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M. S. Thesis - Mathematics
May 2007

Supervisors: Prof. Dr. Allaberen ASHYRALYEV
                    Assist. Prof. Dr. Nurullah ARSLAN

ABSTRACT

In the present work computational blood flow analysis through glycocalyx on the

endothelial cells is performed. Stable numerical schemes are developed for obtaining

approximate solutions to the mixed  problem for partial differential equation with

variable space operator as the modeling blood flow through glycocalyx over endothelial

cells. Numerical techniques are developed by applying a procedure of the solution of

linear difference equation with matrix coefficients. The flow equations inside the core

flow region and porous region are established. Discretization is done and the flow

velocities in both regions are calculated. The wall shear stresses and the drag force over

the glycocalyx is formulated. The effect of the flow over the glycocalyx is investigated.

Keywords: Parabolic equation, Difference schemes, Convergence, Stability, Blood flow,
Endothelial cells, Glycocalyx, Wall shear stress.
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DEĞİŞKEN UZAY OPERATÖRLÜ KISMİ DİFERANSİYEL
DENKLEMLERİN NÜMERİK ÇÖZÜMLERİ VE UYGULAMALARI

Abdullah Said ERDOĞAN

Yüksek Lisans Tezi - Matematik
Mayıs 2007

Tez yöneticisi: Prof. Dr. Allaberen ASHYRALYEV
                     Yrd. Doç. Dr. Nurullah ARSLAN

ÖZ

Bu çalışmamızda endotel hücreler üzerinde bulunan glycocalyxlerin yüzeyi

boyunca kan akış analizi yapılmıştır. Kararlı nümerik fark denklemleri oluşturularak

endotel hücreler etrafındaki kan akışının matematiksel modellemesi olan değişken uzay

operatörlü kısmi türevli diferansiyel denklem probleminin yaklaşık çözümü

hesaplanmıştır.Matris katsayılı lineer fark denklemlerinin çözüm prosedürünün

uygulandığı nümerik teknikler geliştirilmiştir. Düzgün akışın bulunduğu bölge ve poroz

bölgede akış denklemleri oluşturulmuştur. Yüzey ağlara ayrılarak, her iki bölge için akış

hızı hesaplanmıştır.  Elde edilen bilgiler doğrultusunda çeper makaslama kuvveti ve

sürtünme kuvveti hesaplanmıştır. Glycocalyxler üzerindeki akışın etkisi incelenmiştir.

Anahtar Kelimeler: Parabolik denklemler, Fark şemaları, Yakınsama, Kararlılık, Kan
akışı,  Endotel hücreler, Glycocalyx.
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CHAPTER 1

INTRODUCTION

In mathematics, a partial di¤erential equation is a relation involving an unknown

function of several independent variables and its partial derivatives with respect to those

variables. Partial di¤erential equations are used to formulate and solve problems that

involve unknown functions of several variables, such as the propagation of sound or heat,

electrostatics, electrodynamics, �uid �ow, elasticity, or more generally any process that

is distributed in space, or distributed in space and time. Completely distinct physical

problems may have identical mathematical formulations.

It is known that many applied problems in �uid mechanics, other areas of physics

and mathematical biology were formulated as the mathematical model of partial di¤er-

ential equations of the variable types [Dehghan M.,2003 ] ; [Cannon J.R., Perez Estava S.

and van der Hoek J.,1987] ; [Gordeziani N., Natani P. and Ricci P.E.,2005] ; [Squire J.M.,

Chew M., Nneji G., Neal C., Barry J., Michel C.,2001] ; [Ashyralyev A. and Ozdemir Y.,

2005] and [Loth F.,Fischer P.F.,ArslanN., BertramC.D., LeeS.E., RoystonT.J., Shaalan

W.E. and Bassiouny H.S.,2003] :

In this thesis, computational blood �ow analysis through glycocalyx on the en-

dothelial cells inside the arteries is performed by obtaining speci�c model of the blood

�ow over the EC. Endothelial surface glycocalyx was �rst detected by special electron

microscopic staining techniques nearly forty years ago [Luft J.H.,1965], this surface layer

has been observed lately in vivo [Vink H. and Duling B.R.,1996] and the importance of

its multifaceted physiological functions recognized. Some of these functions are its role as

a molecular sieve in determining the oncotic forces that are established across microvessel

endothelium [Michel C.C.,1997],[Weinbaum S.,1998],[Hu X. and Weinbaum S.,1999] and

[Hu X., Adamson R.H., Liu B., Curry F.E. and Weinbaum S.,2000] its role as a hydrody-

namic exclusion layer preventing the interaction of proteins in the red cell and endothelial
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cell membranes [Feng J. and Weinbaum S.,2000] ; [Secomb T.W., Hsu R. and Pries A.R.,

2001] and [Damiano E.R.,1998], its function in modulating leukocyte attachment and

rolling [Zhao Y.H., Chien S. and Weinbaum S.,2001] and as a transducer of mechanical

forces to the intracellular cytoskeleton in the initiation of intracellular signaling, as pro-

posed herein. Fluid shearing forces acting on endothelial cells(EC) have a profound e¤ect

on EC morphology, structure, and function [Davies P.F.,1995]. It is now also clear from

theoretical considerations [Feng J. and Weinbaum S.,2000], [Secomb T.W., Hsu R. and

Pries A.R.,2001] , [Secomb T.W., Hsu R.and Pries A.R.,1998], [Damiano E.R.,1998] that

the shear stress at the edge of the endothelial surface layer is greatly attenuated by the ex-

tracellular matrix of proteoglycans and glycoproteins in the glycocalyx with the result that

�uid velocities, except near the edge of the layer, are vanishingly small. Thus, the shear

stress due to the �uid �ow acting on the apical membrane of the EC itself is negligible.

This paradoxical prediction has raised a fundamental question as to how hydrodynamic

and mechanical forces, more generally, are transmitted across the structural components

of the glycocalyx. The computer-enhanced images showed that the glycocalyx is a 3D

�brous meshwork with a characteristic spacing of 20nm in all directions and that the

e¤ective diameter of the periodic scattering centers was 10�12 nm. A unique feature of

the present analysis is the attempt to couple the dynamic response of the surface layer

to mechanical loading to the stresses and deformations induced in the underlying cortical

cytoskeleton.

It is known that the mixed problem for parabolic equations can be solved by Fourier

series method, by Fourier transform method and by Laplace transform method. Now, let

us illustrate these three di¤erent analytical methods by examples.

Example 1.1. First let us consider the simple boundary value problem for parabolic

equation
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8>>>>>>>>><>>>>>>>>>:

@u(t;x)
@t

� @2u(t;x)
@x2

= �1
4
e�

t
2 cos x

2
; 0 < x < a; 0 < t < T;

@u(t;x)
@t

� @2u(t;x)
@x2

+ u(t; x) = 3
4
e�

t
2 cos x

2
; a < x < �; 0 < t < T;

ux (t; 0) = u (t; �) = 0; u(t; a) = e�
t
2 cos a

2
; u (0; x) = cos x

2
:

(1.1)

Solution. For the solution of the problem (1:1) ; we use the method of seperation

of variables or so called Fourier Series Method. In order to solve the problem, �rst we

need to introduce a new function :

z (t; x) = u (t; x)� e�
t
2 cos

x

2
:

So,

8>>>>>>>>><>>>>>>>>>:

@z(t;x)
@t

� @2z(t;x)
@x2

= 0; 0 < x < a; 0 < t < T;

@z(t;x)
@t

� @2z(t;x)
@x2

+ z(t; x) = 0; a < x < �; 0 < t < T;

zx (t; 0) = z (t; �) = 0; z(t; a) = 0; z (0; x) = 0:

(1.2)

Now, let us obtain the solution of (1:2) by the method of separation of variables.

To do this a solution of the form

z(t; x) = T (t)X(x) 6= 0
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is suggested. Let 0 < x < a and take the partial derivatives and substituting the result

in (1:2) ; we obtain

T 0(t)

T (t)
� X 00(x)

X(x)
= 0;

or

T 0(t)

T (t)
=
X 00(x)

X(x)
= �:

Since

X 00 (x) = �X (x) ; X 0(0) = X(a) = 0;

we have that

Xk (x) = cos

�
k +

1

2

�
�

a
; �k = �

�
k +

1

2

�2
; k = 0; 1; 2; � � � :

Secondly for a < x < �;

T 0(t)

T (t)
=
X 00(x)

X(x)
� 1 = �� 1; 0 < t < T:

Since

X 00 (x) = �X (x) ; X(a) = X(�) = 0;
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we have the set of all non-trivial solutions

Xk (x) = sin

�
k�

� � a

�
x and Xk (x) = cos

�
k�

� � a

�
x; a < x < �;

�k = �
�

k�

� � a

�2
; k = 0; 1; 2; � � � :

So, we obtain the following results:

Xk (x) = cos

�
k +

1

2

�
�

a
x ; k = 0; 1; 2; � � � ; 0 < x < a;

Xk (x) = sin
k�

� � a
x and cos

k�

� � a
x; k = 0; 1; 2; � � � ; a < x < �:

The solution for T (t) can be obtained by using the Cauchy formula

T 0(t) = �
�
k +

1

2

�2
T (t)) Tk(t) = Ake

(k+ 1
2)

2
t; 0 < x < a;

T 0(t) =

 
�
�

k�

� � a

�2
� 1
!
T (t)) Tk(t) = Bke

�
( k�
��a)

2
+1
�
t
; a < x < �:

By superposition principle

z(t; x) =

8>><>>:
1P
k=0

Ake
(k+ 1

2)
2
t cos

�
k + 1

2

�
�
a
x; 0 < x < a;

1P
k=0

e

�
( k�
��a)

2
+1
�
t �
Ck sin

k�
��ax+Dk cos

k�
��ax

�
; a < x < �:

Using the initial condition, we get

z (0; x) =

8>><>>:
1P
k=0

Ak cos
�
k + 1

2

�
�
a
x; 0 < x < a;

1P
k=0

Ck sin
k�
��ax+Dk cos

k�
��ax; a < x < �:

= 0
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) Ak = 0 and Ck = Dk = 0 (By taking x = � � a and x = ��a
2
respectively.) Thus,

z (t; x) = 0

and

u (t; x) = e�
t
2 cos

x

2
; 0 < x < �; 0 < t < 1:

Note that using the same manner one obtains the solution of the following boundary

value problem for the multidimensional parabolic equation

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

@u(t;x)
@t

�
nP
r=1

�r
@2u(t;x)
@x2r

= f(t; x); 0 < x1 < a;

@u(t;x)
@t

�
nP
r=1

�r
@2u(t;x)
@x2r

+ �u (t; x) = g(t; x); a < x1 < l1;

x = (x1; : : : ; xn) 2 [0; l1] x
; 0 � t � T;

u(t; x)jx1=a =  (t) ; @u(t;0;x2;:::xn)
@x1

= 0;

u (t; l1; x2; ::xn) = 0; u (0; x) = ' (x) ; x 2 [0; l1] x
;

u(t; x) = 0; x 2 [0; l1] xS;

where �r > 0; � > 0 and f(t; x) (t 2 [0; T ] ; x 2 [0; a]x
); g(t; x) (t 2 [0; T ] ; x 2

[a; l1]x
);  (t) ; ' (x) are given smooth functions. Here


 = fx = (x2; ::; xk) ; 0 < xk < lkg ; 2 � k � n
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with boundary

S; 
 = 
 [ S:

However, the method of separation of variables can be used only in the case when it has

constant coe¢ cients. It is well-known that the most useful method for solving partial dif-

ferential equations with dependent coe¢ cients in t and in the space variables is di¤erence

method.

Example 1.2. Another example for a parabolic equation is a mixed problem given

below. It can be solved by Laplace transformation method (in t).

8>>>>>>>>><>>>>>>>>>:

@u
@t
� @2u

@x2
= 1

4
cos x

2
; 0 < x < a; 0 < t <1;

@u
@t
� @2u

@x2
+ u = 5

4
cos x

2
; a < x < �; 0 < t <1;

ux (t; 0) = u (t; �) = 0; 0 < t <1;

u(0; x) = cos x
2
; 0 < x < �;

u (t; a+) = u (t; a�) ; ux (t; a+) = ux (t; a�) ; 0 < t <1:

Solution. Let 0 � x � a: Then, taking the Laplace transform of both sides of the

di¤erential equation we can write that

L fut (t; x)g � L fuxx (t; x)g = L
�
1

4
cos

x

2

�

or

sL fu (t; x)g � u (0; x)� (L fu (t; x)g)xx =
1

4s
cos

x

2
:
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Let

Lfu(t; x)g = v(s; x):

So our problem becomes

sv (s; x)� vxx (s; x) =

�
1 +

1

4s

�
cos

x

2
:

Now the complementary solution is

sv (s; x)� vxx (s; x) = 0;

vc (s; x) = C1e
p
sx + C2e

�
p
sx

and the particular solution can be written as

vp (s; x) = a cos
x

2
:

Then

sa cos
x

2
+
a

4
cos

x

2
=

�
1 +

1

4s

�
cos

x

2
:

From that it follows a = 1
s
and

vp (s; x) =
1

s
cos

x

2
:

So

v (s; x) = C1e
p
sx + C2e

�
p
sx +

1

s
cos

x

2
; 0 � x � a:
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In the same manner, let take a < x < �:Then

L fut (t; x)g � L fuxx (t; x)g+ L fu (t; x)g = L
�
5

4
cos

x

2

�
:

So our problem becomes

sv (s; x)� vxx (s; x) + v (s; x) =

�
1 +

5

4s

�
cos

x

2
:

Now the complementary solution is

(s+ 1) v (s; x)� vxx (s; x) = 0;

vc (s; x) = C1e
p
s+1x + C2e

�
p
s+1x

and the particular solution can be written as

vp (s; x) = a cos
x

2
:

Then

(s+ 1) a cos
x

2
+
a

4
cos

x

2
=

�
1 +

5

4s

�
cos

x

2
:

From that it follows a = 1
s
and

vp (s; x) =
1

s
cos

x

2
:

So

v (s; x) = C1e
p
s+1x + C2e

�
p
s+1x +

1

s
cos

x

2
; a < x < �:
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By using the interface conditions at x = a, we can write

v (s; x) =
1

s
cos

x

2
:

Hence taking the inverse of Laplace transform, we get

u (t; x) = cos
x

2
; 0 � x � �:

Note that using the same manner one obtains the solution of the following boundary

value problem for the multidimensional parabolic equation

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

@u(t;x)
@t

�
nP
r=1

�r
@2u(t;x)
@x2r

= f(t; x); 0 < x1 < a;

@u(t;x)
@t

�
nP
r=1

�r
@2u(t;x)
@x2r

+ �u (t; x) = g(t; x); a < x1 < l1;

x = (x1; : : : ; xn) 2 [0; l1] x
; 0 � t <1;

@u(t;0;x2;:::xn)
@x1

= 0; u (t; l1; x2; ::xn) = 0;

u(t; x)jx1=a+ = u(t; x)jx1=a� ; @u(t;x)
@x1

���
x1=a+

= @u(t;x)
@x1

���
x1=a�

;

u (0; x) = ' (x) ; x 2 [0; l1] x
;

u(t; x) = 0; x 2 [0; l1] xS;

where �r > 0; � > 0 and f(t; x) (t 2 [0;1) ; x 2 [0; a]x
); g(t; x) (t 2 [0;1) ; x 2

[a; l1]x
); ' (x) are given smooth functions. Here


 = fx = (x2; ::; xk) ; 0 < xk < lkg ; 2 � k � n
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with boundary

S; 
 = 
 [ S:

However, Laplace transform method can be used only in the case when it has con-

stant coe¢ cients. It is well-known that the most useful method for solving partial di¤er-

ential equations with dependent coe¢ cients in t and in the space variables is di¤erence

method.

Example 1.3. The last example is a mixed problem solved by using Fourier Trans-

form method.

@u

@t
� @2u

@x2
=

�
1

4
� 2t

�
e�t

2

cos
x

2
; 0 < x < a; �1 < t <1;

@u

@t
� @2u

@x2
+ u =

�
5

4
� 2t

�
e�t

2

cos
x

2
; a < x < �; �1 < t <1;

ux (t; 0) = u (t; �) = 0; �1 < t <1;
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u (t; a+) = u (t; a�) ; ux (t; a+) = ux (t; a�) ;�1 < t <1:

Solution. Let 0 < x < a: By taking the Fourier transform of both sides, we obtain

Ffut (t; x)g � Ffuxx (t; x)g = F
��

1

4
� 2t

�
e�t

2

cos
x

2

�
;

ux (s; 0) = u (s; �) = 0:

Denote that

F fu (t; x)g = v (s; x) :

Then we have

isv (s; x)� vxx (s; x) = cos
x

2
F

�
1

4
e�t

2 � 2te�t2
�

or

isv (s; x)� vxx (s; x) = cos
x

2

�
F

�
1

4
e�t

2

�
+ F

n
�2te�t2

o�
isv (s; x)� vxx (s; x) = cos

x

2

�
1

4
F
n
e�t

2
o
+ isF

n
e�t

2
o�

:
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The complementary solution is

isv (s; x)� vxx (s; x) = 0;

vc (s; x) = C1e
p
isx + C2e

�
p
isx

and the particular solution can be written as

vp (s; x) = a cos
x

2
:

Then

isa cos
x

2
+
a

4
cos

x

2
=

�
1

4
F
n
e�t

2
o
+ isF

n
e�t

2
o�

cos
x

2
:

It follows that a = F
n
e�t

2
o
and

vp (s; x) = F
n
e�t

2
o
cos

x

2
:

So

v (s; x) = C1e
p
isx + C2e

�
p
isx + F

n
e�t

2
o
cos

x

2
; 0 < x < a:

Let a < x < �: In the same manner

Ffut (t; x)g � Ffuxx (t; x)g+ F fu (t; x)g = F
��

5

4
� 2t

�
e�t

2

cos
x

2

�
:

Then we have
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isv (s; x)� vxx (s; x) + v (s; x) = cos
x

2
F

�
5

4
e�t

2 � 2te�t2
�

or

(is+ 1) v (s; x)� vxx (s; x) = cos
x

2

�
F

�
5

4
e�t

2

�
+ F

n
�2te�t2

o�
(is+ 1) v (s; x)� vxx (s; x) = cos

x

2

�
5

4
F
n
e�t

2
o
+ isF

n
e�t

2
o�

:

The complementary solution is

(is+ 1) v (s; x)� vxx (s; x) = 0;

vc (s; x) = C1e
p
is+1x + C2e

�
p
is+1x

and the particular solution can be written as

vp (s; x) = a cos
x

2
:

Then

(is+ 1) a cos
x

2
+
a

4
cos

x

2
=

�
5

4
F
n
e�t

2
o
+ isF

n
e�t

2
o�

cos
x

2
:

It follows that a = F
n
e�t

2
o
and

vp (s; x) = F
n
e�t

2
o
cos

x

2
:
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So

v (s; x) = C1e
p
is+1x + C2e

�
p
is+1x + F

n
e�t

2
o
cos

x

2
; a < x < �:

By using the interface conditions at x = a, we can write

v (s; x) = F
n
e�t

2
o
cos

x

2
; 0 < x < �:

Hence taking the inverse of Fourier transform, we get

u (t; x) = e�t
2

cos
x

2
; 0 � x � �:

Note that using the same manner one obtains the solution of the following boundary

value problem for the multidimensional parabolic equation

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

@u(t;x)
@t

�
nP
r=1

�r
@2u(t;x)
@x2r

= f(t; x); 0 < x1 < a;

@u(t;x)
@t

�
nP
r=1

�r
@2u(t;x)
@x2r

+ �u (t; x) = g(t; x); a < x1 < l1;

x = (x1; : : : ; xn) 2 [0; l1] x
;�1 < t <1;

@u(t;0;x2;:::xn)
@x1

= 0; u (t; l1; x2; ::xn) = 0;

u(t; x)jx1=a+ = u(t; x)jx1=a� ; @u(t;x)
@x1

���
x1=a+

= @u(t;x)
@x1

���
x1=a�

;

u(t; x) = 0; x 2 [0; l1] xS;

where �r > 0; � > 0 and f(t; x) (t 2 (�1;1) ; x 2 [0; a]x
); g(t; x) (t 2 (�1;1) ; x 2
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[a; l1]x
); ' (x) are given smooth functions. Here


 = fx = (x2; ::; xk) ; 0 < xk < lkg ; 2 � k � n

with boundary

S; 
 = 
 [ S:

However, the Fourier transform method can be used only in the case when it has

constant coe¢ cients. It is well-known that the most useful method for solving partial dif-

ferential equations with dependent coe¢ cients in x and in the space variables is di¤erence

method.

In the present work the di¤erence schemes of the �rst and second order of accuracy

for the numerical solution of the mixed problem for one dimensional di¤usion equation

with variable space operator

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

@u(t;x)
@t

= @
@x
(a(t; x)@u(t;x)

@x
) + f(t; x); x 2 (0; l); t 2 [0; T ];

@u(t;x)
@t

= @
@x
(a(t; x)@u(t;x)

@x
) + b(t; x)u(t; x) + g(t; x); x 2 (l; L); t 2 [0; T ];

u(0; x) = '(x); x 2 [0; L];

ux(t; 0) = 0; u(t; L) = 0; t 2 [0; T ];

u(t; l+) = u(t; l�); ux(t; l+) = ux(t; l�); t 2 [0; T ];

(1.3)

are considered. Applying the operator approach the stability estimates for solution of

these di¤erence schemes are obtained. The theoretical statements for the solution of this

di¤erence schemes are supported by the results of numerical experiments. In applications,



17

the cause of atherosclerosis which is the leading reason of illness and death is investigated.

The blood �ow equations inside the core �ow region and porous region are calculated and

the wall shear stresses and the drag force over the glycocalyx are formulated.

Let us brie�y describe the contents of the various sections. It consists of seven

chapters.

First chapter is the introduction.

Second chapter presents elementary statements in a Hilbert space that is needed for

this work.

Third chapter presents �rst and second order of di¤erence schemes and their numerical

analysis.

Fourth chapter presents r-modi�ed Crank-Nicholson di¤erence scheme and its numer-

ical analysis.

Fifth chapter is the application in the �eld of biomechanics. The description of the

problem and the solving methods are presented. Constructed di¤erence schemes

are performed for the problem. The �gures and table are included. Results of the

application is given in this chapter.

Sixth chapter is the conclusion.

Seventh chapter is the algorithm and programming for the given applications.

1.1. Starting Point

Our starting point in this thesis is a representation ,given by Karin Leidermann from

University of UTAH, named as A Closer Look at the Capillary Endothelial Glycocalyx.The

representation starts with an investigation on the Navier Stokes equations in cylindrical

coordinates

U = U(R;Z; �);
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assuming fully developed, unidirectional �ow in rigid tube such as

@U

@t
=
@U

@Z
=
@U

@�
= 0:

And

@P

@Z
= �

1

R

@

@R
(R
@Uc
@R

);

@P

@Z
= �

1

R

@

@R
(R
@Uc
@R

)� Fz; (1.4)

where

Fz =
�Ug
Kp

:

Here (1:4) also known as the Brinkman equation and Kp is Darcy permeabiality,

describes how densely the proteoglycans are packed.

To simplify a bit, we can non-dimensionalize the equations using these changes of

variables:
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U = U 0u;R = R0r; Z = R0z; P = P 0p =
�U 0

R0
;

where U 0; R0 and P 0 are the characteristic velocity, length and pressure. So,

@P

@Z
=
1

r

@

@r
(r
@Uc
@r
);

@P

@Z
=
1

r

@

@r
(r
@Ug
@r
)� �2ug;

where

�2 =
R0p
Kp

:

For constructing the boundary and matching conditions, in the representation the

velocities and shear stress to match at the edge of the glycocalyx and no-slip condition at

the endothelial cell membrane, (r = 1) at the symmetry in the center are given as follows

uc(rg) = ug(rg);

�@uc(rg)

@r
=
�@ug(rg)

@r
;

ug(1) = 0;
@uc(0)

@r
= 0:
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For solving core �ow velocity uc, an assumption was done as

@

@z

@p

@z
=

@

@z
(
1

r

@

@r
(r
@Uc
@r
))) @2p

@z2
= 0) @p

@z
= constant;

where the pressure gradient is constant throughout the tube. Integrating up twice

and using a matching condition and a boundary condition.Finally

uc = �
1

4

@p

@z
(r2g � r2) + ug(rg)

was obtained.

And for solving the velocity ug inside porous media, the Brinkman equation was

rewritten in the form:

r2(ug)rr + r(ug)r � r2�2ug =
@p

@z
r2;

which looks like an inhomogeneous Bessel equation where normal Bessel equation takes

the form

x2y00 + xy0 + (�x2 � r2)y = 0:
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By using the solution of the Bessel functions, a particular solution

(ug)p = �
1

�2
@p

@z

was obtained.

Still solving for ug , some more approximations and calculation of coe¢ cients can

be done as

~A =

�@p
�2@z

(�rg
2
� K1(�rg)

K0(�)
)

K1(�rg)

K0(�)
+ I1(�rg)

I0(�)

� �@p
�2@z

(�1) = �@p
�2@z

C1;

~B =

�@p
�2@z

(�rg
2
� I1(�rg)

I0(�)
)

K1(�rg)

K0(�)
+ I1(�rg)

I0(�)

� �@p
�2@z

(
�rg
2

K1(�rg)

K0(�)

) =
�@p
�2@z

C2;

uc(r) = �
1

4

@p

@z
(r2g � r2) + ug(rg) = �

1

4

@p

@z
(r2g � r2) +

�@p
�2@z

C3:

After using the boundary conditions, matching conditions, the �nal solutions are

given by

uc(r) = �
1

4

@p

@z
(r2g � r2) +

�@p
�2@z

(
rg�

2
+ 1)

ug(r) = �
@p

�2@z
(�I0(r�)

Io(�)
+
rg�

2

K0(r�)

K1(rg�)
+ 1)

In the next step calculation of drag force was given. Darcy permeability and the
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volume fraction of the proteoglycans are given by:

Kp =
ln(c�1=2)� 0:745 + c� c2

4
+O(c4)

4�
; c =

�a2p

(2ap +�)2
p
3
2

;

where

� = 50nm (proteoglycans are approximately 50 nm apart);

ap = 5nm (protein radius) ;

U 0 = 0:1cms�1

and

Kp = 278:03nm
2 and c = 0:0252:

So,

Fdrag =
��Ug(R)a

2
p

cKp

u 1:36 x 10�2ug
pN

nm
:
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CHAPTER 2

HILBERT SPACES METHODS

2.1. Hilbert Space

De�nition. A complex linear space H is called an inner product space if there is a

complex-valued function h:; :i : H �H ! C with the properties

i: hx; xi � 0 and hx; xi = 0() x = e0;
ii: hx; yi = hy; xi 8x; y 2 H ;

iii: h�x; yi = � hx; yi ; 8x; y 2 H and � 2 C;

iv: hx+ y; zi = hx; zi+ hy; zi 8 x; y; z 2 H:

The function hx; yi is called the inner product of x and y; C is the set of complex

numbers and the over-line indicates the complex conjugate. A Hilbert space is a complete

inner product space. An inner product onH de�nes a norm on H given by kxk = hx; xi1=2 :

2.2. Bounded Linear Operators in H

De�nition. Let H1 and H2 are two Hilbert spaces. An operator A : H1 ! H2 is

said to be linear operator if

A (�x+ �y) = �Ax+ �Ay for all �; � 2 C and x; y 2 H1:

D (A) = fx 2 H1;9Ax 2 H2g is the domain of A and is a vector space and
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R (A) = fy = Ax; 8x 2 D (A)g denotes the range of A.

A linear operator A : H ! H is said to be bounded if there exist a real number

M > 0 such that

kAxkH �M kxkH for all x 2 H:

If a linear operator A : H ! H is bounded with M , then

kAk = infM

is called the norm of operator A.

Theorem 2.2.1. The norm of the bounded linear operator A is

kAk = sup
kxk�1

kAxk = sup
x 6=e0

kAxk
kxk = sup

kxk=1
kAxk :

An example can be given as A is an operator de�ned by Ax = �x(t);

A : L2 [0; 1] �! L2 [0; 1] :Then, kAk = j�j :

2.3. Adjoint of an Operator

De�nition. Let A : H1 ! H2 be a bounded linear operator, where H1 and H2

are Hilbert spaces. Then the Hilbert adjoint operator A� of A is the operator

A� : H2 ! H1;
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such that for all x 2 H1 and y 2 H2

hAx; yi = hx;A�yi :

Theorem 2.3.1. The Hilbert adjoint operator A� of A is unique and bounded

linear operator with the norm

kA�k = kAk :

De�nition. A bounded linear operator A : H �! H on a Hilbert space H is said

to be self-adjoint if hAx; yi = hx;Ayi for all x; y 2 H:

De�nition. A self-adjoint operator A is said to be positive if A � 0; that is

(Ax; x) � 0 for all x 2 H:

Example 2.3.1. Consider the operator

Au =

8<: � d
dx

�
a (x) du(x)

dx

�
; 0 � x < l

� d
dx

�
a (x) du(x)

dx

�
+ au (x) ; l < x � L

with domain

D (A) = fu; u0; u00 2 L2 [0; L] and u (l�) = u (l+) ; ux (l�) = ux (l+) ; ux (0) = u (L) = 0g :

Here a (x) is su¢ ciently smooth function and a (x) � a > 0: A is the positive, self-adjoint

operator.
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Solution. Using the additivity property of de�nite integral and applying the for-

mula of integration by parts , we obtain

hu;Avi =
LZ
0

u (r)Av (r) dr =

lZ
0

u (r)Av (r) dr +

LZ
l

u (r)Av (r) dr

= �
lZ

0

u (r) [a (r) v0 (r)]
0
dr �

LZ
l

u (r) [a (r) v0 (r)]
0
dr + a

LZ
l

u (r) v (r) dr

= �u (r) a (r) v0 (r)]l0 +
lZ

0

u0 (r) a (r) v0 (r) dr �u (r) a (r) v0 (r)]Ll

+

LZ
l

u0 (r) a (r) v0 (r) dr + a

LZ
l

u (r) v (r) dr

= �u (l) a (l) v0 (l) + u (0) a (0) v0 (0)� u (L) a (L) v0 (L) + u (l) a (l) v0 (l)

+

lZ
0

u0 (r) a (r) v0 (r) dr +

LZ
l

u0 (r) a (r) v0 (r) dr + a

LZ
l

u (r) v (r) dr

=

lZ
0

u0 (r) a (r) v0 (r) dr +

LZ
l

u0 (r) a (r) v0 (r) dr + a

LZ
l

u (r) v (r) dr;
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hAu; vi =
lZ

0

Au (r) v (r) dr +

LZ
l

Au (r) v (r) dr =

LZ
0

Au (r) v (r) dr

= �
lZ

0

[a (r)u0 (r)]
0
v (r) dr �

LZ
l

[a (r)u0 (r)]
0
v (r) dr + a

LZ
l

u (r) v (r) dr

�u0 (r) a (r) v (r)]l0 +
lZ

0

u0 (r) a (r) v0 (r) dr �u0 (r) a (r) v (r)]Ll

=

LZ
l

u0 (r) a (r) v0 (r) dr + a

LZ
l

u (r) v (r) dr

�u0 (l) a (l) v (l) + u0 (0) a (0) v (0)� u0 (L) a (L) v (L) + u0 (l) a (l) v (l)

=

lZ
0

u0 (r) a (r) v0 (r) dr +

LZ
l

u0 (r) a (r) v0 (r) dr + a

LZ
l

u (r) v (r) dr: (2.1)

Then hu;Avi = hAu; vi : This means that A = A�: Moreover, using equality (2:1),

we obtain that



28

hAu; ui =
lZ

0

u0 (r) a (r)u0 (r) dr +

LZ
l

u0 (r) a (r)u0 (r) dr + a

LZ
l

u (r)u (r) dr

=

lZ
0

a (r) (u0 (r))
2
dr +

LZ
l

a (r) (u0 (r))
2
dr + a

LZ
l

(u (r))2 dr

� a

lZ
0

(u0 (r))
2
dr + a

LZ
l

(u0 (r))
2
dr + a

LZ
l

(u (r))2 dr

= a

LZ
0

(u0 (r))
2
dr + a

LZ
l

(u (r))2 dr � 0:

So A is the positive operator.

Example 2.3.2. Consider the di¤erence operator

Ahu
h =

0@ �un+1�2un+un�1
h2

; 1 � n �Ml � 1

�un+1�2un+un�1
h2

+ un; Ml + 1 � n �M � 1

1A
with

u0 = u1 ; uM = 0 ; uMl+1 � uMl = uMl � uMl�1:

Here

uh = fungM0
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and

Mh = L :

Solution. Applying Abel�s formula, we can write



Ahu

h; vh
�
=

Ml�1X
n=1

�
Ahu

h
�n �

vh
�n
h+

M�1X
n=Ml+1

�
Ahu

h
�n �

vh
�n
h

=

Ml�1X
n=1

�
�u

n+1 � 2un + un�1

h2

�
vnh+

M�1X
n=Ml+1

�
�u

n+1 � 2un + un�1

h2
+ un

�
vnh

= �
Ml�1X
n=1

 
un+1�un

h
� un�un�1

h

h

!
vnh�

M�1X
n=Ml+1

 
un+1�un

h
� un�un�1

h

h

!
vnh+

M�1X
n=Ml+1

unvnh

= �1
h

 
Ml�1X
n=1

�
un+1 � un

�
vn �

�
un � un�1

�
vn

!

� 1

h

 
M�1X

n=Ml+1

�
un+1 � un

�
vn �

�
un � un�1

�
vn

!
+

M�1X
n=Ml+1

unvnh

= �1
h

 
Ml�1X
n=1

�
un+1 � un

�
vn �

Ml�1X
n=1

�
un � un�1

�
vn

!

� 1

h

 
M�1X

n=Ml+1

�
un+1 � un

�
vn �

M�1X
n=Ml+1

�
un � un�1

�
vn

!
+

M�1X
n=Ml+1

unvnh
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= �1
h

 
MlX
n=2

�
un � un�1

�
vn�1 �

Ml�1X
n=1

�
un � un�1

�
vn

!

� 1

h

 
MX

n=Ml+2

�
un � un�1

�
vn�1 �

M�1X
n=Ml+1

�
un � un�1

�
vn

!
+

M�1X
n=Ml+1

unvnh

=
1

h

Ml�1X
n=2

�
un � un�1

� �
vn � vn�1

�
+
1

h

M�1X
n=Ml+2

�
un � un�1

� �
vn � vn�1

�
+

M�1X
n=Ml+1

unvnh�
�
uMl � uMl�1

�
vMl�1 +

�
u1 � u0

�
v1

�
�
uM � uM�1� vM�1 +

�
uMl+1 � uMl

�
vMl+1

=
1

h

Ml�1X
n=2

�
un � un�1

� �
vn � vn�1

�
+
1

h

M�1X
n=Ml+2

�
un � un�1

� �
vn � vn�1

�
+

M�1X
n=Ml+1

unvnh�
�
uMl � uMl�1

�
(vMl�1 � vMl) + uM�1vM�1

+
�
uMl+1 � uMl

�
(vMl+1 � vMl) + vMl

��
uMl+1 � uMl

�
�
�
uMl � uMl�1

��

=
1

h

Ml�1X
n=2

�
un � un�1

� �
vn � vn�1

�
+
1

h

M�1X
n=Ml+2

�
un � un�1

� �
vn � vn�1

�
(2.2)

+

M�1X
n=Ml+1

unvnh+
�
uMl � uMl�1

�
(vMl�1 � vMl) + uM�1vM�1

+
�
uMl+1 � uMl

�
(vMl+1 � vMl);



uh; Ahv

h
�
=

Ml�1X
n=1

�
uh
�n �

Ahv
h
�n
h+

M�1X
n=Ml+1

�
uh
�n �

Ahv
h
�n
h
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=

Ml�1X
n=1

un
�
�v

n+1 � 2vn + vn�1

h2

�
h+

M�1X
n=Ml+1

un
�
�v

n+1 � 2vn + vn�1

h2
+ vn

�
h

= �
Ml�1X
n=1

un

 
vn+1�vn

h
� vn�vn�1

h

h

!
h�

M�1X
n=Ml+1

un

 
vn+1�vn

h
� vn�vn�1

h

h

!
h+

M�1X
n=Ml+1

unvnh

= �1
h

 
Ml�1X
n=1

un
�
vn+1 � vn

�
� un

�
vn � vn�1

�!

� 1

h

 
M�1X

n=Ml+1

un
�
vn+1 � vn

�
� un

�
vn � vn�1

�!
+

M�1X
n=Ml+1

unvnh

= �1
h

 
Ml�1X
n=1

un
�
vn+1 � vn

�
�

Ml�1X
n=1

un
�
vn � vn�1

�!

� 1

h

 
M�1X

n=Ml+1

un
�
vn+1 � vn

�
�

M�1X
n=Ml+1

un
�
vn � vn�1

�!
+

M�1X
n=Ml+1

unvnh

=
1

h

Ml�1X
n=2

un
�
vn � vn�1

�
� 1

h

Ml�1X
n=2

un�1
�
vn � vn�1

�
+
1

h

M�1X
n=Ml+2

un
�
vn � vn�1

�
� 1

h

M�1X
n=Ml+2

un�1
�
vn � vn�1

�
+

M�1X
n=Ml+1

unvnh� uMl
�
vMl+1 � vMl�1

�
+ u1

�
v1 � v0

�
� uM�1 �vM � vM�1�+ uMl+1

�
vMl+1 � vMl�1

�
:
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=
1

h

Ml�1X
n=2

�
un � un�1

� �
vn � vn�1

�
+
1

h

M�1X
n=Ml+2

�
un � un�1

� �
vn � vn�1

�
+

M�1X
n=Ml+1

unvnh�
�
uMl � uMl�1

�
(vMl�1 � vMl) + uM�1vM�1

+
�
uMl+1 � uMl

�
(vMl+1 � vMl) + uMl

��
vMl+1 � vMl

�
�
�
vMl � vMl�1

��

=
1

h

Ml�1X
n=2

�
un � un�1

� �
vn � vn�1

�
+
1

h

M�1X
n=Ml+2

�
un � un�1

� �
vn � vn�1

�
+

M�1X
n=Ml+1

unvnh+
�
uMl � uMl�1

�
(vMl�1 � vMl) + uM�1vM�1

+
�
uMl+1 � uMl

�
(vMl+1 � vMl):

Then


Ahu

h; vh
�
=


uh; Ahv

h
�
: So Ah = A�h. Moreover, using equality (2:2), we can

write that



Ahu

h; uh
�
=
1

h

Ml�1X
n=2

�
un � un�1

� �
un � un�1

�
+
1

h

M�1X
n=Ml+2

�
un � un�1

� �
un � un�1

�
+

M�1X
n=Ml+1

ununh+
�
uMl � uMl�1

�
(uMl�1 � uMl) + uM�1uM�1

+
�
uMl+1 � uMl

�
(uMl+1 � uMl)

=
2

h

Ml�1X
n=2

�
un � un�1

�2
+

M�1X
n=Ml+1

(un)2 h+
�
uMl � uMl�1

�2

+(uMl+1 � uMl)2 +
�
uM�1�2 � 0:

So Ah is the positive operator.



33

CHAPTER 3

FIRST AND SECOND ORDER OF ACCURACY
DIFFERENCE SCHEMES

3.1. Di¤erence Schemes

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

@u(t;x)
@t

= @
@x
(a(t; x)@u(t;x)

@x
) + f(t; x); x 2 (0; l);

@u(t;x)
@t

= @
@x
(a(t; x)@u(t;x)

@x
) + b(t; x)u(t; x) + g(t; x); x 2 (l; L);

t 2 (0; T ]; u(0; x) = '(x); x 2 [0; L];

ux(t; 0) = 0; u(t; L) = 0; t 2 [0; T ];

u(t; l+) = u(t; l�); ux(t; l+) = ux(t; l�); t 2 [0; T ];

(3.1)

where a(t; x); b(t; x); f(t; x); g(t; x) and '(x) are given su¢ ciently smooth functions and

a(t; x) > 0.

The discretization of problem (3:1) is carried out in two steps. In the �rst step let

us de�ne the grid spaces as,

[0; L]h =

8>>><>>>:xm =
0BBB@

h0m; 0 � m �Ml;Mlh0 = l;

l + (m�Ml)h;Ml < m �M; (M �Ml)h = L� l:

1CCCA
9>>>=>>>;

We introduce the Hilbert spaces Lh = L[0;L]h of grid functions u
h(x) = fungM�1

1
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de�ned on [0; L]h; equipped with the norms

k 'h kL[0;L]h=
 

MlX
n=1

j'nj2h0 +
M�1X

n=Ml+1

j'nj2h
! 1

2

:

To the di¤erential operators Ax(t) generated by the problem (3.1) for every �xed

t 2 [0; T ] we assign the �rst-order (second-order) of approximation of di¤erence operators

Axh(t) acting in the space of grid functions u
h(t; x) = fun(t)gM0 satisfying the conditions

u0(t) = u1(t)(�u2(t) + 4u1(t)� 3u0(t) = 0); uM(t) = 0gby the formula

Axh(t)u
h =

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

� 1
h0

h
an+1(t)u

n+1�un
h0

� an(t)u
n�un�1
h0

i
+ �un;

an = a(t; xn); xn = nh0; 1 � n �Ml � 1;

�uMl(t) + 4uMl�1(t)� 3uMl�2(t)

= h0
h

�
uMl(t)� 4uMl+1(t) + 3uMl+2(t)

�
;

� 1
h

h
an+1(t)u

n+1�un
h

� an(t)u
n�un�1
h

i
+ �un;

an = a(t; xn); xn = l + (n�Ml)h;Ml + 1 � n �M � 1

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>;

M�1

n=1

: (3.2)

For every �xed t 2 [0; T ] we introduce the di¤erence operators Bx
h(t) acting in the space

of grid functions uh(t; x) = fun(t)gM0 satisfying the conditions u0(t) = u1(t)(�u2(t) +

4u1(t)� 3u0(t) = 0); uM(t) = 0 by the formula
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Bx
h(t)u

h =

8>>>>>>>>><>>>>>>>>>:

��un; 1 � n �Ml;

�(� � bn(t))un; bn(t) = b(t; xn);

xn = l + (n�Ml)h;Ml + 1 � n �M � 1

9>>>>>>>>>=>>>>>>>>>;

M�1

n=1

: (3.3)

Here � is a positive constant.

With the help of Axh(t) and B
x
h(t) we arrive at the initial- value problem

8>>><>>>:
duh(t)
dt

+ Axh(t)u
h(t) +Bx

h(t)u
h(t) = F h(t); x 2 [0; L]h; t 2 (0; T ];

uh(0) = 'h(x); 'h(x) = '(x); x 2 [0; L]h;

(3.4)

where

F h(t) =

8>>>>>>>>><>>>>>>>>>:

fh(t) = f(t; xn); xn = nh0; 1 � n �Ml � 1;

0;

gh(t) = g(t; xn); xn = l + (n�Ml)h;Ml + 1 � n �M � 1

9>>>>>>>>>=>>>>>>>>>;

M�1

n=1

:

In the second step we replace problem (3:4) by the di¤erence schemes
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8>>>>>>>>>>>><>>>>>>>>>>>>:

uhk(x)�uhk�1(x)
�

+ Axh(tk)u
h
k(x) +Bx

h(tk)u
h
k(x) = 'hk(x);

'hk(x) = F h(tk; x); tk = k�;

1 � k � N;N� = T; uh0(x) = 'h(x); x 2 [0; L]h;

(3.5)

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

uhk(x)�uhk�1(x)
�

+
Axh(tk�

�
2
)

2

�
uhk(x) + uhk�1(x)

�

+
Bxh(tk�

�
2
)

2

�
uhk(x) + uhk�1(x)

�
= 'hk(x);

'hk(x) = F h(tk � �
2
; x); tk = k�; 1 � k � N;N� = T;

uh0(x) = 'h(x); x 2 [0; L]h:

(3.6)

Theorem 3.1.1. The solutions of the di¤erence schemes (3.5) and (3.6) satisfy the

stability estimates:

max
1�k�N

k uhk kL[0;L]2h� C[jj'hjjL[0;L]2h + max
1�k�N

k 'kh kL[0;L]2h ];

where C does not depend on 'hk; 1 � k � N;'h; h0; h and �:

Theorem 3.1.2. The solution of the di¤erence scheme (3.5) satis�es the almost
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coercive stability estimates:

max
1�k�N

k
uhk � uhk�1

�
kL2h� C[jjAxh(0)'hjjL2h + ln

1

� + h
max
1�k�N

k 'kh kL2h ];

where C does not depend on 'hk; 1 � k � N;'h; h0; h and �:

Theorem 3.1.3. The solution of the di¤erence scheme (3.6) satis�es the coercive

stability estimates:

 
NX
k=1

k
uhk � uhk�1

�
k2L2h �

! 1
2

� C

24jjAxh(0)'hjjL2h +
 

NX
k=1

k 'kh k2L2h �
! 1

2

35 ;
where C does not depend on 'hk; 1 � k � N;'h; h0; h and �:

Proof of Theorem 3.1.1. The proof of this theorem is based on the discrete

analogies of integral inequality and on the following formulas.

uhk = uh(k; 0)'
h +

kX
j=1

uh(k; j)C
j
h

�
�Bx

h(tj)u
h
j + 'hj

	
�; (3.7)

k = 1; � � �; N:

Here

uh(k; j) =

8>>><>>>:
RkhR

k�1
h � � �Rj+1h for k 6= j;

I for k = j;



38

Rkh = (I + �Axh(tk))
�1 ;

Ckh = (I + �Axh(tk))
�1

with the estimates

jjuh(k; j)jj � 1; jjCkh jj � 1; jjBx
h(t)jj � C1:

From (3:7) and the triangle inequality, it follows that



uhk

H = kuh(k; 0)kH!H 

'h

H + kX
j=1

kuh(k; j)kH!H

�


Cjh

H!H nkBx

h(tj)kH!H


uhj

H + 

'hj

Ho �

�


'h



H
+

kX
j=1

n
C1


uhj

H + 

'hj

Ho �

So,



uhk

H � 

'h

H + max
1�j�N



'hj

H k� + kX
j=1

C1


uhj

H �

�


'h



H
+ max
1�j�N



'hj

H + C1


uhk

H �

+
k�1X
j=1

C1


uhj

H �:
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Then,

(1� C1�)


uhk

H � 

'h

H + max

1�j�N



'hj

H + k�1X
j=1

C1


uhj

H �;



uhk

H =


'h



H
+ max
1�j�N



'hj

H
(1� C1�)

+ C2

k�1X
j=1



uhj

H �:
So



uhk

H =


'h



H
+ max
1�j�N



'hj

H
(1� C1�)

eC2�k:

In the same manner we can prove the theorem for the solution of di¤erence scheme (3.6).

uhk = uh(k; 0)'
h +

kX
j=1

uh(k; j)C
j
h (3.8)

�
�
�
Bx
h(tj � �

2
)

2

�
uhj (x) + uhj�1(x)

�
+ 'hj

�
�; k = 1; � � �; N

Here

uh(k; j) =

8>>><>>>:
RkhR

k�1
h � � �Rj+1h for k 6= j;

I for k = j;
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where

Rkh =

�
I �

�Axh(tk � �
2
)

2

��
I +

�Axh(tk � �
2
)

2

��1
;

Ckh =

�
I +

�Axh(tk � �
2
)

2

��1
:

The proof of Theorem 3.1.2 and 3.1.3 is also based on the discrete analogies of

integral inequality.

Note that, stability estimates could be also proved for the more general Pade dif-

ference schemes of the high order of accuracy generated by an exact di¤erence scheme or

by the Taylor�s decomposition on the two points for the numerical solutions of this problem

(see [Ashyralyev A. and Sobolevskii P.E.,2004]�[Ashiraliev A.and Sobolevskii P.E.,1988]).

3.2. Numerical Analysis

For numerical analysis we consider the initial-boundary value problem

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

@u(t;x)
@t

� @
@x
(x@u(t;x)

@x
) = f(t; x); 0 < t < 1; 0 < x < l;

@u(t;x)
@t

� @
@x
(x@u(t;x)

@x
) + u(t; x) = g(t; x); 0 < t < 1; l < x < �;

u(0; x) = '(x); '(x) = cos x
2
; 0 � x � �;

ux(t; 0) = u(t; �) = 0; u(t; l+) = u(t; l�) ;

ux(t; l+) = ux(t; l�) 0 � t � 1:

(3.9)
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where

f(t; x) =
1

2
exp(

�t
2
)(
x� 2
2

cos
x

2
+ sin

x

2
)

and

g(t; x) =
1

2
exp(

�t
2
)(
x+ 2

2
cos

x

2
+ sin

x

2
):

The exact solution of (3:9) is

u (t; x) = e�
t
2 cos

x

2
:

First, applying the �rst order of accuracy di¤erence scheme (3:5), we present the following

�rst order of accuracy di¤erence scheme for the approximate solutions of the problem (3:9)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ukn�uk�1n

�
� 1

h0

�
xn+1

ukn+1�ukn
h0

� xn
ukn�ukn�1

h0

�
= 'kn;

'kn = f(tk; xn); tk = k�; xn = nh0; 1 � k � N; 1 � n �Ml � 1 ;

ukn�uk�1n

�
� 1

h

�
xn+1

ukn+1�ukn
h

� xn
ukn�ukn�1

h

�
+ ukn = 'kn;

'kn = g(tk; xn); tk = k�; xn = l + (n�Ml)h; 1 � k � N;Ml + 1 � n �M � 1 ;

u0n = '(xn); xn = h0n; 0 � n �Ml;xn = l + (n�Ml)h;Ml + 1 � n �M;

uk1�uk0
h0

= ukM = 0; 0 � k � N;

h0
�
ukMl+1

� ukMl

�
= h

�
ukMl

� ukMl�1
�
; 0 � k � N:

(3.10)
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We have (M + 1)� (M + 1) system of linear equations in (3:10) and we write them

in the matrix form

A Uk +B Uk�1 = R'k; 1 � k � N; U0 = ' ; (3.11)

where

A =

26666666666666666666666666664

1 �1 0 : 0 0 0 0 0 : 0

x0 y0 z0 : 0 0 0 0 0 : 0

0 x1 y1 : 0 0 0 0 0 : 0

: : : : : : : : : : :

0 0 0 : xMl�1 yMl�1 zMl�1 0 0 : 0

0 0 0 : 0 h �(h+ h0) h0 0 : 0

0 0 0 : 0 0 xMl+1 yMl+1 zMl+1 : 0

0 0 0 : 0 0 0 xMl+2 yMl+2 : 0

: : : : : : : : : : :

0 0 0 : 0 0 0 0 0 : zM�1

0 0 0 : 0 0 0 0 0 : 1

37777777777777777777777777775

;
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B =

26666666666666666664

0 0 0 0 0 : 0 0 0

0 v 0 0 0 : 0 0 0

0 0 v 0 0 : 0 0 0

: : : : : : : : :

0 0 0 0 0 : 0 0 0

0 0 0 0 0 : v 0 0

0 0 0 0 0 : 0 v 0

0 0 0 0 0 : 0 0 0

37777777777777777775

;

Here

xn =

8>>><>>>:
� n
h0
; 0 � n �Ml � 1 ;

� l+(n�Ml)h
h2

; Ml + 1 � n �M � 1;

zn =

8>>><>>>:
�n+1

h0
, 0 � n �Ml � 1 ;

� l+(n�Ml+1)h
h2

; Ml + 1 � n �M � 1;

yn =

8>>><>>>:
1
�
+ 2n+1

2h0
, 0 � n �Ml � 1 ;

1
�
+ 2l+(2n�2Ml+1)h

h2
+ 1; Ml + 1 � n �M � 1;

v = �1
�
:
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U s =

26664
U s0

:::

U sM

37775 for s = k; k � 1 and ' =

26664
'(x0)

:::

'(xM)

37775 ;

R =

26666664
1 0 : 0

0 1 : 0

: : : :

0 0 : 1

37777775 ; 'k =

26666666666666666666664

0

'k1

:::

'kMl�1

0

'kMl+1

:::

'kM�1

0

37777777777777777777775

:

So, we have the �rst order di¤erence equation with respect to k with matrix coef-

�cients. From (3.11) it follows that

Uk = �A�1BUk�1 + A�1R'k k = 1; � � �; N: (3.12)

Second, applying the second order of accuracy di¤erence scheme (3:6), we present

the following second order of accuracy di¤erence scheme for the approximate solutions of
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the problem (3:9)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ukn�uk�1n

�
� 1

2h0

�
xn+1

ukn+1�ukn
h0

� xn
ukn�ukn�1

h0

�

� 1
2h0

�
xn+1

uk�1n+1�u
k�1
n

h0
� xn

uk�1n �uk�1n�1
h0

�
= 'kn; '

k
n = f(tk � �

2
; xn);

tk = k�; xn = nh0; 1 � k � N; 1 � n �Ml � 1 ;

ukn�uk�1n

�
� 1

2h

�
xn+1

ukn+1�ukn
h

� xn
ukn�ukn�1

h

�

� 1
2h

�
xn+1

uk�1n+1�u
k�1
n

h
� xn

uk�1n �uk�1n�1
h

�
+ 1

2

�
ukn + uk�1n

	
= 'kn;

'kn = g(tk � �
2
; xn); tk = k�; xn = l + (n�Ml)h; 1 � k � N;Ml + 1 � n �M � 1 ;

u0n = '(xn); xn = h0n; 0 � n �Ml;xn = l + (n�Ml)h;Ml + 1 � n �M;

�uk2 + 4uk1 � 3uk0 = ukM = 0; 0 � k � N;

h0
�
�ukMl+2

+ 4ukMl+1
� 3ukMl

�
= h

�
ukMl�2 � 4u

k
Ml�1 + 3u

k
Ml

�
; 0 � k � N:

(3.13)

We have again (M + 1)� (M + 1) system of linear equations and we write them in

the matrix form (3.11), where
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A =

26666666666666666666666666664

3 4 �1 : 0 0 0 0 : 0

x0 y0 z0 : 0 0 0 0 : 0

0 x1 y1 : 0 0 0 0 : 0

:: :: :: : :::: ::: ::: ::: : :

0 0 0 : y
Ml�1

zMl�1 0 0 : 0

0 0 0 : 4h �3(h+ h0) 4h0 �h0 : 0

0 0 0 : 0 xMl+1 yMl+1 z
Ml+1

: 0

0 0 0 : 0 0 xMl+2 yMl+2 : 0

:: :: :: : ::: ::: ::: ::: : :

0 0 0 : 0 0 0 0 : zM�1

0 0 0 : 0 0 0 0 : 1

37777777777777777777777777775

;

B =

26666666666666666666666664

0 0 0 : 0 0 0 : 0

x0 q0 z0 : 0 0 0 : 0

0 x1 q1 : 0 0 0 : 0

: : : : : : : : :

0 0 0 : zMl�1 0 0 : 0

0 0 0 : 0 0 0 : 0

0 0 0 : xMl+1 qMl+1 zMl+1 : 0

: : : : : : : : :

0 0 0 : 0 0 0 : zM�1

0 0 0 : 0 0 0 : 0

37777777777777777777777775

;
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Here

xn =

8>>><>>>:
� n
2h0
; 0 � n �Ml � 1 ;

� l+(n�Ml)h
2h2

; Ml + 1 � n �M � 1;

zn =

8>>><>>>:
�n+1
2h0
, 0 � n �Ml � 1 ;

� l+(n�Ml+1)h
2h2

; Ml + 1 � n �M � 1;

yn =

8>>><>>>:
1
�
+ 2n+1

2h0
; 0 � n �Ml � 1 ;

1
�
+ 2l+(2n�2Ml+1)h

2h2
+ 1

2
; Ml + 1 � n �M � 1;

qn =

8>>><>>>:
� 1
�
+ 2n+1

2h0
; 0 � n �Ml � 1 ;

� 1
�
+ 2l+(2n�2Ml+1)h

2h2
+ 1

2
; Ml + 1 � n �M � 1:

Now, we will give the results of the numerical analysis.In order to get the solution

of (3.10) and (3.13) we use (3.12) and MATLAB programs. The numerical solutions are

recorded for di¤erent values of N =M ; Ml and ukn represents the numerical solutions of

these di¤erence schemes at (tk; xn): First, for their comparison, the errors computed by
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E = max
1�k�N
1�n�M

��u(tk; xn)� ukn
�� :

Tables 1 and 2 give the error analysis between the exact solution and solutions derived

by di¤erence schemes. Table 1 is constructed for h = h0 =
�
M

and N =M = 20; 40 and

60 respectively, when Ml is 9M10 or
13M
20
:

Table 1. Numerical analysis for h = h0

Method N=M=20 N=M=40 N=M=60

1st order of accuracy (13M
20
) 0.0158 0.0082 0.0056

1st order of accuracy (9M
10
) 0.0178 0.0091 0.0061

2nd order of accuracy (13M
20
) 9.2142.10�5 2.5762.10�5 1.1862.10�5

2nd order of accuracy (9M
10
) 1.0734.10�4 2.7111.10�5 1.2088.10�5

Table 2 is constructed for h = 0:01 and N =M = 20; 40 and 60 respectively, when

Ml =
9M
10
or Ml =

13M
20

, we can obtain h0 = (� � h(M �Ml))=Ml:
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Table 2. Numerical analysis for di¤erent h and h0

Method N=M=20 N=M=40 N=M=60

1st order of accuracy (13M
20
) 0.0245 0.0124 0.0081

1st order of accuracy (9M
10
) 0.0193 0.0098 0.0066

2nd order of accuracy (13M
20
) 4.0302.10�4 1.1098.10�4 5.3 .10�5

2nd order of accuracy (9M
10
) 1.5804.10�4 4.1352.10�5 1.9128.10�5

Second, for their comparison, the errors computed by

E = max
1�k�N

(
MlX
n=1

��u(tk; xn)� ukn
��2 h0 + MX

n=Ml+1

��u(tk; xn)� ukn
��2 h) 1

2

and the Table 3 is constructed for h = h0 =
�
M

and N = M = 20; 40 and 60

respectively, when Ml is 9M10 or
13M
20
:
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Table 3. Numerical analysis for h = h0

Method N=M=20 N=M=40 N=M=60

1st order of accuracy (13M
20
) 0.0193 0.0099 0.0066

1st order of accuracy (9M
10
) 0,0209 0,0105 0,007

2nd order of accuracy (13M
20
) 2.0841.10�6 6.4106.10�7 3.0643.10�7

2nd order of accuracy (9M
10
) 2.7907.10�6 6.9214.10�7 3.0643.10�7

Table 4 is constructed for h = 0:01 and N =M = 20; 40 and 60 respectively, when

Ml =
9M
10
or Ml =

13M
20
; we can obtain h0 = (� � h(M �Ml))=Ml:

Table 4. Numerical analysis for di¤erent h and h0

Method N=M=20 N=M=40 N=M=60

1st order of accuracy (13M
20
) 0,0073 0,0051 0,0041

1st order of accuracy (9M
10
) 0.0057 0.004 0.0033

2nd order of accuracy (13M
20
) 3.5428.10�5 1.111.10�5 6.1807.10�6

2nd order of accuracy (9M
10
) 5.7752.10�6 1.5593.10�6 7.5472.10�7
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Thus, the second order of accuracy di¤erence schemes are more accurate comparing

with the �rst order of accuracy di¤erence scheme.
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CHAPTER 4

R-MODIFIED CRANK-NICHOLSON DIFFERENCE
SCHEME

4.1. Di¤erence Schemes

We consider again the problem (3:1): It is known that (see [Ashyralyev A.,1989] ;

[Luskin M. and Rannacher R.,1982] and [Rannacher R.,1982]) the Crank-Nicholson dif-

ference scheme (3.6) is not convergent for unsmooth datas. Therefore, in this chapter we

will consider the r-modi�ed Crank-Nicholson di¤erence schemes for the numerical solu-

tion of (3:1): The discretization of problem (3:1) is carried out also in two steps. In

the �rst step, we consider the same discretization in x given in the previous chapter.In

the second step, applying the modi�ed Crank-Nicholson di¤erence schemes of papers

[Ashyralyev A.,1989] ; [Luskin M. and Rannacher R.,1982] and [Rannacher R.,1982], we

get

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

uhk(x)�uhk�1(x)
�

+ Axh(tk � �
2
)uhk(x) +Bx

h(tk � �
2
)uhk(x) = 'hk(x);

'hk(x) = F h(tk � �
2
; x); tk = k�;

1 � k � r;N� = T; uh0(x) = 'h(x); x 2 [0; L]h;

uhk(x)�uhk�1(x)
�

+
Axh(tk�

�
2
)

2

�
uhk(x) + uhk�1(x)

�
+
Bxh(tk�

�
2
)

2

�
uhk(x) + uhk�1(x)

�
= 'hk(x);

'hk(x) = F h(tk � �
2
; x); tk = k�; r + 1 � k � N;N� = T;

uh0(x) = 'h(x); x 2 [0; L]h:

(4.1)
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Theorem 4.1.1. The solution of the di¤erence scheme (4.1) satis�es the stability

estimates:

max
1�k�N

k uhk kL2h� C[jj'hjjL2h + max
1�k�N

k 'kh kL2h ];

where C does not depend on 'hk; 1 � k � N;'h; h0; h and �:

Theorem 4.1.2. The solution of the di¤erence scheme (4.1) satis�es the almost

coercive stability estimates:

max
1�k�N

k
uhk � uhk�1

�
kL2h� C[jjAxh(0)'hjjL2h + ln

1

� + h
max
1�k�N

k 'kh kL2h ];

where C does not depend on 'hk; 1 � k � N;'h; h0; h and �:

Theorem 4.1.3. The solution of the di¤erence scheme (4.1) satis�es the coercive

stability estimates:

 
NX
k=1

k
uhk � uhk�1

�
k2L2h �

! 1
2

� C

24jjAxh(0)'hjjL2h +
 

NX
k=1

k 'kh k2L2h �
! 1

2

35 ;
where C does not depend on 'hk; 1 � k � N;'h; h0; h and �:

Proof. The proof of these theorems is based on the discrete analogies of integral

inequality and on the following formulas

uhk = uh(k; 0)'
h +

kX
j=1

uh(k; j)C
j
h

n
�Bx

h(tj �
�

2
)uhj + 'hj

o
�; (4.2)

k = 1; � � �; r;
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uhk = uh(k; 0)'
h +

kX
j=1

uh(k; j)C
j
h (4.3)

�
�
�
Bx
h(tj � �

2
)

2

�
uhj (x) + uhj�1(x)

�
+ 'hj

�
�; k = r + 1; � � �; N

for the solution of di¤erence scheme (4.1) and on the estimates

jjuh(k; j)jj � 1; jjCkh jj � 1; jjBx
h(tk �

�

2
)jj � C2:

Here

uh(k; j) =

8>>><>>>:
Rkh � � �R

j+1
h for k 6= j;

I for k = j;

where

Rkh =

8>>><>>>:
�
I + �Axh(tk � �

2
)
��1

; 1 � k � r;

�
I � �Axh(tk�

�
2
)

2

��
I +

�Axh(tk�
�
2
)

2

��1
; r + 1 � k � N

and

Ckh =

8>>><>>>:
�
I + �Axh(tk � �

2
)
��1

; 1 � k � r;

�
I +

�Axh(tk�
�
2
)

2

��1
; r + 1 � k � N:

Note that, stability estimates could be also proved for the more general Pade di¤er-

ence schemes of the high order of accuracy generated by an exact di¤erence scheme or by

the Taylor�s decomposition on the two points for the numerical solutions of this problem.
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4.2. Numerical Analysis

For numerical analysis we consider the initial-boundary value problem

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

@u(t;x)
@t

� @2u(t;x)
@x2

= f(t; x); 0 < t < 1; 0 < x < l;

@u(t;x)
@t

� @2u(t;x)
@x2

+ u(t; x) = g(t; x); 0 < t < 1; l < x < 1;

u(0; x) = ' (x) = 0; 0 � x � 1;

ux(t; 0) = u(t; 1) = 0;

u(t; l+) = u(t; l�) ; ux(t; l+) = ux(t; l�); 0 � t � 1:

(4.4)

where

f(t; x) =
1

2
t�

1
2 (x� x2)

5
2 � 15

4
t
1
2 (x� x2)

3
2 (1� 2x) + 5t 12 (x� x2)

3
2 ;

g(t; x) = t
1
2 (x� x2)

5
2 +

1

2
t�

1
2 (x� x2)

5
2 � 15

4
t
1
2 (x� x2)

3
2 (1� 2x)

+ 5t
1
2 (x� x2)

3
2 :

The exact solution of (4:4) is

u (t; x) = t
1
2 (x� x2)

5
2 :

Applying the di¤erence scheme (4:1), we present the following r-modi�ed Crank-

Nicholson di¤erence scheme for the approximate solution of the initial-boundary value

problem (4:4).
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ukn�uk�1n

�
� ukn+1�2ukn+ukn�1

h2
= 'kn;

'kn = f(tk � �
2
; xn); tk = k�; xn = nh;

1 � k � r; 1 � n �Ml � 1;

ukn�uk�1n

�
� ukn+1�2ukn+ukn�1

h2
+ ukn = 'kn;

'kn = g(tk � �
2
; xn); tk = k�; xn = nh;

1 � k � r;Ml + 1 � n �M � 1;

ukn�uk�1n

�
� 1

2

n�
ukn+1�2ukn+ukn�1

h2

�
+
�
uk�1n+1�2u

k�1
n +uk�1n�1
h2

�o
= 'kn;

'kn = f(tk � �
2
; xn); tk = k�; xn = nh;

r + 1 � k � N; 1 � n �Ml � 1 ;

ukn�uk�1n

�
� 1

2

n�
ukn+1�2ukn+ukn�1

h2

�
+
�
uk�1n+1�2u

k�1
n +uk�1n�1
h2

�o
+1
2

�
ukn + uk�1n

	
= 'kn;

'kn = g(tk � �
2
; xn); tk = k�; xn = nh;

r + 1 � k � N;Ml + 1 � n �M � 1 ;

u0n = 0; 1 � n �M

�uk2 + 4uk1 � 3uk0 = ukM = 0; 0 � k � N;

�
�ukMl+2

+ 4ukMl+1
� 3ukMl

�
=
�
ukMl�2 � 4u

k
Ml�1 + 3u

k
Ml

�
;

0 � k � N:

(4.5)
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We have (M + 1)� (M + 1) system of linear equations in (4:5) and we write them

in the matrix form

A Uk +B Uk�1 = R'k; 1 � k � N; U0 = ' ; (4.6)

where

A =

26666666666666666666666666664

3 4 �1 : 0 0 0 0 : 0

x0 y0 z0 : 0 0 0 0 : 0

0 x1 y1 : 0 0 0 0 : 0

:: :: :: : :::: ::: ::: ::: : :

0 0 0 : y
Ml�1

zMl�1 0 0 : 0

0 0 0 : 4 �6 4 �1 : 0

0 0 0 : 0 xMl+1 yMl+1 z
Ml+1

: 0

0 0 0 : 0 0 xMl+2 yMl+2 : 0

:: :: :: : ::: ::: ::: ::: : :

0 0 0 : 0 0 0 0 : zM�1

0 0 0 : 0 0 0 0 : 1

37777777777777777777777777775

;
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B =

26666666666666666666666664

0 0 0 : 0 0 0 : 0

w0 q0 p0 : 0 0 0 : 0

0 w1 q1 : 0 0 0 : 0

: : : : : : : : :

0 0 0 : pMl�1 0 0 : 0

0 0 0 : 0 0 0 : 0

0 0 0 : wMl+1 qMl+1 pMl+1 : 0

: : : : : : : : :

0 0 0 : 0 0 0 : pM�1

0 0 0 : 0 0 0 : 0

37777777777777777777777775

;

Here

xn =

8>>><>>>:
�n
h
; 0 � n � r ;

� n
2h
; r + 1 � n �M � 1 ;

zn =

8>>><>>>:
�n+1

h0
, 0 � n � r ;

�n+1
2h0
, r + 1 � n �M � 1 ;

yn =

8>>><>>>:
1
�
+ 2n+1

2h
, 0 � n �Ml � 1 ;

1
�
+ 2n+1

2h
+ 1

2
; Ml + 1 � n �M � 1;



59

wn =

8>>><>>>:
0; 0 � n � r ;

� n
2h
; r + 1 � n �M � 1 ;

qn =

8>>>>>>>>><>>>>>>>>>:

� 1
�
; 0 � n � r;

� 1
�
+ 2n+1

2h
; r + 1 � n �Ml � 1 ;

� 1
�
+ 2n+1

2h
+ 1

2
; Ml + 1 � n �M � 1;

pn =

8>>><>>>:
0, 0 � n � r ;

�n+1
2h
, r + 1 � n �M � 1;

U s =

26664
U s0

:::

U sM

37775 for s = k; k � 1 and ' =

26664
'(x0)

:::

'(xM)

37775 ;
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R =

26666664
1 0 : 0

0 1 : 0

: : : :

0 0 : 1

37777775 ; 'k =

26666666666666666666664

0

'k1

:::

'kMl�1

0

'kMl+1

:::

'kM�1

0

37777777777777777777775

:

So, we have the �rst order di¤erence equation with respect to k with matrix coef-

�cients. From (4.6) it follows that

Uk = �A�1BUk�1 + A�1R'k k = 1; � � �; N: (4.7)

Now, we will give the results of the numerical analysis.In order to get the

solution of (4.5), we use (4.7) and MATLAB program. Numerical solutions are recorded

for di¤erent values of N =M ; Ml and ukn represents the numerical solution of r-modi�ed

Crank-Nicholson di¤erence scheme at (tk; xn): For their comparison, the errors computed

by

E = max
1�k�N

(
MlX
n=1

��u(tk; xn)� ukn
��2 h0 + MX

n=Ml+1

��u(tk; xn)� ukn
��2 h) 1

2

:

Table 5 gives the error analysis between the exact solution and solutions derived by
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di¤erence schemes. Table is constructed for Ml = 9M
10
and N =M = 20; 40 respectively.

Table 5. Numerical analysis for-modi�ed Crank-Nicholson

Method N=M=20 N=M=40

1st order of accuracy 0.12 0.1205

2nd order of accuracy 1.0813x107 1.8024x105

2-modi�ed Crank-Nicholson 0.0441 0.0272

Second, for their comparison, the errors computed by

E = max

(
MlX
n=1

��u(tN ; xn)� uNn
��2 h0 + MX

n=Ml+1

��u(tN ; xn)� uNn
��2 h) 1

2

and the Table 6 is constructed for N =M = 20 and 40 , when Ml is 9M10 .
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Table 6. Numerical analysis for end point for-modi�ed Crank-Nicholson

Method N=M=20 N=M=40

1st order of accuracy 0.0139 0.0074

2nd order of accuracy 1.5122x103 0.0086

2-modi�ed Crank-Nicholson 0.0082 0.0046
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CHAPTER 5

APPLICATIONS

5.1. A Brief Terminology for Biology

Atherosclerosis is a type of arteriosclerosis.It�s the term for the process of fatty

substances, cholesterol, cellular waste products, calcium and �brin (a clotting material in

the blood) building up in the inner lining of an artery. Arteriosclerosis is a general term

for the thickening and hardening of arteries. Atherosclerosis is a slow, progressive disease

that may start in childhood. Atherosclerosis a¤ects large and medium-sized arteries.

Complications of atherosclerosis include stroke or TIA in the brain, angina (chest pain),

heart attack, kidney failure, erectile dysfunction and PAD (peripheral artery disease).

Figure 1. The structure of endothelial cell.
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Endothelial cells are very �at, have a central nucleus, are about 1-2 �m thick and

some 10-20 �m in diameter. They form �at, pavement-like patterns on the inside of the

vessels and at the junctions between cells there are overlapping regions which help to seal

the vessel.Endothelial cells are selective �lters which regulate the passage of gases, �uid

and various molecules across their cell membranes. Endothelial cells are also responsive

to local agents such as histamine, which is released when local tissues are damaged.

Consequently, the endothelial cells open up their intercellular junctions and allow the

passage of large amounts of �uid from blood plasma so that the surrounding tissues

become engorged with �uid and swollen: a condition called oedema. At the same time

large numbers of leucocytes, escape and �ood into the tissues. These events are the

hallmarks of the in�ammatory response. It is exempli�ed by a simple scratch on the skin

or a splinter wound: the area quickly becomes reddened (opening up of capillaries) and

swollen (oedema).

5.2. Methods

Figure 2. Surface of endothelial cells and glycocalyx inside the micro channels (Squire

J.M., et all).
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Surface of endothelial cells and glycocalyx bush structure inside the cardiovascular

channels are illustrated in Figure 2 [Squire J.M., Chew M., Nneji G., Neal C., Barry J.

and Michel C., 2001]. The schematic of the glycocalyx bush structure for computational

modeling studies is illustrated in Figure 3. The structure of the single glycocalyx was

assumed as a cylindrical shape. The diameter of the single glycoprotein in the glycocalyx is

taken as 10 nm and the length of it is taken as 210 nm. The distance between glycoproteins

in glycocalyx is assumed 20 nm. Then the �ow equations are established. Two regions

are considered in the channel. The region near the center of the channel is called core

�ow region and the �ow near the channel wall is called as porous �ow region. Reynolds�s

number is de�ned as Re = �ud
�
where � is the density of the blood in the channel and

taken 1.06 g
cm3 , u is the characteristic velocity of the �ow (mms ) and found by the solution

of the equations in the channel, d is the diameter of channel, � is the viscocity of the blood

and taken 3.5 cP . Typical Reynold�s number in micro channel is around 0.05. General

mathematical formulations for the calculation of the velocities in both regions are derived.

The mixed problem for one-dimensional di¤usion equation with variable space operator

is solved. A numerical code is written using Matlab software. The results of the solution

will lead us to calculate the wall shear stress (WSS) and drag forces inside the geometry.

Figure 3. Schematic of Core (A) and Porous �ow (B) regions inside capillary arteries.
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Di¤erential equations together with boundary and initial conditions are given for

core and porous �ow regions by equation (5:1) through equation (5:3) : Core �ow region is

de�ned through the center of capillary and porous �ow region is through the glycocalyx.

Core �ow region:

@u (t; x)

@t
=

@

@x

�
a (t; x)

@u (t; x)

@x

�
+ f (t; x) ; x 2 (0; l) ; t 2 (0; T ) : (5.1)

Porous �ow region:

@u (t; x)

@t
=

@

@x

�
a (t; x)

@u (t; x)

@x

�
+ b (t; x)u (t; x)

+g (t; x) ; x 2 (0; l) ; t 2 (0; T ) : (5.2)

Initial and boundary conditions:

u (0; x) = ' (x) ; x 2 [0; L] ;

ux(t; 0) = 0; u(t; L) = 0; t 2 [0; T ];

u(t; l+) = u(t; l�); ux(t; l+) = ux(t; l�); t 2 [0; T ]: (5.3)

where a(t; x); b(t; x); f(t; x); g(t; x) and '(x) are given su¢ ciently smooth functions and

a(t; x) > 0. a(t; x) is due to taking cylindrical coordinates in the system and de�ned as

x. The function b(t; x) is the ratio of viscosity to Darcy permeability which describes

how densely the proteoglycans are packed. f(t; x) and g(t; x) are the pressure di¤erences

along the micro channels under unsteady �uid �ow conditions in cylindrical coordinates.
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The discretization of the problem is carried out in two steps. In the �rst step the

grid spaces are de�ned as illustrated in Figure 4.

Figure 4. Grid spaces inside the Core and Porous regions in the capillary arteries.

In x-direction, we de�ne two di¤erent step sizes h0 and h for core �ow and porous

media regions for numerical calculations respectively. Finer grid size h in porous media

de�nes to observe the velocity, drag force and WSS over the glycocalyx in detailed.

5.3. Results and Discussion

The �ow �eld inside the capillary vascular system was solved using di¤erential equa-

tions which are valid through the core and porous regions. Di¤erential equations are dis-

cretized and solved using MATLAB software. A computer code was written to solve the

algebraic equations. Velocity pro�les for unsteady �ow were given in Figure 5. First and

second orders of accuracy approach were applied to the equations for the velocities. Time
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dependent velocities are increasing inside the domain starting from the capillary wall.

Figure 5. Unsteady velocity pro�les.

Figure 6 illustrates the velocity pro�les at some speci�c locations inside the core

and porous regions. Velocity increases by time in the center of the capillary (x=0). While

getting closer to the wall velocity change is not remarkably high by time. It becomes

smooth through the period. Velocity is high near to the junction of core �ow and �ow

through the glycocalyx. Then it becomes very small near to the wall. When the pressure

or �ow rate is increased inside the vessel, we observed fast change of �ow speed and

more blunt velocity pro�les indicating the increased momentum transfer in the vertical

direction to the �ow direction.
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Figure 6. Velocity pro�les at some speci�c locations inside the core and porous regions.

Drag forces inside the porous media or through the glycocalyx were shown in the

Figure 7. The equation for drag force is Fdrag =
��ua2

cKp
where Kp is Darcy permeability

function and taken as 278:03nm2; volume fraction of the proteoglycans c is taken 0:0252,

a is the protein radius and taken as 5 nm. Drag force at the edge of the glycocalyx was

found the smallest (0:2 10�7 pN) that is because of very small tip cross sectional area.

Then the value increases along the glycocalyx upto the wall. The magnitude of the drag

force is also increased by time.

The wall shear stresses
�
WSS = ��u

�r
; �u
�r
: velocity gradient

�
inside the glycocalyx

were shown in Figure 8. At the beginning of the pulsatile �ow the value of WSS value is

higher near to the edge of the glycocalyx and inside the porous region. It gets smaller due

to the lower velocity gradient. This is one of the e¤ects of mechanotransduction which

may be e¤ective for biochemical signaling.
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Figure 7. Drag Force changes inside the porous region.

Figure 8. Wall shear stress distribution by time inside the core and porous �ow regions.
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CHAPTER 6

CONCLUSIONS

This work is devoted to study the stability of the di¤erence schemes for the ap-

proximate solution of the partial di¤erential equations with variable space operator. The

following original results are obtained:

* First and second order of accuracy di¤erence schemes for the approximate solution

of the partial di¤erential equations with variable space operator in a Hilbert space are

presented.

* Theorems on the stability estimates for the solution of these di¤erences schemes

are established.

*The Matlab implementation of these di¤erences schemes are generated.

* Theoretical statements for the solution of these di¤erence schemes are supported

by results of numerical examples.

* Constructed Matlab implementation is used to obtain the solution of the given

application.

* Velocity pro�le is analyzed.

* Drag forces is calculated in both regions. Drag forces are found higher at the edge

of the glycocalyx and decreased along them.
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* Low WSS can be considered one of the causes of the atherosclerosis formation and

biochemical signal activator. In vivo studies together with the modeling studies will give

more detailed understanding of the �ow phenomena inside capillary arteries.
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CHAPTER 7

MATLAB PROGRAMMING

In this chapter, Matlab programs for �rst order of accuracy di¤erence schemes for

di¤erent h and h0 and the biomechanical application are presented.

7.1. First order of Accuracy Di¤erence Scheme

function �rstorderaccuracy(N,M)

if nargin<1; N=20; M=20; end;

T=1 ; ML=13*M/20; a=1 ; q=1 ; h=0.01

ho=(pi-(h*(M-ML)))/ML; tau=T/N; l=ML*ho;

A=zeros(M+1,M+1) ;

for n=1:ML-1;

A(n+1,n)=-(a*(n-1)/ho); A(n+1,n+1)=(1/tau)+(a*(n-1)+(a*n))/ho ; A(n+1,n+2)=

-(a*n)/ho;

end;

for n=ML+1:M-1;

A(n+1,n)=-(l+(n-ML-1)*h)/h^2 ;

A(n+1,n+1)=(1/tau)+(2*l+(2*n-2*ML-1)*h)/h^2+q ;
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A(n+1,n+2)= -(l+(n-ML)*h)/h^2 ;

end;

A(1,1)=1 ; A(1,2)=-1 ; A(ML+1,ML)=h ; A(ML+1,ML+1)=-h-ho ;

A(ML+1,ML+2)=ho ; A(M+1,N+1)=1 ;

P=zeros(M+1,M+1) ;

for n=2:ML; P(n,n)=-1/tau ; end;

for n=ML+2:M; P(n,n)=-1/tau ; end;

�i=zeros(M+1,M+1) ;

for k=2:M+1; �i(1,k)=0 ; �i(ML+1,k)=0 ; �i(M+1,k)=0 ;

for n=2:ML; t=(k-1)*tau; x=(n-1)*ho ; �i(n,k)=f(x,t); end;

for n=ML+2:M; t=(k-1)*tau; x=ML*ho+(n-ML-1)*h ;

�i(n,k)=c(x,t); end; end;

G=inv(A) ;

for n=1:ML ; U(n,1)=cos((n-1)*ho/2) ; end;

for n=ML+1:M+1 ; U(n,1)=cos((ML*ho+(n-ML-1)*h)/2) ; end;

for k=2:N+1 U(:,k)=G*�i(:,k)-G*P*U(:,k-1); end;
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%�EXACT SOLUTION OF PDE�;

for k=1:N+1; for j=1:ML+1; t=(k-1)*tau; x=(j-1)*ho;

es(j,k) = exact(x,t); end;

for j=ML+2:M+1; t=(k-1)*tau; x=ML*ho+(j-ML-1)*h;

es(j,k) = exact(x,t); end; end;

% ABSOLUTE DIFFERENCES ;

absdi¤=max(max(abs(es-U)))

% DIFFERENCE ANALYSIS ;

for k=1:N+1; for n=1:ML+1 ;

di¤(k,n)=(abs(U(k,n)-es(k,n)))^2*h;

end;

for n=ML+2:M+1 ;

di¤(k,n)=(abs(U(k,n)-es(k,n)))^2*h;

end; end;

for s=1:N+1; di¤sum(s)=sum(di¤(s,:)); end;

for s=1:N+1; kare(s)=di¤sum(s)^0.5; end;
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Err2=max(kare)

%GRAPH OF THE SOLUTION ;

�gure; surf(U); title(��rst order accuracy for N=20 M=20�);xlabel(�t axis�); ylabel(�x

axis�); rotate3d ;

�gure; surf(es); title(�exact solution�); xlabel(�t axis�); ylabel(�x axis�);rotate3d ;

%FUNCTIONS ;

function estx=exact(x,t); estx=exp(-t/2)*cos(x/2);

function ftx=f(x,t) ; ftx=exp(-t/2)/2*((x-2)/2*cos(x/2)+sin(x/2)) ;

function ctx=c(x,t); ctx=exp(-t/2)/2*((x+2)/2*cos(x/2)+sin(x/2));

7.2. Application

function application(N,M)

if nargin<1; N=100; M=100; end;

T=0.75 ; ML=9*M/10; a=1 ; q=1 ;

%h is the step size in porous mediada and ho is inside core �ow region , tau is

% the time incrementation. Porous media has 10 nodes in x direction while

%core �ow region has 90.Error analysis can be calculated when the exact solution

is known.
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h=0.021; ho=(2.5-(h*(M-ML)))/ML;

tau=T/N; l=ML*ho;

%l is the lenght of core �ow region

A=zeros(M+1,M+1) ;

for n=1:ML-1;

A(n+1,n)=-a*((n-1)*ho)^2/(2*ho^2);

A(n+1,n+1)=(1/tau)+((a*((n-1)*ho)^2)+(a*(n*ho)^2))/(2*ho^2) ;

A(n+1,n+2)= -a*(n*ho)^2/(2*ho^2);

end;

for n=ML+1:M-1;

A(n+1,n)=-a*(l+(n-ML-1)*h)^2/(2*h^2) ;

A(n+1,n+1)=(1/tau)+a*((l+(n-ML-1)*h)^2+(l+(n-ML)*h)^2)/(2*h^2)+q ;

A(n+1,n+2)= -a*(l+(n-ML)*h)^2/(2*h^2) ;

end;

A(1,1)=1 ;A(1,2)=-1 ; A(ML+1,ML)=h ; A(ML+1,ML+1)=-h-ho ;

A(ML+1,ML+2)=ho ; A(M+1,N+1)=1 ;
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P=zeros(M+1,M+1) ;

for n=2:ML; P(n,n)=-1/tau ; end;

for n=ML+2:M; P(n,n)=-1/tau ; end;

�i=zeros(M+1,N+1) ;

for k=2:N+1; �i(1,k)=0 ; �i(ML+1,k)=0 ; �i(M+1,k)=0 ;

for n=2:ML; t=(k-1)*tau;x=(n-1)*ho ;�i(n,k)=f(x,t); end;

for n=ML+2:M;t=(k-1)*tau; x=ML*ho+(n-ML-1)*h ; �i(n,k)=c(x,t); end; end;

G=inv(A) ;

for n=1:ML ; U(n,1)=1.4-1.4*(n-1)/M; end;

for n=ML+1:M+1 ; U(n,1)=1.4-1.4*(n-1)/M; end;

for k=2:N+1 U(:,k)=G*�i(:,k)-G*P*U(:,k-1); end;

%ANALYZING U FOR CONSTANT X�s INSIDE TWO REGIONS ;

for j=1:M+1; UC1(j,1)=U(1,j); UC2(j,1)=U(26,j); UC3(j,1)=U(51,j);

UC4(j,1)=U(71,j); UC5(j,1)=U(89,j); UG1(j,1)=U(91,j); UG2(j,1)=U(93,j);

UG3(j,1)=U(95,j); UG4(j,1)=U(98,j); UG5(j,1)=U(101,j); end;

subplot(1,2,1);
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plot(UC1); gtext(�r=0�); xlabel(�t(s)�);ylabel(�Uc(mm/s)�);hold;

plot(UC2); gtext(�r=0.06�); plot(UC3); gtext(�r=0.13�);

plot(UC4); gtext(�r=0.18�); plot(UC5); gtext(�r=0.22�);

title(�Figure 3.1.1 Time changes of velocity in core �ow�);

subplot(1,2,2);

plot(UG1); gtext(�r=0.228�);xlabel(�t(s)�); ylabel(�Ug(mn/s)�);hold;

plot(UG2); gtext(�r=0.23�); plot(UG3); gtext(�r=0.237�);

plot(UG4); gtext(�r=0.243�); plot(UG5); gtext(�r=0.25�);

title(�Figure 3.1.2 Time changes of velocity in porous media�);

%ANALYZING U FOR CONSTANT T�s;

for j=1:M+1;

T1(j,1)=U(j,1); T2(j,1)=U(j,21); T3(j,1)=U(j,41); T4(j,1)=U(j,61);

T5(j,1)=U(j,81); T6(j,1)=U(j,101); end;

�gure;

plot(T1); gtext(�t=0�); xlabel(�x(nm)�);ylabel(�U(mn/s)�);hold;

plot(T2); gtext(�t=0.15�); plot(T3); gtext(�t=0.30�);
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plot(T4); gtext(�t=0.45�); plot(T5); gtext(�t=0.60�);

plot(T6); gtext(�t=0.75�);

title(�Figure 3.2 Velocity changes for di¤erent time levels in whole region�);

%ANALYZING U FOR T=0.45;

for j=1:(9*M/10)-3; TL(j,1)=U(j,61); end;

for j=(9*M/10)-3:(9*M/10)+3; TNT(j-9*M/10+4,1)=U(j,61); end;

for j=(9*M/10)+1:M+1; TBB(j-9*M/10,1)=U(j,61); end;

�gure;

subplot(1,3,1);plot(TL); title(�Velocity in lumen�);

xlabel(�x(nm)�);ylabel(�U(mn/s)�);

subplot(1,3,2);plot(TNT); title(�Velocity near tip�);

xlabel(�x(nm)�);ylabel(�U(mn/s)�);

subplot(1,3,3);plot(TBB); title(�Velocity in brush border�);

xlabel(�x(nm)�);ylabel(�U(mn/s)�);

%WALL SHEAR STRESS;

W=zeros(M+1,N+1);
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for k=1:ML-2; for n=1:N+1;

W(k+1,n)=(-U(k+1,n)+U(k,n))/ho;

end; end;

for k=ML-1:M; for n=1:N+1;

W(k+1,n)=(-U(k+1,n)+U(k,n))/h;

end; end;

mu=0.0035; WSS=mu*W; for j=1:M+1;

W1(j,1)=WSS(91,j); W2(j,1)=WSS(93,j);

W3(j,1)=WSS(95,j); W4(j,1)=WSS(97,j);

W5(j,1)=WSS(99,j);

�gure;

plot(W1); gtext(�Edge of Glycocalyx�);xlabel(�t�);

ylabel(�WSS�);hold;

plot(W2); gtext(�r=2330 nm�); plot(W3); gtext(�r=2370 nm�);

plot(W4); gtext(�r=2410 nm�); plot(W5); gtext(�r=2450 nm�);

title(�Figure 3.3 Wall shear stress changes inside porous media�);
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%DRAG FORCE AT THE END OF GLYCOCALYX;

Kp=278.03; e=0.0252; ap=0.01;

for k=1:N+1;

Fd1(1,k)=pi*mu*U(91,k)*ap^2/e/Kp/4;

Fd11(1,k)=pi*mu*U(92,k)*ap*2/e/Kp*0.021;

Fd2(1,k)=pi*mu*U(93,k)*ap*2/e/Kp*0.021;

Fd21(1,k)=pi*mu*U(94,k)*ap*2/e/Kp*0.021;

Fd3(1,k)=pi*mu*U(95,k)*ap*2/e/Kp*0.021;

Fd31(1,k)=pi*mu*U(96,k)*ap*2/e/Kp*0.021;

Fd4(1,k)=pi*mu*U(97,k)*ap*2/e/Kp*0.021;

Fd41(1,k)=pi*mu*U(98,k)*ap*2/e/Kp*0.021;

Fd5(1,k)=pi*mu*U(99,k)*ap*2/e/Kp*0.021;

end;

�gure;

plot(Fd1); gtext(�Edge of Glycocalyx�);xlabel(�t(s)�);

ylabel(�Fd(pN)�);hold;
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plot(Fd2); gtext(�r=2330 nm�); plot(Fd3); gtext(�r=2370 nm�);

plot(Fd4); gtext(�r=2410 nm�); plot(Fd5); gtext(�r=2450 nm�);

title(�Figure 3.3 Drag Force changes inside porous media�);

%RELATION BETWEEN DRAG COEFFICIENT (F/(mu*U)) AND OPEN GAP

ap=10;

for delta=40:200;

c2(delta)=pi*2/3^0.5/(2+delta/ap)^2;

Kp2(delta)=ap^2*(log(c2(delta)^-0.5)-0.745+c2(delta)-1/4*c2(delta)^2)/(4*c2(delta));

DC(delta)=pi*ap^2/e/Kp2(delta);

end;

�gure;

plot(DC); title(�Relation between open gap and drag coe¢ cient�);

xlabel(�delta�); ylabel(�Drag Coe¢ cient�);hold;

% PERCENT OF DRAG FORCE-RADIAL POSITION ;

TFD=Fd1+Fd11+Fd2+Fd21+Fd3+Fd31+Fd4+Fd41+Fd5;

TFDRP(1)=0;
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TFDRP(2)=Fd1(1,50)/TFD(1,50);

TFDRP(3)=TFDRP(2)+Fd11(1,50)/TFD(1,50);

TFDRP(4)=TFDRP(3)+Fd2(1,50)/TFD(1,50);

TFDRP(5)=TFDRP(4)+Fd21(1,50)/TFD(1,50);

TFDRP(6)=TFDRP(5)+Fd3(1,50)/TFD(1,50);

TFDRP(7)=TFDRP(6)+Fd31(1,50)/TFD(1,50);

TFDRP(8)=TFDRP(7)+Fd4(1,50)/TFD(1,50);

TFDRP(9)=TFDRP(8)+Fd41(1,50)/TFD(1,50);

TFDRP(10)=TFDRP(9)+Fd5(1,50)/TFD(1,50);

�gure;

plot(TFDRP); xlabel(�dimensionless radial position�);

ylabel(�percent of total drag force�);hold;

%GRAPH OF THE SOLUTION ;

�gure; surf(U); title(��rst order of accuracy approach for velocity�);

xlabel(�t(100 step-0.75 s) �); ylabel(�x(100 step-2500 nm)�);rotate3d ;

%�gure; surf(es); title(�exact solution�); xlabel(�t axis�); ylabel(�x axis�);rotate3d ;
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�gure; surf(WSS); title(�wall shear stress�); xlabel(�t axis�); ylabel(�x axis�);

rotate3d ;

%FUNCTIONS ;

function ftx=f(x,t) ; ftx=0.0133 ;

function ctx=c(x,t); ctx=0.0133;
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