results of CPU and Fitness values for CPSOLS  
 

CPSO_LS CPU Fitness 
Problem Average Best Worse Std ARPE HR 

Cap71 0.0146 932615.75 932615.75 0.00 0.00 1.00 
Cap72 0.0172 977799.40 977799.40 0.00 0.00 1.00 
Cap73 0.0281 1010641.45 1010641.45 0.00 0.00 1.00 
Cap74 0.0182 1034976.98 1034976.98 0.00 0.00 1.00 
Cap81 0.1875 796648.44 796648.44 0.00 0.00 1.00 
Cap82 0.0896 854704.20 854704.20 0.00 0.00 1.00 
Cap83 0.2151 893782.11 893782.11 0.00 0.00 1.00 
Cap84 0.0370 928941.75 928941.75 0.00 0.00 1.00 
Cap91 0.1875 796648.44 796648.44 0.00 0.00 1.00 
Cap92 0.0896 854704.20 854704.20 0.00 0.00 1.00 
Cap93 0.2151 893782.11 893782.11 0.00 0.00 1.00 
Cap94 0.0370 928941.75 928941.75 0.00 0.00 1.00 
Cap101 0.1880 796648.44 796648.44 0.00 0.00 1.00 
Cap102 0.0906 854704.20 854704.20 0.00 0.00 1.00 
Cap103 0.2151 893782.11 893782.11 0.00 0.00 1.00 
Cap104 0.0370 928941.75 928941.75 0.00 0.00 1.00 
Cap111 1.4271 793439.56 793439.56 0.00 0.00 1.00 
Cap112 1.0245 851495.33 851495.33 0.00 0.00 1.00 
Cap113 1.3651 893076.71 893076.71 0.00 0.00 1.00 
Cap114 0.3635 928941.75 928941.75 0.00 0.00 1.00 
Cap121 1.4276 793439.56 793439.56 0.00 0.00 1.00 
Cap122 1.0240 851495.33 851495.33 0.00 0.00 1.00 
Cap123 1.3651 893076.71 893076.71 0.00 0.00 1.00 
Cap124 0.3635 928941.75 928941.75 0.00 0.00 1.00 
Cap131 1.4281 793439.56 793439.56 0.00 0.00 1.00 
Cap132 1.0245 851495.33 851495.33 0.00 0.00 1.00 
Cap133 1.3651 893076.71 893076.71 0.00 0.00 1.00 
Cap134 0.3635 928941.75 928941.75 0.00 0.00 1.00 
CapA 22.3920 17156454.48 17346752.16 34743.44 0.04 0.97 
CapB 30.6541 12979071.58 13084984.12 39458.67 0.33 0.40 
CapC 27.4234 11509361.66 11580061.89 16072.22 0.09 0.00 
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Table 5.6   Experimental Results of CPU and Fitness values for DPSOLS 
 

DPSO_LS CPU Fitness 
Problem Average Best Worse Std ARPE HR 

Cap71 0.0130 932615.75 932615.75 0.00 0.00 1.00 
Cap72 0.0078 977799.40 977799.40 0.00 0.00 1.00 
Cap73 0.0203 1010641.45 1010641.45 0.00 0.00 1.00 
Cap74 0.0109 1034976.98 1034976.98 0.00 0.00 1.00 
Cap81 0.1516 796648.44 796648.44 0.00 0.00 1.00 
Cap82 0.0557 854704.20 854704.20 0.00 0.00 1.00 
Cap83 0.1693 893782.11 893782.11 0.00 0.00 1.00 
Cap84 0.0339 928941.75 928941.75 0.00 0.00 1.00 
Cap91 0.1500 796648.44 796648.44 0.00 0.00 1.00 
Cap92 0.0562 854704.20 854704.20 0.00 0.00 1.00 
Cap93 0.1693 893782.11 893782.11 0.00 0.00 1.00 
Cap94 0.0344 928941.75 928941.75 0.00 0.00 1.00 
Cap101 0.1505 796648.44 796648.44 0.00 0.00 1.00 
Cap102 0.0557 854704.20 854704.20 0.00 0.00 1.00 
Cap103 0.1693 893782.11 893782.11 0.00 0.00 1.00 
Cap104 0.0344 928941.75 928941.75 0.00 0.00 1.00 
Cap111 0.9927 793439.56 794299.85 157.07 0.00 0.97 
Cap112 0.7750 851495.33 851495.33 0.00 0.00 1.00 
Cap113 1.0510 893076.71 893251.51 31.91 0.00 0.97 
Cap114 0.5594 928941.75 928941.75 0.00 0.00 1.00 
Cap121 0.9932 793439.56 794299.85 157.07 0.00 0.97 
Cap122 0.7740 851495.33 851495.33 0.00 0.00 1.00 
Cap123 1.0510 893076.71 893251.51 31.91 0.00 0.97 
Cap124 0.5594 928941.75 928941.75 0.00 0.00 1.00 
Cap131 0.9922 793439.56 794299.85 157.07 0.00 0.97 
Cap132 0.7745 851495.33 851495.33 0.00 0.00 1.00 
Cap133 1.0516 893076.71 893251.51 31.91 0.00 0.97 
Cap134 0.5594 928941.75 928941.75 0.00 0.00 1.00 
CapA 19.5889 17156454.48 17844165.28 243932.83 1.51 0.33 
CapB 19.6359 12979071.58 13444180.76 100126.81 0.86 0.20 
CapC 18.7685 11505594.33 11716349.47 49717.56 0.37 0.13 

 
5.4.1   Statistically Testing 

To compare the results between proposed algorithms statistically with using the t-

test with 95%, 99%, 99.5%, 99.95%  levels of confidence more 3 hypotheses is 

suggested. The second proposed hypothesis (H2) is CPSOLS is better than CPSO. If the 

H2 is true, t-values for the problems have to be greater than the level of significance 

value. The CPSOLS produced significantly better fitness results than CPSO for all 

problems for 95% level of confidence. Apparently, for the other levels of confidence, 

number of accepted hypotheses is much more than denied hypotheses (Table 5.7). Thus, 

we can say that CPSOLS is generated more robust results than CPSO. 
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Table 5.7   Statistic comparison between CPSO and CPSOLS 

CPSOLS-CPSO Level of significance t0.05, 29 t0.010, 29 t0.005, 29 t0.0005, 29 
Problem Av. Dev Std. Dev. t-value 1.699 2.462 2.756 3.659 
Cap71 242.890 562.234 2.366 Accept Deny Deny Deny 
Cap72 487.713 1324.303 2.017 Accept Deny Deny Deny 
Cap73 345.448 702.130 2.695 Accept Accept Deny Deny 
Cap74 984.860 2124.542 2.539 Accept Accept Deny Deny 
Cap81 1458.365 1480.723 5.395 Accept Accept Accept Accept 
Cap82 1150.032 1015.636 6.202 Accept Accept Accept Accept 
Cap83 847.699 1303.867 3.561 Accept Accept Accept Deny 
Cap84 2660.544 3842.637 3.792 Accept Accept Accept Accept 
Cap91 1458.365 1480.723 5.395 Accept Accept Accept Accept 
Cap92 1150.032 1015.636 6.202 Accept Accept Accept Accept 
Cap93 847.699 1303.867 3.561 Accept Accept Accept Deny 
Cap94 2660.544 3842.637 3.792 Accept Accept Accept Accept 

Cap101 1458.365 1480.723 5.395 Accept Accept Accept Accept 
Cap102 1150.032 1015.636 6.202 Accept Accept Accept Accept 
Cap103 1294.015 1695.785 4.180 Accept Accept Accept Accept 
Cap104 2660.544 3842.637 3.792 Accept Accept Accept Accept 
Cap111 7227.427 2429.538 16.294 Accept Accept Accept Accept 
Cap112 6440.656 4297.071 8.210 Accept Accept Accept Accept 
Cap113 4873.163 4753.479 5.615 Accept Accept Accept Accept 
Cap114 6422.655 6619.049 5.315 Accept Accept Accept Accept 
Cap121 7227.427 2429.538 16.294 Accept Accept Accept Accept 
Cap122 6440.656 4297.071 8.210 Accept Accept Accept Accept 
Cap123 4873.163 4753.479 5.615 Accept Accept Accept Accept 
Cap124 6422.655 6619.049 5.315 Accept Accept Accept Accept 
Cap131 7227.427 2429.538 16.294 Accept Accept Accept Accept 
Cap132 6440.656 4297.071 8.210 Accept Accept Accept Accept 
Cap133 4429.388 4210.926 5.761 Accept Accept Accept Accept 
Cap134 6422.655 6619.049 5.315 Accept Accept Accept Accept 
CapA 3638032.944 1602699.056 12.433 Accept Accept Accept Accept 
CapB 1273040.211 552455.019 12.621 Accept Accept Accept Accept 
CapC 928543.295 353184.171 14.400 Accept Accept Accept Accept 

 
Number of accepted hypotheses (H2) 31 29 27 25 
Number of denied hypotheses (H2) 0 2 4 6 

The third proposed hypothesis (H3) is DPSOLS is better than DPSO. If the H3 is 

true, t-values for the problems have to be greater than the level of significance value. 

Since, both DPSO and DPSOLS hit the optimum for all replications for the problems 

Cap71-74, Cap81-84, Cap91-94, Cap101-102, Cap104, Cap 114, Cap124 and Cap134 

there is no deviation between the results of DPSO and DPSOLS. Thus, t-value can not be 

calculated for these problems. For the other problems except Cap103 the DPSOLS 

produced significantly better fitness results than DPSO for all 95%, 99%, 99.5%, 



 

 

43

99.95% levels of confidence (Table 5.8). To conclude, we can say that DPSOLS is 

generated more robust results than DPSO. 

Table 5.8   Statistic comparison between DPSO and DPSOLS with t-test 

DPSO-DPSOLS Level of significance t0.05, 29 t0.010, 29 t0.005, 29 t0.0005, 29 
Problem Av. Dev Std. Dev. t-value 1.699 2.462 2.756 3.659 
Cap71 0.000 0.000 - - - - - 
Cap72 0.000 0.000 - - - - - 
Cap73 0.000 0.000 - - - - - 
Cap74 0.000 0.000 - - - - - 
Cap81 0.000 0.000 - - - - - 
Cap82 0.000 0.000 - - - - - 
Cap83 0.000 0.000 - - - - - 
Cap84 0.000 0.000 - - - - - 
Cap91 0.000 0.000 - - - - - 
Cap92 0.000 0.000 - - - - - 
Cap93 0.000 0.000 - - - - - 
Cap94 0.000 0.000 - - - - - 

Cap101 0.000 0.000 - - - - - 
Cap102 0.000 0.000 - - - - - 
Cap103 15.069 57.346 1.439 Deny Deny Deny Deny 
Cap104 0.000 0.000 - - - - - 
Cap111 1253.453 791.490 8.674 Accept Accept Accept Accept 
Cap112 764.074 682.998 6.127 Accept Accept Accept Accept 
Cap113 393.643 427.757 5.040 Accept Accept Accept Accept 
Cap114 0.000 0.000 - - - - - 
Cap121 1347.831 855.087 8.633 Accept Accept Accept Accept 
Cap122 764.074 682.998 6.127 Accept Accept Accept Accept 
Cap123 393.643 427.757 5.040 Accept Accept Accept Accept 
Cap124 0.000 0.000 - - - - - 
Cap131 1347.831 855.087 8.633 Accept Accept Accept Accept 
Cap132 764.074 682.998 6.127 Accept Accept Accept Accept 
Cap133 367.983 404.950 4.977 Accept Accept Accept Accept 
Cap134 0.000 0.000 - - - - - 
CapA 1224952.223 495059.638 13.553 Accept Accept Accept Accept 
CapB 526752.304 154216.787 18.708 Accept Accept Accept Accept 
CapC 480395.117 106686.599 24.663 Accept Accept Accept Accept 

 
Number of accepted hypotheses (H3) 12 12 12 12 
Number of denied hypotheses (H3) 1 1 1 1 

 

The fourth proposed hypothesis (H4) is DPSOLS is better than CPSOLS. If the H4 is 

true, t-values for the problems have to be greater than the level of significance value. 

Since, both DPSO and DPSOLS hit the optimum for all replications for the problems 

Cap71-74, Cap81-84, Cap91-94, Cap101-104, Cap 112, Cap114, Cap 122, Cap124, Cap 

132 and Cap134 there is no deviation between the results of DPSOLS and CPSOLS. 

Thus, t-value can not be calculated for these problems. For the problems CapA, CapB 
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and CapC DPSOLS produced significantly better fitness results than CPSOLS for 95%, 

99%, 99.5%levels of confidence (Table 5.9). For the 99.95% level of confidence H4 is 

not true for all problems except CapA. For the problems Cap111, Cap113, Cap121, 

Cap123, Cap131 and Cap133 DPSOLS produced worse fitness results than CPSOLS for 

all levels of confidence thus H4 is denied for these problems (Table 5.9). To conclude, 

we can not say that DPSOLS is generated more robust results than CPSOLS. 

Table 5.9   Statistic comparison between DPSOLS and CPSOLS with t-test 

DPSOLS- CPSOLS Level of significance t0.05, 29 t0.010, 29 t0.005, 29 t0.0005, 29 
Problem Av. Dev Std. Dev. t-value 1.699 2.462 2.756 3.659 
Cap71 0.000 0.000 - - - - - 
Cap72 0.000 0.000 - - - - - 
Cap73 0.000 0.000 - - - - - 
Cap74 0.000 0.000 - - - - - 
Cap81 0.000 0.000 - - - - - 
Cap82 0.000 0.000 - - - - - 
Cap83 0.000 0.000 - - - - - 
Cap84 0.000 0.000 - - - - - 
Cap91 0.000 0.000 - - - - - 
Cap92 0.000 0.000 - - - - - 
Cap93 0.000 0.000 - - - - - 
Cap94 0.000 0.000 - - - - - 

Cap101 0.000 0.000 - - - - - 
Cap102 0.000 0.000 - - - - - 
Cap103 0.000 0.000 - - - - - 
Cap104 0.000 0.000 - - - - - 
Cap111 28.676 157.067 1.000 Deny Deny Deny Deny 
Cap112 0.000 0.000 - - - - - 
Cap113 5.827 31.914 1.000 Deny Deny Deny Deny 
Cap114 0.000 0.000 - - - - - 
Cap121 28.676 157.067 1.000 Deny Deny Deny Deny 
Cap122 0.000 0.000 - - - - - 
Cap123 5.827 31.914 1.000 Deny Deny Deny Deny 
Cap124 0.000 0.000 - - - - - 
Cap131 28.676 157.067 1.000 Deny Deny Deny Deny 
Cap132 0.000 0.000 - - - - - 
Cap133 5.827 31.914 1.000 Deny Deny Deny Deny 
Cap134 0.000 0.000 - - - - - 
CapA 253397.177 236736.432 5.863 Accept Accept Accept Accept 
CapB 69090.613 107199.867 3.530 Accept Accept Accept Deny 
CapC 31970.420 49960.869 3.505 Accept Accept Accept Deny 

 
Number of accepted hypotheses (H4) 3 3 3 1 
Number of denied hypotheses (H4) 6 6 6 8 
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CHAPTER 6 
 
 

CONCLUSIONS 
 
 
 

Developing solution methods for the UFL problem has been a hot topic of 

research for the last 40 years. Thus, UFL problems have been studied and examined 

extensively by various attempts and approaches. Because the UFL problem is NP-hard 

exact algorithms may not be able to solve large practical problems. Since they are NP-

hard problems, the larger the size of the problem, the harder to find the optimal solution 

and furthermore, the longer to reach reasonable results. All important approaches 

relevant to UFL problems can be classified into two main categories: exact algorithms 

and metaheuristic based methods. 

PSO is one of the latest metaheuristic methods in the literature. Based on the 

metaphor of social interaction and communication such as bird flocking and fish 

schooling, PSO was first introduced to optimize various continuous nonlinear functions 

by Eberhart and Kennedy (1995).  

It is obvious that since the main decision in UFL is opening or closing facilities, 

UFL problems are classified in discrete problems. On the other hand, PSO is mainly 

designed for continuous problem thus it has some drawbacks when applying PSO for a 

discrete problem. Since PSO is developed for continuous optimization problem initially, 

most existing PSO applications are resorting to continuous function value optimization 

(Eberhart and Shi, 1998; Kennedy and Eberhart, 1995). Recently a few researches have 

been conducted for discrete combinatorial optimization problems. In addition, the 

applications of PSO on combinatorial optimization problems are still considered 

limited, but the advantages of PSO  include a simple structure, immediately accessible 
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for practical applications, ease of implementation, speed to  acquire solutions, and 

robustness that are sustained in the literature.  

This study is one of the early applications of PSO for discrete combinatorial 

optimization problems. In addition, to make a confidential comparison both discrete and 

continuous version of PSO is proposed. To remedy the drawback of PSO continuous 

nature, this thesis employed a newly designed method to update particle positions (Pan 

et al., 2006). Also, the solutions obtained from the metaheuristics methods can be 

improved by hybridizing the algorithm with local search. Thus, a local search algorithm 

to neighbors of the global best position vector is proposed for both CPSO and DPSO. 

In conclusion, in this thesis, four PSO algorithms namely, CPSO, DPSO, CPSOLS 

and DPSOLS are proposed to solve UFL problem. The algorithms have been tested on 

several benchmark problem instances from OR library and optimal results are obtained 

in a reasonable computing time. In addition, to the best of our knowledge, these PSO 

algorithms are the first applications of PSO reported for the UFL in the literature. 

For future studies, parallel PSO algorithms can be employed to get more robust 

results in respect of CPU time. In addition, according to no-free-lunch theorem it is 

impossible to justify a correlation between reproduction of a training set and 

generalization error off of the training set using only a priori reasoning. Thus, after 

tuning the parameters it is more probably that getting more robust results for each 

algorithm. Also there are a number of local search algorithms but that have been 

implemented in this study. Lastly, these proposed algorithms can be implemented to 

other combinatorial optimization problems that have not been tried to solve with PSO. 
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APPENDIX A 
 

EXPERIMENTAL RESULTS FOR CPSO 
 

Table A.1   Experimental Results of Fitness and CPU for CPSO (Cap71-74, Cap81-82) 
 

Problem Cap71 Cap72 Cap73 Cap74 Cap81 Cap82 
Size 16×50 16×50 16×50 16×50 25*50  25*50  
Optimum 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 

R1 934199.14 977799.40 1010808.16 1034976.98 800004.98 856040.14 
R2 933568.90 977799.40 1010641.45 1034976.98 800815.63 857380.85 
R3 932615.75 977799.40 1010641.45 1034976.98 802457.23 857307.69 
R4 932615.75 979099.61 1010641.45 1034976.98 797508.73 857307.69 
R5 932615.75 977799.40 1010641.45 1034976.98 797508.73 856879.16 
R6 934199.14 977799.40 1012476.98 1034976.98 797582.29 857271.96 
R7 932615.75 977799.40 1010641.45 1034976.98 797508.73 855466.85 
R8 932615.75 977799.40 1010641.45 1034976.98 799695.03 856767.06 
R9 932615.75 977799.40 1010641.45 1034976.98 797508.73 857307.69 

R10 932615.75 983713.81 1010641.45 1034976.98 797508.73 854704.20 
R11 932615.75 977799.40 1010641.45 1037717.08 797508.73 855466.85 
R12 932615.75 979099.61 1010641.45 1045342.23 797508.73 854704.20 
R13 932615.75 977799.40 1012476.98 1034976.98 798319.38 854704.20 
R14 932615.75 977799.40 1010641.45 1034976.98 798243.31 855466.85 
R15 932615.75 977799.40 1010641.45 1037717.08 800958.13 856287.59 
R16 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R17 932615.75 977799.40 1012476.98 1037717.08 797508.73 855971.75 
R18 932615.75 980176.51 1010641.45 1034976.98 797508.73 855971.75 
R19 932615.75 977799.40 1011067.65 1034976.98 796648.44 855781.10 
R20 932615.75 977799.40 1010641.45 1034976.98 796648.44 856287.59 
R21 932615.75 977799.40 1010641.45 1037717.08 797508.73 854704.20 
R22 932615.75 977799.40 1011067.65 1034976.98 796648.44 854704.20 
R23 932615.75 977799.40 1010641.45 1034976.98 797508.73 856004.41 
R24 932615.75 977799.40 1010641.45 1037717.08 797508.73 854704.20 
R25 932615.75 977799.40 1010641.45 1037717.08 800153.53 854704.20 
R26 934199.14 977799.40 1010641.45 1037717.08 797508.73 854704.20 
R27 932615.75 981538.85 1010641.45 1034976.98 796648.44 855466.85 
R28 932615.75 977799.40 1012643.69 1034976.98 798325.94 854704.20 
R29 932615.75 977799.40 1010641.45 1034976.98 796648.44 856879.16 
R30 934199.14 977799.40 1012476.98 1034976.98 799144.69 857271.96 

Best Fitness 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
Worse Fitness 934199.14 983713.81 1012643.69 1045342.23 802457.23 857380.85 
Std Dev. of Fitness 562.23 1324.30 702.13 2124.54 1480.72 1015.64 
ARPE 0.03 0.05 0.03 0.10 0.18 0.13 
HR 0.83 0.83 0.73 0.00 0.00 0.33 
Average CPU 0.1318 0.1318 0.1865 0.1781 0.8823 0.7672 
Minimum CPU 0.0150 0.0000 0.0000 0.0000 0.0470 0.0620 
Maximum CPU 0.6250 0.6100 0.5940 0.5940 1.1100 1.1100 
Std Dev. of CPU 0.2131 0.2159 0.2456 0.2424 0.3928 0.4395 
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Table A.2   Experimental Results of Fitness and CPU for CPSO (Cap83-84, Cap91-94) 

 

Problem Cap83 Cap84 Cap91 Cap92 Cap93 Cap94 
Size 25*50  25*50  25*50 25*50 25*50 25*50 
Optimum 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 

R1 894008.14 934586.98 800004.98 856040.14 894008.14 934586.98 
R2 894801.16 928941.75 800815.63 857380.85 894801.16 928941.75 
R3 895049.66 928941.75 802457.23 857307.69 895049.66 928941.75 
R4 893782.11 934586.98 797508.73 857307.69 893782.11 934586.98 
R5 894801.16 928941.75 797508.73 856879.16 894801.16 928941.75 
R6 894801.16 938912.54 797582.29 857271.96 894801.16 938912.54 
R7 893782.11 944394.83 797508.73 855466.85 893782.11 944394.83 
R8 894801.16 928941.75 799695.03 856767.06 894801.16 928941.75 
R9 899348.08 928941.75 797508.73 857307.69 899348.08 928941.75 

R10 894008.14 928941.75 797508.73 854704.20 894008.14 928941.75 
R11 894008.14 928941.75 797508.73 855466.85 894008.14 928941.75 
R12 894008.14 928941.75 797508.73 854704.20 894008.14 928941.75 
R13 894008.14 934586.98 798319.38 854704.20 894008.14 934586.98 
R14 893782.11 928941.75 798243.31 855466.85 893782.11 928941.75 
R15 893782.11 935106.20 800958.13 856287.59 893782.11 935106.20 
R16 895027.19 928941.75 796648.44 854704.20 895027.19 928941.75 
R17 898800.04 928941.75 797508.73 855971.75 898800.04 928941.75 
R18 894008.14 928941.75 797508.73 855971.75 894008.14 928941.75 
R19 893782.11 934586.98 796648.44 855781.10 893782.11 934586.98 
R20 895027.19 934586.98 796648.44 856287.59 895027.19 934586.98 
R21 895027.19 934586.98 797508.73 854704.20 895027.19 934586.98 
R22 894008.14 934586.98 796648.44 854704.20 894008.14 934586.98 
R23 894008.14 928941.75 797508.73 856004.41 894008.14 928941.75 
R24 894573.71 928941.75 797508.73 854704.20 894573.71 928941.75 
R25 894008.14 928941.75 800153.53 854704.20 894008.14 928941.75 
R26 895027.19 928941.75 797508.73 854704.20 895027.19 928941.75 
R27 893782.11 934586.98 796648.44 855466.85 893782.11 934586.98 
R28 894008.14 932007.96 798325.94 854704.20 894008.14 932007.96 
R29 894008.14 928941.75 796648.44 856879.16 894008.14 928941.75 
R30 895027.19 928941.75 799144.69 857271.96 895027.19 928941.75 

Best Fitness 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
Worse Fitness 899348.08 944394.83 802457.23 857380.85 899348.08 944394.83 
Std Dev. of Fitness 1303.87 3842.64 1480.72 1015.64 1303.87 3842.64 
ARPE 0.09 0.29 0.18 0.13 0.09 0.29 
HR 0.00 0.60 0.00 0.33 0.00 0.60 
Average CPU 1.2474 0.6000 0.8813 0.7667 1.2516 0.6021 
Minimum CPU 1.0620 0.0460 0.0470 0.0620 1.0470 0.0460 
Maximum CPU 1.3910 1.3280 1.1090 1.1250 1.3910 1.3290 
Std Dev. of CPU 0.1435 0.5869 0.3946 0.4422 0.1464 0.5882 
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Table A.3   Experimental Results of Fitness and CPU for CPSO (Cap101-104, Cap111-

112) 

 

Problem Cap101 Cap102 Cap103 Cap104 Cap111 Cap112 
Size 25×50 25×50 25×50 25×50 50*50 50*50 
Optimum 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 

R1 800004.98 856040.14 894008.14 934586.98 802393.25 858396.93 
R2 800815.63 857380.85 894801.16 928941.75 803223.43 852762.88 
R3 802457.23 857307.69 895049.66 928941.75 799900.45 852326.39 
R4 797508.73 857307.69 893782.11 934586.98 800057.50 854823.78 
R5 797508.73 856879.16 894008.14 928941.75 802754.66 860161.76 
R6 797582.29 857271.96 894008.14 938912.54 799336.94 860558.90 
R7 797508.73 855466.85 894801.16 944394.83 800247.98 861949.05 
R8 799695.03 856767.06 893782.11 928941.75 798501.61 856543.75 
R9 797508.73 857307.69 894801.16 928941.75 802541.51 856717.93 

R10 797508.73 854704.20 899424.91 928941.75 804205.46 859873.49 
R11 797508.73 855466.85 895275.69 928941.75 804432.09 852515.26 
R12 797508.73 854704.20 895027.19 928941.75 801786.78 864584.21 
R13 798319.38 854704.20 894008.14 934586.98 801793.94 854998.58 
R14 798243.31 855466.85 895027.19 928941.75 804549.64 868567.16 
R15 800958.13 856287.59 894801.16 935106.20 801731.16 854450.29 
R16 796648.44 854704.20 899122.05 928941.75 803552.28 856082.48 
R17 797508.73 855971.75 899424.91 928941.75 796005.36 861468.01 
R18 797508.73 855971.75 894801.16 928941.75 801299.53 854704.20 
R19 796648.44 855781.10 893782.11 934586.98 800353.91 855768.21 
R20 796648.44 856287.59 898500.95 934586.98 796787.98 859291.35 
R21 797508.73 854704.20 893782.11 934586.98 799874.94 860849.81 
R22 796648.44 854704.20 894008.14 934586.98 800418.73 851495.33 
R23 797508.73 856004.41 895027.19 928941.75 795291.86 865035.73 
R24 797508.73 854704.20 894801.16 928941.75 801538.95 852762.88 
R25 800153.53 854704.20 894008.14 928941.75 797452.36 858381.63 
R26 797508.73 854704.20 894801.16 928941.75 799035.75 864603.66 
R27 796648.44 855466.85 893782.11 934586.98 800131.54 854240.36 
R28 798325.94 854704.20 895027.19 932007.96 802161.86 856679.24 
R29 796648.44 856879.16 895027.19 928941.75 801012.90 860089.81 
R30 799144.69 857271.96 893782.11 928941.75 797635.29 857396.56 

Best Fitness 796648.44 854704.20 893782.11 928941.75 795291.86 851495.33 
Worse Fitness 802457.23 857380.85 899424.91 944394.83 804549.64 868567.16 
Std Dev. of Fitness 1480.72 1015.64 1695.79 3842.64 2429.54 4297.07 
ARPE 0.18 0.13 0.14 0.29 0.91 0.76 
HR 0.00 0.33 0.00 0.60 0.00 0.00 
Average CPU 0.8818 0.7667 0.9938 0.6026 3.6182 3.5474 
Minimum CPU 0.0620 0.0460 0.0310 0.0460 3.4530 0.2180 
Maximum CPU 1.1090 1.1250 1.3910 1.3280 3.9380 4.1250 
Std Dev. of CPU 0.3910 0.4426 0.4807 0.5866 0.1376 0.6574 
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Table A.4   Experimental Results of Fitness and CPU for CPSO (Cap113-114, Cap121-

124) 

 

Problem Cap113 Cap114 Cap121 Cap122 Cap123 Cap124 
Size 50*50 50*50 50*50 50*50 50*50 50*50 
Optimum 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 

R1 894008.14 934586.98 802393.25 858396.93 894008.14 934586.98 
R2 894801.16 944008.53 803223.43 852762.88 894801.16 944008.53 
R3 893782.11 928941.75 799900.45 852326.39 893782.11 928941.75 
R4 903014.45 929477.56 800057.50 854823.78 903014.45 929477.56 
R5 895109.53 951073.38 802754.66 860161.76 895109.53 951073.38 
R6 898158.56 928941.75 799336.94 860558.90 898158.56 928941.75 
R7 893956.91 940358.03 800247.98 861949.05 893956.91 940358.03 
R8 893956.91 929477.56 798501.61 856543.75 893956.91 929477.56 
R9 909822.04 935122.79 802541.51 856717.93 909822.04 935122.79 

R10 899348.08 928941.75 804205.46 859873.49 899348.08 928941.75 
R11 909908.70 932007.96 804432.09 852515.26 909908.70 932007.96 
R12 893251.51 928941.75 801786.78 864584.21 893251.51 928941.75 
R13 894095.76 931507.55 801793.94 854998.58 894095.76 931507.55 
R14 893076.71 938630.55 804549.64 868567.16 893076.71 938630.55 
R15 897366.96 937152.78 801731.16 854450.29 897366.96 937152.78 
R16 894095.76 944281.61 803552.28 856082.48 894095.76 944281.61 
R17 895683.45 941793.78 796005.36 861468.01 895683.45 941793.78 
R18 895656.43 939182.38 801299.53 854704.20 895656.43 939182.38 
R19 899728.81 934586.98 800353.91 855768.21 899728.81 934586.98 
R20 898096.88 937152.78 796787.98 859291.35 898096.88 937152.78 
R21 893076.71 939756.90 799874.94 860849.81 893076.71 939756.90 
R22 897366.96 928941.75 800418.73 851495.33 897366.96 928941.75 
R23 898980.31 929477.56 795291.86 865035.73 898980.31 929477.56 
R24 903681.13 928941.75 801538.95 852762.88 903681.13 928941.75 
R25 897254.54 939756.90 797452.36 858381.63 897254.54 939756.90 
R26 901570.26 929477.56 799035.75 864603.66 901570.26 929477.56 
R27 896347.91 951803.25 800131.54 854240.36 896347.91 951803.25 
R28 900870.59 928941.75 802161.86 856679.24 900870.59 928941.75 
R29 895407.93 932543.78 801012.90 860089.81 895407.93 932543.78 
R30 907021.00 935122.79 797635.29 857396.56 907021.00 935122.79 

Best Fitness 893076.71 928941.75 795291.86 851495.33 893076.71 928941.75 
Worse Fitness 909908.70 951803.25 804549.64 868567.16 909908.70 951803.25 
Std Dev. of Fitness 4753.48 6619.05 2429.54 4297.07 4753.48 6619.05 
ARPE 0.55 0.69 0.91 0.76 0.55 0.69 
HR 0.00 0.23 0.00 0.00 0.00 0.23 
Average CPU 3.9031 3.3375 3.6141 3.5495 3.8901 3.3359 
Minimum CPU 3.4540 0.1560 3.4220 0.2180 3.4530 0.1410 
Maximum CPU 4.5780 4.4840 3.9220 4.1250 4.5620 4.4690 
Std Dev. of CPU 0.2892 1.7163 0.1385 0.6577 0.2873 1.7223 
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Table A.5   Experimental Results of Fitness and CPU for CPSO (Cap131-134) 

 

Problem Cap131 Cap132 Cap133 Cap134 
Size 50×50 50×50 50×50 50×50 
Optimum 793439.56 851495.33 893076.71 928941.75 

R1 802393.25 858396.93 894008.14 934586.98 
R2 803223.43 852762.88 894801.16 944008.53 
R3 799900.45 852326.39 893782.11 928941.75 
R4 800057.50 854823.78 903014.45 929477.56 
R5 802754.66 860161.76 895109.53 951073.38 
R6 799336.94 860558.90 898158.56 928941.75 
R7 800247.98 861949.05 893956.91 940358.03 
R8 798501.61 856543.75 893956.91 929477.56 
R9 802541.51 856717.93 909822.04 935122.79 

R10 804205.46 859873.49 899348.08 928941.75 
R11 804432.09 852515.26 909908.70 932007.96 
R12 801786.78 864584.21 893251.51 928941.75 
R13 801793.94 854998.58 894095.76 931507.55 
R14 804549.64 868567.16 893076.71 938630.55 
R15 801731.16 854450.29 897548.76 937152.78 
R16 803552.28 856082.48 898580.66 944281.61 
R17 796005.36 861468.01 894664.40 941793.78 
R18 801299.53 854704.20 898155.53 939182.38 
R19 800353.91 855768.21 897020.63 934586.98 
R20 796787.98 859291.35 896661.56 937152.78 
R21 799874.94 860849.81 899270.31 939756.90 
R22 800418.73 851495.33 897270.91 928941.75 
R23 795291.86 865035.73 899908.13 929477.56 
R24 801538.95 852762.88 897786.11 928941.75 
R25 797452.36 858381.63 895407.93 939756.90 
R26 799035.75 864603.66 899460.98 929477.56 
R27 800131.54 854240.36 894388.88 951803.25 
R28 802161.86 856679.24 901392.48 928941.75 
R29 801012.90 860089.81 896573.94 932543.78 
R30 797635.29 857396.56 894801.16 935122.79 

Best Fitness 795291.86 851495.33 893076.71 928941.75 
Worse Fitness 804549.64 868567.16 909908.70 951803.25 
Std Dev. of Fitness 2429.54 4297.07 4210.93 6619.05 
ARPE 0.91 0.76 0.50 0.69 
HR 0.00 0.00 0.00 0.23 
Average CPU 3.6156 3.5599 3.7792 3.3333 
Minimum CPU 3.4220 0.2040 0.3750 0.1560 
Maximum CPU 3.9380 4.0940 4.5620 4.4530 
Std Dev. of CPU 0.1401 0.6593 0.7184 1.7151 
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Table A.6   Experimental Results of Fitness and CPU for CPSO (CapA, CapB, CapC) 

 

Problem CapA CapB CapC 
Size 100×1000 100×1000 100×1000 
Optimum 17156454.48 12979071.58 11505594.33 

R1 19286308.21 13535957.21 12482849.89 
R2 20642958.19 14183783.00 13572876.10 
R3 23726365.27 13915717.03 12666392.80 
R4 20273318.69 14391434.98 12625587.01 
R5 20131002.97 14377328.68 12010668.40 
R6 19560413.25 15225051.19 12432081.74 
R7 19184330.20 14490923.59 12194724.73 
R8 19435176.01 14317150.70 12601149.73 
R9 22448799.61 13829452.17 11973777.65 

R10 18351465.40 15356618.36 12156591.03 
R11 21173914.15 13694793.35 12647749.55 
R12 21511443.49 14184944.23 12608131.71 
R13 20618944.62 15180831.87 12292171.01 
R14 20628934.73 14270178.25 12830934.37 
R15 20215367.64 13774673.75 12709388.98 
R16 21022778.19 14137931.84 12632163.92 
R17 24436551.73 14129302.76 11982702.88 
R18 22258480.09 13416600.21 12147427.35 
R19 20569098.99 13864086.57 12258983.32 
R20 18481759.03 14557530.50 12936963.15 
R21 22349042.07 14535732.12 12452709.10 
R22 22068847.13 13390061.37 12604244.96 
R23 19603121.97 15179670.38 12115556.52 
R24 20246010.78 13864395.24 12137809.45 
R25 19644712.77 15066399.48 12446321.24 
R26 20743013.10 14580044.76 11970113.17 
R27 21455674.11 14020107.96 12816627.25 
R28 20654071.91 14332296.27 12549200.10 
R29 24638983.70 14598361.54 12153710.70 
R30 18664032.38 14435163.65 12330307.11 

Best Fitness 18351465.40 13390061.37 11970113.17 
Worse Fitness 24638983.70 15356618.36 13572876.10 
Std Dev. of 
Fitness 1608650.32 532161.62 350412.47 
ARPE 21.24 10.14 8.16 
HR 0.00 0.00 0.00 
Average CPU 19.5740 17.1318 17.6149 
Minimum CPU 14.5797 14.5453 15.0766 
Maximum CPU 26.0891 22.4030 21.3422 
Std Dev. of CPU 2.9248 2.0176 1.3452 
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APPENDIX B 
 

EXPERIMENTAL RESULTS FOR DPSO 
  

Table B.1   Experimental Results of Fitness and CPU for DPSO (Cap71-74, Cap81-82) 

Problem Cap71 Cap72 Cap73 Cap74 Cap81 Cap82 
Size 16×50 16×50 16×50 16×50 25*50  25*50  
Optimum 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 

R1 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R2 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R3 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R4 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R5 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R6 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R7 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R8 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R9 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 

R10 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R11 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R12 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R13 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R14 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R15 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R16 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R17 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R18 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R19 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R20 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R21 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R22 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R23 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R24 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R25 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R26 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R27 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R28 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R29 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R30 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 

Best Fitness 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
Worse Fitness 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
Std Dev. of Fitness 0.00 0.00 0.00 0.00 0.00 0.00 
ARPE 0.00 0.00 0.00 0.00 0.00 0.00 
HR 1.00 1.00 1.00 1.00 1.00 1.00 
Average CPU 0.0641 0.0651 0.0708 0.0693 0.3130 0.3062 
Minimum CPU 0.0160 0.0150 0.0150 0.0160 0.1570 0.1720 
Maximum CPU 0.1100 0.1100 0.1250 0.1250 0.5940 0.5310 
Std Dev. of CPU 0.0263 0.0252 0.0295 0.0294 0.1013 0.0890 
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Table B.2   Experimental Results of Fitness and CPU for DPSO (Cap83-84, Cap91-94) 

 

Problem Cap83 Cap84 Cap91 Cap92 Cap93 Cap94 
Size 25*50  25*50  25*50 25*50 25*50 25*50 
Optimum 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 

R1 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R2 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R3 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R4 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R5 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R6 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R7 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R8 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R9 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 

R10 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R11 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R12 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R13 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R14 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R15 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R16 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R17 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R18 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R19 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R20 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R21 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R22 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R23 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R24 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R25 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R26 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R27 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R28 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R29 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R30 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 

Best Fitness 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
Worse Fitness 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
Std Dev. of Fitness 0.00 0.00 0.00 0.00 0.00 0.00 
ARPE 0.00 0.00 0.00 0.00 0.00 0.00 
HR 1.00 1.00 1.00 1.00 1.00 1.00 
Average CPU 0.9365 0.2011 0.3119 0.3063 0.9333 0.2016 
Minimum CPU 0.9060 0.1090 0.1560 0.1560 0.8910 0.1100 
Maximum CPU 0.9540 0.3280 0.5940 0.5320 0.9680 0.3130 
Std Dev. of CPU 0.0142 0.0629 0.1022 0.0887 0.0173 0.0628 
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Table B.3   Experimental Results of Fitness and CPU for DPSO (Cap101-104, Cap111-

112) 

 

Problem Cap101 Cap102 Cap103 Cap104 Cap111 Cap112 
Size 25×50 25×50 25×50 25×50 50*50 50*50 
Optimum 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 

R1 796648.44 854704.20 893782.11 928941.75 795927.69 854061.12 
R2 796648.44 854704.20 893782.11 928941.75 794299.85 852151.59 
R3 796648.44 854704.20 893782.11 928941.75 795034.44 853006.06 
R4 796648.44 854704.20 893782.11 928941.75 794159.35 851495.33 
R5 796648.44 854704.20 893782.11 928941.75 794299.85 851670.12 
R6 796648.44 854704.20 893782.11 928941.75 794299.85 851670.12 
R7 796648.44 854704.20 894008.14 928941.75 795291.86 851495.33 
R8 796648.44 854704.20 893782.11 928941.75 795291.86 852864.74 
R9 796648.44 854704.20 893782.11 928941.75 795291.86 852572.23 

R10 796648.44 854704.20 893782.11 928941.75 794299.85 851670.12 
R11 796648.44 854704.20 893782.11 928941.75 795614.98 851670.12 
R12 796648.44 854704.20 893782.11 928941.75 795708.95 852257.98 
R13 796648.44 854704.20 893782.11 928941.75 794299.85 852690.06 
R14 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R15 796648.44 854704.20 893782.11 928941.75 794448.40 852904.43 
R16 796648.44 854704.20 893782.11 928941.75 794299.85 853487.53 
R17 796648.44 854704.20 893782.11 928941.75 793439.56 852151.59 
R18 796648.44 854704.20 893782.11 928941.75 794299.85 852432.78 
R19 796648.44 854704.20 893782.11 928941.75 794956.11 853171.53 
R20 796648.44 854704.20 893782.11 928941.75 795836.85 852151.59 
R21 796648.44 854704.20 893782.11 928941.75 795110.50 851670.12 
R22 796648.44 854704.20 893782.11 928941.75 793439.56 852690.06 
R23 796648.44 854704.20 893782.11 928941.75 795614.98 852151.59 
R24 796648.44 854704.20 893782.11 928941.75 795110.50 851670.12 
R25 796648.44 854704.20 893782.11 928941.75 794299.85 851495.33 
R26 796648.44 854704.20 893782.11 928941.75 794299.85 852572.23 
R27 796648.44 854704.20 894008.14 928941.75 793439.56 851670.12 
R28 796648.44 854704.20 893782.11 928941.75 794956.11 852257.98 
R29 796648.44 854704.20 893782.11 928941.75 795883.24 853039.54 
R30 796648.44 854704.20 893782.11 928941.75 794956.11 851495.33 

Best Fitness 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
Worse Fitness 796648.44 854704.20 894008.14 928941.75 795927.69 854061.12 
Std Dev. of Fitness 0.00 0.00 57.35 0.00 759.45 683.00 
ARPE 0.00 0.00 0.00 0.00 0.16 0.09 
HR 1.00 1.00 0.93 1.00 0.13 0.17 
Average CPU 0.3130 0.3062 0.3625 0.2021 2.6141 2.6589 
Minimum CPU 0.1570 0.1570 0.0930 0.1090 2.5780 2.0000 
Maximum CPU 0.5940 0.5310 0.9540 0.3130 2.6570 3.2970 
Std Dev. of CPU 0.1006 0.0915 0.1960 0.0627 0.0198 0.2142 
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Table B.4   Experimental Results of Fitness and CPU for DPSO (Cap113-114, Cap121-

124) 

 

Problem Cap113 Cap114 Cap121 Cap122 Cap123 Cap124 
Size 50*50 50*50 50*50 50*50 50*50 50*50 
Optimum 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 

R1 893076.71 928941.75 795927.69 854061.12 893076.71 928941.75 
R2 893907.77 928941.75 794299.85 852151.59 893907.77 928941.75 
R3 893076.71 928941.75 795034.44 853006.06 893076.71 928941.75 
R4 893076.71 928941.75 794159.35 851495.33 893076.71 928941.75 
R5 893907.77 928941.75 794299.85 851670.12 893907.77 928941.75 
R6 893782.11 928941.75 794299.85 851670.12 893782.11 928941.75 
R7 893251.51 928941.75 795291.86 851495.33 893251.51 928941.75 
R8 893076.71 928941.75 795291.86 852864.74 893076.71 928941.75 
R9 894008.14 928941.75 795291.86 852572.23 894008.14 928941.75 

R10 893076.71 928941.75 794299.85 851670.12 893076.71 928941.75 
R11 894008.14 928941.75 795614.98 851670.12 894008.14 928941.75 
R12 893076.71 928941.75 795708.95 852257.98 893076.71 928941.75 
R13 894095.76 928941.75 794299.85 852690.06 894095.76 928941.75 
R14 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R15 894008.14 928941.75 794448.40 852904.43 894008.14 928941.75 
R16 893076.71 928941.75 794299.85 853487.53 893076.71 928941.75 
R17 893076.71 928941.75 793439.56 852151.59 893076.71 928941.75 
R18 893076.71 928941.75 795935.81 852432.78 893076.71 928941.75 
R19 893076.71 928941.75 794956.11 853171.53 893076.71 928941.75 
R20 893782.11 928941.75 795836.85 852151.59 893782.11 928941.75 
R21 893732.98 928941.75 795110.50 851670.12 893732.98 928941.75 
R22 893782.11 928941.75 793439.56 852690.06 893782.11 928941.75 
R23 893076.71 928941.75 795883.24 852151.59 893076.71 928941.75 
R24 894095.76 928941.75 795110.50 851670.12 894095.76 928941.75 
R25 893076.71 928941.75 794299.85 851495.33 893076.71 928941.75 
R26 893907.77 928941.75 794299.85 852572.23 893907.77 928941.75 
R27 893907.77 928941.75 793439.56 851670.12 893907.77 928941.75 
R28 893076.71 928941.75 795883.24 852257.98 893076.71 928941.75 
R29 893251.51 928941.75 795883.24 853039.54 893251.51 928941.75 
R30 893782.11 928941.75 794956.11 851495.33 893782.11 928941.75 

Best Fitness 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
Worse Fitness 894095.76 928941.75 795935.81 854061.12 894095.76 928941.75 
Std Dev. of Fitness 420.88 0.00 822.12 683.00 420.88 0.00 
ARPE 0.04 0.00 0.17 0.09 0.04 0.00 
HR 0.47 1.00 0.13 0.17 0.47 1.00 
Average CPU 2.7984 1.7136 2.5453 2.6318 2.8167 1.7146 
Minimum CPU 2.7350 1.0930 1.8590 1.9840 2.7340 1.0940 
Maximum CPU 2.9370 2.3440 2.6560 2.7190 3.2820 2.3430 
Std Dev. of CPU 0.0416 0.3225 0.1804 0.1758 0.0990 0.3239 
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Table B.5   Experimental Results of Fitness and CPU for DPSO (Cap131-134) 

 

Problem Cap131 Cap132 Cap133 Cap134 
Size 50×50 50×50 50×50 50×50 
Optimum 793439.56 851495.33 893076.71 928941.75 

R1 795927.69 854061.12 893076.71 928941.75 
R2 794299.85 852151.59 893907.77 928941.75 
R3 795034.44 853006.06 893076.71 928941.75 
R4 794159.35 851495.33 893732.98 928941.75 
R5 794299.85 851670.12 893907.77 928941.75 
R6 794299.85 851670.12 893782.11 928941.75 
R7 795291.86 851495.33 893251.51 928941.75 
R8 795291.86 852864.74 893076.71 928941.75 
R9 795291.86 852572.23 893251.51 928941.75 

R10 794299.85 851670.12 893251.51 928941.75 
R11 795614.98 851670.12 894008.14 928941.75 
R12 795708.95 852257.98 893076.71 928941.75 
R13 794299.85 852690.06 893076.71 928941.75 
R14 793439.56 851495.33 893076.71 928941.75 
R15 794448.40 852904.43 893076.71 928941.75 
R16 794299.85 853487.53 893076.71 928941.75 
R17 793439.56 852151.59 893076.71 928941.75 
R18 795935.81 852432.78 894008.14 928941.75 
R19 794956.11 853171.53 893076.71 928941.75 
R20 795836.85 852151.59 893956.91 928941.75 
R21 795110.50 851670.12 893732.98 928941.75 
R22 793439.56 852690.06 893782.11 928941.75 
R23 795883.24 852151.59 893076.71 928941.75 
R24 795110.50 851670.12 894095.76 928941.75 
R25 794299.85 851495.33 893076.71 928941.75 
R26 794299.85 852572.23 893907.77 928941.75 
R27 793439.56 851670.12 893907.77 928941.75 
R28 795883.24 852257.98 893076.71 928941.75 
R29 795883.24 853039.54 893251.51 928941.75 
R30 794956.11 851495.33 893782.11 928941.75 

Best Fitness 793439.56 851495.33 893076.71 928941.75 
Worse Fitness 795935.81 854061.12 894095.76 928941.75 
Std Dev. of Fitness 822.12 683.00 398.07 0.00 
ARPE 0.17 0.09 0.04 0.00 
HR 0.13 0.17 0.43 1.00 
Average CPU 2.5464 2.6328 2.5292 1.7167 
Minimum CPU 1.8590 1.9850 1.3120 1.0940 
Maximum CPU 2.6570 2.7340 2.8440 2.3440 
Std Dev. of CPU 0.1802 0.1765 0.4015 0.3236 
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Table B.6   Experimental Results of Fitness and CPU for DPSO (CapA, CapB, CapC) 

 

Problem CapA CapB CapC 
Size 100×1000 100×1000 100×1000 
Optimum 17156454.48 12979071.58 11505594.33 

R1 18443018.79 13531212.89 11962452.14 
R2 18894956.98 13631186.37 11925228.95 
R3 18891645.29 13543359.13 12017221.75 
R4 18187486.86 13642369.37 11978021.05 
R5 18917956.67 13404369.23 12062754.08 
R6 19060412.50 13560684.88 11906158.35 
R7 18005287.27 13683285.12 12002066.48 
R8 18352511.86 13752850.49 12068311.47 
R9 18358038.12 13287703.69 12045401.22 

R10 18797093.73 13714841.04 12120511.41 
R11 19085419.83 13695957.63 11997640.45 
R12 18905525.98 13612933.66 12180785.60 
R13 18819343.93 13636670.96 11966273.49 
R14 17810901.35 13675479.60 12136713.60 
R15 18206354.48 13567406.09 12116639.78 
R16 18454922.80 13307568.34 12002874.65 
R17 18745685.48 13694580.17 12122326.90 
R18 18503515.88 13635318.61 11855107.73 
R19 18750964.16 13717310.63 12131028.17 
R20 18837421.82 13499552.61 12177213.75 
R21 18772381.74 13681660.29 11980596.86 
R22 18033096.90 13923731.30 12143949.64 
R23 18974860.60 13611033.23 12053339.47 
R24 18368475.19 13480454.01 11939968.78 
R25 18919372.58 13802226.64 12018782.14 
R26 18729636.32 13512324.14 11948467.25 
R27 18354003.11 13638769.69 12028610.32 
R28 19028995.87 13663028.65 11930936.11 
R29 18658660.67 13771439.04 11958433.47 
R30 19366467.31 13641296.69 12076767.10 

Best Fitness 17810901.35 13287703.69 11855107.73 
Worse Fitness 19366467.31 13923731.30 12180785.60 
Std Dev. of Fitness 367959.31 135262.96 85472.59 
ARPE 8.65 4.92 4.54 
HR 0.00 0.00 0.00 
Average CPU 17.8973 17.0653 17.1341 
Minimum CPU 17.7171 16.9203 17.0156 
Maximum CPU 18.1500 17.1735 17.3250 
Std Dev. of CPU 0.0896 0.0636 0.0720 
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APPENDIX C 

 
EXPERIMENTAL RESULTS FOR CPSOLS 

 

Table C.1   Experimental Results of Fitness and CPU for CPSOLS (Cap71-74, Cap81-
82) 

Problem Cap71 Cap72 Cap73 Cap74 Cap81 Cap82 
Size 16×50 16×50 16×50 16×50 25*50  25*50  
Optimum 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 

R1 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R2 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R3 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R4 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R5 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R6 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R7 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R8 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R9 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 

R10 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R11 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R12 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R13 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R14 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R15 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R16 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R17 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R18 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R19 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R20 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R21 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R22 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R23 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R24 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R25 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R26 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R27 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R28 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R29 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R30 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 

Best Fitness 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
Worse Fitness 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
Std Dev. of Fitness 0.00 0.00 0.00 0.00 0.00 0.00 
ARPE 0.00 0.00 0.00 0.00 0.00 0.00 
HR 1.00 1.00 1.00 1.00 1.00 1.00 
Average CPU 0.0146 0.0172 0.0281 0.0182 0.1875 0.0896 
Minimum CPU 0.0000 0.0000 0.0000 0.0000 0.0000 0.0150 
Maximum CPU 0.0630 0.0780 0.0930 0.0630 0.7650 0.2970 
Std Dev. of CPU 0.0164 0.0207 0.0250 0.0190 0.1938 0.0750 
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Table C.2   Experimental Results of Fitness and CPU for CPSOLS (Cap83-84, Cap91-

94) 

 

Problem Cap83 Cap84 Cap91 Cap92 Cap93 Cap94 
Size 25*50  25*50  25*50 25*50 25*50 25*50 
Optimum 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 

R1 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R2 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R3 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R4 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R5 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R6 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R7 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R8 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R9 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 

R10 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R11 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R12 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R13 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R14 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R15 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R16 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R17 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R18 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R19 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R20 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R21 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R22 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R23 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R24 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R25 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R26 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R27 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R28 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R29 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R30 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 

Best Fitness 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
Worse Fitness 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
Std Dev. of Fitness 0.00 0.00 0.00 0.00 0.00 0.00 
ARPE 0.00 0.00 0.00 0.00 0.00 0.00 
HR 1.00 1.00 1.00 1.00 1.00 1.00 
Average CPU 0.2151 0.0370 0.1875 0.0896 0.2151 0.0370 
Minimum CPU 0.0310 0.0000 0.0000 0.0000 0.0310 0.0000 
Maximum CPU 0.7500 0.1880 0.7660 0.2970 0.7500 0.1720 
Std Dev. of CPU 0.1955 0.0393 0.1939 0.0756 0.1964 0.0399 
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Table C.3   Experimental Results of Fitness and CPU for CPSOLS (Cap101-104, 

Cap111-112) 

 

Problem Cap101 Cap102 Cap103 Cap104 Cap111 Cap112 
Size 25×50 25×50 25×50 25×50 50*50 50*50 
Optimum 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 

R1 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R2 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R3 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R4 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R5 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R6 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R7 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R8 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R9 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 

R10 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R11 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R12 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R13 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R14 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R15 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R16 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R17 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R18 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R19 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R20 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R21 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R22 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R23 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R24 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R25 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R26 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R27 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R28 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R29 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R30 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 

Best Fitness 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
Worse Fitness 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
Std Dev. of Fitness 0.00 0.00 0.00 0.00 0.00 0.00 
ARPE 0.00 0.00 0.00 0.00 0.00 0.00 
HR 1.00 1.00 1.00 1.00 1.00 1.00 
Average CPU 0.1880 0.0906 0.2151 0.0370 1.4271 1.0245 
Minimum CPU 0.0000 0.0000 0.0310 0.0000 0.0780 0.1090 
Maximum CPU 0.7650 0.2970 0.7500 0.1720 3.4850 4.9370 
Std Dev. of CPU 0.1950 0.0774 0.1963 0.0399 0.9770 0.9513 
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Table C.4   Experimental Results of Fitness and CPU for CPSOLS (Cap113-114, 

Cap121-124) 

 

Problem Cap113 Cap114 Cap121 Cap122 Cap123 Cap124 
Size 50*50 50*50 50*50 50*50 50*50 50*50 
Optimum 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 

R1 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R2 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R3 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R4 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R5 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R6 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R7 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R8 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R9 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 

R10 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R11 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R12 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R13 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R14 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R15 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R16 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R17 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R18 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R19 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R20 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R21 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R22 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R23 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R24 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R25 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R26 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R27 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R28 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R29 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R30 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 

Best Fitness 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
Worse Fitness 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
Std Dev. of Fitness 0.00 0.00 0.00 0.00 0.00 0.00 
ARPE 0.00 0.00 0.00 0.00 0.00 0.00 
HR 1.00 1.00 1.00 1.00 1.00 1.00 
Average CPU 1.3651 0.3635 1.4276 1.0240 1.3651 0.3635 
Minimum CPU 0.2810 0.0470 0.0630 0.1090 0.2820 0.0470 
Maximum CPU 3.4060 1.3600 3.5000 4.9380 3.4060 1.3590 
Std Dev. of CPU 0.9785 0.3504 0.9811 0.9506 0.9781 0.3505 
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Table C.5   Experimental Results of Fitness and CPU for CPSOLS (Cap131-134) 

 

Problem Cap131 Cap132 Cap133 Cap134 
Size 50×50 50×50 50×50 50×50 
Optimum 793439.56 851495.33 893076.71 928941.75 

R1 793439.56 851495.33 893076.71 928941.75 
R2 793439.56 851495.33 893076.71 928941.75 
R3 793439.56 851495.33 893076.71 928941.75 
R4 793439.56 851495.33 893076.71 928941.75 
R5 793439.56 851495.33 893076.71 928941.75 
R6 793439.56 851495.33 893076.71 928941.75 
R7 793439.56 851495.33 893076.71 928941.75 
R8 793439.56 851495.33 893076.71 928941.75 
R9 793439.56 851495.33 893076.71 928941.75 

R10 793439.56 851495.33 893076.71 928941.75 
R11 793439.56 851495.33 893076.71 928941.75 
R12 793439.56 851495.33 893076.71 928941.75 
R13 793439.56 851495.33 893076.71 928941.75 
R14 793439.56 851495.33 893076.71 928941.75 
R15 793439.56 851495.33 893076.71 928941.75 
R16 793439.56 851495.33 893076.71 928941.75 
R17 793439.56 851495.33 893076.71 928941.75 
R18 793439.56 851495.33 893076.71 928941.75 
R19 793439.56 851495.33 893076.71 928941.75 
R20 793439.56 851495.33 893076.71 928941.75 
R21 793439.56 851495.33 893076.71 928941.75 
R22 793439.56 851495.33 893076.71 928941.75 
R23 793439.56 851495.33 893076.71 928941.75 
R24 793439.56 851495.33 893076.71 928941.75 
R25 793439.56 851495.33 893076.71 928941.75 
R26 793439.56 851495.33 893076.71 928941.75 
R27 793439.56 851495.33 893076.71 928941.75 
R28 793439.56 851495.33 893076.71 928941.75 
R29 793439.56 851495.33 893076.71 928941.75 
R30 793439.56 851495.33 893076.71 928941.75 

Best Fitness 793439.56 851495.33 893076.71 928941.75 
Worse Fitness 793439.56 851495.33 893076.71 928941.75 
Std Dev. of Fitness 0.00 0.00 0.00 0.00 
ARPE 0.00 0.00 0.00 0.00 
HR 1.00 1.00 1.00 1.00 
Average CPU 1.4281 1.0245 1.3651 0.3635 
Minimum CPU 0.0630 0.1090 0.2810 0.0470 
Maximum CPU 3.5000 4.9380 3.3910 1.3600 
Std Dev. of CPU 0.9794 0.9508 0.9780 0.3502 
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Table C.6   Experimental Results of Fitness and CPU for CPSOLS (CapA, CapB, CapC) 

 

Problem CapA CapB CapC 
Size 100×1000 100×1000 100×1000 
Optimum 17156454.48 12979071.58 11505594.33 

R1 17156454.48 13057343.82 11509361.66 
R2 17156454.48 12979071.58 11518684.91 
R3 17156454.48 13057343.82 11509361.66 
R4 17156454.48 13057343.82 11509361.66 
R5 17156454.48 12979071.58 11509361.66 
R6 17156454.48 12979071.58 11509361.66 
R7 17156454.48 13057343.82 11509361.66 
R8 17156454.48 13007092.03 11528362.06 
R9 17156454.48 13060291.10 11509361.66 

R10 17156454.48 12979071.58 11535255.51 
R11 17156454.48 13007092.03 11509361.66 
R12 17156454.48 13057343.82 11509361.66 
R13 17156454.48 12979071.58 11509361.66 
R14 17156454.48 12979071.58 11509361.66 
R15 17156454.48 12979071.58 11554372.62 
R16 17156454.48 12979071.58 11509361.66 
R17 17156454.48 13057343.82 11580061.89 
R18 17156454.48 13084984.12 11509361.66 
R19 17156454.48 13057343.82 11509361.66 
R20 17156454.48 12979071.58 11509361.66 
R21 17346752.16 12991528.78 11509361.66 
R22 17156454.48 13057343.82 11509361.66 
R23 17156454.48 13057343.82 11516305.38 
R24 17156454.48 13057343.82 11509361.66 
R25 17156454.48 12979071.58 11509361.66 
R26 17156454.48 13057343.82 11509361.66 
R27 17156454.48 13057343.82 11509361.66 
R28 17156454.48 13057343.82 11509361.66 
R29 17156454.48 12979071.58 11535255.51 
R30 17156454.48 12979071.58 11509361.66 

Best Fitness 17156454.48 12979071.58 11509361.66 
Worse Fitness 17346752.16 13084984.12 11580061.89 
Std Dev. of Fitness 34743.44 39458.67 16072.22 
ARPE 0.04 0.33 0.09 
HR 0.97 0.40 0.00 
Average CPU 22.3921 30.6541 27.4234 
Minimum CPU 6.1969 3.5375 5.5250 
Maximum CPU 56.4968 60.4703 57.5594 
Std Dev. of CPU 13.4863 16.3912 13.5369 
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APPENDIX D 

 
EXPERIMENTAL RESULTS FOR DPSOLS 

 

Table D.1   Experimental Results of Fitness and CPU for DPSOLS (Cap71-74, Cap81-
82) 

Problem Cap71 Cap72 Cap73 Cap74 Cap81 Cap82 
Size 16×50 16×50 16×50 16×50 25*50  25*50  
Optimum 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 

R1 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R2 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R3 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R4 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R5 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R6 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R7 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R8 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R9 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 

R10 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R11 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R12 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R13 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R14 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R15 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R16 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R17 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R18 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R19 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R20 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R21 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R22 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R23 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R24 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R25 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R26 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R27 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R28 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R29 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
R30 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 

Best Fitness 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
Worse Fitness 932615.75 977799.40 1010641.45 1034976.98 796648.44 854704.20 
Std Dev. of Fitness 0.00 0.00 0.00 0.00 0.00 0.00 
ARPE 0.00 0.00 0.00 0.00 0.00 0.00 
HR 1.00 1.00 1.00 1.00 1.00 1.00 
Average CPU 0.0130 0.0078 0.0203 0.0109 0.1516 0.0557 
Minimum CPU 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Maximum CPU 0.0470 0.0310 0.1090 0.0310 0.5160 0.3430 
Std Dev. of CPU 0.0160 0.0106 0.0232 0.0123 0.1618 0.0709 
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Table D.2   Experimental Results of Fitness and CPU for DPSOLS (Cap83-84, Cap91-

94) 

 

Problem Cap83 Cap84 Cap91 Cap92 Cap93 Cap94 
Size 25*50  25*50  25*50 25*50 25*50 25*50 
Optimum 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 

R1 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R2 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R3 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R4 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R5 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R6 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R7 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R8 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R9 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 

R10 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R11 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R12 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R13 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R14 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R15 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R16 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R17 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R18 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R19 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R20 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R21 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R22 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R23 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R24 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R25 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R26 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R27 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R28 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R29 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
R30 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 

Best Fitness 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
Worse Fitness 893782.11 928941.75 796648.44 854704.20 893782.11 928941.75 
Std Dev. of Fitness 0.00 0.00 0.00 0.00 0.00 0.00 
ARPE 0.00 0.00 0.00 0.00 0.00 0.00 
HR 1.00 1.00 1.00 1.00 1.00 1.00 
Average CPU 0.1693 0.0339 0.1500 0.0562 0.1693 0.0344 
Minimum CPU 0.0160 0.0000 0.0000 0.0000 0.0160 0.0000 
Maximum CPU 0.5780 0.2190 0.5150 0.3590 0.5780 0.2190 
Std Dev. of CPU 0.1513 0.0486 0.1624 0.0740 0.1532 0.0475 
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Table D.3   Experimental Results of Fitness and CPU for DPSOLS (Cap101-104, 

Cap111-112) 

 

Problem Cap101 Cap102 Cap103 Cap104 Cap111 Cap112 
Size 25×50 25×50 25×50 25×50 50*50 50*50 
Optimum 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 

R1 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R2 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R3 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R4 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R5 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R6 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R7 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R8 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R9 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 

R10 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R11 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R12 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R13 796648.44 854704.20 893782.11 928941.75 794299.85 851495.33 
R14 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R15 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R16 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R17 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R18 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R19 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R20 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R21 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R22 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R23 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R24 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R25 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R26 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R27 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R28 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R29 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
R30 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 

Best Fitness 796648.44 854704.20 893782.11 928941.75 793439.56 851495.33 
Worse Fitness 796648.44 854704.20 893782.11 928941.75 794299.85 851495.33 
Std Dev. of Fitness 0.00 0.00 0.00 0.00 157.07 0.00 
ARPE 0.00 0.00 0.00 0.00 0.00 0.00 
HR 1.00 1.00 1.00 1.00 0.97 1.00 
Average CPU 0.1505 0.0557 0.1693 0.0344 0.9927 0.7750 
Minimum CPU 0.0000 0.0000 0.0150 0.0000 0.0620 0.0790 
Maximum CPU 0.5320 0.3440 0.5780 0.2190 2.9530 1.6560 
Std Dev. of CPU 0.1621 0.0712 0.1512 0.0487 0.7057 0.4639 
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Table D.4   Experimental Results of Fitness and CPU for DPSOLS (Cap113-114, 

Cap121-124) 

 

Problem Cap113 Cap114 Cap121 Cap122 Cap123 Cap124 
Size 50*50 50*50 50*50 50*50 50*50 50*50 
Optimum 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 

R1 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R2 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R3 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R4 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R5 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R6 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R7 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R8 893251.51 928941.75 793439.56 851495.33 893251.51 928941.75 
R9 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 

R10 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R11 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R12 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R13 893076.71 928941.75 794299.85 851495.33 893076.71 928941.75 
R14 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R15 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R16 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R17 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R18 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R19 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R20 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R21 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R22 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R23 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R24 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R25 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R26 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R27 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R28 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R29 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
R30 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 

Best Fitness 893076.71 928941.75 793439.56 851495.33 893076.71 928941.75 
Worse Fitness 893251.51 928941.75 794299.85 851495.33 893251.51 928941.75 
Std Dev. of Fitness 31.91 0.00 157.07 0.00 31.91 0.00 
ARPE 0.00 0.00 0.00 0.00 0.00 0.00 
HR 0.97 1.00 0.97 1.00 0.97 1.00 
Average CPU 1.0510 0.5594 0.9932 0.7740 1.0510 0.5594 
Minimum CPU 0.0160 0.0160 0.0630 0.0790 0.0160 0.0160 
Maximum CPU 3.0160 1.8280 2.9530 1.6410 3.0160 1.8280 
Std Dev. of CPU 0.8621 0.5622 0.7059 0.4625 0.8615 0.5625 
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Table D.5   Experimental Results of Fitness and CPU for DPSOLS (Cap131-134) 

 

Problem Cap131 Cap132 Cap133 Cap134 
Size 50×50 50×50 50×50 50×50 
Optimum 793439.56 851495.33 893076.71 928941.75 

R1 793439.56 851495.33 893076.71 928941.75 
R2 793439.56 851495.33 893076.71 928941.75 
R3 793439.56 851495.33 893076.71 928941.75 
R4 793439.56 851495.33 893076.71 928941.75 
R5 793439.56 851495.33 893076.71 928941.75 
R6 793439.56 851495.33 893076.71 928941.75 
R7 793439.56 851495.33 893076.71 928941.75 
R8 793439.56 851495.33 893251.51 928941.75 
R9 793439.56 851495.33 893076.71 928941.75 

R10 793439.56 851495.33 893076.71 928941.75 
R11 793439.56 851495.33 893076.71 928941.75 
R12 793439.56 851495.33 893076.71 928941.75 
R13 794299.85 851495.33 893076.71 928941.75 
R14 793439.56 851495.33 893076.71 928941.75 
R15 793439.56 851495.33 893076.71 928941.75 
R16 793439.56 851495.33 893076.71 928941.75 
R17 793439.56 851495.33 893076.71 928941.75 
R18 793439.56 851495.33 893076.71 928941.75 
R19 793439.56 851495.33 893076.71 928941.75 
R20 793439.56 851495.33 893076.71 928941.75 
R21 793439.56 851495.33 893076.71 928941.75 
R22 793439.56 851495.33 893076.71 928941.75 
R23 793439.56 851495.33 893076.71 928941.75 
R24 793439.56 851495.33 893076.71 928941.75 
R25 793439.56 851495.33 893076.71 928941.75 
R26 793439.56 851495.33 893076.71 928941.75 
R27 793439.56 851495.33 893076.71 928941.75 
R28 793439.56 851495.33 893076.71 928941.75 
R29 793439.56 851495.33 893076.71 928941.75 
R30 793439.56 851495.33 893076.71 928941.75 

Best Fitness 793439.56 851495.33 893076.71 928941.75 
Worse Fitness 794299.85 851495.33 893251.51 928941.75 
Std Dev. of Fitness 157.07 0.00 31.91 0.00 
ARPE 0.00 0.00 0.00 0.00 
HR 0.97 1.00 0.97 1.00 
Average CPU 0.9922 0.7745 1.0516 0.5594 
Minimum CPU 0.0620 0.0780 0.0150 0.0160 
Maximum CPU 2.9530 1.6400 3.0310 1.8280 
Std Dev. of CPU 0.7060 0.4615 0.8639 0.5597 
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Table D.6   Experimental Results of Fitness and CPU for DPSOLS (CapA, CapB, CapC) 

 

Problem CapA CapB CapC 
Size 100×1000 100×1000 100×1000 
Optimum 17156454.48 12979071.58 11505594.33 

R1 17426742.86 13060291.10 11535255.51 
R2 17580326.65 13057343.82 11633180.53 
R3 17413325.08 13084984.12 11509361.66 
R4 17706093.45 12979071.58 11595517.65 
R5 17346752.16 13103172.56 11553916.02 
R6 17156454.48 12979071.58 11539375.97 
R7 17689516.71 13057343.82 11528362.06 
R8 17156454.48 13057343.82 11505594.33 
R9 17346752.16 13060291.10 11540878.06 

R10 17779775.71 13150805.13 11518684.91 
R11 17346752.16 13179479.33 11518684.91 
R12 17844165.28 13138281.80 11543204.97 
R13 17180539.56 12979071.58 11543204.97 
R14 17156454.48 13148369.52 11505594.33 
R15 17426742.86 13098385.38 11528362.06 
R16 17779775.71 12979071.58 11509361.66 
R17 17156454.48 13214718.16 11630532.09 
R18 17156454.48 12979071.58 11544611.67 
R19 17156454.48 13444180.76 11560840.92 
R20 17156454.48 13259918.72 11528362.06 
R21 17771742.16 13070745.09 11716349.47 
R22 17580326.65 13057343.82 11505594.33 
R23 17156454.48 13103172.56 11595517.65 
R24 17711146.02 13070745.09 11528362.06 
R25 17156454.48 13193415.97 11509361.66 
R26 17516002.50 13113656.24 11633619.04 
R27 17665889.11 12979071.58 11509361.66 
R28 17273028.38 13057343.82 11530826.61 
R29 17535907.42 12991528.78 11505594.33 
R30 17156454.48 13070745.09 11535255.51 

Best Fitness 17156454.48 12979071.58 11505594.33 
Worse Fitness 17844165.28 13444180.76 11716349.47 
Std Dev. of Fitness 243932.83 100126.81 49717.56 
ARPE 1.51 0.86 0.37 
HR 0.33 0.20 0.13 
Average CPU 19.5889 19.6360 18.7685 
Minimum CPU 6.5687 8.0343 6.3703 
Maximum CPU 26.0703 23.7907 21.0016 
Std Dev. of CPU 5.1268 4.5195 3.1724 
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APPENDIX E 
 

EXAMPLE OF A RUN’S EXPORTED DATA 
 
 
Problem Name....=cap122 
 
Replication Number........=1 
Seed=81569 Iteration=1000 Popsize=50 dimension=0 
CPU in seconds............=3.6720 
Relative Percent Deviation=0.8105 
Optimal Value.............=851495.3310 
Global Fitness............=858396.9250 
 
 0 0 0 0 0 1 0 0 0 0 1
 0 0 0 1 0 0 1 0 0 0 0
 1 0 0 0 1 0 0 0 0 0 0
 1 0 0 0 1 1 0 0 0 0 0
 1 0 0 0 1 0  
 
Problem Name....=cap122 
 
Replication Number........=2 
Seed=81570 Iteration=1000 Popsize=50 dimension=0 
CPU in seconds............=3.6720 
Relative Percent Deviation=0.1489 
Optimal Value.............=851495.3310 
Global Fitness............=852762.8750 
 
 0 0 0 0 0 1 0 0 0 0 1
 0 1 0 1 0 0 0 0 0 0 0
 1 0 1 0 1 0 0 0 0 0 0
 1 0 0 1 0 0 0 0 0 0 0
 1 1 0 0 0 0  
 
Problem Name....=cap122 
 
Replication Number........=3 
Seed=81571 Iteration=1000 Popsize=50 dimension=0 
CPU in seconds............=3.5630 
Relative Percent Deviation=0.0976 
Optimal Value.............=851495.3310 
Global Fitness............=852326.3875 
 
 0 0 0 1 0 1 0 0 0 0 1
 0 1 0 1 0 0 0 0 0 0 0
 1 0 1 0 1 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0 0 0
 1 0 1 0 0 0  
  
 
Figure E.1   Example of a run’s exported data  
(Cap122 problem’s 1st, 2nd and 3rd replications results obtained with CPSO algorithm) 
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APPENDIX F 
 

EXAMPLE OF A DATASET 

Table F.1   Structure of a Dataset 

 
Facility: 

1 
Facility: 

2 …
Facility: 

n 

C: Capacity C1 C2 .. Cn 

F: Fixed Cost fc1 fc2 .. fcn 

Customer: 1 c11 c21 .. cn1 

Customer: 2 c12 c22 .. cn2 

.. .. .. .. .. 

.. .. .. .. .. 

Customer: m c1m c2m cnm 
 

The structure of a dataset in the OR-library is given in the Table F.1. Since these 

datasets are also use in capacitated facility location problem the capacities of facilities 

are given. As an example dataset of problem Cap71 is given in the Tables F.2 and F.3.  
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Table F.2   Dataset of problem Cap71 (a) 

 1 2 3 4 5 6 7 8 
C: 58268 58268 58268 58268 58268 58268 58268 58268 
F: 7500 7500 7500 7500 7500 7500 7500 7500 
1 6739.725 10355.05 7650.4 5219.5 5776.125 6641.175 4374.525 3847.1 
2 3204.863 5457.075 3845.4 2396.85 2628.488 3220.088 1838.963 2266.35 
3 4914 26409.6 19622.4 13876.8 9147.6 14977.2 21848.4 35330.4 
4 32372.11 29982.23 21024.33 29681.4 21275.01 20071.71 64292.99 80186.58 
5 1715.463 2152.175 1577.9 1061.75 1250.463 1363.613 1524.038 955.575 
6 6421.513 23701.6 16197.03 10383.43 7483.613 12332.94 15840.66 27251.25 
7 81972.38 28499.25 43134 65767.5 58805.63 48555.38 138615.4 155294.3 
8 33391.46 26544.38 6370.65 16770.6 13571.66 8861.738 51550.54 57907.58 
9 2020.838 2480.775 1869.45 1324.95 1525.838 1646.288 1817.063 1211.925 
10 1459.6 1995.2 1402.4 869.6 1050.8 1181.2 1133.2 546.4 
11 141015.4 205925.1 104130.3 12638.5 46089.31 66146.06 198300.8 220212.1 
12 17684.5 32069.4 15322.8 8429.8 1231.7 9073.9 32781.3 41335.4 
13 38207.63 42477.35 15319.7 15832.8 11526.43 5185.975 62653.18 71210.95 
14 1953.738 5044.325 4089.8 3428.425 2289.788 3530.313 5553.763 8308.3 
15 17181.56 36054.38 25399.5 16297.5 15828.56 21148.31 7310.813 21709.5 
16 25640.85 35602.5 25154.4 15763.8 18421.65 21255.75 18478.05 8135.7 
17 7031.425 10492.05 6305.4 2542.5 3918.275 4743.175 6856.275 7119 
18 78453.7 92515.8 36644.4 27445.6 23562.5 23034.7 126332.7 141375 
19 9452.713 12441.28 7754.45 3542 5082.138 6005.588 10274.96 10214.88 
20 8597.063 14113.13 10500.75 7254 7875.563 9152.813 5467.313 6371.625 
21 1581.275 2030.15 1326.2 693.5 924.825 1063.525 1628.775 1619.75 
22 23170.99 48702.45 36072.9 26166.98 23493.79 30494.51 14919.41 33813.3 
23 12087.56 19877.33 9670.05 3801.9 2252.213 5847.488 19650.04 23844.53 
24 4883 12851.6 10822.4 8930 6798.2 9435.4 11943.4 18148.8 
25 24063.88 39682.5 24603.15 11050.05 13644.68 18976.38 20197.38 24684.55 
26 4124.038 12148.85 8180.675 5611.05 2952.963 5851.163 11613.86 17111.18 
27 281463 406770 325852.8 253234.8 264755.4 294457.8 211356.6 210756 
28 11056.76 22113.53 11424.6 5582.475 2430.613 7436.088 19279.01 25460.13 
29 8585.625 22449.15 14122.6 7458.95 6609.425 10790.78 11525.83 20448.85 
30 12480.19 25455.38 22151.25 19069.88 15598.69 19892.81 23976.56 34080.75 
31 3727.763 11116.88 8229.375 5826.975 4628.663 6632.588 6476.663 11884.95 
32 4673.025 13346.9 7880.95 4330.9 2861.775 5655.125 9623.775 14610.75 
33 13451.69 35106.25 25927.25 17347.63 15249.81 21192.19 16808.19 32845.75 
34 372672.6 229188 203364 322800 261306.6 229995 681269.4 810550.8 
35 9745.938 18070 12049.38 7198.75 7592.813 9802.813 5780.938 10692.5 
36 12055.13 18181.05 11400.9 5307 7379.475 8870.925 10865.63 10202.25 
37 97602.71 73603.55 59561.98 83331.7 65940.34 56946.39 185247.8 222003.7 
38 60774.51 63568.43 27330.55 30982 20497.91 15076.06 97731.61 114578.1 
39 54470.06 65177.25 52117.13 40378.88 44494.31 47243.81 47631.56 34351.13 
40 7146.3 8618.2 6428.8 7822.8 5211.1 5621.1 15256.1 19762 
41 38011.61 70728.08 39587.55 15801.4 16494.81 27925.61 49862.66 62659.28 
42 39723.31 52917.88 32225.45 13627.4 20427.14 24504.19 41119.56 40854.28 
43 16111.56 20714.38 15620 11041.25 12598.44 13719.06 12502.19 7885.625 
44 16981.25 32575 23312.5 16250 16268.75 19856.25 9331.25 20750 
45 168663.3 210766.1 169251.5 131938.9 144628.5 153760.6 134768.1 109304.8 
46 57109.86 66703 53124.18 40919.73 45381.86 48057.31 52583.59 39050.58 
47 15576.08 18481.5 14368.95 10672.65 12024.08 12834.38 14205.23 10134.3 
48 2542.488 3928.575 3020.85 2205 2361.188 2682.138 1756.038 1983.275 
49 34056.3 34221 24448.8 31329.6 21905.1 20807.1 69009.3 86632.2 
50 7095.675 11999.1 7886.55 4190.25 4847.925 6351.975 4903.425 6421.35 
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Table F.3   Dataset of problem Cap71 (b) 

 9 10 11 12 13 14 15 16 
C: 58268 58268 58268 58268 58268 58268 58268 58268 
F: 7500 7500 0 7500 7500 7500 7500 7500 
1 6429.475 5396.525 5219.5 4182.9 7391.25 5038.825 10349.58 6051.7 
2 3117.863 2582.813 2296.8 1779.15 5115.6 2189.138 5399.438 2838.375 
3 15111.6 23679.6 9828 19303.2 57472.8 11180.4 22957.2 15489.6 
4 25921.09 69206.46 23096.68 48700.23 135170.7 40527.81 60515.96 52911.78 
5 1318.663 1789.088 1133.05 1015.25 2005.7 1379.888 2512.938 1823.575 
6 12444.74 17769.21 7029.425 13919.1 45474.65 6966.538 20326.64 10956.4 
7 53176.88 147325.1 56998.5 102384 259515 96429.38 131920.1 118381.5 
8 10985.29 57376.69 12741.3 33595.65 105796.4 32220.79 60071.96 46527.53 
9 1593.488 2099.213 1395.9 1275.45 1940.4 1663.613 2869.763 2135.925 
10 1134.8 1406.8 928.8 768.8 1950.4 1145.2 2314.8 1500.8 
11 58178.31 241573.9 25277 97536.25 461992.1 106122.2 288418.8 185456.3 
12 9254.7 37595.1 2463.4 19775 79235.6 16712.7 41956.9 28589 
13 11563.08 70496.28 10371.95 38482.5 135275.2 36631.68 77569.73 55891.25 
14 3558.913 5947.013 2434.575 4897.75 13134.55 3283.638 4634.988 4204.2 
15 20779.31 12569.06 14621.63 11931 39913.5 11169.94 32479.69 14375.63 
16 20437.95 23300.25 16271.4 12619.5 35094.9 19253.55 39867.75 24957 
17 4415.475 8788.575 3062.3 2712 17458.5 5031.325 13093.88 8294.2 
18 11423.1 144881.1 22846.2 74042.8 274079 75211.5 159433.3 114834.2 
19 5638.738 12438.11 4123.9 5635.575 21789.63 8073.863 16239.44 11726.55 
20 8870.063 6729.938 7312.5 5869.5 9506.25 6695.813 13554.94 7707.375 
21 1008.425 1953.675 780.9 931.95 3066.6 1298.175 2600.625 1846.8 
22 30655.91 11166.86 22333.73 20982 56025.98 17380.76 40178.51 15978.6 
23 6260.738 22873.39 0 10703.18 46945.2 10145.29 26881.91 17728.43 
24 9496.2 11616.6 7106 10898.4 28226.4 7117.4 7725.4 7911.6 
25 17796.08 27157.08 10541.3 5270.65 59259.2 14845.33 44597.03 26495.7 
26 5918.563 12852.34 3268.9 9073.725 29479.08 5623.688 13172.49 8745.15 
27 289434.6 239639.4 248102.4 222222 124051.2 238875 392519.4 261534 
28 7551.488 22351.54 1601.175 11698.68 49650.85 9022.838 26549.21 16963.8 
29 10887.18 14092.48 5916.55 8953.15 37089.9 2958.275 20575.38 9917.15 
30 19991.81 23444.44 16099.88 22275 50490 16118.44 8049.938 17411.63 
31 6678.788 6101.288 4440.975 6843.375 18722.55 3693.113 8596.088 3285.975 
32 5719.525 11338.43 2398.9 6931.05 26701.85 3900.225 13310.68 7961.45 
33 21329.19 15695.06 14693.25 19385.5 53121.75 10951.44 27888.06 7346.625 
34 258078.6 728398.2 261790.8 512606.4 1361570 451435.8 644793 575875.2 
35 9607.813 8559.688 6353.75 4891.25 21336.25 5951.563 17830.31 9514.375 
36 8340.225 13994.93 5984.1 4154.1 26946.75 8459.175 21470.48 13697.55 
37 73007.01 198738.8 65986.23 137295.4 378755.4 119995.8 174969 155375.1 
38 24757.94 109515.8 20525.58 63513.1 209073.2 58395.54 114439.8 87468.83 
39 46820.81 53659.31 42775.88 39250.88 40960.5 48318.94 73399.31 55712.63 
40 7047.9 16305.7 5658 11939.2 32644.2 9417.7 13583.3 12308.2 
41 26917.01 61965.86 10086 22567.43 133135.2 23134.76 81255.34 47404.2 
42 22884.54 50669.91 16196.5 20636.58 91957.03 31401.66 69686.84 47528.35 
43 13320.31 14853.44 11550 10071.88 13193.13 13052.19 23103.44 15654.38 
44 19556.25 9543.75 14550 13087.5 32087.5 12481.25 27518.75 12525 
45 150511.2 149278.6 136084.7 124879.7 89976.15 142499.6 224408.1 160511.6 
46 46994.46 58814.09 42605.63 40553.23 45922.45 49175.14 75966.29 61003.93 
47 12512.48 16103.33 11183.25 10561.65 14940.6 13172.93 21287.03 16755.45 
48 2611.088 2073.313 2174.375 1857.1 2006.55 2064.738 3788.313 2318.925 
49 27212.1 74352.9 23899.8 51935.4 147937.2 42986.7 64873.5 56510.4 
50 6030.075 6801.525 4001.55 2614.05 14979.45 4503.825 12617.93 7448.1 
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