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ABSTRACT

In this study, methods for analytical and numerical solutions of the Fractional Dif-

ferential Equations are investigated. These methods are Green’s Function Method,

Adomian Decomposition Method, Power Series Method and Finite Difference Method.

Also, they are illustrated with a special type of fractional differential equation

AD2
t x (t) + BD

3/2
t x (t) + Cg (x) = f (t) ,

where A 6= 0 and B, C ∈ R which is known as Bagley-Torvik equation. The results

are compared both numerically and graphically, computer programmes and algo-

rithms are presented.

Keywords: Fractional differential equations, Bagley-Torvik equation, Green’s

Function method, power series method, ADM, FDM.
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ÖZ

Bu çalışmada Kesirli Mertebeden Diferansiyel Denklemlerin analitik ve sayısal çözüm

yöntemleri araştırılmıştır. Bu metodlar Grenn’s Fonksiyonu Metodu, Adomian De-

composition Metodu, Kuvvet Serisi Metodu ve Sonlu Fark Şemaları Metodlarıdır.

Çözüm yöntemleri Bagley-Torvik diye bilinen

AD2
t x (t) + BD

3/2
t x (t) + Cg (x) = f (t) ,

A 6= 0 ve B, C ∈ R özel bir kesirli mertebeden diferansiyel denklem ile örneklendirilmiştir.

Sonuçlar sayısal ve grafiksel olarak karşılaştırılıp, bilgisayar programları ve algorit-

maları yazılıp uygulanmıştır.

Anahtar Kelimeler: Kesirli mertebeden diferansiyel denklemler, Bagley-Torvik

denklemi, Green’s fonksiyon methodu, kuvvet serisi metodu, ADM, sonlu fark şemaları

metodu.
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INTRODUCTION

FRACTIONAL CALCULUS

Recently, the study of fractional calculus achieves a wide range of applications

in many areas. Especially, in physics, chemistry and engineering it becomes a

popular subject. The history of it began with a letter from L’Hospital to Leibniz in

which is asked the meaning of the derivative of order 1/2 in 1695. In 1738, Euler did

the first attempt with observing the result of the evaluation of the non-integer order

derivative of a power function xa has a meaning and right after in 1820, Lacroix

repeated the Euler’s idea and nearly found the exact formula for the evaluation

of the half derivative of the power

function xa. Then, first definition for the derivative of arbitrary positive order

suitable for any sufficiently good function, not necessarily a power function was

given by Fourier (1822) as

dαf(x)

dxα
=

1

2π

∫ ∞

−∞
λαdλ

∫ ∞

−∞
f(t) cos(λx− tλ + απ/2)dt. (1.1)

Near all these studies, the first solution of a fractional order equation was maden

by Abel in 1823 with the formulation of the tautochrone problem as an integral

equation

∫ x

a

ϕ(t)

(x− t)µ
dt = f(x), x > a, 0 < µ < 1. (1.2)

After 1832, applications of the fractional calculus to the solution of some types of

linear ordinary differential equations was seen in the papers of Liouville. His initial

definition based on the formula for the differentiating an exponential function
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which may be expanded as the series f(x) =
∞∑

k=0

cke
akx is

Dαf(x) =
∞∑

k=0

cka
α
keakx, for any complex α. (1.3)

Starting from the definition (1.3), he obtained the formula for the differentiation of

a power function and fractional integration which is known Liouville’s first formula

D−αf(x) =
1

(−1)αΓ(α)

∫ ∞

0

ϕ(x + t)tα−1dt, −∞ < x < ∞, Re α > 0. (1.4)

Next, Riemann’s expression which was done when he was a student in 1847 has

become one of the main formula with Liouville’s construction. Riemann had lastly

arrived the expression:

1

Γ(α)

∫ x

0

ϕ(t)

(x− t)1−α
dt, x > 0. (1.5)

Studies on fractional calculus achieved a significant and suitable level for

modern mathematicians after 1880’s. Being more applicable and veritable greatly

enhanced the power of fractional calculus. Therefore, need of efficient and reliable

techniques to solve the problems which are modeled with fractional integral and

differential operators occur. Liouville was the first person who tried to solve

fractional differential equations as mentioned above. Then, some books written

by the authors Samko, Kilbas, Marichev [17], Podlubny [10], Miller and Ross [11],

Oldham and Spainer [12] played a considerable role to understand the subject and

gave the applications of fractional differential equations and methods for solutions.

The present study is starting with basic definitions for fractional calculus like

as Gamma, Beta, Mittag-Leffler functions and definitions of methods that are

used for solving ordinary-type fractional differential equations called extraordinary

differential equations.
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The methods are illustrated with a well-known equation:

AD2
t x (t) + BDα

t x (t) + Cg (x) = f (t) , (1.6)

where A 6= 0 and B, C ∈ R, α > 0, which is known as Bagley-Torvik equation. It

is one of the most popular fractional differential equation because of it’s physical

meaning and being easily modified to see the different analogies of fractional differ-

ential equations. Bagley-Torvik equation has a well-known application which is a

rigid plate of m immersed into an infinite Newtonian fluid [46], [1].

Firstly, we will consider a motion of an infinite plate in a half-space Newtonian

viscous fluid as shown in Fig. 1.1. to show the shear stress in the fluid can be

expressed directly in terms of a fractional-order time derivative of the fluid velocity

profile.

Figure 1.1 . Infinite plate in a half-space Newtonian viscous fluid
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The equation of motion of the half-space fluid is the diffusion equation,

ρ
∂v(z, t)

∂t
= µ

∂2v(z, t)

∂z2
, (1.7)

where ρ is the fluid density, µ is the viscosity and v(z, t) describes the transverse

fluid velocity as a function of z and t. Taking the Laplace transform of the equation

(1.7) and using the following rule for the treatment of time-derivatives,

L
[
∂f(t)

∂t

]
= sL [f(t)]− f(t = 0), (1.8)

one obtains

ρsL [v(z, t)]− ρv(z, t = 0) = µ
∂2

∂z2
L [v(z, t)] . (1.9)

Bagley and Torvik assumed the initial velocity profile in the fluid to be zero, thus

the equation (1.9) reduces to

ρsL [v(z, t)] = µ
∂2

∂z2
L [v(z, t)] . (1.10)

Since the Laplace Transformation is evaluated with respect to the time variable only,

the following representation for the velocity profile with respect to the depth z can

be used:

v(z, t) = v(t)eλz (1.11)

→ L [v(z, t)] = eλzL [v(t)] (1.12)

→ ∂2

∂z2
L [v(z, t)] = λ2eλzL [v(t)] (1.13)

After insertion of (1.12) and (1.11) in (1.10) the following algebraic equation can be

obtained for the unknown parameter λ.

ρseλzL [v(t)] = µλ2eλzL [v(t)] → λ =

√
sρ

µ
(1.14)
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From the boundary condition that the velocity of the fluid at z = 0 matches the

prescribed velocity of the plate, vp(t), the complete velocity profile can be derived

as

v(z = 0, t) = v(t) = vp(t) → v(z, t) = vp(t)e
√

sρ
µ

z. (1.15)

In the next step, the shear stress relationship of the Newtonian fluid

σ(z, t) = µ
∂v(z, t)

∂z
(1.16)

is transformed into the Laplace domain using the above results.

L [σ(z, t)] = µ

√
sρ

µ
e
√

sρ
µ

zL [v(t)] =
√

µρ
√

sL [v(z, t)] (1.17)

Equation (1.17) can be written as:

L [σ(z, t)] =
√

µρ
s√
s
L [v(z, t)] (1.18)

Now, the following two transforms can be identified in the equation (1.18):

sL [v(z, t)] = L
[
∂v(z, t)

∂t

]
(1.19)

1√
s

= L
[

1

Γ(1/2)
√

t

]
(1.20)

Using (1.19) and (1.20), it can be obtained as:

L [σ(z, t)] =
√

µρL
[

1

Γ(1/2)
√

t

]
.L [v̇(z, t)] . (1.21)

The product of two transforms in (1.21) corresponds to the following convolution

when evaluating the inverse transformation:
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σ(z, t) =
√

µρ
1

Γ(1/2)

∫ t

0

v̇(τ)

(t− τ)1/2
dτ . (1.22)

Since the initial profile was assumed to be zero, the equation (1.22) can be written

as:

σ(z, t) =
√

µρ
1

Γ(1/2)

d

dt

∫ t

0

v(z, t)

(t− τ)1/2
dτ

=
√

µρ0D
1/2
t v(z, t). (1.23)

In (1.23) a fractional derivative of degree α = 1/2 can be identified within the

shear stress-velocity relationship of a half-space Newtonian fluid. It is important

because the fractional derivative is used to describe a real physical system, which

was formulated in a conventional manner.

Now, we will consider a rigid plate of m immersed into an infinite Newtonian

fluid as shown in the Fig. 1.2. The plate is held at a fixed point by means of a

spring of stiffness k.

It is assumed that the motions of the spring do not influence the motion of

the fluid and that the area A of the plate is very large, such that the stress-velocity

relationship (1.22) is valid on both sides of the plate. Equilibrium of all forces acting

on the plate gives

mü(t) + ku(t) + 2Aσ(z = 0, t). (1.24)

Substituting the equation (1.23), it can be obtained as:

mü(t) + ku(t) + 2A
√

µρ0D
1/2
t v(z = 0, t) = 0 (1.25)
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Figure 1.2 . A rigid plate of m immersed into an infinite Newtonian fluid

with

v(z = 0, t) = u̇(t), (1.26)

a fractional differential equation of degree α = 3/2 follows for the displacement of a

rigid plate immersed into an infinite Newtonian fluid.

mü(t) + ku(t) + 2A
√

µρ0D
3/2
t u(t) = 0. (1.27)

Our examples are concerned with the differential equations of order 3/2 like as the

equation (1.27).

In the third chapter, the stability estimates are done for both the differential

and difference equation for Bagley-Torvik equation.

In the fourth chapter, the Green’s Function method is defined to find the

analytical solutions of Fractional Differential equations. It is investigated for
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one-term, two-term, three term and n-term equations. The analytical solution can be

find with the help of Mittag-Leffler function and Laplace transform. Taking Laplace

transform of the fractional differential equations is noted in the beginning of the

chapter. Then, the method is applied to Bagley-Torvik equation, as an example of

three-term equation and their algorithms, maple programs and graphical solutions

are implemented.

In the fifth chapter, the Adomian Decomposition method is set to find the

solutions of the Fractional Differential Equations. Relationship between finding

the Adomian polynomials and Taylor series expansion of a function is investigated.

Tools for the method is explained and method is applied to the Bagley-Torvik

Equations. Algorithms, maple programs, and graphical solutions are implemented

for the examples.

In the sixth chapter, the Finite Difference Method is defined for finding

the numerical solutions of the Fractional Differential Equations. Fractional order

finite difference is defined and first-order backward difference is used. Furthermore,

to accelerate the computation Short Memory Principle is explained and applied

graphically with the examples. Algorithms, maple programs, graphical solutions

and error analysis are implemented.

In the seventh chapter, the Power Series Method is defined to find the series

solution of the Fractional Differential Equations. First, equation is written in the

form of a power series, then results are found. Algorithms, maple programs and

graphical solutions of the example equations are implemented. Lastly, conclusions

about the methods are explained in the conclusion part.



CHAPTER 2

SOME BASIC DEFINITIONS

2.1. PROPERTIES OF SOME SPECIAL FUNCTIONS

Here, some definitions and mathematical properties of special functions are

given useful for numerical computation of fractional operators. More extensive

information about special functions and their computations can be found in the

books by Andrews [18], Zhang and Jin [19].

2.1.1. The Gamma Function

The Gamma function is very important function appearing by itself in physical

applications, denoted by Γ(z). The Gamma function has common definitions which

are equal and most of them are related to Euler’s works.

However the Gamma function first was defined by limit definition due to

Gauss(1777-1855) :

Definition 1.

Γ(z) = lim
n→∞

n!nz

z(z + 1)(z + 2)...(z + n)
(2.1)

In the last equation there is an obvious restriction that (2.1) cannot be defined

at negative integer values of z, but for all other values we can easily compute.

Although z is restricted in to only positive values, most popular definition of

9
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the gamma function is integral transform definition.

Definition 2. Integral representation of Γ(x) is

Γ(z) =

∫ ∞

0

e−ttz−1dt Re z > 0 (2.2)

Γ(x) is a continuous function for all z ∈ C, for which Re z > 0. Also, the

equation (2.2) can be extended by analytic continuation to the case Re z < 0.

In addition to the definitions above, we can derive the following formula by

setting t = u2 and dt = 2udu in the equation (2.2):

Γ(z) =

∫ ∞

0

e−u2

u2z−22udu = 2

∫ ∞

0

e−u2

u2z−1du, z > 0. (2.3)

from equation (2.3)

Γ(x)Γ(y) = (2

∫ ∞

0

e−u2

u2x−1)(2

∫ ∞

0

e−v2

v2y−1)dudv x > 0, y > 0. (2.4)

Now let us write last equation in terms of polar coordinates variables (r, θ) :

u = r cos θ

v = r sin θ

equation (3.18) now becomes:

Γ(x)Γ(y) = 4

∫ π/2

0

(cos θ)2x−1(sin θ)2y−1

∫ ∞

0

e−r2

r2(x+y)−1drdθ. (2.5)

Since

2

∫ ∞

0

e−r2

r2(x+y)−1dr = Γ(x + y), (2.6)
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we have

Γ(x)Γ(y)

2Γ(x + y)
=

∫ π/2

0

(cos θ)2x−1(sin θ)2y−1dθ, x > 0, y > 0 (2.7)

and if we write x = 1/2 , y = 1/2 into the equation (2.7), we can get the value of

Γ(1/2) which is important for evaluating other values:

Γ(1/2)Γ(1/2)

2Γ(1)
=

∫ π/2

0

1dθ (2.8)

Γ(1/2) =
√

π. (2.9)

Properties of The Gamma Function.

1. Recurrence Formulas:

When we write z = 1 in the equation (1), then we have

Γ(1) = lim
n→∞

n!n

1.2.3....n(n + 1)
= lim

n→∞
n

n + 1

Γ(1) = 1, (2.10)

other values of Γ(z) can be easily obtained from the recurrence formula deduced

by substituting z + 1 into z:

Γ(z + 1) = lim
n→∞

n!nz+1

(z + 1)(z + 2)...(z + n)(z + n + 1)

= lim
n→∞

nz

z + n + 1
. lim
n→∞

n!nz

z(z + 1)...(z + n)

Γ(z + 1) = zΓ(z) (2.11)
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If we combine equations (2.11) and (2.10) we get

Γ(z + 1) = z! z = 0, 1, 2... (2.12)

From the equation (2.11), gamma function can be defined over the interval

z > −n(except z = 0, 1, 2, ...,−n + 1) as

Γ(z + 1) =
Γ(z + 2)

z + 1
z > −1, z 6= −1 (2.13)

then one more we can combine equation (2.13) and equation (2.11):

Γ(z) =
Γ(z + 2)

z(z + 1)
z > −2, z 6= 0,−1 (2.14)

Using these expressions, we can find another recurrence formula for gamma

function:

Γ(z) =
Γ(z + n)

z(z + 1)(z + 2)...(z + n− 1)
(2.15)

2. Binomial Formula:

If z is not a positive integer we can write the binomial coefficient related to

gamma function as:

(−z

r

)
=

Γ(1− z)

Γ(r + 1)Γ(1− z − r)
(2.16)

3. Reflection Formula:

Γ(z)Γ(1− z) =
π

sin(πz)
z 6= (0,±1,±2, ...) (2.17)

4. Legendre Duplicated Formula:

Γ(2x)
√

π = 22x−1Γ(x + 1/2)Γ(x) (2.18)
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2.1.2. The Beta Function:

Definition 3. The Beta function is a two variable function defined as:

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt x > 0, y > 0 (2.19)

Properties of the Beta Function

1. Beta function is a symmetric function, i.e.,

β(x, y) = β(y, x) (2.20)

2. Beta function can be evaluated in terms of the gamma function:

β(x, y) =
Γ(x)Γ(y)

Γ(x + y)
(2.21)

2.1.3. Mittag-Leffer Function:

Definition 4. A two-parameter function of the Mittag-Leffer type is defined by the

series expansion:

Eα,β =
∞∑

j=0

yj

Γ (αj + β)
, (2.22)

where (α > 0, β > 0) .And (k)th derivative of the function is:

E
(k)
α,β =

∞∑
j=0

(j + k)!yj

Γ (αj + αk + β)
, (k = 0, 1, 2, ...) . (2.23)
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2.2. Riemann-Liouville Fractional Operator

The historical survey of the Riemann-Liouville definition is mentioned in

the introduction part. In this section, most used definition and it’s origin denoted.

First, let us consider a continuous function y = f(t). According to the well-

known definition, the first-order derivative of the function f(t) is defined by

f ′ (t) =
df

dt
= lim

h→0

f (t)− f (t− h)

h
. (2.24)

Applying this definition twice gives the second-order derivative:

f ′′ (t) =
d2f

dt2
= lim

h→0

f ′ (t)− f ′ (t− h)

h
(2.25)

= lim
h→0

1

h

{
f (t)− f (t− h)

h
− f (t− h)− f (t− 2h)

h

}

= lim
h→0

f (t)− 2f (t− h) + f (t− 2h)

h2
.

Using (2.24) and (2.25), we obtain third-order derivative

f ′′′ (t) =
d3f

dt3
= lim

h→0

f (t)− 3f (t− h) + 3f (t− 2h)− f (t− 3h)

h3
, (2.26)

and, by induction, n− th order derivative can be obtained as:

f (n) (t) =
dnf

dtn
= lim

h→0

1

h

n∑
r=0

(−1)r

(
n

r

)
f (t− rh) , (2.27)

where

(
n

r

)
=

n (n− 1) (n− 2) ... (n− r + 1)

r!
(2.28)

is the usual notation for the binomial coefficients.

Let us now consider the following expression generalizing the fractions in (2.24)



15

to (2.27)

f
(p)
h (t) =

1

hp

n∑
r=0

(−1)r

(
p

r

)
f (t− rh) , (2.29)

where p is an arbitrary integer number; n is also integer, as above.

Obviously, for p ≤ n we have

lim
h→0

f
(p)
h (t) = f (p) (t) =

dpf

dtp
, (2.30)

because in such a case, as follows from (2.27), all the coefficients in the numerator

after
(

p
p

)
are equal to 0.

Let us consider negative values of p. For convenience, let us denote

(
p

r

)
=

p (p + 1) ... (p + r − 1)

r!
(2.31)

Then we have

(−p

r

)
= −p (−p− 1) ... (−p− r + 1)

r!
= (−1)r

(
p

r

)
(2.32)

and replacing p in equation (2.29) with −p we can write

f
(−p)
h (t) =

1

h−p

n∑
r=0

(
p

r

)
f (t− rh) , (2.33)

where p is a positive integer number.

If n is fixed, then f
(−p)
h (t) tends to the uninteresting limit 0 as h → 0 . To

arrive at a nonzero limit, we have to suppose that n →∞ as h → 0 . We can take

h = t−a
n

, where a is a real constant, and consider the limit value, either finite or
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infinite, of f
(−p)
h (t) which we denote as

lim
h→0

nh=t−a

f
(−p)
h (t) =a D−p

t f (t) . (2.34)

Here aD
−p
t f(t) denotes, in fact, a certain operation performed on the function; a

and t are the limits relating this operation.

Let us consider several particular cases:

For p = 1 we have:

f
(−1)
h (t) = h

n∑
r=0

f (t− rh) . (2.35)

Taking into account that t− nh = a and the function f (t) is assumed to be

continuous, it can be concluded that

lim
h→0

nh=t−a

f
(−1)
h (t) =a D−1

t f (t) =

∫ t−a

0

f (t− z) dz =

∫ t

a

f (τ) dτ . (2.36)

Let us take p = 2. In this case

(
2

r

)
=

2 · 3 · ... (2 + r + 1)

r!
= r + 1

and we have:

f
(−2)
h (t) = h

n∑
r=0

(r + 1) hf (t− rh) . (2.37)
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Denoting t + h = y

f
(−2)
h (t) = h

n+1∑
r=1

(rh) f (y − rh) (2.38)

and taking h → 0 it will be

lim
h→0

nh=t−a

f
(−2)
h (t) =a D−2

t f (t) =

∫ t−a

0

zf (t− z) dz =

∫ t

a

(t− τ) f (τ) dτ , (2.39)

because y → t as h → 0.

The third particular case, namely p = 3 , will show us the general expression

for aD
−2
t f (t) .

Taking into account that:

(
3

r

)
=

3 · 4 · ... (3 + r + 1)

r!
=

(r + 1) (r + 2)

1 · 2 , (2.40)

we have

f
(−3)
h (t) =

h

1 · 2
n∑

r=0

(r + 1) (r + 2) h2f (t− rh) . (2.41)

Denoting as above, t + h = y we write

f
(−3)
h (t) =

h

1 · 2
n+1∑
r=1

r (r + 1) h2f (y − rh) . (2.42)

Expression (2.42) can be written as

f
(−3)
h (t) =

h

1 · 2
n+1∑
r=1

(rh)2 f (y − rh) +
h2

1 · 2
n+1∑
r=1

rhf (y − rh) . (2.43)
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Taking h → 0 we obtain

aD
−3
t f (t) =

1

2!

∫ t−a

0

z2f (t− z) dz =

∫ t

a

(t− τ) dτ , (2.44)

because y → t as h → 0 and

lim
h→0

nh=t−a

h2

1 · 2
n+1∑
r=1

rhf (y − rh) = lim
h→0

nh=t−a

h

∫ t

a

(t− τ) f (τ) dτ = 0. (2.45)

Relationships (2.37)-(2.45) suggest the following general expression:

aD
−p
t f (t) = lim

h→0
nh=t−a

hp

n∑
r=0

[
p

r

]
f (t− rh) =

1

(p− 1)!

∫ t

a

(t− τ)p−1 f (τ) dτ . (2.46)

Riemann and Liouville continued this result with replacing the discrete factorial

(p− 1)! with Euler’s continuous gamma function

aD
−p
t f(t) =

1

Γ(p)

∫ t

a

(t− τ)p−1f(τ)dτ . (2.47)

To obtain differentiation of fractional order, we can write

aD
p
t f(t) =

dn

dtn a
D
−(n−p)
t f(t)

=
1

Γ(n− p)

dn

dtn

∫ t

a

(t− τ)n−p−1f(τ)dτ .

If we take the lower limit 0, we can obtain the most used formula:

0D
p
t f(t) =

1

Γ(n− p)

dn

dtn

∫ t

0

(t− τ)n−p−1f(τ)dτ .



CHAPTER 3

STABILITY OF THE PROBLEM

3.1. The Stability of the Initial-Value Problem for Bagley-Torvik

Equation

We consider the initial value problem for Bagley-Torvik equation

{
D2

t u (t) + 1
2
D

3/2
t u (t) + 1

2
u(t) = f (t) ,

u(0) = 0, u′(0) = 0.
(3.1)

Note that Dtu (t) = u′(t).

Then, we can rewrite it

{
D2

t u (t) + 1
2
u(t) = f (t)− 1

2
D

3/2
t u (t) ,

u(0) = 0, u′(0) = 0
(3.2)

Solving it, we get

u(t) = cos

√
2

2
tu(0) +

√
2 sin

√
2

2
tu′(0)+ (3.3)

+
√

2

∫ t

0

sin

√
2

2
(t− s)

(
−1

2
u3/2(s) + f(s)

)
ds.

Using the last formula, we can write

u′(t) = −
√

2

2
sin

√
2

2
tu(0) + cos

√
2

2
tu′(0) (3.4)

+

∫ t

0

cos

√
2

2
(t− s)

(
−1

2
u3/2(s) + f(s)

)
ds

19
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and

u1+1/2(t) =
d1/2

dt1/2

(
−
√

2

2
sin

√
2

2
tu(0)

)
+

d1/2

dt1/2

(
cos

√
2

2
tu′(0)

)
(3.5)

+
1√
π

∫ t

0

cos
√

2
2

(t− s)

(t− s)1/2

(
−1

2
u3/2(s) + f(s)

)
ds.

So, from the equation (3.5), an estimate for u(3/2) can be written as

t1/2
∣∣u(3/2)(t)

∣∣ ≤ t√
π
|u(0)|+ 1√

π
|u′(0)|+

∫ t

0

t1/2

√
π

s1/2
∣∣u(3/2)(s)

∣∣ ds

s1/2(t− s)1/2
(3.6)

+

∫ t

0

t1/2

√
π

|f(s)| ds

(t− s)1/2

where 0 ≤ t ≤ T.

Here, consider the function z(t);

|z(t)| =
∣∣t1/2u(3/2)(t)

∣∣ . (3.7)

Then,

|z(t)| ≤ t√
π
|u(0)|+ 1√

π
|u′(0)|+

∫ t

0

t1/2

√
π

|z(s)| ds

s1/2(t− s)1/2
+

∫ t

0

t1/2

√
π

|f(s)| ds

(t− s)1/2
(3.8)

Since, we have

∫ t

0

t1/2

√
π

|f(s)| ds

(t− s)1/2
≤ max

0≤t≤T
|f(t)| t

1/2

√
π

∫ t

0

ds

(t− s)1/2
(3.9)

≤ T√
π

max
0≤t≤T

|f(t)|

and

∫ t

0

ds

s1/2(t− s)1/2
= B

(
1

2
,
1

2

)
, (3.10)
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we can obtain

|z(t)| = C1 +

∫ t

0

T 1/2z(s)ds

s1/2(t− s)1/2
,

C1 ≤ T√
π

max
0≤t≤T

|f(t)|+ T√
π
|u(0)|+ 1√

π
|u′(0)|

≤ C(T )

[
max
0≤t≤T

|f(t)|+ |u(0)|+ |u′(0)|
]

(3.11)

or

|z(t)| ≤ C1e
aT ≤ C(T )

[
max
0≤t≤T

|f(s)|+ |u(0)|+ |u′(0)|
]

≤ M

[
max
0≤t≤T

|f(t)|+ |u(0)|+ |u′(0)|
]

. (3.12)

Using the last estimate, we rewrite
∣∣u(3/2)(t)

∣∣

∣∣u(3/2)(t)
∣∣ ≤ M [max0≤t≤T |f(t)|+ |u(0)|+ |u′(0)|]√

T
. (3.13)

Next, we can obtain that the solution of the problem (3.2) satisfies the stability

estimate:

|u(t)| ≤ |u(0)|+
√

2 |u′(0)|+ M [max0≤t≤T |f(t)|+ |u(0)|+ |u′(0)|]√
T

+ T max
0≤t≤T

|f(t)| (3.14)

≤
[
max0≤t≤T (M + T ) |f(t)|+ (M + 1) |u(0)|+ (M +

√
2) |u′(0)|]√

T
.

Lastly, from the triangular inequality, we can obtain an estimate for u′′(t) :

|u′′(t)| ≤
[
max0≤t≤T (M + T ) |f(t)|+ (M + 1) |u(0)|+ (M +

√
2) |u′(0)|]√

T
+ (3.15)

+
M [max0≤t≤T |f(t)|+ |u(0)|+ |u′(0)|]√

T
+ max

0≤t≤T
|f(t)| .

Using (3.13), (3.14) and (3.15), we get the following stability inequality for the
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solution of (3.2)

|u(t)| ,
∣∣u(2)(t)

∣∣ ,
∣∣u(3/2)(t)

∣∣ ≤ A |u(0)|+ B |u′(0)|+ C max
0≤t≤T

|f(t)| , (3.16)

where A,B and C are constants.

Now, we will consider the approximation formulas for the solution of (3.2).

Using the fixed-point iteration, we can prove that (3.2) has a unique solution u(t)

and

u(t) = lim
n→∞

un(t), (3.17)

where un(t) defined by

un(t) = cos

√
2

2
tu(0) +

√
2 sin

√
2

2
tu′(0)+

+
√

2

∫ t

0

sin

√
2

2
(t− s)

(
−1

2
u

3/2
n−1(s) + 2 + s2 +

4√
π

s1/2

)
ds, (3.18)

n = 1, 2, 3, ... and u0(t) is given.

Here, we will consider (3.2) with f(t) = 2 + t2 + 4√
π
t1/2. Using (3.18) and putting

u0(t) = t2, we get

u1(t) = t2. (3.19)

Let un−1(t) = t2, so by induction

un(t) = t2, n = 1, 2, 3, ... (3.20)

is obtained. Then,

u(t) = lim
n→∞

un(t) = lim
n→∞

t2 = t2. (3.21)
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3.2. The Stability of the Difference Scheme for Bagley-Torvik Equation

Using the formula

u(1/2) ≈ 1

h1/2

1

Γ(1− 1/2)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−1/2e−tdt(un − un−1) (3.22)

and approximate formulas for u′′, we get a second order difference scheme for the

numerical solution of (3.2):





un+1−2un+un−1

h2 + 1
2

1
h3/2

1
Γ(1−1/2)

k∑
n=1

1
(k−n)!

∫∞
0

tk−n−1/2e−tdt(un − 2un−1 + un−2)

+1
2
un+1 = fn,

u0 = 0, u1−u0

h
= 0.

(3.23)

Then, we can rewrite it





un+1−2un+un−1

h2 + 1
2
un+1 = ϕn,

u0 = 0, u1−u0

h
= 0

(3.24)

and





un+1−2un+un−1

h2 + 1
2
un+1 = ϕn,

u0 = ζ, u1−u0

h
= ψ.

(3.25)

where ϕn = fn − 1
2

1
h3/2

1
Γ(1−1/2)

k∑
n=1

1
(k−n)!

∫∞
0

tk−n−1/2e−tdt(un − 2un−1 + un−2)

Suppose that

un = vn + wn. (3.26)
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If we take

vn = qn (3.27)

then we obtain

qn+1 − 2qn + qn−1 +
h2

2
qn+1 = 0, (3.28)

qn−1

(
(1 +

h2

2
)q2 − 2q + 1

)
= 0. (3.29)

So, the roots of the equation (3.28) are

q1,2 =
1± i

√
h2/2

1 + h2/2
= re±iϕ (3.30)

where r =
√

1
1+h2/2

, tan ϕ =
√

h2/2.

Since
√
−h2/2 < 0, the solution of the difference equation will be

un =
sin(1− n)ϕ

sin ϕ
rnζ +

sin nϕ

sin ϕ
rnψ +

(
n∑

i=1

sin(n− i)ϕ

sin ϕ
rn−i+1ϕi

)
h2. (3.31)

Taking the fractional derivative of both sides of the last formula, we can write

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
un − 2un−1 + un−2

h3/2

)
=

1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(1− n)ϕ

sin ϕ
rnζ

+
1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(n)ϕ

sin ϕ
rnψ

+
1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n∑

i=1

sin(n− i)ϕ

sin ϕ
rn−i+1fi

)
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− 1

2

1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n∑

i=1

sin(n− i)ϕ

sin ϕ
rn−i+1 1

Γ(1− α)

i∑
z=1

1

(i− z)!

∫ ∞

0

tk−n−αe−tdt

(
uz − 2uz−1 + uz−2

h3/2

))

− 2
1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(2− n)ϕ

sin ϕ
rn−1ζ (3.32)

− 2
1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(n)ϕ

sin ϕ
rn−1ψ

− 2
1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n−1∑
i=1

sin(n− 1− i)ϕ

sin ϕ
rn−ifi

)

+
1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n−1∑
i=1

sin(n− 1− i)ϕ

sin ϕ
rn−i 1

Γ(1− α)

i∑
z=1

1

(i− z)!

∫ ∞

0

tk−z−αe−tdt

(
uz − 2uz−1 + uz−2

h3/2

))

1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(3− n)ϕ

sin ϕ
rn−2ζ

+
1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(n− 2)ϕ

sin ϕ
rn−2ψ

+
1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n−2∑
i=1

sin(n− 2− i)ϕ

sin ϕ
rn−1−ifi

)

− 1

2

1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n−2∑
i=1

sin(n− 2− i)ϕ

sin ϕ
rn−1−i 1

Γ(1− α)

i∑
z=1

1

(i− z)!

∫ ∞

0

ti−z−αe−tdt

(
uz − 2uz−1 + uz−2

h3/2

))

Denoting

|zk| =
∣∣∣∣∣

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
un − 2un−1 + un−2

h3/2

)∣∣∣∣∣

the equation (3.32) will be
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|zk| = 1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(1− n)ϕ

sin ϕ
rnζ

+
1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(n)ϕ

sin ϕ
rnψ

+
1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n∑

i=1

sin(n− i)ϕ

sin ϕ
rn−i+1fi

)

− 1

2

1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n∑

i=1

sin(n− i)ϕ

sin ϕ
rn−i+1 1

Γ(1− α)
|zi|

)

− 2
1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(2− n)ϕ

sin ϕ
rnζ (3.33)

− 2
1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(n− 1)ϕ

sin ϕ
rnψ

− 2
1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n−1∑
i=1

sin(n− 1− i)ϕ

sin ϕ
rn−ifi

)

+
1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n−1∑
i=1

sin(n− 1− i)ϕ

sin ϕ
rn−i |zi|

)

+
1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(3− n)ϕ

sin ϕ
rnζ

+
1

h3/2

1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt
sin(n− 2)ϕ

sin ϕ
rnψ

+
1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n−2∑
i=1

sin(n− 2− i)ϕ

sin ϕ
rn−1−ifi

)

− 1

2

1

h3/2
h2 1

Γ(1− α)

k∑
n=1

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n−2∑
i=1

sin(n− 2− i)ϕ

sin ϕ
rn−1−i |zi|

)
.

Putting α = 1, we have

1

(k − n)!

∫ ∞

0

tk−n−1e−tdt =
(k − n− 1)!

(k − n)!
=

1

(k − n)

and for α = 0

1

(k − n)!

∫ ∞

0

tk−ne−tdt =
(k − n)!

(k − n)!
= 1. (3.34)
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So, we obtain a formula for α = 1/2 from interpolation theory

1

(k − n)!

∫ ∞

0

tk−n−1/2e−tdt ≤ 1√
k − n

. (3.35)

Then, we can write an estimate for zk

|zk| ≤ 1

h3/2

1

Γ(1− α)

k∑
n=1

1√
k − n

sin(1− n)ϕ

sin ϕ
rnζ

+
1

h3/2

1

Γ(1− α)

k∑
n=1

1√
k − n

sin(n)ϕ

sin ϕ
rnψ

+
1

Γ(1− α)

k∑
n=1

h√
h

1√
k − n

(
n∑

i=1

sin(n− i)ϕ

sin ϕ
rn−i+1fi

)

− 1

2

1

Γ(1− α)

k∑
n=1

h√
h

1√
k − n

(
n∑

i=1

sin(n− i)ϕ

sin ϕ
rn−i+1 1

Γ(1− α)
|zi|

)

+ 2
1

h3/2

1

Γ(1− α)

k∑
n=1

1√
k − n

sin(2− n)ϕ

sin ϕ
rnζ

+ 2
1

h3/2

1

Γ(1− α)

k∑
n=1

1√
k − n

sin(n− 1)ϕ

sin ϕ
rnψ

+ 2
1

Γ(1− α)

k∑
n=1

h√
h

1

(k − n)!

∫ ∞

0

tk−n−αe−tdt

(
n−1∑
i=1

sin(n− 1− i)ϕ

sin ϕ
rn−ifi

)

+
1

Γ(1− α)

k∑
n=1

h√
h

1√
k − n

(
n−1∑
i=1

sin(n− 1− i)ϕ

sin ϕ
rn−i |zi|

)

+
1

h3/2

1

Γ(1− α)

k∑
n=1

1√
k − n

sin(3− n)ϕ

sin ϕ
rnζ

+
1

h3/2

1

Γ(1− α)

k∑
n=1

1√
k − n

sin(n− 2)ϕ

sin ϕ
rnψ (3.36)

+
1

Γ(1− α)

k∑
n=1

h√
h

1√
k − n

(
n−2∑
i=1

sin(n− 2− i)ϕ

sin ϕ
rn−1−ifi

)

− 1

2

1

Γ(1− α)

k∑
n=1

h√
h

1√
k − n

(
n−2∑
i=1

sin(n− 2− i)ϕ

sin ϕ
rn−1−i |zi|

)
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Since

k−1∑
n=1

h√
(k − n)h

≤
∫ 1

0

dt√
1− t

= 2 (3.37)

and from initial conditions are 0, then

zk ≤ 8

π
max

0≤i≤N
|fi|+

k−1∑
n=1

h√
(k − n)h

zi. (3.38)

From discrete analogies of integral inequalities, we obtain

|zi| ≤ 8

π
max

0≤i≤N
|fi| e

∑k−1
n=1

h√
(k−n)h , (3.39)

|zi| ≤ 8

π
max

0≤i≤N
|fi| . (3.40)

Next, from the last estimate we can construct the following stability estimate

for the solution of (3.2):

|un| ≤ (1 +
4

π
) max

0≤i≤N
|fi| . (3.41)

Lastly, from the triangular inequality a stability estimate can be constructed

as:

∣∣∣∣
un+1 − 2un + un−1

h2

∣∣∣∣ ≤ (
1

2
+

6

π
) max

0≤i≤N
|fi| . (3.42)



CHAPTER 4

GREEN’S FUNCTION METHOD

For the fractional differential equations, analytical solution can be found by

using Green’s function method with the help of Mittag-Leffler function and Laplace

transform.

Now, we present Laplace transform of the fractional differential equations of

the form

Dα
t x(t) = f(t). (4.1)

4.1. Laplace Transform

[12] For integer values of q, Laplace transform of a differintegrable function f

is

L

{
dqf

dxq

}
≡

∫ ∞

0

exp(−sx)
dqf

dxq
dx (4.2)

First, recall the well-known property for integer order derivatives

L

{
dqf

dxq

}
= sqL{f} −

∞∑

k=0

sq−1−k dkf

dxk
(0), q = 1, 2, 3, ..., (4.3)

and multiple integrals

L

{
dqf

dxq

}
= sqL{f}, q = 0,−1,−2, ..., (4.4)

29
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and both formulas embraced by

L

{
dqf

dxq

}
= sqL{f} −

q−1∑

k=0

sk dq−1−kf

dxq−1−k
(0), q = 0,±1,±2,±3, .... (4.5)

Now, we will try to generalize (4.5) formula for all q included non-integers with

simple extension:

L

{
dqf

dxq

}
= sqL{f} −

n−1∑

k=0

sk dq−1−kf

dxq−1−k
(0), all q, (4.6)

where n is the integer such that n − 1 < q ≤ n. The sum is empty and vanishes

when q ≤ 0.

Firstly, we consider q < 0, so that the Riemann-Liouville definition

dqf

dxq
=

1

Γ(−q)

∫ x

0

f(y)dy

(x− y)q+1
, q < 0 (4.7)

may be adopted. Direct application of the convolution theorem

L

{∫ x

0

f1(x− y)f2(y)dy

}
= L{f1}L{f2} (4.8)

then gives

L

{
dqf

dxq

}
=

1

Γ(−q)
L{x−1−q}L{f} = sqL{f}, q < 0, (4.9)

so that equation (4.9) generalizes unchanged for negative q.

For non-integer positive q, we use

dqf

dxq
=

dn

dxn

dq−nf

dxq−n
(4.10)

where n is the integer such that n− 1 < q < n.
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Combining the last equation with (4.6), we obtain

L

{
dqf

dxq

}
= L

{
dn

dxn

[
dq−nf

dxq−n

]}
= snL

{
dq−nf

dxq−n

}
−

n−1∑

k=0

sk dq−1−k

dxq−1−k

[
dq−nf

dxq−n

]
(0).

(4.11)

The difference q − n being negative, the first right-hand term may be evaluated by

use of (4.9).

Since q − n < 0, the composition rule may be applied to terms within the

summation. The result

L

{
dqf

dxq

}
= sqL{f} −

n−1∑

k=0

sk dq−1−kf

dxq−1−k
(0), 0 < q 6= 1, 2, 3, ..., (4.12)

follows from these two operations and is seen to be incorporated in (4.6)

The transformation (4.6) is a generalization of the classical formula for the

Laplace transform of the derivative or integral of f.

4.2. Fractional Green’s Function

Definition 5. [45] Function G(t, τ) satisfying the following conditions;

a) τLtG(t, τ) = 0 for every τ ∈ (0, t);

b) limτ→t−0(τD
σk
t G(t, τ)) = δk,n, k = 0, 1, , ..., n (δk,n is Kronecker’s delta) ;

c) limτ ,t→+0
τ<t

(τD
σk
t G(t, τ)) = 0, k = 0, 1, 2, ..., n− 1

is called the Green’s function of the equation

0Lty(t) = f(t); 0D
σk−1

t y(t) |t=0= 0, k = 1, ..., n.

aLty(t) =a Dσn
t y(t) +

n−1∑

k=1

pk(t)aD
σn−k

t y(t) + pn(t)y(t), (4.13)

where
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aD
σk
t =a Dαk

t aD
αk−1

t ...aD
α1
t ; aD

σk−1

t =a D
αk−1

t aD
αk−2

t ...aD
α1
t ;

σk =
∑k

j=1 αj, (k = 1, 2, .., n); 0 ≤ αj ≤ 1, (j = 1, 2, ..., ).

4.2.1. Fractional Green’s function for the one-term FDE

Fractional Green’s function G1(t) for the one-term fractional-order differential

equation with constant coefficients

a 0D
α
t y(t) = f(t), (4.14)

where the derivative can be either classic or sequential is found by the inverse Laplace

transform of the following expression:

g1(s) =
1

asα
. (4.15)

The inverse Laplace transform then gives

G1(t) =
1

a

tα−1

Γ(α)
. (4.16)

The solution of equation (4.14) under homogeneous initial condition is

y(t) =
1

aΓ(α)

∫ t

0

f(τ)dτ

(t− τ)1−α
=

1

a
0D

−α
t f(t) , f(x) continuous in [0,∞) (4.17)

4.2.2. Fractional Green’s function for the two-term FDE

Fractional Green’s function G2(t)for the two-term fractional-order differential

equation with constant coefficients

a0D
α
t y(t) + by(t) = f(t), (4.18)
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where the derivative can be either classic or sequential is found by inverse Laplace

transform of the following expression :

g2(s) =
1

asα + b
=

1

a

1

sα + b
a

, (4.19)

which leads to

G1(t) =
1

a
tα−1Eα,α(− b

a
tα). (4.20)

4.2.3. Fractional Green’s function for the three-term FDE

Fractional Green’s function G3(t) for the 3-term fractional-order differential

equation with constant coefficients

a0D
β
t y(t) + b0D

α
t y(t) + cy(t) = f(t), (4.21)

where the derivative can be either classic or sequential is found by inverse Laplace

transform of the following expression :

g3(s) =
1

asβ + bsα + c
(4.22)

assuming β > α, we can write g3(s) in the form

g3(s) =
1

c

cs−α

asβ−α + b

1

1 + cs−α

asβ−α+b

=
1

c

∞∑

k=0

(−1)k

(
c

a

)k+1
s−αk−α

(sβ−α + b
a
)k+1

(4.23)

The term by term inversion ,

G3(t) =
1

a

∞∑

k=0

(−1)k

k!
(
c

a
)ktβ(k+1)−1E

(k)
β−α,β+αk(−

b

a
tβ−α), (4.24)
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where Eλ,µ(z) is the Mittag-Leffler function in two parameters,

E
(k)
λ,µ(y) =

dk

dyk
Eλ,κ(y) =

∞∑
j=0

(j + k)!yj

j!Γ(λj + λk + µ)
, (k = 0, 1, 2, ...) (4.25)

Indeed, substituting (4.25) into (4.34) and changing the order of summation,

we obtain:

G3(t) =
1

c

∞∑

k=0

(−1)k
( c

a

)k+1
∞∑

j=0

(−1)j
( c

a

)j (j + k)!tβ(j+k)+β−1−αj

k!j!Γ(β(j + k + 1)− αj)

=
1

c

∞∑
j=0

(−b

a

)j ∞∑

k=0

(−1)k
( c

a

)k+1 (j + k)!tβ(j+k)+β−1−αj

k!j!Γ(β(j + k + 1)− αj)
(4.26)

4.2.4. Fractional Green’s function for the general linear FDE

Fractional Green’s function Gn(t) for the n-term fractional-order differential

equation with constant coefficients

anDβny(t) + an−1D
βn−1y(t) + ... + a1D

β1y(t) + a0D
β0y(t) = f(t), (4.27)

where derivatives Dα = 0D
α
t can be either classic or sequential is found by inverse

Laplace transform of the following expression :

gn(s) =
1

ansβn + an−1sβn−1 + ... + a1sβ1 + a0sβ0
(4.28)

Let us assume βn > βn−1 > ... > β1 > β0 and write gn(s) in the form:

gn(s) =
1

ansβn + an−1sβn−1

1

1 +
∑n−2

k=0 aksβk

ansβn+an−1sβn−1

=
a−1s

−βn−1

sβn−βn−1 + an−1

an

1

1 +
a−1s−βn−1

∑n−2
k=0 aksβk

sβn−βn−1+
an−1

an
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=
∞∑

m=0

(−1)ma−1s
−βn−1

(sβn−βn−1 + an−1

an
)m+1

(
n−2∑

k=0

(
ak

an

)sβk−βn−1

)m

=
∞∑

m=0

(−1)ma−1s
−βn−1

(sβn−βn−1 + an−1

an
)m+1

(continued)

∑

ko+k1+...+kn−2=m
ko≥0;...,kn−2≥0

(m; k0, k1, ..., kn−2)
n−2∏
i=0

(
ai

an

)ki

s(βi−βn−1)ki (4.29)

=
1

an

∞∑
m=0

(−1)m
∑

ko+k1+...+kn−2=m
ko≥0;...,kn−2≥0

(m; k0, k1, ..., kn−2) (continued)

n−2∏
i=0

(
ai

an

)ki s−βn−1+
∑n−2

i=0 (βi−βn−1)ki

(sβn−βn−1 + an−1

an
)m+1

where ((m; k0, k1, ..., kn−2)) are the multinomial coefficients.

Term by term inversion, gives the final expression for the fractional Green’s

function for equation (4.27):

Gn(t) =
1

an

∞∑
m=0

(−1)m

m!




∑

ko+k1+...+kn−2=m
ko≥0;...,kn−2≥0

(m; k0, k1, ..., kn−2) (continued)

n−2∏
i=0

(
ai

an

)ki

t(βn−βn−1)m+βn+
∑n−2

j=0 (βn−1−βj)kj−1 (continued)

E
(m)

βn−βn−1,+βn+
∑n−2

j=0 (βn−1−βj)kj

(
−an−1

an

tβn−βn−1

) ]
(4.30)

4.3. Solution of the General Bagley-Torvik Equation with Green’s

Function Method

Example 3.1

We will consider the Bagley-Torvik equation as an example of three-term
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fractional differential equation with constant coefficients





AD2x(t) + BD3/2x(t) + Cx(t) = f(t),

x(0) = 0, x′(0) = 0,
(4.31)

where A 6= 0, B, C ∈ R.

Solution 3.1

First, taking Laplace transform of both sides, we obtain

g(s) =
1

As2 + Bs3/2 + C
. (4.32)

Then, g(s) can be written in the form

g(s) =
1

C

Cs−3/2

As1/2 + B

1

1 + As−3/2

As1/2+B

=
1

C

∞∑

k=0

(−1)k

(
C

A

)k+1
s−3/2k−3/2

(s1/2 + B
A
)k+1

(4.33)

and term by term inversion

G(t) =
1

A

∞∑

k=0

(−1)k

k!

(
C

A

)k

t2(k+1)−1E
(k)
1/2,2+3/2k(−

B

A
t1/2) (4.34)

where Eλ,µ(z) is the Mittag-Leffler function in two parameters

E
(k)
λ,µ(y) =

dk

dyk
Eλ,κ(y) =

∞∑
j=0

(j + k)!yj

j!Γ(λj + λk + µ)
, (k = 0, 1, 2, ...). (4.35)

Substituting (4.25) into (4.34) and changing the order of summation, we obtain

G(t) =
1

C

∞∑

k=0

(−1)k

(
C

A

)k+1 ∞∑
j=0

(−1)j

(
C

A

)j
(j + k)!t2(j+k)+1−3/2j

k!j!Γ(2(j + k + 1)− 3/2j)

=
1

C

∞∑
j=0

(−B

A

)j ∞∑

k=0

(−1)k

(
C

A

)k+1
(j + k)!t2(j+k)+1−3/2j

k!j!Γ(2(j + k + 1)− 3/2j)
. (4.36)
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Then, the generalized green’s function for the equation (4.40) is:

G(t) =
1

A

∞∑
r=0

(−1)r

r!

(
C

A

)r

t2r+1E
(r)
1
2
, 3
2
r+2

(
−B

A
t

1
2

)
. (4.37)

Therefore, the solution of the problem under homogeneous initial conditions will be:

x (t) =

∫ t

0

G(t− τ)f(τ)dτ . (4.38)

In this problem, we obtain the general solution of the equation for all f,A, B, C

above. Now, let us take examples with specific constants and the right side functions

named first and second examples.

First Example





D2x(t) + 1
2
D3/2x(t) + 1

2
x(t) =

{
8, (0≤t≤1)
0, (t>1),

,

x(0) = 0, x′(0) = 0,
(4.39)

Second Example





D2x(t) + 1
2
D3/2x(t) + 1

2
x(t) = f(t)

x(0) = 0, x′(0) = 0,
(4.40)

where f(t) = 0, 05t4−0, 03t3+0, 361t5/2+0, 145t2−0, 135t3/2−0, 36t+0, 056t1/2+0, 1

Here, we will write an algorithm to solve the Bagley-Torvik equation for the

first and second examples. Moreover, with changing constants and the right side

function more problems can be solved by using same algorithm.
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4.4. Algorithm for the Green’s Function Solution of

the Bagley-Torvik Equation

1. Put A, B, C, h(step size), L(length of time interval), tk, Z, N and K (end

points of the interval) as input values.

2. Give the Green’s function G(t) with two summation formulas from 0 to N.

3. Define f(t) which is the right side function.

4. Integrate G(t− s)f(s) with respect to s from 0 to t.

5. Set tk = hr where r is from 0 to Z.

6. Evaluate solution for all tk.

7. Plot the graph from 0 to L.

Figure 4.1 . Green’s Function solution of the Bagley Torvik Equation for the

first example.
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Figure 4.2 . Green’s Function solution of the Bagley Torvik Equation for the

second example.
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Figure 4.3 . Green’s Function and Exact solution of the Bagley Torvik Equation

for the first example.



CHAPTER 5

POWER SERIES METHOD

The power series method is a finite approach based on power-series expansion.

The idea of this method is to look for the solution in the form of a power series,

we need the power series expansions for all given functions in the fractional-order

equation.

5.1. The Method

By definition, a power series is of the form

∞∑
n=0

Cnx
n = C0 + C1x + C2x

2 + ...or (5.1)

∞∑
n=0

Cn(x− a)n = C0 + a1(x− a) + C2(x− a)2 + ..., (5.2)

where the coefficients Cn are constants. For each value of x (in the interval of

convergence) the series has a finite sum whose value depends on the value of x.

In the differential equations expanding the functions with the power series gives us

a new equation including differential terms. But, if a power series converges for

a particular range of x then the series obtained by differentiating every term and

the series obtained by integrating every term also converge in this range. Then

collecting all the terms with the same order of x and evaluating coefficients give us

the solution of the differential equation of integer order.

The operation with the integer order differential equations is not very different

if the equation is the fractional order differential equation. We can do the same
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operations with some changes, because now we have fractional order differential

operators and our expansion should contain not only the integer order powers of x.

Consider the one-term equation

0D
α
t x(t) = f(t) (5.3)

and look for fractional power series form of x(t) which is the solution of the equation

(5.3):

x(t) =
∞∑

n=0

Cnt
nα (5.4)

and assume

f(t) =
∞∑

j=0

qjt
jα.

Substituting (5.4) into (5.3) we get:

∞∑
n=0

Cn
Γ(1 + nα)

Γ(1 + nα− α)
tnα−α = f(t). (5.5)

By the evaluation of every term of the t′s which have the same order with respect to

the right hand side function we find an’s. The procedure is also same for n− term

equations.

5.2. Solution of the General Bagley-Torvik Equation

with Power Series Method

Example 4.1

We will consider the Bagley-Torvik equation as an example of three-term
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fractional differential equation with constant coefficients





AD2x(t) + BD3/2x(t) + Cx(t) = f(t),

x(0) = 0, x′(0) = 0,
(5.6)

(where A 6= 0 ,B,C ∈ R )

Solution 4.1

Now, let us look for the solution of the Bagley-Torvik equation in the form of

the fractional power series.

First, with the operations that we defined above, we define x (t) in the form

of the following power series:

x =
∞∑

n=0

Cnt
n
2 (5.7)

x (t) = C0 + C1t
1
2 + C2t + ... + Cnt

n
2 + ... (5.8)

Let us take the first and second derivative

D1
t x(t) =

1

2
C1 + C2 +

3

2
C3t

1/2 + ... +
n

2
Cnt

n
2
−1 + ... (5.9)

D2
t x (t) = −1

4
C1t

− 3
2 +

3

4
C3t

− 1
2 + C4 + ... +

n

2

n− 2

2
Cnt

n
2
−2 + ... (5.10)

Then, for the derivative of the fractional order of the equation, recall the rule

of the Riemann-Liouville fractional differentiation for power functions:

oD
α
t tv =

Γ (1 + v)

Γ (1 + v − a)
tv−a. (5.11)
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Substituting α = 3
2

into the equation (5.11) we get the 3
2
th derivative of the (5.8):

oD
3/2
t tj/2 =

Γ (1 + j/2)

Γ (j/2− 1/2)
tj/2−3/2. (5.12)

Collecting all the expressions (5.8), (5.10) and (5.12), we derive the power series

expansion of the Bagley-Torvik equation

A

∞∑
j=0

Cj
j

2

j − 2

2
tj/2−2 + B

∞∑
j=0

Cj
Γ (j/2 + 1)

Γ (j/2− 1/2)
tj/2−3/2 + C

∞∑
j=0

Cjt
j/2 = f(t). (5.13)

By the assumption, the series does not contain negative powers of t, we get

C0 = C1 = C2 = C3 = 0 (5.14)

and

A(2C4 +
15

4
C5t

1/2 + 6C6t... +
n

2

n− 2

2
Cnt

n
2
−2 + ...)+ (5.15)

+ B(
4√
π

C4t
1/2 +

15

8
C5

√
πt +

8√
π

C6t
3/2 + ... +

Γ(1 + n/2)

Γ(n/2− 1/2)
t

n
2
− 3

2 ) (5.16)

+ C(C4t
2 + C5t

5/2 + C6t
3 + ... + Cnt

n
2 + ...) (5.17)

= f(t). (5.18)

Rearranging the last equation with respect to the same powers of t1/2, we obtain

(A2C4)t
0 + (B

4√
π

C4 + A
15

4
C5)t

1/2 + (B
15

8
C5

√
π + A6C6)t+ (5.19)

+ (B
8√
π

C6 + A
35

4
C7)t

3/2 + (CC4 + B
105

32

√
πC7 + A12C8)t

2+ (5.20)

+ (CC5 + B
64

5
√

π
C8 +

63

5
C9)t

5/2 + ... + (CCn/2)t
n
2 + ... (5.21)

=
∞∑

j=0

qjt
jα. (5.22)

By equating, the corresponding terms at the last equation, we obtain a recurrence
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formula to compute the coefficients in the solution series x(t).

Here, we will write an algorithm to solve the Bagley-Torvik equation for the

first and second examples. Moreover, with changing constants and the right side

function more problems can be solved by using the same algorithm.

5.3. Algorithm for the Power Series Solution of the Bagley-Torvik Equa-

tion

1. Put A, B, C, h(stepsize), L(length of time interval), M as input values.

2. Define f(t) which is the right side function.

3. Evaluate the coefficients of f(t).

4. Give some initial values of C[j].

5. Evaluate C[j]s from the recurrence formula

c[j+4]:=(q[j]-B*GAMMA((j+3)/2+1.) /

GAMMA((j+3)/2.-1/2.)*c[j+3])

/(A*(j+4)/2.*(j+2)/2)

from 0 to 3.

6. Evaluate other C[j]s from the recurrence formula

c[j+4]:=( q[j]-B*GAMMA((j+3)/2.+1)/

GAMMA((j+3)/2.-1/2)*c[j+3] -

C*c[j]) /( A*(j+4)/2.*(j+2)/2 )

from 4 to M − 4.

7. Set R is the solution of the problem as c[k]*(tˆ(k/2) from 0 to M.

8. Plot the graph from 0 to L.

If the right side function is heaviside function:

1. Put A, B, C, h(stepsize), L(length of time interval), M as input values.

2. Give f(t) = ut1.

3. Set all the coefficients of f(t) are 0.

4. Give the constant coefficient from the right side function.
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5. Evaluate C[j]s from the recurrence formula for (t)

c[j+4]:=(q[j]-B*GAMMA((j+3)/2+1.) /

GAMMA((j+3)/2.-1/2.)*c[j+3]) /

(A*(j+4)/2.*(j+2)/2)

from 0 to 3.

6. Evaluate other C[j]s from the recurrence formula for (t)

c[j+4]:=( q[j]-B*GAMMA((j+3)/2.+1)/GAMMA((j+3)/2.-1/2)*c[j+3] -C*c[j])

/( A*(j+4)/2.*(j+2)/2 )

from 4 to M − 4.

7. Give f(t− 1) = ut2.

8. Evaluate C[j]s from the recurrence formula for (t− 1)

d[j+4]:=(q[j]-B*GAMMA((j+3)/2+1.)

/ GAMMA((j+3)/2.-1/2.)*c[j+3]

)/(A*(j+4)/2.*(j+2)/2)

from 0 to 3.

9. Evaluate other C[j]s from the recurrence formula for (t− 1)

d[j+4]:=( q[j]-B*GAMMA((j+3)/2.+1)

/GAMMA((j+3)/2.-1/2)*c[j+3] -

C*c[j]) /( A*(j+4)/2.*(j+2)/2 )

from 4 to M − 4.

10. Set R1 (c[k]*(tˆ(k/2) ) from 0 to M.

11. Set R2 (d[k]*((t-1)ˆ(k/2) ) from 0 to M.

12. Set R = R1−R2.

13. Give ut1 and ut2 as piecewise functions.

14. Plot the graph from 0 to L.
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Figure 5.1 . Power Series solution of the Bagley-Torvik Equation for the first

example.
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Figure 5.2 . Power Series solution of the Bagley-Torvik Equation for the second

example
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Figure 5.3 . Exact and Power Series solution of the Bagley-Torvik Equation for

the second example.



CHAPTER 6

ADOMIAN DECOMPOSITION METHOD

The Adomian decomposition method is a method that gives us a series solution

which was first defined by G. Adomian at the beginning of 1880s as a new iterative

method, then was called ADM and now it has been used for solving a wide range

of problems. G. Adomian explained this method in his book [7]. ADM is very

easy to apply, has some advantages over standard numerical methods, eliminates

cumbersome computational works, but we can face some difficulties when we choose

the conditions because of the convergence of the method. Although it is shown

that [24, 25] the method is rapidly convergent with some restrictions, we can see

the improvements of the method to overcome these restrictions[40]. Recently, a

new convergence proof based on properties of convergent series can be seen in the

Cherruault and Adomian’s paper [39]. Then, a reliable modification was done by

Wazwaz [8] to accelerate the rapid convergence of the series solution that includes

only two terms could be evaluated easily. He did it with removing the noise terms

from first term of the series solution and had a solution in a closed form. Finally,

with the fractional differential equations we can also use this method efficiently to

have a series solution [3],[4]. ADM is a power-full tool for both linear and non-linear

fractional differential equations especially in fractional dynamic models and their

solutions.
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6.1. The Method

First, we begin with an equation in the form of:

Lx + Rx + Nx = g

Lx = g −Rx−Nx (6.1)

where Lx + Rx represents the linear term and L is the highest-ordered linear

differential operator, R is the remainder of the linear operator. And, Nu represents

the non-linear term. Applying L−1, we obtain

L−1Lx = L−1g − L−1Rx− L−1Nx. (6.2)

For initial-value problems, we conveniently define L−1 for L = dn/dtn as the n-fold

definite integration operator from 0 to t. For the operator L = d2/dt2, for example,

we have

L−1Lx = x− x(0)− tx′(0) (6.3)

and therefore

x = x (0) + tx′ (0) + L−1g − L−1Rx− L−1Nx. (6.4)

For the same operator equation but now considering a boundary value problem, we

let L−1 be an indefinite integral and write u = A + Bt for the first two terms and

evaluate A,B from the given conditions. The first three terms are identified as x0

in the assumed decomposition

x =
∞∑

n=0

xn. (6.5)
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Finally, assuming Nx is analytical, we write

Nx =
∑
n=0

An (x0, x1, ..., xn) (6.6)

where the An are specially generated (Adomian) polynomials for the specific nonlin-

earity. They depend only on the x0 to xn components and form a rapidly convergent

series. The An are given as:

A0 = f (x0)

A1 = x1 (d/dx0) f (x0)

A2 = x2 (d/dx0) f (x0) +
(
x2

1/2!
) (

d2/dx2
0

)
f (x0) (6.7)

A3 = x3 (d/dx0) f (x0) + x1x2

(
d2/dx2

0

)
f (x0) +

(
x3

1/3!
) (

d3/dx3
0

)
f (x0)

...

Also, we can see that the sum of the series
∑∞

n=0 An for Nx is equal to the sum

of a generalized Taylor series about x0(t),
∑∞

n=0 xn is equal to a generalized Taylor

series about the function x0.

Let’s write the sum of Adomian polynomials as:

f(x) = A0 + A1 + A2 + A3 + ... (6.8)

= f(x0) + x1f
(1)(x0) +

x2
1

2!
f (2)(x0)+

+ x2f
(1)(x0) + x3f

(1)(x0) + x1x2f
(2)(x0) +

x3
1

3!
f (3)(x0) + ...

Then, let’s write the generalized Taylor series form of f(x) about x0 :

f(x) = f(x0) + f (1)(x0)(x− x0) + f (2)(x0)
(x− x0)

2

2!
+ f (3)(x0)

(x− x0)
3

3!
+ ... (6.9)

Here, the function is expanded about x0 , then (x− x0) = (x1 + x2 + x3 + x4 + ...).

So f(x) can be written as:
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f(x) = f(x0) + f (1)(x0)(x1 + x2 + x3 + x4 + ...)+

+ f (2)(x0)
(x1 + x2 + x3 + x4 + ...)2

2!
+ (6.10)

f (3)(x0)
(x1 + x2 + x3 + x4 + ...)3

3!
+ ...

= f(u0) + f (1)(x0)(x1 + x2 + x3 + x4 + ...)+

+ f (2)(x0)
(x2

1 + x2
2 + ... + 2x1x2 + 2x1x3 + ...2x2x3 + 2x2x4 + ...)

2!
+

+ f (3)(x0)
(x3

1 + x3
2 + ... + 3x2

1x2 + 3x2
1x3 + ... + 3x2

2x1 + 3x2
2x3 + ...)

3!
+

...

Then, the Adomian polynomials can be rearranged from the Taylor series:

A0 = f (x0)

A1 = f (1) (x0) x1

A2 = f (1) (x0) x2 + f (2) (u0)
x2

1

2!

A3 = f (1) (x0) x3 + f (2) (x0)
2x1x2

2!
+ f (3)(x0)

x3
1

3!

... (6.11)

From that point, we can see that the form of Adomian polynomials is a rearranged

form of the Taylor series. However, the complete method differs from the Taylor

series method and has some advantages such as producing reliable results with few

iterations, minimizing the computational difficulties, overcoming the deficiency of

linearization of non-linear problems.

Let us apply the ADM to the general Bagley-Torvik equation





AD2
t x (t) + BD

3/2
t x (t) + Cg (x(t)) = f (t) ,

x (0) = 0, and Dtx(t) |t=0= 0.
(6.12)

where A 6= 0 and B, C ∈ R.
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6.2. Solution of the general Bagley-Torvik equation with ADM

First, for linear equation g(x) = x(t) we assume that x(t) = x0(t) + x1(t) +

x2(t) + ... to be the solution of the equation (6.12)if we rearrange the equation

d2x(t)

dt2
+

B

A

d
3
2 x(t)

dt
3
2

+
C

A
x(t) =

f(t)

A
. (6.13)

It is seen that L should be the highest-ordered linear differential operator as d2/dt2,

d3/2/dt3/2 is the remainder part and through g(x) = x(t), N represents the linear

part which is

Nx = z(x) =
∞∑

n=0

An(x0, x1, ..., xn) =
C

A
x. (6.14)

So, the Adomian polynomials can be calculated as:

A0 = z(x0) =
C

A
x0, (6.15)

A1 = x1z
(1)(x0) =

C

A
x1,

A2 = x2z
(1)(x0) + (x2

1/2!)z(2)(x0) =
C

A
x2,

A3 = x3z
(1)(x0) + x1x2z

(2)(x0) + (x3
1/3!)z(3)(x0) =

C

A
x3,

... (6.16)

Therefore we can write

x(t) = x(0) + tDtx(t) |t=0 +
1

A
L−1f(t)

− L−1

(
B

A
D

3
2
t

( ∞∑
n=0

xn(t)

))
− L−1

∞∑
n=0

An (6.17)

=
1

A
L−1f(t)− B

A
L−1

(
D

3
2
t

( ∞∑
n=0

xn(t)

))
− L−1

( ∞∑
n=0

C

A
xn (t)

)
.
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This implies that

x (t) =
1

A

d−2

dt−2
f(t)− B

A

d−
1
2

dt−
1
2

( ∞∑
n=0

xn(t)

)
− C

A

d−2

dt−2

( ∞∑
n=0

xn(t)

)
, (6.18)

where

x0(t) =
1

A

d−2

dt−2
f (t) , (6.19)

x1 (t) = −B

A

d−
1
2 x0 (t)

dt−
1
2

− C

A

d−2x0(t)

dt−2
, (6.20)

x2(t) = −B

A

d−
1
2 x1 (t)

dt−
1
2

− C

A

d−2x1(t)

dt−2
, (6.21)

x3(t) = −B

A

d−
1
2 x2 (t)

dt−
1
2

− C

A

d−2x2(t)

dt−2
(6.22)

and so on. Therefore, the general solution is:

x(t) =
1

A

d−2

dt−2
f (t)− B

A

[
d−

1
2 x0 (t)

dt−
1
2

+
d−

1
2 x1 (t)

dt−
1
2

+
d−

1
2 x2 (t)

dt−
1
2

+ ...

]

− C

A

[
d−2x0(t)

dt−2
+

d−2x1(t)

dt−2
+

d−2x2(t)

dt−2
+ ...

]
. (6.23)

Here, we give an algorithm to solve the Bagley-Torvik equation for the first

and second examples. Moreover, with changing constants and the right side function

more problems can be solved by using the same algorithm.

6.3. Algorithm for the ADM Solution of the Bagley-Torvik Equation

1. Put A, B, C, h(stepsize), b(length of time interval), P as input values.

2. Define f(t) which is the right side function.

3. Evaluate x0 from the right side function.

4. Evaluate the first part of the solution from the formula:

(1/GAMMA(1/2)) ∗ (−B/A) ∗ int(x0/((−x + t)ˆ(1/2)), x = 0..t).

5. Evaluate the second part of the solution from the formula:

(1/GAMMA(2)) ∗ (−C/A) ∗ int(x0 ∗ (−x + t), x = 0..t).
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6. Collect the part of the solutions.

7. Evaluate solution for all t from 0 to P.

8. Plot the graph from 0 to b.

Figure 6.1 . Solution of the Bagley-Torvik equation for the first example with

ADM.
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Figure 6.2 . Solution of the Bagley-Torvik equation for the second example with

ADM.



CHAPTER 7

FINITE DIFFERENCE METHOD

FDM is a numerical method which is widely implemented on computers. It

can be adopted to differential equations with non-integer order as easily as integer

ones. The basic idea behind the finite difference method is to convert the differential

equation into a system of algebraic equations by replacing each derivative with a

finite difference.

7.1. The Method

The derivatives in the differential equation are substituted by finite divided

differences approximations, for example the derivative of a function f(x) at the point

x0 could be defined in any of the following three ways:

dx

dt
(t) = lim

h→0

x(t + h)− x(t)

h
, (7.1)

dx

dt
(t) = lim

h→0

x(t)− x(t− h)

h
, (7.2)

dx

dt
(t) = lim

h→0

x(t + h)− x(t− h)

2h
. (7.3)

If the derivative of x(t) is continuous at t, all three expressions produce the

same unique answer. Equation (7.1) introduces the forward difference, equation

(7.2) introduces the backward difference and the last equation (7.3) introduces

the central difference formulas. It can be also found higher order derivatives with

the same way as :
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d2x

dt2
(t) =

d

dt
(
dx

dt
(t)) =

d

dt
(lim
h→0

x(t)− x(t− h)

h
) (7.4)

= lim
h→0

1

h

(
x(t)− x(t− h)

h
− x(t− h)− x(t− h− h)

h

)

= lim
h→0

x(t)− 2x(t− h) + x(t− 2h)

h2
.

Integer order finite differences are extensively known and used widely. To use

finite difference method for fractional order derivatives first we should motivate to

fractional difference. Like as integer order differences, fractional differencing has

three definitions: forward, backward and central differences. Fractional forward

difference is first defined by Osler (1984) [41] and Hosking (1981) [43] defined

backward and lastly in the [44]is defined central difference with respect to the first

two definitions. In our problems, we will use backward difference. If we omit the

limit term from the definition of backward difference of first-order we get:

x′(t) = ∆ =
x(t)− x(t− h)

h
(7.5)

replacing the Taylor series expansion form of x(t− h)

∆ =
x(t)− x(t− h)

h
=

x′(t)h− x′′(t)
2

h2 + ...

h
(7.6)

=x′(t)− x′′(t)
2

h + ... = x′(t) + O(h),

which means that

x′(t)−∆ = O(h) (7.7)

Theorem 7.1.1. [10]First, let us show that

aD
α
t x(t) ≈a ∆α

hx(t) (7.8)
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where

aD
α
t x(t) ≈ lim

h→0
a∆

α
hx(t) and a∆

α
hx(t) =

[ t−a
h ]∑

j=0

(−1)j

(
α

j

)
x(t− jh) (7.9)

( [x] means the integer part of x.)

(7.10)

gives the first-order approximation for the α− th derivative.

Proof. For simplicity, it is convenient to assume that a = 0, and that the

discretization step h and the number of nodes n are related by t = nh, where t is the

point at which the derivative is evaluated. In this case we write the approximation

of the α− th derivative as

0∆
α
hx(t) = h−α

n∑
j=0

(−1)j

(
α

j

)
x(t− jh) (7.11)

= h−α

n∑
j=0

(
j − α− 1

j

)
x(t− jh) (7.12)

If we take x0(t) = 1 (t ≥ 0), its exact α− th derivative is

0D
α
t x0(t) =

t−α

Γ(1− α)
. (7.13)

On the other hand, the approximation (7.11)gives the approximate value

0∆
α
hx0(t) = h−α

n∑
j=0

(
j − α− 1

j

)
. (7.14)

Using the summation formula for the binomial coefficients

n∑
j=0

(
j − α− 1

j

)
=

(
n− α

n

)
, (7.15)
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and the asymptotic formula

zb−a Γ (z + a)

Γ (z + b)
= 1 + O

(
z−1

)
(7.16)

we have for fixed t

0∆
α
hx0(t) = h−α

(
n− α

n

)
(7.17)

=
t−α

Γ(1− α)

nαΓ (n− α + 1)

Γ (n + 1)
(7.18)

=
t−α

Γ (1− α)
(1 + O(h)) , (7.19)

therefore for x0 (t) = 1 (t ≥ 0)

0D
α
t x0(t)−0 ∆α

hx0(t) = O (h) . (7.20)

Now consider xm(t) = tm, m = 1, 2, ... In this case, the exact α− th derivative is

0D
α
t xm(t) =

Γ (1 + m)

Γ (1 + m− α)
tm−α, (7.21)

and the approximation (7.11) of the exact derivative becomes

0∆
α
hxm(t) = tm−αnα

n∑
j=0

(
j − α− 1

j

)(
1− j

n

)m

(7.22)

after some calculations[see [10], page 206-207],we obtain

0∆
α
hxm(t) =

Γ (1 + m)

Γ (1 + m− α)
tm−α + O (h) (7.23)

and

0D
α
t xm(t)−0 ∆α

hxm(t) = O (h) . (7.24)
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This means that if a function x(t) can be written in the form of a power series

x(t) =
∞∑

m=0

amtm, (7.25)

then (7.11) gives the first-order approximation for the fractional derivative order α

at any point of the convergence region of the power series. The conditions on f (t)

also can be weakened.

7.2. Solution of the General Bagley-Torvik Equation with FDM

Example 6.1

We consider the Bagley-Torvik equation as an example of three-term fractional

differential equation with constant coefficient





AD2x(t) + BD3/2x(t) + Cx(t) = f(t),

x(0) = 0, x′(0) = 0
(7.26)

(where A 6= 0, B, C ε R).

Solution 6.1

First, recall the first order backward difference for second order differential

operator with the time step h:

D2
t x (t) ≈0 ∆2

hx(tn) =
xn − 2xn−1 + xn−2

h2
, (xn = x(nh), n = 0, 1, 2, ...) (7.27)

and for α−th order differential operator, we can write first order backward difference

formula

Dα
t x (t) ≈0 ∆α

hx(tn) = h−α

n∑

k=0

(−1)k

(
α

k

)
xn−k. (7.28)
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Then, let us assume that

(−1)k

(
α

k

)
= wα

k , (k = 0, 1, 2, ...) , (7.29)

since wα
0 = 1, a recurrence formula for wα

k , (k = 1, 2, 3, ...) can be obtained as

wα
k =

n∑

k=1

(1− (
α + 1

k
))wα

k−1. (7.30)

Combining (7.27), (7.28) and taking g(x) = x(t), we get the first order backward

difference formula for (7.26)

A
(xn − 2xn−1 + xn−2)

h2
+

B
∑n

j=0 wα
j xn−j

hα
+ Cxn = fn, (fn = f(nh)), (7.31)

with the initial conditions

x0 = 0,
x1−x0

h
= 0, (7.32)

we have x0 = x1 = 0.

Arranging (7.31)

A
(xn − 2xn−1 + xn−2)

h2
+

Bxn

hα
+

B
∑n

j=1 wα
j xn−j

hα
+ Cxn = fn

is obtained.

Then, if we take xn from the last equation, we get the difference formula for

the three-term equation:

xn =
h2(fn − Cxn) + A(2xn−1 − xn−2)−Bh2−α

∑n
j=1 wα

j xn−j

A + Bh2−α + Ch2
, (n = 2, 3, ...).

(7.33)

Therefore, the solution of the problem under homogeneous initial conditions
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will be:

xn =
h2(fn − Cxn) + A(2xn−1 − xn−2)−Bh1/2

∑n
j=1 w

3/2
j xn−j

A + Bh1/2 + Ch2
, (n = 2, 3, ...).

In this problem, we write the solution of the equation for all f, A,B,C above.

Now, let us choose some specific values for constants and the right side function.

For instance, we will take constants such as A = 1, B = 1/2, C = 1/2 and the right

side function f(t) =
{

8, (0≤t≤1)
0, (t>1),

for the first example and f(t) = 0, 05t4− 0, 03t3 +

0, 361t5/2 + 0, 145t2 − 0, 135t3/2 − 0, 36t + 0, 056t1/2 + 0, 1 for the second example of

our problem and solve both of them recursively from the difference formula (7.33.

Here, we will write an algorithm to solve the Bagley-Torvik equation for the

first and second examples. Moreover, with changing constants and the right side

function more problems can be solved by using same algorithm.

7.3. Algorithm for the Bagley-Torvik Equation with FDM

1. Put A,B, C, α, h(step size), b (length of time interval) as input values.

2. Put M = b/h.

3. Set W,x and tk as sequences from 0 to M .

4. Evaluate tk[i] with the formula t[k] = ih.

5. Give the initial values y[0] = 0, y[1] = 0 and W [0] = 1.

6. Evaluate W with the recurrence formula W [j] = (1− (α+1)/j)W [j−1] from

1 to M.

7. Define f(t) which is the right side function.

8. Evaluate x[m] with the formula

x[m] =
h2(f(tk[m])−Cx[m])+A(2x[m−1]−x[m−2])−Bh2−α

∑m
j=1 wα

j x[m−j]

A+Bh2−α+Ch2

from 2 to M .
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Figure 7.1 . Numerical solution of the Bagley-Torvik equation for the first

example with FDM.
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Figure 7.2 . Numerical solution of the Bagley-Torvik equation for the first

example with FDM for different h values
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Figure 7.3 . Numerical solution of the Bagley-Torvik equation for the second

example with FDM.



68

Figure 7.4 . Numerical solution of the Bagley-Torvik equation for the second

example with FDM for different h values
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Table 7.1 . Exact and Approximate values for some h values

tk h = 1/24 h = 1/25 h = 1/26 h = 1/27 h = 1/28 exact

0 0 0 0 0 0 0

0, 625 0, 0117749 0, 0107524 0, 0103242 0, 0101665 0, 0101254 0, 0102539

1, 25 −0, 008603 −0, 010621 −0, 011477 −0, 011806 −0, 011905 −0, 011718

1, 875 −0, 046109 −0, 049257 −0, 050641 −0, 0512097 −0, 051413 −0, 051269

2, 5 −0, 086212 −0, 090565 −0, 092547 −0, 093411 −0, 093760 −0, 09375

3, 125 −0, 114467 −0, 120009 −0, 122611 −0, 123797 −0, 124318 −0, 1245117

3, 75 −0, 116447 −0, 12306 −0, 126258 −0, 1277649 −0, 128465 −0, 1289062

4, 375 −0, 07770179 −0, 0852210 −0, 0889184 −0, 0907136 −0, 091583 −0, 092285

5 0, 0162713 0, 0080860 0, 0039924 0, 0019612 0, 0009464 0

5, 625 0, 1800369 0, 1714335 0, 1670737 0, 1648734 0, 1637501 0, 1625976

6, 25 0, 42822725 0, 419441 0, 4149470 0, 41264893 0, 41145954 0, 4101562

6, 875 0, 77553647 0, 76676805 0, 7622563 0, 7599274 0, 75871837 0, 75732421

7, 5 1, 2367081 1, 2281024 1, 2236663 1, 2213621 1, 2201761 1, 21875

8, 125 1, 82651839 1, 8181582 1, 8138581 1, 8116188 1, 8104789 1, 8090820

8, 75 2, 5597566 2, 5516619 2, 5475227 2, 5453678 2, 54427182 2, 5429687

9, 375 3, 4512079 3, 44334259 3, 4393559 3, 4372839 3, 4362629 3, 4350585

10 4, 515637 4, 5079216 4, 5040520 4, 50204295 4, 5011246 4, 5
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Table 7.2 . Error analysis for y7 = 4, 375

Stepsize, h Approximation to y7 error at t = 4, 375 : O(h) = Ch, C = 0, 256

1/24 0, 0777017969 0, 01458335935 0, 016

1/25 0, 08522104995 0, 0070641063 0, 008

1/26 0, 08891840203 0, 0033667542 0, 004

1/27 0, 09071366918 0, 0015714871 0, 002

1/28 0, 09158346145 0, 0007016948 0, 001

7.4. Short Memory Principle:

Numerical methods for solving fractional differential equations have been

implemented extensively. For example, we used FDM for solving the Bagley-Torvik

equation and while solving the equation by computer, it was seen that over long

time intervals the computational effort to calculate the function values was too

much. Then, we will make a modification to accelerate the computation and control

the error for the solution simultaneously. Same observations were seen by some

authors and Ford and Simpson [?] and [10] called this modification ”short-memory

principle” or ”fixed memory principle”. According to the short-memory principle,

the fractional derivative with the lower limit a is approximated by the fractional

derivative with moving lower limit t− L where L is the memory length. With this

approach, we do the calculations over a period of recent history and reduce the

computational cost efficiently. However, because of omitting the calculations over

a period, some errors occurs. Then, the following estimate can be established for

the problem;

aD
α
t x(t) = f(t). (7.34)

Then,

aD
α
t x(t) ≈t−L Dα

t x(t), (t > a + L), (7.35)
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∆(t) =|a Dα
t x(t)−t−L Dα

t x(t) |≤ ML−α

| Γ(1− α) | , (a + L ≤ t ≤ b). (7.36)

This inequality can be used for determining the ”memory length” L providing the

required accuracy ε :

∆(t) ≤ ε, (a + L ≤ t ≤ b), if L ≥
(

M

ε | Γ(1− α) |
)1/α

. (7.37)

where |f(t)| < M for a ≤ t ≤ b.

In our examples, we write an algorithm for the use of short memory principle

and do a replacement of
∑n

j=1 by
∑N

j=1, where N = min
{
n, L

h

}
and L is the memory

length that we choose. According to some calculations we saw that after an interval

we reach the same value with the value that we had by the original algorithm

and the computation worked fastener. However, the equations have two differential

operators: α − th order and second order, so we can not evaluate a fixed L with

this formula. Although ıt can be found for α− th order differential operator, there

should be the effect of second order derivative.

Now, let us see the effect of the short memory principle in our second example:



72

Figure 7.5 . Numerical solution of the Bagley-Torvik equation for the second

example with FDM for different h values

7.5. Algorithm for the Short Memory Principle:

1. Put A,B, C, α, h(step size), b (length of time interval),L (memory),

M, W, i, j, f, m, as input values.

2. Set W, y and tk as sequences from 0 to M .

3. Evaluate tk[i] with the formula t[k] = ih.

4. Give the initial values y[0] = 0, y[1] = 0 and W [0] = 1.

5. Evaluate W with the recurrence formula W [j] = (1− (α+1)/j)W [j−1] from

1 to M.

6. Give f as piecewise function f as piecewise function f(t) =
{

8, (0≤t≤1)
0, (t>1),

or

f(t) = 0, 05t4−0, 03t3+0, 361t5/2+0, 145t2−0, 135t3/2−0, 36t+0, 056t1/2+0, 1.

7. Choose memory as the minimum of the (m,L),

8. Evaluate y[m] with the formula from 2 to memory

y[m] =
h2(f(tk[m])−Cy[m])+A(2y[m−1]−y[m−2])−Bh2−α

∑m
j=1 wα

j y[m−j]

A+Bh2−α+Ch2 .



CHAPTER 8

CONCLUSION

In this thesis, methods for solving fractional differential equations are

investigated. Although there are more methods, we choose four of them-Green’s

Function Method, Power Series Method, ADM and FDM- and express how they

are used for fractional differential equations and formulated. Methods are also

exemplified with Bagley-Torvik equation. First, the stability of the Bagley-Torvik

equation is defined for both differential and difference equations for the reliability

of the results. Then, the original equation is solved with all four methods. Also a

test example for Bagley-Torvik equation which we know the exact solution is defined

and solved to compare the methods, see error analysis easier. With the test example,

more general algorithms are implemented to solve the different type of equations.

Some conclusions about the methods:

Table 8.1 . Error analysis for the methods

Method max. error(N = 8, h = 0.01, b = 5)

Green’s Function 0.01136

Power Series 0

ADM 0.01222175

FDM 0.0105

1. Green’s Function method gives us semi-analytical solution of the problems.

However, in its formulation there are two summation together and. This means

that if we truncate summations from 0 to N , green’s function of the problem

has N2 terms. Because we should take the integral of the green’s function with

73



74

right side function, it will take very long time periods to evaluate the integral

and give results. When we increase N , results will be better.

2. In the Power Series Method, if the right side function is a polynomial function,

it is enough to expand the series from 0 to 2m where m is the highest power

of the right side function. Then error will be 0. But, if the right side function

is not a polynomial function such as sin or cos functions, error will be smaller.

It means also the computation effort will be more.

3. ADM method is also a series method which we expect results corresponds to

Power Series method or Green’s Function Method. Likely, in our examples our

results are nearly same as the green’s function method.

4. Lastly, FDM is the best way to solve fractional differential equations for all

types. Also, it is not so important the right side function is polynomial or

not like as the other methods. The errors will be smaller when we decrease

the step size value(h). Also there is no need of so much computational effort.

Results are generally better and computation is always faster than others.

Furthermore, for long computations we can use short-memory principle with

some very little errors, it is the fastest way to compute the results of the

equation.



75

REFERENCES

[1] R.L. Bagley, P.J. Torvik, On the appearance of the of the fractional derivative in

the behavior of real materials, Trans. ASME J. Appl.Mech., 51 (1984) 294-298.

[2] R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional

calculus to viscoelasticity, Journal of Rheology,27(3) (1983) 201-210.

[3] S. Saha Ray, R.K. Bera ,Analytical solution of the Bagley Torvik equation

by Adomian decomposition method,Appl. Math. Comput. 168 (2005) 398-410.

[4] S. Saha Ray, R.K. Bera , An approximate solution of a nonlinear fractional

differential equation by Adomian decomposition method,Appl. Math. Comput.

167 (2005) 561-571.

[5] S. Saha Ray, R.K. Bera , Solution of an extraordinary differential equation

by Adomian decomposition method, J. Appl. Math., 4 (2004) 331-338.

[6] K. Diethelm, N.J. Ford, Numerical Solution of the Bagley-Torvik equation, BIT,

42 (3) (2002) 490-507.

[7] G.Adomian, Solving Frontier Problems of Phsics:The Decomposition Method,

Kluwer Academic Publishers, Boston, 1994.

[8] A. Wazwaz, A reliable modification of Adomian decomposition method, Appl.

Math. Comput. 102 (1) (1999) 77-86.

[9] V. Daftardar-Gejji, H. Jaffari, Adomian Decomposition: a tool for solving a

system of fractional differential equations, J. Math. Anal. Appl. 301 (2005)

508-518.

[10] I.Podlubny, Fractional Differential Equations,Academic Press, 1999.

[11] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional

Diffrential Equations, John Willey & Sons,New York,1993.

[12] K.B. Oldham, J. Spanier, The Fractional Calculus, Mathematics in Science

and Engineering, Academic Press,New York,1974.

[13] R. Gorenflo, Fractional Calculus: Some numerical methods, CISM Lecture

Notes, Italy, (2001) 277-290.



76

[14] A.M.A. El-Sayed, A.E.M. El-Mesiry, H.A.A. El-Saka, Numerical solution

for multi-term fractional (arbitrary) orders differential equations, 23 (1) (2004)

33-54.

[15] J.T. Edwards, N.J. Ford, A.C. Simpson, The numerical solution of linear multi-

term fractional differential equations:system of equations, J. Comput. Appl.

Math. 148 (2002) 401-418.

[16] J. Leszczynski, M. Ciesielski, A numerical method for solution of ordinary

differential equations of fractional order, Open Acces Journal,Hindawi Pub.

Corp., New York, USA.

[17] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives:

Theory and Applications, Gordon and Breach Science Publishers, 1993.

[18] L. C. Andrew, Special Functions of Mathematics for Engineers, McGraw-Hill,

1992.

[19] S. Zhang, J. Jin, Computation of Special Functions, John Willey & Sons, 1996.

[20] I. Podlubny, Geometric and Physical Interpretation of Fractional Integration

and Fractional Differentiation, Fractional Calculus & Applied Analysis, 5 (4)

(2002) 367-386.

[21] Z. Odibat, Approximations of Fractional Integrals and Caputo Fractional

Derivatives, Applied Mathematics and Computation, 178 (2006) 527-533.

[22] Numerical comparison of methods for solving linear differential equations of

fractional order, Chaos, Solutions & Fractals, 31 (2007) 1248-1255.

[23] H. Jafari, V. Daftardar-Gejji, Revised Adomian decomposition method for

solving systems of fractional differential equations, Applied Mathematics and

Computation, 181 (2006) 598-608.

[24] Y. Cherruault, Convergence of Adomian’s method, Kybernetes, 18(2) 1988 31-

38

[25] T. Mavoungou, Y. Cherrualt, Convergence of Adomian’s method and app. to

non-linear partial differential equations, Kybernetes, 21(6) (1992) 13-25.

[26] A. Wazwaz, A comparison between Adomian decomposition method and Taylor

series method in the series solution, Applied Mathematics and Computation,

97 (1998) 37-44.

[27] K. Diethelm, Analysis of Fractional Differential Equations, Journal of Math.



77

Analysis and And Applications, 265 (2002) 229-248.

[28] Modified Riemann−Liouville derivative and fractional Taylor series of non-

differentiable functions further results, Computers and Mathematics with

Applications, 51 (2006) 1367-1376.

[29] P. Kumar, O. P. Agrawal, An approximate method for numerical solution of

fractional differential equations, Signal Processing, 86 (2006) 2602-2610.

[30] N. J. Ford, A. C. Simpson, Numerical and analytical treatment of differential

equations of fractional order, Numerical Analysis Report, 387 (2001)1-7

[31] K. Diethelm, J. M. Ford, N. J. Ford, M. Weilbeer, Pitfalls in numerical solvers

for fractional differential equations, Journal of Computational and Applied

Mathematics, 186 (2006) 482-503.

[32] K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional

Adams method, Numerical Algorithms, 36 (2004) 31-52.

[33] A. Loverro, Fractional Calculus: History,definitions and applications for the

engineer, (2004).

[34] N. Heymans, I. Podlubny, Physical interpretation of initial conditions for

fractional differential equations with Riemann-Liouville fractional derivatives,

Rheol Acta, 45 (2006) 765-771.

[35] J. Biazar, M. Ilie, A. Khoshkenar, Applied Mathematics and Computation, 171

(2005) 486-491.

[36] C. Martinez, M. Sanz, A. Redondo, Fractional powers of almost non-negative

operators, Fractional Calculus & Applied Analysis, 8(2) (2005) 201-230.

[37] C. Yu, G. Gao, Existence offractional differential equations, Journal of Analysis

and Applications, 310 (2005) 26-29.

[38] K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Algorithms for the fractional

calculus: A selection of numerical methods, Computational Methods and App.

of Mechanical Engineering, 194 (2005) 743-773.

[39] Y. Cherruault, G. Adomian, Decompsosition methods: A new proof of

convergence, Mathematical and Computer Modelling, 18 (12) (1993) 103-106.

[40] B-Q. Zhang, X-G. Luo, Q-B. Wu, The restrictions and improvement of the

Adomian decomposition method, Applied Mathematics and Computation, 177

(2006) 99-104.



78

[41] J. B. Diaz, T. J. Osler, Differences of fractional order, Mathematics of Com-

putation, 28 (125) (1974) 185-202.

[42] H. L. Gray, N. F. Zhang, On a new definition of the fractional difference, Math.

of Computation, 50 (182) (1988) 512-529.

[43] J. R. M. Hosking, Fractional differencing, Biometrika, 68 (1) (1981) 165-76.

[44] S. C. Jun, A note on fractional differences based on a linear combination between

forward and backward differences, Computers and Mathematics with App. 41

(2001) 373-378.

[45] I. Podlubny, The Laplace Transform Method for linear differential equations

of the fractional order, Slovak Academy of Sciences Institue of Experimental

Physics, (1994).

[46] C.Trinks, P. Ruge, Treatment of dynamic systems with fractional derivatives

without evaluating memory integrals



79

APPENDIX

Figure 8.1 . Maple programm for the solution of Bagley-Torvik equation with

Green Function Method where f(t) is piecewise function.
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Figure 8.2 . Maple programm for the solution of Bagley-Torvik equation with

Green Function Method where

f(t) = 0, 05t4 − 0, 03t3 + 0, 361t5/2 + 0, 145t2 − 0, 135t3/2 − 0, 36t + 0, 056t1/2 + 0, 1.
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Figure 8.3 . Maple programm for the solution of Bagley-Torvik equation with

Power Series Method where f(t) is piecewise function.
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Figure 8.4 . Maple programm for the solution of Bagley-Torvik equation with

Power Series Method where f(t) is piecewise function.
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Figure 8.5 . Maple programm for the solution of Bagley-Torvik equation with

Power Series Method where

f(t) = 0, 05t4 − 0, 03t3 + 0, 361t5/2 + 0, 145t2 − 0, 135t3/2 − 0, 36t + 0, 056t1/2 + 0, 1.
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Figure 8.6 . Maple programm for the solution of Bagley-Torvik equation with

ADM where f(t) is piecewise function.
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Figure 8.7 . Maple programm for the solution of Bagley-Torvik equation with

ADM where

f(t) = 0, 05t4 − 0, 03t3 + 0, 361t5/2 + 0, 145t2 − 0, 135t3/2 − 0, 36t + 0, 056t1/2 + 0, 1.
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Figure 8.8 . Maple programm for the solution of Bagley-Torvik equation with

FDM where f(t) is piecewise function.
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Figure 8.9 . Maple programm for the solution of Bagley-Torvik equation with

FDM where

f(t) = 0, 05t4 − 0, 03t3 + 0, 361t5/2 + 0, 145t2 − 0, 135t3/2 − 0, 36t + 0, 056t1/2 + 0, 1.
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Figure 8.10 . Maple programm for the Short Memory Principle.


