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ABSTRACT

In the present work computational blood flow analysis through glycocalyx on the
endothelial cells is performed. Stable numerical schemes are developed for obtaining
approximate solutions to the mixed problem for partial differential equation with
variable space operator as the modeling blood flow through glycocalyx over endothelial
cells. Numerical techniques are developed by applying a procedure of the solution of
linear difference equation with matrix coefficients. The flow equations inside the core
flow region and porous region are established. Discretization is done and the flow
velocities in both regions are calculated. The wall shear stresses and the drag force over

the glycocalyx is formulated. The effect of the flow over the glycocalyx is investigated.

Keywords: Parabolic equation, Difference schemes, Convergence, Stability, Blood flow,
Endothelial cells, Glycocalyx, Wall shear stress.
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0z

Bu calismamizda endotel hiicreler iizerinde bulunan glycocalyxlerin ylizeyi
boyunca kan akis analizi yapilmistir. Kararli niimerik fark denklemleri olusturularak
endotel hiicreler etrafindaki kan akisinin matematiksel modellemesi olan degisken uzay
operatorlii kismi tiirevli diferansiyel denklem probleminin yaklagik ¢ozliimi
hesaplanmistir.Matris  katsayili lineer fark denklemlerinin ¢6ziim prosediiriiniin
uygulandig1 niimerik teknikler gelistirilmistir. Diizgiin akisin bulundugu bdlge ve poroz
bolgede akis denklemleri olusturulmustur. Yiizey aglara ayrilarak, her iki bdlge i¢in akis
hizi hesaplanmistir. Elde edilen bilgiler dogrultusunda ¢eper makaslama kuvveti ve

stirtlinme kuvveti hesaplanmistir. Glycocalyxler {izerindeki akisin etkisi incelenmistir.

Anahtar Kelimeler: Parabolik denklemler, Fark semalari, Yakinsama, Kararlilik, Kan
akisi, Endotel hiicreler, Glycocalyx.
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CHAPTER 1

INTRODUCTION

In mathematics, a partial differential equation is a relation involving an unknown
function of several independent variables and its partial derivatives with respect to those
variables. Partial differential equations are used to formulate and solve problems that
involve unknown functions of several variables, such as the propagation of sound or heat,
electrostatics, electrodynamics, fluid flow, elasticity, or more generally any process that
is distributed in space, or distributed in space and time. Completely distinct physical

problems may have identical mathematical formulations.

It is known that many applied problems in fluid mechanics, other areas of physics
and mathematical biology were formulated as the mathematical model of partial differ-
ential equations of the variable types [Dehghan M.,2003 |, [Cannon J.R., Perez Estava S.
and van der Hoek J.,1987], [Gordeziani N., Natani P. and Ricci P.E.,2005], [Squire J.M.,
Chew M., Nneji G., Neal C., Barry J., Michel C.,2001], [Ashyralyev A. and Ozdemir Y.,
2005] and [Loth F. ,Fischer P.F. ArslanN., BertramC.D., LeeS.E., RoystonT.J., Shaalan

W.E. and Bassiouny H.S.,2003] .

In this thesis, computational blood flow analysis through glycocalyx on the en-
dothelial cells inside the arteries is performed by obtaining specific model of the blood
flow over the EC. Endothelial surface glycocalyx was first detected by special electron
microscopic staining techniques nearly forty years ago [Luft J.H.,1965], this surface layer
has been observed lately in vivo [Vink H. and Duling B.R.,1996] and the importance of
its multifaceted physiological functions recognized. Some of these functions are its role as
a molecular sieve in determining the oncotic forces that are established across microvessel
endothelium [Michel C.C.,1997],[Weinbaum S.,1998],[Hu X. and Weinbaum S.,1999] and
[Hu X., Adamson R.H., Liu B., Curry F.E. and Weinbaum S.,2000] its role as a hydrody-

namic exclusion layer preventing the interaction of proteins in the red cell and endothelial



cell membranes [Feng J. and Weinbaum S.,2000] , [Secomb T.W.; Hsu R. and Pries A.R.,
2001] and [Damiano E.R.,1998], its function in modulating leukocyte attachment and
rolling [Zhao Y.H., Chien S. and Weinbaum S.,2001] and as a transducer of mechanical
forces to the intracellular cytoskeleton in the initiation of intracellular signaling, as pro-
posed herein. Fluid shearing forces acting on endothelial cells(EC) have a profound effect
on EC morphology, structure, and function [Davies P.F.;1995]. It is now also clear from
theoretical considerations [Feng J. and Weinbaum S.,2000], [Secomb T.W., Hsu R. and

Pries A.R.,2001] , [Secomb T.W., Hsu R.and Pries A.R.,1998], [Damiano E.R.,1998] that
the shear stress at the edge of the endothelial surface layer is greatly attenuated by the ex-
tracellular matrix of proteoglycans and glycoproteins in the glycocalyx with the result that
fluid velocities, except near the edge of the layer, are vanishingly small. Thus, the shear
stress due to the fluid flow acting on the apical membrane of the EC itself is negligible.
This paradoxical prediction has raised a fundamental question as to how hydrodynamic
and mechanical forces, more generally, are transmitted across the structural components
of the glycocalyx. The computer-enhanced images showed that the glycocalyx is a 3D
fibrous meshwork with a characteristic spacing of 20nm in all directions and that the
effective diameter of the periodic scattering centers was 10-12 nm. A unique feature of
the present analysis is the attempt to couple the dynamic response of the surface layer
to mechanical loading to the stresses and deformations induced in the underlying cortical

cytoskeleton.

It is known that the mixed problem for parabolic equations can be solved by Fourier
series method, by Fourier transform method and by Laplace transform method. Now, let

us illustrate these three different analytical methods by examples.

Example 1.1. First let us consider the simple boundary value problem for parabolic

equation



(
Au(t,x) Pu(tx) 1, -1 z
5 — a2 — —4€ 2cos3, 0<z<a, 0<t<T,
0 t, 82 t7 3 _t
uétx) - gy(ﬂw) +u(t,x) = je2cosy, a<w<m 0<t<T, (1.1)

| e (t,0) = u(t,m) =0, u(t,a) = ez cos g, u(0,7) = cos 7.

Solution. For the solution of the problem (1.1), we use the method of seperation

of variables or so called Fourier Series Method. In order to solve the problem, first we

need to introduce a new function :

x
z(t,x) =u(t,z) — ™2 cos 7

So,
(
Bzg;,x) _625:(8213) =0,0<z<a O0<t<T,
{2 T 4 () =0, a<z<m 0<t<T, (1.2)

2y (t,0) =z (t,m) =0, 2(t,a) =0, z(0,2) = 0.

Now, let us obtain the solution of (1.2) by the method of separation of variables.

To do this a solution of the form

z(t,x) =T () X(x) #0
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is suggested. Let 0 < z < a and take the partial derivatives and substituting the result

in (1.2), we obtain

T X'
T X))
T X'a)
Tt X(x)
Since

we have that

1 2
Xk(x):cos<k+§> T )\k:—<k+—> k=0,1,2,-- .
a

Secondly for a < z < 7,

T X'()
Tt)  X(x)

—1=p—-1,0<t<T.

Since



we have the set of all non-trivial solutions

X, () = sin (kaa) z and X (z) = cos (

2
:U’k::_< i > 7k2071727”"

m™—a

km

m™——a

) r,a<x<Tm,

So, we obtain the following results:

1
Xk(x):cos(k:—i—§)zx,k:O,l,Q,---,0<x<a,
a
k k
Xy, (z) = sin " & and cos = r,k=0,1,2,---, a<xz <.
T—a T—a

The solution for T'(t) can be obtained by using the Cauchy formula

1\2 1)2
T'(t) = — (k + 5) T(t) = Ti(t) = A 2) 1 0 < 2 <

T'(t) = <_ ( = )2 B 1) T(t) = Ti(t) = Bke<<"kfa)2+1>t, a<z<m.

T™T—a

By superposition principle

o0 k 1 2
Ake( +3) ¢ cos (k + %) 21,0 <z <a,
Z(t,l’) = 00 klfr:02
kzoe((““) H)t (C’k sin %x + Dy, cos %x) a<x<T.

Using the initial condition, we get

oo
Ay cos (k‘—i—%) 1,0 <z <a,
2(0,2) = o 0 =0
ZCksin£x+chos%x,a<x<ﬂ.
k=0



= A =0 and C = Dy = 0 (By taking * = 7 — a and x = T3¢ respectively.) Thus,
z(t,x) =0
and

u(t,x) =e" 2COS§ O<z<m 0<t<l.

Note that using the same manner one obtains the solution of the following boundary

value problem for the multidimensional parabolic equation

22— 3% 0, 542 — ft.0).0 <1 <,

Qultz) Zaraum +ou(t,z) = g(t,x), a <xy <ly,
= (21,...,7,) €[0,11]xQ,0<t < T,

ou(t,0,z2,...xn) __
U’(t7 x)|331:a = ’l/} (t) ) % - 07
u(t,ly, w9, ..7,) = 0,u(0,2) = p(x), x € [0,]xQ,
u(t,z) =0,z € [0,1;] x5,

where o, > 0,0 > 0 and f(t,z) (t € [0,T], = € [0,a]xQ), g(t,z) (t € [0,T], = €

[a,11]xQ), 1 (t), ¢ (z) are given smooth functions. Here

Q={r=(29,..,2%),0 <z <lt},2<k<n



with boundary

S, Q=QuUS.

However, the method of separation of variables can be used only in the case when it has
constant coefficients. It is well-known that the most useful method for solving partial dif-
ferential equations with dependent coefficients in ¢t and in the space variables is difference

method.

Example 1.2. Another example for a parabolic equation is a mixed problem given

below. It can be solved by Laplace transformation method (in t).

2
Gu_ 0w =1lcosZ 0<a<a, 0<t<oo,
du 9%u

W_W""UI?LCOS%’ a<z<m, 0<t<oo,
Uz (6,0) =u(t,m) =0, 0 <t < o0,

u(0,7) =cos3, 0 <z <,

\ u(t,a+) =u(t,a—), u, (t,a+) =u, (t,a—), 0 <t < oo.

Solution. Let 0 < x < a. Then, taking the Laplace transform of both sides of the

differential equation we can write that

L{u (t,2)} — L{ug (t,2)} = L {icosg}

or

SL{u(t,2)} —u(0,2) — (L{u(t,2)}),. = 4—186033



Let
L{u(t,z)} = v(s, ).

So our problem becomes

1
SV (8, ) — Vg (8, 2) = (1 + E) cos g

Now the complementary solution is

sv (8, ) — Vgg (8,2) =0,

ve (8,2) = CheVs® 4 Cpe V3"

and the particular solution can be written as

Then

x+a T 14 1
$aCOS — + — Ccos — = — | cos —.
2 4 2

From that it follows a = % and

vy (8,2) = 85

So

1
v(s,x) = CheV + Che V3 4 = cos%,O <z <a.
s



In the same manner, let take a < x < 7. Then

L {uy (t,2)} — L {use (£, 2)} + L {u (t,2)} = L{Zcosg}.

So our problem becomes

d
SV (S,2) — Vg (s,2) 0 (5,2) = (1 + E) cos%.

Now the complementary solution is

(s+1)v(s,x) — v (s,2) =0,

ve (8,2) = CreVsTIt 4 CpeVotle

and the particular solution can be written as

Then

5
(s—l—l)acosz—l—gcoszz 14+ — COSE.
2 4 2 4s 2

From that it follows a = % and
vy (8,2) = 85

So

/T 1 T
v (s,x) = C1eV* 4+ Che Vo1 + = cos 5 @<z <
s



10

By using the interface conditions at x = a, we can write

1
v(s,z) = gcosg.

Hence taking the inverse of Laplace transform, we get

u(t, ) :cosg,ogxgﬂ.

Note that using the same manner one obtains the solution of the following boundary

value problem for the multidimensional parabolic equation

n
Ou(t, 02ul(t,
_u((%x) - §1ar—gigz) = f(t,x),0 < 21 < a,

r=

e~ 3 0, 45 (t,0) = glt,2), @ <oy <y

r=(21,...,7,) €[0,11]x2,0 < t < oo,

ou(t,0,z2,...2n
% =0,u(t,ly,z2,..2,) =0,

ou(t, Oul(t,
wlt, @)l gy = ult)l,, O] =)
-

u(0,2) =@ (z), €0, x€Q,

u(t,z) =0,z € [0, xS,

where a,, > 0,0 > 0 and f(t,x) (t € [0,00), = € [0,a]xQ), g(t,z) (t € [0,00), = €

[a,11]xQ), ¢ (z) are given smooth functions. Here

Q:{x:(xg,..,xk),0<xk<lk},2§k§n
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with boundary

S, Q=QuUS.

However, Laplace transform method can be used only in the case when it has con-
stant coefficients. It is well-known that the most useful method for solving partial differ-
ential equations with dependent coefficients in ¢ and in the space variables is difference

method.

Example 1.3. The last example is a mixed problem solved by using Fourier Trans-

form method.

1 T
:(——2t>et2cos§,0<x<a, — 00 <t < o0,
ou  d*u 5 e X
—— —tu=|(-—2)e cosg,a<x<7r, — o0 <t <00,

ot 0x2 4

ug (6,0) =u(t,m) =0, —o0 <t < o0,



or

12

u(t,a+) =u(t,a—), u; (t,a+) =u, (t,a—),—o0 <t < o0.

Solution. Let 0 < x < a. By taking the Fourier transform of both sides, we obtain

Flu, (t,2)} — F{ug, (t,2)} = F { (i - Qt) e cos g} ,
Uy (5,0) = u(s,7) = 0.

Denote that

Flu(t,x)} =v(s,z).

Then we have
. X 1 _42 _42
isv (8, 2) — Vs (8,2) = cos §F ya 2te

1
15U (8, ) — Vg (S, 7) = Cosg (F Z—le_tz} +F {—2te‘t2}>
1
isv(8,2) — Uy (8, 2) = cosg (A_LF {e‘tQ} +isF {e_t2}) :



The complementary solution is

15V (8,x) — Vg (8,2) = 0,

Ve (5,2) = CreV™® + CheVis®

and the particular solution can be written as

Then

1 2 2
isa cosg + %COS% = (—F {eft } +1sF {e’t }) cos g

It follows that a = F {e_tQ} and
So
v(s,z) = Cre¥™ 4 Che Ve 4 F {e’tQ} cos g, 0<z<a.

Let a < x < 7. In the same manner

Flu (£, 2)} — Fluas (t,2)} + F{u(t,2)} = F { G - Zt) e cos g} |

Then we have



14

5t
15V (8,2) — Ve (8, 2) + v (s,2) = cos gF {Ze_tz — 2t6_t2}

or

(is+1)v(s,2) — vam (5,7) = Cosg <F etQ} s {_2t€t2})

5
4
(is+1)v(s,z) — vy (s,2) = cosg <ZF {e*ﬁ} +isF {et2}> :

The complementary solution is

(is+ 1) v (s,2) — Vg (s,2) =0,

(371,') _ C’lemm + CQG—MQC

Ve

and the particular solution can be written as

Then

T o a x 5 2 2 x
(zs+1)acos2+40082 < e +isF Je cos 3

It follows that a = F {e‘tZ} and
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So
v(s,x) = CreVistle 4 CLeVistle | p {e‘tQ} coS g, a<x<T.
By using the interface conditions at x = a, we can write
v(s,x) = F{e’tz}cosg O <z <.
Hence taking the inverse of Fourier transform, we get

u(t,x) :e’tZCosg,Ogmgw.

Note that using the same manner one obtains the solution of the following boundary

value problem for the multidimensional parabolic equation

u(t, - A2u(t,
G = e = J(60),0 < <a,
r—=

u(t,x n 2u(t,x
%_ ;araaig)+5u(t,m):g(t,x), a<x1<l1,

r=(21,...,2,) €[0,11]xQ, —00 < t < 00,

ou(t,0,z2,..xn) _
% — 0, u (t, ll, 1‘2, Jﬁn) — 0,

u(t, z)| = u(t,z)] du(t.z) _ outa)

T1=a+ r1=a— ' Ox1

u(t,z) =0,z € [0,{;] xS,

where a,, > 0,0 > 0 and f(t,z) (t € (—o00,00), x € [0,a]xQ), g(t,x) (t € (—00,0), x €
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[a,11]xQ), ¢ (z) are given smooth functions. Here

Q={r=(29,.,2%),0 <z <lt},2<k<n

with boundary

S, Q=QUS.

However, the Fourier transform method can be used only in the case when it has
constant coefficients. It is well-known that the most useful method for solving partial dif-
ferential equations with dependent coefficients in z and in the space variables is difference

method.

In the present work the difference schemes of the first and second order of accuracy
for the numerical solution of the mixed problem for one dimensional diffusion equation

with variable space operator

PG = (alt, o)) + f(t,a), @ € (0,0),t € [0, 7],

Qullr) — 2 (a(t, )24y 4 p(t, a)ult, x) + g(t,x),x € (I, L),t € [0,T],

u(0,2) = p(x),x € [0, L], (1.3)

u(t,0) = 0,u(t,L) = 0,t € [0,T],

u(t, l4) = u(t,l=), u, (t, 14) = u,(t,1=),t € [0, 17,

are considered. Applying the operator approach the stability estimates for solution of
these difference schemes are obtained. The theoretical statements for the solution of this

difference schemes are supported by the results of numerical experiments. In applications,
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the cause of atherosclerosis which is the leading reason of illness and death is investigated.
The blood flow equations inside the core flow region and porous region are calculated and

the wall shear stresses and the drag force over the glycocalyx are formulated.

Let us briefly describe the contents of the various sections. It consists of seven

chapters.

First chapter is the introduction.

Second chapter presents elementary statements in a Hilbert space that is needed for
this work.

Third chapter presents first and second order of difference schemes and their numerical
analysis.

Fourth chapter presents r-modified Crank-Nicholson difference scheme and its numer-
ical analysis.

Fifth chapter is the application in the field of biomechanics. The description of the
problem and the solving methods are presented. Constructed difference schemes
are performed for the problem. The figures and table are included. Results of the
application is given in this chapter.

Sixth chapter is the conclusion.

Seventh chapter is the algorithm and programming for the given applications.

1.1. Starting Point

Our starting point in this thesis is a representation ,given by Karin Leidermann from
University of UTAH, named as A Closer Look at the Capillary Endothelial Glycocalyx.The
representation starts with an investigation on the Navier Stokes equations in cylindrical

coordinates

U=U(R,Z0),



assuming fully developed, unidirectional flow in rigid tube such as

oU _ou _oUu _

ot 0Z 00
And
OP 1 0 oU.
2z "ror''aR)
OP 1 0 oU.
97 = ME@(R 8R) - F,
where
_ 1y
F, = 7

18

Here (1.4) also known as the Brinkman equation and K, is Darcy permeabiality,

describes how densely the proteoglycans are packed.

To simplify a bit, we can non-dimensionalize the equations using these changes of

variables:
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U/
U:U%R:R%Z:R%P:P@:%?

where U’, R’ and P’ are the characteristic velocity, length and pressure. So,

or_10 o,
07  ror " or

),

oP 10, 0U,
97 " rorU g ) Tl
where
a? = i

For constructing the boundary and matching conditions, in the representation the
velocities and shear stress to match at the edge of the glycocalyx and no-slip condition at

the endothelial cell membrane, (r = 1) at the symmetry in the center are given as follows
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For solving core flow velocity u., an assumption was done as

odp 0,10 0Uc)) 0*p op

929, &(;E(r o g =0= EP = constant,

where the pressure gradient is constant throughout the tube. Integrating up twice

and using a matching condition and a boundary condition.Finally

was obtained.

And for solving the velocity u, inside porous media, the Brinkman equation was

rewritten in the form:

9,
72 (ug ) + 1(g)y — r2cu, = —pr2,

0z

which looks like an inhomogeneous Bessel equation where normal Bessel equation takes

the form

22y + a2y + (\? — )y = 0.
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By using the solution of the Bessel functions, a particular solution

was obtained.

Still solving for u, , some more approximations and calculation of coefficients can

be done as

—0 ar, K (Oﬂ‘ )
A _ a28z;(7g B éo(oj ) ~ _ap (_ ) — —_ap
Ki(arg) Ii(arg) a0z a20z b
Ko(a) Io(a)
—Op sar I (ar ar
5o meCE i) | op o
T Ki(arg) | Llarg) T 295 Kilarg) ) T 020, Y
Ko(a) Io(oz) KO(O‘)
18}9 2 2 ]-ap 2 2 _ap
ue(r) = =5 (7 = 1%) ug(rg) = =57 (rg =) + 755

After using the boundary conditions, matching conditions, the final solutions are

given by

_ 1O ey ZOP o0
ue(r) = 482(% T)—i_oﬂaz( 2 +1)
dp , Io(ra)  rea Ko(ra)

+1)

uy(r) = _042(%( I,(a) 2 Ki(rga)

In the next step calculation of drag force was given. Darcy permeability and the
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volume fraction of the proteoglycans are given by:

% In(c™1/2) — 0.745 + ¢ — & + O(c*) mal
—= s CcC = i
8 Ar (2a, + A)2 3
where
A = 50nm (proteoglycans are approximately 50 nm apart),
a, = bnm (protein radius),
U'=0.1cms™*
and
K, = 278.03nm* and ¢ = 0.0252.
So,
mulUq(R)al , pN
Frag = Tp ~ 1.36 x 10 2%%.

p
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CHAPTER 2

HILBERT SPACES METHODS

2.1. Hilbert Space

Definition. A complex linear space H is called an inner product space if there is a

complex-valued function (.,.) : H x H — C' with the properties

=(z,2)+(y,2) Va,yz€H

The function (z,y) is called the inner product of = and y, C' is the set of complex

numbers and the over-line indicates the complex conjugate. A Hilbert space is a complete

inner product space. An inner product on H defines a norm on H given by |z| = (z, z)"/2.

2.2. Bounded Linear Operators in H

Definition. Let H; and H, are two Hilbert spaces. An operator A : H; — Hy is

said to be linear operator if
Aoz + py) = aAx + fAy  forall «a,p € C and z,y € H.

D (A) ={z € H;,3Ax € Hy} is the domain of A and is a vector space and
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R(A) ={y = Az,Vx € D (A)} denotes the range of A.

A linear operator A : H — H is said to be bounded if there exist a real number

M > 0 such that
|Az|l; <M ||z|lz forall z € H.
If a linear operator A : H — H is bounded with M, then
|Al| = inf M
is called the norm of operator A.

Theorem 2.2.1. The norm of the bounded linear operator A is

Ax
1Al = sup [[Az] = sup 1220 — g 4z
lzlI<1 2#£0 [Eaf |lz||=1

An example can be given as A is an operator defined by Ax = ax(t),

A: Ly [0,1] — Ly [0,1] . Then, [|A| = |af.

2.3. Adjoint of an Operator

Definition. Let A : H; — H, be a bounded linear operator, where H; and H,
are Hilbert spaces. Then the Hilbert adjoint operator A* of A is the operator

A*: Hy — H,y,



25

such that for all x € H; and y € Hy

<A$a y> = <5E, A*y> :

Theorem 2.3.1. The Hilbert adjoint operator A* of A is unique and bounded

linear operator with the norm

1A} = (1Al

Definition. A bounded linear operator A : H — H on a Hilbert space H is said

to be self-adjoint if (Az,y) = (z, Ay) for all z,y € H.

Definition. A self-adjoint operator A is said to be positive if A > 0, that is
(Az,z) > 0 for all z € H.

Example 2.3.1. Consider the operator

Au =

with domain

D (A) ={u,v/,u" € Ly[0,L] and u(I—) = u(l+) , uy (I—) =u, (I4+) , u, (0) =u (L) = 0}.

Here a (z) is sufficiently smooth function and a (x) > a > 0. A is the positive, self-adjoint

operator.
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Solution. Using the additivity property of definite integral and applying the for-

mula of integration by parts , we obtain

l

(u,Av):/Lu(r)Av(r)dr:/u(T)Av(T)dr—i—/Lu(r)Av(r)dr

o
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Then (u, Av) = (Au,v). This means that A = A*. Moreover, using equality (2.1),

we obtain that
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(Au,u) = [ ' (r)a(r)u (r)dr + /u' (rya(r)u (r)dr+a / w(r)u(r)dr

/
/

a(r) (u (r>>2dr+/a(r) (u/ (r))2dr+a/(u (r))? dr

(' (1))’ dr +a

v
S

(W' () dr + a/ (u (1)) dr

(W (r))dr+a | (u(r)*dr>0.

I

o
St — = T —
Tt T

So A is the positive operator.

Example 2.3.2. Consider the difference operator

) —e e 1 <n< M -1
Ahu = n+1 n n—1
_%_‘_u", M +1<n<M-1

h2
with

W =l M =0, M M= M Mt

Here

ul = {um})



and
Mh=1L.

Solution. Applying Abel’s formula, we can write

M;—1 1

<Ahuh,vh> = Z (Ahuh)n (vh)nh—i- Z (Ahuh)n (vh)nh

n=1 n=M;+1

LM
_ _E Z (unJrl un) " — (un . unfl) ,Un>
n=1
1 M-1 M-1
. ( (un+1 _ un) ot — (un . unfl) Un) + Z " h
h n=Ml+1 TLZM1+1

29



L M | M
_ E Z (un —u" 1) (Un _ ,Unfl) + E (un —u" 1) (Un - Unfl)
n=2 n=M;+2
M-1
+ Z uv"h — (uM =M M (0 —u0) ot
n=M;+1
B (uM B uM—l) M1y (uMl—i-l B uMl) pMi+1
L M | M
_ E Z (un _ unfl) (,Un _ vnfl) + % (un - unfl) (,Un - ,Unfl)
=2 n:Ml+2
M-1
+ Z unvnh <UMZ _ uMl—].) (UMl_l ’UMZ) + uM—]. M-1
n:Ml—i-l
I (uMl—i-l uM,) (oML M) 4 gy Mi ((uMl-H uMl) B (uMl uMl—l))
L M | M
_ E Z (un . unfl) (Un . Unfl) + E (un " 1) (Un — " 1)
n=2 n=M;+2
M—
+ Z unvnh + (uMl _ U/lel) (Ulel UMl) + uM*]. M-1
n—Ml—i-l
+ (uMl+1 UMI) (UMHrl o /UMZ),

30
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| Mt | M-l
=7 (u"—u” 1)(1} —v 1>+E (u"—u” 1)(1} —v 1)
n=2 n=M;+2
M—1
+ uv"h — (uMl M, )(,UMZ—I UMZ)—f— M—-1_M-1
n%l:—l—l

1Ml—1 1 M-1
=7 (u”—u” 1)(1} - 1>+E (u”—u” 1)(1} -0 1)
n=2 n=M;+2
M—
+ Z u ™ h + (UMZ uM 1) (UMl—l_UMl)+uM 1, M—1
n=M;+1

Then (Apu”, 0"y = (u", Av") . So Aj, = Aj. Moreover, using equality (2.2), we can

write that

-1

E u —u” u —u"_l)

TL:Ml+2

DIH

M;—
E U—U u—u

+ Z u"u"h + (uMl — uMl_l) (w1t — M) M M
TLZMl—l-l

;‘I>—‘

<Ahu ul

+ (uMl+1 _ UMZ) (uMl+1 _ uMl)

M-1

M-
Z u" — u”_1)2 + (u™)? h + (u™ —u
n=2

n:Ml—f—l

Ml—1)2

blm

A (uMt M2 4 (uM’l)2 > 0.

So Ay, is the positive operator.
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CHAPTER 3

FIRST AND SECOND ORDER OF ACCURACY
DIFFERENCE SCHEMES

3.1. Difference Schemes

ou(t,x Ou(t,x
02) — 0 (q(t,2)24E0) 1 f(t,2),2 € (0,1),

0ullr) — 0 (q(t, ) 248y 4 p(t, x)ult, ) + g(t,2), @ € (I, L),
t € (0,7),u(0,z) = p(z),z € [0, L], (3.1)

uz(t,0) = 0,u(t, L) =0,t € [0,7T],

u(t, 1+) = u(t, =), ug(t, 14+) = ug(t,1-), ¢ € [0,T],

where a(t, z), b(t,z), f(t,z), g(t,z) and p(z) are given sufficiently smooth functions and
a(t,xz) > 0.

The discretization of problem (3.1) is carried out in two steps. In the first step let

us define the grid spaces as,

hOmaO <m < MlaMlhO :Za
[OaL}h: Tm =
[+ (m— M)h, M, <m < M,(M - M)h =L —1.

We introduce the Hilbert spaces L, = Ly ), of grid functions u"(z) = {u, Y1
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defined on [0, L], equipped with the norms

M, M—1 3
6 s — (zwho+ S Wh) |
n=1

n:Ml+1

To the differential operators A*(t) generated by the problem (3.1) for every fixed
t € [0, T] we assign the first-order (second-order) of approximation of difference operators
A%(t) acting in the space of grid functions u"(t,z) = {u"(t)}}! satisfying the conditions

ud(t) = u () (—u?(t) + 4u'(t) — 3u’(t) = 0),u™(t) = 0}by the formula

¢

_h_lo anJrl(t)u"Jr;—O—un _ an(t> u"—hlénfl] + ou™,

a" = a(t,r,), x, = nhy,1 <n < M, —1,

—uMi(t) 4+ a1 (t) — 3uM(t)
Af(tyu" = - 32
= 0 [t (1) — M () + BuME ()]

—3 [a"“(t)WT_“n - a”(t)“n_T“n_l] + ou”,

a® = a(t,v,), v, =1+ (n—M)h,M;+1<n<M-1 |

For every fixed ¢ € [0, 7] we introduce the difference operators By (t) acting in the space
of grid functions u"(¢,z) = {u"(t)}}! satisfying the conditions u°(t) = u'(¢)(—u?(t) +
4ut(t) — 3ul(t) = 0),u™(t) = 0 by the formula
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—ou",1 <n < M,

By (t)u" = —(o — b ()", b () = b(t, ), . (3.3)

Tp=l4+Mn—-—M)h,M+1<n<M-1 )

\

Here o is a positive constant.

With the help of A} (t) and B (t) we arrive at the initial- value problem

WO A2 (Euh () + BE(tuh(t) = F'(t),z € [0, L], t € (0,T),

u(0) = ¢"(2), ¢"(z) = p(z), 2 € [0, L]y,

where

't = f(t,xn), 2, = nho,1 <n < M; — 1,

g"(t)=g(t,z,), 2z =14+ (n—M)h,Mi+1<n<M-—1 J

In the second step we replace problem (3.4) by the difference schemes
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( uh xT —Uh xT
SETS L Az (bl (x) + B (el (x) = oli(x),

pr(x) = FMty, ), ty = kT, (3.5)

1 <k<N,Nt=T,ul(z)=p"(x),z €0, L],
\

(3.6)

Theorem 3.1.1. The solutions of the difference schemes (3.5) and (3.6) satisfy the

stability estimates:

"

max || UZ HL[O,L]%S C[||90h||L[o,L]2h + max || Pk |L[01L]2h]’

1<k<N 1<k<N

where C' does not depend on ¢, 1 < k < N " hg,h and 7.

Theorem 3.1.2. The solution of the difference scheme (3.5) satisfies the almost
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coercive stability estimates:

— 1
1 T h h
3 < AZ(0)o I + —  max
1<k<N || 2h — O[H h( ) H 2h ]' h 1<k‘<N || #k ||L2h]7

where C' does not depend on ¢ 1 < k < N, ", hg,h and 7.

Theorem 3.1.3. The solution of the difference scheme (3.6) satisfies the coercive

stability estimates:

U > >
(Z I |, T) < C |1147(0)9" ]2,, + (Z o 12, 7 ) ,

where C' does not depend on ¢ 1 < k < N " hg,h and 7.

Proof of Theorem 3.1.1. The proof of this theorem is based on the discrete

analogies of integral inequality and on the following formulas.

ul' = up(k,0)" +Zuhkj0 {—Bi(t;)u’ —1—%}7 (3.7)
7=1
k=1,--- N

Here

RERE-Y ... RI™ for k # j,
Uh(k‘,]) =
I for k =j,
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Ry = (I+7A5(t) ",
CF = (I +7AZ(t)) "
with the estimates

un(k, 5)|] < 1 ||CEIl < 1,||BE(t)]] < Ch.

From (3.7) and the triangle inequality, it follows that

il = len (B, O 119" ]+ D Wean (s )l

=1

N {1BE e [l + 2 7

<oty + 32 et + Dl b o

Jj=1

So,

k
il < 6" 1 + masg bl or + D Gl 7
2 2

< [l + max [l + Cofluil] 7

k—1
+2_ Gl
j=1
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Then,
k1
(1= O [Juill < [l [l + max (5]l + ; Ol 7
"] + max [l@h],  x
[kl = (1 —_é'_ﬁ) +O2;HU?HHT‘
So

"1y + max {5l

||H - (1 - ClT)

e~

h
||“k

In the same manner we can prove the theorem for the solution of difference scheme (3.6).

k
up = un(k, 0)¢" + Y un(k, 5)Cj (3.8)

j=1
Bi(t;— T
-2 ) ad0) + bk = e

Here

RERF™Y ... RI™ for k # j,
uh(kvj) =
I for k = j,
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where

The proof of Theorem 3.1.2 and 3.1.3 is also based on the discrete analogies of

integral inequality.

Note that, stability estimates could be also proved for the more general Pade dif-
ference schemes of the high order of accuracy generated by an exact difference scheme or
by the Taylor’s decomposition on the two points for the numerical solutions of this problem

(see [Ashyralyev A. and Sobolevskii P.E.,2004]—[Ashiraliev A.and Sobolevskii P.E.,1988]).

3.2. Numerical Analysis

For numerical analysis we consider the initial-boundary value problem

ou(t,r Ou(t,x
étt, ) —%(9@%) = f(t,z),0<t<1, 0 <z <l

Ou(t,x) 2} (JI du(t,x)

ot Oz dz

)+ u(t,z) =g(t,z), 0<t<l, l<x<m,

uw(0,z) = p(x), p(x) =cos%, 0<z<m, (3.9)

uz(t,0) = u(t, ) = 0,u(t,l+) = u(t,l—)

Uy (t,14) = u,(t,1—) 0<t<1.




where
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1 —t,,x—2 r . x
f(t,x) = éexp(7)( 5 Cos g + sin 5)
1 —1 2
g(t,x) = §exp(7)(x—2i_ cosg + sin g)

The exact solution of (3.9) is

First,

u(t,z) =e 2 cos g

applying the first order of accuracy difference scheme (3.5), we present the following

first order of accuracy difference scheme for the approximate solutions of the problem (3.9)

oF = f(tr, xn), th = k7, T, =nhg, 1 <k <N, 1<n<M-—-1,

n

k k—1
Up—Un

k
1 n—1 k __ k
T T h <x”+1 h — Tn h > + Up, = Py,

@Z:g(tkv‘rn)?tk:kTa l’n:l+(n_M[)h,1SkSN,Ml—’—lSTLSM—l )

W0 = o(2,), T =hon,0<n < Mz, =14 (n—Mh,M+1<n<M,

n

uk_uk k
YW = b, =0, 0< k<N,

ho (uﬂﬁ1 — “]wal) =h (u’j/fl — u’j{/[l_l) ,0<E<N.
(3.10)
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We have (M + 1) x (M + 1) system of linear equations in (3.10) and we write them

in the matrix form

AU+ BU' =Ry*, 1<k<N U=y, (3.11)
where
(1 1 0 0 0 0 0 0 0 |

To Yo 2o 0 0 0 0 0 0

0 x1 % 0 0 0 0 0 0

0 0 0 Tamy—1 Ym—1 ZM;—1 0 0 0
A=10 0 0 0 h —(h+he) he 0 0 ,

0 0 0 0 0 TM+1 YM,+1  ZMj+1 0

0 0 0 0 0 0 Taneo YMito 0

0O 0 0 . 0 0 0 0 0 . zZy.a

0 0 0 0 0 0 0 0 1
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)
o
<

o
o
)
)
O

B = ’
00000.000
00000 . v 00
00000.0 v 0
00000 .000
Here
—p, 0<n<M -1,
Ty —
_liﬂ%%ﬁdﬁ, Mi+1<n<M-1,
_nh_J;laognng_17
Zn —
LM Dh A 1 << M -1,
TEEH, 0<n<M -1,
Yn =
by BB 1 1 <M
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Us P (x0)
Us=1| .. fors=kk—1and ¢ = 5
Ui o(xnr)
0
o}
1 0 0
90§€\4—1
01 .0 . l
R = , @ =10
k
%
00 .1 Mt
@?\4—1
0

So, we have the first order difference equation with respect to k with matrix coef-

ficients. From (3.11) it follows that

Ul =—A'BU '+ A 'RY* k=1,---N. (3.12)

Second, applying the second order of accuracy difference scheme (3.6), we present

the following second order of accuracy difference scheme for the approximate solutions of
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the problem (3.9)

\

k—1
1 Unt17Un Un-1\ _ ok ok _ T
" 2ho (x”+1 - ho —In ho . ) = Pn>¥Pn = f(tk DX xn),

k— U, —uk ur—u
uﬁ_:n ! _ % (l’n+1 n+;L n _xn n hn_l)
1 S up —ub ] 1ok k1 k
G e e e R N L
@n:g(tk_g,xn),tk:k’r, I”:l—i_(n_Ml)h)lSkSN)Ml—i_lSTLSM—l y
U, = @(xn), Tn=hon,0 <n < Myz, =1+ (n— M)h, M +1<n<M,
—uf +4uf —3uf =uk, =0, 0<k <N,

ho (_u§€m+2 + 4u§€\/[z+1 - 3’[11%4[)

=h (uﬁ/[l_2 — 4, + BU%) ,0<k<N.
(3.13)

We have again (M + 1) X (M + 1) system of linear equations and we write them in

the matrix form (3.11), where



Zo

o o o O

Yo

T

o o o O

20

n

Zo

o o o O

qo0

T

Yur
4h

20

q1

0
0

0 0 0 0
0 0 0 0
0 0 0 0
S 0 0 0
“3(hthy)  dho  —ho 0
TM+1 Ymy+1 ZMZ+1 0
0 Tamp2 Y2 0
0 0 0 ZM-1
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
ZM;—1 0 0 . 0
0 0 o . o0 |
TM+1 AMi+1 ZMj+1 0
0 0 0 . ZM-1
0 0 0 0

46
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Here

- OSTLSMZ—l,

2hg?
T, =
_Wa Ml+1§n§M_]-7
_ET—FOla OSTLSMl—l,
Rn —

SO DR M 41 <n < M -1,

%+2n+17 OSHSMl—l,

2hg
Y =
1y 2@e 2 Mith 10 A+ 1<n< M -1,
—%—1—22”—,%1, 0<n<M-1,
Gn =
_%+W+%J My+1<n<M-—1.

Now, we will give the results of the numerical analysis.In order to get the solution
of (3.10) and (3.13) we use (3.12) and MATLAB programs. The numerical solutions are
recorded for different values of N = M , M; and u* represents the numerical solutions of

these difference schemes at (tx, x,). First, for their comparison, the errors computed by
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E = max ‘u (tg,x uk} .
1<k<N o Tn) = Uy
1<n<M

Tables 1 and 2 give the error analysis between the exact solution and solutions derived

by difference schemes. Table 1 is constructed for h = hg = §; and N = M = 20, 40 and

60 respectively, when M, is == or %.

Table 1. Numerical analysis for h = hg

Method N=M=20 N=M=40 N=M=60
1 order of accuracy (35) 0.0158 0.0082 0.0056
1 order of accuracy (2¥) 0.0178 0.0091 0.0061

24 order of accuracy (£31) | 9.2142.107° | 2.5762.10~° | 1.1862.107°

2" order of accuracy (%

S

) | 1.0734.107* | 2.7111.107° | 1.2088.107°

Table 2 is constructed for A = 0.01 and N = M = 20, 40 and 60 respectively, when

M; =2 or M; = B we can obtain hg = (1 — h(M — M,))/M,.



Table 2. Numerical analysis for different A and hg

Method

N=M=20 | N=M=40 | N=M=60
1 order of accuracy (35) 0.0245 0.0124 0.0081
st order of accuracy (—]\04) 0.0193 0.0098 0.0066
24 order of accuracy (131) | 4.0302.10~* | 1.1098.10~* | 5.3 .107°
2" order of accuracy (%) | 1.5804.107* | 4.1352.107° | 1.9128.107°

Second, for their comparison, the errors computed by

= max E !u tk,a:n —
1<k<N

n=

n‘ h0+ Z tkwajn -

Ml+1

%
uﬁ}zh}
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and the Table 3 is constructed for h = hg = &= and N = M = 20, 40 and 60

: M . 13M
respectively, when M; is 55 or =55~

M
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Table 3. Numerical analysis for h = hg

Method

N=M=20

N=M=40

N=M=60

1%¢ order of accuracy (33X

20

) | 0.0193

0.0099

0.0066

st 9IM
1°* order of accuracy (3

) | 0,0209

0,0105

0,007

nd 13M
2"% order of accuracy (=55~

)

2.0841.1076

6.4106.1077

3.0643.1077

274 order of accuracy (2

1

=

o

)

2.7907.107°

6.9214.1077

3.0643.1077
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Table 4 is constructed for h = 0.01 and N = M = 20, 40 and 60 respectively, when

13M

“5 > we can obtain hg = (7 — h(M — M;))/M,.

Table 4. Numerical analysis for different h and hg

Method

N=M=20 N=M=40 N=M=60
1%t order of accuracy (%) 0,0073 0,0051 0,0041
1 order of accuracy (%) 0.0057 0.004 0.0033
2" order of accuracy (£21) | 3.5428.107° | 1.111.107° | 6.1807.107¢
2" order of accuracy (%) | 5.7752.107% | 1.5593.107% | 7.5472.10~"




o1

Thus, the second order of accuracy difference schemes are more accurate comparing

with the first order of accuracy difference scheme.
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CHAPTER 4

R-MODIFIED CRANK-NICHOLSON DIFFERENCE
SCHEME

4.1. Difference Schemes

We consider again the problem (3.1). It is known that (see [Ashyralyev A., 1989,
[Luskin M. and Rannacher R.,1982] and [Rannacher R.,1982]) the Crank-Nicholson dif-
ference scheme (3.6) is not convergent for unsmooth datas. Therefore, in this chapter we
will consider the r-modified Crank-Nicholson difference schemes for the numerical solu-
tion of (3.1). The discretization of problem (3.1) is carried out also in two steps. In
the first step, we consider the same discretization in x given in the previous chapter.In
the second step, applying the modified Crank-Nicholson difference schemes of papers
[Ashyralyev A.,1989], [Luskin M. and Rannacher R.,1982] and [Rannacher R.,1982], we
get

( n h
ul(z)—ul_, () z T T T
DD A (1 — Tul(e) + Byt — Dul(x) = oh(a),

QDZ(I') = Fh(tk - %,l’),tk = kT?

1<k<r Nr=Tul(zr)=¢"(x),z €0, L],

uh X —uh T x _T
L) AOD (uf () + ]y () (4.1)

B (t—3)
+ 2 (ug (@) +up_ (2)) = (),

op(x) = FM"(ty — L, 2),ty =kr,r +1 <k < N,N7 =T,

ul(x) = o"(x), 2 € [0, L];.

\



53

Theorem 4.1.1. The solution of the difference scheme (4.1) satisfies the stability

estimates:

max | g ez < Ol o + max o lr):

where C' does not depend on ¢, 1 < k < N ", hg,h and 7.

Theorem 4.1.2. The solution of the difference scheme (4.1) satisfies the almost

coercive stability estimates:

h
— Uy, =
= | < CIAR )¢ |2 + 10

7 max e e

where C' does not depend on ¢ 1 < k < N ", hg,h and 7.

Theorem 4.1.3. The solution of the difference scheme (4.1) satisfies the coercive

stability estimates:

(Z | e “k LI, )

where C' does not depend on ¢, 1 < k < N ", hg,h and 7.

N

1
[145(0)" ||, + (Z e 12, 7 ) :

Proof. The proof of these theorems is based on the discrete analogies of integral

inequality and on the following formulas

ul' = up,(k,0)" +ZuthC’ { By (t;

Jj=1

T
D+l (4.2)
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k
ull = uy(k,0)" + Zuh(k‘,j)(],i (4.3)

j=1

Bi(t;, — T
X {——h(; ) (4] (x) + uj_y (2)) +90?}T7k‘:7“+17"'aN

for the solution of difference scheme (4.1) and on the estimates

. - T
[Jun (K, I < 111Gk < 1,13 (B — = Ca

Here
RE - R for k # j,
uh(kaj) =
I for k = j,
where
(I +745(—3) " 1<k<r
Ry =
x T z T -1
([ TA,L(t;fg)) ([+ TAh(tkf§)> r+1<k<N
and

Note that, stability estimates could be also proved for the more general Pade differ-
ence schemes of the high order of accuracy generated by an exact difference scheme or by

the Taylor’s decomposition on the two points for the numerical solutions of this problem.



95

4.2. Numerical Analysis

For numerical analysis we consider the initial-boundary value problem

ou(tx)  Ou(tx)

ot g = f(t,r),0<t <1, 0<w<l,

du(t,e)  8%u(t,x)
ot Oz

+u(t,z) =g(t,x),0<t <l <z <1,

uz(t,0) = u(t, 1) =0,

u(t, l+) = u(t, =) ,u.(t,l4+) = u(t,1—), 0<t<1.

where

~
[SIE
—
8
|
8
no
~—
N
—~
—
|
[\
8
~—
ot
<+~
[NIE
—~
8
|
S
no
~—
lco

)

Applying the difference scheme (4.1), we present the following r-modified Crank-
Nicholson difference scheme for the approximate solution of the initial-boundary value

problem (4.4).
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k—1 k k k
“ﬁ_un . un+172un+un71 + uk _ Ak
T h2 n = 9077,7

oF =gty — 5, %p), ty = kT, T, = nh,

1<k<r,Mj+1<n<M-1,

— k—1 k—1 k—1
uﬁ_—ulfbl _1 u’fl+1—2uﬁ+uﬁ_1 + Uy g —2Un U, 3 k
2 h2 h2 = Pn>

SDZ = f(tk - gaxn)atk = kT? Tp = nh’?

PRLSEENLSnS ML w5
upmun 1 {<“§+1*2ufi+“ﬁ_1> X (uﬁﬂ—%ﬁ”m,’iﬂ)}
T 2 h2 2

+% {uﬁ + uﬁ_l} = gpfw

@i:g(tk—g,fﬂn),tk:kﬁ—, mn:nhﬂ
r+l1<kE<NM4+1<n<<M-1,

—uk + 4uk — 3uf =uk, =0, 0<k <N,

k k kY _ (K k k
<_UMZ+2 + duyy o — 3“Ml) = (Ulez i 3UML) 5

0<k<N.
\
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We have (M + 1) x (M + 1) system of linear equations in (4.5) and we write them

in the matrix form

AU+ BU' =Ry*, 1<k<N U=y, (4.6)
where
(3 4 1 0 0 0 0 0 |
o Yo 2w . O 0 0 0o . 0
0 =1 0 0 0 0 0
0 0 0 Yayor 1 O 0 0
A=10 0 0 4 —6 4 -1 0 ;
0 0 O 0 ZTamsr Ymsr Zygp 0
0 0 0 0 0 Tanio2 Ynneo 0
0 0 0 0 0 0 0 M1
0 0 0 0 0 0 0 1




Here

0 0
Wo qo
0 w1
0 0
0 0
0 0
0 0
0 0
Ty =
Zn =

0 0 0 . 0

0 0 0 . 0

0 0 0 . 0
pui 0 0 .0

0 0 0 . 0
(0] VA R/ VAT R /) VS R |

0 0 0 PM-1

0 0 0 . 0
-7, 0<n<r,
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Gn =

99

w, =
—5 TH1<n<M-1,
—l, 0<n<r,
-
142 r+1<n<M-1,

—lymi gl M+1<n<M-1,

0, 0<n<r,
DPn =

—”2—;1, r+1<n<M-—1,

Us P(zo)

fors=kk—1land p= | .. ;

Ui ()
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k
Pr—1

k
P +1

So, we have the first order difference equation with respect to k with matrix coef-

ficients. From (4.6) it follows that

Ut = —A'BU '+ A'R* k=1,---,N. (4.7)

Now, we will give the results of the numerical analysis.In order to get the
solution of (4.5), we use (4.7) and MATLAB program. Numerical solutions are recorded
for different values of N = M , M; and u* represents the numerical solution of r-modified
Crank-Nicholson difference scheme at (¢, x,,). For their comparison, the errors computed

by

1
2

n—= Ml+1

Table 5 gives the error analysis between the exact solution and solutions derived by
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difference schemes. Table is constructed for M; = and N = M = 20, 40 respectively.

Table 5. Numerical analysis for-modified Crank-Nicholson

Method N=M=20 | N=M=40

1% order of accuracy 0.12 0.1205

274 order of accuracy 1.0813x107 | 1.8024x10°

2-modified Crank-Nicholson 0.0441 0.0272

Second, for their comparison, the errors computed by

1
E= maX{Z‘ u(ty, ) —uN‘ ho + Z u(tn, y) — N| h}

n—= Ml+1

and the Table 6 is constructed for N = M = 20 and 40 , when M is =



Table 6. Numerical analysis for end point for-modified Crank-Nicholson

Method N=M=20 | N=M=40
1%t order of accuracy 0.0139 0.0074
274 order of accuracy 1.5122x10% | 0.0086
2-modified Crank-Nicholson 0.0082 0.0046
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CHAPTER 5

APPLICATIONS

5.1. A Brief Terminology for Biology

Atherosclerosis is a type of arteriosclerosis.It’s the term for the process of fatty
substances, cholesterol, cellular waste products, calcium and fibrin (a clotting material in
the blood) building up in the inner lining of an artery. Arteriosclerosis is a general term
for the thickening and hardening of arteries. Atherosclerosis is a slow, progressive disease
that may start in childhood. Atherosclerosis affects large and medium-sized arteries.
Complications of atherosclerosis include stroke or TIA in the brain, angina (chest pain),

heart attack, kidney failure, erectile dysfunction and PAD (peripheral artery disease).

Figure 1. The structure of endothelial cell.
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Endothelial cells are very flat, have a central nucleus, are about 1-2 pm thick and
some 10-20 ym in diameter. They form flat, pavement-like patterns on the inside of the
vessels and at the junctions between cells there are overlapping regions which help to seal
the vessel.Endothelial cells are selective filters which regulate the passage of gases, fluid
and various molecules across their cell membranes. Endothelial cells are also responsive
to local agents such as histamine, which is released when local tissues are damaged.
Consequently, the endothelial cells open up their intercellular junctions and allow the
passage of large amounts of fluid from blood plasma so that the surrounding tissues
become engorged with fluid and swollen: a condition called oedema. At the same time
large numbers of leucocytes, escape and flood into the tissues. These events are the
hallmarks of the inflammatory response. It is exemplified by a simple scratch on the skin
or a splinter wound: the area quickly becomes reddened (opening up of capillaries) and

swollen (oedema).

2. Methods

A - Glycocalyx bush 100 nm
structure 20_’:!“" 7l 1 !!3.:20 nm
ts0-on} i ﬂ;‘f}iiifﬂ Hi
om A L R
! ,
Nucleus
| Cortical

‘Integrins| /' a-actinin |/ cytoskeleton

Junctional | Actin stress / Extracellular
complex fibers | matrix

Figure 2. Surface of endothelial cells and glycocalyx inside the micro channels (Squire

J.M., et all).
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Surface of endothelial cells and glycocalyx bush structure inside the cardiovascular
channels are illustrated in Figure 2 [Squire J.M., Chew M., Nneji G., Neal C., Barry J.
and Michel C., 2001]. The schematic of the glycocalyx bush structure for computational
modeling studies is illustrated in Figure 3. The structure of the single glycocalyx was
assumed as a cylindrical shape. The diameter of the single glycoprotein in the glycocalyx is
taken as 10 nm and the length of it is taken as 210 nm. The distance between glycoproteins
in glycocalyx is assumed 20 nm. Then the flow equations are established. Two regions
are considered in the channel. The region near the center of the channel is called core
flow region and the flow near the channel wall is called as porous flow region. Reynolds’s

= 24 where p is the density of the blood in the channel and

number is defined as Re
taken 1.06-%3, u is the characteristic velocity of the flow (™) and found by the solution
of the equations in the channel, d is the diameter of channel, y is the viscocity of the blood
and taken 3.5 cP. Typical Reynold’s number in micro channel is around 0.05. General
mathematical formulations for the calculation of the velocities in both regions are derived.
The mixed problem for one-dimensional diffusion equation with variable space operator

is solved. A numerical code is written using Matlab software. The results of the solution

will lead us to calculate the wall shear stress (WSS) and drag forces inside the geometry.

—
A) Coeflowresrim U
—p| (A) Coreflowregion e =0 (center)
e T
=1 l_" l

o P bfn/ ..............
_.g i E E ; ; i ; E ; ow through porousmedia| (B)

Figure 3. Schematic of Core (A) and Porous flow (B) regions inside capillary arteries.
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Differential equations together with boundary and initial conditions are given for
core and porous flow regions by equation (5.1) through equation (5.3) . Core flow region is

defined through the center of capillary and porous flow region is through the glycocalyx.

Core flow region:

ou (t, ) 0 (a (t,2) ou (t,ﬂi)) + f(t,x), 2 € (0,1),te(0,T). (5.1)

Ou(t,z) 9 (a (t, ) 8u8(2 x)> +b(t, z)u(t z)

+g(t,xz), € (0,1),t € (0,7T). (5.2)

Initial and boundary conditions:

u(0,z) =p(z), z€[0,L],
uz(t,0) = 0,u(t, L) = 0,t € [0, 7],

u(t, 1+) = u(t, =), ug(t, 14+) = ug(t,1-), t € [0, T]. (5.3)

where a(t, z), b(t,z), f(t,z), g(t,z) and p(z) are given sufficiently smooth functions and
a(t,z) = 0. a(t,z) is due to taking cylindrical coordinates in the system and defined as
x. The function b(t,z) is the ratio of viscosity to Darcy permeability which describes
how densely the proteoglycans are packed. f(¢,z) and g(t, z) are the pressure differences

along the micro channels under unsteady fluid flow conditions in cylindrical coordinates.
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The discretization of the problem is carried out in two steps. In the first step the

grid spaces are defined as illustrated in Figure 4.

T 1 e —— I
[ |
— 90 step 290 rm
cove flow region :
L|J
rh s
4 porous media —rr
) i) ) =105 | 2o

Figure 4. Grid spaces inside the Core and Porous regions in the capillary arteries.

In x-direction, we define two different step sizes hy and h for core flow and porous
media regions for numerical calculations respectively. Finer grid size h in porous media

defines to observe the velocity, drag force and WSS over the glycocalyx in detailed.

5.3. Results and Discussion

The flow field inside the capillary vascular system was solved using differential equa-
tions which are valid through the core and porous regions. Differential equations are dis-
cretized and solved using MATLAB software. A computer code was written to solve the
algebraic equations. Velocity profiles for unsteady flow were given in Figure 5. First and

second orders of accuracy approach were applied to the equations for the velocities. Time
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dependent velocities are increasing inside the domain starting from the capillary wall.

0.012

0.01 .
0.008 -
0.006 -|.

0.004

0.002

Dbl

Figure 5. Unsteady velocity profiles.

Figure 6 illustrates the velocity profiles at some specific locations inside the core
and porous regions. Velocity increases by time in the center of the capillary (x=0). While
getting closer to the wall velocity change is not remarkably high by time. It becomes
smooth through the period. Velocity is high near to the junction of core flow and flow
through the glycocalyx. Then it becomes very small near to the wall. When the pressure
or flow rate is increased inside the vessel, we observed fast change of flow speed and
more blunt velocity profiles indicating the increased momentum transfer in the vertical

direction to the flow direction.
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Figure 6. Velocity profiles at some specific locations inside the core and porous regions.

Drag forces inside the porous media or through the glycocalyx were shown in the
Figure 7. The equation for drag force is Fiqy = 72—“—;(‘:2 where K, is Darcy permeability
function and taken as 278.03nm?, volume fraction of the proteoglycans c is taken 0.0252,
a is the protein radius and taken as 5 nm. Drag force at the edge of the glycocalyx was
found the smallest (0.2 1077 pN) that is because of very small tip cross sectional area.

Then the value increases along the glycocalyx upto the wall. The magnitude of the drag

force is also increased by time.

The wall shear stresses (WS S = uﬁ—;‘, ﬁ—;f s velocity gradient) inside the glycocalyx
were shown in Figure 8. At the beginning of the pulsatile flow the value of WSS value is
higher near to the edge of the glycocalyx and inside the porous region. It gets smaller due
to the lower velocity gradient. This is one of the effects of mechanotransduction which

may be effective for biochemical signaling.
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Figure 7. Drag Force changes inside the porous region.
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Figure 8. Wall shear stress distribution by time

inside the core
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and porous flow regions.
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CHAPTER 6

CONCLUSIONS

This work is devoted to study the stability of the difference schemes for the ap-
proximate solution of the partial differential equations with variable space operator. The

following original results are obtained:
* First and second order of accuracy difference schemes for the approximate solution
of the partial differential equations with variable space operator in a Hilbert space are

presented.

* Theorems on the stability estimates for the solution of these differences schemes

are established.

*The Matlab implementation of these differences schemes are generated.

* Theoretical statements for the solution of these difference schemes are supported

by results of numerical examples.

* Constructed Matlab implementation is used to obtain the solution of the given

application.

* Velocity profile is analyzed.

* Drag forces is calculated in both regions. Drag forces are found higher at the edge

of the glycocalyx and decreased along them.
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* Low WSS can be considered one of the causes of the atherosclerosis formation and
biochemical signal activator. In vivo studies together with the modeling studies will give

more detailed understanding of the flow phenomena inside capillary arteries.



73

CHAPTER 7

MATLAB PROGRAMMING

In this chapter, Matlab programs for first order of accuracy difference schemes for

different A and hy and the biomechanical application are presented.

7.1. First order of Accuracy Difference Scheme

function firstorderaccuracy(N,M)

if nargin<1; N=20; M=20; end;

T=1; ML=13*M/20; a=1 ; q=1 ; h=0.01

ho=(pi-(h*(M-ML)))/ML; tau=T/N; 1=ML*ho;

A=zeros(M+1,M+1) ;

for n=1:ML-1;

A(n+1,n)=-(a*(n-1)/ho); A(n+1,n+1)=(1/tau)+(a*(n-1)+(a*n))/ho ; A(n+1,n+2)=
-(a*n)/ho;

end;

for n=ML~+1:M-1;

A(n+1,n)=(1+(n-ML-1)*h) /h "2 ;

A(n+1n+1)=(1/tau)+(2*14(2*n-2*ML-1)*h) /h~2+q ;
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A(n+1n+2)= -(14+(n-ML)*h)/h"2 ;

end;

A(1,1)=1; A(1,2)=-1 ; A(ML+1,ML)=h ; A(ML+1,ML+1)=-h-ho ;

A(ML+1,ML+2)=ho ; AM+1,N+1)=1 ;

P=zeros(M+1,M+1) ;

for n=2:ML; P(n,n)=-1/tau ; end;

for n=ML+2:M; P(n,n)=-1/tau ; end;

fii=zeros(M+1,M+1) ;

for k=2:M+1; fii(1,k)=0 ; fii(ML+1,k)=0 ; fii(M+1,k)=0 ;

for n=2:ML; t=(k-1)*tau; x=(n-1)*ho ; fii(n,k)=f(x,t); end;

for n=ML+2:M; t=(k-1)*tau; x=ML*ho+(n-ML-1)*h ;

fii(n,k)=c(x,t); end; end;

G=inv(A) ;

for n=1:ML ; U(n,1)=cos((n-1)*ho/2) ; end;

for n=ML+1:M+1 ; U(n,1)=cos((ML*ho+(n-ML-1)*h)/2) ; end;

for k=2:N+1 U(:,k)=G*fi(:,k)-G*P*U(:,k-1); end;



75

% EXACT SOLUTION OF PDE’ ;

for k=1:N+1; for j=1:ML+1; t=(k-1)*tau; x=(j-1)*ho;

es(j,k) = exact(x,t); end;

for j=ML+2:M+1; t=(k-1)*tau; x=ML*ho+(j-ML-1)*h;

es(j,k) = exact(x,t); end; end;

% ABSOLUTE DIFFERENCES ;

absdiff=max(max(abs(es-U)))

% DIFFERENCE ANALYSIS ;

for k=1:N+1; for n=1:ML+1 ;

diff(k,n)=(abs(U(k,n)-es(k,n))) ~2*h;

end;

for n=ML~+2:M+1 ;

diff(k,n)=(abs(U(k,n)-es(k,n))) ~2*h;

end; end;

for s=1:N+1; diffsum(s)=sum(diff(s,:)); end;

for s=1:N+1; kare(s)=diffsum(s) ~0.5; end;
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Err2=max(kare)

%GRAPH OF THE SOLUTION ;

figure; surf(U); title(first order accuracy for N=20 M=20’);xlabel(’t axis’); ylabel(’x

axis’); rotate3d ;

figure; surf(es); title("exact solution’); xlabel(’t axis’); ylabel(’x axis’);rotate3d ;

%FUNCTIONS ;

function estx=exact(x,t); estx=exp(-t/2)*cos(x/2);

function ftx=f(x,t) ; ftx=exp(-t/2)/2*((x-2)/2*cos(x/2)+sin(x/2)) ;

function ctx=c(x,t); ctx=exp(-t/2)/2*((x+2)/2*cos(x/2)+sin(x/2));

7.2. Application

function application(N,M)

if nargin<1; N=100; M=100; end;

T=0.75 ; ML=9*M/10; a=1 ; q=1 ;

%h is the step size in porous mediada and ho is inside core flow region , tau is

% the time incrementation. Porous media has 10 nodes in x direction while

%core flow region has 90.Error analysis can be calculated when the exact solution

is known.



h=0.021; ho=(2.5-(h*(M-ML)))/ML;

tau=T/N; 1=ML*ho;

%l is the lenght of core flow region

A=zeros(M+1,M+1) ;

for n=1:ML-1;

A(n+1,n)=-a*((n-1)*ho)~2/(2*ho"2);

A(n+1,n+1)=(1/tau)+((a*((n-1)*ho)~2)+(a*(n*ho)~2))/(2*ho"2) ;

A(n+1n+42)= -a*(n*ho)~2/(2*ho"2);

end;

for n=ML~+1:M-1;

A(n+1,n)=-a*(+(n-ML-1)*h)~2/(2*h"2) ;

A(n+1,n4+1)=(1 /taw)+a*((1+(0-ML-1)*h) ~ 24+ (14 (0-ML)*h) ~2) / (2*h~2)+q ;

A(n+1n+2)= -a*(14+(n-ML)*h)~2/(2*h"2) ;

end;

A(1,1)=1;A(1,2)=-1; AML+1,ML)=h; A(ML+1,ML+1)=-h-ho ;

A(ML+1,ML+2)=ho ; A(M+1,N+1)=1 ;

7
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P=zeros(M+1,M+1) ;

for n=2:ML; P(n,n)=-1/tau ; end,;

for n=ML+2:M; P(n,n)=-1/tau ; end;

fii=zeros(M+1,N+1) ;

for k=2:N+1; fii(1,k)=0; fii(ML+1,k)=0; fii(M+1,k)=0 ;

for n=2:ML; t=(k-1)*tau;x=(n-1)*ho ;fii(n,k)=f(x,t); end;

for n=ML+2:M;t=(k-1)*tau; x=ML*ho+(n-ML-1)*h ; fii(n,k)=c(x,t); end; end;

G=inv(A) ;

for n=1:ML ; U(n,1)=1.4-1.4*(n-1)/M; end;

for n=ML+1:M+1; U(n,1)=1.4-1.4*(n-1)/M; end;

for k=2:N+1 U(:,k)=G*i(:,k)-G*P*U(:,k-1); end;

%ANALYZING U FOR CONSTANT X’s INSIDE TWO REGIONS ;

for j=L:M+1; UCL(j,1)=U(L,j); UC2(j,1)=U(26,j); UC3(j,1)=U(51,j);

UC4(j,1)=U(7L); UC5(j,1)=U(89,j); UGL(j,1)=U(9L,j); UG2(j,1)=U(93,));

UG3(j,1)=U(95,j); UG4(j,1)=U(98,j); UG5(j,1)=U(101,j); end;

subplot(1,2,1);



plot(UC1); gtext('r=0"); xlabel(’t(s)’);ylabel('Uc(mm/s)’);hold;

plot(UC2); gtext(’r=0.06"); plot(UC3); gtext(’'r=0.13");

plot(UC4); gtext('r=0.18"); plot(UCH); gtext(’r=0.22’);

title('Figure 3.1.1 Time changes of velocity in core flow’);

subplot(1,2,2);

plot(UG1); gtext(’r=0.228");xlabel(’t(s)’); ylabel("Ug(mn/s)’);hold;

plot(UG2); gtext('r=0.23"); plot(UG3); gtext('r=0.237");

plot(UG4); gtext(’r=0.243"); plot(UGH); gtext('r=0.25");

title("Figure 3.1.2 Time changes of velocity in porous media’);

%ANALYZING U FOR CONSTANT T’s;

for j=1:M+1;

T1(,1)=U(,1); T2(,1)=U(,21); T3(j,1)=U(j,41); T4(j,1)=U(j,61);

T5(j,1)=U(j,81); T6(j,1)=U(j,101); end;

figure;

plot(T1); gtext(’t=0"); xlabel(’x(nm)’);ylabel("U(mn/s)’);hold;

plot(T2); gtext(’t=0.15"); plot(T3); gtext(’t=0.30");
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plot(T4); gtext(’t=0.45"); plot(T5H); gtext(’t=0.60");

plot(T6); gtext('t=0.75");

title("Figure 3.2 Velocity changes for different time levels in whole region’);

%ANALYZING U FOR T=0.45;

for j=1:(9*M/10)-3; TL(j,1)=U(},61); end;

for j=(9*M/10)-3:(9*M/10)+3; TNT(j-9*M/10+4,1)=U(j,61); end;

for j=(9*M/10)4+1:M+1; TBB(j-9*M/10,1)=U(j,61); end;

figure;

subplot(1,3,1);plot(TL); title(’Velocity in lumen’);

xlabel("x(nm)’);ylabel("U(mn/s)’);

subplot(1,3,2);plot(TNT); title(’Velocity near tip’);

xlabel("x(nm)’);ylabel("U(mn/s)’);

subplot(1,3,3);plot(TBB); title(’Velocity in brush border’);

xlabel("x(nm)’);ylabel("U(mn/s)’);

%WALL SHEAR STRESS;

W=zeros(M+1,N+1);



for k=1:ML-2; for n=1:N+1;

W(k+1n)=(-U(k+1,n)+U(k,n))/ho;

end; end;

for k=ML-1:M; for n=1:N+1;

W(k+1,1n)=(-U(k+1,0n)+U(k,n))/h;

end; end;

mu=0.0035; WSS=mu*W; for j=1:M-+1;

W1(j,1)=WSS(91,); W2(j,1)=WSS(93,));

W3(j,1)=WSS(95,)); W4(j,1)=WSS(97,);

W5(j,1)=WS5(99,));

figure;

plot(W1); gtext(’Edge of Glycocalyx’);xlabel(’t’);

ylabel"WSS’);hold;

plot(W2); gtext('r=2330 nm’); plot(W3); gtext(’'r=2370 nm’);

plot(W4); gtext(’r=2410 nm’); plot(W5); gtext(’'r=2450 nm’);

title("Figure 3.3 Wall shear stress changes inside porous media’);
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%DRAG FORCE AT THE END OF GLYCOCALYX;

Kp=278.03; e=0.0252; ap=0.01;

for k=1:N+1;

Fd1(1,k)=pi*mu*U(91,k)*ap~2/e/Kp/4;

Fd11(1,k)=pi*mu*U(92k)*ap*2/e/Kp*0.021;

Fd2(1,k)=pi*mu*U(93,k)*ap*2/e/Kp*0.021;

Fd21(1,k)=pi*mu*U(94,k)*ap*2/e/Kp*0.021;

Fd3(1,k)=pi*mu*U(95,k)*ap*2/e/Kp*0.021;

Fd31(1,k)=pi*mu*U(96,k)*ap*2/e/Kp*0.021;

Fd4(1,k)=pi*mu*U(97 k)*ap*2/e/Kp*0.021;

Fd41(1,k)=pi*mu*U(98,k)*ap*2/e/Kp*0.021;

Fd5(1,k)=pi*mu*U(99,k)*ap*2/e/Kp*0.021;

end;

figure;

plot(Fdl); gtext("Edge of Glycocalyx’);xlabel(’t(s)’);

ylabel"Fd(pN)’);hold;
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plot(Fd2); gtext(’'r=2330 nm’); plot(Fd3); gtext(’r=2370 nm’);

plot(Fd4); gtext('r=2410 nm’); plot(Fd5); gtext('r=2450 nm’);

title("Figure 3.3 Drag Force changes inside porous media’);

%RELATION BETWEEN DRAG COEFFICIENT (F/(mu*U)) AND OPEN GAP

ap=10;

for delta=40:200;

c2(delta)=pi*2/3°0.5/(2+delta/ap) "~ 2;

Kp2(delta)=ap~2*(log(c2(delta) ~-0.5)-0.7454-c2(delta)-1/4*c2(delta) ~2) /(4*c2(delta));

DC(delta)=pi*ap~2/e/Kp2(delta);

end;

figure;

plot(DC); title(’Relation between open gap and drag coefficient’);

xlabel(’delta’); ylabel(’Drag Coefficient’);hold;

% PERCENT OF DRAG FORCE-RADIAL POSITION ;

TFD=Fd1+Fd114+Fd2+Fd214+-Fd3+Fd31+Fd4+Fd41+Fd5;

TFDRP(1)=0;
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TFDRP(2)=Fd1(1,50)/TFD(1,50);

TFDRP(3)=TFDRP(2)+Fd11(1,50)/TFD(1,50);

TFDRP(4)=TFDRP(3)+Fd2(1,50)/TFD(1,50);

TFDRP(5)=TFDRP(4)+Fd21(1,50)/TFD(1,50);

TFDRP(6)=TFDRP(5)+Fd3(1,50)/TFD(1,50);

TFDRP(7)=TFDRP(6)+Fd31(1,50)/TFD(1,50);

TFDRP(8)=TFDRP(7)+Fd4(1,50)/TFD(1,50);

TFDRP(9)=TFDRP(8)+Fd41(1,50)/TFD(1,50);

TFDRP(10)=TFDRP(9)+Fd5(1,50)/TFD(1,50);

figure;

plot(TFDRP); xlabel(’dimensionless radial position’);

ylabel(’percent of total drag force’);hold;

%GRAPH OF THE SOLUTION ;

figure; surf(U); title(’first order of accuracy approach for velocity’);

xlabel(’t(100 step-0.75 s) ’); ylabel(’x(100 step-2500 nm)’);rotate3d ;

%ofigure; surf(es); title(’exact solution’); xlabel(’t axis’); ylabel(’x axis’);rotate3d ;



figure; surf(WSS); title(*wall shear stress’); xlabel(’t axis’); ylabel(’x axis’);

rotate3d ;

%FUNCTIONS ;

function ftx=f(x,t) ; ftx=0.0133 ;

function ctx=c(x,t); ctx=0.0133;
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